WorldWideScience

Sample records for cadmium induces wnt

  1. Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Wolff Natascha A

    2010-05-01

    Full Text Available Abstract Background The class 1 carcinogen cadmium (Cd2+ disrupts the E-cadherin/β-catenin complex of epithelial adherens junctions (AJs and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/β-catenin signaling are known to contribute to carcinogenesis. Results We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC. Cd2+ (25 μM, 3-9 h caused nuclear translocation of β-catenin and triggered a Wnt response measured by TOPflash reporter assays. Cd2+ reduced the interaction of β-catenin with AJ components (E-cadherin, α-catenin and increased binding to the transcription factor TCF4 of the Wnt pathway, which was upregulated and translocated to the nucleus. While Wnt target genes (c-Myc, cyclin D1 and ABCB1 were up-regulated by Cd2+, electromobility shift assays showed increased TCF4 binding to cyclin D1 and ABCB1 promoter sequences with Cd2+. Overexpression of wild-type and mutant TCF4 confirmed Cd2+-induced Wnt signaling. Wnt signaling elicited by Cd2+ was not observed in confluent non-proliferating cells, which showed increased E-cadherin expression. Overexpression of E-cadherin reduced Wnt signaling, PTC proliferation and Cd2+ toxicity. Cd2+ also induced reactive oxygen species dependent expression of the pro-apoptotic ER stress marker and Wnt suppressor CHOP/GADD153 which, however, did not abolish Wnt response and cell viability. Conclusions Cd2+ induces Wnt signaling in PTC. Hence, Cd2+ may facilitate carcinogenesis of PTC by promoting Wnt pathway-mediated proliferation and survival of pre-neoplastic cells.

  2. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors

    Science.gov (United States)

    Zhou, W-J; Xu, N; Kong, L; Sun, S-C; Xu, X-F; Jia, M-Z; Wang, Y; Chen, Z-Y

    2016-01-01

    Wnts-related signaling pathways have been reported to play roles in the pathogenesis of stress-induced depression-like behaviors. However, there is relatively few direct evidence to indicate the effect of Wnt ligands on this process. Here, we investigated the role of Wnts in mediating chronic restraint stress (CRS)-induced depression-like behaviors. We found that CRS induced a significant decrease in the expression of Wnt2 and Wnt3 in the ventral hippocampus (VH) but not in the dorsal hippocampus. Knocking down Wnt2 or Wnt3 in the VH led to impaired Wnt/β-catenin signaling, neurogenesis deficits and depression-like behaviors. In contrast, overexpression of Wnt2 or Wnt3 reversed CRS-induced depression-like behaviors. Moreover, Wnt2 and Wnt3 activated cAMP response element-binding protein (CREB) and there was CREB-dependent positive feedback between Wnt2 and Wnt3. Finally, fluoxetine treatment increased Wnt2 and Wnt3 levels in the VH and knocking down Wnt2 or Wnt3 abolished the antidepressant effect of fluoxetine. Taken together, our study indicates essential roles for Wnt2 and Wnt3 in CRS-induced depression-like behaviors and antidepressant. PMID:27622936

  3. Wnt signaling induces epithelial differentiation during cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Hocking Anne

    2006-01-01

    Full Text Available Abstract Background Cutaneous wound repair in adult mammals does not regenerate the original epithelial architecture and results in altered skin function. We propose that lack of regeneration may be due to the absence of appropriate molecular signals to promote regeneration. In this study, we investigated the regulation of Wnt signaling during cutaneous wound healing and the consequence of activating either the beta-catenin-dependent or beta-catenin-independent Wnt signaling on epidermal architecture during wound repair. Results We determined that the expression of Wnt ligands that typically signal via the beta-catenin-independent pathway is up-regulated in the wound while the beta-catenin-dependent Wnt signaling is activated in the hair follicles adjacent to the wound edge. Ectopic activation of beta-catenin-dependent Wnt signaling with lithium chloride in the wound resulted in epithelial cysts and occasional rudimentary hair follicle structures within the epidermis. In contrast, forced expression of Wnt-5a in the deeper wound induced changes in the interfollicular epithelium mimicking regeneration, including formation of epithelia-lined cysts in the wound dermis, rudimentary hair follicles and sebaceous glands, without formation of tumors. Conclusion These findings suggest that adult interfollicular epithelium is capable of responding to Wnt morphogenic signals necessary for restoring epithelial tissue patterning in the skin during wound repair.

  4. Immunohistochemical study of hair follicle stem cells in regenerated hair follicles induced by Wnt10b

    Science.gov (United States)

    Zhang, Yiming; Xing, Yizhan; Guo, Haiying; Ma, Xiaogen; Li, Yuhong

    2016-01-01

    The regulation of the periodic regeneration of hair follicles is complicated. Although Wnt10b has been reported to induce hair follicle regeneration, the characteristics of induced hair follicles, especially the target cells of Wnt10b, have not yet been clearly elucidated. Thus, we systematically evaluated the expression and proliferation patterns of Wnt10b-induced hair follicles. We found that Wnt10b promoted the proliferation of hair follicle stem cells from 24 hours after AdWnt10b injection. Seventy-two hours after AdWnt10b injection, cells outside of bulge area began to proliferate. When the induced hair follicle entered full anagen, although the hair follicle stem cells were normal, canonical Wnt signaling was maintained in the hair precortex cells. Our results reveal that the target cells that overexpressed Wnt10b included hair follicle stem cells, hair precortex cells, and matrix cells.

