WorldWideScience

Sample records for cadmium induces wnt

  1. Wnt4 is not sufficient to induce lobuloalveolar mammary development

    OpenAIRE

    Pelegri Francisco; Clark Rod J; Kim Young; Alexander Caroline M

    2009-01-01

    Abstract Background Brisken et al (2000) showed that Wnt4 null mammary glands were deficient in early lobuloalveolar mammary outgrowth during pregnancy, and implicated Wnt4 as an effector for the progesterone-induced mammary growth program. Though ectopic Wnt1 signaling is known to be mitogenic and oncogenic, no endogenously expressed Wnt ligands have ever been directly implicated in mammary growth and morphogenesis. Therefore, we generated conditional transgenic mice to test whether Wnt4 can...

  2. Wnt4 is not sufficient to induce lobuloalveolar mammary development

    Directory of Open Access Journals (Sweden)

    Pelegri Francisco

    2009-10-01

    Full Text Available Abstract Background Brisken et al (2000 showed that Wnt4 null mammary glands were deficient in early lobuloalveolar mammary outgrowth during pregnancy, and implicated Wnt4 as an effector for the progesterone-induced mammary growth program. Though ectopic Wnt1 signaling is known to be mitogenic and oncogenic, no endogenously expressed Wnt ligands have ever been directly implicated in mammary growth and morphogenesis. Therefore, we generated conditional transgenic mice to test whether Wnt4 can stimulate mammary epithelial cell growth. Results We found that despite pregnancy-associated expression levels of Wnt4, mammary glands did not display the side-branching typical of early pregnancy. Control experiments designed to test the Wnt4 construct in zebrafish reproduced other studies that demonstrated Wnt4-specific phenotypes distinct from Wnt1-induced phenotypes. Indeed, using qPCR-based array analyses, we found that a specific transcriptional target of Wnt4, namely Wnt16, was induced in Wnt4-expressing transgenic glands, to levels equivalent to that of early pregnant glands. Conclusion Taken together, we propose that Wnt4 is necessary, but not sufficient, to induce side-branch development.

  3. Wnt signaling induces epithelial differentiation during cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Hocking Anne

    2006-01-01

    Full Text Available Abstract Background Cutaneous wound repair in adult mammals does not regenerate the original epithelial architecture and results in altered skin function. We propose that lack of regeneration may be due to the absence of appropriate molecular signals to promote regeneration. In this study, we investigated the regulation of Wnt signaling during cutaneous wound healing and the consequence of activating either the beta-catenin-dependent or beta-catenin-independent Wnt signaling on epidermal architecture during wound repair. Results We determined that the expression of Wnt ligands that typically signal via the beta-catenin-independent pathway is up-regulated in the wound while the beta-catenin-dependent Wnt signaling is activated in the hair follicles adjacent to the wound edge. Ectopic activation of beta-catenin-dependent Wnt signaling with lithium chloride in the wound resulted in epithelial cysts and occasional rudimentary hair follicle structures within the epidermis. In contrast, forced expression of Wnt-5a in the deeper wound induced changes in the interfollicular epithelium mimicking regeneration, including formation of epithelia-lined cysts in the wound dermis, rudimentary hair follicles and sebaceous glands, without formation of tumors. Conclusion These findings suggest that adult interfollicular epithelium is capable of responding to Wnt morphogenic signals necessary for restoring epithelial tissue patterning in the skin during wound repair.

  4. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    Science.gov (United States)

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs. PMID:25556853

  5. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  6. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    International Nuclear Information System (INIS)

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression

  7. A wound-induced Wnt expression program controls planarian regeneration polarity.

    Science.gov (United States)

    Petersen, Christian P; Reddien, Peter W

    2009-10-01

    Regeneration requires specification of the identity of new tissues to be made. Whether this process relies only on intrinsic regulative properties of regenerating tissues or whether wound signaling provides input into tissue repatterning is not known. The head-versus-tail regeneration polarity decision in planarians, which requires Wnt signaling, provides a paradigm to study the process of tissue identity specification during regeneration. The Smed-wntP-1 gene is required for regeneration polarity and is expressed at the posterior pole of intact animals. Surprisingly, wntP-1 was expressed at both anterior- and posterior-facing wounds rapidly after wounding. wntP-1 expression was induced by all types of wounds examined, regardless of whether wounding prompted tail regeneration. Regeneration polarity was found to require new expression of wntP-1. Inhibition of the wntP-2 gene enhanced the polarity phenotype due to wntP-1 inhibition, with new expression of wntP-2 in regeneration occurring subsequent to expression of wntP-1 and localized only to posterior-facing wounds. New expression of wntP-2 required wound-induced wntP-1. Finally, wntP-1 and wntP-2 expression changes occurred even in the absence of neoblast stem cells, which are required for regeneration, suggesting that the role of these genes in polarity is independent of and instructive for tail formation. These data indicate that wound-induced input is involved in resetting the normal polarized features of the body axis during regeneration. PMID:19805089

  8. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8

    NARCIS (Netherlands)

    Spanjer, Anita I R; Baarsma, Hoeke A; Oostenbrink, Lisette M; Jansen, Sepp R; Kuipers, Christine C; Lindner, Michael; Postma, Dirkje S; Meurs, Herman; Heijink, Irene H; Gosens, Reinoud; Königshoff, Melanie

    2016-01-01

    TGF-β is important in lung injury and remodeling processes. TGF-β and Wingless/integrase-1 (WNT) signaling are interconnected; however, the WNT ligand-receptor complexes involved are unknown. Thus, we aimed to identify Frizzled (FZD) receptors that mediate TGF-β-induced profibrotic signaling. MRC-5

  9. The fusion protein SS18-SSX1 employs core Wnt pathway transcription factors to induce a partial Wnt signature in synovial sarcoma.

    Science.gov (United States)

    Cironi, Luisa; Petricevic, Tanja; Fernandes Vieira, Victor; Provero, Paolo; Fusco, Carlo; Cornaz, Sandrine; Fregni, Giulia; Letovanec, Igor; Aguet, Michel; Stamenkovic, Ivan

    2016-01-01

    Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not β-catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking β-catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation. PMID:26905812

  10. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  11. Cadmium-induced fetal toxicity in the rat

    International Nuclear Information System (INIS)

    Cadmium, a heavy metal environment contaminant, induces fetal death and placental necrosis in the Wistar rat. This study investigated fetal, maternal, and placental responses to cadmium intoxication. Subcutaneous injection of CdCl2 to dams on day 18 of pregnancy produced a high incidence of fetal death (75%) and placental necrosis. Death in the fetus was produced despite limited fetal accumulations of cadmium. Distribution studies using 109Cd-labeled CdCl2 demonstrated that less than 0.1% of the injected dose was associated with the fetus. To determine if fetuses were sensitive to these low levels of cadmium, direct injections of CdCl2 into fetuses were performed in utero. Direct injections produced fetal accumulations 8-fold greater than those following maternal injections. The 8-fold greater fetal accumulations following direct injection were associated with only a 12% fetal mortality compared to the 75% mortality following maternal injections. The data indicated that the fetal toxicity of cadmium following maternal injections was not the result of direct effects of cadmium on the fetus. In conclusion, cadmium-induced fetal death was not the result of direct effects of cadmium on the fetus but may have been induced by placental cellular injury resulting from high accumulations of cadmium in the placenta. A vascular response to placental injury, leading to decreased utero-placental bood flow and cadmium-induced alterations in trophoblastic function, resulted in fetal death

  12. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    Energy Technology Data Exchange (ETDEWEB)

    Marschall, Zofia von [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD (United States); Fisher, Larry W., E-mail: lfisher@dir.nidcr.nih.gov [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD (United States)

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  13. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells.

    Science.gov (United States)

    Ugarte, Giorgia D; Vargas, Macarena F; Medina, Matías A; León, Pablo; Necuñir, David; Elorza, Alvaro A; Gutiérrez, Soraya E; Moon, Randall T; Loyola, Alejandra; De Ferrari, Giancarlo V

    2015-10-01

    Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/β-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that β-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/β-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia. PMID:26333776

  14. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  15. Effects of Cadmium on BMP Induced Bone Formation

    Institute of Scientific and Technical Information of China (English)

    陈秋生; 徐顺清

    2003-01-01

    To demonstrate the direct effects of cadmium on activities of bone morphogenetic protein (BMP), a complex containing BMP and cadmium chloride (CdCl2) was implanted beneath the abdominal skin of young male Wistar rats. The activity of BMP was studied by observing the histological changes, and measuring the activity of alkaline phosphatase (ALP) and acid phosphatase (ACP) and calcium content of the implants at different time points. Our results showed that during bone formation induced by BMP, cadmium inhibited the activities of osteoblasts and osteoclasts, and slowed the deposition of calcium. It is concluded that cadmium can directly affect biological activities of BMP directly.

  16. Pea3 transcription factors and wnt1-induced mouse mammary neoplasia.

    Directory of Open Access Journals (Sweden)

    Rebecca Baker

    Full Text Available The role of the PEA3 subfamily of Ets transcription factors in breast neoplasia is controversial. Although overexpression of PEA3 (E1AF/ETV4, and of the related factors ERM (ETV5 and ER81 (ETV1, have been observed in human and mouse breast tumors, PEA3 factors have also been ascribed a tumor suppressor function. Here, we utilized the MMTV/Wnt1 mouse strain to further interrogate the role of PEA3 transcription factors in mammary tumorigenesis based on our previous observation that Pea3 is highly expressed in MMTV/Wnt1 mammary tumors. Pea3 expression in mouse mammary tissues was visualized using a Pea3(NLSlacZ reporter strain. In normal mammary glands, Pea3 expression is predominantly confined to myoepithelial cells. Wnt1 transgene expression induced marked amplification of this cell compartment in nontumorous mammary glands, accompanied by an apparent increase in Pea3 expression. The pattern of Pea3 expression in MMTV/Wnt1 mammary glands recapitulated the cellular profile of activated beta-catenin/TCF signaling, which was visualized using both beta-catenin immunohistochemistry and the beta-catenin/TCF-responsive reporter Axin2(NLSlacZ. To test the requirement for PEA3 factors in Wnt1-induced tumorigenesis, we employed a mammary-targeted dominant negative PEA3 transgene, DeltaNPEA3En. Expression of DeltaNPEA3En delayed early-onset tumor formation in MMTV/Wnt1 virgin females (P = 0.03, suggesting a requirement for PEA3 factor function for Wnt1-driven tumor formation. Consistent with this observation, expression of the DeltaNPEA3En transgene was profoundly reduced in mammary tumors compared to nontumorous mammary glands from bigenic MMTV/Wnt1, MMTV/DeltaNPEA3En mice (P = 0.01. Our data provide the first description of Wnt1-mediated expansion of the Pea3-expressing myoepithelial compartment in nontumorous mammary glands. Consistent with this observation, mammary myoepithelium was selectively responsive to Wnt1. Together these data suggest the MMTV/Wnt

  17. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Eri Ohfuchi Maruyama

    Full Text Available Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for production of this proliferative signal operating within normal and malignant tissues remains poorly understood. Here we report that Wnt production mediated by Gpr177 is essential for mammary morphogenesis. The loss of Gpr177 interferes with mammary stem cells, leading to deficiencies in cell proliferation and differentiation. Genetic analysis further demonstrates an indispensable role of Gpr177 in Wnt-induced tumorigenesis. The Gpr177-deficiency mice are resistant to malignant transformation. This study not only demonstrates the necessity of Wnt in mammary organogenesis but also provides a proof-of-principle for targeting of Gpr177 as a potential new treatment for human diseases with aberrant Wnt stimulation.

  18. Wnt1 Participates in Inflammation Induced by Lipopolysaccharide Through Upregulating Scavenger Receptor A and NF-kB.

    Science.gov (United States)

    Zhao, Wenting; Sun, Zewei; Wang, Shuai; Li, Zhenwei; Zheng, Liangrong

    2015-08-01

    The study investigated the role of wnt1 in the inflammatory response initiated by lipolysaccharide (LPS), and analyzed the association between wnt1, NF-KB, and inflammatory factors. THP-1 cells were activated with phorbol-12-myristate-13-acetate (PMA) and treated with LPS to induce inflammation. THP-1 cells were transfected with wnt1siRNA and overexpression plasmid to explore the relationship among wnt1, SRA, and NF-KB. Inhibitor of β-catenin and siRNA of FZD1were used to investigate the signaling events involved in SRA activation induced by wnt1. Levels of NF-kB protein and inflammatory cytokines were assessed followingwnt1 siRNA and LPS treatment. PMA activation and LPS treatment of THP-1 cells increased wnt1 protein levels. Wnt1 promoted SRA expression through activation of canonical wnt pathway. Wnt1 increased NF-kB protein levels and enhanced the secretion of IL-6, TNF-α, and iNOS through binding to SRA. These findings suggest that wnt1 increased SRA and NF-kB protein levels and participated in the inflammatory response. PMID:25749569

  19. Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells.

    Science.gov (United States)

    Bao, Renyue; Christova, Tania; Song, Siyuan; Angers, Stephane; Yan, Xiaojun; Attisano, Liliana

    2012-01-01

    Constitutive Wnt signalling is characterized by excessive levels of β-catenin protein and is a frequent occurrence in cancer. APC and Axin are key components of the β-catenin destruction complex that acts to promote β-catenin degradation. The levels of Axin are in turn controlled by tankyrases, members of the PARP-family of poly-ADP-ribosylation enzymes. In colorectal cancer cells, which typically harbor APC mutations, inhibition of tankyrase activity promotes Axin stabilization and attenuates Wnt signalling. Here, we examined the effect of inhibiting tankyrases in breast cancer cells with normal APC. We show that application of the small molecule tankyrase inhibitor, XAV939 or siRNA-mediated abrogation of tankyrase expression increases Axin1 and Axin2 protein levels and attenuates Wnt-induced transcriptional responses in several breast cancer lines. In MDA-MB-231 cells, inhibiton of tankyrase activity also attenuate Wnt3a induced cell migration. Moreover, in both MDA-MB-231 and colorectal cancer cells, XAV939 inhibits cell growth under conditions of serum-deprivation. However, the presence of serum prevents this growth inhibitory effect, although inhibition of Wnt-induced transcriptional and migratory responses was maintained. These results indicate that stabilization of Axin by inhibition of tankyrases alone, may not be an effective means to block tumor cell growth and that combinatorial therapeutic approaches should be considered. PMID:23144924

  20. Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments.

    Directory of Open Access Journals (Sweden)

    Zach Klapholz-Brown

    Full Text Available BACKGROUND: The Wnt signaling system plays key roles in development, regulation of stem cell self-renewal and differentiation, cell polarity, morphogenesis and cancer. Given the multifaceted roles of Wnt signaling in these processes, its transcriptional effects on the stromal cells that make up the scaffold and infrastructure of epithelial tissues are of great interest. METHODS AND RESULTS: To begin to investigate these effects, we used DNA microarrays to identify transcriptional targets of the Wnt pathway in human lung fibroblasts. Cells were treated with active Wnt3a protein in culture, and RNA was harvested at 4 hours and 24 hours. Nuclear accumulation of ss-Catenin, as shown by immunofluorescence, and induction of AXIN2 demonstrate that fibroblasts are programmed to respond to extracellular Wnt signals. In addition to several known Wnt targets, we found many new Wnt induced genes, including many transcripts encoding regulatory proteins. Transcription factors with important developmental roles, including HOX genes, dominated the early transcriptional response. Furthermore, we found differential expression of several genes that play direct roles in the Wnt signaling pathway, as well as genes involved in other cell signaling pathways including fibroblast growth factor (FGF and bone morphogenetic protein (BMP signaling. The gene most highly induced by Wnt3a was GREMLIN2, which encodes a secreted BMP antagonist. CONCLUSIONS: Elevated expression of GREMLIN2 suggests a new role for Wnt signals in the maintenance of stem cell niches, whereby Wnt signals induce nearby fibroblasts to produce a BMP antagonist, inhibiting differentiation and promoting expansion of stem cells in their microenvironment. We suggest that Wnt-induced changes in the gene expression program of local stromal cells may play an important role in the establishment of specialized niches hospitable to the self-renewal of normal or malignant epithelial stem cells in vivo.

  1. Mammary cells with active Wnt signaling resist ErbB2-induced tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Wen Bu

    Full Text Available Aberrant activation of Wnt signaling is frequent in human malignancies. In normal epithelial tissues, including the breast, Wnt signaling is active only in a subset of cells, but it is unknown whether this subset of Wnt signaling-active cells is at increased risk of carcinogenesis. We created transgenic mice (TOP-tva in which the synthetic Wnt-responsive promoter TOP controlled the gene encoding TVA, which confers susceptibility to infection by the retroviral vector RCAS. Thus, only cells in which Wnt signaling is active will express tva and be targeted by RCAS. Surprisingly, we found that RCAS-mediated delivery of cDNA encoding a constitutively activated version of ErbB2 (HER2/Neu into the small number of TVA+ mammary epithelial cells in TOP-tva mice failed to induce tumor, while the same virus readily induced mammary tumors after it was delivered into a comparable number of cells in our previously reported mouse line MMTV-tva, whose tva is broadly expressed in mammary epithelium. Furthermore, we could not even detect any early lesions or infected cells in TOP-tva mice at the time of necropsy. Therefore, we conclude that the Wnt pathway-active cell subset in the normal mammary epithelium does not evolve into tumors following ErbB2 activation-rather, they apparently die due to apoptosis, an anticancer "barrier" that we have reported to be erected in some mammary cells followed ErbB2 activation. In accord with these mouse model data, we found that unlike the basal subtype, ErbB2+ human breast cancers rarely involve aberrant activation of Wnt signaling. This is the first report of a defined sub-population of mammalian cells that is "protected" from tumorigenesis by a potent oncogene, and provides direct in vivo evidence that mammary epithelial cells are not equal in their response to oncogene-initiated transformation.

  2. Blockade of Wnt/β-Catenin Pathway Aggravated Silica-Induced Lung Inflammation through Tregs Regulation on Th Immune Responses

    Directory of Open Access Journals (Sweden)

    Wujing Dai

    2016-01-01

    Full Text Available CD4+ T cells play an important role in regulating silica-induced inflammation and fibrosis. Recent studies showed that Wnt/β-catenin pathway could modulate the function and the differentiation of CD4+ T cells. Therefore, Wnt/β-catenin pathway may participate in the development and progress of silicosis. To investigate the role of Wnt/β-catenin pathway, we used lentivirus expressing β-catenin shRNA to block the Wnt/β-catenin pathway by intratracheal instillation to the mice model of silicosis. Treatment of lentivirus could significantly aggravate the silica-induced lung inflammation and attenuated the fibrosis at the late stage. By analyzing CD4+ T cells, we found that blockade of Wnt/β-catenin pathway suppressed regulatory T cells (Tregs. Reciprocally, enhanced Th17 response was responsible for the further accumulation of neutrophils and production of proinflammatory cytokines. In addition, blockade of Wnt/β-catenin pathway delayed the Th1/Th2 polarization by inhibiting Tregs and Th2 response. These results indicated that Wnt/β-catenin pathway could regulate Tregs to modulate Th immune response, which finally altered the pathological character of silicosis. Our study suggested that Wnt/β-catenin pathway might be a potential target to treat the silica-induced inflammation and fibrosis.

  3. Cellular mechanisms of cadmium-induced toxicity: a review.

    Science.gov (United States)

    Rani, Anju; Kumar, Anuj; Lal, Ankita; Pant, Manu

    2014-08-01

    Cadmium is a widespread toxic pollutant of occupational and environmental concern because of its diverse toxic effects: extremely protracted biological half-life (approximately 20-30 years in humans), low rate of excretion from the body and storage predominantly in soft tissues (primarily, liver and kidneys). It is an extremely toxic element of continuing concern because environmental levels have risen steadily due to continued worldwide anthropogenic mobilization. Cadmium is absorbed in significant quantities from cigarette smoke, food, water and air contamination and is known to have numerous undesirable effects in both humans and animals. Cadmium has a diversity of toxic effects including nephrotoxicity, carcinogenicity, teratogenicity and endocrine and reproductive toxicities. At the cellular level, cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Most important seems to be cadmium interaction with DNA repair mechanism, generation of reactive oxygen species and induction of apoptosis. In this article, we have reviewed recent developments and findings on cadmium toxicology. PMID:24117228

  4. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea.

    Science.gov (United States)

    Liu, L; Chen, Y; Qi, J; Zhang, Y; He, Y; Ni, W; Li, W; Zhang, S; Sun, S; Taketo, M M; Wang, L; Chai, R; Li, H

    2016-01-01

    Recent studies have reported the role of Wnt/β-catenin signaling in hair cell (HC) development, regeneration, and differentiation in the mouse cochlea; however, the role of Wnt/β-catenin signaling in HC protection remains unknown. In this study, we took advantage of transgenic mice to specifically knockout or overactivate the canonical Wnt signaling mediator β-catenin in HCs, which allowed us to investigate the role of Wnt/β-catenin signaling in protecting HCs against neomycin-induced damage. We first showed that loss of β-catenin in HCs made them more vulnerable to neomycin-induced injury, while constitutive activation of β-catenin in HCs reduced HC loss both in vivo and in vitro. We then showed that loss of β-catenin in HCs increased caspase-mediated apoptosis induced by neomycin injury, while β-catenin overexpression inhibited caspase-mediated apoptosis. Finally, we demonstrated that loss of β-catenin in HCs led to increased expression of forkhead box O3 transcription factor (Foxo3) and Bim along with decreased expression of antioxidant enzymes; thus, there were increased levels of reactive oxygen species (ROS) after neomycin treatment that might be responsible for the increased aminoglycoside sensitivity of HCs. In contrast, β-catenin overexpression reduced Foxo3 and Bim expression and ROS levels, suggesting that β-catenin is protective against neomycin-induced HC loss. Our findings demonstrate that Wnt/β-catenin signaling has an important role in protecting HCs against neomycin-induced HC loss and thus might be a new therapeutic target for the prevention of HC death. PMID:26962686

  5. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  6. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    International Nuclear Information System (INIS)

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially

  7. Cadmium exposure induces hematuria in Korean adults

    International Nuclear Information System (INIS)

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; Ptrend=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk

  8. Cadmium exposure induces hematuria in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Seok [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Kim, Myounghee, E-mail: dkkim73@gmail.com [Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do 461-713 (Korea, Republic of); Lee, Su Mi [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jung Pyo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Sejoong [Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 463-707 (Korea, Republic of); Joo, Kwon Wook [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lim, Chun Soo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Yon Su; Kim, Dong Ki [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  9. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H2DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  10. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  11. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities.

    Science.gov (United States)

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-05-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. PMID:24809668

  12. WNT16B from Ovarian Fibroblasts Induces Differentiation of Regulatory T Cells through β-Catenin Signal in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Cong-Cong Shen

    2014-07-01

    Full Text Available Treatment for cancer can induce a series of secreted factors into the tumor microenvironment, which can affect cancer progression. Wingless-type MMTV (mouse mammary tumor virus integration site 16B (WNT16B is a new member of the WNT family and has been reported to play growth-related roles in previous studies. In this study, we found WNT16B could be expressed and secreted into the microenvironment by human ovarian fibroblasts after DNA damage-associated treatment, including chemotherapy drugs and radiation. We also demonstrated that fibroblast-derived WNT16B could result in accumulation of β-catenin in dendritic cells and secretion of interleukin-10 (IL-10 and transforming growth factor beta (TGF-β, which contributed to the differentiation of regulatory T cells in a co-culture environment. These results shed light on the roles of WNT16B in immune regulation, especially in regard to cancer treatment.

  13. Wnt7b can replace Ihh to induce hypertrophic cartilage vascularization but not osteoblast differentiation during endochondral bone development.

    Science.gov (United States)

    Joeng, Kyu Sang; Long, Fanxin

    2014-01-01

    Indian hedgehog (Ihh) is an essential signal that regulates endochondral bone development. We have previously shown that Wnt7b promotes osteoblast differentiation during mouse embryogenesis, and that its expression in the perichondrium is dependent on Ihh signaling. To test the hypothesis that Wnt7b may mediate some aspects of Ihh function during endochondral bone development, we activated Wnt7b expression from the R26-Wnt7b allele with Col2-Cre in the Ihh(-/-) mouse. Artificial expression of Wnt7b rescued vascularization of the hypertrophic cartilage in the Ihh(-/-) mouse, but failed to restore orthotopic osteoblast differentiation in the perichondrium. Similarly, Wnt7b did not recover Ihh-dependent perichondral bone formation in the Ihh(-/-); Gli3(-/-) embryo. Interestingly, Wnt7b induced bone formation at the diaphyseal region of long bones in the absence of Ihh, possibly due to increased vascularization in the area. Thus, Ihh-dependent expression of Wnt7b in the perichondrium may contribute to vascularization of the hypertrophic cartilage during endochondral bone development. PMID:26273517

  14. Wnt7b can replace Ihh to induce hypertrophic cartilage vascularization but not osteoblast differentiation during endochondral bone development

    Institute of Scientific and Technical Information of China (English)

    Kyu Sang Joeng; Fanxin Long

    2014-01-01

    Indian hedgehog (Ihh) is an essential signal that regulates endochondral bone development. We have previously shown that Wnt7b promotes osteoblast differentiation during mouse embryogenesis, and that its expression in the perichondrium is dependent on Ihh signaling. To test the hypothesis that Wnt7b may mediate some aspects of Ihh function during endochondral bone development, we activated Wnt7b expression from the R26-Wnt7b allele with Col2-Cre in the Ihh2/2 mouse. Artificial expression of Wnt7b rescued vascularization of the hypertrophic cartilage in the Ihh2/2 mouse, but failed to restore orthotopic osteoblast differentiation in the perichondrium. Similarly, Wnt7b did not recover Ihh-dependent perichondral bone formation in the Ihh2/2;Gli32/2 embryo. Interestingly, Wnt7b induced bone formation at the diaphyseal region of long bones in the absence of Ihh, possibly due to increased vascularization in the area. Thus, Ihh-dependent expression of Wnt7b in the perichondrium may contribute to vascularization of the hypertrophic cartilage during endochondral bone development.

  15. Wnt signaling induces differentiation of progenitor cells in organotypic keratinocyte cultures

    Directory of Open Access Journals (Sweden)

    Liu Bob Y

    2007-02-01

    Full Text Available Abstract Background Interfollicular skin develops normally only when the activity of the progenitor cells in the basal layer is counterbalanced by the exit of cells into the suprabasal layers, where they differentiate and cornify to establish barrier function. Distinct stem and progenitor compartments have been demonstrated in hair follicles and sebaceous glands, but there are few data to describe the control of interfollicular progenitor cell activity. Wnt signaling has been shown to be an important growth-inducer of stem cell compartments in skin and many other tissues. Results Here, we test the effect of ectopic Wnt1 expression on the behavior of interfollicular progenitor cells in an organotypic culture model, and find that Wnt1 signaling inhibits their growth and promotes terminal differentiation. Conclusion These results are consistent with the phenotypes reported for transgenic mice engineered to have gain or loss of function of Wnt signaling in skin, which would recommend our culture model as an accurate one for molecular analysis. Since it is known that canonical ligands are expressed in skin, it is likely that this pathway normally regulates the balance of growth and differentiation, and suggests it could be important to pathogenesis.

  16. Aberrant activation of Wnt/β-catenin signaling pathway contributes to the sequential progression of DMBA-induced HBP carcinomas.

    Science.gov (United States)

    Vidya Priyadarsini, Ramamurthi; Senthil Murugan, Ramalingam; Nagini, Siddavaram

    2012-01-01

    Wnt signaling pathway mediated via interactions between β-catenin and members of the TCF/LEF-1 family of transcription factors plays a central role in the regulation of epithelial cell proliferation, apoptosis, differentiation, adhesion, epithelial-mesenchymal transition, and invasion. Aberrant activation of the Wnt/β-catenin signaling pathway with overexpression of Wnt and Fz, mutations of APC, β-catenin, and axin 1, and cytoplasmic accumulation of β-catenin have been frequently reported in a broad spectrum of human malignancies including oral squamous cell carcinomas (OSCCs). However, changes in the components of the Wnt signaling pathway have not been documented during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis, a paradigm for oral oncogenesis and chemointervention. In this study, we evaluated the role of β-catenin accumulation and Wnt ligands, Wnt signaling members (Fz, Dvl, APC, GSK-3β, axin, and WIF) and the downstream targets of Wnt (cyclin D1, MMP-2, and MMP-9) during the sequential progression of DMBA-induced HBP carcinomas by semi-quantitative RT-PCR and western blot analyses. Our data reveal a correlation between β-catenin accumulation and activation of Wnt signaling, and its downstream effector molecules during the sequential development of HBP carcinomas from hyperplasia to invasive carcinoma through dysplasia. Our data also support a pivotal role for β-catenin in the malignant transition of the HBP. Aberrant Wnt signaling may be a hallmark of progression to malignancy during DMBA-induced HBP carcinogenesis and could be a potential preventive and therapeutic target for suppression of OSCC. PMID:21924667

  17. Enhanced mitochondrial biogenesis contributes to Wnt induced osteoblastic differentiation of C3H10T1/2 cells.

    Science.gov (United States)

    An, Jee Hyun; Yang, Jae-Yeon; Ahn, Byung Yong; Cho, Sun Wook; Jung, Ju Yeon; Cho, Hwa Young; Cho, Young Min; Kim, Sang Wan; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Shin, Chan Soo

    2010-07-01

    Mitochondria play a key role in cell physiology including cell differentiation and proliferation. We investigated the changes of mitochondrial biogenesis during Wnt-induced osteoblastic differentiation of murine mesenchymal C3H10T1/2 cells. Scanning electron microscopy demonstrated that activation of Wnt signaling by Wnt-3A conditioned medicum (CM) resulted in significant increase in the number of mitochondria in C3H10T1/2 cells. In addition, the induction of alkaline phosphatase (ALP) activities by Wnt-3A CM was accompanied by significant increase in mitochondrial mass (pactivities as well as mitochondrial biogenesis markers. Upregulation of mitochondrial biogenesis by overexpression of mitochondrial transcription factor A (Tfam) significantly enhanced Wnt-induced osteogenesis as measured by ALP activities. In contrast, inhibition of mitochondrial biogenesis by treatment with Zidovudine (AZT) resulted in significant inhibition of ALP activities. Finally, ALP activities in human osteosarcoma cell line devoid of mitochondrial DNA (rho(0) cells) was significantly suppressed both in basal and Wnt-3A stimulated state compared to those from mitochondria-intact cells (rho+ cells). As a mechanism for Wnt-mediated mitochondrial biogenesis, we found that Wnt increased the expression of PGC-1alpha, a critical molecules in mitochondrial biogenesis, through Erk and p38 MAPK pathway independent of beta-catenin signaling. We also found that increased mitochondrial biogenesis is in turn positively regulating TOPflash reporter activity as well as beta-catenin levels. To summarize, mitochodrial biogenesis is upregulated by Wnt signaling and this upregulation contributes to the osteoblastic differentiation of mouse mesenchymal C3H10T1/2 cells. PMID:20399290

  18. Wnt-1-inducing factor-1: a novel G/C box-binding transcription factor regulating the expression of Wnt-1 during neuroectodermal differentiation.

    OpenAIRE

    St-Arnaud, R.; Moir, J M

    1993-01-01

    The Wnt-1 proto-oncogene is essential for proper development of the midbrain and is expressed in a spatially and temporally restricted manner during central nervous system development in mice. In vitro, the gene is specifically transcribed during the retinoic acid (RA)-induced neuroectodermal differentiation of the P19 line of embryonal carcinoma cells. The P19 cells differentiate into neurons, astrocytes, and fibroblast-like cells when treated with RA. Treatment of the cells with dimethyl su...

  19. Down regulation of Wnt signaling mitigates hypoxia-induced chemoresistance in human osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Donald J Scholten

    Full Text Available Osteosarcoma (OS is the most common type of solid bone cancer and remains the second leading cause of cancer-related death for children and young adults. Hypoxia is an element intrinsic to most solid-tumor microenvironments, including that of OS, and is associated with resistance to therapy, poor survival, and a malignant phenotype. Cells respond to hypoxia through alterations in gene expression, mediated most notably through the hypoxia-inducible factor (HIF class of transcription factors. Here we investigate hypoxia-induced changes in the Wnt/β-catenin signaling pathway, a key signaling cascade involved in OS pathogenesis. We show that hypoxia results in increased expression and signaling activation of HIF proteins in human osteosarcoma cells. Wnt/β-catenin signaling is down-regulated by hypoxia in human OS cells, as demonstrated by decreased active β-catenin protein levels and axin2 mRNA expression (p<0.05. This down-regulation appears to rely on both HIF-independent and HIF-dependent mechanisms, with HIF-1α standing out as an important regulator. Finally, we show that hypoxia results in resistance of human OS cells to doxorubicin-mediated toxicity (6-13 fold increase, p<0.01. These hypoxic OS cells can be sensitized to doxorubicin treatment by further inhibition of the Wnt/β-catenin signaling pathway (p<0.05. These data support the conclusion that Wnt/β-catenin signaling is down-regulated in human OS cells under hypoxia and that this signaling alteration may represent a viable target to combat chemoresistant OS subpopulations in a hypoxic niche.

  20. A Review of Molecular Events of Cadmium-Induced Carcinogenesis

    OpenAIRE

    Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Lately, Cd and Cd containing compounds have been classified as known human carcinogens and epidemiological data show causal associations with prostate, breast and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently become of grea...

  1. Combined changes in Wnt signaling response and contact inhibition induce altered proliferation in radiation-treated intestinal crypts.

    Science.gov (United States)

    Dunn, S-J; Osborne, J M; Appleton, P L; Näthke, I

    2016-06-01

    Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis. PMID:27053661

  2. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles

    Science.gov (United States)

    Gross, Julia Christina; Pukrop, Tobias; Wenzel, Dirk; Binder, Claudia

    2013-01-01

    Recently, we have shown that macrophage (MΦ)-induced invasion of breast cancer cells requires upregulation of Wnt 5a in MΦ leading to activation of β-Catenin-independent Wnt signaling in the tumor cells. However, it remained unclear, how malignant cells induce Wnt 5a in MΦ and how it is transferred back to the cancer cells. Here we identify two types of extracellular particles as essential for this intercellular interaction in both directions. Plasma membrane-derived microvesicles (MV) as well as exosomes from breast cancer cells, although biologically distinct populations, both induce Wnt 5a in MΦ. In contrast, the particle-free supernatant and vesicles from benign cells, such as platelets, have no such effect. Induction is antagonized by the Wnt inhibitor Dickkopf-1. Subsequently, Wnt 5a is shuttled via responding MΦ-MV and exosomes to the tumor cells enhancing their invasion. Wnt 5a export on both vesicle fractions depends at least partially on the cargo protein Evenness interrupted (Evi). Its knockdown leads to Wnt 5a depletion of both particle populations and reduced vesicle-mediated invasion. In conclusion, MV and exosomes are critical for MΦ-induced invasion of cancer cells since they are responsible for upregulation of MΦ-Wnt 5a as well as for its delivery to the recipient cells via a reciprocal loop. Although of different biogenesis, both populations share common features regarding function and Evi-dependent secretion of non-canonical Wnts. PMID:24185202

  3. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  4. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    International Nuclear Information System (INIS)

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression

  5. Cadmium-induced Cancers in Animals and in Humans

    OpenAIRE

    Huff, James; Lunn, Ruth M.; Waalkes, Michael P.; Tomatis, Lorenzo; Infante, Peter F.

    2007-01-01

    Discovered in the early 1800s, the use of cadmium and various cadmium salts started to become industrially important near the close of the 19th century, rapidly thereafter began to flourish, yet has diminished more recently. Most cadmium used in the United States is a byproduct from the smelting of zinc, lead, or copper ores, and is used to manufacture batteries. Carcinogenic activity of cadmium was discovered first in animals and only subsequently in humans. Cadmium and cadmium compounds hav...

  6. Radiation and cadmium induced histological alteration in the mice liver

    International Nuclear Information System (INIS)

    radiation and cadmium induced changes at histological level. Alterations in the histological changes were found dose dependent. More pronounced histopathological changes were registered after the combined exposure of cadmium chloride and gamma rays. (author)

  7. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S;

    2002-01-01

    the skeleton nor to the cadmium concentrations. Furthermore, the degree of mineralisation of the skeleton was not correlated with the cadmium concentration, age or sex. It can therefore be concluded that despite high levels of cadmium, none of the ringed seals showed any signs of cadmium......-induced nephropathy or osteodystrophy. This might be explained by the composition of the ringed seals diet, which contains high levels of vitamin D, calcium, phosphorus, zinc, selenium and protein. These elements are all likely to counteract cadmium-induced damage. It is speculated that ringed seal are not...

  8. Cadmium accumulation and subcellular distribution in relation to cadmium chloride induced cytotoxicity in vitro

    International Nuclear Information System (INIS)

    A bovine kidney cell culture system was used to assess what relationship cadmium (Cd) uptake and subcellular distribution had to cadmium chloride induced cytotoxicity. Twenty-four hour incubation with 0.1-10 μM Cd elicited 0-90% cytotoxicity. Fifty percent cytotoxicity was estimated to result from 0.8 μM Cd. A concentration-related Cd accumulation paralleled the cytotoxicity profile. The time-course for Cd accumulation was linear for the first 6 h of exposure and plateaued by 18 h post-exposure. When the degree of cytotoxicity was compared with the cellular Cd burden at 24 h post-treatment a least-squares linear regression analysis (r=0.93) indicated a direct relationship. Subcellular distribution studies indicated greater than 90% Cd recovery from the soluble supernatant (105,000 g) at all levels of cytotoxicity studied. Metallothionein sequestered less than 25% of the cellular Cd. As a result of the correlation of the degree of cytotoxicity with the cellular Cd burden and the independence of subcellular distribution from cytotoxicity, a cumulative mechanism of toxicity for Cd in MDBK cells was suggested. (author)

  9. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, M.P.; Wilson, M.J.; Poirier, L.A.

    1985-11-01

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure.

  10. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    International Nuclear Information System (INIS)

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure

  11. Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model

    Directory of Open Access Journals (Sweden)

    Sadia Benamrouz

    2014-06-01

    Full Text Available Cryptosporidium species are apicomplexan protozoans that are found worldwide. These parasites constitute a large risk to human and animal health. They cause self-limited diarrhea in immunocompetent hosts and a life-threatening disease in immunocompromised hosts. Interestingly, Cryptosporidium parvum has been related to digestive carcinogenesis in humans. Consistent with a potential tumorigenic role of this parasite, in an original reproducible animal model of chronic cryptosporidiosis based on dexamethasone-treated or untreated adult SCID mice, we formerly reported that C. parvum (strains of animal and human origin is able to induce digestive adenocarcinoma even in infections induced with very low inoculum. The aim of this study was to further characterize this animal model and to explore metabolic pathways potentially involved in the development of C. parvum-induced ileo-caecal oncogenesis. We searched for alterations in genes or proteins commonly involved in cell cycle, differentiation or cell migration, such as β-catenin, Apc, E-cadherin, Kras and p53. After infection of animals with C. parvum we demonstrated immunohistochemical abnormal localization of Wnt signaling pathway components and p53. Mutations in the selected loci of studied genes were not found after high-throughput sequencing. Furthermore, alterations in the ultrastructure of adherens junctions of the ileo-caecal neoplastic epithelia of C. parvum-infected mice were recorded using transmission electron microscopy. In conclusion, we found for the first time that the Wnt signaling pathway, and particularly the cytoskeleton network, seems to be pivotal for the development of the C. parvum-induced neoplastic process and cell migration of transformed cells. Furthermore, this model is a valuable tool in understanding the host-pathogen interactions associated with the intricate infection process of this parasite, which is able to modulate host cytoskeleton activities and several host

  12. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: Role of glutathione in the resistance to cadmium

    International Nuclear Information System (INIS)

    Cadmium affects the cellular homeostasis and generates damage via complex mechanisms involving interactions with other metals and oxidative stress induction. In this work we used a human keratinocyte cell line (HaCaT) as a model to study the oxidative damage induced by cadmium to cellular macromolecules, its effect on the antioxidant systems and the role of glutathione in cell protection toward cadmium toxicity. The cells were incubated for 24 and 48 h with cadmium (3, 15, 50 and 100 μM). High doses of cadmium were required to induce a cytotoxicity: 100 μM lead to 30% mortality after 24 h and 50% after 48 h. The oxidation of lipids and proteins and the DNA damage, respectively, assessed by thiobarbituric acid reactants determination, thiol group measurement and comet assay, were observed for 50-100 μM cadmium. The cytotoxic effects were strongly correlated to the cellular cadmium content. The glutathione peroxidase and the catalase activities were decreased, while the glutathione reductase activity and the glutathione concentration were increased after cadmium treatment. The superoxide dismutases activities were unchanged. A depletion in glutathione prior to cadmium exposure increased the cytotoxic effects and provoked DNA damage. Our results suggested that the hydroxyl radical could be the major compound involved in the oxidative stress generated by cadmium and that glutathione could play a major role in the protection of HaCaT cells from cytotoxicity but mostly from DNA damage induced by cadmium

  13. Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity.

    Science.gov (United States)

    Fouad, Amr A; Qureshi, Habib A; Yacoubi, Mohamed T; Al-Melhim, Walid N

    2009-11-01

    The hepatoprotective effect of carnosine was investigated against cadmium-induced acute liver injury in mice. Hepatotoxicity was induced by a single i.p. injection of cadmium chloride (6.5mg/kg). Carnosine treatment (10mg/kg/day, i.p.) was applied for three consecutive days, starting one day before cadmium administration. Carnosine significantly decreased the cadmium-induced elevations in serum aminotransferases. Carnosine suppressed lipid peroxidation and restored the deficits in the antioxidant defense mechanisms (reduced glutathione level, and catalase and superoxide dismutase activities) in liver tissue resulted from cadmium administration. Also, the reductions in hepatic nitric oxide and zinc ion levels, and the increases in hepatic cadmium ion concentration, and myeloperoxidase and caspase-3 activities following cadmium exposure were significantly attenuated by carnosine treatment. In addition, carnosine markedly ameliorated cadmium-induced liver tissue damage as evidenced by light and electron microscopic examinations. It was concluded that carnosine can be considered a potential candidate to protect the liver against the deleterious effect of acute cadmium intoxication. PMID:19748544

  14. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways.

    Directory of Open Access Journals (Sweden)

    Fátima Guerrero

    Full Text Available BACKGROUND: Transforming growth factor-β (TGF-β is a key cytokine during differentiation of mesenchymal stem cells (MSC into vascular smooth muscle cells (VSMC. High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS: Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. CONCLUSIONS: Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway.

  15. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    OpenAIRE

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. eleg...

  16. Protective effects of Korean red ginseng extract on cadmium-induced hepatic toxicity in rats

    OpenAIRE

    Park, Sook Jahr; Lee, Jong Rok; Jo, Mi Jeong; Park, Sang Mi; Ku, Sae Kwang; Kim, Sang Chan

    2013-01-01

    Korean red ginseng is known to regulate the immune system and help the body struggle infection and disease. Cadmium is widely distributed in the environment due to its use in industry. Exposure to cadmium is problematic causing organ dysfunction. This study was conducted to evaluate the protective effect of Korean red ginseng extract (RGE) against cadmium-induced hepatotoxicity in rats. In experiments, animals were orally administrated with RGE (25, 50 mg/kg) for 7 d and then intravenously in...

  17. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    Directory of Open Access Journals (Sweden)

    Upa Kukongviriyapan

    2014-03-01

    Full Text Available Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L in drinking water for eight weeks. Curcumin (50 or 100 mg/kg was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.

  18. Wnt-induced dephosphorylation of Axin releases β-catenin from the Axin complex

    OpenAIRE

    Willert, Karl; Shibamoto, Sayumi; Nusse, Roel

    1999-01-01

    The stabilization of β-catenin is a key regulatory step during cell fate changes and transformations to tumor cells. Several interacting proteins, including Axin, APC, and the protein kinase GSK-3β are implicated in regulating β-catenin phosphorylation and its subsequent degradation. Wnt signaling stabilizes β-catenin, but it was not clear whether and how Wnt signaling regulates the β-catenin complex. Here we show that Axin is dephosphorylated in response to Wnt signaling. The dephosphorylate...

  19. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes

    OpenAIRE

    Gerlach, Jan P.; Emmink, Benjamin L; Nojima, Hisashi; Kranenburg, Onno; Maurice, Madelon M.

    2014-01-01

    Wnt/β-catenin signalling controls development and adult tissue homeostasis and causes cancer when inappropriately activated. In unstimulated cells, an Axin1-centred multi-protein complex phosphorylates the transcriptional co-activator β-catenin, marking it for degradation. Wnt signalling antagonizes β-catenin proteolysis, leading to its accumulation and target gene expression. How Wnt stimulation alters the size distribution, composition and activity of endogenous Axin1 complexes remains poor...

  20. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhen [Huazhong University of Science and Technology, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Wuhan (China); Zhou, Lin [Huazhong University of Science and Technology, Department of Histoembryology, Tongji Medical College, Wuhan (China); Han, Na; Zhang, Mengxian [Huazhong University of Science and Technology, Department of Oncology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lyu, Xiaojuan [Huazhong University of Science and Technology, Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Wuhan (China)

    2015-08-15

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [German] Studien haben gezeigt, dass eine Strahlentherapie die Invasivitaet von

  1. Effect of tripterygium glycosides on Wnt/Frizzled signaling pathway in imiquimod-induced psoriasis-like mice

    Institute of Scientific and Technical Information of China (English)

    Xiu-Qing Liu; Zhuo-Cheng Li; Wen-Zhong Wu

    2016-01-01

    ABSTRACT Objective:To study the effect of tripterygium glycosides on Wnt/Frizzled signaling pathway in imiquimod-induced psoriasis-like mice.Methods:BALB/c female mice were selected as research objects and randomly divided into control group, model group and intervention group, model group and intervention group established the models of imiquimod-induced psoriasis-like mice, and intervention group received intragastric administration of tripterygium glycosides after establishment of models. Psoriasis lesion tissue was collected to detect the contents of Wnt/Frizzled signal molecules and downstream related molecules.Results:Wnt5a, Frizzled2, Frizzled3, Frizzled5, Frizzled6, NFAT, COX-2, VEGF, MIF, IFN-γ, IL-6, IL-17, IL-21, IL-23, JAK1, STAT3, Rsa, Raf, MEK, ERK1 and EKR2 contents in skin lesion tissue of model group were significantly higher than those of control group, cGMP and PKG contents were significantly lower than those of control group, and Frizzled4 content was not different from that of control group; Wnt5a, Frizzled2, Frizzled3, Frizzled5, Frizzled6, NFAT, COX-2, VEGF, MIF, IFN-γ, IL-6, IL-17, IL-21, IL-23, JAK1, STAT3, Rsa, Raf, MEK, ERK1 and EKR2 contents in skin lesion tissue of intervention group were significantly lower than those of model group, cGMP and PKG contents were significantly higher than those of model group, and Frizzled4 content was not different from that of model group.Conclusions:Tripterygium glycosides have inhibitory effect on the signaling pathway mediated by Wnt5a-Frizzled2/Frizzled3/Frizzled5/Frizzled6 in skin lesions of imiquimod-induced psoriasis-like mice.

  2. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles.

    OpenAIRE

    Menck, Kerstin; Klemm, Florian; Gross, Julia Christina; Pukrop, Tobias; Wenzel, Dirk; Binder, Claudia

    2013-01-01

    Recently, we have shown that macrophage (M Phi)-induced invasion of breast cancer cells requires upregulation of Wnt 5a in M Phi leading to activation of beta-Cateninin-dependent Wnt signaling in the tumor cells. However, it remained unclear, how malignant cells induce Wnt 5a in M Phi and how it is transferred back to the cancer cells. Here we identify two types of extracellular particles as essential for this intercellular interaction in both directions. Plasma membrane-derived microvesicles...

  3. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    Science.gov (United States)

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats. PMID:25022246

  4. Oxidative stress and DNA damages induced by cadmium accumulation

    Institute of Scientific and Technical Information of China (English)

    LIN Ai-jun; ZHANG Xu-hong; CHEN Mei-mei; CAO Qing

    2007-01-01

    Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.

  5. Noncanonical WNT-5B signaling induces inflammatory responses in human lung fibroblasts

    NARCIS (Netherlands)

    van Dijk, Eline M.; Menzen, Mark H.; Spanjer, Anita I. R.; Middag, Laurens D. C.; Brandsma, Corry-Anke A.; Gosens, Reinoud

    2016-01-01

    COPD is a progressive chronic lung disease characterized by pulmonary inflammation. Several recent studies indicate aberrant expression of WNT ligands and Frizzled receptors in the disease. For example, WNT-5A/B ligand expression was recently found to be increased in lung fibroblasts of COPD patient

  6. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  7. Studies of 3He Induced Nuclear Reactions on Cadmium

    International Nuclear Information System (INIS)

    Excitation functions of 3He induced nuclear reactions on natural cadmium were measured using the standard stacked foil technique and high resolution gamma ray spectroscopy. The experimental cross sections for the nuclear reactions natCd(3He,xnp )117m,g,116m115m,114m,113m,111,110m,g,109,108,107 In were measured from their threshold energy up to 27 MeV. The integral yields for some medically important products were determined. Theoretical calculations using the nuclear codes ALICE- IPPE, TAL YS, and EMPIRE-3 were used to describe the formation of these products. Theoretical and experimental results were compared with each other. K

  8. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes.

    Science.gov (United States)

    Gerlach, Jan P; Emmink, Benjamin L; Nojima, Hisashi; Kranenburg, Onno; Maurice, Madelon M

    2014-11-01

    Wnt/β-catenin signalling controls development and adult tissue homeostasis and causes cancer when inappropriately activated. In unstimulated cells, an Axin1-centred multi-protein complex phosphorylates the transcriptional co-activator β-catenin, marking it for degradation. Wnt signalling antagonizes β-catenin proteolysis, leading to its accumulation and target gene expression. How Wnt stimulation alters the size distribution, composition and activity of endogenous Axin1 complexes remains poorly understood. Here, we employed two-dimensional blue native/SDS-PAGE to analyse endogenous Axin1 and β-catenin complexes during Wnt signalling. We show that the size range of Axin1 complexes is conserved between species and remains largely unaffected by Wnt stimulation. We detect a striking Wnt-dependent, cytosolic accumulation of both non-phosphorylated and phosphorylated β-catenin within a 450 kDa Axin1-based complex and in a distinct, Axin1-free complex of 200 kDa. These results argue that during Wnt stimulation, phosphorylated β-catenin is released from the Axin1 complex but fails to undergo immediate degradation. Importantly, in APC-mutant cancer cells, the distribution of Axin1 and β-catenin complexes strongly resembles that of Wnt-stimulated cells. Our findings argue that Wnt signals and APC mutations interfere with the turnover of phosphorylated β-catenin. Furthermore, our results suggest that the accumulation of small-sized β-catenin complexes may serve as an indicator of Wnt pathway activity in primary cancer cells. PMID:25392450

  9. A Review of Molecular Events of Cadmium-Induced Carcinogenesis

    Science.gov (United States)

    Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Lately, Cd and Cd containing compounds have been classified as known human carcinogens and epidemiological data show causal associations with prostate, breast and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently become of great interest due to the development of malignancies in Cd-induced tumorigenesis in animal. Briefly, various in vitro studies demonstrate that Cd can act as a mitogen, stimulate cell proliferation, inhibit apoptosis and DNA repair, and induce carcinogenesis in several mammalian tissues and organs. Thus, the various mechanisms involved in chronic Cd exposure and malignant transformations warrant further investigation. In this review, we will focus on recent evidence of various leading general and tissue specific molecular mechanisms that follow chronic exposure to Cd in prostate, breast and lung transformed malignancies. In addition, this review considers less defined mechanisms such as epigenetic modification and autophagy, which are thought to play a role in the development of Cd-induced malignant transformation. PMID:25272057

  10. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism

    International Nuclear Information System (INIS)

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases

  11. Cadmium-induced aggregation of iron regulatory protein-1

    International Nuclear Information System (INIS)

    Iron regulatory protein-1 (IRP-1) is central to regulation of iron homeostasis, and has been shown to be sensitive to Cd2+ in vitro. Although Cd2+ induces disulfide-bond formation in many proteins, the critical cysteine residues for iron binding in IRP-1 were shown not to be involved in Cd-induced IRP-1 aggregation in vitro. Here we show that Cd2+ causes polymerization and aggregation of IRP-1 in vitro and in vivo, and decreases in a dose-dependent manner both its RNA-binding and aconitase enzymatic activities, as well as its cytosolic expression. We have used two-dimensional electrophoresis to demonstrate thiol-dependent self-association of purified recombinant IRP-1 treated with Cd2+, as well as self-association in Cd2+-exposed mesangial cells. Circular dichroism spectra confirm significant conformational changes in the purified protein upon Cd2+ exposure. Following Cd2+ treatment, there is increased translocation of inactive IRP-1 to the actin cytoskeletal fraction, and this translocation is diminished by both antioxidant (BHA) treatment and inhibition of CaMK-II. These changes differ from those elicited by manipulation of iron levels. Cadmium-induced translocation of proteins to cellular compartments, and particularly to the cytoskeleton, is becoming a recognized event in Cd2+ toxicity. Polymer-dependent translocation of IRP-1 in Cd2+-exposed cells may underlie effects of Cd2+ on iron homeostasis

  12. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence

    OpenAIRE

    Ramachandran, I; Ganapathy, V.; Gillies, E; Fonseca, I.; Sureban, S M; Houchen, C.W.; A. Reis; Queimado, L

    2014-01-01

    Hyperactivation of the Wingless-type (Wnt)/β-catenin pathway promotes tumor initiation, tumor growth and metastasis in various tissues. Although there is evidence for the involvement of Wnt/β-catenin pathway activation in salivary gland tumors, the precise mechanisms are unknown. Here we report for the first time that downregulation of the Wnt inhibitory factor 1 (WIF1) is a widespread event in salivary gland carcinoma ex-pleomorphic adenoma (CaExPA). We also show that WIF1 downregulation occ...

  13. Radiation and cadmium induced biochemical alterations in mouse kidney

    International Nuclear Information System (INIS)

    In the present investigation radiation and cadmium induced biochemical changes in the kidney of Swiss albino mice have been studied. Materials and Methods: For this purpose, adult male Swiss albino mice (6-8 weeks old) were divided into four groups. Group I (sham-irradiated), Group II (treated with CdCl2 solution 20 ppm), Group III (irradiated with 1.25, 2.5 and 5.0 Gy gamma rays), Group IV (both irradiated with 1.25, 2.5 and 5.0 Gy gamma rays and treated with CdCl2 solution). The animals were autopsied after 1, 2, 4, 7, 14 and 28 days of treatment. The kidney was taken out and different biochemical parameters, such as total proteins, glycogen, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA were estimated. Results: In irradiated animals, the values of total proteins, glycogen, acid phosphatase, alkaline phosphatase activity and RNA increased continuously up to day-7 and decreased thereafter up to day-28. The changes were dose dependent. In CdCl2 treated animals, the values of glycogen and total proteins decreased during the early intervals and increased thereafter whereas the values of acid and alkaline phosphatase activity and RNA increased during early Intervals and decreased thereafter, The values of cholesterol and DNA showed decrease in all the experimental groups (except group I) up to day-7 and increase thereafter up to day-28. After combined treatment also, the parameters followed the same pattern of increase and decrease, but the changes were more pronounced indicating their synergistic effect. The biochemical parameters showed highly significant values (P<0.001) as compared to normal ones. Conclusion: These results indicate that combined treatment of cadmium and gamma radiations causes synergistic or additive effect

  14. Cadmium carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, Michael P

    2003-12-10

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis.

  15. Cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis

  16. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  17. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  18. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    International Nuclear Information System (INIS)

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high/ Fbw7 high/ c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high/ Fbw7 low/ c-Myc high

  19. Impairment induced by chronic occupational cadmium exposure during brazing process

    International Nuclear Information System (INIS)

    Cadmium (CD) is considered a metal of the 20th century to which all inhabitants of develop societies are exposed. Long-term occupational and environmental exposure to CD often results in renal dysfunction as the kidney is considered the critical target organ. The aim of this work was to evalutate both resporatory and renal manifestations induced by occupational exposure to CD compounds during brazing process, and suggesting a protocol for prevention and control for CD- induced health effects. This study was conducted on 20 males occupationally exposed workers. They are divided into two groups: Group-1 included (10) exposed smokers and group-2 included (10) exposed non-smokers. Results of both groups were compared with those of 10 healthy age and sex matched non-smokers. All subjects were subjected to detailed history taking and laboratory investigations including blood and urinary CD, liver profile (SGOT, SGPT and alkline phosphates), kindey function tests (blood urea, creatinine and urinary beta2- microglobulin). The level of Cd in the atmosphere of the work plase air was also assessed to detect the degree of exposure as it was about 6 times greater than thesave level (1 mu /m3).(1) This study demonstrated elevation levels of blood CD, urea, creatinine and urinary CD and beta2 -microglobulin for both exposed worker groups than the controls. In additions no appreciable were noted for liver function tests, although the levels fell within normal range

  20. Induced Positron Annihiliation Investigation of Cadmium Zinc Telluride Crystal Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Akers

    2005-06-01

    Cadmium-Zinc-Telluride (CZT) crystals are used in semiconductor radiation detectors for the detection of x-ray and gamma radiation. However, production of detector grade crystals is difficult as small variations in compositional uniformity and primarily the zinc content can significantly affect the ability of the CZT crystal to function as a radiation detector. Currently there are no known nondestructive methods that can be used to identify detector grade crystals. The current test method is to fabricate and test the detector to determine if the crystal is sufficiently uniform and of the correct composition to be considered a detector grade crystal. Consequently, nondestructive detection methods are needed to identify detector grade crystals prior to the fabrication process. The purpose of this feasibility study was to perform a preliminary assessment of the ability of several new, nondestructive technologies based on Induced Positron Annihilation (IPA) to determine if detector grade CZT crystals can be identified. Results of measurements performed on specimens from Fisk University and EV Products, Inc. indicate that both the near surface Distributed Source Positron Annihilation (up to 3 mm penetration) and the volumetric Photon Induced Positron Annihilation methods may be suitable for determining CZT crystal quality. Further work on CZT crystals with a broader range of compositions and detector characteristics is needed to provide a well defined, calibrated, method for assessing CZT crystal quality.

  1. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  2. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the

  3. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    International Nuclear Information System (INIS)

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  4. Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells

    International Nuclear Information System (INIS)

    Cadmium is a toxic heavy metal which is environmentally and occupationally relevant. The mechanisms underlying cadmium-induced autophagy are not yet completely understood. The present study shows that cadmium induces autophagy, as demonstrated by the increase of LC3-II formation and the GFP-LC3 puncta cells. The induction of autophagosomes was directly visualized by electron microscopy in cadmium-exposed skin epidermal cells. Blockage of LKB1 or AMPK by siRNA transfection suppressed cadmium-induced autophagy. Cadmium-induced autophagy was inhibited in dominant-negative AMPK-transfected cells, whereas it was accelerated in cells transfected with the constitutively active form of AMPK. mTOR signaling, a negative regulator of autophagy, was downregulated in cadmium-exposed cells. In addition, cadmium generated reactive oxygen species (ROS) at relatively low levels, and caused poly(ADP-ribose) polymerase-1 (PARP) activation and ATP depletion. Inhibition of PARP by pharmacological inhibitors or its siRNA transfection suppressed ATP reduction and autophagy in cadmium-exposed cells. Furthermore, cadmium-induced autophagy signaling was attenuated by either exogenous addition of catalase and superoxide dismutase, or by overexpression of these enzymes. Consequently, these results suggest that cadmium-mediated ROS generation causes PARP activation and energy depletion, and eventually induces autophagy through the activation of LKB1-AMPK signaling and the down-regulation of mTOR in skin epidermal cells. - Highlights: → Cadmium, a toxic heavy metal, induces autophagic cell death through ROS-dependent activation of the LKB1-AMPK signaling. → Cadmium generates intracellular ROS at low levels and this leads to severe DNA damage and PARP activation, resulting in ATP depletion, which are the upstream events of LKB1-AMPK-mediated autophagy. → This novel finding may contribute to further understanding of cadmium-mediated diseases.

  5. Abnormal expression of key genes and proteins in the canonical Wnt/β-catenin pathway of articular cartilage in a rat model of exercise-induced osteoarthritis

    OpenAIRE

    LIU, SHEN-SHEN; ZHOU, PU; Zhang, Yanqiu

    2016-01-01

    To investigate the molecular pathogenesis of the canonical Wnt/β-catenin pathway in exercise-induced osteoarthritis (OA), 30 male healthy Sprague Dawley rats were divided into three groups (control, normal exercise-induced OA and injured exercise-induced OA groups) in order to establish the exercise-induced OA rat model. The mRNA and protein expression levels of Runx-2, BMP-2, Ctnnb1, Sox-9, collagen II, Mmp-13, Wnt-3a and β-catenin in chon-drocytes were detected by reverse transcription-quan...

  6. Sex-related differences in cadmium-induced alteration of drug action in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, R.C.; Pence, D.H.; Prosser, T.D.; Miya, T.S.

    1976-01-01

    Three days after pretreatment of rats of both sexes with cadmium (2 mg/kg, i.p.), the duration of hypnosis induced by hexobarbital (75 mg/kg, i.p.) was potentiated in males but not females. Likewise, similar treatment with cadmium leads to significant inhibition of the metabolism of hexobarbital by hepatic microsomal enzymes obtained from male but not female animals. These data suggest that there is a sex-related difference in the ability of cadmium to alter drug action in rats.

  7. Therapeutic effects of Cassia angustifolia in a cadmium induced hepatotoxicity assay conducted in male albino rats

    OpenAIRE

    Haidry, Muhammad Tahir; Malik, Arif

    2016-01-01

    The present study aims to investigate the therapeutic effects of Senna plant (Cassia angustifolia L.) in a cadmium induced hepatotoxicity assay by evaluating the activity of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total protein (TP) in the albino rats’ serum. A total of 30 white albino rats were taken and divided into three groups; each group comprising ten rats. The group A was taken as a control group; group B was given cadmium chloride conce...

  8. Drug-induced acute tubulointerstitial nephritis: a case with elevated urinary cadmium.

    Science.gov (United States)

    Subat-Dezulović, Mirna; Slavić, Irena; Rozmanić, Vojko; Persić, Mladen; Medjimurec, Branka; Sćukanec-Spoljar, Mira

    2002-05-01

    Acute tubulointerstitial nephritis (ATIN) has many different causes, but is most frequently caused by drugs. We report a 13-year-old vegetarian girl with drug-induced ATIN, confirmed by renal biopsy, and simultaneous occurrence of elevated urinary cadmium. Four weeks prior to admission she had been treated with antibiotics and acetaminophen for respiratory infection, and remaining febrile, was treated with different "home-made" herbal mixtures. She presented with acute non-oliguric renal failure, tubular dysfunction, and sterile pyuria, but without skin rash or edema. Laboratory data showed a raised erythrocyte sedimentation rate, normal white blood count with eosinophilia, and a serum creatinine of 245 micromol/l. Urinalysis was remarkable for glycosuria, tubular proteinuria, and elevated beta(2)-microglobulin and N-acetyl-beta-D-glucosaminidase excretion. Immunoserological tests characteristic of acute glomerulonephritis and systemic diseases were negative. She was treated with steroids and her renal function improved. Follow-up analyses disclosed normal urinary cadmium and enzyme excretion within 6 months. Heavy metal analysis of herbal preparations that she had taken confirmed the presence of cadmium, but within approved concentrations. In conclusion, elevated urinary cadmium in the case of drug-induced ATIN may be assumed to be an accidental finding. However, consumption of different herbs containing cadmium and cadmium-induced nephro-toxicity could be the reason for such serious renal damage. PMID:12042900

  9. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF

    OpenAIRE

    Schuijers, Jurian; Mokry, Michal; Hatzis, Pantelis; Cuppen, Edwin; Clevers, Hans

    2014-01-01

    Active canonical Wnt signaling results in recruitment of β-catenin to DNA by TCF/LEF family members, leading to transcriptional activation of TCF target genes. However, additional transcription factors have been suggested to recruit β-catenin and tether it to DNA. Here, we describe the genome-wide pattern of β-catenin DNA binding in murine intestinal epithelium, Wnt-responsive colorectal cancer (CRC) cells and HEK293 embryonic kidney cells. We identify two classes of β-catenin binding sites. ...

  10. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    OpenAIRE

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo; Lee, Jeong-Chae; Shi, Xianglin

    2012-01-01

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium ind...

  11. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    International Nuclear Information System (INIS)

    Highlights: ► Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. ► Cd can result in oxidative stress in the frog testes. ► Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. ► Cd can cause apoptosis in the testes of male R. limnocharis. ► Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose–effect relationship. Moreover, the same dosages of Cd2+ solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5–7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a scientific basis accounting for the global population decline in amphibian species.

  12. Cadmium-induced oxidative stress in potato tuber

    Directory of Open Access Journals (Sweden)

    Andrzej Stroiński

    2014-02-01

    Full Text Available Short-term treatment of tuber discs of potato (Solanum tuberosum L. with cadmium chloride elevated the concentration of active oxygen species (.O-2, H202 and activated the antioxidative system. Two cultivars, Bintje and Bzura, susceptible and tolerant, respectively, to cadmium were examined. In more tolerant, control tissues the activity of ascorbic acid peroxidase (AAP and catalase (CAT was higher than in the sensitive ones. During first hours of stress, the inhibition of superoxide dismutase (SOD, CAT and AAP was observed and it comes from inactivation of enzymes by cadmium ions. A subsequent activity increase of the enzymes aroused earlier in tolerant tissues. It seems therefore, that tolerant tissues possess a more efficient antioxidative system.

  13. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis.

    Science.gov (United States)

    Svegliati, Silvia; Marrone, Giusi; Pezone, Antonio; Spadoni, Tatiana; Grieco, Antonella; Moroncini, Gianluca; Grieco, Domenico; Vinciguerra, Maria; Agnese, Savina; Jüngel, Astrid; Distler, Oliver; Musti, Anna Maria; Gabrielli, Armando; Avvedimento, Enrico V

    2014-09-01

    Systemic sclerosis (SSc) is an autoimmune disease characterized by extensive visceral organ and skin fibrosis. SSc patients have increased production of autoreactive antibodies and Wnt signaling activity. We found that expression of the gene encoding Wnt inhibitor factor 1 (WIF-1) was decreased in fibroblasts from SSc patient biopsies. WIF-1 deficiency in SSc patient cells correlated with increased abundance of the Wnt effector β-catenin and the production of collagen. Knocking down WIF-1 in normal fibroblasts increased Wnt signaling and collagen production. WIF-1 loss and DNA damage were induced in normal fibroblasts by either SSc patient immunoglobulins or oxidative DNA-damaging agents, such as ultraviolet light, hydrogen peroxide, or bleomycin. The DNA damage checkpoint kinase ataxia telangiectasia mutated (ATM) mediated WIF-1 silencing through the phosphorylation of the transcription factor c-Jun, which in turn activated the expression of the gene encoding activating transcription factor 3 (ATF3). ATF3 and c-Jun were recruited together with histone deacetylase 3 (HDAC3) to the WIF-1 promoter and inhibited WIF-1 expression. Preventing the accumulation of reactive oxygen species or inhibiting the activation of ATM, c-Jun, or HDACs restored WIF-1 expression in cultured SSc patient cells. Trichostatin A, an HDAC inhibitor, prevented WIF-1 loss, β-catenin induction, and collagen accumulation in an experimental fibrosis model. Our findings suggest that oxidative DNA damage induced by SSc autoreactive antibodies enables Wnt activation that contributes to fibrosis. PMID:25185156

  14. Divergence to apoptosis from ROS induced cell cycle arrest: Effect of cadmium

    International Nuclear Information System (INIS)

    Recently, the role of cadmium (Cd) in immunosupression has gained importance. Nevertheless, the signaling pathways underlying cadmium-induced immune cell death remains largely unclear. In accordance to our previous in vivo report, and to evaluate the further details of the mechanism, we have investigated the effects of cadmium (CdCl2, H2O) on cell cycle regulation and apoptosis in splenocytes in vitro. Our results have revealed that reactive oxygen species (ROS) and p21 are involved in cell cycle arrest in a p53 independent manner but late hour apoptotic response was accompanied by the p53 up-regulation, loss of mitochondrial transmembrane potential (MTP), down-regulation of Bcl-xl, activation of caspase-3 and release of cytochrome c (Cyt c). However, pifithrin alfa (PFT-α), an inhibitor of p53, fails to rescue the cells from the cadmium-induced cell cycle arrest but prevents Bcl-xl down-regulation and loss of Δψm, which indicates that there is an involvement of p53 in apoptosis. In contrast, treatment with N-acetyl cysteine (NAC) can prevent cell cycle arrest and p21 up-regulation at early hours. Although it is clear that, NAC has no effect on apoptosis, p53 expression and MPT changes at late stage events. Taken together, we have demonstrated that cadmium promotes ROS generation, which potently initiates the cell cycle arrest at early hours and finally induces p53-dependent apoptosis at later part of the event.

  15. C-Jun N-terminal kinase (JNK mediates Wnt5a-induced cell motility dependent or independent of RhoA pathway in human dental papilla cells.

    Directory of Open Access Journals (Sweden)

    Chenglin Wang

    Full Text Available Wnt5a plays an essential role in tissue development by regulating cell migration, though the molecular mechanisms are still not fully understood. Our study investigated the pathways involved in Wnt5a-dependent cell motility during the formation of dentin and pulp. Over-expression of Wnt5a promoted cell adhesion and formation of focal adhesion complexes (FACs in human dental papilla cells (hDPCs, while inhibiting cell migration. Instead of activating the canonical Wnt signal pathway in hDPCs, Wnt5a stimulation induced activation of the JNK signal in a RhoA-dependent or independent manner. Inhibiting JNK abrogated Wnt5a-induced FACs formation but not cytoskeletal rearrangement. Both dominant negative RhoA (RhoA T19N and constitutively active RhoA mutants (RhoA Q63L blocked the Wnt5a-dependent changes in hDPCs adhesion, migration and cytoskeletal rearrangement here too, with the exception of the formation of FACs. Taken together, our study suggested that RhoA and JNK signaling have roles in mediating Wnt5a-dependent adhesion and migration in hDPCs, and the Wnt5a/JNK pathway acts both dependently and independently of the RhoA pathway.

  16. Inhibition of Tankyrases Induces Axin Stabilization and Blocks Wnt Signalling in Breast Cancer Cells

    OpenAIRE

    Bao, Renyue; Christova, Tania; Song, Siyuan; Angers, Stephane; Yan, Xiaojun; Attisano, Liliana

    2012-01-01

    Constitutive Wnt signalling is characterized by excessive levels of β-catenin protein and is a frequent occurrence in cancer. APC and Axin are key components of the β-catenin destruction complex that acts to promote β-catenin degradation. The levels of Axin are in turn controlled by tankyrases, members of the PARP-family of poly-ADP-ribosylation enzymes. In colorectal cancer cells, which typically harbor APC mutations, inhibition of tankyrase activity promotes Axin stabilization and attenuate...

  17. Hyperactivated Wnt Signaling Induces Synthetic Lethal Interaction with Rb Inactivation by Elevating TORC1 Activities

    OpenAIRE

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S.; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-01-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a ...

  18. Aberrant Wnt/β-catenin signaling can induce chromosomal instability in colon cancer

    OpenAIRE

    Hadjihannas, Michel V; Brückner, Martina; Jerchow, Boris; Birchmeier, Walter; Dietmaier, Wolfgang; Behrens, Jürgen

    2006-01-01

    Chromosomal instability (CIN), a hallmark of most colon tumors, may promote tumor progression by increasing the rate of genetic aberrations. CIN is thought to arise as a consequence of improper mitosis and spindle checkpoint activity, but its molecular basis remains largely elusive. The majority of colon tumors develop because of mutations in the tumor suppressor APC that lead to Wnt/β-catenin signaling activation and subsequent transcription of target genes, including conductin/AXIN2. Here w...

  19. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    Energy Technology Data Exchange (ETDEWEB)

    Mehinto, Alvine C., E-mail: alvinam@sccwrp.org [Southern California Coastal Water Research Project, Costa Mesa, CA 92626 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Prucha, Melinda S. [Department of Human Genetics, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Colli-Dula, Reyna C.; Kroll, Kevin J.; Lavelle, Candice M.; Barber, David S. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Vulpe, Christopher D. [Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720 (United States); Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States)

    2014-07-01

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  20. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    International Nuclear Information System (INIS)

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  1. Aloe Vera Extract Effect on Sperm Quality and Testicular Tissue of Rats Induced by Cadmium Chloride

    Directory of Open Access Journals (Sweden)

    F Farhangdoost

    2014-04-01

    Full Text Available Background & aim: A lot of physical and chemical factors cause infertility disorders. Cadmium is a chemical agent which damages the cell structure of the reproductive system. For reducing the effects of various factors, new traditional methods have been used. The aim of this study was to investigate the effects of Aloe vera extract on testicular tissue of rats induced by cadmium chloride. Methods: In this experimental study, 40 male Wistar rats (180-200 gr were randomly divided into four groups. Groups 1 and 2 received Cadmium chloride (1/5 mg / kg/ IP. Mice induced by cadmium chloride were treated with Aloe vera. Control and normal rats were treated with 400 mg/kg of Aloe vera extracts. After 25 days, these rats were weighed and then anesthetized using ether. Blood samples were collected from each individual to assess the level of testosterone and then the animals were debriefed. The testes were removed and transferred to 10% formalin solution. After tissue processing, 5 micron sections were prepared and stained with heamatoxillin-eosin and investigated by light microscope. Data were analyzed by one-way ANOVA test. Results: Mean seminiferous tubular diameter, number of spermatogonia, Leydig and Sertoli cell of cadmium control group compared to the healthy control group showed a significant decrease (p<0.05. The mean sperm count and sperm motility in extract cadmium group and healthy control group was close to normal and displayed a significant difference (p< 0.05. Conclusion: Hydroalcoholic extract of Aloe vera increases the number of spermatogonia, Leydig and Sertoli testicular tissue of mice contaminated with cadmium chloride

  2. Effect of cadmium on genetic toxicity and protection of cortex acanthopanasia radicis against genetic damage induced by cadmium

    International Nuclear Information System (INIS)

    Objective and Methods: The test of sperm aberration and micronucleus of bone marrow cells in mice were used to detect the mutagenicity of cadmium and anti-mutagenicity of Cortex Acanthopanasia Radicis (CAR) on germ cell and somatic cell. Kunming mice were divided randomly into four groups: normal saline control group (NS): MMC control group (MMC 1.0 mg/kg); Cd-mutate group (1/5 LD50), 17.6 mg/kg); CAR anti-mutate group (CAR 1,2,4 g/kg + Cd). Ridit test and x2 were used to evaluate the statistical significance of the date. Results: The experiment demonstrated that Chinese medicine CAR can significantly decrease sperm aberration and micronuclei frequencies induced by Cd (P<0.01). Conclusion: As an anti-mutagen CAR has practical value in occupational protection against genetic damage induced by Cd

  3. Blocking the Wnt/β-Catenin Pathway by Lentivirus-Mediated Short Hairpin RNA Targeting β-Catenin Gene Suppresses Silica-Induced Lung Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2015-09-01

    Full Text Available Silicosis is a form of occupational lung disease caused by inhalation of crystalline silica dust. While the pathogenesis of silicosis is not clearly understood, the Wnt/β-catenin signaling pathway is thought to play a major role in lung fibrosis. To explore the role of Wnt/β-catenin pathway in silicosis, we blocked Wnt/β-catenin pathway both in silica-treated MLE-12 cells (a mouse pulmonary epithelial cell line and in a mouse silicosis model by using a lentiviral vector expressing a short hairpin RNA silencing β-catenin (Lv-shβ-catenin. In vitro, Lv-shβ-catenin significantly decreased the expression of β-catenin, MMP2 and MMP9, and secretion of TGF-β1. In vivo, intratracheal treatment with Lv-shβ-catenin significantly reduced expression of β-catenin in the lung and levels of TGF-β1 in bronchoalveolar lavage fluid, and notably attenuated pulmonary fibrosis as evidenced by hydroxyproline content and collagen I\\III synthesis in silica-administered mice. These results indicate that blockade of the Wnt/β-catenin pathway can prevent the development of silica-induced lung fibrosis. Thus Wnt/β-catenin pathway may be a target in prevention and treatment of silicosis.

  4. Blocking the Wnt/β-Catenin Pathway by Lentivirus-Mediated Short Hairpin RNA Targeting β-Catenin Gene Suppresses Silica-Induced Lung Fibrosis in Mice.

    Science.gov (United States)

    Wang, Xin; Dai, Wujing; Wang, Yanrang; Gu, Qing; Yang, Deyi; Zhang, Ming

    2015-09-01

    Silicosis is a form of occupational lung disease caused by inhalation of crystalline silica dust. While the pathogenesis of silicosis is not clearly understood, the Wnt/β-catenin signaling pathway is thought to play a major role in lung fibrosis. To explore the role of Wnt/β-catenin pathway in silicosis, we blocked Wnt/β-catenin pathway both in silica-treated MLE-12 cells (a mouse pulmonary epithelial cell line) and in a mouse silicosis model by using a lentiviral vector expressing a short hairpin RNA silencing β-catenin (Lv-shβ-catenin). In vitro, Lv-shβ-catenin significantly decreased the expression of β-catenin, MMP2 and MMP9, and secretion of TGF-β1. In vivo, intratracheal treatment with Lv-shβ-catenin significantly reduced expression of β-catenin in the lung and levels of TGF-β1 in bronchoalveolar lavage fluid, and notably attenuated pulmonary fibrosis as evidenced by hydroxyproline content and collagen I\\III synthesis in silica-administered mice. These results indicate that blockade of the Wnt/β-catenin pathway can prevent the development of silica-induced lung fibrosis. Thus Wnt/β-catenin pathway may be a target in prevention and treatment of silicosis. PMID:26340635

  5. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  6. Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer

    Science.gov (United States)

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induce...

  7. Effect of Physalis peruviana L. on cadmium-induced testicular toxicity in rats.

    Science.gov (United States)

    Othman, Mohamed S; Nada, Ahmed; Zaki, Hassan S; Abdel Moneim, Ahmed E

    2014-06-01

    Cadmium (Cd) stimulates the production of reactive oxygen species and causes tissue damage. We investigated here the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced testes toxicity in rats. Twenty-eight Wistar albino rats were used. They were divided into four groups (n=7). Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg body weight (bwt) of cadmium chloride for 5 days. Group 3 was orally treated with 200 mg/kg bwt of methanolic extract of physalis (MEPh). Group 4 was pretreated with MEPh before cadmium for 5 days. Changes in body and testes weights were determined. Oxidative stress markers, antioxidant enzymes, and testosterone level were measured. Histopathological changes of testes were examined, and the immunohistochemical staining for the proapoptotic (caspase-3) protein was performed. The injection of cadmium caused a significant decrease in body weight, while a significant increase in testes weight and testes weight index was observed. Pretreatment with MEPh was associated with significant reduction in the toxic effects of Cd as shown by reduced testicular levels of malondialdehyde, nitric oxide, and caspase-3 expression and increased glutathione content, and the activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and testosterone were also increased. Testicular histopathology showed that Cd produced an extensive germ cell apoptosis, and the pretreatment of MEPh in Cd-treated rats significantly reduced Cd-induced testicular damage. On the basis of the above results, it can be hypothesized that P. peruviana L. has a protective effect against cadmium-induced testicular oxidative stress and apoptosis in the rat. PMID:24728876

  8. Regulation of expression of an auxin-induced soybean sequence by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Uhrhammer, N.; Guilfoyle, T.J.

    1988-05-05

    An auxin-regulated soybean sequence has been characterized and shown to be induced by the heavy metals cadmium, silver, and copper. Cadmium induces the accumulation of two size classes of mRNA: a 1-kilobase (kb) RNA class, which is the same size as the RNA class induced by auxin, silver, and copper, and a 1.4-kb RNA class. DNA sequences analysis of cDNA clones and a soybean genomic fragment has shown the presence of an intron in this gene. A restriction fragment probe isolated from the intron segment hybridizes specifically to the 1.4-kb mRNA. The transcription rate of this sequences is rapidly increased following exposure of soybean primary leaves to cadmium, as assayed by nuclear run-off transcription experiments. These results suggest that cadmium not only induces the transcription of a specific soybean sequences, but interferes with the processing of the precursor mRNA, resulting in the accumulation of the 1.4-kb mRNA precursor species.

  9. Hepatic Progenitor Cells Contribute to the Progression of 2-Acetylaminofluorene/Carbon Tetrachloride-Induced Cirrhosis via the Non-Canonical Wnt Pathway.

    Directory of Open Access Journals (Sweden)

    Jiamei Chen

    Full Text Available Hepatic progenitor cells (HPCs appear to play an important role in chronic liver injury. In this study, cirrhosis was induced in F-344 rats (n = 32 via subcutaneous injection of 50% carbon tetrachloride (CCl4 twice a week for 8 weeks. Then, 30% CCl4 was administered in conjunction with intragastric 2-acetylaminofluorine (2-AAF for 4 weeks to induce activation of HPCs. WB-F344 cells were used to provide direct evidence for differentiation of HPCs to myofibroblasts. The results showed that after administration of 2-AAF, the hydroxyproline content and the expressions of α-SMA, Col I, Col IV, TGF-β1, CD68, TNF-α, CK19 and OV6 were significantly increased. OV6 and α-SMA were largely co-expressed in fibrous septum and the expressions of Wnt5b, frizzled2, frizzled3 and frizzled6 were markedly increased, while β-catenin expression was not statistically different among the different groups. Consistent with the above results, WB-F344 cells, treated with TGF-β1 in vitro, differentiated into myofibroblasts and α-SMA, Col I, Col IV, Wnt5b and frizzled2 expressions were significantly increased, while β-catenin expression was decreased. After blocking the non-canonical Wnt pathway via WIF-1, the Wnt5b level was down regulated, and α-SMA and F-actin expressions were significantly decreased in the WIF-1-treated cells. In conclusion, these results indicate that HPCs appear to differentiate into myofibroblasts and exhibit a profibrotic effect in progressive cirrhosis via activation of the non-canonical Wnt pathway. Blocking the non-canonical Wnt pathway can inhibit the differentiation of HPCs into myofibroblasts, suggesting that blocking this pathway and changing the fate of differentiated HPCs may be a potential treatment for cirrhosis.

  10. Hepatic Progenitor Cells Contribute to the Progression of 2-Acetylaminofluorene/Carbon Tetrachloride-Induced Cirrhosis via the Non-Canonical Wnt Pathway.

    Science.gov (United States)

    Chen, Jiamei; Zhang, Xiao; Xu, Ying; Li, Xuewei; Ren, Shuang; Zhou, Yaning; Duan, Yuyou; Zern, Mark; Zhang, Hua; Chen, Gaofeng; Liu, Chenghai; Mu, Yongping; Liu, Ping

    2015-01-01

    Hepatic progenitor cells (HPCs) appear to play an important role in chronic liver injury. In this study, cirrhosis was induced in F-344 rats (n = 32) via subcutaneous injection of 50% carbon tetrachloride (CCl4) twice a week for 8 weeks. Then, 30% CCl4 was administered in conjunction with intragastric 2-acetylaminofluorine (2-AAF) for 4 weeks to induce activation of HPCs. WB-F344 cells were used to provide direct evidence for differentiation of HPCs to myofibroblasts. The results showed that after administration of 2-AAF, the hydroxyproline content and the expressions of α-SMA, Col I, Col IV, TGF-β1, CD68, TNF-α, CK19 and OV6 were significantly increased. OV6 and α-SMA were largely co-expressed in fibrous septum and the expressions of Wnt5b, frizzled2, frizzled3 and frizzled6 were markedly increased, while β-catenin expression was not statistically different among the different groups. Consistent with the above results, WB-F344 cells, treated with TGF-β1 in vitro, differentiated into myofibroblasts and α-SMA, Col I, Col IV, Wnt5b and frizzled2 expressions were significantly increased, while β-catenin expression was decreased. After blocking the non-canonical Wnt pathway via WIF-1, the Wnt5b level was down regulated, and α-SMA and F-actin expressions were significantly decreased in the WIF-1-treated cells. In conclusion, these results indicate that HPCs appear to differentiate into myofibroblasts and exhibit a profibrotic effect in progressive cirrhosis via activation of the non-canonical Wnt pathway. Blocking the non-canonical Wnt pathway can inhibit the differentiation of HPCs into myofibroblasts, suggesting that blocking this pathway and changing the fate of differentiated HPCs may be a potential treatment for cirrhosis. PMID:26087010

  11. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  12. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling

  13. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yujie Fu

    Full Text Available Resveratrol, a natural polyphenolic compound, is abundantly found in plant foods and has been extensively studied for its anti-cancer properties. Given the important role of CSCs (Cancer Stem Cells in breast tumorigenesis and progression, it is worth investigating the effects of resveratrol on CSCs. The article is an attempt to investigate the effects of resveratrol on breast CSCs. Resveratrol significantly inhibits the proliferation of BCSCs (breast cancer stem-like cells isolated from MCF-7 and SUM159, and decreased the percentage of BCSCs population, consequently reduced the size and number of mammospheres in non-adherent spherical clusters. Accordingly, the injection of resveratrol (100 mg/kg/d in NOD/SCID (nonobese diabetic/severe combined immunodeficient mice effectively inhibited the growth of xenograft tumors and reduced BCSC population in tumor cells. After the reimplantation of primary tumor cells into the secondary mice for 30 d, all 6 control inoculations produced tumors, while tumor cells derived from resveratrol-treated mice only caused 1 tumor of 6 inoculations. Further studies by TEM (Transmission electron microscopy analysis, GFP-LC3-II puncta formation assay and western blot for LC3-II, Beclin1 and Atg 7, showed that resveratrol induces autophagy in BCSCs. Moreover, resveratrol suppresses Wnt/β-catenin signaling pathway in BCSCs; over-expression of β-catenin by transfecting the plasmid markedly reduced resveratrol-induced cytotoxicity and autophagy in BCSCs. Our findings indicated that resveratrol inhibits BCSCs and induces autophagy via suppressing Wnt/β-catenin signaling pathway.

  14. Pea3 Transcription Factors and Wnt1-Induced Mouse Mammary Neoplasia

    OpenAIRE

    Baker, Rebecca; Kent, Claire V.; Silbermann, Rachel A.; Hassell, John A.; Young, Lawrence J.T.; Howe, Louise R.

    2010-01-01

    The role of the PEA3 subfamily of Ets transcription factors in breast neoplasia is controversial. Although overexpression of PEA3 (E1AF/ETV4), and of the related factors ERM (ETV5) and ER81 (ETV1), have been observed in human and mouse breast tumors, PEA3 factors have also been ascribed a tumor suppressor function. Here, we utilized the MMTV/Wnt1 mouse strain to further interrogate the role of PEA3 transcription factors in mammary tumorigenesis based on our previous observation that Pea3 is h...

  15. Metallothionein-like proteins induced by cadmium stress in the scallop Mizuhopecten yessoensis

    Science.gov (United States)

    Zhukovskaya, Avianna F.; Belcheva, Nina N.; Slobodskova, Valentina S.; Chelomin, Viktor P.

    2012-09-01

    Organisms have evolved a cellular response called stress protein response that increases their tolerance in adverse environmental conditions. Well known stress proteins that bind essential and toxic metals are metallothionein (MT). The scallop Mizuhopecten yessoensis is the most interesting organism because it is able to accumulate toxic cadmium in its digestive gland. However, in the tissue of the digestive gland of Mizuhopecten yessoensis MT (metallothioneins) have not been found. Eastern scallops, Mizuhopecten yessoensis, were collected from two locations — one clean and one polluted site. The concentrations of cadmium (Cd), copper (Cu) and zinc (Zn) were measured in the digestive gland. There was a significant increase in Cd concentrations in this studied tissue. We found that in the presence of cadmium Mizuhopecten yessoensis can induce high molecular proteins. The results of experiments have shown that Cd-binding ligands have a number of properties similar to MT: acetone and temperature stability; the ability to bind some metals, including Cd, Cu and Zn. Protein chromatography (FPLC, Superosa 12) from the digestive gland of scallop M. yessoensis has shown that cadmium is associated with high molecular weight Cd-binding proteins (72 kDa and 43 kDa). The major cadmium-binding protein 72 kDa is glycoprotein. In experiments we have demonstrated that Cd-binding proteins can be induced when there is cadmium exposure. The results of this study strongly suggest that the far eastern scallop Mizuhopecten yessoensis has a unique and well-developed system for the detoxification of heavy metals and it allows for biochemical systems to be maintained in a relatively stable manner in the presence of heavy metals.

  16. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway.

    Directory of Open Access Journals (Sweden)

    Da-yong Zhang

    Full Text Available Recent studies have demonstrated the importance of cellular extrinsic factors in the aging of adult stem cells. However, the effects of an aged cell-extrinsic environment on mesenchymal stem cell (MSC aging and the factors involved remain unclear. In the current study, we examine the effects of old rat serum (ORS on the aging of MSCs, and explore the effects and mechanisms of Wnt/β-catenin signaling on MSC aging induced by ORS treatment. Senescence-associated changes in the cells are examined with SA-β-galactosidase staining and ROS staining. The proliferation ability is detected by MTT assay. The surviving and apoptotic cells are determined using AO/EB staining. The results suggest that ORS promotes MSC senescence and reduces the proliferation and survival of cells. The immunofluorescence staining shows that the expression of β-catenin increases in MSCs of old rats. To identify the effects of Wnt/β-catenin signaling on MSC aging induced with ORS, the expression of β-catenin, GSK-3β, and c-myc are detected. The results show that the Wnt/β-catenin signaling in the cells is activated after ORS treatment. Then we examine the aging, proliferation, and survival of MSCs after modulating Wnt/β-catenin signaling. The results indicate that the senescence and dysfunction of MSCs in the medium containing ORS is reversed by the Wnt/β-catenin signaling inhibitor DKK1 or by β-catenin siRNA. Moreover, the expression of γ-H2A.X, a molecular marker of DNA damage response, p16(INK4a, p53, and p21 is increased in senescent MSCs induced with ORS, and is also reversed by DKK1 or by β-catenin siRNA. In summary, our study indicates the Wnt/β-catenin signaling may play a critical role in MSC aging induced by the serum of aged animals and suggests that the DNA damage response and p53/p21 pathway may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling.

  17. Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling.

    Science.gov (United States)

    Yang, Mingjin; Du, Yuejun; Xu, Zhibo; Jiang, Youfan

    2016-02-01

    Upregulation of WISP1 has been demonstrated in lung remodeling. Moreover, it has been recently found that some signaling components of WNT pathway can activate GSK3β signaling to mediate remodeling of airway smooth muscle (ASM) in asthma. Therefore, we hypothesized that WISP1, a signaling molecule downstream of the WNT signaling pathway, is involved in PI3K/GSK3β signaling to mediate ASM remodeling in asthma. Our results showed that WISP1 depletion partly suppressed OVA-induced ASM hypertrophy in vivo. In vitro, WISP1 could induce hBSMC hypertrophy and proliferation, accompanied by upregulation of levels of PI3K, p-Akt, p-GSK3β, and its own expression. TGF-β treatment could increase expression of PI3K, p-Akt, p-GSK3β, and WISP1. SH-5 treatment could partly suppress TGF-β-induced hypertrophy and proliferation of hBSMC, and depress expression of p-GSK3β and WISP1. In conclusion, WISP1 may be a potential inducer of ASM proliferation and hypertrophy in asthma. The pro-remodeling effect of WISP1 is likely due to be involved in PI3K-GSK3β-dependent noncanonical TGF-β signaling. PMID:26242865

  18. Cadmium induced oxidative stress in kidney epithelia cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    2007-01-01

    Cadmium (Cd) is an important industrial and environmental pollutant. In humans exposed to Cd via oral and/or pulmonary routes, the kidney is by far the primary organ affected adversely by Cd. It have been estimated that 7% of the human population may develop renal dysfunction from Cd exposure. To...... diacetate (DCFH-DA) for measurement of intracellular ROS production in living cells. The assay is based on the fact that DCFH-DA, a non polar and non fluorescent compound can diffuse through the cell membrane and be deacetylated by cytosolic esterases to yield polar, non-fluorescent DCFH. DCFH is trapped...

  19. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China); Jia Xiuying, E-mail: hznujiaxiuying@126.com [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. Black-Right-Pointing-Pointer Cd can result in oxidative stress in the frog testes. Black-Right-Pointing-Pointer Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. Black-Right-Pointing-Pointer Cd can cause apoptosis in the testes of male R. limnocharis. Black-Right-Pointing-Pointer Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose-effect relationship. Moreover, the same dosages of Cd{sup 2+} solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5-7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a

  20. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  1. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer✩

    OpenAIRE

    Liu, Zhenhua; Brooks, Ryan S.; Ciappio, Eric D.; Kim, Susan J; Crott, Jimmy W.; Bennett, Grace; Greenberg, Andrew S.; Mason, Joel B.

    2011-01-01

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induced elevation of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Animal studies were conducted on C57BL/6 mice, and obesity was induced by utilizing a high-fat diet (60% kcal). An infl...

  2. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells

    OpenAIRE

    Hansson, Mattias; Olesen, Dorthe R.; Peterslund, Janny M. L.; Engberg, Nina; Kahn, Morten; Winzi, Maria; Klein, Tino; Maddox-Hyttel, Poul; Serup, Palle

    2009-01-01

    Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous findings on the ability of increasing concentrations of activin to progressively induce more ES cell progeny to anterior PS and endodermal fates. We find that the number of Sox17- and Gsc-expressing ce...

  3. Divergence to apoptosis from ROS induced cell cycle arrest: Effect of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Soumya; Kundu, Subhadip; Sengupta, Suman [Department of Environmental Science, University of Kalyani, West Bengal 741235 (India); Department of Zoology, University of Calcutta, Calcutta-700019, West Bengal (India); Bhattacharyya, Arindam, E-mail: arindam19@yahoo.com [Department of Environmental Science, University of Kalyani, West Bengal 741235 (India); Department of Zoology, University of Calcutta, Calcutta-700019, West Bengal (India)

    2009-04-26

    Recently, the role of cadmium (Cd) in immunosupression has gained importance. Nevertheless, the signaling pathways underlying cadmium-induced immune cell death remains largely unclear. In accordance to our previous in vivo report, and to evaluate the further details of the mechanism, we have investigated the effects of cadmium (CdCl{sub 2}, H{sub 2}O) on cell cycle regulation and apoptosis in splenocytes in vitro. Our results have revealed that reactive oxygen species (ROS) and p21 are involved in cell cycle arrest in a p53 independent manner but late hour apoptotic response was accompanied by the p53 up-regulation, loss of mitochondrial transmembrane potential (MTP), down-regulation of Bcl-xl, activation of caspase-3 and release of cytochrome c (Cyt c). However, pifithrin alfa (PFT-{alpha}), an inhibitor of p53, fails to rescue the cells from the cadmium-induced cell cycle arrest but prevents Bcl-xl down-regulation and loss of {Delta}{psi}{sub m}, which indicates that there is an involvement of p53 in apoptosis. In contrast, treatment with N-acetyl cysteine (NAC) can prevent cell cycle arrest and p21 up-regulation at early hours. Although it is clear that, NAC has no effect on apoptosis, p53 expression and MPT changes at late stage events. Taken together, we have demonstrated that cadmium promotes ROS generation, which potently initiates the cell cycle arrest at early hours and finally induces p53-dependent apoptosis at later part of the event.

  4. Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis.

    Science.gov (United States)

    Son, Young-Ok; Pratheeshkumar, Poyil; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Zhang, Zhuo; Shi, Xianglin

    2014-10-10

    The cadmium-transformed human lung bronchial epithelial BEAS-2B cells exhibit a property of apoptosis resistance as compared with normal non-transformed BEAS-2B cells. The level of basal reactive oxygen species (ROS) is extremely low in transformed cells in correlation with elevated expressions of both antioxidant enzymes (catalase, SOD1, and SOD2) and antiapoptotic proteins (Bcl-2/Bcl-xL). Moreover, Nrf2 and p62 are highly expressed in these transformed cells. The knockdown of Nrf2 or p62 by siRNA enhances ROS levels and cadmium-induced apoptosis. The binding activities of Nrf2 on the antioxidant response element promoter regions of p62/Bcl-2/Bcl-xL were dramatically increased in the cadmium-exposed transformed cells. Cadmium exposure increased the formation of LC3-II and the frequency of GFP-LC3 punctal cells in non-transformed BEAS-2B cells, whereas these increases are not shown in transformed cells, an indication of autophagy deficiency of transformed cells. Furthermore, the expression levels of Nrf2 and p62 are dramatically increased during chronic long term exposure to cadmium in the BEAS-2B cells as well as antiapoptotic proteins and antioxidant enzymes. These proteins are overexpressed in the tumor tissues derived from xenograft mouse models. Moreover, the colony growth is significantly attenuated in the transformed cells by siRNA transfection specific for Nrf2 or p62. Taken together, this study demonstrates that cadmium-transformed cells have acquired autophagy deficiency, leading to constitutive p62 and Nrf2 overexpression. These overexpressions up-regulate the antioxidant proteins catalase and SOD and the antiapoptotic proteins Bcl-2 and Bcl-xL. The final consequences are decrease in ROS generation, apoptotic resistance, and increased cell survival, proliferation, and tumorigenesis. PMID:25157103

  5. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression.

    Science.gov (United States)

    Hamidouche, Zahia; Haÿ, Eric; Vaudin, Pascal; Charbord, Pierre; Schüle, Roland; Marie, Pierre J; Fromigué, Olivia

    2008-11-01

    The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step in bone formation. However, the mechanisms involved in the early stages of osteogenic differentiation are not well understood. In this study, we identified FHL2, a member of the LIM-only subclass of the LIM protein superfamily, that is up-regulated during early osteoblast differentiation induced by dexamethasone in murine and human MSCs. Gain-of-function studies showed that FHL2 promotes the expression of the osteoblast transcription factor Runx2, alkaline phosphatase, type I collagen, as well as in vitro extracellular matrix mineralization in murine and human mesenchymal cells. Knocking down FHL2 using sh-RNA reduces basal and dexamethasone-induced osteoblast marker gene expression in MSCs. We demonstrate that FHL2 interacts with beta-catenin, a key player involved in bone formation induced by Wnt signaling. FHL2-beta-catenin interaction potentiates beta-catenin nuclear translocation and TCF/LEF transcription, resulting in increased Runx2 and alkaline phosphatase expression, which was inhibited by the Wnt inhibitor DKK1. Reduction of Runx2 transcriptional activity using a mutant Runx2 results in inhibition of FHL2-induced alkaline phosphatase expression in MSCs. These findings reveal that FHL2 acts as an endogenous activator of mesenchymal cell differentiation into osteoblasts and mediates osteogenic differentiation induced by dexamethasone in MSCs through activation of Wnt/beta-catenin signaling- dependent Runx2 expression. PMID:18653765

  6. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes.