  5. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  6. A wound-induced Wnt expression program controls planarian regeneration polarity.

    Science.gov (United States)

    Petersen, Christian P; Reddien, Peter W

    2009-10-06

    Regeneration requires specification of the identity of new tissues to be made. Whether this process relies only on intrinsic regulative properties of regenerating tissues or whether wound signaling provides input into tissue repatterning is not known. The head-versus-tail regeneration polarity decision in planarians, which requires Wnt signaling, provides a paradigm to study the process of tissue identity specification during regeneration. The Smed-wntP-1 gene is required for regeneration polarity and is expressed at the posterior pole of intact animals. Surprisingly, wntP-1 was expressed at both anterior- and posterior-facing wounds rapidly after wounding. wntP-1 expression was induced by all types of wounds examined, regardless of whether wounding prompted tail regeneration. Regeneration polarity was found to require new expression of wntP-1. Inhibition of the wntP-2 gene enhanced the polarity phenotype due to wntP-1 inhibition, with new expression of wntP-2 in regeneration occurring subsequent to expression of wntP-1 and localized only to posterior-facing wounds. New expression of wntP-2 required wound-induced wntP-1. Finally, wntP-1 and wntP-2 expression changes occurred even in the absence of neoblast stem cells, which are required for regeneration, suggesting that the role of these genes in polarity is independent of and instructive for tail formation. These data indicate that wound-induced input is involved in resetting the normal polarized features of the body axis during regeneration.

  7. Protective effect of Wnt-5a against amyloid beta-induced memory impairment in rats

    Institute of Scientific and Technical Information of China (English)

    Guili Zhang; Lu Lu; Yaping Ge; Fang Deng; Ying Zhang; Jiachun Feng

    2011-01-01

    Recent studies suggest that the activation of the Wnt signaling pathway improves memory function in rats. This study investigated the effects of Wnt-5a on amyloid β (Aβ)-induced cognitive impairment. Aβ25-35 was injected into the rat right lateral ventricle to induce Alzheimer's disease-associated pathology, and Wnt-5a was injected as a potential therapeutic treatment. Immunofluorescence staining showed that compared with normal rats, Aβ25-35 significantly decreased postsynaptic density-95 protein expression in the rat hippocampal CA1 region, but Wnt-5a pretreatment blocked this decrease. This study shows that Wnt-5a can reduce Aβ-induced cognitive impairment, and that it has the potential to be a new therapeutic strategy for the treatment of Alzheimer's disease.

  8. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Lu, Desheng; Choi, Michael Y; Yu, Jian; Castro, Januario E; Kipps, Thomas J; Carson, Dennis A

    2011-08-09

    Salinomycin, an antibiotic potassium ionophore, has been reported recently to act as a selective breast cancer stem cell inhibitor, but the biochemical basis for its anticancer effects is not clear. The Wnt/β-catenin signal transduction pathway plays a central role in stem cell development, and its aberrant activation can cause cancer. In this study, we identified salinomycin as a potent inhibitor of the Wnt signaling cascade. In Wnt-transfected HEK293 cells, salinomycin blocked the phosphorylation of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and induced its degradation. Nigericin, another potassium ionophore with activity against cancer stem cells, exerted similar effects. In otherwise unmanipulated chronic lymphocytic leukemia cells with constitutive Wnt activation nanomolar concentrations of salinomycin down-regulated the expression of Wnt target genes such as LEF1, cyclin D1, and fibronectin, depressed LRP6 levels, and limited cell survival. Normal human peripheral blood lymphocytes resisted salinomycin toxicity. These results indicate that ionic changes induced by salinomycin and related drugs inhibit proximal Wnt signaling by interfering with LPR6 phosphorylation, and thus impair the survival of cells that depend on Wnt signaling at the plasma membrane.

  9. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter.

    Science.gov (United States)

    Filali, Mohammed; Cheng, Ningli; Abbott, Duane; Leontiev, Vladimir; Engelhardt, John F

    2002-09-06

    Members of the Wnt family of secreted molecules have been established as key factors in determining cell fate and morphogenic signaling. It has long been recognized that Wnt induces morphogenic signaling through the Tcf/LEF-1 cascade by regulating free intracellular levels of beta-catenin, a co-factor for Tcf/LEF-1 transcription factors. In the present study, we have demonstrated that Wnt-3A can also directly induce transcription from the LEF-1 promoter. This induction was dependent on glycogen synthase kinase 3beta inactivation, a rise in free intracellular beta-catenin, and a short 110-bp Wnt-responsive element (WRE) in the LEF-1 promoter. Linear and internal deletion of this WRE led to a dramatic increase in constitutive LEF-1 promoter activity and loss of Wnt-3A responsiveness. In isolation, the 110-bp WRE conferred context-independent Wnt-3A or beta-catenin(S37A) responsiveness to a heterologous SV40 promoter. Studies expressing dominant active and negative forms of LEF-1, beta-catenin, GSK-3beta, and beta-catenin/LEF-1 fusions suggest that Wnt-3A activates the LEF-1 promoter through a beta-catenin-dependent and LEF-1-independent process. Wnt-3A expression also induced multiple changes in the binding of factors to the WRE and suggests that regulatory mechanisms may involve modulation of a multiprotein complex. In summary, these results provide evidence for transcriptional regulation of the LEF-1 promoter by Wnt and enhance the mechanistic understanding of Wnt/beta-catenin signaling in the regulation of LEF-1-dependent developmental processes.