    Science.gov (United States)

    Francis, Kevin R; Ton, Amy N; Xin, Yao; O'Halloran, Peter E; Wassif, Christopher A; Malik, Nasir; Williams, Ian M; Cluzeau, Celine V; Trivedi, Niraj S; Pavan, William J; Cho, Wonhwa; Westphal, Heiner; Porter, Forbes D

    2016-04-01

    Smith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7, which impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. SLOS results in cognitive impairment, behavioral abnormalities and nervous system defects, though neither affected cell types nor impaired signaling pathways are fully understood. Whether 7DHC accumulation or cholesterol loss is primarily responsible for disease pathogenesis is also unclear. Using induced pluripotent stem cells (iPSCs) from subjects with SLOS, we identified cellular defects that lead to precocious neuronal specification within SLOS derived neural progenitors. We also demonstrated that 7DHC accumulation, not cholesterol deficiency, is critical for SLOS-associated defects. We further identified downregulation of Wnt/β-catenin signaling as a key initiator of aberrant SLOS iPSC differentiation through the direct inhibitory effects of 7DHC on the formation of an active Wnt receptor complex. Activation of canonical Wnt signaling prevented the neural phenotypes observed in SLOS iPSCs, suggesting that Wnt signaling may be a promising therapeutic target for SLOS. PMID:26998835

  7. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Ling Ye; Tian-Qian Hui; Dong-Mei Yang; Ding-Ming Huang; Xue-Dong Zhou; Jeremy J Mao; Cheng-Lin Wang

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/b-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/b-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/b-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of b-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced b-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of b-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.

  8. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.

    Science.gov (United States)

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Diab, Marwa M S; Othman, Mohamed S; Aref, Ahmed M; Abdel Moneim, Ahmed E

    2014-12-01

    This study aimed to investigate the potential protective role of Physalis peruviana L. (family Solanaceae) against cadmium-induced hepatorenal toxicity in Wistar rats. Herein, cadmium chloride (CdCl2) (6.5 mg/kg bwt/day) was intraperitoneally injected for 5 days, and methanolic extract of physalis (MEPh) was pre-administered to a group of Cd-treated rats by an oral administration at a daily dose of 200 mg/kg bwt for 5 days. The findings revealed that CdCl2 injection induced significant decreases in kidney weight and kidney index. Cadmium intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of uric acid, urea and creatinine were increased in the serum. The pre-administration of MEPh alleviated hepatorenal toxicity in Cd-treated rats. Physalis was noted to play a good hepatorenal protective role, reducing lipid peroxidation, nitric oxide, and enhancing enzymatic activities and non-enzymatic antioxidant molecule, glutathione, in hepatic and renal tissues of Cd-treated rats. Moreover, physalis treatment was able to reverse the histopathological changes in liver and kidney tissues and also increased the expression of Bcl-2 protein in liver and kidney of rats. Overall, the results showed that MEPh can induce antioxidant and anti-apoptotic effects and also exerts beneficial effects for the treatment of Cd-induced hepatorenal toxicity. PMID:25265456

  9. Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum.

    Science.gov (United States)

    Zhu, Xiao Fang; Zheng, Cheng; Hu, Yi Ting; Jiang, Tao; Liu, Yu; Dong, Ning Yu; Yang, Jian Li; Zheng, Shao Jian

    2011-07-01

    The mechanisms of heavy metal resistance in plants can be classified into internal tolerance and exclusion mechanisms, but exclusion of heavy metals with the help of organic acids secretion has not been well documented. Here we demonstrated the contribution of oxalate secretion to cadmium (Cd) exclusion and resistance in tomato. Different Cd resistance between two tomato cultivars was evaluated by relative root elongation (RRE) and Cd accumulation. Cultivar 'Micro-Tom' showed better growth and lower Cd content in roots than 'Hezuo903' at different Cd concentrations not only in short-term hydroponic experiment but also in long-term hydroponic and soil experiments, indicating that the genotypic difference in Cd resistance is related to the exclusion of Cd from roots. 'Micro-Tom' had greater ability to secrete oxalate, suggesting that oxalate secretion might contribute to Cd resistance. Cd-induced secretion of oxalate was localized to root apex at which the majority of Cd accumulated. Phenylglyoxal, an anion-channel inhibitor, effectively blocked Cd-induced oxalate secretion and aggravated Cd toxicity while exogenous oxalate supply ameliorated Cd toxicity efficiently. These results indicated that the oxalate secreted from the root apex helps to exclude Cd from entering tomato roots, thus contributes to Cd resistance in the Cd-resistant tomato cultivar. PMID:21388421

  10. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens.

    Science.gov (United States)

    Küpper, Hendrik; Parameswaran, Aravind; Leitenmaier, Barbara; Trtílek, Martin; Setlík, Ivan

    2007-01-01

    Acclimation of hyperaccumulators to heavy metal-induced stress is crucial for phytoremediation and was investigated using the hyperaccumulator Thlaspi caerulescens and the nonaccumulators T. fendleri and T. ochroleucum. Spatially and spectrally resolved kinetics of in vivo absorbance and fluorescence were measured with a novel fluorescence kinetic microscope. At the beginning of growth on cadmium (Cd), all species suffered from toxicity, but T. caerulescens subsequently recovered completely. During stress, a few mesophyll cells in T. caerulescens became more inhibited and accumulated more Cd than the majority; this heterogeneity disappeared during acclimation. Chlorophyll fluorescence parameters related to photochemistry were more strongly affected by Cd stress than nonphotochemical parameters, and only photochemistry showed acclimation. Cd acclimation in T. caerulescens shows that part of its Cd tolerance is inducible and involves transient physiological heterogeneity as an emergency defence mechanism. Differential effects of Cd stress on photochemical vs nonphotochemical parameters indicate that Cd inhibits the photosynthetic light reactions more than the Calvin-Benson cycle. Differential spectral distribution of Cd effects on photochemical vs nonphotochemical quenching shows that Cd inhibits at least two different targets in/around photosystem II (PSII). Spectrally homogeneous maximal PSII efficiency (F(v)/F(m)) suggests that in healthy T. caerulescens all chlorophylls fluorescing at room temperature are PSII-associated. PMID:17688582

  11. Ameliorating potential of Ashwagandha on cadmium chloride induced changes in weights of visceral organs

    Directory of Open Access Journals (Sweden)

    M.K.

    Full Text Available The present study was carried out to evaluate the protective effect of Ashwagandha on Cadmium chloride induced changes in weights of visceral organs of male rats. Thirty male Wistar rats were divided equally into three groups. Group I was fed on balanced diet of rat pellets for a period of sixty days. The rats in group II were given freshly prepared cadmium chloride solution in the deionised drinking water @200 ppm daily for 60 days. The rats in Group III were fed on Ashwagandha plant powder thoroughly mixed in rat feed at the concentration of 0.5g/Kg (w/w corresponding to 500 ppm level. Simultaneously the rats were given cadmium-chloride @200 ppm in deionised drinking water throughout the experimental period. It is concluded that oral administration of Ashwagandha (Withania somnifera plant powder for 60 days significantly improved the weights of testes, accessory sex organs, liver and kidney in male rats. Simultaneous medication of Ashwagandha (500 ppm in feed reduced the severity of cadmium chloride toxicity in male Wistar rats. [Veterinary World 2008; 1(11.000: 343-345

  12. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats.

    Science.gov (United States)

    Renugadevi, J; Prabu, S Milton

    2009-02-01

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. Naringenin is a naturally occurring plant bioflavonoid found in citrus fruits, which has been reported to have a wide range of pharmacological properties. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of cadmium toxicity. Since kidney is the critical target organ of chronic Cd toxicity, we carried out this study to investigate the effects of naringenin on Cd-induced toxicity in the kidney of rats. In experimental rats, oral administration of cadmium chloride (5mg/(kgday)) for 4 weeks significantly induced the renal damage which was evident from the increased levels of serum urea, uric acid, creatinine with a significant (pCadmium also significantly decreased the levels of urea, uric acid and creatinine in urine. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant (pcadmium-treated rats. Co-administration of naringenin (25 and 50mg/(kgday)) along with Cd resulted in a reversal of Cd-induced biochemical changes in kidney accompanied by a significant decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system. The histopathological studies in the kidney of rats also showed that naringenin (50mg/(kgday)) markedly reduced the toxicity of Cd and preserved the normal histological architecture of the renal tissue. The present study suggest that the nephroprotective potential of naringenin in Cd toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in Cd-induced renal damage. PMID:19063931

  13. Involvement of periostin-sclerostin-Wnt/β-catenin signaling pathway in the prevention of neurectomy-induced bone loss by naringin.

    Science.gov (United States)

    Lv, Jianwei; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Xing, Guosheng; Wang, Ying; Sun, Lei; Wang, Jianbao; Li, Fengbo; Li, Yanjun

    2015-12-25

    Periostin has an essential role in mechanotransduction in bone. Naringin, a natural flavonoid, has been evidenced for its osteoprotective role in osteoporosis, while its mechanism is far from clear. Here we show that down-regulation of periostin, and up-regulation of its downstream sclerostin and inactivation of Wnt/β-catenin signaling were implicated in neurectomy-induced bone loss. Naringin could up-regulate periostin and prevent neurectomy-induced deterioration of BMD, trabecular microstructure and bone mechanical characteristics. In conclusion, naringin could prevent progress of disuse osteoporosis in rats, which may be mediated by increased periostin expression and subsequently inhibition of sclerostin and activation of Wnt/β-catenin signaling pathways. PMID:26541456

  14. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice

    International Nuclear Information System (INIS)

    The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50 mg/kg b.w., p.o.), resveratrol (20 mg/kg b.w., p.o.) or melatonin (12 mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7 mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p < 0.001), decreased GSH content (to 65%, p < 0.001) and inhibited catalase (to 68%, p < 0.001) and GPx activity (to 60%, p < 0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p < 0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden

  15. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs.

    Directory of Open Access Journals (Sweden)

    Jesús Villar

    Full Text Available BACKGROUND: Mechanical ventilation (MV with high tidal volumes (V(T can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI. The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI. METHODOLOGY/PRINCIPAL FINDINGS: Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (V(T (6 mL/kg or high V(T (20 mL/kg. Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41 β-catenin, matrix metalloproteinase-7 (MMP-7, cyclin D1, vascular endothelial growth factor (VEGF, and axis inhibition protein 2 (AXIN2 protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-V(T MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-V(T MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.

  16. Cadmium-Induced Toxicity and the Hepatoprotective Potentials of Aqueous Extract of Jessiaea Nervosa Leaf

    Directory of Open Access Journals (Sweden)

    Ama Udu Ibiam

    2013-08-01

    Full Text Available Purpose: Hepatoprotective potentials of Jussiaea nervosa leaf extract against Cadmium-induced hepatotoxicity were investigated. Methods: Forty albino rats were randomly assigned into groups A-G with 4 rats in each of the groups A-F. Group A served as control and were given feed only while rats in groups B-F were orally exposed to varying concentrations of cadmium for six weeks. Effects of cadmium were most significant at 12 mg/Kg body weight (BW, and this dose was used for subsequent test involving oral administration of Jussiaea nervosa leaf extracts. In this segment, group G (n= 16 was sub-divided into four: G1-G4, with each sub-group containing four rats. Rats in sub-group G1 were given cadmium and feed only and served as positive control. Rats in sub-groups G2, G3, and G4 were given cadmium and 20, 50 and 100g/kg BW of Jussiaea nervosa extract, respectively, for six weeks. Blood and liver were analysed using standard laboratory techniques and methods. Results: Liver function parameters (ALT, AST, ALP, bilirubin were significantly (p<0.05 elevated in exposed rats in comparison to the controls, except for total protein and albumin, which were significantly decreased. Histopathological assessment reveals renal pathology in exposed rats in sharp contrast with the controls. Jussiaea nervosa extract however lowered the values of liver function parameters with 100mg/Kg BW dose producing the highest ameliorative effects. Similarly, the serum albumin and total protein significantly (p<0.05 improved with normal liver architecture. Conclusion: The results show the hepatoprotective potentials of Jussiaea nervosa extract against Cd toxicity.

  17. Prevention of radiation and cadmium induced haematological alternations in the Swiss albino mice by Aloe Vera

    International Nuclear Information System (INIS)

    The development of effective radio protectors and radio recovery drugs is of great importance in view of their potential application during both planned (i.e., radiotherapy) and unplanned radiation exposure (i.e., in the nuclear industry and natural background radiation). The combined effect of radiation and cadmium further increases the causation of damages to organs and tissues. Aloe vera has enjoyed a reputation as a healer for millennia, based primarily on anecdotal evidence. For the last 40 years concerted efforts by the scientific research community has brought Aloe vera out of the realm of folk medicine, providing it solid medical and scientific foundation. Haematopoietic organs are among the most radiosensitive cells in the living organisms. Therefore, present study was carried out to study the modulatory influence of Aloe vera against radiation and cadmium induced hematological changes in the Swiss albino mice. For the study, six to eight weeks old male Swiss albino mice were procured and kept in polypropylene cages.The animals were exposed 3.5 Gy and 7.0 Gy of gamma radiation with or without cadmium chloride treatment. The Aloe vera was administered seven days prior to irradiation or cadmium chloride treatment. Five animals from each group were autopsied by cervical dislocation at each post treatment interval of 1, 2, 4, 7, 14 and 28 days. Blood was collected in heparinized tubes to estimate various haematological parameters viz. RBC, WBC, PCV, Haemoglobin and MCV. Radiation exposure resulted in a significant decline in RBC, WBC, PCV, Haemoglobin and MCV up to day-14 in peripheral blood, thereafter it increased up to day-28 without reaching to normal. After combined treatment of radiation and cadmium chloride the more severe changes were noticed showing synergistic or additive effect. An early and fast recovery was seen in Aloe vera pretreatment groups. Thus, it may be concluded from above observation that Aloe vera has the potential of combating the

  18. Renal Hypodysplasia Associates with a Wnt4 Variant that Causes Aberrant Canonical Wnt Signaling

    Science.gov (United States)

    Vivante, Asaf; Mark-Danieli, Michal; Davidovits, Miriam; Harari-Steinberg, Orit; Omer, Dorit; Gnatek, Yehudit; Cleper, Roxana; Landau, Daniel; Kovalski, Yael; Weissman, Irit; Eisenstein, Israel; Soudack, Michalle; Wolf, Haike Reznik; Issler, Naomi; Lotan, Danny; Anikster, Yair

    2013-01-01

    Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/β-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia. PMID:23520208

  19. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    International Nuclear Information System (INIS)

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  20. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Martinez-Guitarte, J.L. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Morcillo, G. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain)]. E-mail: gmorcillo@ccia.uned.es

    2007-02-01

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  1. Influence of cadmium on ketamine-induced anesthesia and brain microsomal Na[sup +], K[sup +]-ATPase in mice

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.; Sangiah, S. (Oklahoma State Univ., Stillwater, OK (United States))

    1994-10-01

    Cadmium is a rare metallic element, present in almost all types of food. Shellfish, wheat and rice accumulate very high amounts. Occupational and environmental pollutants are the main sources of cadmium exposure. Cadmium has a very long biologic half-life. Exposure to Cadmium causes anemia, hypertension, hepatic, renal, pulmonary and cardiovascular disorders as well as being a possible mutagen, teratogen and carcinogen. Acute cadmium treatment increased the hexobarbital sleeping time and inhibited hepatic microsomal drug metabolism due to a decrease in cytochrome P[sub 450] content. Cadmium potentiated ethanol-induced sleep in a dose-dependent manner. Cadmium has been shown to inhibit brain microsomal Na[sup +], K[sup +]-ATPase activity in vitro and in vivo. Cadmium and ethanol additively inhibited brain Na[sup +], K[sup +]-ATPase. This might be a direct interaction between cadmium and ethanol in the central nervous system. Ketamine is an intravenous anesthetic agent. It acts on central nervous system and produces [open quotes]dissociative anaesthesia.[close quotes] Ketamine provides adequate surgical anesthesia and is used alone in humans and/or combination with xylazine, an [alpha][sub 2]-adrenergic agonist in animals. It produces CNS depression, analgesia, amnesia, immobility and a feeling of dissociation from the environment. Ketamine is a non-competitive antagonist of the NMDA subset of the glutamate receptor. This perhaps results in an increase in neuronal activity leading to disorganization of normal neurotransmission and produces dissociative anesthetic state. Because it is different from most other anesthetics, ketamine may be expected to have a unique effect on brain biochemical parameters and enzymes. The purpose of this study was to examine the interactions between cadmium and ketamine on the central nervous system and ATPase, in an attempt to further understand the mechanism of action. 12 refs., 3 figs.

  2. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium.

    Science.gov (United States)

    Krumschnabel, Gerhard; Ebner, Hannes L; Hess, Michael W; Villunger, Andreas

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  3. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    International Nuclear Information System (INIS)

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  4. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  5. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells

    International Nuclear Information System (INIS)

    Highlights: • Wogonin inhibited HCT116 cells growth and arrested at G1 phase of the cell cycle. • Wogonin down-regulated the canonical Wnt/β-catenin signaling pathway. • Wogonin interfered in the combination of β-catenin and TCF/Lef. • Wogonin limited the kinase activity of CDK8. - Abstract: Wogonin, a naturally occurring mono-flavonoid, has been reported to have tumor therapeutic potential and good selectivity both in vitro and in vivo. Herein, we investigated the anti-proliferation effects and associated mechanisms of wogonin in human colorectal cancer in vitro. The flow-cytometric analysis showed that wogonin induced a G1 phase cell cycle arrest in HCT116 cells in a concentration- and time-dependent manner. Meanwhile, the cell cycle-related proteins, such as cyclin A, E, D1, and CDK2, 4 were down-regulated in wogonin-induced G1 cell cycle arrest. Furthermore, we showed that the anti-proliferation and G1 arrest effect of wogonin on HCT116 cells was associated with deregulation of Wnt/β-catenin signaling pathway. Wogonin-treated cells showed decreased intracellular levels of Wnt proteins, and activated degradation complex to phosphorylated and targeted β-catenin for proteasomal degradation. Wogonin inhibited β-catenin-mediated transcription by interfering in the transcriptional activity of TCF/Lef, and repressing the kinase activity of CDK8 which has been considered as an oncogene involving in the development of colorectal cancers. Moreover, CDK8 siRNA-transfected HCT116 cells showed similar results to wogonin treated cells. Thus, our data suggested that wogonin induced anti-proliferation and G1 arrest via Wnt/β-catenin signaling pathway and it can be developed as a therapeutic agent against human colorectal cancer

  6. Diversin, eine neue Komponente des Wnt-Signalweges

    OpenAIRE

    Schwarz-Romond, Thomas

    2010-01-01

    The ankyrin repeat protein Diversin recruits Casein kinase Ie to the b-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signalling Wnt signals control decisive steps in development of vertebrates and invertebrates, and can induce the formation of tumors. Our laboratory has previously elucidated two important elements of the Wnt signalling pathway, specifically the interactions between -catenin and the transcription factor Lef-1 and b...

  7. Wnt3a suppresses Wnt/β-catenin signaling and cancer cell proliferation following serum deprivation.

    Science.gov (United States)

    He, Qingqing; Yan, Hongwei; Wo, Da; Liu, Junjun; Liu, Peng; Zhang, Jiankang; Li, Limei; Zhou, Bin; Ge, Jin; Li, Huashun; Liu, Shangfeng; Zhu, Weidong

    2016-02-01

    Canonical Wnt/β-catenin signaling is often aberrantly activated in tumor cells and required for tumor growth. The internalization of Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) induced by Wnt ligands is commonly thought to be critical for Wnt/β-catenin signaling activation. However, in contrast to theses previous studies, we here show that persistent excessive stimulation with a canonical Wnt ligand Wnt3a could induce a long-term decreased expression level of membrane LRP6, which prevented nuclear β-catenin accumulation and tumor cell;proliferation. Importantly, Wnt3a was robustly upregulated following serum deprivation. The upregulated Wnt3a under serum deprivation was responsible for LRP6 internalization, decreased accumulation of nuclear β-catenin, and further inhibition of tumor cell proliferation. It has well been known that insufficient blood supply during tumor development occurs frequently, causing a worsening environment for tumor growth. Therefore, these results reveal a novel inhibitory role of Wnt3a on canonical Wnt/β-catenin signaling and cancer cell proliferation when there is an insufficient blood supply during tumor development, which might be a potential mechanism for tumor evasion within a worsening environment. PMID:26643293

  8. Reversal of Cadmium-induced Oxidative Stress in Chicken by Herbal Adaptogens Withania Somnifera and Ocimum Sanctum

    OpenAIRE

    K Bharavi; Reddy, A. Gopala; G S Rao; Reddy, A. Rajasekhara; Rao, S. V. Rama

    2010-01-01

    The present study was carried out to evaluate the herbal adaptogens Withania somnifera and Ocimum sanctum on cadmium-induced oxidative toxicity in broiler chicken. Cadmium administration at the rate of 100 ppm orally along with feed up to 28 days produced peroxidative damage, as indicated by increase in TBARS, reduction in glutathione (GSH) concentration in liver and kidney, and increase in catalase (CAT) and superoxide dismutase (SOD) of erythrocytes. Herbal adaptogens Withania somnifera roo...

  9. Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D

    International Nuclear Information System (INIS)

    Cadmium is a widespread environmental pollutant, which is associated with increased risk of osteoporosis. It has been proposed that cadmium's toxic effect on bone is exerted via impaired activation of vitamin D, secondary to the kidney effects. To test this, we assessed the association of cadmium-induced bone and kidney effects with serum 1,25-dihydroxyvitamin D (1,25(OH)2D); measured by enzyme immunoassay. For the assessment, we selected 85 postmenopausal women, based on low (0.14-0.39 μg/L) or high (0.66-2.1 μg/L) urinary cadmium, within a cross-sectional population-based women's health survey in Southern Sweden. We also measured 25-hydroxy vitamin D, cadmium in blood, bone mineral density and several markers of bone remodeling and kidney effects. Although there were clear differences in both kidney and bone effect markers between women with low and high cadmium exposure, the 1,25(OH)2D concentrations were not significantly different (median, 111 pmol/L (5-95th percentile, 67-170 pmol/L) in low- and 125 pmol/L (66-200 pmol/L) in high-cadmium groups; p=0.08). Also, there was no association between 1,25(OH)2D and markers of bone or kidney effects. It is concluded that the low levels of cadmium exposure present in the studied women, although high enough to be associated with lower bone mineral density and increased bone resorption, were not associated with lower serum concentrations of 1,25(OH)2D. Hence, decreased circulating levels of 1,25(OH)2D are unlikely to be the proposed link between cadmium-induced effects on kidney and bone

  10. Effects of cadmium on hypoxia-induced expression of hemoglobin and erythropoietin in larval sheepshead minnow, Cyprinodon variegatus

    Energy Technology Data Exchange (ETDEWEB)

    Dangre, A.J.; Manning, S. [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States); Brouwer, M., E-mail: marius.brouwer@usm.edu [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States)

    2010-08-15

    Hypoxia and toxic metals are two common stressors found in the estuarine environment. To date little information is available on the combined effects of these stressors on early larval development in fish. We investigated the effect of cadmium and hypoxia exposure alone as well in combination on larval Cyprinodon variegatus. The LC{sub 10} for cadmium was determined to be 0.3 ppm in a 96 h acute exposure. This concentration was used in all studies. Cadmium in larvae increased significantly with exposure time (1, 3, 5 and 7 days post-hatch). The increase was proportional to body weight and not affected by hypoxia. Cadmium responsive genes were identified by suppression subtractive hybridization (SSH) in Cyprinodonvariegatus larvae after exposure to cadmium for 1, 3, 5 and 7 days. We obtained over 700 sequences from the cadmium cDNA library. Blast search of ESTs suggested that cadmium modulates multiple physiological processes. Pertinent to this study, cadmium was found to down-regulate both embryonic {alpha} and {beta} globin, which are expressed in erythrocytes generated during the first, or primitive, wave of erythropoiesis in teleosts. Hemoglobin (Hb) and erythropoietin (Epo) (the hormone that promotes red blood cell production) are known hypoxia-inducible genes. To explore the possibility that cadmium might offset the hypoxia-induced expression of Hb and Epo, we investigated the expression of both genes following hypoxia, cadmium and combined exposures for 1, 3, 5 and 7 days post-hatch. Since Epo had not yet been identified in C. variegatus we first successfully cloned a partial coding sequence of the C. variegatus hormone. Subsequent studies revealed that expression levels of Hb and Epo remained unchanged in the normoxic controls during the time course of the study. Hypoxia increased Epo expression relative to normoxic controls, on days 3, 5 and 7, while cadmium in hypoxia inhibited the increase. Only the changes on days 5 and 7 were statistically significant

  11. Effects of cadmium on hypoxia-induced expression of hemoglobin and erythropoietin in larval sheepshead minnow, Cyprinodon variegatus

    International Nuclear Information System (INIS)

    Hypoxia and toxic metals are two common stressors found in the estuarine environment. To date little information is available on the combined effects of these stressors on early larval development in fish. We investigated the effect of cadmium and hypoxia exposure alone as well in combination on larval Cyprinodon variegatus. The LC10 for cadmium was determined to be 0.3 ppm in a 96 h acute exposure. This concentration was used in all studies. Cadmium in larvae increased significantly with exposure time (1, 3, 5 and 7 days post-hatch). The increase was proportional to body weight and not affected by hypoxia. Cadmium responsive genes were identified by suppression subtractive hybridization (SSH) in Cyprinodonvariegatus larvae after exposure to cadmium for 1, 3, 5 and 7 days. We obtained over 700 sequences from the cadmium cDNA library. Blast search of ESTs suggested that cadmium modulates multiple physiological processes. Pertinent to this study, cadmium was found to down-regulate both embryonic α and β globin, which are expressed in erythrocytes generated during the first, or primitive, wave of erythropoiesis in teleosts. Hemoglobin (Hb) and erythropoietin (Epo) (the hormone that promotes red blood cell production) are known hypoxia-inducible genes. To explore the possibility that cadmium might offset the hypoxia-induced expression of Hb and Epo, we investigated the expression of both genes following hypoxia, cadmium and combined exposures for 1, 3, 5 and 7 days post-hatch. Since Epo had not yet been identified in C. variegatus we first successfully cloned a partial coding sequence of the C. variegatus hormone. Subsequent studies revealed that expression levels of Hb and Epo remained unchanged in the normoxic controls during the time course of the study. Hypoxia increased Epo expression relative to normoxic controls, on days 3, 5 and 7, while cadmium in hypoxia inhibited the increase. Only the changes on days 5 and 7 were statistically significant. Hypoxia also

  12. Modulatory influence of Aloe vera against radiation and cadmium induced hepatic lesions in Swiss albino mice

    International Nuclear Information System (INIS)

    The major objectives in radiobiology has been the development of agents that can mitigate the damage produced by ionizing radiation to normal tissues and thus reduces the side effects caused by radiation and improvement of cancer radiotherapy. The various agents have drawn attention of researchers as they provide wider acceptability and least side effects. The current study was aimed to investigate the protective effect of Aloe vera against radiation and cadmium induced changes in the liver of Swiss albino mice. For the study healthy male Swiss albino mice (6 to 8 weeks old) were selected from an inbred colony and kept in polypropylene cages. They were provided with standard mice feed and tap water ad libitum. The animals were exposed to 3.0 and 6.0 Gy of gamma radiation with or without cadmium chloride treatment. The animals of experimental groups were administered Aloe vera juice seven days prior to irradiation or cadmium chloride treatment. The animals of each group were autopsied at each post treatment interval of 1, 2, 4, 7, 14 and 28 days of treatment. The various biochemical parameters estimated were total proteins, glycogen, cholesterol, acid and alkaline phosphatase activities, DNA and RNA. After routine procedure, histopathological changes were also observed. The changes in various biochemical parameters were observed in the form of increase of decrease in values. The histopathological changes observed on day-1 after exposure to 3.0 Gy were distortion of hepatic architecture, intracellular oedema, narrower sinusoids, cytoplasmic degranulation, vacuolation and pycnotic nuclei. The changes were more marked on day-4 and continued up to day-14. But on day-28 the sign of recovery was observed. After exposure to a higher dose (6.0 Gy) similar changes were noticed but they were more pronounced and there was late manifestation of recovery. In the combined treatment of radiation and cadmium chloride synergistic effects were observed. The liver of Aloe vera treated

  13. Arsenic trioxide inhibits viability and induces apoptosis through reactivating the Wnt inhibitor secreted frizzled related protein-1 in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Zheng L

    2016-02-01

    Full Text Available Lei Zheng,1,2 Hui Jiang,3 Zhi-Wei Zhang,1 Ke-Nan Wang,1 Qi-Fei Wang,1 Quan-Lin Li,1 Tao Jiang1 1Department of Urology, First Affiliated Hospital of Dalian Medical University, 2Department of Urology, The Fifth People’s Hospital of Dalian, Dalian, 3Department of Urology, Third Affiliated Hospital of Beijing University, Beijing, People’s Republic of China Background: Growing evidence suggests that arsenic trioxide (As2O3 induces apoptosis and inhibits tumor cell growth in prostate cancer (PCa, although details of the mechanism are still inconclusive. We investigated the antitumor effect of As2O3 in human PCa cell lines LNCaP and PC3 and the underlying mechanisms by focusing on the Wnt signaling pathway.Methods: The effect of As2O3 on the viability and apoptosis of PCa cells was investigated by cholecystokinin-8 and flow cytometry. The expression of the related proteins in the Wnt signaling pathway and the downstream target genes of the Wnt signaling pathway was examined by Western blot and quantitative real-time PCR assay. The methylation status of the SFRP1 gene promoter was assessed by bisulfite sequencing.Results: As2O3 inhibited the viability of PCa cells and induced apoptosis of PCa cells in a dose-dependent manner. The protein level of phospho-glycogen synthase kinase-3β was upregulated, whereas the protein level of β-catenin and the mRNA levels of c-MYC, MMP-7, and COX-2 were downregulated in a dose-dependent manner in PCa cells treated with As2O3. In addition, As2O3 pregulated the protein and mRNA levels of secreted frizzled related protein-1, and increased the demethylation of the SFRP1 gene promoter.Conclusion: Our results suggest that As2O3 may inhibit cell viability and induce apoptosis through reactivating the Wnt inhibitor secreted frizzled related protein-1 in both androgen-dependent and -independent human PCa. Keywords: arsenic trioxide, CpG island methylation, demethylation, prostate cancer, Wnt signaling pathway

  14. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Agarwal, Swati; Seth, Brashket; Yadav, Anuradha; Nair, Saumya; Bhatnagar, Priyanka; Karmakar, Madhumita; Kumari, Manisha; Chauhan, Lalit Kumar Singh; Patel, Devendra Kumar; Srivastava, Vikas; Singh, Dhirendra; Gupta, Shailendra Kumar; Tripathi, Anurag; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2014-01-28

    Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimer's disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism. PMID:24467380

  15. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    International Nuclear Information System (INIS)

    Highlights: • Cd2+ induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd2+. • DsRNA-suppression of LvCdc42 and MAPKs during Cd2+ stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd2+ stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd2+. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses

  16. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ting; Wang, Wei-Na, E-mail: weina63@aliyun.com; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-06-15

    Highlights: • Cd{sup 2+} induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd{sup 2+}. • DsRNA-suppression of LvCdc42 and MAPKs during Cd{sup 2+} stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd{sup 2+} stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd{sup 2+}. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses.

  17. Laser-induced grating spectroscopy of cadmium telluride

    Science.gov (United States)

    Petrovic, Mark S.; Suchocki, Andrzej; Powell, Richard C.; Cantwell, Gene; Aldridge, Jeff

    1989-08-01

    Laser-induced transient gratings produced by two-photon absorption of picosecond pulses at 1.064 μm were used to examine the room-temperature nonlinear optical responses of CdTe crystals with different types of conductivity. Pulse-probe degenerate four-wave mixing measurements of grating dynamics on subnanosecond time scales were used to measure the ambipolar diffusion coefficient (Da) of charge carriers in the crystals. The value of Da =3.0 cm2 s-1 which was obtained is in very good agreement with theoretical estimates. A long-lived contribution to the signal consistent with a trapped charge photorefractive effect was observed at large grating spacings for n-type conductivity, and is tentatively attributed to a larger trap density in this sample. Measurements of the relative scattering efficiencies of successive diffracted orders in the Raman-Nath regime allowed for calculation of the laser-induced change in the index of refraction, due to the creation of free carriers. The value of Δn=4×10-4 which was obtained is in good agreement with theoretical estimates.

  18. Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage

    OpenAIRE

    B Rajendar; Bharavi, K.; G.S.Rao; Kishore, P.V.S; Ravi Kumar, P.; C.S.V Satish Kumar; T Pankaj Patel

    2011-01-01

    Aim : The aim of the present study was to investigate whether Tribulus terrestris Linn (TT) could protect the cadmium (Cd)-induced testicular tissue peroxidation in rats and to explore the underlying mechanism of the same. Materials and Methods : In vitro and in vivo studies were conducted to know the protective effect of ethanolic extract of TT (eTT) in Cd toxicity. In in vitro studies, total antioxidant and ferrous metal ion chelating activity of TT was studied. In vivo studies were conduct...

  19. Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway

    OpenAIRE

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; MIZUTANI, Hiroshi; Nakata, Satoru; Akamatsu, Hirohiko

    2013-01-01

    Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatm...

  20. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  1. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    International Nuclear Information System (INIS)

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  2. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Ramaraj Thirugnanasampandan; Rajarajeswaran Jayakumar

    2011-01-01

    Objective: To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods: The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results: Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions: The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.

  3. HIV-1 protein induced modulation of primary human osteoblast differentiation and function via a Wnt/β-catenin-dependent mechanism.

    LENUS (Irish Health Repository)

    Butler, Joseph S

    2013-02-01

    HIV infection is associated with metabolic bone disease resulting in bone demineralization and reduced bone mass. The molecular mechanisms driving this disease process have yet to be elucidated. Wnt\\/β-catenin signaling plays a key role in bone development and remodeling. We attempted to determine the effects of the HIV-1 protein, gp120, on Wnt\\/β-catenin signaling at an intracellular and transcriptional level in primary human osteoblasts (HOBs). This work, inclusive of experimental controls, was part of a greater project assessing the effects of a variety of different agents on Wnt\\/β-catenin signaling (BMC Musculoskelet Disord 2010;11:210).We examined the phenotypic effects of silencing and overexpressing the Wnt antagonist, Dickkopf-1 (Dkk1) in HOBs treated with gp120. HOBs exposed to gp120 displayed a significant reduction in alkaline phosphatase activity (ALP) activity and cell proliferation and increased cellular apoptosis over a 48 h time course. Immunocytochemistry demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to HIV-1 protein exposure. These changes were associated with a reduction of TCF\\/LEF-mediated transcription, the transcriptional outcome of canonical Wnt β-catenin signaling. Silencing Dkk1 expression in HOBs exposed to gp120 resulted in increased ALP activity and cell proliferation, and decreased cellular apoptosis relative to scrambled control. Dkk1 overexpression exacerbated the inhibitory effect of gp120 on HOB function, with decreases in ALP activity and cell proliferation and increased cellular apoptosis relative to vector control. Wnt\\/β-catenin signaling plays a key regulatory role in HIV-associated bone loss, with Dkk1, aputative central mediator in this degenerative process. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 218-226, 2013.

  4. Wnt pathway activation by ADP-ribosylation.

    Science.gov (United States)

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)-known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  5. Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers

    International Nuclear Information System (INIS)

    Some recent research suggests that environmental exposure to cadmium, even at low levels, may increase the risk of osteoporosis, and that the bone demineralization is not just a secondary effect of renal dysfunction induced by high doses of cadmium as previously reported. To investigate the effect of exposure to cadmium at a level insufficient to induce kidney damage on bone mineral density (BMD) and bone metabolism, we conducted health examinations on 1380 female farmers from five districts in Japan who consumed rice contaminated by low-to-moderate levels of cadmium. We collected peripheral blood and urine samples and medical and nutritional information, and measured forearm BMD. Analysis of the data for subjects grouped by urinary cadmium level and age-related menstrual status suggested that cadmium accelerates both the increase of urinary calcium excretion around the time of menopause and the subsequent decrease in bone density after menopause. However, multivariate analyses showed no significant contribution of cadmium to bone density or urinary calcium excretion, indicating that the results mentioned above were confounded by other factors. These results indicate that environmental exposure to cadmium at levels insufficient to induce renal dysfunction does not increase the risk of osteoporosis, strongly supporting the established explanation for bone injury induced by cadmium as a secondary effect

  6. Strain differences of cadmium-induced toxicity in rats: Insight from spleen and lung immune responses.

    Science.gov (United States)

    Demenesku, Jelena; Popov Aleksandrov, Aleksandra; Mirkov, Ivana; Ninkov, Marina; Zolotarevski, Lidija; Kataranovski, Dragan; Brceski, Ilija; Kataranovski, Milena

    2016-08-10

    The impact of genetic background on effects of acute i.p. cadmium administration (0.5mg/kg and 1mg/kg) on basic immune activity of spleen and lungs was examined in two rat strains, Albino Oxford (AO) and Dark Agouti (DA), known to react differently to chemicals. More pronounced inhibition of Concanavalin A (ConA)-induced and Interleukin (IL)-2 stimulated spleen cell proliferation as well as higher levels of nitric oxide (known to decrease cell's proliferative ability) in DA rats at 1mg/kg, along with greater inhibition of ConA-induced Interferon (IFN-γ)-production by total and mononuclear (MNC) spleen cells and IL-17 production by spleen MNC in DA vs. AO rats at this dose show greater susceptibility of this strain to Cd effects on spleen cells response. More pronounced infiltration of neutrophils/CD11b(+) cells to lungs of DA rats treated with 1mg/kg of Cd and decreased IL-17 lung cell responses noted solely in DA rats speaks in favor of their higher susceptibility to this metal. However, lack of strain disparity in lung cells IFN-γ responses show that there are regional differences as well. Novel data from this study depict complexity of the influence of genetic background on the effects of cadmium on host immune reactivity. PMID:27234498

  7. Increased Oxidative DNA Damage in Placenta Contributes to Cadmium-Induced Preeclamptic Conditions in Rat.

    Science.gov (United States)

    Zhang, Xiaojie; Xu, Zhangye; Lin, Feng; Wang, Fan; Ye, Duyun; Huang, Yinping

    2016-03-01

    To explore the possible mechanisms of cadmium (Cd)-induced preeclamptic conditions in rats. In the present study, we introduced the in vivo model of preeclampsia by giving intraperitoneal injections of cadmium chloride (CdCl2) to pregnant rats from gestational day (GD) 4 to 19. Maternal body weights were recorded on GD 0, 14, and 20, while their systolic blood pressures (SBPs) monitored on GD 3, 11, and 18. On GD 20, rats were sacrificed and the specimens were collected. The morphological changes of placenta and kidney tissues of pregnant rats were examined by hematoxylin and eosin staining assay. Blood Cd level was detected by inductively coupled plasma mass spectrometry. Total antioxidant capacity (TAC) was evaluated using FRAP method and total nitrite (NOx) was detected with Griess reagent. Antioxidative factors and DNA damage/repair biomarkers were measured by real-time qPCR, western blot or immunohistochemistry study. The current results showed that CdCl2-treated pregnant rats developed preeclampsia (PE)-like manifestations, such as hypertension, albuminuria, with decreased TAC and increased blood Cd level, and pro-oxidative/antioxidative or DNA damage/repair biomarkers. Our study demonstrated that increased oxidative DNA damage in placenta could contribute to Cd-induced preeclamptic conditions in rat. PMID:26194818

  8. Down Regulation of Wnt Signaling Mitigates Hypoxia-Induced Chemoresistance in Human Osteosarcoma Cells

    OpenAIRE

    Scholten, Donald J.; Christine M Timmer; Peacock, Jacqueline D; Dominic W Pelle; Williams, Bart O.; Matthew R Steensma

    2014-01-01

    Osteosarcoma (OS) is the most common type of solid bone cancer and remains the second leading cause of cancer-related death for children and young adults. Hypoxia is an element intrinsic to most solid-tumor microenvironments, including that of OS, and is associated with resistance to therapy, poor survival, and a malignant phenotype. Cells respond to hypoxia through alterations in gene expression, mediated most notably through the hypoxia-inducible factor (HIF) class of transcription factors....

  9. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells

    OpenAIRE

    Wang, Li; Liu, Yuan; Li, Sen; Zai-yun LONG; Wu, Ya-min

    2015-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cor...

  10. Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway

    Science.gov (United States)

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; Mizutani, Hiroshi; Nakata, Satoru; Akamatsu, Hirohiko

    2013-01-01

    Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatments using stem cells including ES cells, differentiation induction should be performed in a sufficient manner to obtain the intended cell lineages. Lignin is a high-molecular amorphous material that forms plants together with cellulose and hemicelluloses, in which phenylpropane fundamental units are complexly condensed. Lignin derivatives have been shown to have several bioactive functions. In spite of these findings, few studies have focused on the effects of lignin on stem cells. Our study aimed to develop a novel technology using lignin to effectively induce ES cells to differentiate into neuroectodermal cells including ocular cells and neural cells. Since lignin can be produced at a relatively low cost in large volumes, its utilization is expected for more convenient differentiation induction technologies and in the field of regenerative medicine in the future. PMID:23805217

  11. Malignant gliomas induce and exploit astrocytic mesenchymal-like transition by activating canonical Wnt/β-catenin signaling.

    Science.gov (United States)

    Lu, Ping; Wang, Yajing; Liu, Xiuting; Wang, Hong; Zhang, Xin; Wang, Kequan; Wang, Qing; Hu, Rong

    2016-07-01

    The complex microenvironment of malignant gliomas plays a dynamic and usually cancer-promoting role in glioma progression. Astrocytes, the major stromal cells in the brain, can be activated by glioma microenvironment, resulting in a layer of reactive astrocytes surrounding the gliomas. Reactive astrocytes are universally characterized with the upregulation of glial fibrillary protein and glycoprotein podoplanin. In this work, we investigated the role of reactive astrocytes on malignant glioma microenvironment and the potential mechanism by which glioma cells activated the tumor-associated astrocytes (TAAs). The reactive astrocytes were observed around gliomas in the intracranial syngeneic implantation of rat C6 and mouse GL261 glioma cells in vivo, as well as primary astrocytes cultured with glioma cells condition medium in vitro. Besides, reactive astrocytes exhibited distinct epithelial-to-mesenchymal (-like) transition and enhanced migration and invasion activity, with the decrease of E-cadherin and concomitant increase of vimentin and matrix metalloproteinases. Furthermore, canonical Wnt/β-catenin signaling was activated in TAAs. The Wnt/β-catenin pathway inhibitor XAV939 and β-catenin plasmid were used to verify the regulation of Wnt/β-catenin signaling on TAAs and their invasion ability. Taken together, our findings established that glioma cells remarkably activated astrocytes via upregulating Wnt/β-catenin signaling, with obviously mesenchymal-like transition and increased migration and invasion ability, indicating that glioma cells may stimulate adjacent astrocytes to degrade extracellular matrix and thereby promoting tumor invasiveness. PMID:27236327

  12. A late requirement for Wnt and FGF signalling during activin-induced formation of foregut endoderm from mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Hansson, Mattias; Petersen, Dorthe Rønn; Peterslund, Janny M.L.;

    2009-01-01

    found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin......-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17(+) endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17(+) cells more effectively than activin-mediated induction...... requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro....

  13. Protective efficacy of Emblica officinalis Linn. against radiation and cadmium induced biochemical alterations in the liver of Swiss albino mice

    International Nuclear Information System (INIS)

    All organisms living on earth are being perpetually exposed to some amount of radiation originating from a variety of sources. Radiation causes deleterious effects in all forms of life due to increasing utilization and production of modern technology, a simultaneous exposure of organisms to heavy metals is also unavoidable. These heavy metals become toxic when present in large quantities, with increasing the industrial revolution and industrial waste, the emission of cadmium has increased into the environment. Thus concomitant exposure to cadmium chloride and ionizing radiation might produce deleterious effect upon biological system. The total environmental burden of toxicants may have greater effect as against their individual impact as expected by their nature. So interaction between radiation and other toxicants represents a field of great potential importance. In the recent years, immense interest has been developed in the field of chemoprotection against radiation and heavy metals induced changes. In view of the potential for practical application, a variety of compounds are being tested for their radioprotective activities. Among these, Emblica holds a great promise. In light of the above, the present study was aimed to evaluate the protective effect of Emblica against radiation and cadmium induced biochemical alterations in the liver of Swiss albino mice. The animals were exposed to 6.0 Gy of gamma rays with or without cadmium chloride treatment. The Emblica was administered seven days prior to irradiation or cadmium chloride treatment

  14. Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings

    Czech Academy of Sciences Publication Activity Database

    Najmanová, J.; Neumannová, E.; Leonhardt, T.; Zítka, O.; Kižek, R.; Macek, Tomáš; Macková, M.; Kotrba, P.

    2012-01-01

    Roč. 36, č. 1 (2012), s. 536-542. ISSN 0926-6690 R&D Projects: GA MŠk 1M06030 Grant ostatní: GA ČR(CZ) GA522/07/0692 Institutional research plan: CEZ:AV0Z40550506 Keywords : flax * cadmium * heavy metal tolerance * phytochelatins * phytoremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.468, year: 2012

  15. Cadmium induces neuronal cell death through reactive oxygen species activated by GADD153

    Directory of Open Access Journals (Sweden)

    Kim Seungwoo

    2013-01-01

    Full Text Available Abstract Background Cadmium(Cd, a heavy metal, which has a potent harmful effects, is a highly stress-inducible material that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER (so-called ER stress. The mechanism Cd induced cell death of neuroblastoma cells complex, involving cellular signaling pathways as yet incompletely defined but, in part, involving the generation of reactive oxygen species (ROS. Several studies have correlated GADD153 expression with cell death, but a mechanistic link between GADD153 and apoptosis has never been demonstrated. Results SH-SY5Y cells were treated Cd led to increase in intracellular ROS levels. ROS generation is not consistent with intracellular [Ca2+]. The exposure of neuroblastoma cells to Cd led to increase in intracellular GADD153 and Bak levels in a doses and time dependent manner. The induction of these genes by Cd was attenuated by NAC. Cd-induced apoptosis is decreased in GADD153 knockdown cells compared with normal cells. The effect of GADD153 on the binding of C/EBP to the Bak promoters were analyzed ChIP assay. Basal constitutive GADD153 recruitment to the –3,398/–3,380 region of the Bak promoter is observed in SH-SY5Y cells. Conclusions The exposure of SH-SY5Y cells to Cd led to increase in intracellular ROS levels in a doses and time dependent manner. The generation of ROS result in the induction of GADD153 is causative of cadmium-induced apoptosis. GADD153 regulates Bak expression by its binding to promoter region (between −3,398 and −3,380. Therefore, we conclude that GADD153 sensitizes cells to ROS through mechanisms that involve up-regulation of BAK and enhanced oxidant injury.

  16. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus

    International Nuclear Information System (INIS)

    Highlights: •The effect of Cd2+ on Clathrina clathrus microtubule network was studied. •Cd2+ exposure increases acetylated and detyrosinated α-tubulin levels. •Microtubules enriched in acetylated/detyrosinated α-tubulin were resistant to cold. •Clathrina clathrus exposed to Cd2+ showed cytoplasmic microtubules with an enhanced stability. -- Abstract: As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl2, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24 h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd2+-treated cells indicates that divalent Cd ions

  17. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus

    Energy Technology Data Exchange (ETDEWEB)

    Ledda, F.D., E-mail: f.ledda@hotmail.it [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy); Ramoino, P. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Ravera, S. [Dipartimento di Farmacia (DIFAR), Viale Cembrano 4, I-16147 Genova (Italy); Perino, E. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Bianchini, P. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Diaspro, A. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Dipartimento di Fisica (DIFI), Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Gallus, L.; Pronzato, R. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Manconi, R. [Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy)

    2013-09-15

    Highlights: •The effect of Cd{sup 2+} on Clathrina clathrus microtubule network was studied. •Cd{sup 2+} exposure increases acetylated and detyrosinated α-tubulin levels. •Microtubules enriched in acetylated/detyrosinated α-tubulin were resistant to cold. •Clathrina clathrus exposed to Cd{sup 2+} showed cytoplasmic microtubules with an enhanced stability. -- Abstract: As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl{sub 2}, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24 h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd{sup 2+}-treated cells

  18. Arsenic- and cadmium-induced toxicogenomic response in mouse embryos undergoing neurulation

    International Nuclear Information System (INIS)

    Arsenic (As) and cadmium (Cd) are well-characterized teratogens in animal models inducing embryotoxicity and neural tube defects (NTDs) when exposed during neurulation. Toxicological research is needed to resolve the specific biological processes and associated molecular pathways underlying metal-induced toxicity during this timeframe in gestational development. In this study, we investigated the dose-dependent effects of As and Cd on gene expression in C57BL/6J mouse embryos exposed in utero during neurulation (GD8) to identify significantly altered genes and corresponding biological processes associated with embryotoxicity. We quantitatively examined the toxicogenomic dose-response relationship at the gene level. Our results suggest that As and Cd induce dose-dependent gene expression alterations representing shared (cell cycle, response to UV, glutathione metabolism, RNA processing) and unique (alcohol/sugar metabolism) biological processes, which serve as robust indicators of metal-induced developmental toxicity and indicate underlying embryotoxic effects. Our observations also correlate well with previously identified impacts of As and Cd on specific genes associated with metal-induced toxicity (Cdkn1a, Mt1). In summary, we have identified in a quantitative manner As and Cd induced dose-dependent effects on gene expression in mouse embryos during a peak window of sensitivity to embryotoxicity and NTDs in the sensitive C57BL/6J strain.