  10. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  11. Cadmium-induced ectopic apoptosis in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Po Kwok; Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2003-02-01

    In this study, we tested the hypothesis that cadmium-induced developmental toxicity was mediated via ectopic occurrence of apoptosis during embryonic development. We employed confocal microscopy to acquire images of whole-mount staining of apoptotic cells in zebrafish embryo exposed to 100 {mu}M cadmium from 5 hours post fertilisation (hpf) to 28 hpf. Three-dimensional reconstruction of the images was performed and the spatial and temporal distributions of apoptotic cells in the embryos were compared. In cadmium-treated embryos with varying degrees of gross developmental malformations, significantly higher numbers of apoptotic cells were detected with this method. In order to detect the precise locations of apoptotic cells, we performed terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay in sectioned embryos. In the degenerating neural tube of cadmium-treated embryos apoptotic cells were detected, while in the healthy neural tube of the untreated controls no apoptotic cells were found. We then employed flow cytometry to investigate whether cadmium exposure would affect the dynamics of apoptosis or induce any abnormalities in cell-cycle progression. It appeared that cadmium did not induce cell-cycle arrest. The percentages of apoptotic cells did not differ in the two groups at 13, 16 or 19 hpf. At 28 hpf, however, a significantly higher percentage of apoptotic cells were found in the cadmium-treated group. Exposure to cadmium, therefore, induced ectopic apoptosis at 28 hpf without affecting the dynamics of apoptosis at earlier developmental stages. (orig.)

  12. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice.

    Science.gov (United States)

    Jin, Yuling; Wang, Wang; Chai, Sanbao; Liu, Jie; Yang, Ting; Wang, Jun

    2015-12-01

    Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment.

  13. Cadmium induces transcription independently of intracellular calcium mobilization.

    Directory of Open Access Journals (Sweden)

    Brooke E Tvermoes

    Full Text Available BACKGROUND: Exposure to cadmium is associated with human pathologies and altered gene expression. The molecular mechanisms by which cadmium affects transcription remain unclear. It has been proposed that cadmium activates transcription by altering intracellular calcium concentration ([Ca(2+](i and disrupting calcium-mediated intracellular signaling processes. This hypothesis is based on several studies that may be technically problematic; including the use of BAPTA chelators, BAPTA-based fluorescent sensors, and cytotoxic concentrations of metal. METHODOLOGY/PRINCIPAL FINDING: In the present report, the effects of cadmium on [Ca(2+](i under non-cytotoxic and cytotoxic conditions was monitored using the protein-based calcium sensor yellow cameleon (YC3.60, which was stably expressed in HEK293 cells. In HEK293 constitutively expressing YC3.60, this calcium sensor was found to be insensitive to cadmium. Exposing HEK293::YC3.60 cells to non-cytotoxic cadmium concentrations was sufficient to induce transcription of cadmium-responsive genes but did not affect [Ca(2+](i mobilization or increase steady-state mRNA levels of calcium-responsive genes. In contrast, exposure to cytotoxic concentrations of cadmium significantly reduced intracellular calcium stores and altered calcium-responsive gene expression. CONCLUSIONS/SIGNIFICANCE: These data indicate that at low levels, cadmium induces transcription independently of intracellular calcium mobilization. The results also support a model whereby cytotoxic levels of cadmium activate calcium-responsive transcription as a general response to metal-induced intracellular damage and not via a specific mechanism. Thus, the modulation of intracellular calcium may not be a primary mechanism by which cadmium regulates transcription.

  14. Gadolinium chloride pretreatment ameliorates acute cadmium-induced hepatotoxicity.

    Science.gov (United States)

    Kyriakou, Loukas G; Tzirogiannis, Konstantinos N; Demonakou, Maria D; Kourentzi, Kalliopi T; Mykoniatis, Michael G; Panoutsopoulos, Georgios I

    2013-08-01

    Cadmium is a known industrial and environmental pollutant. It causes hepatotoxicity upon acute administration. Features of cadmium-induced acute hepatoxicity encompass necrosis, apoptosis, peliosis and inflammatory infiltration. Gadolinium chloride (GdCl3) may prevent cadmium-induced hepatotoxicity by suppressing Kupffer cells. The effect of GdCl3 pretreatment on a model of acute cadmium-induced liver injury was investigated. Male Wistar rats 4-5 months old were injected intraperitoneally with normal saline followed by cadmium chloride (CdCl2; 6.5 mg/kg) or GdCl3 (10 mg/kg) followed by CdCl2 (6.5 mg/kg; groups I and II, respectively). Rats of both the groups were killed at 9, 12, 16, 24, 48 and 60 h after cadmium intoxication. Liver sections were analyzed for necrosis, apoptosis, peliosis and mitoses. Liver regeneration was also evaluated by tritiated thymidine incorporation into hepatic DNA. Serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were also determined. Hepatic necrosis, hepatocyte and nonparenchymal cell apoptosis and macroscopic and microscopic types of peliosis hepatis were minimized by gadolinium pretreatment. Serum levels of AST and ALT were also greatly diminished in rats of group II. Tritiated thymidine incorporation into hepatic DNA was increased in gadolinium pretreatment rats. Kupffer cell activation was minimal in both the groups of rats. Gadolinium pretreatment attenuates acute cadmium-induced liver injury in young Wistar rats, with mechanisms other than Kupffer cell elimination.

  15. Pea3 transcription factors and wnt1-induced mouse mammary neoplasia.

    Directory of Open Access Journals (Sweden)

    Rebecca Baker

    Full Text Available The role of the PEA3 subfamily of Ets transcription factors in breast neoplasia is controversial. Although overexpression of PEA3 (E1AF/ETV4, and of the related factors ERM (ETV5 and ER81 (ETV1, have been observed in human and mouse breast tumors, PEA3 factors have also been ascribed a tumor suppressor function. Here, we utilized the MMTV/Wnt1 mouse strain to further interrogate the role of PEA3 transcription factors in mammary tumorigenesis based on our previous observation that Pea3 is highly expressed in MMTV/Wnt1 mammary tumors. Pea3 expression in mouse mammary tissues was visualized using a Pea3(NLSlacZ reporter strain. In normal mammary glands, Pea3 expression is predominantly confined to myoepithelial cells. Wnt1 transgene expression induced marked amplification of this cell compartment in nontumorous mammary glands, accompanied by an apparent increase in Pea3 expression. The pattern of Pea3 expression in MMTV/Wnt1 mammary glands recapitulated the cellular profile of activated beta-catenin/TCF signaling, which was visualized using both beta-catenin immunohistochemistry and the beta-catenin/TCF-responsive reporter Axin2(NLSlacZ. To test the requirement for PEA3 factors in Wnt1-induced tumorigenesis, we employed a mammary-targeted dominant negative PEA3 transgene, DeltaNPEA3En. Expression of DeltaNPEA3En delayed early-onset tumor formation in MMTV/Wnt1 virgin females (P = 0.03, suggesting a requirement for PEA3 factor function for Wnt1-driven tumor formation. Consistent with this observation, expression of the DeltaNPEA3En transgene was profoundly reduced in mammary tumors compared to nontumorous mammary glands from bigenic MMTV/Wnt1, MMTV/DeltaNPEA3En mice (P = 0.01. Our data provide the first description of Wnt1-mediated expansion of the Pea3-expressing myoepithelial compartment in nontumorous mammary glands. Consistent with this observation, mammary myoepithelium was selectively responsive to Wnt1. Together these data suggest the MMTV/Wnt

  16. Canonical Wnt pathway inhibitor ICG-001 induces cytotoxicity of multiple myeloma cells in Wnt-independent manner.

    Directory of Open Access Journals (Sweden)

    Eileen R Grigson

    Full Text Available Canonical Wnt signaling has been implicated in the regulation of multiple myeloma (MM growth. Here, we investigated whether the targeting of this pathway with a novel pharmacological inhibitor ICG-001 would result in an anti-tumor effect and improvement of chemosensitivity in MM. As expected, ICG-001 specifically down-regulated β-catenin/TCF-mediated transcription in MM cells. Treatment with ICG-001 resulted in growth arrest and apoptosis in MM cell lines and primary MM cells. Moreover, ICG-001 enhanced the cytotoxic effects of doxorubicin and melphalan and abrogated chemoresistance of MM cells to these chemotherapeutics induced by bone marrow stroma. The cytotoxic effect of ICG-001 was caspase-dependent and mediated through transcriptional up-regulation of BH3-only pro-apoptotic members of the Bcl-2 family Noxa and Puma but not through inhibition of canonical Wnt signaling. ICG-001 selectively induced apoptosis in primary MM cells but did not affect non-MM cells of the bone marrow microenvironment. Experiments using a xenograft model of MM showed substantial anti-tumor effects of this compound in vivo. Thus, our study demonstrated that the small molecule inhibitor ICG-001 has strong anti-MM effects and could be developed further for therapeutic intervention in this disease.

  17. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis.

    Science.gov (United States)

    Maruyama, Eri Ohfuchi; Yu, H-M Ivy; Jiang, Ming; Fu, Jiang; Hsu, Wei

    2013-01-01

    Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for production of this proliferative signal operating within normal and malignant tissues remains poorly understood. Here we report that Wnt production mediated by Gpr177 is essential for mammary morphogenesis. The loss of Gpr177 interferes with mammary stem cells, leading to deficiencies in cell proliferation and differentiation. Genetic analysis further demonstrates an indispensable role of Gpr177 in Wnt-induced tumorigenesis. The Gpr177-deficiency mice are resistant to malignant transformation. This study not only demonstrates the necessity of Wnt in mammary organogenesis but also provides a proof-of-principle for targeting of Gpr177 as a potential new treatment for human diseases with aberrant Wnt stimulation.