  19. Cadmium induces the expression of specific stress proteins in sea urchin embryos

    International Nuclear Information System (INIS)

    Marine organisms are highly sensitive to many environmental stresses, and consequently, the analysis of their bio-molecular responses to different stress agents is very important for the understanding of putative repair mechanisms. Sea urchin embryos represent a simple though significant model system to test how specific stress can simultaneously affect development and protein expression. Here, we used Paracentrotus lividus sea urchin embryos to study the effects of time-dependent continuous exposure to subacute/sublethal cadmium concentrations. We found that, between 15 and 24 h of exposure, the synthesis of a specific set of stress proteins (90, 72-70, 56, 28, and 25 kDa) was induced, with an increase in the rate of synthesis of 72-70 kDa (hsps), 56 kDa (hsp), and 25 kDa, which was dependent on the lengths of treatment. Recovery experiments in which cadmium was removed showed that while stress proteins continued to be synthesized, embryo development was resumed only after short lengths of exposure

  20. Mitigation by Aloe Vera of cadmium chloride and radiation induced biochemical changes in the brain of Swiss albino mice

    International Nuclear Information System (INIS)

    Whole body exposure to ionizing radiation provokes oxidative damage, organ dysfunction and metabolic disturbance. Herbal drugs offer an alternative to the synthetic radioprotective compounds which are either non-toxic or less toxic. Aloe vera rich in polyphenolic compound is known to possess antioxidant properties. In the context, the present study, effect of Aloe vera against radiation and cadmium induced changes in the brain of Swiss albino mice. For the purpose, six to eight weeks old male Swiss albino mice were selected and divided into seven groups:- Group I (Sham-irradiated), Group II (treated with cadmium chloride 20 ppm), Group III (Irradiated with 7.0 Gy gamma rays), Group IV (Both irradiated and treated with cadmium chloride solution), Group V (Cadmium and Aloe vera treated), Group VI (radiation and Aloe vera treated), Group VII (radiation, and cadmium chloride and Aloe vera treated). The animals were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. The brain (cerebral cortex) was taken out and quantitatively analyzed for different biochemical parameters such as total proteins, glycogen, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA. The value of cholesterol, glycogen, RNA, acid phosphatase activity, and alkaline phosphatase activity increased up to day-14 in non drug-treated groups and day-7 in Aloe vera treated groups and thereafter decreased up to day-28. The value of total proteins and DNA decreased up to day-14 in non drug-treated groups and day-7 in the drug treated groups then increased in all groups. In only cadmium chloride (Without and with drug) treated animals (Groups II and V) the value of cholesterol decreased during early intervals (days-14 and 7 respectively) and increased thereafter. Severe changes were observed after combined exposure to radiation and cadmium chloride showing synergistic effect. Aloe vera reduced the severity of damage and made the

  1. Targeting the Wnt/β-catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974.

    Science.gov (United States)

    Boone, Jonathan D; Arend, Rebecca C; Johnston, Bobbi E; Cooper, Sara J; Gilchrist, Scott A; Oelschlager, Denise K; Grizzle, William E; McGwin, Gerald; Gangrade, Abhishek; Straughn, J Michael; Buchsbaum, Donald J

    2016-02-01

    Preclinical studies in ovarian cancer have demonstrated upregulation of the Wnt/β-catenin pathway promoting tumor proliferation and chemoresistance. Our objective was to evaluate the effect of the Wnt/β-catenin pathway inhibitor, WNT974, in primary ovarian cancer ascites cells. Ascites cells from patients with papillary serous ovarian cancer were isolated and treated with 1 μM WNT974±100 μM carboplatin. Viability was evaluated with the ATPlite assay. The IC50 was calculated using a dose-response analysis. Immunohistochemistry (IHC) was performed on ascites cells and tumor. Expression of R-spondin 2 (RSPO2), RSPO3, PORCN, WLS, AXIN2, and three previously characterized RSPO fusion transcripts were assessed using Taqman assays. Sixty ascites samples were analyzed for response to WNT974. The ascites samples that showed a decrease in ATP concentration after treatment demonstrated no difference from the untreated cells in percent viability with trypan blue staining. Flow cytometry demonstrated fewer cells in the G2 phase and more in the G1 and S phases after treatment with WNT974. Combination therapy with WNT974 and carboplatin resulted in a higher percentage of samples that showed ≥30% reduction in ATP concentration than either single drug treatment. IHC analysis of Wnt pathway proteins suggests cell cycle arrest rather than cytotoxicity after WNT974 treatment. QPCR indicated that RSPO fusions are not prevalent in ovarian cancer tissues or ascites. However, higher PORCN expression correlated to sensitivity to WNT974 (P=0.0073). In conclusion, WNT974 produces cytostatic effects in patient ascites cells with primary ovarian cancer through inhibition of the Wnt/β-catenin pathway. The combination of WNT974 and carboplatin induces cytotoxicity plus cell cycle arrest in a higher percentage of ascites samples than with single drug treatment. RSPO fusions do not contribute to WNT974 sensitivity; however, higher PORCN expression indicates increased WNT974 sensitivity

  2. Vascular Calcification in Chronic Kidney Disease is Induced by Bone Morphogenetic Protein-2 via a Mechanism Involving the Wnt/β-Catenin Pathway

    Directory of Open Access Journals (Sweden)

    Shu Rong

    2014-11-01

    Full Text Available Background: Vascular calcification (VC, in which vascular smooth muscle cells (VSMCs undergo a phenotypic transformation into osteoblast-like cells, is one of the emergent risk factors for the accelerated atherosclerosis process characteristic of chronic kidney disease (CKD. Phosphate is an important regulator of VC. Methods: The expression of different smooth muscle cell or osteogenesis markers in response to high concentrations of phosphate or exogenous bone morphogenetic protein 2 (BMP-2 was examined by qRT-PCR and western blotting in rat VSMCs. Osteocalcin secretion was measured by radioimmunoassay. Differentiation and calcification of VSMCs were examined by alkaline phosphatase (ALP activity assay and Alizarin staining. Short hairpin RNA-mediated silencing of β-catenin was performed to examine the involvement of Wnt/β-catenin signaling in VSMC calcification and osteoblastic differentiation induced by high phosphate or BMP-2. Apoptosis was determined by TUNEL assay and immunofluorescence imaging. Results: BMP-2 serum levels were significantly higher in CKD patients than in controls. High phosphate concentrations and BMP-2 induced VSMC apoptosis and upregulated the expression of β-catenin, Msx2, Runx2 and the phosphate cotransporter Pit1, whereas a BMP-2 neutralization antibody reversed these effects. Knockdown of β-catenin abolished the effect of high phosphate and BMP-2 on VSMC apoptosis and calcification. Conclusions: BMP-2 plays a crucial role in calcium deposition in VSMCs and VC in CKD patients via a mechanism involving the Wnt/β-catenin pathway.

  3. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E2-induced activation of canonical Wnt signaling

    International Nuclear Information System (INIS)

    Highlights: •Three-dimensional culture generates “semi-vivo” sebaceous glands. •Xenograft model failed to mimic the biology of sebaceous glands in vivo. •Proinflammatory cytokine PGE2 enhances Wnt signal activity in the organoids. •PGE2 influences on the mitochondrial and lipid metabolism in the organoids. •Considering 3R agenda, “semi-vivo” sebaceous glands are useful for research. -- Abstract: Background: Prostaglandin E2 (PGE2) is a proinflammatory mediator and activates the canonical Wnt–β-catenin signaling pathway in hematopoietic stem cells. The SZ95 cell line was established from human sebaceous gland cells and is studied as a model system for these cells. Given that 2D culture of SZ95 cells does not recapitulate the organization of sebaceous glands in situ, we developed a 3D culture system for these cells and examined the effects of PGE2 on cell morphology and function. Results: SZ95 cells maintained in 3D culture formed organoids that mimicked the organization of sebaceous glands in situ, including the establishment of a basement membrane. Organoids exposed to PGE2 were larger and adopted a more complex organization compared with control organoids. PGE2 activated the canonical Wnt signaling pathway as well as increased cell viability and proliferation, mitochondrial metabolism, and lipid synthesis in the organoids. Conclusions: Culture of SZ95 cells in 3D culture system recapitulates the structure and susceptibility to PGE2 of sebaceous glands in situ and should prove useful for studies of the response of these glands to inflammation and other environmental stressors. Our results also implicate PGE2-induced activation of canonical Wnt signaling pathway in regulation of the morphology,proliferation, and function of “semi-vivo” sebaceous glands

  4. Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiying [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Newman, Donna R. [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Bonner, James C. [Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Sannes, Philip L., E-mail: philip_sannes@ncsu.edu [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States)

    2012-11-15

    Environmental exposure to cadmium is known to cause damage to alveolar epithelial cells of the lung, impair their capacity to repair, and result in permanent structural alterations. Cell surface heparan sulfate proteoglycans (HSPGs) can modulate cell responses to injury through their interactions with soluble effector molecules. These interactions are often sulfate specific, and the removal of sulfate groups from HS side chains could be expected to influence cellular injury, such as that caused by exposure to cadmium. The goal of this study was to define the role 6-O-sulfate plays in cellular responses to cadmium exposure in two pulmonary epithelial cancer cell lines (H292 and A549) and in normal human primary alveolar type II (hAT2) cells. Sulfate levels were modified by transduced transient over-expression of 6-O-endosulfatase (HSulf-1), a membrane-bound enzyme which specifically removes 6-O-sulfate groups from HSPG side chains. Results showed that cadmium decreased cell viability and activated apoptosis pathways at low concentrations in hAT2 cells but not in the cancer cells. HSulf-1 over-expression, on the contrary, decreased cell viability and activated apoptosis pathways in H292 and A549 cells but not in hAT2 cells. When combined with cadmium, HSulf-1 over-expression further decreased cell viability and exacerbated the activation of apoptosis pathways in the transformed cells but did not add to the toxicity in hAT2 cells. The finding that HSulf-1 sensitizes these cancer cells and intensifies the injury induced by cadmium suggests that 6-O-sulfate groups on HSPGs may play important roles in protection against certain environmental toxicants, such as heavy metals. -- Highlights: ► Primary human lung alveolar type 2 (hAT2) cells and H292 and A549 cells were used. ► Cadmium induced apoptosis in hAT2 cells but not in H292 or A549 cells. ► HSulf-1exacerbates apoptosis induced by cadmium in H292 and A549 but not hAT2 cells.

  5. Restorative Effects of Zinc and Selenium on Cadmium-induced Kidney Oxidative Damage in Rats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To investigate whether cadmium-induced oxidative stress in the kidney is influenced by zinc and selenium. Methods Five groups of rats were maintained: (A) Cd (CdCl2,400 μg@kg-1 day-1 intraperitoneal injection); (B) Cd+Zn (ZnC12, 20mg kg-1.day-1 hypodermic injection); (C) Cd+Se (Na2SeO3, 350 μg.kg-1.day-1 via a stomach tube); (D) Cd+Zn+Se; (E)treated with physiological saline as a sham-handled control. The rats were given treatmenl for a period of 4 weeks. The activities of superoxide dismutase (SOD), glutathione peroxidase (GH-Px), catalase (CAT), and the level of malondialdehyde (MDA) in the kidney tissue were measured to assess the oxidative stress. Urinary lactate dehydrogenase (LDH) activity was used as an indicator of tubular cell damage caused by lipid peroxidation. Results In group C and D, activities of SOD (110.5 ± 5.2, 126.8 ± 7.0; P < 0.05) and GSH-Px (85.7 ± 4.9,94.6 ± 7.3; P < 0.05) were higher than those in group A(84.7 ± 3.3; 56.9 ± 3.8); and in group B, only the activity of GSH-Px (80.0 + 4.3, P < 0.01) increased in comparison with that in group A (56.9 ± 3.8). Significant increase of MDA (P < 0.05) was seen in group B (31.1 ± 4.7) and C (35.0 + 4.1) when compared with control values (17.2 ± 1.8). No difference was found in the level of MDA between group D (18.9 ± 2.6) and control. The activity of LDH in urine of control group (0.06 ± 0.02) was lower than that of group A (0.46 ± 0.19, P<0.05), B (0.10± 0.05, P<0.05) and C (0.14 ± 0.07, P<0.05), and there was no significant change between control (0.06 + 0.02) and group D (0.08 ± 0.02). Conclusion Zinc or selenium could partially alleviate the oxidative stress induced by cadmium in kidney, but administration cadmium in combination with zinc and selenium efficiently protects kidney from cadmiuminduced oxidative damage.

  6. Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato

    OpenAIRE

    Ahammed, Golam Jalal; Choudhary, Sikander Pal; Chen, Shuangchen; Xia, Xiaojian; Shi, Kai; Zhou, Yanhong; Yu, Jingquan

    2012-01-01

    Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applie...

  7. Tunisian radish (Raphanus sativus) extract prevents cadmium-induced immunotoxic and biochemical alterations in rats.

    Science.gov (United States)

    ben Salah-Abbès, Jalila; Abbès, Samir; Zohra, Haous; Oueslati, Ridha

    2015-01-01

    Cadmium (Cd), a known carcinogen and potent immunotoxicant in humans and animals, is dispersed throughout the environment as a result of pollution from a variety of sources. Tunisian radish (Raphanus sativus) extract (TRE) is a known anti-oxidant and free radical scavenger that has been shown to help alleviate immune system disorders, including some induced by environmental toxicants. The present study was undertaken to investigate potential protective effects of TRE against Cd-induced immunotoxicities (and general toxicities) in situ. Cadmium chloride (at 2.5 mg CdCl2/kg BW) and TRE (5, 10, or 15 mg/kg BW) were given (alone or in combination [actually, in sequence of Cd and then TRE]) to rats daily by oral gavage for 2 weeks. Results indicated that treatment with CdCl2 alone resulted in significant decreases in plasma levels of total protein, triglycerides, creatine kinase, creatinine, IgG and IgA, T-lymphocyte sub-types (CD4(+), CD3(+), CD56(+), and CD8(+)), and in thymic and hepatic indices (relative weights). In contrast, CdCl2 treatment caused significant increases in serum LDH, AST, and ALT, in the formation/release of pro-inflammatory cytokines (IL-1 and TNFα), and in the relative weights of host spleen and kidneys. Rats treated with TRE alone had no discernable changes compared to the controls with regard to all test parameters. Combined treatment of CdCl2 and TRE-at any dose-resulted in a significant improvement of all test parameters compared to those seen with Cd alone. These results illustrated (and provided further support for a continuing belief in) the beneficial effects of TRE in reducing the harmful outcomes of commonly encountered toxicants (like Cd) on the immune system and on overall host health status. PMID:24524755

  8. Iodine-oxygen and cadmium-induced stress corrosion cracking of Zr-4 cladding tube

    International Nuclear Information System (INIS)

    On the basis of iodine-induced stress corrosion cracking (SCC) experiments the authors did before, iodine-oxygen and cadmium-induced SCC was studied on Zr-4 cladding tube. Specimens used in experiments are cladding tubes of a reactor fuel element made by Institute of Nonferrous Metal of China. The tube which has a length of 145 mm and an outside diameter of 15.3 mm and an inside diameter of 14.9 mm was annealed at 620 K for two hours, and then it had a fine, stress-relieved microstructure. Two end-caps were welded on the cladding tube. There was a hole of 0.8 mm diameter in a protruding melting-welding platform on one end-cap of the specimen. Before welding the end-caps, a glass ampoule filled with a certain amount of oxygen and a piece of Zr-4 material which can dash the glass ampoule were put into the cladding tube. After plug-hole welding in high pressure argon, the cladding tube was shaken in order to make the piece of Zr-4 material dash the ampoule and the oxygen fill up the space inside the cladding tube. A certain amount of iodine was charged into the cladding tube from the hole before the plug-hole welding. The plug-hole welding in high pressure argon was performed on a specially prepared equipment within 0.1-0.5 second. At a certain temperature, the pressure of argon determines the mechanical load (stress). The SCC experiments were controlled within +-3 degree C by a thermocouple welded on the specimen. The cracking of the specimen or the leak of gas was sensitively supervised and timed by vacuum alarm system. Under various conditions of stress, the experiments for 28 specimens of iodine-oxygen agent and 5 specimens of cadmium agent were undertaken

  9. Dose-response relationship of cadmium or radiation-induced embryotoxicity in mouse whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Kiyohito; Kawamata, Akitoshi; Matsuoka, Masato; Wakisaka, Takashi; Fujiki, Yoshishige (Asahi University School of Dentistry, Gifu (Japan))

    1988-12-01

    Mouse embryos of B6C3F/sub 1/ strain were exposed in vitro to 1.2 to 2.2 {mu}M cadmium chloride (Cd) or to 100 to 320 R x-rays, and the effects of the exposure on development were examined after 39 h of culture. Development of embryos was assessed from lethality, formation of the neural tube defect, diameter and protein of yolk sac, crown-rump and head lengths, embryonic protein, and number of somites. Incidence of the neural tube defect increased from 3.4 to 100% by 1.2 to 2.0 {mu}M Cd, while embryo deaths increased from 13.8 to 93.3% by 2.0 to 2.2 {mu}M Cd. Embryonic protein was significantly reduced at the teratogenic range, but the number of somites was only affected by 1.6 to 2.0 {mu}M Cd. X-irradiation at 100 to 320 R induced the neural tube defect in 2.9 to 72.7% of the embryos. An embryolethal effect was observed only at the 320 R dose. Crown-rump and head lengths and embryonic protein were significantly affected at the teratogenic range, but the diameter and protein of yolk sac and number of somites were hardly affected. Cadmium- or radiation-induced response data of both teratogenicity and endpoints indicating inhibition of embryonic development were acceptably fitted to a linear log-probit regression. These regressions suggest that as an estimation of interference in development of embryos, embryonic protein and head length are sensitive endpoints while the number of somites is an insensitive criterion. (author).

  10. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo

    Science.gov (United States)

    Varela-Nallar, Lorena; Rojas-Abalos, Macarena; Abbott, Ana C.; Moya, Esteban A.; Iturriaga, Rodrigo; Inestrosa, Nibaldo C.

    2014-01-01

    Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible transcription factor-1α (HIF-1α) was analyzed as a molecular control of the physiological hypoxic response. Exposure to chronic hypoxia (10% oxygen for 6–72 h) stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, Bromodeoxyuridine (BrdU) incorporation and double labeling with doublecortin (DCX). Chronic hypoxia also induced neurogenesis in a double transgenic APPswe-PS1ΔE9 mouse model of Alzheimer’s disease (AD), which shows decreased levels of neurogenesis in the SGZ. Our results show for the first time that exposure to hypoxia in vivo can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorders associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired. PMID:24574965

  11. Isolation and characterization of three cadmium-inducible promoters from Oryza sativa.

    Science.gov (United States)

    Qiu, Chun-Hong; Li, Hao; Li, Juan; Qin, Rui-Ying; Xu, Rong-Fang; Yang, Ya-Chun; Ma, Hui; Song, Feng-Shun; Li, Li; Wei, Peng-Cheng; Yang, Jian-Bo

    2015-12-20

    Cadmium (Cd) is an important soil pollutant. Developing genetically engineered crops might be a feasible strategy for Cd decontamination and damage prevention. Both genes and promoters are critical for the effective construction of genetically modified plants. Although many functional genes for Cd tolerance and accumulation have been identified, few reports have focused on plant Cd-inducible promoters. Here, we identified three Cd-inducible genes in the rice genome: two tau class glutathione S-transferase (GSTU) genes, OsGSTU5 and OsGSTU37, and an HSP20/alpha crystallin family protein gene, OsHSP18.6. The promoter sequences were isolated and tested in transgenic rice lines using a GUSplus reporter gene. All of the promoters exhibited low background expression under normal conditions and could be strongly induced by Cd stress. Although their strength was comparable to that of the constitutive OsACTIN promoter under Cd stress, their time-dependent expression patterns under both short- and long-term Cd exposure were markedly different. The responses of the three promoters to other heavy metals were also examined. Furthermore, heavy metal-responsive cis elements in the promoters were computationally analyzed, and regions determining the Cd stress response were analyzed using a series of truncations. Our results indicate that the three Cd-inducible rice promoters described herein could potentially be used in applications aimed at improving heavy metal tolerance in crops or for the bio-monitoring of environmental contamination. PMID:26435218

  12. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells

    International Nuclear Information System (INIS)

    Sarcomas are one of the most refractory diseases among malignant tumors. More effective therapies based on an increased understanding of the molecular biology of sarcomas are needed as current forms of therapy remain inadequate. Recently, it has been reported that Wnt-1/β-catenin signaling inhibits apoptosis in several cancers. In this study, we investigated the efficacy of a monoclonal anti-Wnt-1 antibody in sarcoma cells. We treated cell lines A-204, SJSA-1, and fresh primary cultures of lung metastasis of sarcoma with a monoclonal anti-Wnt-1 antibody. Wnt-1 siRNA treatment was carried out in A-204. We assessed cell death using Crystal Violet staining. Apoptosis induction was estimated by flow cytometry analysis (Annexin V and PI staining). Cell signaling changes were determined by western blotting analysis. We detected Wnt-1 expression in all tissue samples and cell lines. Significant apoptosis induction was found in monoclonal anti-Wnt-1 antibody treated cells compared to control monoclonal antibody treated cells (p < 0.02). Similarly, we observed increased apoptosis in Wnt-1 siRNA treated cells. Blockade of Wnt-1 signaling in both experiments was confirmed by analyzing intracellular levels of Dishevelled-3 and of cytosolic β-catenin. Furthermore, the monoclonal anti-Wnt-1 antibody also induced cell death in fresh primary cultures of metastatic sarcoma in which Wnt-1 signaling was active. Our results indicate that Wnt-1 blockade by either monoclonal antibody or siRNA induces cell death in sarcoma cells. These data suggest that Wnt-1 may be a novel therapeutic target for the treatment of a subset of sarcoma cells in which Wnt-1/β-catenin signaling is active

  13. Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Seth, Brashket; Agarwal, Swati; Yadav, Anuradha; Karmakar, Madhumita; Gupta, Shailendra Kumar; Choubey, Vinay; Sharma, Abhay; Chaturvedi, Rajnish Kumar

    2015-11-20

    Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling. PMID:26420483

  14. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    International Nuclear Information System (INIS)

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd2+-associated cytoskeletal reorganization. Low concentrations of Cd2+ (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd2+-dependent effect, as only Cd2+ concentrations above 2 μM were sufficient to increase ROS. However, low [Cd2+] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd2+ exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd2+ concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations. • Glutathionylation requires glutathione synthesis but is

  15. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    Energy Technology Data Exchange (ETDEWEB)

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M., E-mail: doug.templeton@utoronto.ca

    2013-10-15

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd{sup 2+}-associated cytoskeletal reorganization. Low concentrations of Cd{sup 2+} (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd{sup 2+}-dependent effect, as only Cd{sup 2+} concentrations above 2 μM were sufficient to increase ROS. However, low [Cd{sup 2+}] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd{sup 2+} exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd{sup 2+} concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations.

  16. OXIDATIVE STRESS IN SHEEP INDUCED BY CADMIUM CHLORIDE TOXICITY, WITH THERAPEUTIC EFFECTS OF ALPHA LIPOIC ACID

    OpenAIRE

    Hussien Ali NAJI; Mohammad Mushgil ZENAD

    2015-01-01

    Cadmium (Cd) is a heavy toxic metal, with harmful effects on animals and public health. Recently the risk of cadmium toxicity is substantially regarded; the environmental pollution is increased due to multi- uses of this element in various industries. This study was performed to clarify the effects of acute cadmium toxicity in sheep with trail of using alpha lipoic acid as an antioxidant therapeutic substance. Fifteen male lambs aged from 5-to-7 months were divided equally in to three groups,...

  17. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P +K+-ATPase, Mg2+-ATPase and Ca2+-ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  18. Ameliorating effect of black tea extract on cadmium chloride-induced alteration of serum lipid profile and liver histopathology in rats.

    Science.gov (United States)

    Mantur, Venkappa S; Somannavarib, Manjunath S; Yendigeri, Saeed; Das, Kusal K; Goudar, Shivaprasad S

    2014-01-01

    Cadmium is one among the most environmental pollutants that affects many organs like kidney, liver and testis. The present study was aimed to assess the simultaneous effects of black tea extracts (BTE) on cadmium chloride induced alterations in lipid profile and liver histology. Adult rats were divided into four groups (n=6/group), group I (normal saline), group II (CdCl2, 1.0 mg/kg, b.wt; i.p), group III (black tea extract, 2.5 gm tea leaf/dl of water that is 2.5% of aqueous BTE) and group IV (cadmium chloride + BTE). Cadmium chloride intoxicated rats showed significant increase in serum total cholesterol, triglycerides, and low density lipoprotein-cholesterol and there is a significant decrease in the serum high density lipoprotein-cholesterol. In the liver, cadmium chloride showed changes in normal architecture, swollen hepatocytes, kupffer cells hyperplasia, dilation and congestion of central vein. Oral administration of black tea extracts with cadmium chloride significantly improves lipid profile and liver architecture as compared to the cadmium chloride group. The results indicate that BTE is beneficial in preventing cadmium-induced lipid alterations and hepatocellular damage. PMID:25509961

  19. Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and enphysema in rats

    International Nuclear Information System (INIS)

    This study describes induction of pulmonary inflammation, production of matrix metalloprotease of type 2 (MMP-2) and type 9 (MMP-9), and emphysema in cadmium (Cd)-exposed rats. Sprague-Dawley rats were randomly distributed into two groups: one placebo-exposed group undergoing saline (NaCl 0.9%) inhalation (n = 30) and one Cd-exposed group undergoing cadmium (CdCl2 0.1%) inhalation (n = 30). The animals of the placebo- and Cd-exposed groups were divided in five subgroups (n = 6). Subgroups underwent either a single exposure of 1 h or repeated exposures three times weekly for 1 h during 3 weeks (3W), 5 weeks (5W), 5 weeks followed by 2 weeks without exposure (5W + 2) or 5 weeks followed by 4 weeks without exposure (5W + 4). Each animal underwent determination of enhanced pause (Penh) as index of airflow limitation prior to the first exposure as well as before sacrifice. The animals were sacrificed the day after their last exposure. The left lung was fixed for histomorphometric analysis (determination of median interwall distance (MIWD)), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. BALF was analyzed cytologically, and MMP-2 and MMP-9 levels were determined by gelatine zymography. Twelve rats previously instilled with pancreatic elastase were used as positive emphysema controls and underwent the same investigations. Cd-exposure induced a significant increase of BALF macrophages, neutrophils and MMP-9 up to 5W + 4, whereas MMP-2 gelatinolytic activity returned to baseline levels within 5W. MIWD was significantly increased in all repeatedly Cd-exposed groups and elastase-treated rats. Penh was increased in Cd-exposed rats after a single exposure and after 3W. MMP gelatinolytic activity was significantly correlated with macrophages, neutrophils and Penh. In repeatedly exposed rats, MIWD was positively and significantly correlated with MMP gelatinolytic activity, suggesting that increased MMP-2 and MMP-9 production favours the development

  20. Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways.

    Science.gov (United States)

    Brama, M; Politi, L; Santini, P; Migliaccio, S; Scandurra, R

    2012-02-01

    Cadmium is a widespread environmental pollutant which induces severe toxic alterations, including osteomalacia and osteoporosis, likely by estrogen receptor-dependent mechanisms. Indeed, cadmium has been described to act as an endocrine disruptor and its toxicity is exerted both in vivo and in vitro through induction of apoptosis and/or necrosis by not fully clarified intracellular mechanism(s) of action. Aim of the present study was to further investigate the molecular mechanism by which cadmium might alter homeostasis of estrogen target cells, such as osteoblast homeostasis, inducing cell apoptosis and/or necrosis. Human osteoblastic cells (hFOB 1.19) in culture were used as an in vitro model to characterize the intracellular mechanisms induced by this heavy metal. Cells were incubated in the presence/ absence of 10-50 μM cadmium chloride at different times and DNA fragmentation and activation of procaspases- 8 and -3 were induced upon CdCl(2) treatment triggering apoptotic and necrotic pathways. Addition of caspase-8 and -3 inhibitors (Z-IETD-FMK and Z-DQMD-FMK) partially blocked these effects. No activation of procaspase-9 was observed. To determine the role of mitogen-activated protein kinases (MAPK) in these events, we investigated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated protein kinase (ERK1/2) phosphorylation which were activated by 10 μM CdCl(2). Chemical inhibitors of JNK, p38, and ERK1/2, SP600125, SB202190, and PD98059, significantly reduced the phosphorylation of the kinases and blunted apoptosis. In contrast, caspase inhibitors did not reduce the cadmium-induced MAPK phosphorylation, suggesting an independent activation of these pathways. In conclusion, at least 2 pathways appear activated by cadmium in osteoblasts: a direct induction of caspase-8 followed by activation of caspase-3 and an indirect induction by phosphorylation of ERK1/2, p38, and JNK MAPK triggering activation of caspase-8 and -3. PMID:21697648

  1. Wnt/β-Catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra

    Science.gov (United States)

    Philipp, Isabelle; Aufschnaiter, Roland; Özbek, Suat; Pontasch, Stefanie; Jenewein, Marcell; Watanabe, Hiroshi; Rentzsch, Fabian; Holstein, Thomas W.; Hobmayer, Bert

    2009-01-01

    In and evaginations of 2D cell sheets are major shape generating processes in animal development. They result from directed movement and intercalation of polarized cells associated with cell shape changes. Work on several bilaterian model organisms has emphasized the role of noncanonical Wnt signaling in cell polarization and movement. However, the molecular processes responsible for generating tissue and body shape in ancestral, prebilaterian animals are unknown. We show that noncanonical Wnt signaling acts in mass tissue movements during bud and tentacle evagination and regeneration in the cnidarian polyp Hydra. The wnt5, wnt8, frizzled2 (fz2), and dishevelled-expressing cell clusters define the positions, where bud and tentacle evaginations are initiated; wnt8, fz2, and dishevelled remain up-regulated in those epithelial cells, undergoing cell shape changes during the entire evagination process. Downstream of wnt and dsh expression, JNK activity is required for the evagination process. Multiple ectopic wnt5, wnt8, fz2, and dishevelled-expressing centers and the subsequent evagination of ectopic tentacles are induced throughout the body column by activation of Wnt/β-Catenin signaling. Our results indicate that integration of axial patterning and tissue morphogenesis by the coordinated action of canonical and noncanonical Wnt pathways was crucial for the evolution of eumetazoan body plans. PMID:19237582

  2. Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects

    International Nuclear Information System (INIS)

    DNA microarrays offer great potential in revealing insight into mechanistic toxicity of contaminants. The aim of the present study was (i) to gain insight in concentration- and time-dependent cadmium-induced molecular responses by using a customized Daphnia magna microarray, and (ii) to compare the gene expression profiles with effects at higher levels of biological organization (e.g. total energy budget and growth). Daphnids were exposed to three cadmium concentrations (nominal value of 10, 50, 100 μg/l) for two time intervals (48 and 96 h). In general, dynamic expression patterns were obtained with a clear increase of gene expression changes at higher concentrations and longer exposure duration. Microarray analysis revealed cadmium affected molecular pathways associated with processes such as digestion, oxygen transport, cuticula metabolism and embryo development. These effects were compared with higher-level effects (energy budgets and growth). For instance, next to reduced energy budgets due to a decline in lipid, carbohydrate and protein content, we found an up-regulated expression of genes related to digestive processes (e.g. α-esterase, cellulase, α-amylase). Furthermore, cadmium affected the expression of genes coding for proteins involved in molecular pathways associated with immune response, stress response, cell adhesion, visual perception and signal transduction in the present study

  3. Protective role of Liv.52 against radiation and cadmium induce haematological changes in the Swiss albino mice

    International Nuclear Information System (INIS)

    In the present investigation, the protective efficacy of Liv.52 against radiation and cadmium induced haematological changes in Swiss albino mice has been studied. For the purpose, the animals were exposed to 3.0 and 6.0 Gy gamma rays with or without cadmium chloride treatment. The Liv.52 was administered at the dose of 0.01 ml/animal/day seven days prior to radiation, cadmium or combined treatment. The various haematological changes viz. RBC, WBC, Hb, PCV, MCR, MCHC, TLC, SGPT and SGOT were observed in the form of increase or decrease. The values of RBC, WBC, Hb, PCV and MCV were found to decrease in all the groups as compared to normal group. The values of MCR and MCHC increased in all the groups as compared to normal group after 1, 2, 4, 7, 14 and 28 days of post-treatment intervals. The values of SGOT and SGPT elevated up to day-14 in the non drug treated groups and day 7 in the Liv.52 treated groups, thereafter a fall in the value was seen up to day-28. After combined treatment of radiation and cadmium the changes were more severe and there was late manifestation of recovery showing synergistic or additive effect. In the Liv.52 treated animals the changes were less severe and early recovery was also observed showing protection provided by the drug. (author)

  4. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Marina Pasca di Magliano

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  5. Wnt5a controls neurite development in olfactory bulb interneurons

    Directory of Open Access Journals (Sweden)

    Youngshik Choe

    2011-06-01

    Full Text Available Neurons born in the postnatal SVZ (subventricular zone must migrate a great distance before becoming mature interneurons of the OB (olfactory bulb. During migration immature OB neurons maintain an immature morphology until they reach their destination. While the morphological development of these cells must be tightly regulated, the cellular pathways responsible are still largely unknown. Our results show that the non-canonical Wnt pathway induced by Wnt5a is important for the morphological development of OB interneurons both in vitro and in vivo. Additionally, we demonstrate that non-canonical Wnt signalling works in opposition to canonical Wnt signalling in neural precursors from the SVZ in vitro. This represents a novel role for Wnt5a in the development of OB interneurons and suggests that canonical and non-canonical Wnt pathways dynamically oppose each other in the regulation of dendrite maturation.

  6. Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants

    International Nuclear Information System (INIS)

    Cadmium (Cd2+) is an ubiquitous toxic metal that is involved in a variety of pathological conditions. Several reports indicate that Cd2+ alters normal pituitary hormone secretion; however, little is known about the mechanisms that induce this misregulation. This paper reports the effect of Cd2+ on anterior pituitary cell viability and its relation to prolactin secretion. Cd2+ concentrations above 10 μM were found to be cytotoxic for pituitary cells. Morphological studies as well as DNA ladder fragmentation and caspase activation showed that Cd2+-treated cells undergo apoptosis. Even though several hours were needed to detect Cd2+-induced cytotoxicity, the effect of the metal became irreversible very quickly, requiring only 3 h of treatment. Prolactin release (measured at 48 h) was inhibited when the cells were exposed to Cd2+ for 1 h, before any change in cell viability was observed. The antioxidants N-acetyl-cysteine and Trolox (a hydrosoluble derivative of vitamin E), but not ascorbic acid, reversed both Cd2+-mediated cytotoxicity and the inhibition of prolactin release, supporting the involvement of oxidative stress in the mechanism of Cd2+ action. In summary, the present work demonstrates that Cd2+ is cytotoxic for anterior pituitary cells, that this effect is due to an induction of apoptosis, and that it can be reversed by antioxidants

  7. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang, E-mail: xudex@126.com

    2012-03-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl{sub 2} (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl{sub 2}. In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl{sub 2}. Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER

  8. Effect of Dietary-Resistant Starch on Inhibition of Colonic Preneoplasia and Wnt Signaling in Azoxymethane-Induced Rodent Models.

    Science.gov (United States)

    Nelson, Bridget; Cray, Nicole; Ai, Yongfeng; Fang, Yinan; Liu, Peng; Whitley, Elizabeth M; Birt, Diane

    2016-01-01

    Dietary fiber has been reported to prevent preneoplastic colon lesions. The aim of this study was to determine the effect of resistant starches, novel dietary fibers, on the development of colonic preneoplasia and Wnt signaling in azoxymethane (AOM)-treated rats and mice fed resistant starches at 55% of the diet after AOM treatment. Another objective was to determine the effect of resistant starches on the development of preneoplasia in rats treated with antibiotics (Ab), administered between AOM treatment and resistant starch feeding. Diets containing resistant starches, high-amylose (HA7), high-amylose-octenyl succinic anhydride (OS-HA7), or high-amylose-stearic acid (SA-HA7) were compared with control cornstarch (CS). The resistant starch content of the diets did not alter the yield of colonic lesions but animals treated with AOM and fed the diet with the highest resistant starch content, SA-HA7 developed the highest average aberrant crypt foci (ACF) per animal. Mice fed the OS-HA7 diet had decreased expression of some upstream Wnt genes in the colonic crypts. This study suggests that further research is needed to determine if resistant starch impacts colon carcinogenesis in rodents. PMID:27367460

  9. Influence of Isoflavones on Cadmium-induced Adverse Effects in Vascular Endothelial Cells (ECV 304)

    Institute of Scientific and Technical Information of China (English)

    JUE CHEN; TAI-YI JIN

    2005-01-01

    Objective To study the possible intervention of isoflavones in cytotoxicity induced by cadmium in vascular endothelial cells. Methods An ECV 304 cell line derived from human umbilical vein endothelial cells was adopted. Genistein / daidzein was added prior to or simultaneously with CdCl2, cell viability was determined by MTT assay, and metallothionein mRNA expression was monitored by RT-PCR method. Results Cell viability was higher in isoflavone and CdCl2 co-treated groups than that in CdCl2 treated group, with CdCl2 concentration at 10, 20, 40, and 80 μmol/L, respectively. However this increase was not observed in the group treated with CdCl2 at a concentration of 60 μmol/L. Isoflavones (10-10 mol/L to 10-5 mol/L) were added 24 h before cells were challenged with 80 μmol/L CdCl2 for 24 h or simultaneously with 80 μmol/L CdCl2. Genistein increased cell viability only at 10-5 mol/L, while daidzein caused a dose-dependent increase from 10-10 mol/L to 10-5 mol/L in co-treatment with CdCl2. In pre-treatment, genistein (10-7 to 10-5 mol/L) increased cell viability whereas only 10-5 mol/L of daidzein exerted protection. Apparent protection could be found when the cells were pre-treated with 10-5 mol/L isoflavones for over 12 h, whereas 24 h incubation was required in such a co-treatment, with the exception of daidzein that had a significant protection in only 3 h. Isoflavones (10-6 mol/L) incubated for 3 h to 24 h, increased MT IIA and MT IF mRNA expression, but the induction could not last for more than 24 h. Co-treatment with isoflavones could induce an additional induction of MT IIA mRNA expression in cells exposed to cadmium. However, the additional induction of MT IIA and MT IF mRNA was not seen when pre-treatment was carried out with isoflavones, with the exception of an increase in MT IIA mRNA expression in the daidzein pre-treated group. Conclusion Genistein/daidzein could reverse the cytotoxicity of cadmium either in pre-treatment or in co-treatment. The

  10. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    International Nuclear Information System (INIS)

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation

  11. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  12. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis.

    Science.gov (United States)

    Chen, Jinglou; Du, Lifen; Li, Jingjing; Song, Hongping

    2016-10-01

    Cadmium (Cd) pollution is a serious environmental problem. Kidney is a main target organ of Cd toxicity. This study was undertaken to investigate the potential protective effects of epigallocatechin-3-gallate (EGCG) against chronic renal injury and fibrosis induced by CdCl2. Rat model was induced by exposing to 250 mg/L CdCl2 through drinking water. The renal function was evaluated by detecting the levels of blood urea nitrogen (BUN) and serum creatinine (SCR). The oxidative stress was measured by detecting the levels of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione/oxidized glutathione (GSH/GSSG) and renal enzymatic antioxidant status. Additionally, the renal levels of transforming growth factor-β1 (TGF-β1), Smad3, phosphorylation-Smad3 (pp-Smad3), α-smooth muscle actin (α-SMA), vimentin and E-cadherin were measured by western blot assay. Renal levels of microRNA-21 (miR-21), miR-29a/b/c and miR-192 were measured by quantitative RT-PCR. It was found that EGCG ameliorated the CdCl2-induced renal injury, inhibited the level of oxidative stress, normalized renal enzymatic antioxidant status and E-cadherin level, as well as attenuated the over generation of TGF-β1, pp-Smad3, vimentin and α-SMA. EGCG also decreased the production of miR-21 and miR-192, and enhanced the levels of miR-29a/b/c. These results showed that EGCG could attenuate Cd induced chronic renal injury. PMID:27474435

  13. Midkine secretion protects Hep3B cells from cadmium induced cellular damage

    Institute of Scientific and Technical Information of China (English)

    Nuray Yazihan; Haluk Ataoglu; Ethem Akcil; Burcu Yener; Bulent Salman; Cengiz Aydin

    2008-01-01

    AIM:To evaluate role of midkine secretion during Cadmium (Cd) exposure in the human hepatocyte cell line Hep3B cells.METHODS: Different dosages of Cd (0.5-1-5-10 μg/mL) were applied to Hep3B cells and their effects to apoptosis, lactate dehydrogenase (LDH) leakage and midkine secretion were evaluated as time dependent manner. Same experiments were repeated with exogenously applied midkine (250-5000 pg/mL) and/or 5μg/mL Cd.RESULTS: Cd exposure induced prominent apoptosis and LDH leakage beginning from lower dosages at the 48th h. Cd induced midkine secretion with higher dosages (P < 0.001), (control, Cd 0.5-1-5-10μg/mL respectively: 1123±73, 1157±63, 1242±90, 1886± 175, 1712±166 pg/mL). Exogenous 500-5000 pg/mL midkine application during 5 μg/mL Cd toxicity prevented caspase-3 activation (control, Cd toxicity, 250, 500, 1000, 2500, 5000 pg/mL midkine+ Cd toxicity, respectively:374±64, 1786±156, 1545±179, 1203±113, 974±116, 646±56, 556±63 cfu) LDH leakage and cell death in Hep3B cells (P < 0.001).CONCLUSION: Our results showed that midkine secretion from Hep3B cells during Cd exposure protects liver cells from Cd induced cellular damage. Midkine has anti-apoptotic and cytoprotective role during Cd toxicity. Further studies are needed to explain the mechanism of midkine secretion and cytoprotective role of midkine during Cd exposure. Midkine may be a promising theurapatic agent in different toxic hepatic diseases.

  14. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a nonessential metal that is dispersed throughout the environment. It is an endocrine-disrupting element which mimics estrogen, binds to estrogen receptor alpha (ERα), and promotes cell proliferation in breast cancer cells. We have previously published that Cd promotes activation of the extracellular regulated kinases, erk-1 and -2 in both ER-positive and ER-negative human breast cancer cells, suggesting that this estrogen-like effect of Cd is not associated with the ER. Here, we have investigated whether the newly appreciated transmembrane estrogen receptor, G-protein coupled receptor 30 (GPR30), may be involved in Cd-induced cell proliferation. Towards this end, we compared the effects of Cd in ER-negative human SKBR3 breast cancer cells in which endogenous GPR30 signaling was selectively inhibited using a GPR30 interfering mutant. We found that Cd concentrations from 50 to 500 nM induced a proliferative response in control vector-transfected SKBR3 cells but not in SKBR3 cells stably expressing interfering mutant. Similarly, intracellular cAMP levels increased about 2.4-fold in the vector transfectants but not in cells in which GPR30 was inactivated within 2.5 min after treatment with 500 nM Cd. Furthermore, Cd treatment rapidly activated (within 2.5 min) raf-1, mitogen-activated protein kinase kinase, mek-1, extracellular signal regulated kinases, erk-1/2, ribosomal S6 kinase, rsk, and E-26 like protein kinase, elk, about 4-fold in vector transfectants. In contrast, the activation of these signaling molecules in SKBR3 cells expressing the GPR30 mutant was only about 1.4-fold. These results demonstrate that Cd-induced breast cancer cell proliferation occurs through GPR30-mediated activation in a manner that is similar to that achieved by estrogen in these cells.

  15. Effects of liver damage induced by polychlorinated biphenyls (PCB) on cadmium metabolism in mice

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCB) were added to the diets of mice at different concentrations. Mice fed these diets were given a sc or oral doses of 109Cd. The uptake and excretion of Cd was followed by whole-body counting. The gastrointestinal absorption of Cd after an oral dose of 109Cd was less in animals fed on 66 ppm PCB diet, compared with a control group, and the body elimination of Cd was faster. In the liver, the amount of Cd was reduced by dietary PCB exposure, after both oral and sc administration of 109Cd, and the data suggest a faster transport of Cd from liver to kidneys in PCB-exposed animals than in controls. The mobilized liver Cd was not quantitatively recovered in the kidneys, thus increased urinary excretion due to PCB exposure may have taken place. Histological examination of the livers revealed a dose-dependent induction of liver changes characterized by centrilobular enlargement of liver cells and centrilobular focal necroses. In four of eight livers from animals fed 200 ppm PCB for 32 weeks there were five liver cell tumors with cytological signs of malignancy. In the control group and in groups fed lower doses of PCB (10-100 ppm) no such tumors were found among 28 animals. The results support observations made with agents inducing acute liver damage, that liver damage increases the rate of redistribution of cadmium from the liver to the kidney

  16. Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Sato, Masao [Department of Biomolecular Sciences, Institute of Biomedical Sciences, Fukushima Medical College, Fukushima (Japan); Konno, Nobuhiro [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Fukushima, Masaaki [Department of Public Health, Fukushima Medical College, Fukushima (Japan)

    1996-11-01

    Cadmium (Cd), a highly toxic heavy metal, is distributed widely in the general environment of today. The characteristic clinical manifestations of chronic Cd intoxication include renal proximal tubular dysfunction, general osteomalacia with severe pains, and anemia. We have recently reported that the serum level of erythropoietin (EPO) remained low despite the severe anemia in patients with Itai-itai disease, the most severe form of chronic Cd intoxication. In order to prove that the anemia observed in chronic Cd intoxication arises from low production of EPO in the kidneys following the renal injury, we administered Cd to rats for a long period and performed the analysis of EPO mRNA inducibility in the kidneys. The rats administered Cd for 6 and 9 months showed anemia with low levels of plasma EPO as well as biochemical and histological renal tubular damage, and also hypoinduction of EPO mRNA in the kidneys. The results indicate that chronic Cd intoxication causes anemia by disturbing the EPO-production capacity of renal cells. (orig.). With 4 figs., 4 tabs.

  17. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos

    International Nuclear Information System (INIS)

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ∼4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. (paper)

  18. Protective efficacy of Aloe vera against radiation and cadmium induced haematological changes in the Swiss Albino mice

    International Nuclear Information System (INIS)

    The aim of the present study was to evaluate the protective effect of Aloe vera against radiation and cadmium induced haematological changes in the Swiss albino mice; 6-8 weeks old animals from each of the experimental groups were sacrificed by cervical dislocation at each post treatment intervals of 1,2,4,7,14 and 28 day. After sacrificing the animals, the blood was collected by cardiac puncture in heparinized tubes for various haematological studies. The values of RBC, WBC, Haemoglobin and PCV were found to decrease up to day-14 in non drug treated groups (II,III and IV), thereafter they increased on day-28. Whereas the values decreased upto day-7 in Aloe vera treated groups (V,VI,VlI) thereafter increased tip to day-28. On the other hand, the value of MCV increased upto day- 14 in non-drug treated groups (II, III, IV) and tip to day-7 in drug treated groups (V, VI, VII), thereafter it decreased tip to day-28. After combined treatment of radiation and cadmium chloride synergistic effects were observed. The Aloe vera treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was noticed in Aloe vera pretreated animals. Thus, it appears that Aloe vera is potent enough to check cadmium and radiation induced haematological changes in the Swiss albino mice. (author)

  19. Wnt signaling in osteosarcoma.

    Science.gov (United States)

    Lin, Carol H; Ji, Tao; Chen, Cheng-Fong; Hoang, Bang H

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone malignancy diagnosed in children and adolescents with a high propensity for local invasion and distant metastasis. Despite current multidisciplinary treatments, there has not been a drastic change in overall prognosis within the last two decades. With current treatments, 60-70 % of patients with localized disease survive. Given a propensity of Wnt signaling to control multiple cellular processes, including proliferation, cell fate determination, and differentiation, it is a critical pathway in OS disease progression. At the same time, this pathway is extremely complex with vast arrays of cross-talk. Even though decades of research have linked the role of Wnt to tumorigenesis, there are still outstanding areas that remain poorly understood and even controversial. The canonical Wnt pathway functions to regulate the levels of the transcriptional co-activator β-catenin, which ultimately controls key developmental gene expressions. Given the central role of this mediator, inhibition of Wnt/β-catenin signaling has been investigated as a potential strategy for cancer control. In OS, several secreted protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-1,2,3), sclerostin, and small molecules. This chapter focuses on our current understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo data. Wnt activates noncanonical signaling pathways as well that are independent of β-catenin which will be discussed. In addition, stem cells and their association with Wnt/β-catenin are important factors to consider. Ultimately, the multiple canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further explored for potential targeted therapies. PMID:24924167

  20. Low Doses of Cadmium Chloride and Methallothionein-1-Bound Cadmium Display Different Accumulation Kinetics and Induce Different Genes in Cells of the Human Nephron

    Directory of Open Access Journals (Sweden)

    Dana Cucu

    2011-08-01

    Full Text Available Background/Aims: The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+ by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2. Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1. Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1 in renal cells on the expression of genes relevant to nephrotoxic processes. Methods: Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results: Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1 and heme-oxygenase-1 (HO-1 as well as the pro-apoptotic Bcl-2-associated X protein (Bax were upregulated by CdCl2 and not by Cd7MT1. Conclusion: In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity.