  18. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Eri Ohfuchi Maruyama

    Full Text Available Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for production of this proliferative signal operating within normal and malignant tissues remains poorly understood. Here we report that Wnt production mediated by Gpr177 is essential for mammary morphogenesis. The loss of Gpr177 interferes with mammary stem cells, leading to deficiencies in cell proliferation and differentiation. Genetic analysis further demonstrates an indispensable role of Gpr177 in Wnt-induced tumorigenesis. The Gpr177-deficiency mice are resistant to malignant transformation. This study not only demonstrates the necessity of Wnt in mammary organogenesis but also provides a proof-of-principle for targeting of Gpr177 as a potential new treatment for human diseases with aberrant Wnt stimulation.

  19. Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Renyue Bao

    Full Text Available Constitutive Wnt signalling is characterized by excessive levels of β-catenin protein and is a frequent occurrence in cancer. APC and Axin are key components of the β-catenin destruction complex that acts to promote β-catenin degradation. The levels of Axin are in turn controlled by tankyrases, members of the PARP-family of poly-ADP-ribosylation enzymes. In colorectal cancer cells, which typically harbor APC mutations, inhibition of tankyrase activity promotes Axin stabilization and attenuates Wnt signalling. Here, we examined the effect of inhibiting tankyrases in breast cancer cells with normal APC. We show that application of the small molecule tankyrase inhibitor, XAV939 or siRNA-mediated abrogation of tankyrase expression increases Axin1 and Axin2 protein levels and attenuates Wnt-induced transcriptional responses in several breast cancer lines. In MDA-MB-231 cells, inhibiton of tankyrase activity also attenuate Wnt3a induced cell migration. Moreover, in both MDA-MB-231 and colorectal cancer cells, XAV939 inhibits cell growth under conditions of serum-deprivation. However, the presence of serum prevents this growth inhibitory effect, although inhibition of Wnt-induced transcriptional and migratory responses was maintained. These results indicate that stabilization of Axin by inhibition of tankyrases alone, may not be an effective means to block tumor cell growth and that combinatorial therapeutic approaches should be considered.

  20. Cadmium exposure induces hematuria in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Seok [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Kim, Myounghee, E-mail: dkkim73@gmail.com [Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do 461-713 (Korea, Republic of); Lee, Su Mi [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jung Pyo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Sejoong [Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 463-707 (Korea, Republic of); Joo, Kwon Wook [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lim, Chun Soo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Yon Su; Kim, Dong Ki [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  1. Wnt10b 诱导再生毛囊的表达特性研究%Expression characteristics in regenerating hair follicles induced by Wnt10b

    Institute of Scientific and Technical Information of China (English)

    星懿展; 郭海英; 马小艮; 李玉红

    2016-01-01

    目的:研究 Wnt10b 诱导再生毛囊的表达特性及诱导作用机制。方法 HEK-293细胞内扩增并用氯化铯梯度离心纯化 Wnt10b 过表达腺病毒及对照腺病毒,皮内注射至 C57BL/6J 小鼠背部皮肤,在处理后2.5、5、7、9、14、28 d 时取材,HE 染色及免疫组化染色观察毛囊结构特征、信号通路表达特征及增殖特性。结果HE 染色发现,AdWnt10b 处理组从第5天开始出现新生毛囊结构,正常生长,第28天左右进入退化期。免疫组化染色发现,AdWnt10b 处理组从处理后5 d 开始新生毛囊具有 AE15表达,随着毛囊生长而增加,至处理后28 d开始减少。在 AdWnt10b 处理后5 d,观察到β连环素的核表达,Lef1特异性表达于毛芽和毛母质部位,且全为核表达。在 AdWnt10b 处理后28 d,Lef1表达减弱。AdWnt10b 处理后2.5 d 即可见 Ki67表达于表皮和毛囊外根鞘。处理后2.5、7、9、14 d 均在隆突区见到 Ki67的表达;从处理后7 d 开始,Ki67表达于毛母质细胞。结论Wnt10b 诱导的再生毛囊具有正常的毛囊结构,Wnt10b 激活了经典 Wnt 信号通路,其作用的靶细胞是毛囊干细胞及其子代细胞。%Objective To investigate expression characteristics in regenerating hair follicles induced by Wnt10b, and to explore mechanisms underlying Wnt10b-induced regeneration of hair follicles. Methods Both adenovirus containing the Wnt10b gene(AdWnt10b)and that containing the green fluorescent protein-encoding gene(AdGFP)were amplified in HEK-293 cells and purified by caesium chloride density gradient centrifugation. A total of 36 C57BL/6J mice were randomly and equally divided into the AdWnt10b group and AdGFP group to be intracutaneously injected with AdWnt10b and AdGFP on the back respectively. Three mice were sacrificed on day 2.5, 5, 7, 9, 14 and 28 after the injection separately, and skin samples were resected from the injected sites subsequently. Hematoxylin and

  2. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  3. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum.

    Science.gov (United States)

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2012-01-10

    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  4. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  5. Wnt1 is epistatic to Id2 in inducing mammary hyperplasia, ductal side-branching, and tumors in the mouse

    Directory of Open Access Journals (Sweden)

    Yokota Yoshifumi

    2004-12-01

    Full Text Available Abstract Background During pregnancy, the mammary glands from Id2 mutant animals are deficient in lobulo-alveolar development. This failure of development is believed to be due to a proliferation defect. Methods We have asked whether functional Id2 expression is necessary for Wnt induced mammary hyperplasia, side branching, and cancer, by generating mice expressing a Wnt1 transgene in an Id2 mutant background. Results We show in this work that forced expression of Wnt1 in the mammary gland is capable of overcoming the block to proliferation caused by the absence of Id2. We also show that Wnt1 expression is able to cause mammary tumors in an Id2 mutant background. Conclusions We conclude that functional Id2 expression is not required for Wnt1 to induce mammary hyperplasia and mammary tumors.

  6. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells

    Science.gov (United States)

    Akhade, Vijay Suresh; Dighe, Shrinivas Nivrutti; Kataruka, Shubhangini; Rao, Manchanahalli R. Satyanarayana

    2016-01-01

    Long non coding RNAs (lncRNAs) have emerged as important regulators of various biological processes. LncRNAs also behave as response elements or targets of signaling pathway(s) mediating cellular function. Wnt signaling is important in regulating mammalian spermatogenesis. Mrhl RNA negatively regulates canonical Wnt pathway and gets down regulated upon Wnt signaling activation in mouse spermatogonial cells. Also, mrhl RNA regulates expression of genes pertaining to Wnt pathway and spermatogenesis by binding to chromatin. In the present study, we delineate the detailed molecular mechanism of Wnt signaling induced mrhl RNA down regulation in mouse spermatogonial cells. Mrhl RNA has an independent transcription unit and our various experiments like Chromatin Immunoprecipitation (in cell line as well as mouse testis) and shRNA mediated down regulation convincingly show that β-catenin and TCF4, which are the key effector proteins of the Wnt signaling pathway are required for down regulation of mrhl RNA. We have identified Ctbp1 as the co-repressor and its occupancy on mrhl RNA promoter depends on both β-catenin and TCF4. Upon Wnt signaling activation, Ctbp1 mediated histone repression marks increase at the mrhl RNA promoter. We also demonstrate that Wnt signaling induced mrhl RNA down regulation results in an up regulation of various meiotic differentiation marker genes. PMID:26446991

  7. The abnormal Wnt/β-cateninsignalingpathway in injury induced by opioid dependence and alleviations of adanon

    Institute of Scientific and Technical Information of China (English)

    Shi-Chao Xu; Peng Huang

    2015-01-01

    Objective:The present research aimed to explore the abnormal Wnt/β-Catenin signaling pathway in injury induced by opioid dependence and alleviations of adanon.Methods:80 cases of opioid dependence patients who received adanon treatment in our hospital were analyzed. The expression of Wnt/β-Catenin signaling pathway key proteins and TNF-αα as well as IL2/4 was detected by western blotting. 40 cases of healthy subjects in our hospital were taken as the internal the control group.Results:The expression of Wnt4,β-Catenin, TNF-α as well as IL2/4 was up-regulated greatly in patients before treatment with a statistical difference. Those abnormalities were alleviated after medication of adanon which also signified a statistical difference when compared with the level before medication.Conclusion:Over-activated Wnt/β-Catenin and up-regulated TNF-α as well as IL2/4 were involved in the injury induced by opioid and adanon exerts injury restoration by normalizing these abnormal expressions.

  8. Prednisolone induces the Wnt signalling pathway in 3T3-L1 adipocytes.

    Science.gov (United States)

    Fleuren, Wilco W M; Linssen, Margot M L; Toonen, Erik J M; van der Zon, Gerard C M; Guigas, Bruno; de Vlieg, Jacob; Dokter, Wim H A; Ouwens, D Margriet; Alkema, Wynand

    2013-05-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in this are not completely understood. We used a combination of transcriptomics, antibody arrays and bioinformatics approaches to characterize prednisolone-induced alterations in gene expression and adipokine secretion, which could underlie metabolic dysfunction in 3T3-L1 adipocytes. Several pathways, including cytokine signalling, Akt signalling, and Wnt signalling were found to be regulated at multiple levels, showing that these processes are targeted by prednisolone. These results suggest that mechanisms by which prednisolone induce insulin resistance include dysregulation of wnt signalling and immune response processes. These pathways may provide interesting targets for the development of improved glucocorticoids.