  1. Wnt/β-catenin signaling enables developmental transitions during valvulogenesis.

    Science.gov (United States)

    Bosada, Fernanda M; Devasthali, Vidusha; Jones, Kimberly A; Stankunas, Kryn

    2016-03-15

    Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector β-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/β-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/β-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/β-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects. PMID:26893350

  2. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    International Nuclear Information System (INIS)

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage

  3. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Misu, Masayasu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kawai, Norikazu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nishimura, Fumihiko [Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakamura-Uchiyama, Fukumi [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Yoshikawa, Masahide, E-mail: myoshika@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  4. Cadmium Induced Cell Apoptosis, DNA Damage, Decreased DNA Repair Capacity, and Genomic Instability during Malignant Transformation of Human Bronchial Epithelial Cells

    OpenAIRE

    Zhou, Zhiheng; Wang, Caixia; Liu, Haibai; Huang, Qinhai; Wang, Min; Lei, Yixiong

    2013-01-01

    Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mechanisms of DNA damage in cadmium-induced malignant transformation of human bronchial epithelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in DNA repair genes in several kinds of cells. These cells consisted of untreated control cells, cells...

  5. Immunohistochemical study of cell proliferation, Bcl-2, p53, and caspase-3 expression on preneoplastic changes induced by cadmium and zinc chloride in the ventral rat prostate.

    OpenAIRE

    Arriazu, Riánsares; José M Pozuelo; Henriques-Gil, Nuno; Perucho, Teresa; Martín, Rocío; Rodríguez, Rosario; Santamaría, Luis

    2006-01-01

    KEYWORDS CLASSIFICATION: Animals;Apoptosis;biosynthesis;Biology;chemically induced;Cadmium;Cadmium Chloride;Carcinogens;Caspase 3;Caspases;Cell Proliferation;Chlorides;Immunohistochemistry;metabolism;Male;mechanisms of carcinogenesis;pathology;pharmacology;Precancerous Conditions;Proliferating Cell Nuclear Antigen;Prostate;Prostatic Intraepithelial Neoplasia;Prostatic Neoplasms;Proteins;Proto-Oncogene Proteins;Proto-Oncogene Proteins c-bcl-2;Rats;Rats,Sprague-Dawley;Research;Spain;toxicity;Ti...

  6. Assessment of radio modulatory potential of emblica against radiation and cadmium induced biochemical changes in kidney of Swiss albino mice

    International Nuclear Information System (INIS)

    Ionizing radiation Induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. It has been known since ancient times that Cadmium is virtually toxic to every organ of body including renal system. Radioprotectors are compounds that are designed to reduce the damage in normal tissue caused by radiation and cadmium. Emblica officinalis extract has been shown to possess high antioxidative, anticancer, lipid lowering, antisclerotic, hepatoprotective and anti-HIV potential. It is highly nutritious and important dietary source of vitamin. Emblica contains a polyphenols, especially tannins and other phenolic compounds. Considering antioxidant properties of Emblica, the aim of this study was to access the efficacy of Emblica in reducing radiation and cadmium induced changes in mouse kidney. For this purpose four male mice were randomly assigned into six treatment groups. The mice in the treatment groups II to VII treated respectively with cadmium chloride, radiation (7.0 Gy) combined treatment and drug treated groups. All biochemical parameters of the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphatase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups. Thereafter value declined up to day-28 without reaching to normal. Whereas the value of cholesterol and DNA showed a decreasing trend up to day-14 in non drug treated groups and day-7 in Emblica treated groups. The biochemical findings indicated the drug treated section of the kidney showed slightly/no degenerative changes. The treated groups demonstrating the ability of Emblica to inhibit oxidative stress thus preventing renal injury. (author)

  7. Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/β-catenin pathway in human colorectal adenocarcinoma DLD1 cells

    International Nuclear Information System (INIS)

    Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, β-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47phox and p67phox, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased β-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced β-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/β-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: → Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. → Arsenic increases β-catenin expression. → Inhibition of ROS induced by arsenic reduce β-catenin expression. → Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. → Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

  8. Cadmium Induced Changes in Metabolic Function of Mitochondrial Isolated from Potato Tissue (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Chagra Ali

    2009-01-01

    Full Text Available Problem statement: Cadmium is highly toxic at low concentrations, but the mechanism of its toxicity is still not understood particularly at the cellular and subcellular level. Approach: In this study we examined the effects of cadmium on the oxidophosphorylation properties of mitochondria isolated from potatoes. Results: Cadmium strongly disturbed the respiratory metabolism of mitochondria isolated especially in the transfer of electrons by cyanide pathway. Meanwhile, cadmium altered the composition of lipid fatty acids polar while inhibiting catalase activity, a key enzyme in the detoxification (antioxidant process. In addition, cadmium caused an increase in mitochondrial volume associated with strong inhibition of ATPase activity, which could be explained by a transport of the potassium ion stimulation at the origin of the massive influx of H+ by antiport through the K+/H+ leading to a decoupling (cut of mitochondrial oxidative phosphorylation. The swelling of mitochondria was accompanied by the rupture of the mitochondrial outer membrane and thus the release of Cytochrome C, which appears to be the initial phase of apoptosis. Conclusion: Following this study, it appeared that cadmium generates in potato the isolated mitochondria a concentration-dependent oxidative stress.

  9. Immunological, hematological and biochemical changes induced by short term exposure to cadmium in catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    Mohamed El-Said El-Boshy

    2014-03-01

    Full Text Available Objective: To investigate the hematological, biochemical and immunological changes in catfish (Clarias gariepinus (C. gariepinus experimental exposed to cadmium. Methods: C. gariepinus were exposed to different concentrations of cadmium (Cd (0, 2, 5, and 10 mg/L for 3 weeks. Blood samples were collected for assessing some hematological, biochemical and immunological studies at the end of experiment. Results: The results showed marked normocytic normochromic anemia, leukocytosis, neutrophilia and lymphopenia in 5, 10 mg/L in cadmium exposed fish. Also the blood level activities of ALT and AST significantly increased, as well as glucose, creatinine, urea, potassium and uric acid. Meanwhile total protein, albumin and sodium were significantly decreased at 5, 10 mg/L of cadmium exposed fish. The immunological parameters in cadmium exposed experimental dose groups decreased serum bactericidal activity, lysozyme, neutrophils adhesion test as well as decreased resistance to Aeromonas hydrophilla with increasing exposure dose seemed to correspond with suppressive of non-specific immune functions. Conclusions: The treatment of C. gariepinus with cadmium under the same conditions had immunosuppressive and decrease diseases resistance in a dose-dependent effect

  10. Wnt Signaling in Bone

    Science.gov (United States)

    Kubota, Takuo; Michigami, Toshimi; Ozono, Keiichi

    2010-01-01

    Wnt signaling is involved not only in embryonic development but also in maintenance of homeostasis in postnatal tissues. Multiple lines of evidence have increased understanding of the roles of Wnt signaling in bone since mutations in the LRP5 gene were identified in human bone diseases. Canonical Wnt signaling promotes mesenchymal progenitor cells to differentiate into osteoblasts. The canonical Wnt/β-catenin pathway possibly through Lrp6, a co-receptor for Wnts as well as Lrp5, in osteoblasts regulates bone resorption by increasing the OPG/RANKL ratio. However, endogenous inhibitors of Wnt signaling including sclerostin block bone formation. Regulation of sclerostin appears to be one of the mechanisms of PTH anabolic actions on bone. Since sclerostin is almost exclusively expressed in osteocytes, inhibition of sclerostin is the most promising design. Surprisingly, Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum, but not by directly promoting bone formation. Pharmacological intervention may be considered in many components of the canonical Wnt signaling pathway, although adverse effects and tumorigenicity to other tissues are important. More studies will be needed to fully understand how the Wnt signaling pathway actually influences bone metabolism and to assure the safety of new interventions. PMID:23926379

  11. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S;

    2002-01-01

    The Greenland marine food chains contain high levels of cadmium, mercury and selenium. Concentrations of cadmium in the kidney of ringed seals (Phoca hispida) from the municipalities of Qaanaaq and Upernavik (Northwest Greenland) are among the highest recorded in the Arctic. The purpose of the st...

  12. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  13. A comparative investigation of DNA strand breaks, sister chromatid exchanges and K-ras gene mutations induced by cadmium salts in cultured human cells

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a toxic heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. Several studies have shown that cadmium produces DNA strand breaks, DNA-protein cross-links, oxidative DNA damage, chromosomal aberrations, dysregulation of gene expression resulting in enhanced proliferation, depressed apoptosis and/or altered DNA repair. This study was undertaken to investigate the ability of cadmium chloride (CdCl2) and cadmium sulphate (CdSO4) to induce point mutations in codon 12 of the K-ras protooncogene assessed by polymerase chain reaction-single strand conformation polymorphisms (PCR-SSCP) and RFLP-enriched PCR methods. Also their genotoxic effects were analyzed by the comet assay and sister chromatid exchanges test. The human lung fibroblast cell line MRC-5 was used for the experiments. Sister chromatid exchanges assay (SCEs) frequencies were significantly increased in cells exposed to cadmium salts in relation to controls (p < 0.001). Despite the slow increment observed in the three comet parameters considered when cells were treated with cadmium chloride, significant differences between groups were only found in the variable comet moment (CM) (p < 0.005). On the other hand, when cells were exposed to cadmium sulphate, the Kruskal-Wallis test showed highly significant differences between groups for migration, tail moment and comet moment parameters (p < 0.001). Nevertheless, a null or weak point mutation induction in K-ras protooncogene was detected using polymerase chain reaction-low ionic strength-single strand conformation polymorphisms (PCR-LIS-SSCP) and RFLP-enriched PCR methods when cells were treated with cadmium salts. Thus, inorganic cadmium produces genotoxicity in human lung fibroblast MRC-5 cells, in the absence of significant point mutation of the K-ras gene

  14. 20(S)-ginsenoside Rh2 inhibits the proliferation and induces the apoptosis of KG-1a cells through the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Chen, Yi; Liu, Ze-Hong; Xia, Jing; Li, Xiao-Peng; Li, Ke-Qiong; Xiong, Wei; Li, Jing; Chen, Di-Long

    2016-07-01

    Previous research has shown that total saponins of Panax ginseng (TSPG) and other ginsenoside monomers inhibit the proliferation of leukemia cells. However, the effect has not been compared among them. Cell viability was determined by Cell Counting Kit-8 assay, and ultra-structural characteristics were observed under transmission electron microscopy. Cell cycle distribution and apoptosis were determined by flow cytometry (FCM). Real-time fluorescence quantitative‑PCR, western blotting and immunofluorescence were used to measure the expression of β-catenin, TCF4, cyclin D1 and NF-κBp65. β-catenin/TCF4 target gene transcription were observed by ChIP-PCR assay. We found that 20(S)-ginsenoside Rh2 [(S)Rh2] inhibited the proliferation of KG-1a cells more efficiently than the other monomers. Moreover, (S)Rh2 arrested KG-1a cells in the G0/G1 phase and induced apoptosis. In addition, the levels of β-catenin, TCF4, cyclin D1 mRNA and protein were decreased. The ChIP-PCR showed that (S)Rh2 downregulated the transcription of β-catenin/TCF4 target genes, such as cyclin D1 and c-myc. These results indicated that (S)Rh2 induced cell cycle arrest and apoptosis through the Wnt/β-catenin signaling pathway, demonstrating its potential as a chemotherapeutic agent for leukemia therapy. PMID:27121661

  15. Oxidative Stress and Cell Apoptosis in Caprine Liver Induced by Molybdenum and Cadmium in Combination.

    Science.gov (United States)

    Yang, Fan; Zhang, Caiying; Zhuang, Yu; Gu, Xiaolong; Xiao, Qingyang; Guo, Xiaoquan; Hu, Guoliang; Cao, Huabin

    2016-09-01

    To investigate the effects of co-exposure to molybdenum (Mo) and cadmium (Cd) on oxidative stress and cell apoptosis in caprine livers, 36 Boer goats were randomly divided into four groups with nine goats in each group. Three groups were randomly assigned with one of three oral treatments of CdCl2 (0.5 mg Cd kg(-1)·BW) and [(NH4)6Mo7O24·4H2O] (15 mg Mo kg(-1)·BW, 30 mg Mo kg(-1)·BW, 45 mg Mo kg(-1)·BW), while the control group received deionized water. Liver tissues on days 0, 25, and 50 were subjected to determine antioxidant activity indexes and the messenger RNA (mRNA) expression levels of ceruloplasmin (CP), cysteinyl aspartate-specific proteinase-3 (caspase-3), second mitochondria-derived activator of caspases (Smac), and cytochrome-C (Cyt-C) genes. The results showed that significant reductions were observed in total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD) activities (P < 0.05), while activities or contents of malondialdehyde (MDA), nitric oxide (NO), and nitric oxide synthase (NOS) were increased (P < 0.05). The mRNA expression levels of CP, caspase-3, Smac, and Cyt-C genes were upregulated (P < 0.05). In addition, histopathological lesions showed different degrees of vacuolar degeneration and edematous and mitochondrial swelling. The results suggest that co-exposure to Mo and Cd could induce oxidative stress and cell apoptosis possibly associated with mitochondrial intrinsic pathway in goat liver and show possible synergistic effects between the two elements. PMID:26883837

  16. Varying Dietary Levels of Molybdenum Inducing Cell Apoptosis of Spleen Under Cadmium Stress in Caprine.

    Science.gov (United States)

    Xiao, Qingyang; Zhang, Caiying; Gu, Xiaolong; Zhuang, Yu; Luo, Junrong; Liu, Ping; Guo, Xiaoquan; Hu, Guoliang; Cao, Huabin

    2016-07-01

    The present experiment aims at evaluating chronic toxic effects of the combination of cadmium (Cd) and molybdenum (Mo) according to residual element contents, apoptosis gene expression, and ultrastructure and histopathology changes of caprine spleen. In total, 36 Boer goats were randomly divided into four groups with the equal number in each group. The control group was orally administered with deionized water while the experimental groups I, II, and III were administered with the equal quantity of CdCl2 (1 mg kg(-1) BW) and (NH4)6·Mo7O24·4H2O including 15, 30, and 45 mg·Mo kg(-1) BW, respectively. Three individuals from each group were treated with euthanasia on days 0, 25, and 50. The data showed that the content of splenic residual Mo and Cd increased (P < 0.05) in the experimental groups on days 25 and 50, while no significant difference was observed in the content of Cu. The apoptosis-related gene expression levels including Bcl-2, Bax, Caspase-3, Smac, and ceruloplasmin (CP) were also determined. Results showed that significant reductions were observed in Bcl-2 and CP expressions (P < 0.01), while Caspase-3 gene was up-regulated (P < 0.05). However, no significant difference was observed in Smac and Bax expressions. Furthermore, on day 50, spleen tissues were presented to observe ultrastructural changes in lesions by means of transmission electron microscopy, with fragmentized nucleus, vesiculation of cytoplasm, mitochondria hyperplasia, and increasing lysosomes included. In addition, histopathology results corroborated the toxicity by showing cell hemorrhage, thickening central arteries, and enhanced capsule thickness. To sum up, our study revealed that the combination of Cd and Mo could induce remarkable damage to the spleen of goats by promoting cell apoptosis in the mitochondrial pathway and affecting the deposition of Mo and Cd. PMID:26585322

  17. Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage

    Directory of Open Access Journals (Sweden)

    B Rajendar

    2011-01-01

    Full Text Available Aim : The aim of the present study was to investigate whether Tribulus terrestris Linn (TT could protect the cadmium (Cd-induced testicular tissue peroxidation in rats and to explore the underlying mechanism of the same. Materials and Methods : In vitro and in vivo studies were conducted to know the protective effect of ethanolic extract of TT (eTT in Cd toxicity. In in vitro studies, total antioxidant and ferrous metal ion chelating activity of TT was studied. In vivo studies were conducted in rats. A total of 40 Wistar strain adult male rats were divided into four groups. Group 1 served as control, while group 2 to 4 received CdCl 2 (3 mg/kg b. wt. s/c once a week. In addition to Cd, group 3 and 4 rats also received eTT (5 mg/kg b.wt. daily as oral gavage and α-tocopherol (75 mg/kg daily by oral gavage, respectively. At the end of 6th week, all the rats were sacrificed and the separated testes were weighted and processed for estimation of tissue peroxidation markers, antioxidant markers, functional markers, and Cd concentration. The testes were also subjected to histopathological screening. Results : In in vitro studies, the percentage of metal ion chelating activity of 50 μg/ml of eTT and α-tocopherol were 2.76 and 9.39, respectively, and the antioxidant capacity of eTT was equivalent to 0.063 μg of α-tocopherol/μg of eTT. In in vivo studies, administration of Cd significantly reduced the absolute and relative testicular weight, antioxidant markers such as superoxide dismutase and glutathione, and functional markers such as LDH and ALP, along with significant increase in peroxidation markers such as malondialdehyde and protein carbonyls in testicular tissue. Testes of Cd only-treated group showed histological insults like necrotic changes in seminiferous tubules and interstitium, shrunken tubules with desquamated basal lamina, vacuolization and destruction of sertoli cells, and degenerating Leydig cells. This group also had higher Cd

  18. The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation through Direct Control of N-Cadherin

    Directory of Open Access Journals (Sweden)

    Tadahiro Nagaoka

    2014-03-01

    Full Text Available Although regulators of the Wnt/planar cell polarity (PCP pathway are widely expressed in vertebrate nervous systems, their roles at synapses are unknown. Here, we show that Vangl2 is a postsynaptic factor crucial for synaptogenesis and that it coprecipitates with N-cadherin and PSD-95 from synapse-rich brain extracts. Vangl2 directly binds N-cadherin and enhances its internalization in a Rab5-dependent manner. This physical and functional interaction is suppressed by β-catenin, which binds the same intracellular region of N-cadherin as Vangl2. In hippocampal neurons expressing reduced Vangl2 levels, dendritic spine formation as well as synaptic marker clustering is significantly impaired. Furthermore, Prickle2, another postsynaptic PCP component, inhibits the N-cadherin-Vangl2 interaction and is required for normal spine formation. These results demonstrate direct control of classic cadherin by PCP factors; this control may play a central role in the precise formation and maturation of cell-cell adhesions at the synapse.

  19. Cadmium Bio sorption by Some Bacterial Isolates and Their Mutants Induced by gamma Radiation

    International Nuclear Information System (INIS)

    Cadmium bio sorption by bacterial cells is recognized as a potential alternative to existing recovery technologies. Bacterial strains under investigation were isolated from air surrounding gamma industrial facility Co 60 source of the NCRRT, Cairo. The effect of different concentrations of cadmium on the growth was determined for the spore forming bacteria B.coagulans, B.megaterium, B.pumilus, B.pantothenticus, and also for Staphylo coccus aureus, the reference standard strain used in these study for comparison was B.subtilis MERK 10646. The results indicated that, B.pantothenticus was the most tolerant isolate, and it can resist up to 400 ppm. Cadmium capacity for B.subtilis parent strain was increased through the influence of different doses of gamma radiation, selected mutant of B.subtilis show enhanced level of cadmium accumulation. The effect of environmental parameters as ph, temperature and also the effect of biomass factor on cadmium uptake by B.pantothenticus and B.subtilis (m) was traced

  20. Cardioprotective and Antioxidant Influence of Aqueous Extracts from Sesamum indicum Seeds on Oxidative Stress Induced by Cadmium in Wistar Rats

    Science.gov (United States)

    Oyinloye, Babatunji Emmanuel; Ajiboye, Basiru Olaitan; Ojo, Oluwafemi Adeleke; Nwozo, Sarah Onyenibe; Kappo, Abidemi Paul

    2016-01-01

    Background: Oxidative stress has been implicated in the pathogenesis of several acute and chronic diseases of the heart as a result of indiscriminate exposure to cardiotoxic heavy metals. The study reported here was designed to evaluate the possible ameliorative effect of aqueous extracts from Sesamum indicum (SI) seeds on oxidative stress induced by cadmium (Cd) in Wistar rats. Materials and Methods: Daily administration of Cd (200 mg/L Cd as CdCl2) in the animals’ main drinking water for 21 days led to oxidative stress. Thereafter, the ameliorative effects were assessed by measuring biochemical parameters such as extent of lipid peroxidation (LPO), lipid profile, and enzymatic and nonenzymatic antioxidants, as well as serum aminotransferase activities. Results: Treatment with SI extract elicited notable reduction in serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels as well as concomitant increase in high-density lipoprotein cholesterol. SI extract also reversed the elevations witnessed in serum aminotransferase activities, LPO level, and ameliorated enzymatic and nonenzymatic antioxidant status in the heart of Cd-exposed rats. Conclusion: Thus, SI appears to be an attractive candidate with potential for the novel treatment of cardiotoxicity and management of oxidative stress arising from Cd exposure. SUMMARY Cadmium (200 mg/L) exposure in drinking water caused pronounced oxidative stress and cardiac tissue damage in animal modelAqueous extract of Sesamum indicum (SI) seeds at a dose of 200 or 400 mg/kg body weight exhibited a significant reversal effect in all biochemical parameters measured such as extent of lipid peroxidation, lipid profile, and enzymatic and nonenzymatic antioxidants, as well as serum aminotransferase activitiesAqueous extract of SI seeds possess antioxidant and cardioprotective potential in a dose-dependent manner, thus conferring protection against oxidative stress induced by cadmium. Abbreviation used

  1. Blocking the Wnt/β-Catenin Pathway by Lentivirus-Mediated Short Hairpin RNA Targeting β-Catenin Gene Suppresses Silica-Induced Lung Fibrosis in Mice

    OpenAIRE

    Xin Wang; Wujing Dai; Yanrang Wang; Qing Gu; Deyi Yang; Ming Zhang

    2015-01-01

    Silicosis is a form of occupational lung disease caused by inhalation of crystalline silica dust. While the pathogenesis of silicosis is not clearly understood, the Wnt/β-catenin signaling pathway is thought to play a major role in lung fibrosis. To explore the role of Wnt/β-catenin pathway in silicosis, we blocked Wnt/β-catenin pathway both in silica-treated MLE-12 cells (a mouse pulmonary epithelial cell line) and in a mouse silicosis model by using a lentiviral vector expressing a short ha...

  2. Inhibition of benzopyrene-diol-epoxide (BPDE)-induced bax and caspase-9 by cadmium: Role of mitogen activated protein kinase

    International Nuclear Information System (INIS)

    Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other polynuclear aromatic hydrocarbons (PAHs). The mechanism underlying this synergism is not clearly understood. Present study demonstrates that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in human leukemic HL-60 cells and others, and cadmium at non-cytotoxic concentration inhibits BPDE-induced apoptosis. We observed that BPDE treatment also activates all three MAP kinases e.g. ERK1/2, p38 and JNK in HL-60 cells, and inhibition of BPDE-induced apoptosis by cadmium is associated with down-regulation of pro-apoptotic bax induction/caspase-9 activation and up-regulation of ERK phosphorylation, whereas p38 MAP kinase and c-Jun phosphorylation (indicative of JNK activation) remain unaffected. Inhibition of ERKs by prior treatment of cells with 10 μM U0126 relieves cadmium-mediated inhibition of apoptosis/bax induction/caspase-9 activation. Our results suggest that cadmium inhibits BPDE-induced apoptosis by modulating apoptotic signaling through up-regulation of ERK, which is known to promote cell survival

  3. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen

    2014-01-01

    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  4. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium.

    OpenAIRE

    Lebrun, M; AUDURIER, A.; Cossart, P

    1994-01-01

    pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences...

  5. Wnt Signaling Is Required for Long-Term Memory Formation

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-09-01

    Full Text Available Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with β-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type β-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.

  6. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis (IPF is a fatal lung disease, characterized by distorted lung architecture and loss of respiratory function. Alveolar epithelial cell injury and hyperplasia, enhanced extracellular matrix deposition, and (myofibroblast activation are features of IPF. Wnt/beta-catenin signaling has been shown to determine epithelial cell fate during development. As aberrant reactivation of developmental signaling pathways has been suggested to contribute to IPF pathogenesis, we hypothesized that Wnt/beta-catenin signaling is activated in epithelial cells in IPF. Thus, we quantified and localized the expression and activity of the Wnt/beta-catenin pathway in IPF. METHODOLOGY/PRINCIPAL FINDINGS: The expression of Wnt1, 3a, 7b, and 10b, the Wnt receptors Fzd1-4, Lrp5-6, as well as the intracellular signal transducers Gsk-3beta, beta-catenin, Tcf1, 3, 4, and Lef1 was analyzed in IPF and transplant donor lungs by quantitative real-time (qRT-PCR. Wnt1, 7b and 10b, Fzd2 and 3, beta-catenin, and Lef1 expression was significantly increased in IPF. Immunohistochemical analysis localized Wnt1, Wnt3a, beta-catenin, and Gsk-3beta expression largely to alveolar and bronchial epithelium. This was confirmed by qRT-PCR of primary alveolar epithelial type II (ATII cells, demonstrating a significant increase of Wnt signaling in ATII cells derived from IPF patients. In addition, Western blot analysis of phospho-Gsk-3beta, phospho-Lrp6, and beta-catenin, and qRT-PCR of the Wnt target genes cyclin D1, Mmp 7, or Fibronectin 1 demonstrated increased functional Wnt/beta-catenin signaling in IPF compared with controls. Functional in vitro studies further revealed that Wnt ligands induced lung epithelial cell proliferation and (myofibroblast activation and collagen synthesis. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that the Wnt/beta-catenin pathway is expressed and operative in adult lung epithelium. Increased Wnt/beta-catenin signaling

  7. Protective effect of probiotic bacteria against cadmium-induced genotoxicity in rat hepatocytes in vivo and in vitro

    OpenAIRE

    Đurašević Siniša F.; Jama Adel M.; Mitić-Ćulafić Dragana; Kolarević S.; Knežević-Vukčević Jelena

    2012-01-01

    The protective effect of probiotic bacteria against cadmium (Cd)-induced genotoxicity was studied in rat hepatocytes in vivo and in vitro. Male Wistar rats, Rattus norvegicus, were treated for five weeks with (i) CdCl2 (70 ppm in the drinking water), (ii) a mixture of lyophilized probiotic bacteria Lactobacillus rhamnosus, L. acidophilus and Bifido-bacterium longum (5×108 cfu/g of food), or (iii) CdCl2 and probiotic bacteria. In addition, single cells obtained from the untreated rat liv...

  8. Observation of silicon-mediated alleviation of cadmium stress in maize (Zea mays L.) seedlings via LED-induced chlorophyll fluorescence

    Science.gov (United States)

    Gouveia-Neto, Artur S.; Silva, Elias A.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2013-02-01

    LED-induced chlorophyll fluorescence analysis is exploited to observe, and monitor the time evolution of silicon-induced alleviation of toxicity in maize (Zea mays L.) seedlings in cadmium contaminated soil. Red, and far-red emissions were examined as a function of cadmium-silicon concentrations, during the 20 days period of the seedlings growing process under stress. The chlorophyll fluorescence spectral analysis provided detection, and evaluation of the damage imposed by the metal stress in the early stages of the plant growing process. The technique also provided the time evolution evaluation of the silicon-induced tolerance enhancement of maize plants to cadmium, which is not viable using conventional in vitro spectral analysis techniques

  9. Adaptive response to and its time effect on radiation-induced chromosome aberrations in mouse embryonic cells pre-exposed to cadmium chloride

    International Nuclear Information System (INIS)

    Objective: To observe if cadmium chloride could induce cross adaptive response to and its time effect on cytogenetic damage of mouse embryonic cells caused by ionizing radiation. Methods: The mice were pre-treated with iv injection of cadmium chloride solution on gestation d 9, then they were exposed to 1.5 cGy 60Co γ-rays at different time intervals. Chromosome preparation was made on gestation d 10. Results: 0.25-2 mg Cd/kg body weight could induce resistance to cytogenetic damage of embryonic cells of mice caused by ionizing radiation and the adaptive response appeared 4 h after pre-exposure, at 8h reached the peak, but 12 to 24 h later synergism appeared. Conclusion: Cadmium chloride could induce cross adaptive response to 60Co γ-rays which had relations with time interval of ionizing radiation

  10. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    Science.gov (United States)

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation. PMID:26378473

  11. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  12. Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice.

    Science.gov (United States)

    Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-09-01

    The incidence of colonic toxicity has been epidemiologically linked to the consumption of foods contaminated with benzo(a)pyrene (B[a]P). The present study investigated the effects of B[a]P on biomarkers of oxidative stress, inflammation and wnt-signaling in colon of BALB/c mice following exposure to 62.5, 125 and 250 mg/kg of B[a]P for 7 days by oral gavage. Exposure to B[a]P significantly decreased the colonic antioxidant enzymes activities and glutathione level with concomitant significant increase in myeloperoxidase activity, nitric oxide and lipid peroxidation levels. Colon histopathology results showed treatment-related lesions characterized by atrophy, mucosal ulceration and gland erosion in the B[a]P-treated mice. Immunohistochemistry analysis showed that B[a]P treatment increased the protein expression of nuclear factor kappa B, pro-inflammatory cytokines namely tumor necrosis factor alpha and interleukin-1β, as well as cyclooxygenase-2 and inducible nitric oxide synthase in the mice colon. Altered canonical wnt-signaling was confirmed by strong diaminobenzidine staining for p38 mitogen activated protein kinase, β-catenin expression and absence of adenomatous polyposis coli following B[a]P administration. The present data highlight that exposure to B[a]P induces colon injury via induction of oxidative and nitrosative stress, inflammatory biomarkers and dsyregulation wnt/β-catenin signaling, thus confirming the role of B[a]P in the pathogenesis of colonic toxicity. PMID:27338711

  13. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.

    Science.gov (United States)

    Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A; French, Deborah; Podsakoff, Gregory M; Bessler, Monica; Mason, Philip J

    2015-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human

  14. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  15. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  16. Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in Vitro

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2015-09-01

    Full Text Available Hepatocellular carcinoma (HCC is a malignant tumor that can cause systemic invasion; however, the exact etiology and molecular mechanism are unknown. Astaxanthin (ASX, a powerful antioxidant, has efficient anti-oxidant, anti-inflammatory, and other activities, and has great research prospects in cancer therapy. We selected the human hepatoma cell lines, LM3 and SMMC-7721, to study the anti-tumor effect and related mechanisms of ASX. The cell lines were treated with different concentrations of ASX, and its solvent DMSO as a control, for different time periods and the results were determined using CCK8, qRT-PCR, WB, apoptotic staining, and flow cytometry. ASX induced significant apoptosis of HCC cells, and its effect may have been caused by NF-κB p65 and Wnt/β-catenin down-regulation via negative activation of PI3K/Akt and ERK. Antitumor research on ASX has provided us with a potential therapy for patients with hepatomas.

  17. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    International Nuclear Information System (INIS)

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the α-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  18. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Nejdet [University of Atatuerk, Faculty of Veterinary Medicine, Department of Histology and Embryology, 25700 Erzurum (Turkey); Karadeniz, Ali, E-mail: karadenizali@gmail.com [University of Atatuerk, Faculty of Veterinary Medicine, Department of Physiology, 25700 Erzurum (Turkey); Kalkan, Yildiray; Keles, Osman N.; Unal, Buenyami [University of Atatuerk, Faculty of Medicine, Department of Histology and Embryology, 25240 Erzurum (Turkey)

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the {alpha}-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  19. Gender Differences in Acute Cadmium-Induced Systemic Inflammation in Rats

    Institute of Scientific and Technical Information of China (English)

    MILENA KATARANOVSKI; SRDJA JANKOVI(C); DRAGAN KATARANOVSKI; JELENA (S)TOSI(C); DESA BOGOJEVI(C)

    2009-01-01

    Objective To examine the presence of gender differences in pro-inflammatory potential of cadmium in rats by comparing systemic inflammatory response to acute cadmium intoxication in animals of the two sexes. Methods Basic aspects of this response were evaluated, including plasma levels of inflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) and of major rat acute phase protein alpha 2-macroglobulin (alpha2-M), as soluble indicators of inflammation, and the number and activity of peripheral blood leukocytes, as cellular indicators of inflammation. Results Differential increases of IL-6 and alpha 2-M (higher in males than in females) in peripheral blood cell counts and types (leukocytosis and shift in the ratio of granulocytes to lymphocytes more pronounced in males vs females) and in levels of neutrophil priming (higher in males vs females) were noted. Conclusion The data document a more intense inflammatory response to cadmium administration in males. The sex differences in inflammatory effects of cadmium might be taken into consideration in studying the toxicity of this heavy metal.

  20. Extracellular modulators of Wnt signalling.

    Science.gov (United States)

    Malinauskas, Tomas; Jones, E Yvonne

    2014-12-01

    Wnt morphogens are secreted signalling proteins that play leading roles in embryogenesis and tissue homeostasis throughout life. Wnt signalling is controlled by multiple mechanisms, including posttranslational modification of Wnts, antagonist binding (to Wnts or their receptors), and regulation of the availability of Wnt receptors. Recent crystallographic, structure-guided biophysical and cell-based studies have advanced our understanding of how Wnt signalling is regulated at the cell surface. Structures include Wnt in complex with the cysteine-rich domain (CRD) of Frizzled, extracellular fragments of Wnt co-receptor LRP6, LRP6-binding antagonists Dickkopf and Sclerostin, antagonists 5T4/WAIF1 and Wnt inhibitory factor 1 (WIF-1), as well as Frizzled-ubiquitin ligases ZNRF3/RNF43 (in isolation and in complexes with Wnt signalling promoters R-spondins and LGR5). We review recent discoveries and remaining questions. PMID:25460271

  1. Preventive action of Aloe vera against radiation and cadmium induced haematological changes in Swiss albino mice

    International Nuclear Information System (INIS)

    Haematopoietic organs are markedly sensitive to ionizing radiation due to its proliferate activity. The changes found in the circulating blood are primarily due to damage in the radio sensitive haematopoeitic organs. A very small dose of radiation to a blood forming organ causes an arrest of haematopoiesis with changes in peripheral blood count. Certain trace elements are essential for normal growth and development of organisms but their concentration beyond threshold may produce damage to blood forming organs and tissues thus affecting the peripheral blood. Aloe vera has been claimed to contain several important therapeutic properties including anti cancer effects. Various studies showed the prevention of radiation induced suppression of immunity by Aloe vera components. Having these unique properties, Aloe vera could be used in clinical field as a protector against radiation and heavy metal toxicity in human beings. For the study, six to eight weeks old Swiss albino mice were procured and kept in polypropylene cages. The animals were fed with standard mice feed and water was provided to them ad libitum. Cadmium chloride was administered orally to the animals in drinking water at the dose rate of 20 ppm. The animals were exposed to sub lethal doses of 2.0 Gy and 4.0 Gy of gamma radiation from cobalt60 source. The Aloe vera was given seven days prior to irradiation and continued up to last autopsy day in experimental animals. Five animals from each group were autopsied by cervical dislocation at each post treatment interval of 1,2,4,7,14 and 28 days. The differential leucocytes count was estimated by preparing smear of the blood. The value of lymphocyte decreased up to day-14 in non drug treated groups thereafter it increased up to day-28 whereas the count decreased up to day-7 in drug treated groups and showed an increasing trend at day-14 which continues up to day-28. The value of monocyte and granulocyte percentage increased up to day-7 in drug treated groups

  2. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  3. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    International Nuclear Information System (INIS)

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival

  4. Role of L-carnitine in Ameliorating the Cadmium Chloride and/or Irradiation-Induced Testicular Toxicity

    International Nuclear Information System (INIS)

    The role of oxidative stress in chronic administration of CdCl2 and/or irradiation toxicity and its prevention by pretreatment with L-carnitine was investigated. Adult male rats were administered with CdCl2 (3 mg/kg S.C. three times a week for three weeks) and /or irradiated at (2 Gy) dose level of gamma radiation. CdCl2 administration and/or irradiation induced cellular damage was indicated by significant decrease in lactate dehydrogenase isoenzyme (LDH-X), glutathione level (GSH) and glutathione peroxidase enzyme activity (GSH-PX) as well as significant increase in malonaldehyde (MDA) in testicular tissues. Administration of L-carnitine (200 mg/kg I.P.) 1 hr before CdCl2 and/or irradiation, ameliorated the decrease in LDH-X, GSH and GSH-PX and the increase in MDA induced by CdCl2 and/or irradiation indicating the prophylactic action of L-carnitine on CdCl2 and /or irradiation toxicity. Various studies have indicated that cadmium is a potent heavy metal carcinogen in experimental animals (Poirier et al., 1983 and Waalkes et al..,1988) and is possibly carcinogenic in human populations exposed either occupationally or environmentally (Bako et al., 1982). Target sites for cadmium carcinogenesis in rodents have been shown to include testes after parenteral exposure (Poirier et al., 1983 and Waalkes et al., 1988) and lung after chronic inhalation (Takenaka et al., 1983)

  5. β-Catenin-dependent pathway activation by both promiscuous "canonical" WNT3a-, and specific "noncanonical" WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency.

    Science.gov (United States)

    Ring, Larisa; Neth, Peter; Weber, Christian; Steffens, Sabine; Faussner, Alexander

    2014-02-01

    The WNT/β-catenin signalling cascade is the best-investigated frizzled receptor (FZD) pathway, however, whether and how specific combinations of WNT/FZD and co-receptors LRP5 and LRP6 differentially affect this pathway are not well understood. This is mostly due to the fact that there are 19 WNTs, 10 FZDs and at least two co-receptors. In our attempt to identify the signalling capabilities of specific WNT/FZD/LRP combinations we made use of our previously reported TCF/LEF Gaussia luciferase reporter gene HEK293 cell line (Ring et al., 2011). Generation of WNT/FZD fusion constructs - but not their separate transfection - without or with additional isogenic overexpression of LRP5 and LRP6 in our reporter cells permitted the investigation of specific WNT/FZD/LRP combinations. The canonical WNT3a in fusion to almost all FZDs was able to induce β-catenin-dependent signalling with strong dependency on LRP6 but not LRP5. Interestingly, noncanonical WNT ligands, WNT4 and WNT5a, were also able to act "canonically" but only in fusion with specific FZDs and with selective dependence on LRP5 or LRP6. These data and extension of this experimental setup to the poorly characterized other WNTs should facilitate deeper insight into the complex WNT/FZD signalling system and its function. PMID:24269653

  6. Protective role of Liv.52 against radiation and cadmium induced haematological changes in the Swiss albino mice

    International Nuclear Information System (INIS)

    This study aim to evaluate protective role of Liv.52 against radiation and cadmium induced haematological changes in the Swiss Albino Mice. The animals were exposed with 3.0 and 6.0 Gy of gamma rays with or without Cadmium Chloride treatment. In the drug treated groups. The liv-52 was given seven days prior to irradiation or Cadmium Chloride treatment The animals from the entire experimental group were sacrificed by cervical dislocation at post treatment intervals of 1, 2, 4, 7, 14 and 28 days. The value of red blood cells (RBC), white blood cell (WBC), Haemoglobin (Hb), packed cell volume (PCV), mean cell volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), different leucocytes counts (DLC), SGOT and SGPT were estimated. The values of RBC, WBC, Hb and PCV were found to decrease in all the groups as compared to normal group, but the decrease in these values was lesser in Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). The values of MCV were also found to decrease but the difference from normal value was significant at previous intervals and it was significant on later intervals. The values of MCH increased in all the groups as compared with normal group after 1, 2, 4, 7, 14 and 28 days of post-treatment intervals. The increase in the values of MCH was lesser in Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). Besides this values of MCHC increased in all the groups at various intervals but the values were lower in the Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). The difference from the normal was non-significant in all the groups. The values of lymphocytes declined up to day-14 in non-drug treated groups and day-7 in the Liv.52 treated groups. Similarly the values of monocytes and granulocytes percentage increased up to day-14 in the non-drug treated animals and day-7 in the drug treated animals thereafter; a

  7. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  8. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q10 values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying the

  9. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    International Nuclear Information System (INIS)

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H2O2) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 μM significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H2O2 and superoxide anion (O2·-), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN3 as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 μM NAC decreased the contents of TBARS and production of H2O2 and O2·-, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  10. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaopeng; Xia Yan; Hu Wei [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Zhang Hongxiao, E-mail: hxzhang@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China)

    2010-08-15

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 {mu}M significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H{sub 2}O{sub 2} and superoxide anion (O{sub 2}{center_dot}{sup -}), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 {mu}M NAC decreased the contents of TBARS and production of H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -}, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  11. Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.K. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000 (Pakistan); Variath, M.T.; Ali, Shafaqat; Najeeb, U. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Jamil, Muhammad [Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000 (Pakistan); Hayat, Y. [Institute of Bioinformatics, Zhejiang University, Hangzhou 310029 (China); Dawood, M. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Khan, Muhammad Imran [Department of Environmental Engineering, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Zaffar, M. [Department of Soil Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Cheema, Sardar Alam [Department of Environmental Engineering, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Tong, X.H. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Zhu Shuijin, E-mail: shjzhu@zju.edu.cn [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)

    2009-09-15

    The present study describes cadmium-induced alterations in the leaves as well as at the whole plant level in two transgenic cotton cultivars (BR001 and GK30) and their wild relative (Coker 312) using both ultramorphological and physiological indices. With elevated levels of Cd (i.e. 10, 100, 1000 {mu}M), the mean lengths of root, stem and leaf and leaf width as well as their fresh and dry biomasses linearly decreased over their respective controls. Moreover, root, stem and leaf water absorption capacities progressively stimulated, which were high in leaves followed by roots and stems. BR001 accumulated more cadmium followed by GK30 and Coker 312. Root and shoot cadmium uptakes were significantly and directly correlated with each other as well as with leaf, stem and root water absorption capacities. The ultrastructural modifications in leaf mesophyll cells were triggered with increase in Cd stress regime. They were more obvious in BR001 followed by GK30 and Coker 312. Changes in morphology of chloroplast, increase in number and size of starch grains as well as increase in number of plastoglobuli were the noticed qualitative effects of Cd on photosynthetic organ. Cd in the form of electron dense granules could be seen inside the vacuoles and attached to the cell walls in all these cultivars. From the present experiment, it can be well established that both apoplastic and symplastic bindings are involved in Cd detoxification in these cultivars. Absence of tonoplast invagination reveals that Cd toxic levels did not cause water stress in any cultivars. Additionally, these cultivars possess differential capabilities towards Cd accumulation and its sequestration.

  12. Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network.

    Science.gov (United States)

    Chen, Sujuan; Gu, Chenjian; Xu, Chong; Zhang, Jinfei; Xu, Yijiao; Ren, Qian; Guo, Min; Huang, Shile; Chen, Long

    2014-01-01

    Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant-derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd-induced neurotoxicity. Here, we show that celastrol protected against Cd-induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd-induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase-3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd-induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over-expression of dominant negative c-Jun potentiated celastrol protection against Cd-induced cell death. Furthermore, pre-treatment with celastrol prevented Cd down-regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3'-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over-expression of wild-type PTEN enhanced celastrol inhibition of Cd-activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders. Celastrol, a plant-derived triterpene, has shown neuroprotective effects. However, little is known regarding the effect of celastrol on cadmium (Cd) neurotoxicity. This study underscores that celastrol prevents Cd-induced neuronal apoptosis via inhibiting activation of JNK (c-Jun N-terminal kinase) and Akt/mTOR network. Celastrol suppresses Cd-activated Akt/mTOR pathway by elevating PTEN (phosphatase and tensin homolog). The

  13. Electron beam-induced formation of crystalline nanoparticle chains from amorphous cadmium hydroxide nanofibers.

    Science.gov (United States)

    Stoychev, Georgi V; Okhrimenko, Denis V; Appelhans, Dietmar; Voit, Brigitte

    2016-01-01

    Quantum dots (QDs) and especially quantum dot arrays have been attracting tremendous attention due to their potential applications in various high-tech devices, including QD lasers, solar cells, single photon emitters, QD memories, etc. Here, a dendrimer-based approach for the controlled synthesis of ultra-thin amorphous cadmium hydroxide nanofibers was developed. The fragmentation of the obtained nanofibers in crystalline nanoparticle chains under the irradiation with electron beam was observed in both ambient and cryo-conditions. Based on the experimental results, a model for the formation of amorphous nanofibers, as well as their transformation in crystalline nanoparticle chains is proposed. We foresee that these properties of the nanofibers, combined with the possibility to convert cadmium hydroxide into CdX (X=O, S, Se, Te), could result in a new method for the preparation of 2D and 3D QDs-arrays with numerous potential applications in high performance devices. PMID:26397918

  14. Long-distance transport, vacuolar sequestration and transcriptional responses induced by cadmium and arsenic

    OpenAIRE

    Mendoza-Cózatl, David G.; Jobe, Timothy O.; Hauser, Felix; Schroeder, Julian I

    2011-01-01

    Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification o...

  15. Cadmium-induced Functional and Ultrastructural Alterations in Roots of Two Transgenic Cotton Cultivars

    Institute of Scientific and Technical Information of China (English)

    DAUD M K; SUN Yu-qiang; ZHU Shui-jin

    2008-01-01

    @@ The toxic effect of cadmium (Cd) at increasing concentrations has been studied with special attention being given to root morphological and ultrastructural changes in two transgenic cotton cultivars viz.BR001 and GK30 and their wild relative cotton genotype viz.Coker 312.In comparison to their respective controls,low concentration (10 and 100 M) of Cd greatly stimulated seed germination,while it was inhibited by highest concentration of Cd (1000 M) in case of two transgenic cultivars.

  16. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    International Nuclear Information System (INIS)

    Highlights: ► First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. ► Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. ► Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. ► Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/β-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of β-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, β-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in regulation of osteoclast differentiation, and its modulation by a clinically important drug, ritonavir. These studies

  17. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Francisco [Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY (United States); Oguma, Junya; Brown, Anthony M.C. [Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (United States); Laurence, Jeffrey, E-mail: jlaurenc@med.cornell.edu [Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. Black-Right-Pointing-Pointer Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. Black-Right-Pointing-Pointer Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. Black-Right-Pointing-Pointer Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/{beta}-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of {beta}-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, {beta}-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in

  18. Metallothionein 1 Isoform Gene Expression Induced by Cadmium in Human Peripheral Blood Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the gene expression of metallothionein 1 (MT-1) isoforms in human peripheral blood lymphocytes (HPBLs). Methods The expression of mRNA representing the seven active MT-1 genes was determined in HPBLs by quantitative RT-PCR before and after exposure to cadmium. Results Basal expressions of MT-1X, and MT-1A in HPBLs were similar to expression of housekeeping gene. In contrast, the basal gene expressions of MT-1H, 1F, 1E, and 1G were a little transcripts in human HPBLs. No signal was detected for MT-1B. There was a sex difference (P<0.05). in basal gene expression of MT-1E. The levels of gene expression of MT-1A, 1E, 1F, 1G, 1H, and 1X increased, but the level of MT-1B did not increase after exposure to cadmium. Conclusions Gene expressions of MT-1G, MT-1H, MT-1F, and MT-1X in HPBLs can be used as a potential biomarker of cadmium exposure.

  19. TGF-β Prevents Phosphate-Induced Osteogenesis through Inhibition of BMP and Wnt/β-Catenin Pathways

    OpenAIRE

    Fátima Guerrero; Carmen Herencia; Yolanda Almadén; Julio M Martínez-Moreno; Addy Montes de Oca; María Encarnación Rodriguez-Ortiz; Diaz-Tocados, Juan M.; Antonio Canalejo; Mónica Florio; Ignacio López; Richards, William G.; Mariano Rodriguez; Escolástico Aguilera-Tejero; Juan R Muñoz-Castañeda

    2014-01-01

    BACKGROUND: Transforming growth factor-β (TGF-β) is a key cytokine during differentiation of mesenchymal stem cells (MSC) into vascular smooth muscle cells (VSMC). High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC) into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS: Our results showed that TGF-β induced nuclear translocation of Smad3 as ...

  20. OXIDATIVE STRESS IN SHEEP INDUCED BY CADMIUM CHLORIDE TOXICITY, WITH THERAPEUTIC EFFECTS OF ALPHA LIPOIC ACID

    Directory of Open Access Journals (Sweden)

    Hussien Ali NAJI

    2015-09-01

    Full Text Available Cadmium (Cd is a heavy toxic metal, with harmful effects on animals and public health. Recently the risk of cadmium toxicity is substantially regarded; the environmental pollution is increased due to multi- uses of this element in various industries. This study was performed to clarify the effects of acute cadmium toxicity in sheep with trail of using alpha lipoic acid as an antioxidant therapeutic substance. Fifteen male lambs aged from 5-to-7 months were divided equally in to three groups, they were supplied with ordinary diet and provided with water ad-lib, the first group 1 was administered a single dose of CdCl2 3 mg/kg.bw subcutaneously (S/C, the second group 2 was injected with the same dose of CdCl2 and by the same route, and then simultaneously administered an alpha lipoic acid 50 mg/kg.bw intramuscularly, the later drug was repeated after 12 hours via the same route. The third group 3 was left as control and given normal saline (S/C. All animals were daily monitored and the clinical signs were recorded. The signs of cadmium toxicity appeared 18 hours post CdCl2 administration in the group 1; the signs were gradually increased in severity and multiple systems were involved included: digestive disturbances, cardiovascular and neurological dysfunctions, and locomotors abnormalities. Significant elevations in the body temperature, respiratory and heart rates were observed, deaths of 2 lambs were recorded 96 hours post CdCl2 injection. The group 2 showed mild clinical signs, and no death was occurred, moreover insignificant variations between clinical parameters in both groups 2 and 3 were recorded. Serum biochemical analysis revealed significant (P<0.05 increased of malondialdehyde (5.41 ± 0.282 μmol/L and glutathione (10.68 ± 0.38 μmol/L concentrations and marked elevation of serum catalase activity (103.85 ± 3.93 u/L was also observed in group I, whereas the last three parameters showed no significant differences between groups 2

  1. Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig

    International Nuclear Information System (INIS)

    This is the first report of a heavy metal displaying a hormetic-like biphasic response for early developmental success, while at the same time displaying stage-specific toxicity at a later developmental stage. - Hormesis is an adaptive response, commonly characterized by a biphasic dose-response that can be either directly induced, or the result of compensatory biological processes following an initial disruption in homeostasis [Calabrese and Baldwin, Hum. Exp. Toxicol., 21 (2002), 91]. Low and environmentally relevant levels of dietary cadmium significantly enhanced the pupation rate of blowfly larvae, while higher doses inhibited pupation success. However, dietary cadmium at all exposure levels adversely affected the emergence of the adult fly from the pupal case. Such findings represent the first report of a heavy metal displaying a hormetic-like biphasic response for pupation success, while at the same time displaying stage-specific toxicity at a later developmental period. These conclusions are based on substantial experimentation of over 1750 blowflies, in seven replicate experiments, involving 10 concentrations per experiment. These findings indicate the need to assess the impact of environmental stressors over a broad range of potential exposures as well as throughout the entire life cycle

  2. Usefulness of microporous hydrophobic polypropylene membranes after plasma-induced graft polymerization of acrylic acid for high-power nickel-cadmium batteries

    International Nuclear Information System (INIS)

    Commercial microporous polypropylene (PP) membranes were modified by plasma-induced graft polymerization of acrylic acid (AAc) under UV irradiation. Under optimized conditions obtained membranes are hydrophilic and may be serviceable as separator in nickel-cadmium cell. Electrolytic resistance of modified membranes is evaluated and compared with that of commercial separators: conventional cellophane separation and hydrophilic polypropylene separation (Celgard 3501). This paper reports the maximum power test data for nickel-cadmium cells equipped with different separators. Cells with modified PP membrane show very good high-rate performance

  3. RECK (reversion-inducing cysteine-rich protein with Kazal motifs) regulates migration, differentiation and Wnt/β-catenin signaling in human mesenchymal stem cells.

    Science.gov (United States)

    Mahl, Christian; Egea, Virginia; Megens, Remco T A; Pitsch, Thomas; Santovito, Donato; Weber, Christian; Ries, Christian

    2016-04-01

    The membrane-anchored glycoprotein RECK (reversion-inducing cysteine-rich protein with Kazal motifs) inhibits expression and activity of certain matrix metalloproteinases (MMPs), thereby suppressing tumor cell metastasis. However, RECK's role in physiological cell function is largely unknown. Human mesenchymal stem cells (hMSCs) are able to differentiate into various cell types and represent promising tools in multiple clinical applications including the regeneration of injured tissues by endogenous or transplanted hMSCs. RNA interference of RECK in hMSCs revealed that endogenous RECK suppresses the transcription and biosynthesis of tissue inhibitor of metalloproteinases (TIMP)-2 but does not influence the expression of MMP-2, MMP-9, membrane type (MT)1-MMP and TIMP-1 in these cells. Knockdown of RECK in hMSCs promoted monolayer regeneration and chemotactic migration of hMSCs, as demonstrated by scratch wound and chemotaxis assay analyses. Moreover, expression of endogenous RECK was upregulated upon osteogenic differentiation and diminished after adipogenic differentiation of hMSCs. RECK depletion in hMSCs reduced their capacity to differentiate into the osteogenic lineage whereas adipogenesis was increased, demonstrating that RECK functions as a master switch between both pathways. Furthermore, knockdown of RECK in hMSCs attenuated the Wnt/β-catenin signaling pathway as indicated by reduced stability and impaired transcriptional activity of β-catenin. The latter was determined by analysis of the β-catenin target genes Dickkopf1 (DKK1), axis inhibition protein 2 (AXIN2), runt-related transcription factor 2 (RUNX2) and a luciferase-based β-catenin-activated reporter (BAR) assay. Our findings demonstrate that RECK is a regulator of hMSC functions suggesting that modulation of RECK may improve the development of hMSC-based therapeutical approaches in regenerative medicine. PMID:26459448

  4. AP1- and NF-kappaB-binding sites conserved among mammalian WNT10B orthologs elucidate the TNFalpha-WNT10B signaling loop implicated in carcinogenesis and adipogenesis.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2007-04-01

    WNT signals are context-dependently transduced to canonical and non-canonical signaling cascades. We cloned and characterized wild-type human WNT10B, while another group cloned aberrant human WNT10B with Gly60Asp amino-acid substitution. Proto-oncogene WNT10B is expressed in gastric cancer, pancreatic cancer, breast cancer, esophageal cancer, and cervical cancer. Because WNT10B blocks adipocyte differentiation, coding SNP of WNT10B gene is associated with familial obesity. In 2001, we reported WNT10B upregulation by TNFalpha. Here, comparative integromics analyses on WNT10B orthologs were performed to elucidate the transcriptional mechanism of WNT10B. Chimpanzee WNT10B and cow Wnt10b genes were identified within NW_001223159.1 and AC150975.2 genome sequences, respectively, by using bioinformatics (Techint) and human intelligence (Humint). Chimpanzee WNT10B and cow Wnt10b showed 98.7% and 95.1% total-amino-acid identity with human WNT10B, respectively. N-terminal signal peptide, 24 Cys residues, two Asn-linked glycosylation sites, and Gly60 of human WNT10B were conserved among mammalian WNT10B orthologs. Transcription start site of human WNT10B gene was 106-bp upstream of NM_003394.2 RefSeq 5'-end. Number of GC di-nucleotide repeats just down-stream of WNT10B transcription start site varied among primates and human population. Comparative genomics analyses revealed that double AP1-binding sites in the 5'-flanking promoter region and NF-kappaB-binding site in intron 3 were conserved among human, chimpanzee, cow, mouse, and rat WNT10B orthologs. Because TNFalpha signaling through TNFR1 and TRADD/RIP/TRAF2 complex activates JUN kinase (JNK) and IkappaB kinase (IKK) signaling cascades, conserved AP1- and NF-kappaB-binding sites explain the mechanism of TNFalpha-induced WNT10B upregulation. TNFalpha-WNT10B signaling loop is the negative feedback mechanism of adipogenesis to prevent obesity and metabolic syndrome. On the other hand, TNFalpha-WNT10B signaling loop is

  5. Potentiated interaction between ineffective doses of budesonide and formoterol to control the inhaled cadmium-induced up-regulation of metalloproteinases and acute pulmonary inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Wenhui Zhang

    Full Text Available The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9 activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases.

  6. In vitro evaluation of cell death induced by cadmium, lead and their binary mixtures on erythrocytes of Common buzzard (Buteo buteo).

    Science.gov (United States)

    Hernández-García, A; Romero, D; Gómez-Ramírez, P; María-Mojica, P; Martínez-López, E; García-Fernández, A J

    2014-03-01

    Cadmium and lead are persistent and ubiquitous metals that can cause several deleterious effects in living beings. Apoptosis and necrosis are two types of cell death that can be found after in vivo and in vitro exposure to these metals. In this study, isolated red blood cells from living captive Common buzzard (Buteo buteo) were exposed in vitro to different concentrations of lead, cadmium, and the mixture lead-cadmium in a proportion of 1:10 (similar to that found in previous field studies). Data obtained from dose-response curves were used to evaluate the interactive effects of metal mixtures on cell viability. In general, except for the exposure to NOEC, additivity was the most frequently observed response. As described in human, after in vitro exposure, lead was highly accumulated in buzzard erythrocytes, while cadmium accumulation was scarce. Finally, the type of cell death (apoptosis or necrosis) induced by the exposure to different concentrations of these heavy metals and their mixtures was evaluated in the red blood cells. Apoptosis was found to be the main type of cell death observed after cadmium and/or lead exposure. However, this exposure caused an increase in lysis or necrosis, especially if red blood cells were exposed to high doses. PMID:24287112

  7. Different Balance of Wnt Signaling in Adult and Fetal Bone Marrow-Derived Mesenchymal Stromal Cells.

    Science.gov (United States)

    Paciejewska, Maja M; Maijenburg, Marijke W; Gilissen, Christian; Kleijer, Marion; Vermeul, Kim; Weijer, Kees; Veltman, Joris A; von Lindern, Marieke; van der Schoot, C Ellen; Voermans, Carlijn

    2016-06-15

    Mesenchymal stromal cells (MSCs) are applied as novel therapeutics for their regenerative and immune-suppressive capacities. Clinical applications, however, require extensive expansion of MSCs. Fetal bone marrow-derived MSCs (FBMSCs) proliferate faster than adult bone marrow-derived MSC (ABMSCs). To optimize expansion and function of MSC in general, we explored the differences between ABMSC and FBMSC. Gene expression profiling implicated differential expression of genes encoding proteins in the Wnt signaling pathway, including excreted inhibitors of Wnt signaling, particularly by ABMSC. Both MSC types had a similar basal level of canonical Wnt signaling. Abrogation of autocrine Wnt production by inhibitor of Wnt production-2 (IWP2) reduced canonical Wnt signaling and cell proliferation of FBMSCs, but hardly affected ABMSC. Addition of exogenous Wnt3a, however, induced expression of the target genes lymphocyte enhancer-binding factor (LEF) and T-cell factor (TCF) faster and at lower Wnt3a levels in ABMSC compared to FBMSC. Medium replacement experiments indicated that ABMSC produce an inhibitor of Wnt signaling that is effective on ABMSC itself but not on FBMSC, whereas FBMSC excrete (Wnt) factors that stimulate proliferation of ABMSC. In contrast, FBMSC were not able to support hematopoiesis, whereas ABMSC displayed hematopoietic support sensitive to IWP2, the inhibitor of Wnt factor excretion. In conclusion, ABMSC and FBMSC differ in their Wnt signature. While FBMSC produced factors, including Wnt signals, that enhanced MSC proliferation, ABMSC produced Wnt factors in a setting that enhanced hematopoietic support. Thus, further unraveling the molecular basis of this phenomenon may lead to improvement of clinical expansion protocols of ABMSCs. PMID:27154244

  8. The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice.

    Science.gov (United States)

    Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav

    2006-01-01

    Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. PMID:16345010

  9. Histopathological changes in the head kidney induced by cadmium in a neotropical fish Colossoma macropomum

    OpenAIRE

    R. Salazar-Lugo; Vargas, A.(Benemérita Universidad Autónoma de Puebla, Puebla, Mexico); Rojas, L.; Lemus, M.

    2013-01-01

    We evaluated the effect of cadmium (Cd) on the structure and function of the head kidney in the freshwater fish Colossoma macropomum (C. macropomum). Juveniles were exposed to 0.1 mg/L CdCl2 for 31 days. Blood samples were examined using hematological tests and head kidney histology was determined by light microscopy. The concentration of Cd in the head and trunk kidneys was measured using an atomic absorption spectrophotometer. Cd produced histopathological changes in the head kidney, the mo...

  10. Characterization of the cadmium complex of peptide 49-61: a putative nucleation center for cadmium-induced folding in rabbit liver metallothionein IIA.

    Science.gov (United States)

    Muñoz, A; Laib, F; Petering, D H; Shaw, C F

    1999-08-01

    The synthetic peptide fragment containing residues 49-61 of rabbit liver metallothionein II (MT-II) (Ac-Ile-Cys-Lys-Gly-Ala-Ser-Asp-Lys-Cys-Ser-Cys-Cys-Ala-COOH), which includes the only sequential four cysteines bound to the same metal ion in Cd7MT, forms a stable, monomeric Cd-peptide complex with 1:1 stoichiometry (Cd:peptide) via Cd-thiolate interactions. This represents the first synthesis of a single metal-binding site of MT independent of the domains. The 111Cd NMR chemical shift at 716 ppm indicates that the 111Cd2+ in the metal site is terminally coordinated to four side-chain thiolates of the cysteine residues. The pH of half dissociation for this Cd-peptide derivative, approximately 3.3, demonstrates an affinity similar to that for Cd7MT. Molecular mechanics calculations show that the thermodynamically most stable folding for this isolated Cd2+ center has the same counterclockwise chirality (lambda or S) observed in the native holo-protein. These properties are consistent with its proposed role as a nucleation center for cadmium-induced protein folding. However, the kinetic reactivity of the CdS4 structure toward 5,5'-dithiobis(5-nitrobenzoate) (DTNB) and EDTA is greatly increased compared to the complete cluster (a-domain or holo-protein). The rate law for the reaction with DTNB is rate = (k(uf) + k(1,f) + k(2,f) [DTNB])[peptide], where k(uf) = 0.15 s(-1), k(1,f)= 2.59x10(-3) s(-1), and k(2,f) = 0.88 M(-1) s(-1). The ultrafast step (uf), observable only by stopped-flow measurement, is unprecedented for mammalian (M7MT) and crustacean (M6MT) holo-proteins or the isolated domains. The accommodation of other metal ions by the peptide indicates a rich coordination chemistry, including stoichiometries of M-peptide for Hg2+, Cd2+, and Zn2+, M2-peptide for Hg2+ and Au+, and (Et3PAu)2-peptide. PMID:10555583

  11. Protective efficacy of Emblica officinalis Linn. against radiation and cadmium induced biochemical alterations in the brain of Swiss albino mice

    International Nuclear Information System (INIS)

    One of the major problems faced in the modern world today is that of pollution caused due to radioactive material and emission of gamma radiation from various sources either in terms of background radiation sources, accidental leak from nuclear reactors or intentional convert attack by terrorists to achieve the malefic goals. In view of such perceived risks and threats associated with plausible radiological and nuclear incidents. It is pertained to develop potential drugs for the mitigation of deleterious effects of ionizing radiation and heavy metals. In recent years, immense interest has been developed in the field of chemoprotection against radiation and heavy metal induced changes. In light of above the present study was aimed to evaluate the protective efficacy of Emblica officinalis against Radiation and cadmium induced biochemical alteration in the Brain of Swiss Albino mice. The animals were exposed to 3.0 Gy of gamma rays with or without cadmium chloride treatment. The Emblica extract was administered seven days prior to irradiation or cadmium chloride treatment. The animals from all the experimental groups were sacrificed by cervical dislocation at each post-treatment interval of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals, mid brains (cerebral hemisphere) were taken out and kept at -20 deg C for different biochemical parameters. It was The values of total proteins, cholesterol and DNA decreased up to day-14 in non drug treated groups and day-7 in the Emblica treated groups thereafter it increased on day-28, whereas the value of glycogen, Acid phosphatase activity, Alkaline phosphatase activity and RNA increased up to day-14 in non drug treated groups and day-7 in drug treated groups, thereafter it decreased on day-28 in all the groups. In the combined treatment groups the biochemical changes were more prominent showing synergistic or additive effect. In the Emblica pretreated animals the changes were less severe and an early and fast

  12. Expression and aberrant promoter methylation of Wnt inhibitory factor-1 in human astrocytomas

    OpenAIRE

    Wu Jun; Liu Jinfang; Chen Fenghua; Fang Jiasheng; Wang Ying; Yang Zhuanyi; Wang Yanjin

    2010-01-01

    Abstract Background Wnt inhibitory factor-1(WIF-1) acts as a Wnt-antagonists and tumor suppressor, but hypermethylation of WIF-1 gene promoter and low expression activate Wnt signaling aberrantly and induce the development of various human tumors. With this work we intended to investigate the expression and promoter methylation status of WIF-1 gene in human astrocytomas. Methods The tissue samples consisted of 53 astrocytomas and 6 normal brain tissues. The expression levels of WIF-1 were det...

  13. Keratinocyte Growth Inhibition through the Modification of Wnt Signaling by Androgen in Balding Dermal Papilla Cells

    OpenAIRE

    Kitagawa, Tomoko; Matsuda, Ken-ichi; Inui, Shigeki; Takenaka, Hideya; Katoh, Norito; Itami, Satoshi; Kishimoto, Saburo; Kawata, Mitsuhiro

    2009-01-01

    Context/Objective: Androgen induces androgenetic alopecia (AGA), which has a regressive effect on hair growth from the frontal region of the scalp. Conversely, Wnt proteins are known to positively affect mammalian hair growth. We hypothesized that androgen reduces hair growth via an interaction with the Wnt signaling system. The objective of this study was to investigate the effect of androgen on Wnt signaling in dermal papilla (DP) cells.

  14. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures

    OpenAIRE

    Movérare-Skrtic, Sofia; Henning, Petra; LIU, XIANWEN; Nagano, Kenichi; SAITO, HIROAKI; Börjesson, Anna E; Sjögren, Klara; Sara H Windahl; Farman, Helen; Kindlund, Bert; Engdahl, Cecilia; Koskela, Antti; Zhang, Fu-Ping; Eriksson, Emma E; Zaman, Farasat

    2014-01-01

    The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In contrast, trabecular bone volume is not altered in these mice. Mechanistic studies revealed that WNT16 is osteoblast derived and inhibits hu...

  15. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells

    International Nuclear Information System (INIS)

    Cadmium acetate (CdAc) induced apoptosis in primary alveolar type 2 cells and Clara cells from rat lung. Phosphorylation of the MAPKs ERK1/2, p38 and JNK was markedly increased in both cell types 15 min to 2 h after start of exposure to 10 μM CdAc. The phosphorylation of all the MAPKs remained elevated or was progressively increased up to 12 h. The p38 inhibitor SB202190 reduced the Cd-induced apoptosis, whereas the ERK and JNK inhibitors, PD98059 and JNKI1, respectively, did not have any significant effect. The activity of total PKC and the isoforms PKCα and PKCδ seemed initially to be high in type 2 cells and Clara cells. Exposure to 10 μM CdAc did not further increase the total PKC activity or phosphorylation levels of the specific isoforms. However, the PKC inhibitors, GF109203X and rottlerin partially reduced the Cd-induced apoptosis. Furthermore, exposure to GF109203X reduced the phosphorylation of p38 in Clara cells. In conclusion, the MAPK p38 seemed to be involved in the Cd-induced apoptosis in Clara cells and type 2 cells. The activity of PKC isoforms is suggested to have a permissive role in the apoptotic process, located upstream of p38 phosphorylation

  16. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  17. Secreted and transmembrane wnt inhibitors and activators.

    Science.gov (United States)

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-03-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  18. Some bioactive potentials of two biflavanols isolated from Garcinia kola on cadmium-induced alterations of raw U937 cells and U937-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    Tebekeme Okoko; Diepreye Ere

    2013-01-01

    Objective: To investigate the abilities of two flavonoids - Garcinia biflavanol-1 (GB-1) and Garcinia biflavanol-2 (GB-2) from Garcinia kola (G. kola) in reducing cadmium-induced effects on raw U937 cells and U937-derived macrophages. Methods: Macrophage U937 cells were incubated with cadmium followed by treatment with the flavonoids and cell viability assessed via trypan blue staining. In the other experiment, the U937 cells were transformed to the macrophage form and treated with cadmium in order to activate them. The cells were later incubated with the flavonoids and finally the supernatant of each cell culture was analysed for the secretion of nitric oxide, catalyse activity, and the release of tumour necrosis factor-alpha, interleukin-1 and interleukin-2 as indices of macrophage activation. Quercetin (a flavonol) was used as the reference flavonoid in all experiments. Results: It revealed that the flavonoids significantly increased the viability of the cells and also reduced the cadmium-induced activation of the macrophage cells in a concentration-dependent manner. The flavanols GB-1 and GB-2 possessed higher activities than quercetin in all cases (P<0.05). Garcinia biflavanol-2 possessed a higher bioactivity than GB-1 significantly (P<0.05). Conclusions: In addition to corroborating the several reported importance of G. kola as a potential neutraceutical and pharmacological condiment, the study also clearly indicates the role hydroxylation especially at the 3´- position of polyphenols could play in enhancing bioactivities of flavonoids.

  19. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  20. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    International Nuclear Information System (INIS)

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 ± 4 cm and weight of 86 ± 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl2.H2O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl2.H2O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and taurine have potential to reduce

  1. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Puneet, E-mail: puneetbiochem@gmail.com [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Prasad, Y. [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Patra, A.K. [West Bengal University of Animal and Fishery Sciences, Kolkata-700037 (India); Ranjan, R.; Swarup, D.; Patra, R.C. [Division of Medicine, Indian Veterinary Research Institute, Izatnagar-243122 (India); Pal, Satya [Env. Eng. Lab., Deptt. of Civil Engineering, I.I.T., Roorkee-247667 (India)

    2009-09-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 {+-} 4 cm and weight of 86 {+-} 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl{sub 2}.H{sub 2}O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl{sub 2}.H{sub 2}O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and

  2. Aberrant Wnt Signaling in Leukemia.

    Science.gov (United States)

    Staal, Frank J T; Famili, Farbod; Garcia Perez, Laura; Pike-Overzet, Karin

    2016-01-01

    The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem) cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment. PMID:27571104

  3. Protective role of aloe vera against radiation and cadmium induced biochemical changes in the jejunum of Swiss albino mice

    International Nuclear Information System (INIS)

    Full text: The extensive use of atomic energy now a days in various branches of natural economy, science and technology, radio diagnosis, radiotherapy, industries, agriculture, nuclear research etc. has made radiation injury an urgent problem attracting the attention not only of specialists in a variety of clinical disciplines but also of a vast army of theoretical scientists. Metals like cadmium have always been intrinsic components of earth crust with the continuing trends towards and increasing human activities involving man may become exposed to concentration of toxic metals presenting a potential threat for survival. The severity of the damage can be modulated by treating the animals with antioxidants. In view of the potential for practical application, a variety of compounds are being tested for their radio protective activities. Among these, Aloe vera hold a great promise. Aloe vera juice was obtained from Millennium Agro Company, Goregaon (W) Mumbai. It is a herbal drug and known to contain well over 100 separate ingredients or constituents between those found in the leaf and mucilaginous gel inside the leaf. In light of the above, the present study was aimed to evaluate the protective effect of Aloe vera against radiation and cadmium induced biochemical changes in the jejunum Swiss albino mice. For this purpose, healthy adult male Swiss albino mice were divided into seven groups. Group I included sham-irradiated normal mice. Group II was administered CdCl2 at the dose of 20ppm, while Group III was exposed to 5.0 Gy of gamma radiation. Animals of Group IV were treated with both CdCl2 and 5.0 Gy of gamma rays. The animals of Group V and VI were treated with CdCl2 + Aloe vera and 5.0Gy + Aloe vera respectively, whereas Group VII was treated with CdCl2 +5.0Gy+ Aloe vera. In the groups V, VI and VII the Aloe vera was given seven days prior to the treatment of CdCl2 or gamma rays. Three animals from all the experimental groups were sacrificed by cervical

  4. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. PMID:26998941

  5. Amelioration of Cadmium-Induced Nephropathy using Polyphenol-rich Extract of Vernonia amygdalina (Del. Leaves in Rat Model

    Directory of Open Access Journals (Sweden)

    Christian E. Imafidon

    2015-11-01

    Full Text Available AIM: To determine the effects of polyphenol-rich extract of the leaves of Vernonia amygdalina (PEVA in rats with Cd-induced nephropathy. MATERIALS AND METHODS: Sixty five male Wistar rats were divided into five groups as follows; Group 1 received distilled water throughout the period of study. Group 2 received 5 mg/kg body weight of cadmium (Cd, in the form of CdSO4, for five consecutive days via intraperitoneal route. Groups 3, 4 and 5 were pretreated with Cd as group 2 and thereafter received oral treatment of PEVA for 4 weeks at 100 mg/kg, 200 mg/kg and 400 mg/kg body weight, respectively. RESULTS: Exposure to Cd toxicity significantly induced deleterious alterations in plasma and urine levels of creatinine, urea and glucose as well as creatinine and urea clearance (p < 0.05 in the rat model. There was a significant disturbance in the antioxidant system as revealed by the levels of thiobarbituric acid reactive substance (TBARS and reduced glutathione (GSH (p < 0.05 in the kidney tissue of the rats. With marked improvements in renal histoarchitecture, PEVA treatment showed a duration and non dose-dependent ameliorative potential. CONCLUSION: PEVA treatment reversed the compromise of renal function that was induced by Cd toxicity in rat model.

  6. Strain difference of cadmium-induced testicular toxicity in inbred Wistar-Imamichi and Fischer 344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hideaki; Narumi, Rika [Kumamoto University, Faculty of Education, Kumamoto (Japan); Nagano, Masaaki; Yasutake, Akira [National Institute for Minamata Disease, Biochemistry Section, Kumamoto (Japan); Waalkes, Michael P. [National Cancer Institute at the National Institute of Environmental Health Sciences, Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, Research Triangle Park, NC (United States); Imamura, Yorishige [Kumamoto University, Graduate School of Pharmaceutical Sciences, Kumamoto (Japan)

    2009-07-15

    Previously, we reported that Wistar-Imamichi (WI) rats are highly resistant to cadmium (Cd)-induced lethality and hepatotoxicity compared to Fischer 344 (F344) rats. Since the testes are one of the most sensitive organs to acute Cd toxicity, we examined possible strain-related differences in Cd-induced testicular toxicity between inbred WI and F344 rats. Rats were treated with a single dose of 0.5, 1.0 or 2.0 mg Cd/kg, as CdCl{sub 2}, sc and killed 24 h later. Cd at doses of 1.0 and 2.0 mg/kg induced severe testicular hemorrhage, as assessed by pathological and testis hemoglobin content, in F344 rats, but not WI rats. After Cd treatment (2.0 mg/kg), the testicular Cd content was significantly lower in WI rats than in the F344 rats, indicating a toxiokinetic mechanism for the observed strain difference. Thus, the remarkable resistance to Cd-induced testicular toxicity in WI rats is associated, at least in part, with lower testicular accumulation of Cd. When zinc (Zn; 10 mg/kg, sc) was administered in combination with Cd (2.0 mg/kg) to F344 rats, the Cd-induced increase in testicular hemoglobin content, indicative of hemorrhage, was significantly reduced. Similarly, the testicular Cd content was significantly decreased with Zn co-treatment compared to Cd treatment alone. Thus, it can be concluded that the testicular Cd accumulation partly competes with Zn transport systems and that these systems may play an important role in the strain-related differences in Cd-induced testicular toxicity between WI and F344 rats. (orig.)

  7. Histopathological changes in the head kidney induced by cadmium in a neotropical fish Colossoma macropomum.

    Science.gov (United States)

    Salazar-Lugo, R; Vargas, A; Rojas, L; Lemus, M

    2013-01-01

    We evaluated the effect of cadmium (Cd) on the structure and function of the head kidney in the freshwater fish Colossoma macropomum (C. macropomum). Juveniles were exposed to 0.1 mg/L CdCl2 for 31 days. Blood samples were examined using hematological tests and head kidney histology was determined by light microscopy. The concentration of Cd in the head and trunk kidneys was measured using an atomic absorption spectrophotometer. Cd produced histopathological changes in the head kidney, the most evident of these being: the thickening of the vein wall, an increase in the number of basophils/mast cells close to blood vessels and a severe depletion of hematopoietic precursors especially the granulopoietic series. In the blood, a decrease in the total leucocytes and hemoglobin concentration was observed. Cd-exposed fish showed higher Cd concentrations in the trunk kidney than the head kidney. In conclusion, exposure to Cd affected precursor hematopoietic cells in C. macropomum. PMID:26623329

  8. Ion Beam Induced Charge Collection (IBICC) Studies of Cadmium Zinc Telluride (CZT) Radiation Detectors

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride is an emerging material for room temperature radiation detectors. In order to optimize the performance of these detectors, it is important to determine how the electronic properties of CZT are related to the presence of impurities and defects that are introduced during the crystal growth and detector fabrication. At the Sandia microbeam facility IBICC and Time Resolved IBICC (TRIBICC) were used to image electronic properties of various CZT detectors. Two-dimensional areal maps of charge collection efficiency were deduced from the measurements. In order to determine radiation damage to the detectors, we measured the deterioration of the IBICC signal as the function of dose. A model to explain quantitatively the pattern observed in the charge collection efficiency maps of the damaged detectors has been developed and will be discussed in the paper

  9. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available BACKGROUND: Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells. METHODS: MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting. RESULTS: HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels. CONCLUSION: These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1

  10. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor.

    Science.gov (United States)

    Dong, Yu-Feng; Soung, Do Y; Schwarz, Edward M; O'Keefe, Regis J; Drissi, Hicham

    2006-07-01

    We investigated the molecular mechanisms underlying canonical Wnt-mediated regulation of chondrocyte hypertrophy using chick upper sternal chondrocytes. Replication competent avian sarcoma (RCAS) viral over-expression of Wnt8c and Wnt9a, upregulated type X collagen (col10a1) and Runx2 mRNA expression thereby inducing chondrocyte hypertrophy. Wnt8c and Wnt9a strongly inhibited mRNA levels of Sox9 and type II collagen (col2a1). Wnt8c further enhanced canonical bone morphogenetic proteins (BMP-2)-induced expression of Runx2 and col10a1 while Wnt8c and Wnt9a inhibited TGF-beta-induced expression of Sox9 and col2a1. Over-expression of beta-catenin mimics the effect of Wnt8c and Wnt9a by upregulating Runx2, col10a1, and alkaline phosphatase (AP) mRNA levels while it inhibits col2a1 transcription. Western blot analysis shows that Wnt8c and beta-catenin also induces Runx2 protein levels in chondrocytes. Thus, our results indicate that activation of the canonical beta-catenin Wnt signaling pathway induces chondrocyte hypertrophy and maturation. We further investigated the effects of beta-catenin-TCF/Lef on Runx2 promoter. Co-transfection of lymphoid enhancer factor (Lef1) and beta-catenin in chicken upper sternal chondrocytes together with deletion constructs of the Runx2 promoter shows that the proximal region spanning the first 128 base pairs of this promoter is responsible for the Wnt-mediated induction of Runx2. Mutation of the TCF/Lef binding site in the -128 fragment of the Runx2 promoter resulted in loss of its responsiveness to beta-catenin. Additionally, gel-shift assay analyses determined the DNA/protein interaction of the TCF/Lef binding sites on the Runx2 promoter. Finally, our site-directed mutagenesis data demonstrated that the Runx2 site on type X collagen promoter is required for canonical Wnt induction of col10a1. Altogether we demonstrate that Wnt/beta-catenin signaling is regulated by TGF-beta and BMP-2 in chick upper sternal chondrocytes, and mediates

  11. G9a-mediated histone methylation regulates cadmium-induced male fertility damage in pubertal mice.

    Science.gov (United States)

    Li, Min; Liu, Chuan; Yang, Lingling; Zhang, Lei; Chen, Chunhai; He, Mindi; Lu, Yonghui; Feng, Wei; Pi, Huifeng; Zhang, Yanwen; Zhong, Min; Yu, Zhengping; Zhou, Zhou

    2016-06-11

    Increasing evidence suggests that cadmium (Cd) is associated with male fertility damage. However, the effects of histone modification on Cd-induced male fertility damage remain obscure. This study aims to evaluate the roles of histone methylation mediated by euchromatin histone methyltransferase (EHMT2/G9a) in regulating Cd-induced male fertility damage. We exposed 4-week-old male C57BL/6J mice to Cd by intraperitoneal injection at 2mg/kg for 1, 3 and 5days. Our data showed that Cd exposure decreased the numbers of impregnated females and litter sizes, which was concomitant with sperm count reduction, histological changes in the cauda epididymal ducts and seminiferous epithelium, and testicular cell apoptosis as evaluated by terminal dUTP nick-end labeling (TUNEL) assay and immunoblotting with increased levels of cleaved caspase 3, PARP and Bax and a decreased level of Bcl-2. Cd-induced male fertility damage was accompanied by enhanced G9a activity followed by increased histone H3 lysine 9 monomethylation (H3K9me1) and dimethylation (H3K9me2) in testes. Furthermore, inhibition of G9a by BIX-01294 normalized H3K9me1 and H3K9me2 to basal levels and prevented Cd-induced male fertility damage and testicular cell apoptosis. Our present study revealed that G9a-mediated histone methylation plays a critical role in Cd-induced male fertility damage and testicular cell apoptosis. PMID:27060504

  12. Protective role of cabbage extract versus cadmium-induced oxidative renal and thyroid hormones dysfunctions in rats

    International Nuclear Information System (INIS)

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd damage. Cabbage is economically an important cole crop grown and consumed worldwide. It belongs the Cruciferous vegetables (Brassica), which have been reported to have a wide range of pharmacological properties. Since kidney is the critical target organ of chronic Cd damage, we carried out this study to investigate the effects of cabbage extract (C.E.) on Cd-induced dysfunction in the kidney of rats. The thyroid hormones values were also determined. Male Wistar rats were provided with cadmium chloride (100 mg/ L water) as the only drinking fluid and/or cabbage extract (C.E.) (5 ml/ kg body weight /day) for 4 weeks. Oral administration of Cd significantly induced the renal damage which was evident from the significantly (p < 0.05) increased levels of serum urea, uric acid and creatinine with a significant (p < 0.05) decrease in creatinine clearance. It also significantly declined the levels of urea, uric acid and creatinine in urine. Intoxication of Cd to rats reduced serum triiodothyronine (T3) and thyroxine (T4) concentrations. Reduced glutathione (GSH), and enzymatic antioxidants (superoxide dismutase (SOD) and catalase (CAT) were also significantly (p < 0.05) depressed with a concomitant marked enhancement in lipid peroxidation marker (thiobarbituric acid reactive substances, TBARS). Co-administration of C.E. along with Cd resulted in a reversal of the Cd-induced biochemical variables in kidney accompanied by a significant reduction in lipid peroxidation and a higher levels of renal antioxidant defense system. However, incorporation of C.E. to rats whether applied alone or in combination with Cd did not reveal any change in the thyroid hormones levels, which reflect significant drop in

  13. Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/β-catenin pathways.

    Science.gov (United States)

    Thrasivoulou, Christopher; Millar, Michael; Ahmed, Aamir

    2013-12-13

    Ca(2+) and β-catenin, a 92-kDa negatively charged transcription factor, transduce Wnt signaling via the non-canonical, Wnt/Ca(2+) and canonical, Wnt/β-catenin pathways independently. The nuclear envelope is a barrier to large protein entry, and this process is regulated by intracellular calcium [Ca(2+)]i and trans-nuclear potential. How β-catenin traverses the nuclear envelope is not well known. We hypothesized that Wnt/Ca(2+) and Wnt/β-catenin pathways act in a coordinated manner and that [Ca(2+)]i release facilitates β-catenin entry into the nucleus in mammalian cells. In a live assay using calcium dyes in PC3 prostate cancer cells, six Wnt peptides (3A, 4, 5A, 7A, 9B, and 10B) mobilized [Ca(2+)]i but Wnt11 did not. Based upon dwell time (range = 15-30 s) of the calcium waveform, these Wnts could be classified into three classes: short, 3A and 5A; long, 7A and 10B; and very long, 4 and 9B. Wnt-activated [Ca(2+)]i release was followed by an increase in intranuclear calcium and the depolarization of both the cell and nuclear membranes, determined by using FM4-64. In cells treated with Wnts 5A, 9B, and 10B, paradigm substrates for each Wnt class, increased [Ca(2+)]i was followed by β-catenin translocation into the nucleus in PC3, MCF7, and 253J, prostate, breast, and bladder cancer cell lines; both the increase in Wnt 5A, 9B, and 10B induced [Ca(2+)]i release and β-catenin translocation are suppressed by thapsigargin in PC3 cell line. We propose a convergent model of Wnt signaling network where Ca(2+) and β-catenin pathways may act in a coordinated, interdependent, rather than independent, manner. PMID:24158438

  14. Ameliorative effects of Rosmarinus officinalis leaf extract and Vitamin C on cadmium-induced oxidative stress in Nile tilapia Oreochromis niloticus.

    Science.gov (United States)

    Al-Anazi, Marim Saleh; Virk, Promy; Elobeid, Mai; Siddiqui, Muzammil Iqbal

    2015-11-01

    The present studywas undertaken to assess the bioaccumulation potential of cadmium in liver, kidney, gills and muscles of freshwater fish, Nile tilapia Oreochromis niloticus and the changes in oxidative stress indices in liver and kidney with or without simultaneous treatment with waterborne vitamin C and rosemary leaf extract. Adult tilapia were divided into seven groups. Six groups were exposed to sublethal concentrations of Cd, three groups to 5 ppm, while other three to 10 ppm. Two groups from each of the Cd exposed groups were treated with Vitamin C (5ppm) and rosemary leaf extract (2.5 ppm) for a period of 21 days. Cadmium concentration in liver, kidneys and gills was significantly higher in the cadmium exposed groups being invariably high in the groups exposed to 10 ppm CdCl2.H2O.Treatment with Vitamin C and rosemary leaf extract significantly reduced cadmium concentration in comparison to non-treated Cd exposed groups. Treatment with Vitamin C and rosemary leaf extract significantly reduced oxidative stress in Cd exposed fish as evidenced from lower concentration of lipid peroxides and reduced activity of catalase and higher activity of superoxide dismutase in liver and kidney as compared to control fish. Reduction in Cd induced oxidative stress and bioaccumulation was comparable between the two antioxidant treatments, Vitamin C and rosemary leaf extract. The key findings suggest that both the antioxidants used showed ameliorative potential to reduce tissue accumulation of Cd and associated oxidative stress in fresh water fish, Nile tilapia. PMID:26688980

  15. Polygonum aviculare L. and its active compounds, quercitrin hydrate, caffeic acid, and rutin, activate the Wnt/β-catenin pathway and induce cutaneous wound healing.

    Science.gov (United States)

    Seo, Seol Hwa; Lee, Soung-Hoon; Cha, Pu-Hyeon; Kim, Mi-Yeon; Min, Do Sik; Choi, Kang-Yell

    2016-05-01

    Polygonum aviculare L. is a member of the Polygonaceae family of plants, which has been known for its antioxidant and anti-obesity effects. However, the wound healing function of P. aviculare extract has not been assessed. In this study, we identified a novel property of P. aviculare extract as a Wnt/β-catenin pathway activator based on a screen of 350 plant extracts using HEK293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. P. aviculare extract accelerated the migration of HaCaT keratinocytes without showing significant cytotoxicity. Moreover, P. aviculare extract efficiently re-epithelized wounds generated on mice. Additionally, ingredients of P. aviculare extract, such as quercitrin hydrate, caffeic acid, and rutin, also accelerated the motility of HaCaT keratinocytes with the activation of Wnt/β-catenin signaling. Therefore, based on our findings, P. aviculare extract and its active ingredients could be potential therapeutic agents for wound healing. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26929003

  16. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    Science.gov (United States)

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages. PMID:27302865

  17. Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-04-01

    Full Text Available Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd. The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium but were well expressed in the presence of iron (+Fe/+Cd. Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  18. Biochemical characterization of N-methyl N' -nitro-N-nitrosoguanidine-induced cadmium resistant mutants of Aspergillus niger

    Indian Academy of Sciences (India)

    Samar Kumar Pal; Tapan Kumar Das

    2005-12-01

    Two cadmium resistant mutants (Cd1 and Cd2) of Aspergillus niger, among the six isolated by mutagenization with N-methyl N′-nitro-N-nitrosoguanidine (MNNG) at pH 6.4 were selected for the study. Analysis of lipid composition of the mutants and the wildtype indicated that total lipid as well as individual lipids of the cadmium resistant mutants were changed as compared with that of the wildtype. The increased activities of metal-lothionein and reduced activities of D-xylose isomerase and L-phenylalanine ammonia lyase in cell free extract of the cadmium resistant mutants suggested that mutants could allow high concentration of cadmium salt as compared with that of the wildtype. The respiratory activity and intracellular as well as extracellular Cd2+ concentration of the mutants reflected the high tolerance of the Cd mutants to cadmium ion.

  19. 大黄酸对高糖所致肾小球系膜细胞Wnt/β-catenin信号通路的影响探讨%Effect of rhein on high glucose-induced mesangial cell Wnt-β-catenin Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    吕韶燕; 田林红; 张明; 张涛

    2012-01-01

    of mesangial cell proliferation after all the interventions was examined by MTT measurement.Total Wnt、β-catenin RNA was detected By RT-PCR in normal mesangial cells and cells intervened by high glucose and Rhein.Results ①Inhibition effect to human mesangial cells:compared with NG group for 24 h,48 h and 72 h (OD values were 0.169± 0.051,0.228±0.074,0.285±0.075),human mesangial cells proliferation in HG group(OD values were 0.307± 0.074,0.507 ±0.038,0.711±0.075),HG+R1 group(OD value were 0.241± 0.027,0.334±0.015,0.499±0.063),HG+R2 group (OD value were 0.244±0.081,0.386±0.033,0.531±0.011),and HG+R3 group(OD value were 0.277±0.036,0.407± 0.057,0.594±0.042) were iucreased significantly (P<0.05、P<0.01) ; Compared with HG group for 24 h,48 h and 72 h,the HG+R1 group,the HG+R2 group and the HG+ R3 group showed a downward trend at 24 h,but not significantly; but the trend decreased significantly at 48 h and 72 h,and the performance expressed a time,concentration-dependent (P<0.05,P<0.01).② In the normal state,the mesangial cells expressed s certain amount of Wnt and β-catenin,when they were stimulated by high glucose,the expression of Wnt、β-catenin in mRNA increased (P<0.05) ; while the expression of them was significantly reduced in high glucose-induced mesangial cells in HG+R1 group,HG+R2 group and HG+R3 group(P<0.05).Conclusion Rhein may inhibit the proliferation of high glucose-induced mesangial cells through the Wnt and β-catenin gene expression.

  20. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes

    International Nuclear Information System (INIS)

    Our aim was to investigate rhizosphere effects on the chemical behavior of Cd. This was done in a glasshouse experiment, where two rice cultivars (Zhenong54 and Sixizhan) were grown in soil spiked with cadmium (Cd) at two levels, 3.9±0.5 and 8.3±0.5 mg kg-1 soil, placed in a rhizobox until ripening stage. Chemical forms of cadmium near the root surface were then assessed using a sequential extraction procedure (SEP). There were significant differences in Cd species, especially exchangeable Cd (EXC-Cd) between the two rice cultivars as affected by rice roots. The lowest EXC-Cd with Zhenong54 appeared in the near-rhizosphere area with little difference between tillering stage and ripening stage while Sixizhan had its lowest EXC-Cd concentration in the root compartment. Both cultivars had slight changes in the Fe/Mn oxide-bound fraction of Cd (FMO-Cd) at the grain ripening stage while the control treatments without plants had a significant increase in FMO-Cd at the same time, indicating a transformation from a less bioavailable form (FMO-Cd) to more bioavailable forms (EXC-Cd). Soil microbial biomass in the vicinity of the root surface had opposite trends to some extent with EXC-Cd, partly because of the root-induced changes to bioavailable Cd. Unlike Zhenong54, Sixizhan had a higher Cd concentration in the root, but only a small proportion of Cd translocated from the root to grain. - Research highlights: →We investigated genotypic effects on Cd speciation in the rhizosphere of rice. →Zhenong54 (ZN) and Sixizhan (SX) were grown in rhizobox to show root-induced changes. →Lowest exchangeable-Cd of ZN was in near-rhizosphere while SX in root compartment. →Soil microbial biomass had opposite trends with exchangeable-Cd in both cultivars. →Unlike ZN, SX had higher Cd content in roots, but lower Cd content in shoots.

  1. Analysis of metal profile in soybean after cadmium-induced oxidative damage

    Institute of Scientific and Technical Information of China (English)

    Emiliano Felici; Cesar Almeida; Martin Fernndez Baldo; Luis D Martnez; Fanny Zirulnik; Mara R Gomez

    2014-01-01

    Objective: To analyze the effect of cadmium (Cd) on soybean seedlings growth and the relationship with the distribution and concentration of macro-microelements. Methods: The ions concentrations were determined by ICP-MS. The extraction efficiency and digestion time were optimized. Also, oxidative stress parameters were determined and related with metal content. Results:The accumulated amount of dry matter in roots and leaves was lower in the Cd-treated group. Regression analysis showed that the exposure to Cd affected the accumulated amount of dry matter as well as the content of mineral elements in the analysis samples. In Cd treated plants, electrical conductivity increased respect to the controls, indicating that ionic permeability became altered. A strong inhibition of the chlorophylls (chl) biosynthesis in the Cd-treated group was also demonstrated by a decrease of chla and chlb concentration. This result was related with the observed significant decrease in the Mg uptake at the roots and leaves level. Conclusions: The stress caused by Cd exposure, evidenced by significantly high hydrogen peroxide levels in roots and leaves after 24 h and the content of specific macro-microelements is a factor that affects the accumulation of dry matter, electrical conductivity and chlorophylls concentration.

  2. Cadmium chloride strongly enhances cyclophosphamide-induced chromosome aberrations in mouse bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Pandurangarao, V.L.; Blazina, S.; Bherje, R. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-10-01

    Earlier we reported that a single 5 mg cadmium chloride (CdCl{sub 2})/kg ip dose enhanced chromosome aberrations (ca) with 50 mg/kg cyclophosphamide (CP) in mouse bone marrow cells. In this report groups of 4 mice were injected ip with saline, 0.31, 0.62, 1.25, 2.5 or 5.0 mg/kg CdCl{sub 2}, followed by saline injections at 24 h. Other mice similarly uninjected at 0 h were injected with 50 mg/kg CP at 24 h. All the mice were injected ip with 4 mg colchicine/kg at 44 h. At 48 h the bone marrow cells were processed for chromosome spreads. After dissection, visual examination revealed obvious internal hemorrhaging of the testes at 1.25 CdCl{sub 2} mg/kg and higher doses. This effect was not further increased by CP treatment. The lowest ca enhancing dose of CdCl{sub 2} on CP was 0.625 mg/kg. Our hypothesis is that Cd replaces zinc presents in numerous DNA repair enzymes and proteins resulting in diminished repair. Subsequently, the excess of unrepaired DNA damage is seen as chromatid breaks, deletions, fragments and exchanges.

  3. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures.

    Science.gov (United States)

    Lopes Júnior, Cícero Alves; Barbosa, Herbert de Sousa; Moretto Galazzi, Rodrigo; Ferreira Koolen, Hector Henrique; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2015-09-01

    The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characterized using nESI-LC-MS/MS. The protein content decreases by approximately 41% in plants treated with 700mg Cd compared with control plants. By comparing all groups of plants evaluated in this study (Control vs. Cd-lower, Control vs. Cd-higher and Cd-lower vs. Cd-higher), 39 proteins are found differential and 18 accurately identified; the control vs. Cd-higher treatment is that presenting the most differential proteins. From identified proteins, those involved in energy and disease/defense (including stress), are the ribulose bisphosphate carboxylase large chain, transketolase, and heat shock proteins are the most differential abundant proteins. Thus, at the present study, photosynthesis is the main process affected by Cd in sunflowers, although these plants are highly tolerant to Cd. PMID:26004357

  4. Inhibition of Wnt/β-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8.

    Directory of Open Access Journals (Sweden)

    Ismaïl Hendaoui

    Full Text Available The Wnt/β-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/β-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs, which have a cysteine-rich domain (CRD structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18 inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/β-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/β-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced β-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth.

  5. Selective modulation of Wnt ligands and their receptors in adipose tissue by chronic hyperadiponectinemia.

    Directory of Open Access Journals (Sweden)

    Nobuhiko Wada

    Full Text Available BACKGROUND: Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue. MATERIALS AND METHODS: We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells. RESULTS: The Wnt5b, Wnt6, Frizzled 6 (Fzd6, and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6 were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII and phosphorylated Jun N-terminal kinase (p-JNK were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin. CONCLUSION: Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors

  6. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    International Nuclear Information System (INIS)

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells

  7. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells.

    Science.gov (United States)

    Vouyovitch, Cécile M; Perry, Jo K; Liu, Dong Xu; Bezin, Laurent; Vilain, Eric; Diaz, Jean-Jacques; Lobie, Peter E; Mertani, Hichem C

    2016-07-01

    The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype. PMID:27323961

  8. Involvement of Wnt, Eda and Shh at defined stages of sweat gland development.

    Science.gov (United States)

    Cui, Chang-Yi; Yin, Mingzhu; Sima, Jian; Childress, Victoria; Michel, Marc; Piao, Yulan; Schlessinger, David

    2014-10-01

    To maintain body temperature, sweat glands develop from embryonic ectoderm by a poorly defined mechanism. We demonstrate a temporal cascade of regulation during mouse sweat gland formation. Sweat gland induction failed completely when canonical Wnt signaling was blocked in skin epithelium, and was accompanied by sharp downregulation of downstream Wnt, Eda and Shh pathway genes. The Wnt antagonist Dkk4 appeared to inhibit this induction: Dkk4 was sharply downregulated in β-catenin-ablated mice, indicating that it is induced by Wnt/β-catenin; however, its overexpression repressed Wnt target genes and significantly reduced gland numbers. Eda signaling succeeded Wnt. Wnt signaling was still active and nascent sweat gland pre-germs were still seen in Eda-null mice, but the pre-germs failed to develop further and the downstream Shh pathway was not activated. When Wnt and Eda were intact but Shh was ablated, germ induction and subsequent duct formation occurred normally, but the final stage of secretory coil formation failed. Thus, sweat gland development shows a relay of regulatory steps initiated by Wnt/β-catenin - itself modulated by Dkk4 - with subsequent participation of Eda and Shh pathways. PMID:25249463

  9. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    Science.gov (United States)

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells. PMID:27341758

  10. Cadmium Induced Changes of Proline in Two Ecotypes of Thlaspi Caerulescens

    Directory of Open Access Journals (Sweden)

    Zemanová V.