  9. Wnt and EGF pathways act together to induce C. elegans male hook development.

    Science.gov (United States)

    Yu, Hui; Seah, Adeline; Herman, Michael A; Ferguson, Edwin L; Horvitz, H Robert; Sternberg, Paul W

    2009-03-15

    Comparative studies of vulva development between Caenorhabditis elegans and other nematode species have provided some insight into the evolution of patterning networks. However, molecular genetic details are available only in C. elegans and Pristionchus pacificus. To extend our knowledge on the evolution of patterning networks, we studied the C. elegans male hook competence group (HCG), an equivalence group that has similar developmental origins to the vulval precursor cells (VPCs), which generate the vulva in the hermaphrodite. Similar to VPC fate specification, each HCG cell adopts one of three fates (1 degree, 2 degrees, 3 degrees), and 2 degrees HCG fate specification is mediated by LIN-12/Notch. We show that 2 degrees HCG specification depends on the presence of a cell with the 1 degree fate. We also provide evidence that Wnt signaling via the Frizzled-like Wnt receptor LIN-17 acts to specify the 1 degree and 2 degrees HCG fate. A requirement for EGF signaling during 1 degree fate specification is seen only when LIN-17 activity is compromised. In addition, activation of the EGF pathway decreases dependence on LIN-17 and causes ectopic hook development. Our results suggest that WNT plays a more significant role than EGF signaling in specifying HCG fates, whereas in VPC specification EGF signaling is the major inductive signal. Nonetheless, the overall logic is similar in the VPCs and the HCG: EGF and/or WNT induce a 1 degree lineage, and LIN-12/NOTCH induces a 2 degrees lineage. Wnt signaling is also required for execution of the 1 degree and 2 degrees HCG lineages. lin-17 and bar-1/beta-catenin are preferentially expressed in the presumptive 1 degree cell P11.p. The dynamic subcellular localization of BAR-1-GFP in P11.p is concordant with the timing of HCG fate determination.

  10. High glucose induces podocyte injury via enhanced (prorenin receptor-Wnt-β-catenin-snail signaling pathway.

    Directory of Open Access Journals (Sweden)

    Caixia Li

    Full Text Available (Prorenin receptor (PRR expression is upregulated in diabetes. We hypothesized that PRR contributes to podocyte injury via activation of Wnt-β-catenin-snail signaling pathway. Mouse podocytes were cultured in normal (5 mM or high (25 mM D-glucose for 3 days. Compared to normal glucose, high glucose significantly decreased mRNA and protein expressions of podocin and nephrin, and increased mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail, respectively. Confocal microscopy studies showed significant reduction in expression and reorganization of podocyte cytoskeleton protein, F-actin, in response to high glucose. Transwell functional permeability studies demonstrated significant increase in albumin flux through podocytes monolayer with high glucose. Cells treated with high glucose and PRR siRNA demonstrated significantly attenuated mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail; enhanced expressions of podocin mRNA and protein, improved expression and reorganization of F-actin, and reduced transwell albumin flux. We conclude that high glucose induces podocyte injury via PRR-Wnt-β-catenin-snail signaling pathway.

  11. Wnt signaling induces differentiation of progenitor cells in organotypic keratinocyte cultures

    Directory of Open Access Journals (Sweden)

    Liu Bob Y

    2007-02-01

    Full Text Available Abstract Background Interfollicular skin develops normally only when the activity of the progenitor cells in the basal layer is counterbalanced by the exit of cells into the suprabasal layers, where they differentiate and cornify to establish barrier function. Distinct stem and progenitor compartments have been demonstrated in hair follicles and sebaceous glands, but there are few data to describe the control of interfollicular progenitor cell activity. Wnt signaling has been shown to be an important growth-inducer of stem cell compartments in skin and many other tissues. Results Here, we test the effect of ectopic Wnt1 expression on the behavior of interfollicular progenitor cells in an organotypic culture model, and find that Wnt1 signaling inhibits their growth and promotes terminal differentiation. Conclusion These results are consistent with the phenotypes reported for transgenic mice engineered to have gain or loss of function of Wnt signaling in skin, which would recommend our culture model as an accurate one for molecular analysis. Since it is known that canonical ligands are expressed in skin, it is likely that this pathway normally regulates the balance of growth and differentiation, and suggests it could be important to pathogenesis.

  12. Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Stoeppler, M. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Piscator, M. (Karolinska Inst., Stockholm (Sweden). Dept. of Environmental Hygiene) (eds.)

    1988-01-01

    The proceedings contain the 18 papers presented at the workshop. They are dealing with the following themes: Toxicity, carcinogenesis and metabolism of cadmium, epidemiology; environmental occurrence; quantitative analysis and quality assessment. (MG) With 57 figs., 79 tabs.

  13. Folate rescues lithium-, homocysteine- and Wnt3A-induced vertebrate cardiac anomalies

    Science.gov (United States)

    Han, Mingda; Serrano, Maria C.; Lastra-Vicente, Rosana; Brinez, Pilar; Acharya, Ganesh; Huhta, James C.; Chen, Ren; Linask, Kersti K.