    2013-04-01

    Full Text Available A Thlaspi caerulescens (J. & C. PRESL was used to study the effect of cadmium on the content of free amino acids and ability accumulation of Cd in ecotypes of this plant species. In pot experiment two ecotypes T. caerulescens were used: Ganges ecotype from France and Mežica ecotype from Slovenia. The plants were grown in soil (chernozem – Suchdol spiked with NPK and three different concentration of Cd: 30, 60 and 90 mg/kg. The content of Cd was measured in the above-ground biomass and roots using ICP-OES. Accumulation of Cd was higher in the Mežica ecotype in contrast to the low Cd-accumulating the Ganges ecotype. Analyses of free amino acids contents were measured by GC-MS method. The content of free amino acids in above-ground biomass of the Mežica ecotype declined progressively with increasing concentrations of Cd. Opposite trend was observed in roots of this ecotype. The increase of free amino acids contents in above-ground biomass and roots of the Ganges ecotype were detected. The results of specific amino acids free proline showed increased content in plant biomass with increasing Cd contamination of soil. A statistically significant increase was observed between control plants (0 mg/kg Cd and variant Cd3 (90 mg/kg Cd for both ecotypes. The statistically significant decrease of free proline was observed in the Mežica ecotype roots. Opposite trend was observed in roots of Ganges ecotype - increasing trend of free proline content. These results indicate a correlation between content of Cd and content of free proline in different parts of the plant. We can speculate that the mechanism of Cd hyperaccumulation and metabolism of free proline are not identical in ecotypes of this species.

  11. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    International Nuclear Information System (INIS)

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 μM) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 μM) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic binding

  12. Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings

    Institute of Scientific and Technical Information of China (English)

    Long Zhang; Zhen Chen; Cheng Zhu

    2012-01-01

    The effect of calcium chloride (CaCl2) on rice seedling growth under cadmium chloride (CdCl2) stress,as well as the possible role of endogenous nitric oxide (NO) in this process,was studied.The growth of rice seedlings was seriously inhibited by CdCl2,and the inhibition was significantly mitigated by CaCl2.However,hemoglobin (Hb) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline1-oxyl-3-oxide (cPTIO) weakened the promotion effect of CaCl2.The resuhs of NO fluorescence localization suggest that growth accelerated by CaCl2 might be associated with elevated NO levels.The content of Cd,protein thiols (PBT),and nonprotein thiols (NPT) in cell walls,cell organelles,and soluble fractions,respectively,of rice seedlings decreased considerably in the presence of CaCl2,whereas the content of pectin,hemicellulose 1 (HC1),and hemicellulose 2 (HC2) increased significantly.Elimination of endogenous NO in Cd+Ca treatment could promote the transportation of Cd2+ to cell organelles and soluble fractions and increase the content of NPT and PBT in leaves.In addition,transportation of Cd2+ to cell organelles and soluble fractions was retarded in roots,the content of NPT increased,and the content of PBT decreased.With elimination of endogenous NO in Cd+Ca treatment,the content of pectin,HC 1,and HC2 decreased significantly.Thus,Ca may alleviate Cd toxicity via endogenous NO with variation in the levels of NPT,PBT,and matrix polysaccharides.

  13. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.K.; Sun, Yuqiang; Dawood, M. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Hayat, Y. [Institute of Bioinformatics, Zhejiang University, Hangzhou 310029 (China); Variath, M.T.; Wu Yuxiang [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Raziuddin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Plant Breeding and Genetics Department, NWFP Agricultural University Peshawar, Peshawar (Pakistan); Mishkat, Ullah [Zoological Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad 44000 (Pakistan); Salahuddin [District Agriculture Extension Offices, Bannu Road, Dera Ismail Khan (NWFP) (Pakistan); Najeeb, Ullah [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Zhu, Shuijin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)], E-mail: shjzhu@zju.edu.cn

    2009-01-15

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 {mu}M) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 {mu}M) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic

  14. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  15. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    International Nuclear Information System (INIS)

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation

  16. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment. Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.

  17. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  18. Insulin Expression in Rats Exposed to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives To investigate the effects of cadmium exposure on insulin expression in rats. Methods Eighteen adult SD assessed. The levels of cadmium and zinc in pancreas, blood and urine glucose, serum insulin and urine NAG (N-acyetyl-β-glucosaminidase) were determined. The gene expressions of metallothionein (MT) and insulin were also measured,and the oral glucose tolerance tests (OGTT) were carried out. Results The contents of cadmium in pancreas in cadmium-treated rats were higher than that in the control group, which was associated with slight increase of zinc in pancreas.not change significantly after cadmium administration, and the UNAG had no change in Cd-treated group. The gene expression the change of the expression of insulin, MT-Ⅰ and MT-Ⅱ genes. Cadmium can influence the biosynthesis of insulin, but does not induce the release of insulin. The dysfunction of pancreas occurs earlier than that of kidney after administration of cadmium.

  19. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    International Nuclear Information System (INIS)

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  20. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  1. Wnt trafficking: new insights into Wnt maturation, secretion and spreading.

    Science.gov (United States)

    Port, Fillip; Basler, Konrad

    2010-10-01

    Proteins of the Wnt family are secreted signaling molecules that regulate multiple processes in animal development and control tissue homeostasis in the adult. Wnts spread over considerable distances to regulate gene expression in cells located at distant sites. Paradoxically, Wnts are poorly mobile because of their posttranslational modification with lipids. Recent evidence suggests that several pathways exist that are capable of transforming hydrophobic, insoluble Wnts into long-range signaling molecules. Furthermore, the discovery of Wntless as a protein specifically required for the secretion of Wnt suggests that Wnt trafficking through the secretory pathway is already under special scrutiny. Here, we review recent data on the molecular machinery that controls Wnt secretion and discuss how Wnts can be mobilized for long-range signaling. PMID:20477987

  2. Sox17 modulates Wnt3A/β-catenin-mediated transcriptional activation of the Lef-1 promoter

    OpenAIRE

    Liu, Xiaoming; Luo, Meihui; Xie, Weiliang; Wells, James M.; Goodheart, Michael J.; Engelhardt, John F

    2010-01-01

    Wnt/β-catenin-dependent activation of lymphoid enhancer factor 1 (Lef-1) plays an important role in numerous developmental processes. In this context, transcription of the Lef-1 gene is increased by Wnt-mediated TCF4/β-catenin activation on the Lef-1 promoter through mechanisms that remain poorly defined. In mouse airway submucosal gland progenitor cells, Wnt3A transiently induces Lef-1 gene expression, and this process is required for epithelial cell proliferation and glandular morphogenesis...

  3. Identification of genes regulated by Wnt/beta-catenin pathway and involved in apoptosis via microarray analysis.

    OpenAIRE

    Chen Quan; Wang Shengqi; Bai Jinfeng; Quan Lanping; Yang Shangbin; Zhang Wei; Yin Yanbing; Zhu Hongxia; Sun Daochun; Wang Yihua; Huang Moli; Li Songgang; Xu Ningzhi

    2006-01-01

    Abstract Background Wnt/β-catenin pathway has critical roles in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of this pathway, little is known regarding Wnt/β-catenin pathway modification of the cellular apoptosis. Methods To identify potential genes regulated by Wnt/β-catenin pathway and involved in apoptosis, we used a stably integrated, inducible RNA interference (RNAi) vector to specific inhibit the expression an...

  4. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.

    Science.gov (United States)

    Dai, Ling-Peng; Dong, Xin-Jiao; Ma, Hai-Hu

    2012-04-01

    Anthocyanins inducibly synthesized by Cd treatment showed high antioxidant activity and might be involved in internal detoxification mechanisms of Azolla imbricata against Cd toxicity. In order to understand anthocyanin biosynthesis mechanism during Cd stress, the cDNAs encoding chalcone synthase (CHS) and dihydroflavonol reductase (DFR), two key enzymes in the anthocyanin synthesis pathway, were isolated from A. imbricata. Deduced amino acid sequences of the cDNAs showed high homology to the sequences from other plants. Expression of AiDFR, and to a lesser extent AiCHS, was significantly induced in Cd treatment plant in comparison with the control. CHS and DFR enzymatic activities showed similar pattern changes with these genes expression during Cd stress. These results strongly indicate that Cd induced anthocyanin accumulation is probably mediated by up-regulation of structural genes including CHS and DFR, which might further increase the activities of enzymes encoded by these structural genes that control the anthocyanin biosynthetic steps. PMID:22225708

  5. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    International Nuclear Information System (INIS)

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  6. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  7. In vivo study of cadmium-induced chromsomal changes in somatic and germinal tissue of C57BI/6J male mice

    Energy Technology Data Exchange (ETDEWEB)

    Felten, T.L.

    1978-08-01

    The objectives of this study were to determine if cadmium would induce chromosomal aberration, to determine if simultaneous aberration events occurred in somatic and germinal tissue, and to determine an estimated minimum exposure time required for significant chromosomal change. Bone marrow chromosome aberrations, specifically breaks and deletions, were found to increase after acute cadmium exposure both at MTD and normal exposure levels. Subacute exposure also resulted in increased occurrences of breaks, deletions, and despiralization. With longer in vivo exposure to cadmium, bone marrow cells continued to show increased numbers of breaks, as well as a physiological effect, despiralization, and more severe break-related aberrations; rearrangements and pulverization. In spermatocytes of the same animals, gaps, breaks, rearrangements, stickiness, and autosomal univalents were the principle aberrations. Correlation of bone marrow and spermatocyte aberrations indicated that in treated mice significant relationships existed for gaps, breaks, rearrangements, and stickiness in the tissues. An estimate of the minimum exposure time to produce chromosomal damage, based on the acute exposure experiment, would be 6 hours for bone marrow. This was confirmed by the exposure duration experiment. Spermatocytes also had chromosomal damage within 24 hours.

  8. Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings.

    Science.gov (United States)

    Li, Song; Chen, Junren; Islam, Ejazul; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Yan, Wenbo; Peng, Danli; Liu, Dan

    2016-06-01

    Moso bamboo (Phyllostachys pubescens (Pradelle) Mazel ex J.Houz.) is recognized as a potential phytoremediation plant due to its huge biomass and high tolerance to environmental stresses. The objectives of this study were to investigate mechanism related to cadmium (Cd) tolerance and to evaluate Cd accumulation capacity of moso bamboo. The results of the pot experiment showed that Cd accumulation by bamboo increased with increasing the Cd levels in soil and the values in stem ranged from 28.51 to 132.13 mg kg(-1). Meanwhile chlorophyll in leaves and total biomass showed a decreasing trend. The bioaccumulation factors (BAF) for roots and stem in all the treatments were more than 1.0 and the translocation factor (TF) ranged from 0.70 to 1.06. In hydroponics experiment, the concentrations of malondialdehyde (MDA) in the leaves were significantly increased in Cd treated plants as compared with control. The activities of superoxide dismutase (SOD) and peroxidase (POD) were enhanced at initial stage and then decreased consistently with the increase of Cd addition. The proline concentrations were also increased due to the presence of Cd, particularly at 25 μM Cd treatment. According to TEM-EDX analysis, the cytoplasm was the main site for accumulation of Cd in moso bamboo. On the basis of overall results, it is suggested that moso bamboo could be successfully used for the remediation of low Cd (no more than 5 mg kg(-1)) contaminated soils. PMID:27015570

  9. R26-WntVis reporter mice showing graded response to Wnt signal levels.

    Science.gov (United States)

    Takemoto, Tatsuya; Abe, Takaya; Kiyonari, Hiroshi; Nakao, Kazuki; Furuta, Yasuhide; Suzuki, Hitomi; Takada, Shinji; Fujimori, Toshihiko; Kondoh, Hisato

    2016-06-01

    The canonical Wnt signaling pathway plays a major role in the regulation of embryogenesis and organogenesis, where signal strength-dependent cellular responses are of particular importance. To assess Wnt signal levels in individual cells, and to circumvent the integration site-dependent bias shown in previous Wnt reporter lines, we constructed a new Wnt signal reporter mouse line R26-WntVis. Heptameric TCF/LEF1 binding sequences were combined with a viral minimal promoter to confer a graded response to the reporter depending on Wnt signal strengths. The histone H2B-EGFP fusion protein was chosen as the fluorescent reporter to facilitate single-cell resolution analyses. This WntVis reporter gene was then inserted into the ROSA26 locus in an orientation opposite to that of the endogenous gene. The R26-WntVis allele was introduced into Wnt3a(-/-) and Wnt3a(vt/-) mutant mouse embryos and compared with wild-type embryos to assess its performance. The R26-WntVis reporter was activated in known Wnt-dependent tissues and responded in a graded fashion to signal intensity. This analysis also indicated that the major Wnt activity early in embryogenesis switched from Wnt3 to Wnt3a around E7.5. The R26-WntVis mouse line will be widely useful for the study of Wnt signal-dependent processes. PMID:27030109

  10. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation.

    Science.gov (United States)

    Wu, Jun; Fang, Jiasheng; Yang, Zhuanyi; Chen, Fenghua; Liu, Jingfang; Wang, Yanjin

    2012-10-01

    Wnt proteins are powerful regulators of cell proliferation and differentiation, and activation of the Wnt signalling pathway is involved in the pathogenesis of several types of human tumours. Wnt inhibitory factor-1 (WIF-1) acts as a Wnt antagonist and tumour suppressor. Previous studies have shown that reducing expression of the WIF-1 gene aberrantly activates Wnt signalling and induces the development of certain types of cancers. In the present study, we examined the expression of WIF-1 in human primary glioblastoma multiforme (GBM) tumours. Studies using semiquantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis revealed that WIF-1 expression is lower in human GBM than in normal brain tissue. To clarify the role of WIF-1, we transfected U251 human glioblastoma-derived cells, which do not express WIF-1, with the pcDNA3.1-WIF1 vector to restore WIF-1 expression. The results of cell proliferation, colony formation and apoptosis assays, as well as flow cytometry, indicate that exogenous WIF-1 has no effect on U251 cell apoptosis, but does arrest cells at the G(0)/G(1) phase and inhibit cell growth. Collectively, our data suggest that WIF-1 is a potent inhibitor of GBM growth. PMID:22901505

  11. Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice

    OpenAIRE

    Wiedau-Pazos, Martina; Wong, Eugene; Solomon, Esther; Alarcon, Maricela; Geschwind, Daniel H.

    2007-01-01

    Glycogen synthase kinase-3beta (GSK-3β), a key component of the Wnt signaling pathway, has been recognized as an important tau kinase with a potential pathogenic role in dementia. We have previously shown that GSK-3β induced tau-hyperphosphorylation and Wnt-activation enhance tau-induced degeneration in drosophila. Here, we demonstrate that Wnt-activation occurs prior to three months of age in the JNPL3 mouse model of frontotemporal dementia (FTD). We observed that GSK-3β becomes associated w...

  12. Melanocyte regeneration in vitiligo requires WNT beneath their wings

    Science.gov (United States)

    Harris, John E.

    2015-01-01

    Melanocytes in patients with vitiligo possess intrinsic abnormalities that contribute to its pathogenesis. In this issue, Regazzetti, et al. report that CXCL10 expression reflects subtle inflammation in normal-appearing skin but not in stable depigmented lesions, supporting the hypothesis that melanocytes themselves initiate autoimmune inflammation prior to clinically evident disease. In addition, they find that oxidative stress in melanocytes impairs WNT signaling and that targeting this pathway induces melanoblast differentiation. Thus, activating the WNT pathway may serve as an adjunctive strategy to support repigmentation in patients with vitiligo. PMID:26569586

  13. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    Science.gov (United States)

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress. PMID:26762936

  14. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver

    International Nuclear Information System (INIS)

    Acute cadmium intoxication affects glutathione S-transferase (GST) in rat liver. It has been found that 24 h after i.p. cadmium administration to rats, at a dose of 2.5 mg CdCl2 kg-1 body weight, the activity of this enzyme in liver cytosol increased by 40%. A less stimulatory effect persisted till 48 h and thereafter the enzyme activity normalized. Since, GST isoenzymes belong to different classes in mammalian tissues, we used quantitative immunoassays to verify which family of GST isoenzymes is influenced by this intoxication. Only alpha-class glutathione S-transferase (α-GST) proteins were detected in rat liver cytosol and their level increased by about 25%, 24 h after cadmium treatment. No pi-GST isoforms were found in liver cytosol from either normal or cadmium-treated rats. Co-administration of actinomycin D with cadmium normalized both the protein level and the activity of α-GST, suggesting that some effect occurs on enzyme transcription of these isoenzymes by this metal. On the other hand, it seems unlikely that the stimulatory effect is due to the high level of peroxides caused by lipid peroxidation, since Vitamin E administration strongly reduced the TBARS level, but did not cause any GST activity decrease

  15. Curcumin Rescues Diabetic Renal Fibrosis by Targeting Superoxide-Mediated Wnt Signaling Pathways.

    Science.gov (United States)

    Ho, Cheng; Hsu, Yung-Chien; Lei, Chen-Chou; Mau, Shu-Ching; Shih, Ya-Hsueh; Lin, Chun-Liang

    2016-03-01

    The purposes of this study were to investigate whether curcumin can weaken diabetic nephropathy by modulating both oxidative stress and renal injury from Wnt signaling mediation. Wnt5a/β-catenin depression and induction of superoxide synthesis are associated with high glucose (HG) induced transforming growth factor (TGF)-β1 and fibronectin expression in mesangial cells. Curcumin resumes HG depression of Wnt/β-catenin signaling and alleviates HG induction of superoxide, TGF-β1 and fibronectin expression in renal mesangial cell. Exogenous curcumin alleviated urinary total proteinuria and serum superoxide level in diabetic rats. Based on laser-captured microdissection for quantitative real-time polymerase chain reaction, it was found that diabetes significantly increased TGF-β1 and fibronectin expression in line with depressed Wnt5a expression. Curcumin treatment reduced the TGF-β1 and fibronectin activation and the inhibiting effect of diabetes on Wnt5a/β-catenin expression in renal glomeruli. Immunohistochemistry showed that curcumin treatment significantly reduced 8-hydroxy-2'-deoxyguanosine, TGF-β1 and fibronectin, and was in line with the restoration of the suppressed Wnt5a expression immunoreactivities in glomeruli of diabetic rats. Curcumin alleviated extracellular matrix accumulation in diabetic nephropathy by not only preventing the diabetes-mediated superoxide synthesis but also resuming downregulation of Wnt/β-catenin signaling. These findings suggest that regulation of Wnt activity by curcumin is a feasible alternative strategy to rescue diabetic renal injury. PMID:26992258

  16. Biochemical Methods to Analyze Wnt Protein Secretion.

    Science.gov (United States)

    Glaeser, Kathrin; Boutros, Michael; Gross, Julia Christina

    2016-01-01

    Wnt proteins act as potent morphogens in various aspects of embryonic development and adult tissue homeostasis. However, in addition to its physiological importance, aberrant Wnt signaling has been linked to the onset and progression of different types of cancer. On the cellular level, the secretion of Wnt proteins involves trafficking of lipid-modified Wnts from the endoplasmic reticulum (ER) to Golgi and further compartments via the Wnt cargo receptor evenness interrupted. Others and we have recently shown that Wnt proteins are secreted on extracellular vesicles (EVs) such as microvesicles and exosomes. Although more details about specific regulation of Wnt secretion steps are emerging, it remains largely unknown how Wnt proteins are channeled into different release pathways such as lipoprotein particles, EVs and cytonemes. Here, we describe protocols to purify and quantify Wnts from the supernatant of cells by either assessing total Wnt proteins in the supernatant or monitoring Wnt proteins on EVs. Purified Wnts from the supernatant as well as total cellular protein content can be investigated by immunoblotting. Additionally, the relative activity of canonical Wnts in the supernatant can be assessed by a dual-luciferase Wnt reporter assay. Quantifying the amount of secreted Wnt proteins and their activity in the supernatant of cells allows the investigation of intracellular trafficking events that regulate Wnt secretion and the role of extracellular modulators of Wnt spreading. PMID:27590148

  17. The Protective Roles of Zinc and Magnesium in Cadmium-Induced Renal Toxicity in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Nasim Babaknejad

    2014-12-01

    Full Text Available Background: Cadmium (Cd is a heavy metal that has widespread use. It enters the food chain in different ways, including soil and water. Cadmium can cause dysfunction of different body organs. Zinc (Zn and magnesium (Mg supplementation can have protective effects against cadmium toxicity due to their antagonistic and antioxidants properties. This study examines the influence of supplemental Zn and Mg on Cd renal toxicity. Methods: Young male Wistar rats were divided into six groups of five. The Cd group received 1 mg Cd/kg and the control group received 0.5 mg/kg normal saline (i.p.. The other four groups were administered 1 mg/kg Cd+0.5 mg/kg Zn, 1 mg/kg Cd+1.5 mg/kg Zn, 1 mg/kg Cd+ 0.5 mg/kg Mg, and 1 mg/kg Cd+ 1.5 mg/kg Mg (i.p. for 21 days. Then, serum sodium, potassium, urea, creatinine, and protein levels were measured. Results: The results indicated that creatinine and protein levels decreased while urea, sodium, and potassium levels increased as a result of Cd exposure. Co-administered Cd and Zn and Mg decreased urea and increased sodium serum level in comparison to the cadmium group. Treatment by Mg, contrary to co-administered Cd and Zn, reduced serum protein level compared to the cadmium group. Compared to the cadmium treated group, Zn and Mg treatment enhanced serum creatinine level and reduced serum potassium level. Conclusion: The findings seem to suggest that zinc and magnesium compounds, due to their antagonistic and antioxidant activities, can protect Cd renal toxic effects in a dose-dependent manner.

  18. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    Directory of Open Access Journals (Sweden)

    E.M. Kawamoto

    2012-01-01

    Full Text Available Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells to the cytotoxic compounds ferrous sulfate (10 mM, staurosporine (100 and 500 nM, 3-nitropropionic acid (5 mM, and amyloid β-peptide (Aβ25-35; 50 µM. Cells (1 x 10(6 cells/mL were treated with the Wnt-3a recombinant peptide (200 ng/mL for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.

  19. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    International Nuclear Information System (INIS)

    Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 × 106 cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases

  20. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, E.M. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Gleichmann, M. [Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Yshii, L.M.; Sá Lima, L. de [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Mattson, M.P. [Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Scavone, C. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2011-11-25

    Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ{sub 25-35}; 50 µM). Cells (1 × 10{sup 6} cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases.

  1. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes

    International Nuclear Information System (INIS)

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H2O2) and superoxide anion (O2·-) in leaves of Phaseolus aureus and Vicia sativa were investigated. Cadmium at 100 μM significantly increased the production of O2·- and H2O2, as well as the activities of plasma membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the symplastic and apoplastic activities of superoxide dismutase and ascorbate peroxidase in the leaves of both species. Apoplastic guaiacol peroxidase activity was significantly induced in the leaves of both species, particularly in P. aureus exposed to 100 μM Cd. Experiments with diphenylene iodonium as an inhibitor of NADPH oxidase and NaN3 as an inhibitor of peroxidase showed that the majority of Cd-induced reactive oxygen species production in the leaves of both species may involve plasma membrane-bound NADPH oxidase and apoplastic peroxidase. Compared to V. sativa, increases in Cd-induced production of O2·- and H2O2 and activities of NADPH oxidase and apoplastic peroxidase were more pronounced in P. aureus. In contrast, V. sativa had higher leaf symplastic superoxide dismutase and ascorbate peroxidase activities than P. aureus. The results indicated that V. sativa was more tolerant to Cd than P. aureus.

  2. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fenqin [Department of Life Science and Engineering, Hexi University, Zhangye 734000 (China); Zhang Hongxiao; Wang Guiping; Xu Langlai [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2009-08-30

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and superoxide anion (O{sub 2}{center_dot}{sup -}) in leaves of Phaseolus aureus and Vicia sativa were investigated. Cadmium at 100 {mu}M significantly increased the production of O{sub 2}{center_dot}{sup -} and H{sub 2}O{sub 2}, as well as the activities of plasma membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the symplastic and apoplastic activities of superoxide dismutase and ascorbate peroxidase in the leaves of both species. Apoplastic guaiacol peroxidase activity was significantly induced in the leaves of both species, particularly in P. aureus exposed to 100 {mu}M Cd. Experiments with diphenylene iodonium as an inhibitor of NADPH oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the majority of Cd-induced reactive oxygen species production in the leaves of both species may involve plasma membrane-bound NADPH oxidase and apoplastic peroxidase. Compared to V. sativa, increases in Cd-induced production of O{sub 2}{center_dot}{sup -} and H{sub 2}O{sub 2} and activities of NADPH oxidase and apoplastic peroxidase were more pronounced in P. aureus. In contrast, V. sativa had higher leaf symplastic superoxide dismutase and ascorbate peroxidase activities than P. aureus. The results indicated that V. sativa was more tolerant to Cd than P. aureus.

  3. Recent Research Progress in Molecular Mechanisms of Cadmium Induced Carcinogenesis%镉致癌的分子机制研究进展

    Institute of Scientific and Technical Information of China (English)

    吴婧; 董欣敏; 郑燕芳; 张积仁

    2015-01-01

    镉是一种无处不在的重金属环境污染物,广泛用于工业环境中。普通人主要通过摄食、吸烟及饮水等方式摄入镉。1993年国际肿瘤研究机构(IARC)就已将镉及其化合物列为第1类人致癌物,镉的致癌性被广泛研究,大量研究发现镉会提高肺癌、前列腺癌、乳腺癌、消化道肿瘤等肿瘤的患病风险。但至目前为止,镉的致癌分子机制尚不清楚。大量研究认为镉通过以下几方面致癌:氧化应激、抑制DNA损伤修复、DNA异常甲基化、抑制细胞凋亡、影响细胞周期调控、致多种基因异常表达、雌激素样效应、促进肿瘤干细胞生长、慢性炎症刺激。%Cadmium (Cd) is a ubiquitous environmental heavy metal pollutant which causes increasing worldwide concern. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smok-ing, and drinking water. Cadmium has been classified as a human carcinogen by the international agency for re-search on cancer (IARC). In 1993, its carcinogenicity has been long established;most evidence is available for ele-vated risk for lung cancer, prostate cancer, breast cancer, gastroenteric cancer and so on. But the underlying mecha-nisms of cadmium carcinogenesis are still not clear. Many studies have been demonstrated that Cd induces cancer by multiple mechanisms:induction of oxidative stress, inhibition of DNA damage repair as well as apoptosis, aber-rant methylation and gene expression, resulting in cell cycle arrest, as a metalloestrogen, promotion of cancer stem cell growth and induction of cancer via chronic inflammation. This review summarizes the recent advances in the carcinogenic mechanism of cadmium on the molecular medicine level.

  4. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Franzellitti, Silvia [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); Fabbri, Elena [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna (Italy); Kaloyianni, Martha, E-mail: kaloyian@bio.auth.gr [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-01-15

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na{sup +}/H{sup +} exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca{sup 2+}-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and

  5. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    International Nuclear Information System (INIS)

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na+/H+ exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca2+-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and cyclic adenosine-3

  6. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-01-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC–Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC–Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2. PMID:25900618

  7. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis.

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-07-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC-Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2. PMID:25900618

  8. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  9. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  10. Wnt Protein Signaling Reduces Nuclear Acetyl-CoA Levels to Suppress Gene Expression during Osteoblast Differentiation.

    Science.gov (United States)

    Karner, Courtney M; Esen, Emel; Chen, Jiakun; Hsu, Fong-Fu; Turk, John; Long, Fanxin

    2016-06-17

    Developmental signals in metazoans play critical roles in inducing cell differentiation from multipotent progenitors. The existing paradigm posits that the signals operate directly through their downstream transcription factors to activate expression of cell type-specific genes, which are the hallmark of cell identity. We have investigated the mechanism through which Wnt signaling induces osteoblast differentiation in an osteoblast-adipocyte bipotent progenitor cell line. Unexpectedly, Wnt3a acutely suppresses the expression of a large number of genes while inducing osteoblast differentiation. The suppressed genes include Pparg and Cebpa, which encode adipocyte-specifying transcription factors and suppression of which is sufficient to induce osteoblast differentiation. The large scale gene suppression induced by Wnt3a corresponds to a global decrease in histone acetylation, an epigenetic modification that is associated with gene activation. Mechanistically, Wnt3a does not alter histone acetyltransferase or deacetylase activities but, rather, decreases the level of acetyl-CoA in the nucleus. The Wnt-induced decrease in histone acetylation is independent of β-catenin signaling but, rather, correlates with suppression of glucose metabolism in the tricarboxylic acid cycle. Functionally, preventing histone deacetylation by increasing nucleocytoplasmic acetyl-CoA levels impairs Wnt3a-induced osteoblast differentiation. Thus, Wnt signaling induces osteoblast differentiation in part through histone deacetylation and epigenetic suppression of an alternative cell fate. PMID:27129247

  11. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    International Nuclear Information System (INIS)

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation

  12. Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells.

    Science.gov (United States)

    Li, Min; Pi, Huifeng; Yang, Zhiqi; Reiter, Russel J; Xu, Shangcheng; Chen, Xiaowei; Chen, Chunhai; Zhang, Lei; Yang, Min; Li, Yuming; Guo, Pan; Li, Gaoming; Tu, Manyu; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Yu, Zhengping; Zhou, Zhou

    2016-10-01

    Cadmium (Cd), a highly ubiquitous heavy metal, induces neurotoxicity. Melatonin, a major secretory product of the pineal gland, protects against Cd-induced neurotoxicity. However, the mechanism that accounts for this protection remains to be elucidated. Herein, we exposed mouse neuroblastoma cells (Neuro-2a cells) to different concentrations of cadmium chloride (CdCl2 ) (12.5, 25, and 50 μ mol L(-1) ) for 24 hours. We showed that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function, subsequently leading to nerve cell death. In addition, Cd decreases the level of transcription factor EB (TFEB) but induces the nuclear translocation of TFEB, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Moreover, compared to the 50-μ mol L(-1) Cd group, administration of 1 μ mol L(-1) melatonin increased "TFEB-responsive genes" (Pfusion (0.05±0.00 vs 0.21±0.01, Pnuclear translocation (2.81±0.08 vs 3.82±0.05, P<.05). Tfeb siRNA blocked the melatonin-mediated elevation in autophagy-lysosome machinery in Cd-induced neurotoxicity (P<.01). Taken together, these results uncover a potent role for TFEB-mediated autophagy in the pathogenesis of Cd-induced neurotoxicity, suggesting that control of the autophagic pathway by melatonin might provide an important clue for exploring potential targets for novel therapeutics of Cd-induced neurotoxicity. PMID:27396692

  13. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Institute of Scientific and Technical Information of China (English)

    Kenneth Maiese

    2015-01-01

    Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in sig-niifcant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Dia-betes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel target-ing of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and au-tophagy. Pathways that involve insulin-like growth factor-1, ifbroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signal-ing is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  14. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2015-01-01

    Full Text Available Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4 to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  15. Prophylactic role of Aloe vera against radiation and cadmium induced histological alterations in the kidney of Swiss albino mice

    International Nuclear Information System (INIS)

    Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure of radiation. Thus, development of novel and effective approaches using non toxic radioprotectors is of considerable interest for not only in the protection of normal tissue during radio therapy of tumors but also for defence (nuclear wars), nuclear industries, radiation accidents, space flights etc. Adult male Swiss albino mice were exposed to 5.0 Gy gamma radiations in the presence or absence of the Aloe vera. For this purpose 6 to 8 week old male mice were divided into seven groups; group I (sham-irradiated), group II (cadmium chloride), group III (irradiated with 5Gy. Gamma rays), group IV (radiation and cadmium chloride), group V (cadmium chloride and Aloe vera), group VI (radiation and Aloe vera), group VII (radiation, cadmium chloride and Aloe vera). Animals from all the above groups were autopsied at 1, 2, 4, 7, 14 and 28 days post treatment intervals. For histopathological studies kidney was taken out and it's pieces were fixed in Bouins fixative for 24 hours. The tissue was washed in clean water to remove excess of the fixative, dehydrated in graded series of alcohol, cleared in xylene and embedded in paraffin wax. Sections were cut at 5 μm and stained in Harris haematoxyline and alcoholic eosine. In the present experiment histopathological changes were found in the kidney of Swiss albino mice. Severe changes seen in the renal architecture after exposure of 5 Gy of gamma rays were: blurred renal architecture, intracellular oedema, damaged tubules, cytoplasmic degranulation, vacuolation and pycnotic nuclei in the cortical and medullary part. The changes were more marked on day 7, but on day 14 the signs of recovery were observed and on day 28 comparatively better renal architecture was observed. In cadmium chloride treated animals the changes observed were: cytoplasmic degranulation, vacuolation, crenated and pycnotic nuclei. The

  16. Cadmium Toxicity to Ringed Seals (Phoca hispida)

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, R.; Riget, F. F.;

    Cadmium concentrations in kidneys from ringed seals (Phoca hispida) from North West Greenland (Qaanaaq) are high. Concentrations range at level known to induce renal toxic effects (mainly tubulopathy) and demineralisation (osteopenia) of the skeletal system (Fanconi's Syndrome) in humans as well...... the absence of toxic effects of cadmium in ringed seal...

  17. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  18. Sequential Activation and Inactivation of Dishevelled in the Wnt/β-Catenin Pathway by Casein Kinases

    OpenAIRE

    Bernatik, Ondrej; Ganji, Ranjani Sri; Dijksterhuis, Jacomijn P.; Konik, Peter; Cervenka, Igor; Polonio, Tilman; Krejci, Pavel; Schulte, Gunnar; Bryja, Vitezslav

    2011-01-01

    Dishevelled (Dvl) is a key component in the Wnt/β-catenin signaling pathway. Dvl can multimerize to form dynamic protein aggregates, which are required for the activation of downstream signaling. Upon pathway activation by Wnts, Dvl becomes phosphorylated to yield phosphorylated and shifted (PS) Dvl. Both activation of Dvl in Wnt/β-catenin signaling and Wnt-induced PS-Dvl formation are dependent on casein kinase 1 (CK1) δ/ϵ activity. However, the overexpression of CK1 was shown to dissolve Dv...

  19. Dazap2 modulates transcription driven by the Wnt effector TCF-4

    OpenAIRE

    Lukas, Jan; Mazna, Petr; Valenta, Tomas; Doubravska, Lenka; Pospichalova, Vendula; Vojtechova, Martina; Fafilek, Bohumil; Ivanek, Robert; Plachy, Jiri; Novak, Jakub; Korinek, Vladimir

    2009-01-01

    A major outcome of the canonical Wnt/β-catenin-signalling pathway is the transcriptional activation of a specific set of target genes. A typical feature of the transcriptional response induced by Wnt signalling is the involvement of Tcf/Lef factors that function in the nucleus as the principal mediators of signalling. Vertebrate Tcf/Lef proteins perform two well-characterized functions: in association with β-catenin they activate gene expression, and in the absence of Wnt ligands they bind TL...

  20. High glucose and hyperglycemic sera from type 2 diabetic patients impair DC differentiation by inducing ROS and activating Wnt/β-catenin and p38 MAPK.

    Science.gov (United States)

    Gilardini Montani, Maria Saveria; Granato, Marisa; Cuomo, Laura; Valia, Sandro; Di Renzo, Livia; D'Orazi, Gabriella; Faggioni, Alberto; Cirone, Mara

    2016-04-01

    Type 2 is the type of diabetes with higher prevalence in contemporary time, representing about 90% of the global cases of diabetes. In the course of diabetes, several complications can occur, mostly due to hyperglycemia and increased reactive oxygen species (ROS) production. One of them is represented by an increased susceptibility to microbial infections and by a reduced capacity to clear them. Therefore, knowing the impact of hyperglycemia on immune system functionality is of utmost importance for the management of the disease. In this study, we show that medium containing high glucose reduced the in-vitro differentiation of monocytes into functional DCs and their activation mediated by PAMPs or DAMPs. Most importantly, the same effects were mediated by the hyperglycemic sera derived by type 2 diabetic patients, mimicking a more physiologic condition. DC dysfunction caused by hyperglycemia may be involved in the inefficient control of infections observed in diabetic patients, given the pivotal role of these cells in both the innate and adaptive immune response. Searching for the molecular mechanisms underlying DC dysfunction, we found that canonical Wnt/β-catenin and p38 MAPK pathways were activated in the DCs differentiated either in the presence of high glucose or of hyper-glycemic sera. Interestingly, the activation of these pathways and the DC immune dysfunction were partially counteracted by the anti-oxidant quercetin, a flavonoid already known to exert several beneficial effects in diabetes. PMID:26769359

  1. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin.

    Science.gov (United States)

    Mihara, Emiko; Hirai, Hidenori; Yamamoto, Hideki; Tamura-Kawakami, Keiko; Matano, Mami; Kikuchi, Akira; Sato, Toshiro; Takagi, Junichi

    2016-01-01

    Wnt plays important role during development and in various diseases. Because Wnts are lipidated and highly hydrophobic, they can only be purified in the presence of detergents, limiting their use in various in vitro and in vivo assays. We purified N-terminally tagged recombinant Wnt3a secreted from cells and accidentally discovered that Wnt3a co-purified with a glycoprotein afamin derived from the bovine serum included in the media. Wnt3a forms a 1:1 complex with afamin, which remains soluble in aqueous buffer after isolation, and can induce signaling in various cellular systems including the intestical stem cell growth assay. By co-expressing with afamin, biologically active afamin-Wnt complex can be easily obtained in large quantity. As afamin can also solubilize Wnt5a, Wnt3, and many more Wnt subtypes, afamin complexation will open a way to put various Wnt ligands and their signaling mechanisms under a thorough biochemical scrutiny that had been difficult for years. PMID:26902720

  2. Wnt Signaling in Cancer Stem Cell Biology

    Science.gov (United States)

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  3. Chemo preventive action of Liv.52 against radiation and cadmium induced histopathological changes in the jejunum of Swiss albino mice

    International Nuclear Information System (INIS)

    The present century has been an ever-increasing use of nuclear technologies in different fields raising the alarming problem of radiation hazards to living beings including man. An increasing body of evidence indicates that human activities are responsible for global climatic changes, which, in turn, may be directly or indirectly increasing human exposure to environmental hazards. On the other hand, all forms of cadmium are poisonous leading cadmium intoxication under appropriate circumstances. The interaction between radiation and other toxicants represents a field of immense potential importance as their total environmental burden may have greater effects than expected from the sum of their individual impact. In the present study six to eight weeks old male Swiss albino mice were exposed to 2.5 and 5.0 Gy of gamma rays with or without cadmium chloride treatment. The animals of experimental groups were administered Liv.52 for seven days prior to radiation or cadmium chloride treatment. After routine procedure of histology the histopathological changes were observed in the jejunum of Swiss albino mice. The changes included loosened sub-mucosa with hydropic degeneration. Lamina propria exhibited hydropic degeneration, abnormal mitotic figures, pyknotic nuclei and cytoplasmic degranulation in crypt cells, loosened tips and shortened villi. Leucocytic infiltration appeared in lamina propria. Few mitotic figures were observed during the early intervals but were not normal and resulted in mitotic death. Recovery started on day-14 in non-drug treated groups and day-7 in Liv.52 treated groups. After irradiation with various doses of gamma rays, histological changes depend upon the dose of radiation delivered. The important radio-lesions were looseness of musculature, hydropic degeneration in sub-mucosa and lamina propria, hyperaemia and haemorrhage in sub-mucosa, pyknotic cells, cytoplasmic degranulation and vacuolation, abnormal mitotic figures. Karyolysis, karyorrhexis

  4. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  5. Wnt signaling: the good and the bad

    Institute of Scientific and Technical Information of China (English)

    Xi Chen; Jun Yang; Paul M Evans; Chunming Liu

    2008-01-01

    Since the first Wnt gene was identified in 1982,the functions and mechanisms of Wnt signaling have been extensively studied.Wnt signaling is conserved from invertebrates to vertebrates and regulates early embryonic development as well as the homeostasis of adult tissues.In addition,both embryonic stem cells and adult stem cells are regulated by Wnt signaling.Deregulation of Wnt signaling is associated with many human diseases,particularly cancers.In this review,we will discuss in detail the functions of many components involved in the Wnt signal transduction pathway.Then,we will explore what is known about the role of Wnt signaling in stem cells and cancers.

  6. Protective effect of Emblica against radiation and cadmium induced histopathological changes in the brain of Swiss albino mice

    International Nuclear Information System (INIS)

    In the present study six to eight weeks old male Swiss albino mice were exposed to 2.0 and 4.0 Gy of gamma rays with or without cadmium chloride treatment. The animals of experimental groups were administered Emblica for seven days prior to radiation or cadmium chloride treatment. After routine procedure of histology the histopathological changes were observed in the brain of Swiss albino mice. The histopathological changes observed were pycnotic nuclei and crenated cells with condensation of nuclear material resulting into hyperchromatic cells. Hydrocephaly with enlarged lateral ventricles was also noted. Corpus callosum was seen malformed. Thickened meninges and venous congestion were also noticed. In the irradiated brains cytoarchitectonic layers were reduced in depth and showed some degree of intermixing of cells of various laminae. Hematoma was present between the cortex and medulla with numerous pycnotic and necrotic nuclei. Disarray of the cortical tissue with disorientation of cell processes was also evident. Damage in the cortex was noticed in the form of karyolysis, pycnosis and spongy degeneration of the connective tissue with the thickening of meninges. Dilation of blood vessels was also observed at certain places. Quality of these changes remaining the same, but their magnitude increased with dose. With an increase in the dose, time of the onset of recovery is delayed and the time required for complete recovery is longer. After the combined exposure of gamma rays and cadmium chloride, the histological changes were similar but showed higher magnitude than the individual exposure of gamma rays and cadmium chloride. The brain of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. (author)

  7. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice

    OpenAIRE

    Al-Attar, Atef M.

    2011-01-01

    Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of ...

  8. The Wnt antagonist Wif-1 interacts with CTGF and inhibits CTGF activity.

    Science.gov (United States)

    Surmann-Schmitt, Cordula; Sasaki, Takako; Hattori, Takako; Eitzinger, Nicole; Schett, Georg; von der Mark, Klaus; Stock, Michael

    2012-05-01

    Wnt inhibitory factor 1 (Wif-1) is a secreted antagonist of Wnt signalling. We recently demonstrated that this molecule is expressed predominantly in superficial layers of epiphyseal cartilage but also in bone and tendon. Moreover, we showed that Wif-1 is capable of binding to several cartilage-related Wnt ligands and interferes with Wnt3a-dependent Wnt signalling in chondrogenic cells. Here we provide evidence that the biological function of Wif-1 may not be confined to the modulation of Wnt signalling but appears to include the regulation of other signalling pathways. Thus, we show that Wif-1 physically binds to connective tissue growth factor (CTGF/CCN2) in vitro, predominantly by interaction with the C-terminal cysteine knot domain of CTGF. In vivo such an interaction appears also likely since the expression patterns of these two secreted proteins overlap in peripheral zones of epiphyseal cartilage. In chondrocytes CTGF has been shown to induce the expression of cartilage matrix genes such as aggrecan (Acan) and collagen2a1 (Col2a1). In this study we demonstrate that Wif-1 is capable to interfere with CTGF-dependent induction of Acan and Col2a1 gene expression in primary murine chondrocytes. Conversely, CTGF does not interfere with Wif-1-dependent inhibition of Wnt signalling. These results indicate that Wif-1 may be a multifunctional modulator of signalling pathways in the cartilage compartment. PMID:21928342

  9. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures.

    Science.gov (United States)

    Movérare-Skrtic, Sofia; Henning, Petra; Liu, Xianwen; Nagano, Kenichi; Saito, Hiroaki; Börjesson, Anna E; Sjögren, Klara; Windahl, Sara H; Farman, Helen; Kindlund, Bert; Engdahl, Cecilia; Koskela, Antti; Zhang, Fu-Ping; Eriksson, Emma E; Zaman, Farasat; Hammarstedt, Ann; Isaksson, Hanna; Bally, Marta; Kassem, Ali; Lindholm, Catharina; Sandberg, Olof; Aspenberg, Per; Sävendahl, Lars; Feng, Jian Q; Tuckermann, Jan; Tuukkanen, Juha; Poutanen, Matti; Baron, Roland; Lerner, Ulf H; Gori, Francesca; Ohlsson, Claes

    2014-11-01

    The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In contrast, trabecular bone volume is not altered in these mice. Mechanistic studies revealed that WNT16 is osteoblast derived and inhibits human and mouse osteoclastogenesis both directly by acting on osteoclast progenitors and indirectly by increasing expression of osteoprotegerin (Opg) in osteoblasts. The signaling pathway activated by WNT16 in osteoclast progenitors is noncanonical, whereas the pathway activated in osteoblasts is both canonical and noncanonical. Conditional Wnt16 inactivation revealed that osteoblast-lineage cells are the principal source of WNT16, and its targeted deletion in osteoblasts increases fracture susceptibility. Thus, osteoblast-derived WNT16 is a previously unreported key regulator of osteoclastogenesis and fracture susceptibility. These findings open new avenues for the specific prevention or treatment of nonvertebral fractures, a substantial unmet medical need. PMID:25306233

  10. sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer's disease.

    Science.gov (United States)

    Warrier, Sudha; Marimuthu, Raja; Sekhar, Sreeja; Bhuvanalakshmi, G; Arfuso, Frank; Das, Anjan Kumar; Bhonde, Ramesh; Martins, Ralph; Dharmarajan, Arun

    2016-06-01

    The extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer's disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated. A wide acting family of Wnt mediators, secreted frizzled-related proteins (sFRPs), has not been probed so far as molecular indicators of disease occurrence and progression of Alzheimer's. Unlike the effect of the Dickkopf (DKK) family of Wnt antagonists on AD, the sFRP molecules have a more pleiotropic impact on the Wnt signaling cascade and probably have a far-reaching involvement in neurodegeneration. The role of sFRPs has been poorly described in AD, and in this review, we analyze the present status of the role of sFRPs on neurodegeneration, their likely involvement, and potential implications in treatment modalities of AD. This information would provide valuable clues for the development of potential therapeutic targets for aberrant neurodegenerative disorders. PMID:27063405

  11. WNT3 Inhibits Cerebellar Granule Neuron Progenitor Proliferation and Medulloblastoma Formation via MAPK Activation

    Science.gov (United States)

    Ayrault, Olivier; Kim, Jee Hae; Zhu, Xiaodong; Murphy, David A.; Van Aelst, Linda; Roussel, Martine F.; Hatten, Mary E.

    2013-01-01

    During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors. PMID:24303070

  12. A truncated Wnt7a retains full biological activity in skeletal muscle

    Science.gov (United States)

    von Maltzahn, Julia; Zinoviev, Radoslav; Chang, Natasha C.; Bentzinger, C. Florian; Rudnicki, Michael A.

    2013-11-01

    Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.

  13. A Useful Approach To Identify Novel Small Molecule Inhibitors Of Wnt-Dependent Transcription

    OpenAIRE

    Ewan, Kenneth; Pająk, Bożena; Stubbs, Mark; Todd, Helen; Barbeau, Olivier; Quevedo, Camilo; Botfield, Hannah; Young, Rodrigo; Ruddle, Ruth; Samuel, Lee; Battersby, Alysia; Raynaud, Florence; Allen, Nicholas; Wilson, Stephen W; Latinkic, Branko

    2010-01-01

    The Wnt signaling pathway is frequently deregulated in cancer due to mutations in the genes encoding APC, β-catenin and axin. To identify small molecule inhibitors of Wnt signaling as potential therapeutics, a diverse chemical library was screened using a TCF-reporter cell line in which the activity of the pathway was induced at the level of the Disheveled protein. A series of deconvolution studies was used to focus on 3 compound series that selectively killed cancer cell lines with constitut...

  14. β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+ pathway in xenopus gastrulation.

    Directory of Open Access Journals (Sweden)

    Katharina Seitz

    Full Text Available β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca(2+ cascades. Wnt/Planar Cell Polarity and Wnt/Ca(2+ pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca(2+ signaling cascade upstream of Protein Kinase C (PKC and Ca(2+/Calmodulin-dependent Protein Kinase II (CamKII. We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca(2+ signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.

  15. Expression of apoptotic nuclei by ultrastructural terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling and detection of FasL, caspases and PARP protein molecules in cadmium induced acute alveolar cell injury

    International Nuclear Information System (INIS)

    Cadmium causes cellular damage but the exact mechanism of apoptosis in cadmium induced acute lung injury is not clear. We investigated the sequential expression of apoptotic nuclei and detected related molecules in tissue of cadmium-induced acute lung injury. Forty Sprague-Dawley rats were sacrificed at days 1, 3, 7 and 10 after intra-tracheal cadmium injection (2.5 mg/kg). Light microscopic, ultrastructural terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling (TUNEL), and Western blot analysis for detection of FasL, Bid, cytochrome c, caspase 3 and PARP were carried out. Apoptosis occurred at day 1, and markedly decreased at days 3, 7 and 10 (11.8, 2.8, 0.9, 0.5%, respectively) determined by light microscopy and TUNEL assay. Ultrastructural TUNEL revealed two patterns of nuclear morphology according to the apoptotic stage. One pattern showed chromatin fragmentation and apoptotic nuclear body formation. The other pattern had bleb formation in the chromatin, budding with projection out to the nuclear membranes, fragmentation, segregation of chromatin clumps and apoptotic body formation. Western blot analysis showed prominent expression of FasL at days 1 and 3. Expression of Bid, cytochrome c and caspase 3 were prominent at day 1 compared to days 3, 7 and 10. PARP cleavage was prominent at day 1. In conclusion, intra-tracheal cadmium injection showed active alveolar cell apoptosis at day 1. Ultrastructural TUNEL showed various expressions according to the apoptotic nuclear stage. These studies suggest that cadmium-induced alveolar cell apoptosis is mediated by FasL and caspase-dependent mitochondrial apoptosis pathways

  16. CFTR and Wnt/beta-catenin signaling in lung development

    Directory of Open Access Journals (Sweden)

    Love Damon

    2008-07-01

    Full Text Available Abstract Background Cystic fibrosis transmembrane conductance regulator (CFTR was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels. The BAT-gal transgenic reporter mouse line, expressing β-galactosidase under a canonical Wnt/β-catenin-responsive promoter, was used to assess the relative roles of CFTR, Wnt, and parathyroid hormone-related peptide (PTHrP in lung organogenesis. Adenoviruses containing full-length CFTR, a short anti-sense CFTR gene fragment, or a reporter gene as control were used in an intra-amniotic gene therapy procedure to transiently modify CFTR expression in the fetal lung. Results A direct correlation between CFTR expression levels and PTHrP levels was found. An inverse correlation between CFTR and Wnt signaling activities was demonstrated. Conclusion These data are consistent with CFTR participating in the mechanicosensory process essential to regulate Wnt/β-Catenin signaling required for lung organogenesis.

  17. Expression of Wnt/β-Catenin Signaling Pathway and Its Regulatory Role in Type I Collagen with TGF-β1 in Scleral Fibroblasts from an Experimentally Induced Myopia Guinea Pig Model

    Science.gov (United States)

    Li, Min; Yuan, Ying; Chen, Qingzhong; Me, Rao; Gu, Qing; Yu, Yunjie; Sheng, Minjie; Ke, Bilian

    2016-01-01

    Background. To investigate Wnt/β-catenin signaling pathway expression and its regulation of type I collagen by TGF-β1 in scleral fibroblasts from form-deprivation myopia (FDM) guinea pig model. Methods. Wnt isoforms were examined using genome microarrays. Scleral fibroblasts from FDM group and self-control (SC) group were cultured. Wnt isoforms, β-catenin, TGF-β1, and type I collagen expression levels were examined in the two groups with or without DKK-1 or TGF-β1 neutralizing antibody. Results. For genome microarrays, the expression of Wnt3 in FDM group was significantly greater as confirmed in retinal and scleral tissue. The expression of Wnt3 and β-catenin significantly increased in FDM group and decreased significantly with DKK-1. TGF-β1 expression level decreased significantly in FDM group and increased significantly with DKK-1. Along with morphological misalignment inside and outside cells, the amount of type I collagen decreased in FDM group. Furthermore, type I collagen increased and became regular in DKK-1 intervention group, whereas it decreased and rearranged more disorder in TGF-β1 neutralizing antibody intervention group. Conclusions. The activation of Wnt3/β-catenin signaling pathway was demonstrated in primary scleral fibroblasts in FDM. This pathway further reduced the expression of type I collagen by TGF-β1, which ultimately played a role in scleral remodeling during myopia development. PMID:27247798

  18. Protective Effect of Ginsenoside Rg1 on Hematopoietic Stem/Progenitor Cells through Attenuating Oxidative Stress and the Wnt/β-Catenin Signaling Pathway in a Mouse Model of d-Galactose-induced Aging

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-06-01

    Full Text Available Stem cell senescence is an important and current hypothesis accounting for organismal aging, especially the hematopoietic stem cell (HSC. Ginsenoside Rg1 is the main active pharmaceutical ingredient of ginseng, which is a traditional Chinese medicine. This study explored the protective effect of ginsenoside Rg1 on Sca-1+ hematopoietic stem/progenitor cells (HSC/HPCs in a mouse model of d-galactose-induced aging. The mimetic aging mouse model was induced by continuous injection of d-gal for 42 days, and the C57BL/6 mice were respectively treated with ginsenoside Rg1, Vitamin E or normal saline after 7 days of d-gal injection. Compared with those in the d-gal administration alone group, ginsenoside Rg1 protected Sca-1+ HSC/HPCs by decreasing SA-β-Gal and enhancing the colony forming unit-mixture (CFU-Mix, and adjusting oxidative stress indices like reactive oxygen species (ROS, total anti-oxidant (T-AOC, superoxide dismutase (SOD, glutathione peroxidase (GSH-px and malondialdehyde (MDA. In addition, ginsenoside Rg1 decreased β-catenin and c-Myc mRNA expression and enhanced the phosphorylation of GSK-3β. Moreover, ginsenoside Rg1 down-regulated advanced glycation end products (AGEs, 4-hydroxynonenal (4-HNE, phospho-histone H2A.X (r-H2A.X, 8-OHdG, p16Ink4a, Rb, p21Cip1/Waf1 and p53 in senescent Sca-1+ HSC/HPCs. Our findings indicated that ginsenoside Rg1 can improve the resistance of Sca-1+ HSC/HPCs in a mouse model of d-galactose-induced aging through the suppression of oxidative stress and excessive activation of the Wnt/β-catenin signaling pathway, and reduction of DNA damage response, p16Ink4a-Rb and p53-p21Cip1/Waf1 signaling.

  19. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells.

    Science.gov (United States)

    Ploper, Diego; Taelman, Vincent F; Robert, Lidia; Perez, Brian S; Titz, Björn; Chen, Hsiao-Wang; Graeber, Thomas G; von Euw, Erika; Ribas, Antoni; De Robertis, Edward M

    2015-02-01

    Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer. PMID:25605940

  20. Critical review of animal carcinogenesis by cadmium and its inorganic compounds

    International Nuclear Information System (INIS)

    Animal carcinogenic biassays relative to 6 inorganic cadmium substances (cadmium metal, cadmium oxide, cadmium sulfide, cadmium sulfate, cadmium chloride and cadmium acetate) are reviewed (speciation). Critical evaluation of literature data on carcinogenicity has been performed by making reference to E.C. guidelines of good laboratory practice. There are few data on routes relevant for human risk assessment: experiments on inhalation demonstrate lung carcinogenicity of cadmium oxide, cadmium sulfide, cadmium sulfate and cadmium chloride in rats but not in mice nor in hamsters; no carcinogenic effects of cadmium compounds are observed following oral administration. For routes of less or no relevance for human risk assessment, some results are clearly positive: subcutaneous injection induces cancers in situ (various cadmium compounds), testicular tumours (cadmium sulfate and cadmium chloride) and prostatic tumours (cadmium chloride) but such effects are not observed using relevant malignancies in rats. With respect to other no relevant routes (intraperitoneal, intrarenal...) tumours are incidentally produced in situ, but not in remote organs. Numerous studies fail to demonstrate cadmium carcinogenicity, but methodologically acceptable negative ones are very limited in number. Accordingly strain dependent effects and dose effect relationship could not be thoroughly assessed

  1. Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: Influence of elevated dietary iron

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Raymond W.M. [Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3 (Canada); Andres, Jose A. [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada); Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada)

    2011-03-15

    Recent evidences suggest that dietary cadmium (Cd) uptake likely occurs via the dietary iron (Fe) uptake pathway in freshwater fish, at least in part. The present study investigated the interactive effects of dietary Cd and Fe in juvenile rainbow trout (Oncorhynchus mykiss). Fish were treated for four weeks with four different diets: normal Fe, high Fe, normal Fe plus Cd, and high Fe plus Cd. Physiological parameters, tissue-specific Fe and Cd level, plasma Fe status, and tissue-specific mRNA expression of transferrin, metallothioneins (MT-A and MT-B) and heat shock proteins 70 (HSP70a and HSP70b) were analyzed. Exposure to dietary Cd increased Cd burden in the following order: intestine > kidney > stomach > liver > gill > carcass. Interestingly, high dietary Fe reduced Cd accumulation in the stomach and intestine as well as in the wholebody of fish. Dietary Cd increased hepatic transferrin mRNA expression and total Fe binding capacity in the plasma, indicating the effect of Cd on Fe handling in fish. The mRNA expression of MTs and HSP70s was also increased in various tissues following dietary Cd exposure, however the response profile of different MT and HSP70 genes was not consistent among different tissues. In general, MT-A was more responsive to Cd exposure in the intestine and liver, whereas MT-B was more responsive in the kidney. Similarly, HSP70a expression was more sensitive to Cd exposure than HSP70b, particularly in the intestine. Interestingly, high Fe diet suppressed Cd-induced induction of transferrin, MT and HSP70 genes in various tissues. Overall, our study suggests that elevated dietary Fe can reduce Cd accumulation and ameliorate Cd-induced stress responses in freshwater fish.

  2. Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis

    Science.gov (United States)

    Liu, Junxu; Wang, Xinhong; Niu, Cong; Kang, Xueling; Xu, Jie; Zhou, Zhongwei; Sun, Shaoyang; Wang, Xu; Zheng, Xiaojun; Duan, Shengzhong; Yao, Kang; Qian, Ruizhe; Sun, Ning; Chen, Alex; Wang, Rui; Zhang, Jianyi; Chen, Sifeng; Meng, Dan

    2015-01-01

    Rationale Wnt/β-catenin signaling has an important role in the angiogenic activity of endothelial cells (ECs). Bach1 is a transcription factor and is expressed in ECs, but whether Bach1 regulates angiogenesis is unknown. Objective This study evaluated the role of Bach1 in angiogenesis and Wnt/β-catenin signaling. Methods and Results Hind-limb ischemia was surgically induced in Bach1−/− mice and their wild-type littermates and in C57BL/6J mice treated with adenoviruses coding for Bach1 or GFP. Lack of Bach1 expression was associated with significant increases in perfusion and vascular density and in the expression of proangiogenic cytokines in the ischemic hindlimb of mice, with enhancement of the angiogenic activity of ECs (eg, tube formation, migration, and proliferation). Bach1 overexpression impaired angiogenesis in mice with hind-limb ischemia and inhibited Wnt3a-stimulated angiogenic response and the expression of Wnt/β-catenin target genes, such as interleukin-8 and vascular endothelial growth factor, in human umbilical vein ECs. Interleukin-8 and vascular endothelial growth factor were responsible for the antiangiogenic response of Bach1. Immunoprecipitation and GST pull-down assessments indicated that Bach1 binds directly to TCF4 and reduces the interaction of β-catenin with TCF4. Bach1 overexpression reduces the interaction between p300/CBP and β-catenin, as well as β-catenin acetylation, and chromatin immunoprecipitation experiments confirmed that Bach1 occupies the TCF4-binding site of the interleukin-8 promoter and recruits histone deacetylase 1 to the interleukin-8 promoter in human umbilical vein ECs. Conclusions Bach1 suppresses angiogenesis after ischemic injury and impairs Wnt/β-catenin signaling by disrupting the interaction between β-catenin and TCF4 and by recruiting histone deacetylase 1 to the promoter of TCF4-targeted genes. PMID:26123998

  3. Wnt signaling in form deprivation myopia of the mice retina.

    Directory of Open Access Journals (Sweden)

    Mingming Ma

    Full Text Available BACKGROUND: The canonical Wnt signaling pathway plays important roles in cellular proliferation and differentiation, axonal outgrowth, cellular maintenance in retinas. Here we test the hypothesis that elements of the Wnt signaling pathway are involved in the regulation of eye growth and prevention of myopia, in the mouse form-deprivation myopia model. METHODOLOGY/PRINCIPAL FINDINGS: (1 One hundred twenty-five C57BL/6 mice were randomly distributed into form-deprivation myopia and control groups. Form-deprivation myopia (FDM was induced by suturing the right eyelid, while the control group received no treatment. After 1, 2, and 4 weeks of treatment, eyes were assessed in vivo by cycloplegic retinoscopic refraction and axial length measurement by photography or A-scan ultrasonography. Levels of retinal Wnt2b, Fzd5 and β-catenin mRNA and protein were evaluated using RT-PCR and western blotting, respectively. (2 Another 96 mice were divided into three groups: control, drugs-only, and drugs+FDM (by diffuser. Experimentally treated eyes in the last two groups received intravitreal injections of vehicle or the proteins, DKK-1 (Wnt-pathway antagonist or Norrin (Wnt-pathway agonist, once every three days, for 4 injections total. Axial length and retinoscopic refraction were measured on the 14th day of form deprivation. Following form-deprivation for 1, 2, and 4 weeks, FDM eyes had a relatively myopic refractive error, compared with contralateral eyes. There were no significant differences in refractive error between right and left eye in control group. The amounts of Wnt2b, Fzd5 and β-catenin mRNA and protein were significantly greater in form-deprived myopia eyes than in control eyes.DKK-1 (antagonist reduced the myopic shift in refractive error and increase in axial elongation, whereas Norrin had the opposite effect in FDM eyes. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the Wnt2b signaling pathway may play a role in the

  4. Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1).

    Science.gov (United States)

    Tanneberger, Kristina; Pfister, Astrid S; Kriz, Vitezslav; Bryja, Vitezslav; Schambony, Alexandra; Behrens, Jürgen

    2011-06-01

    Amer1/WTX binds to the tumor suppressor adenomatous polyposis coli and acts as an inhibitor of Wnt signaling by inducing β-catenin degradation. We show here that Amer1 directly interacts with the armadillo repeats of β-catenin via a domain consisting of repeated arginine-glutamic acid-alanine (REA) motifs, and that Amer1 assembles the β-catenin destruction complex at the plasma membrane by recruiting β-catenin, adenomatous polyposis coli, and Axin/Conductin. Deletion or specific mutations of the membrane binding domain of Amer1 abolish its membrane localization and abrogate negative control of Wnt signaling, which can be restored by artificial targeting of Amer1 to the plasma membrane. In line, a natural splice variant of Amer1 lacking the plasma membrane localization domain is deficient for Wnt inhibition. Knockdown of Amer1 leads to the activation of Wnt target genes, preferentially in dense compared with sparse cell cultures, suggesting that Amer1 function is regulated by cell contacts. Amer1 stabilizes Axin and counteracts Wnt-induced degradation of Axin, which requires membrane localization of Amer1. The data suggest that Amer1 exerts its negative regulatory role in Wnt signaling by acting as a scaffold protein for the β-catenin destruction complex and promoting stabilization of Axin at the plasma membrane. PMID:21498506

  5. Negative Feedback Loop of Wnt Signaling through Upregulation of Conductin/Axin2 in Colorectal and Liver Tumors

    OpenAIRE

    Lustig, Barbara; Jerchow, Boris; Sachs, Martin; Weiler, Sigrid; Pietsch, Torsten; Karsten, Uwe; van de Wetering, Marc; Clevers, Hans; Schlag, Peter M; Birchmeier, Walter; Behrens, Jürgen

    2002-01-01

    Activation of Wnt signaling through β-catenin/TCF complexes is a key event in the development of various tumors, in particular colorectal and liver tumors. Wnt signaling is controlled by the negative regulator conductin/axin2/axil, which induces degradation of β-catenin by functional interaction with the tumor suppressor APC and the serine/threonine kinase GSK3β. Here we show that conductin is upregulated in human tumors that are induced by β-catenin/Wnt signaling, i.e., high levels of conduc...

  6. WNT7A Regulation by miR-15b in Ovarian Cancer

    Science.gov (United States)

    MacLean, James A.; King, Mandy L.; Okuda, Hiroshi

    2016-01-01

    WNT signaling is well known to play an important role in the regulation of development, cell proliferation and cell differentiation in a wide variety of normal and cancerous tissues. Despite the wealth of knowledge concerning when and where various WNT genes are expressed and downstream events under their control, there is surprisingly little published evidence of how they are regulated. We have recently reported that aberrant WNT7A is observed in serous ovarian carcinomas, and WNT7A is the sole ligand accelerating ovarian tumor progression through CTNNB1 (β-catenin)/TCF signaling in the absence of CTNNB1 mutations. In the present study, we report that WNT7A is a direct target of miR-15b in ovarian cancer. We showed that a luciferase reporter containing the putative binding site of miR-15b in the WNT7A 3’-UTR was significantly repressed by miR-15b. Mutation of the putative binding site of miR-15b in the WNT7A 3’-UTR restored luciferase activity. Furthermore, miR-15b was able to repress increased levels of TOPFLASH activity by WNT7A, but not those induced by S33Y. Additionally, miR-15b dose-dependently decreased WNT7A expression. When we evaluated the prognostic impact of WNT7A and miR-15b expression using TCGA datasets, a significant inverse correlation in which high-expression of WNT7A and low-expression of miR-15b was associated with reduced survival rates of ovarian cancer patients. Treatment with decitabine dose-dependently increased miR-15b expression, and silencing of DNMT1 significantly increased miR-15b expression. These results suggest that WNT7A is post-transcriptionally regulated by miR-15b, which could be down-regulated by promoter hypermethylation, potentially via DNMT1, in ovarian cancer. PMID:27195958

  7. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Science.gov (United States)

    Gong, Yan; Bourhis, Eric; Chiu, Cecilia; Stawicki, Scott; DeAlmeida, Venita I; Liu, Bob Y; Phamluong, Khanhky; Cao, Tim C; Carano, Richard A D; Ernst, James A; Solloway, Mark; Rubinfeld, Bonnee; Hannoush, Rami N; Wu, Yan; Polakis, Paul; Costa, Mike

    2010-01-01

    β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for

  8. WNT-5A and WNT-5B modulate calcium homeostasis in airway smooth muscle

    NARCIS (Netherlands)

    Koopmans, Tim; Kumawat, Kudleer; Van Den Berge, Maarten; Hoffmann, Roland; Halayko, Andrew J.; Gosens, Reinoud

    2014-01-01

    Rationale Airway hyperresponsiveness is a common feature of asthma explained in part by an excessive contractile response of the airway smooth muscle (ASM). The underlying mechanisms are complex and in need of study. WNT-5A and WNT-5B, two members of the WNT signaling pathway, may be of significance

  9. Norcantharidin inhibits Wnt signal pathway via promoter demethylation of WIF-1 in human non-small cell lung cancer.

    Science.gov (United States)

    Xie, Junran; Zhang, Yaping; Hu, Xuming; Lv, Ran; Xiao, Dongju; Jiang, Li; Bao, Qi

    2015-05-01

    Wingless-type (Wnt) family of secreted glycoproteins is a group of signal molecules implicated in oncogenesis. Abnormal activation of Wnt signal pathway is associated with a variety of human cancers, including non-small cell lung cancer (NSCLC). Wnt antagonists, such as the secreted frizzled-related protein (SFRP) family, Wnt inhibitory factor-1 (WIF-1) and cerberus, inhibit Wnt signal pathway by directly binding to Wnt molecules. Norcantharidin (NCTD) is known to possess anticancer activity but less nephrotoxicity than cantharidin. In this study, we found that NCTD inhibited cell proliferation, induced apoptosis, arrested cell cycle and suppressed cell invasion/migration in vitro. Additionally, Wnt signal pathway transcription was also suppressed. NCTD treatment blocked cytoplasmic translocation of beta-catenin into the nucleus. Alterations of apoptosis-related proteins, such as Bax, cleaved caspase-3 (pro-apoptotic) and Bcl-2 (anti-apoptotic), had been detected. Furthermore, the expression levels of WIF-1 and SFRP1 were significantly increased in NCTD-treated groups compared with negative control (NC) groups. Abnormal methylation was observed in NC groups, while NCTD treatment promoted WIF-1 demethylation. The present study revealed that NCTD activated WIF-1 via promoter demethylation, inhibiting the canonical Wnt signal pathway in NSCLC, which may present a new therapeutic target in vivo. PMID:25814287

  10. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    Science.gov (United States)

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants. PMID:23741796

  11. Wnt signaling and colon carcinogenesis: Beyond APC

    Directory of Open Access Journals (Sweden)

    Rani Najdi

    2011-01-01

    Full Text Available Activation of the Wnt signaling pathway via mutation of the adenomatous polyposis coli gene (APC is a critical event in the development of colon cancer. For colon carcinogenesis, however, constitutive signaling through the canonical Wnt pathway is not a singular event. Here we review how canonical Wnt signaling is modulated by intracellular LEF/TCF composition and location, the action of different Wnt ligands, and the secretion of Wnt inhibitory molecules. We also review the contributions of non-canonical Wnt signaling and other distinct pathways in the tumor micro environment that cross-talk to the canonical Wnt pathway and thereby influence colon cancer progression. These ′non-APC′ aspects of Wnt signaling are considered in relation to the development of potential agents for the treatment of patients with colon cancer. Regulatory pathways that influence Wnt signaling highlight how it might be possible to design therapies that target a network of signals beyond that of APC and β-catenin.

  12. A Role for Ethanol-Induced Oxidative Stress in Controlling Lineage Commitment of Mesenchymal Stromal Cells Through Inhibition of Wnt/β-Catenin Signaling

    OpenAIRE

    Chen, Jin-Ran; Lazarenko, Oxana P.; Shankar, Kartik; Blackburn, Michael L; Badger, Thomas M.; Ronis, Martin J.

    2009-01-01

    The mechanisms by which chronic ethanol intake induces bone loss remain unclear. In females, the skeletal response to ethanol varies depending on physiologic status (e.g., cycling, pregnancy, or lactation). Ethanol-induced oxidative stress appears to be a key event leading to skeletal toxicity. In this study, ethanol-containing liquid diets were fed to postlactational female Sprague-Dawley rats intragastrically for 4 weeks beginning at weaning. Ethanol consumption decreased bone mineral densi...

  13. Cadmium-induced toxicity on larvae of the common Asian toad Duttaphrynus melanostictus (Schneider 1799): evidence from empirical trials.

    Science.gov (United States)

    Ranatunge, R A A R; Wijesinghe, M R; Ratnasooriya, W D; Dharmarathne, H A S G; Wijesekera, R D

    2012-07-01

    This paper investigates the toxicity of cadmium (Cd) on young stages of the common Asian toad Duttaphrynus melanostictus (Schneider 1799). Signs of acute toxicity were evident in tadpoles repeatedly exposed to five concentrations ranging from 0.002 to 2 mg L(-1)of Cd which included environmentally relevant levels. Mortality at concentrations of 0.02 mg L(-1) and above was enhanced from 2 % at 0.02 mg L(-1) to 100 % at 1 mg L(-1), in a dose-dependent manner. Significant growth impairment was evident at 0.20 mg L(-1) with the larvae being markedly smaller. Delayed metamorphosis and retarded swimming were also observed. Therefore levels of Cd recorded in some freshwater bodies in Sri Lanka (e.g. 0.2 mg L(-1)) may be detrimental to the young stages of D. melanostictus. PMID:22526988

  14. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells

    International Nuclear Information System (INIS)

    It is well known that hepatic stellate cells (HSC) develop into cells, which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that β-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119, an inhibitor of the glycogen synthase kinase 3β, led to reduced β-catenin phosphorylation, induced nuclear translocation of β-catenin, elevated glutamine synthetase production, impeded synthesis of α-smooth muscle actin and Wnt5a, but promoted the expression of glial fibrillary acidic protein, Wnt10b, and paired-like homeodomain transcription factor 2c. In addition, canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that β-catenin-dependent Wnt signaling maintains the quiescent state of HSC and, similar to stem and progenitor cells, influences their developmental fate

  15. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling.

    Science.gov (United States)

    Heuberger, Julian; Birchmeier, Walter

    2010-02-01

    The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling. Numerous experiments have shown that the loss of cadherin-mediated cell adhesion can promote beta-catenin release and signaling; this is accomplished by proteases, protein kinases and other molecules. Cadherin loss can also signal to several other regulatory pathways. Additionally, many target genes of Wnt signaling influence cadherin adhesion. The most conspicuous of these Wnt target genes encode the transcription factors Twist and Slug, which directly inhibit the E-cadherin gene promoter. Other Wnt/beta-catenin target genes encode metalloproteases or the cell adhesion molecule L1, which favor the degradation of E-cadherin. These factors provide a mechanism whereby cadherin loss and increased Wnt signaling induce epithelial-mesenchymal transition in both carcinomas and development. PMID:20182623

  16. Identification and characterization of a small-molecule inhibitor of Wnt signaling in glioblastoma cells.

    Science.gov (United States)

    De Robertis, Alessandra; Valensin, Silvia; Rossi, Marco; Tunici, Patrizia; Verani, Margherita; De Rosa, Antonella; Giordano, Cinzia; Varrone, Maurizio; Nencini, Arianna; Pratelli, Carmela; Benicchi, Tiziana; Bakker, Annette; Hill, Jeffrey; Sangthongpitag, Kanda; Pendharkar, Vishal; Liu, Boping; Ng, Fui Mee; Then, Siew Wen; Jing Tai, Shi; Cheong, Seong-Moon; He, Xi; Caricasole, Andrea; Salerno, Massimiliano

    2013-07-01

    Glioblastoma multiforme (GBM) is the most common and prognostically unfavorable form of brain tumor. The aggressive and highly invasive phenotype of these tumors makes them among the most anatomically damaging human cancers with a median survival of less than 1 year. Although canonical Wnt pathway activation in cancers has been historically linked to the presence of mutations involving key components of the pathway (APC, β-catenin, or Axin proteins), an increasing number of studies suggest that elevated Wnt signaling in GBM is initiated by several alternative mechanisms that are involved in different steps of the disease. Therefore, inhibition of Wnt signaling may represent a therapeutically relevant approach for GBM treatment. After the selection of a GBM cell model responsive to Wnt inhibition, we set out to develop a screening approach for the identification of compounds capable of modulating canonical Wnt signaling and associated proliferative responses in GBM cells. Here, we show that the small molecule SEN461 inhibits the canonical Wnt signaling pathway in GBM cells, with relevant effects at both molecular and phenotypic levels in vitro and in vivo. These include SEN461-induced Axin stabilization, increased β-catenin phosphorylation/degradation, and inhibition of anchorage-independent growth of human GBM cell lines and patient-derived primary tumor cells in vitro. Moreover, in vivo administration of SEN461 antagonized Wnt signaling in Xenopus embryos and reduced tumor growth in a GBM xenograft model. These data represent the first demonstration that small-molecule-mediated inhibition of Wnt signaling may be a potential approach for GBM therapeutics. PMID:23619303

  17. Identification and characterization of a small molecule inhibitor of WNT signaling in glioblastoma cells

    Science.gov (United States)

    De Robertis, Alessandra; Valensin, Silvia; Rossi, Marco; Tunici, Patrizia; Verani, Margherita; De Rosa, Antonella; Giordano, Cinzia; Varrone, Maurizio; Nencini, Arianna; Pratelli, Carmela; Benicchi, Tiziana; Bakker, Annette; Hill, Jeffrey; Sangthongpitag, Kanda; Pendharkar, Vishal; Boping, Liu; Mee, Ng Fui; Wen, Then Siew; Jing, Tai Shi; Cheong, Seong-Moon; He, Xi; Caricasole, Andrea; Salerno, Massimiliano

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common and prognostically unfavorable form of brain tumor. The aggressive and highly invasive phenotype of these tumors makes them among the most anatomically damaging human cancers with a median survival of less than one year. Although canonical WNT pathway activation in cancers has been historically linked to the presence of mutations involving key components of the pathway (APC, β-CATENIN or AXIN proteins), an increasing number of studies suggest that elevated WNT signaling in GBM is initiated by several alternative mechanisms that are involved in different steps of the disease. Therefore, inhibition of WNT signaling may represent a therapeutically relevant approach for GBM treatment. After the selection of a GBM cell model responsive to WNT inhibition, we set out to develop a screening approach for the identification of compounds capable of modulating canonical WNT signaling and associated proliferative responses in GBM cells. Here we show that the small molecule SEN461 inhibits the canonical WNT signaling pathway in GBM cells, with relevant effects at both molecular and phenotypic levels in vitro and in vivo. These include SEN461-induced AXIN stabilization, increased β-CATENIN phosphorylation/degradation, and inhibition of anchorage-independent growth of human GBM cell lines and patient-derived primary tumor cells in vitro. Moreover, in vivo administration of SEN461 antagonized WNT signaling in Xenopus embryos and reduced tumor growth in a GBM xenograft model. These data represent the first demonstration that small molecule-mediated inhibition of WNT signaling may be a potential approach for GBM therapeutics. PMID:23619303

  18. Combined inadequacies of multiple B-vitamins amplify colonic Wnt-signaling and promote intestinal tumorigenesis in BAT-LacZ X Apc1638N mice

    Science.gov (United States)

    The Wnt pathway is a pivotal signaling cascade in colorectal carcinogenesis. The purpose of this work is to determine whether depletion of folate and other metabolically-related one-carbon vitamins induces in vivo activation of intestinal Wnt signaling, and whether this occurs in parallel with incre...

  19. Altered Wnt Signaling Pathway in Cognitive Impairment Caused by Chronic Intermittent Hypoxia: Focus on Glycogen Synthase Kinase-3β and β-catenin

    Directory of Open Access Journals (Sweden)

    Yue-Ying Pan

    2016-01-01

    Conclusions: Wnt/β-catenin signaling pathway abnormalities possibly play an important role in the development of cognitive deficits among mice exposed to CIH and that LiCl might attenuate CIH-induced cognitive impairment via Wnt/β-catenin signaling pathway.

  20. Cadmium blood concentrations in relation to nutrition.

    Science.gov (United States)

    Krajcovicová-Kudládková, Marica; Ursínyová, Monika; Masánová, Vlasta; Béderová, Alzbeta; Valachovicová, Martina

    2006-09-01

    Cadmium is a toxic element ubiquitous in the environment, which damages biological systems in various ways. The major source of cadmium exposure is food. High cadmium content in the soil leads to high cadmium concentrations in certain plants such as grains (above all surface layers and germs), oil or non-oil seeds, fruit and vegetables. These food commodities are the crucial components of a vegetarian nutrition. Blood cadmium concentrations were measured in two non-smoking population groups: the vegetarian group (n = 80) and the non-vegetarian (control) group of general population on traditional mixed diet (n = 84). The significantly higher blood cadmium content (1.78 +/- 0.22 vs. 0.45 +/- 0.04 microg/l) was measured in vegetarian group. Healthy risk values > 5 microg/l were found in 6 vegetarians vs. no non-vegetarian. The highest cadmium concentration (3.15 +/- 0.77 microg/l) was measured in vegan subgroup (plant food only, n = 10) and that value decreased with increasing animal food consumption (1.75 +/- 0.36 microg/l, lactovegetarian and lactoovovegetarian subgroup/added dairy products and eggs, n = 41/, 1.34 +/- 0.21 microg/I, semivegetarian subgroup /as a previous subgroup and added white meat, n = 291). Risk vegetarians vs. non-risk vegetarians consume significantly higher amounts of whole grain products, grain sprouts and oil seeds. Blood cadmium content is directly influenced by age (r = 0.32, p vegetarianism (r = 0.5, p Vegetarians have significantly higher plasma concentrations of natural antioxidants. The sufficient antioxidative protection against cadmium induced free radical formation in vegetarians may inhibit the harmful effects of greater cadmium intake from plant food. PMID:17152224

  1. Enhancement of canonical Wnt/β-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jiao Liu

    Full Text Available BACKGROUND: The Hepatitis C virus (HCV core protein has been implicated as a potential oncogene or a cofactor in HCV-related hepatocellular carcinoma (HCC, but the underlying mechanisms are unknown. Overactivation of the Wnt/β-catenin signaling is a major factor in oncogenesis of HCC. However, the pathogenesis of HCV core-associated Wnt/β-catenin activation remains to be further characterized. Therefore, we attempted to determine whether HCV core protein plays an important role in regulating Wnt/β-catenin signaling in HCC cells. METHODOLOGY: Wnt/β-catenin signaling activity was investigated in core-expressing hepatoma cells. Protein and gene expression were examined by Western blot, immunofluorescence staining, RT-qPCR, and reporter assay. PRINCIPAL FINDINGS: HCV core protein significantly enhances Tcf-dependent transcriptional activity induced by Wnt3A in HCC cell lines. Additionally, core protein increases and stabilizes β-catenin levels in hepatoma cell line Huh7 through inactivation of GSK-3β, which contributes to the up-regulation of downstream target genes, such as c-Myc, cyclin D1, WISP2 and CTGF. Also, core protein increases cell proliferation rate and promotes Wnt3A-induced tumor growth in the xenograft tumor model of human HCC. CONCLUSIONS/SIGNIFICANCE: HCV core protein enhances Wnt/β-catenin signaling activity, hence playing an important role in HCV-associated carcinogenesis.

  2. Rab8a vesicles regulate Wnt ligand delivery and Paneth cell maturation at the intestinal stem cell niche.

    Science.gov (United States)

    Das, Soumyashree; Yu, Shiyan; Sakamori, Ryotaro; Vedula, Pavan; Feng, Qiang; Flores, Juan; Hoffman, Andrew; Fu, Jiang; Stypulkowski, Ewa; Rodriguez, Alexis; Dobrowolski, Radek; Harada, Akihiro; Hsu, Wei; Bonder, Edward M; Verzi, Michael P; Gao, Nan

    2015-06-15

    Communication between stem and niche supporting cells maintains the homeostasis of adult tissues. Wnt signaling is a crucial regulator of the stem cell niche, but the mechanism that governs Wnt ligand delivery in this compartment has not been fully investigated. We identified that Wnt secretion is partly dependent on Rab8a-mediated anterograde transport of Gpr177 (wntless), a Wnt-specific transmembrane transporter. Gpr177 binds to Rab8a, depletion of which compromises Gpr177 traffic, thereby weakening the secretion of multiple Wnts. Analyses of generic Wnt/β-catenin targets in Rab8a knockout mouse intestinal crypts indicate reduced signaling activities; maturation of Paneth cells - a Wnt-dependent cell type - is severely affected. Rab8a knockout crypts show an expansion of Lgr5(+) and Hopx(+) cells in vivo. However, in vitro, the knockout enteroids exhibit significantly weakened growth that can be partly restored by exogenous Wnts or Gsk3β inhibitors. Immunogold labeling and surface protein isolation identified decreased plasma membrane localization of Gpr177 in Rab8a knockout Paneth cells and fibroblasts. Upon stimulation by exogenous Wnts, Rab8a-deficient cells show ligand-induced Lrp6 phosphorylation and transcriptional reporter activation. Rab8a thus controls Wnt delivery in producing cells and is crucial for Paneth cell maturation. Our data highlight the profound tissue plasticity that occurs in response to stress induced by depletion of a stem cell niche signal. PMID:26015543

  3. Protective Effect of Ginsenoside Rg1 on Hematopoietic Stem/Progenitor Cells through Attenuating Oxidative Stress and the Wnt/β-Catenin Signaling Pathway in a Mouse Model of d-Galactose-induced Aging.

    Science.gov (United States)

    Li, Jing; Cai, Dachuan; Yao, Xin; Zhang, Yanyan; Chen, Linbo; Jing, Pengwei; Wang, Lu; Wang, Yaping

    2016-01-01

    Stem cell senescence is an important and current hypothesis accounting for organismal aging, especially the hematopoietic stem cell (HSC). Ginsenoside Rg1 is the main active pharmaceutical ingredient of ginseng, which is a traditional Chinese medicine. This study explored the protective effect of ginsenoside Rg1 on Sca-1⁺ hematopoietic stem/progenitor cells (HSC/HPCs) in a mouse model of d-galactose-induced aging. The mimetic aging mouse model was induced by continuous injection of d-gal for 42 days, and the C57BL/6 mice were respectively treated with ginsenoside Rg1, Vitamin E or normal saline after 7 days of d-gal injection. Compared with those in the d-gal administration alone group, ginsenoside Rg1 protected Sca-1⁺ HSC/HPCs by decreasing SA-β-Gal and enhancing the colony forming unit-mixture (CFU-Mix), and adjusting oxidative stress indices like reactive oxygen species (ROS), total anti-oxidant (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and malondialdehyde (MDA). In addition, ginsenoside Rg1 decreased β-catenin and c-Myc mRNA expression and enhanced the phosphorylation of GSK-3β. Moreover, ginsenoside Rg1 down-regulated advanced glycation end products (AGEs), 4-hydroxynonenal (4-HNE), phospho-histone H2A.X (r-H2A.X), 8-OHdG, p16(Ink4a), Rb, p21(Cip1/Waf1) and p53 in senescent Sca-1⁺ HSC/HPCs. Our findings indicated that ginsenoside Rg1 can improve the resistance of Sca-1⁺ HSC/HPCs in a mouse model of d-galactose-induced aging through the suppression of oxidative stress and excessive activation of the Wnt/β-catenin signaling pathway, and reduction of DNA damage response, p16(Ink4a)-Rb and p53-p21(Cip1/Waf1) signaling. PMID:27294914

  4. Macrophage-derived IL-1β stimulates Wnt signaling and growth of colon cancer cells; a crosstalk interrupted by vitamin D3

    OpenAIRE

    Kaler, Pawan; Augenlicht, Leonard; Klampfer, Lidija

    2009-01-01

    Tumor associated macrophages mediate the link between inflammation and cancer progression. Here we showed that macrophage-derived soluble factors induce canonical Wnt signaling in colon cancer cells and promote their growth. Tumor cells induced the release of IL-1β from macrophages, which induced phosphorylation of GSK3β, stabilized β-catenin, enhanced TCF-dependent gene activation, and induced the expression of Wnt target genes in tumor cells. Neutralization experiments using anti IL-1β spec...

  5. Orchestrating Wnt signalling for metabolic liver zonation.

    Science.gov (United States)

    Birchmeier, Walter

    2016-04-27

    Wnt/β-catenin signalling is an important regulator of liver development, zonation and regeneration. The cell surface complex RSPO-LGR4/5-ZNF3/RNF43 is now shown to direct Wnt/β-catenin signalling in orchestrating the division of the liver into functionally distinct metabolic zones, providing insights into the mechanisms that influence organ development and regeneration. PMID:27117330

  6. Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling

    Directory of Open Access Journals (Sweden)

    Jin-A Kim

    2015-05-01

    Full Text Available Mesenchymal stromal cells (MSCs have been extensively utilized for various cell therapeutic trials, but the signals regulating their stromal function remain largely unclear. Here, we show that canonical Wnt signals distinctively regulate MSCs in a biphasic manner depending on signal intensity, i.e., MSCs exhibit proliferation and progenitor self-renewal under low Wnt/β-catenin signaling, whereas they exhibit enhanced osteogenic differentiation with priming to osteoblast-like lineages under high Wnt/β-catenin signaling. Moreover, low or high levels of β-catenin in MSCs distinctly regulated the hematopoietic support of MSCs to promote proliferation or the undifferentiated state of hematopoietic progenitors, respectively. A gene expression study demonstrated that different intracellular levels of β-catenin in MSCs induce distinct transcriptomic changes in subsets of genes belonging to different gene function categories. Different β-catenin levels also induced differences in intracellular levels of the β-catenin co-factors, Tcf-1 and Lef-1. Moreover, nano-scale mass spectrometry of proteins that co-precipitated with β-catenin revealed distinctive spectra of proteins selectively interacting with β-catenin at specific expression levels. Together, these results show that Wnt/β-catenin signals can coax distinct transcription milieu to induce different transcription profiles in MSCs depending on the signal intensity and that fine-tuning of the canonical Wnt signaling intensity can regulate the phase-specific functionality of MSCs.

  7. Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin mediated transcription in human breast tumor cells

    OpenAIRE

    Tinsley, Heather N.; Gary, Bernard D.; Adam B. Keeton; Lu, Wenyan; Li, Yonghe; Piazza, Gary A.

    2011-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) such as sulindac sulfide (SS) display promising antineoplastic properties, but toxicities resulting from cyclooxygenase (COX) inhibition limit their clinical use. While COX inhibition is responsible for the anti-inflammatory activity of SS, recent studies suggest that phosphodiesterase (PDE) 5 inhibition and activation of cGMP signaling are closely associated with its ability to induce apoptosis of tumor cells. However, the underlying mechanisms r...

  8. Wnt signalling pathway parameters for mammalian cells.

    Science.gov (United States)

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters

  9. Wnt signalling pathway parameters for mammalian cells.

    Directory of Open Access Journals (Sweden)

    Chin Wee Tan

    Full Text Available Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated

  10. The function of BCL9 in Wnt/β-catenin signaling and colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Worm Jesper

    2008-07-01

    Full Text Available Abstract Background Most cases of colorectal cancer are initiated by hyperactivation of the Wnt/β-catenin pathway due to mutations in the APC tumour suppressor, or in β-catenin itself. A recently discovered component of this pathway is Legless, which is essential for Wnt-induced transcription during Drosophila development. Limited functional information is available for its two mammalian relatives, BCL9 and B9L/BCL9-2: like Legless, these proteins bind to β-catenin, and RNAi-mediated depletion of B9L/BCL9-2 has revealed that this protein is required for efficient β-catenin-mediated transcription in mammalian cell lines. No loss-of-function data are available for BCL9. Methods We have used overexpression of dominant-negative forms of BCL9, and RNAi-mediated depletion, to study its function in human cell lines with elevated Wnt pathway activity, including colorectal cancer cells. Results We found that BCL9 is required for efficient β-catenin-mediated transcription in Wnt-stimulated HEK 293 cells, and in the SW480 colorectal cancer cell line whose Wnt pathway is active due to APC mutation. Dominant-negative mutants of BCL9 indicated that its function depends not only on its β-catenin ligand, but also on an unknown ligand of its C-terminus. Finally, we show that BCL9 and B9L are both Wnt-inducible genes, hyperexpressed in colorectal cancer cell lines, indicating that they are part of a positive feedback loop. Conclusion BCL9 is required for efficient β-catenin-mediated transcription in human cell lines whose Wnt pathway is active, including colorectal cancer cells, indicating its potential as a drug target in colorectal cancer.

  11. Biphasic modulation of Wnt signaling supports efficient foregut endoderm formation from human pluripotent stem cells.

    Science.gov (United States)

    Hoepfner, Jeannine; Kleinsorge, Mandy; Papp, Oliver; Ackermann, Mania; Alfken, Susanne; Rinas, Ursula; Solodenko, Wladimir; Kirschning, Andreas; Sgodda, Malte; Cantz, Tobias

    2016-05-01

    Pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are of great promise in regenerative medicine, including molecular studies of disease mechanisms, if the affected cell type can be authentically generated during in vitro differentiation. Most existing protocols aim to mimic embryonic development steps by the supplementation of specific cytokines and small molecules, but the involved signaling pathways need further exploration. In this study, we investigated enhanced initial activation of Wnt signaling for definitive endoderm formation and subsequent rapid shutdown of Wnt signaling for proper foregut endoderm specification using 3 μM CHIR99021 and 0.5 μg/mL of secreted frizzled-related protein 5 (sFRP-5) for biphasic modulation of the Wnt pathway. The definitive endoderm and foregut endoderm differentiation capabilities of Wnt pathway-modulated cells were determined based on the expression levels of the endodermal transcription factors SOX17 and FOXA2 and those of the transcription activator GATA4 and the α-fetoprotein (AFP) gene, respectively. Furthermore, the resulting biphasic Wnt pathway modulation was investigated at the protein level by analyzing phosphorylation of glycogen synthase kinase 3 beta (GSK3β) and β-catenin. Finally, Wnt target gene expression was determined using an improved lentiviral reporter construct that enabled robust T-cell transcription factor 4 (TCF4)/lymphoid enhancer-binding factor 1 (LEF1)-mediated luciferase expression in differentiating pluripotent stem cells. In conclusion, we demonstrated robust, homogeneous, and efficient derivation of foregut endodermal cells by inducing a biphasic modulation of the Wnt signaling pathway. PMID:26861571

  12. The function of BCL9 in Wnt/β-catenin signaling and colorectal cancer cells

    International Nuclear Information System (INIS)

    Most cases of colorectal cancer are initiated by hyperactivation of the Wnt/β-catenin pathway due to mutations in the APC tumour suppressor, or in β-catenin itself. A recently discovered component of this pathway is Legless, which is essential for Wnt-induced transcription during Drosophila development. Limited functional information is available for its two mammalian relatives, BCL9 and B9L/BCL9-2: like Legless, these proteins bind to β-catenin, and RNAi-mediated depletion of B9L/BCL9-2 has revealed that this protein is required for efficient β-catenin-mediated transcription in mammalian cell lines. No loss-of-function data are available for BCL9. We have used overexpression of dominant-negative forms of BCL9, and RNAi-mediated depletion, to study its function in human cell lines with elevated Wnt pathway activity, including colorectal cancer cells. We found that BCL9 is required for efficient β-catenin-mediated transcription in Wnt-stimulated HEK 293 cells, and in the SW480 colorectal cancer cell line whose Wnt pathway is active due to APC mutation. Dominant-negative mutants of BCL9 indicated that its function depends not only on its β-catenin ligand, but also on an unknown ligand of its C-terminus. Finally, we show that BCL9 and B9L are both Wnt-inducible genes, hyperexpressed in colorectal cancer cell lines, indicating that they are part of a positive feedback loop. BCL9 is required for efficient β-catenin-mediated transcription in human cell lines whose Wnt pathway is active, including colorectal cancer cells, indicating its potential as a drug target in colorectal cancer

  13. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Ju; Xu, Yan-Ming; Du, Ji-Ying [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Huang, Dong-Yang [Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Lau, Andy T.Y., E-mail: andytylau@stu.edu.cn [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China)

    2014-02-28

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl{sub 2}-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  14. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    International Nuclear Information System (INIS)

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl2-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  15. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper, lead and cadmium.

    Science.gov (United States)

    Lin, Haiying; Sun, Tao; Zhou, Yi; Zhang, Xiaomei

    2016-08-15

    To investigate the potential influences of anthropogenic pollutants, we evaluated the responses of the intertidal seagrass Zostera japonica to three heavy metals: copper (Cu), lead (Pb), and cadmium (Cd). Z. japonica was exposed to various concentrations of Cu, Pb, and Cd (0, 0.5, 5, 50μM) over seven days. The effects were then analyzed using the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and lipid peroxidation measured using malondialdehyde (MDA) as proxy. Metal accumulation in the above-ground tissues and phenotypic changes were also investigated. Our results revealed that heavy metal concentration increased in seagrass exposed to high levels of metals. Z. japonica has great potential for metal accumulation and a suitable candidate for the decontamination of moderately Cu contaminated bodies of water and can also potentially enhanced efforts of environmental decontamination, either through phytoextraction abilities or by functioning as an indicator for monitoring programs that use SOD, CAT, GPX, POD and MDA as biomarkers. PMID:27287861

  16. Toxicological effects induced by cadmium in gills of Manila clam ruditapes philippinarum using NMR-based metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbao; Liu, Xiaoli; You, Liping; Zhou, Di [Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai (China); The Graduate School of Chinese Academy of Sciences, Beijing (China); Yu, Junbao; Zhao, Jianmin; Wu, Huifeng [Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai (China); Feng, Jianghua [Department of Electronic Science, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen (China)

    2011-11-15

    Cadmium (Cd) has become an important heavy metal contaminant in the sediment and seawater along the Bohai Sea and been of great ecological risk due to its toxic effects to marine organisms. In this work, the toxicological effects caused by environmentally relevant concentrations (10 and 40 {mu}g L{sup -1}) of Cd were studied in the gill tissues of Manila clam Ruditapes philippinarum after exposure for 24, 48, and 96 h. Both low (10 {mu}g L{sup -1}) and high (40 {mu}g L{sup -1}) doses of Cd caused the disturbances in energy metabolism and osmotic regulation and neurotoxicity based on the metabolic biomarkers such as succinate, alanine, branched chain amino acids, betaine, hypotaurine, and glutamate in clam gills after 24 h of exposure. However, the recovery of toxicological effects of Cd after exposure for 96 h was obviously observed in clam to Cd exposures. Overall, these results indicated that NMR-based metabolomics was applicable to elucidate the toxicological effects of heavy metal contaminants in the marine bioindicator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Cadmium-induced and trans-generational changes in the cultivable and total seed endophytic community of Arabidopsis thaliana.

    Science.gov (United States)

    Truyens, S; Beckers, B; Thijs, S; Weyens, N; Cuypers, A; Vangronsveld, J

    2016-05-01

    Trans-generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well-known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd-exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd-exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications. PMID:26577608

  18. Impact of iron status on cadmium uptake in suckling piglets

    International Nuclear Information System (INIS)

    Low iron status is known to increase the uptake of dietary cadmium in both adolescents and adults and there are indications that cadmium is absorbed from the intestine by the two major iron transporters divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1). In addition, it has been suggested that duodenal metallothionein (MT) may limit the transport of cadmium across the intestinal epithelium. The present investigation was undertaken to examine whether iron status influences cadmium absorption in newborns by applying a model of suckling piglets and the possible roles of duodenal DMT1, FPN1 and MT. An oral cadmium dose (20 μg/kg body weight) was given daily for 6 consecutive days on postnatal days (PNDs) 10-15 to iron-deficient or iron-supplemented piglets. The cadmium dose was chosen to keep the cadmium level at a realistically low but still detectable level, and without inducing any adverse health effects in the piglets. As indicators of cadmium uptake, cadmium levels in blood and kidneys were measured on PND 16 by inductively coupled plasma-mass spectrometry (ICP-MS). Cadmium levels in blood were statistically significantly correlated with cadmium levels in kidneys. The cadmium uptake was not higher in iron-deficient suckling piglets; rather, we detected a higher cadmium uptake in the iron-supplemented ones. The expression and localisation of DMT1, FPN1 and MT were not affected by iron status and could therefore not explain the findings. Our results suggest that there are developmental differences in the handling of both iron and cadmium in newborns as compared to adults

  19. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation

    Directory of Open Access Journals (Sweden)

    Halleskog Carina

    2012-05-01

    Full Text Available Abstract Background WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/β-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits β-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. Methods Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-35 S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. Results Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric Gi/o proteins to reduce cyclic AMP levels and to activate a Gi/o protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2 axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. Conclusions

  20. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    International Nuclear Information System (INIS)

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  1. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzóska, Malgorzata M., E-mail: Malgorzata.Brzoska@umb.edu.pl; Rogalska, Joanna

    2013-10-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  2. The Wnt pathway: emerging anticancer strategies.

    Science.gov (United States)

    Gupta, Aman; Verma, Anukriti; Mishra, Ashutosh K; Wadhwa, Gulshan; Sharma, Sanjeev K; Jain, Chakresh K

    2013-05-01

    The canonical Wnt cascade has emerged as a critical regulator of cancer cells. Activation of the Wnt signaling pathway has also been associated with stem cell, thus raising the possibility of i