    2009-01-01

    SUMMARY Elevated plasma homocysteine (HCy), which results from folate (folic acid, FA) deficiency, and the mood-stabilizing drug lithium (Li) are both linked to the induction of human congenital heart and neural tube defects. We demonstrated previously that acute administration of Li to pregnant mice on embryonic day (E)6.75 induced cardiac valve defects by potentiating Wnt–β-catenin signaling. We hypothesized that HCy may similarly induce cardiac defects during gastrulation by targeting the Wnt–β-catenin pathway. Because dietary FA supplementation protects from neural tube defects, we sought to determine whether FA also protects the embryonic heart from Li- or HCy-induced birth defects and whether the protection occurs by impacting Wnt signaling. Maternal elevation of HCy or Li on E6.75 induced defective heart and placental function on E15.5, as identified non-invasively using echocardiography. This functional analysis of HCy-exposed mouse hearts revealed defects in tricuspid and semilunar valves, together with altered myocardial thickness. A smaller embryo and placental size was observed in the treated groups. FA supplementation ameliorates the observed developmental errors in the Li- or HCy-exposed mouse embryos and normalized heart function. Molecular analysis of gene expression within the avian cardiogenic crescent determined that Li, HCy or Wnt3A suppress Wnt-modulated Hex (also known as Hhex) and Islet-1 (also known as Isl1) expression, and that FA protects from the gene misexpression that is induced by all three factors. Furthermore, myoinositol with FA synergistically enhances the protective effect. Although the specific molecular epigenetic control mechanisms remain to be defined, it appears that Li or HCy induction and FA protection of cardiac defects involve intimate control of the canonical Wnt pathway at a crucial time preceding, and during, early heart organogenesis. PMID:19638421

  14. Molecular cloning, characterization and expression analysis of Wnt4, Wnt5, Wnt6, Wnt7, Wnt10 and Wnt16 from Litopenaeus vannamei.

    Science.gov (United States)

    Zhang, Shuang; Li, Chao-Zheng; Yang, Qi-Hui; Dong, Xiao-Hui; Chi, Shu-Yan; Liu, Hong-Yu; Shi, Li-Li; Tan, Bei-Ping

    2016-07-01

    The Wnt (Wg-type MMTV integration site) signaling represents as the negative regulator of virus-induced innate immune responses. Wnt genes act as ligands to activate the Wnt signaling. To know more about the information of Wnt genes in invertebrates, Litopenaeus vannamei Wnt genes (LvWnts) were identified and characterized. In this study, Six Wnt genes (LvWnt4, LvWnt5, LvWnt6, LvWnt7, LvWnt10 and LvWnt16) were obtained in L. vannamei. The complete cDNAs open reading frames (ORF) of LvWnt4, LvWnt5, LvWnt6, LvWnt7, LvWnt10 and LvWnt16 were 1077 bp, 1107 bp, 1350 bp, 1047 bp, 1509 bp and 1158 bp (GenBank accession no. KU169896, KU169897, KU169898, KU169899, KU169900 and KU169901), encoding 358, 368, 449, 348, 502 and 385 amino acid (aa) residues respectively. All the six members of LvWnts contain a Wnt1 domain, which is considered as an important feature of Wnt gene family. ClustalW analysis with amino acid sequences revealed that the proportion of identity with other species was more than 48% for all the LvWnts except LvWnt10 (36-41%). The phylogenetic relationship analysis illustrated that different subtype of Wnts formed their own separate branches and were placed in branch of invertebrates respectively with strong bootstrap support. The constitutive expressions of LvWnts were confirmed by RT-PCR in all the examined five developmental stages and eleven tissues of L. vannamei with different express patterns. LvWnt4, LvWnt5 and LvWnt10 were expressed highest in nerve while LvWnt6, LvWnt7 and LvWnt16 were expressed highest in intestine, stomach and gill, respectively. In addition, all the LvWnts were regulated by white spot syndrome virus (WSSV) challenges at different levels in hepatopancreas, gill and hemocytes, suggesting that Wnt genes may play a role in the defense against pathogenic virus infection in innate immune of L. vannamei.

  15. Interruption of Wnt signaling in Muller cells ameliorates ischemia-induced retinal neovascularization.

    Directory of Open Access Journals (Sweden)

    Kelu Kevin Zhou

    Full Text Available Retinal Müller cells are major producers of inflammatory and angiogenic cytokines which contribute to diabetic retinopathy (DR. Over-activation of the Wnt/β-catenin pathway has been shown to play an important pathogenic role in DR. However, the roles of Müller cell-derived Wnt/β-catenin signaling in retinal neovascularization (NV and DR remain undefined. In the present study, mice with conditional β-catenin knockout (KO in Müller cells were generated and subjected to oxygen-induced retinopathy (OIR and streptozotocin (STZ-induced diabetes. Wnt signaling was evaluated by measuring levels of β-catenin and expression of its target genes using immunoblotting. Retinal vascular permeability was measured using Evans blue as a tracer. Retinal NV was visualized by angiography and quantified by counting pre-retinal nuclei. Retinal pericyte loss was evaluated using retinal trypsin digestion. Electroretinography was performed to examine visual function. No abnormalities were detected in the β-catenin KO mice under normal conditions. In OIR, retinal levels of β-catenin and VEGF were significantly lower in the β-catenin KO mice than in littermate controls. The KO mice also had decreased retinal NV and vascular leakage in the OIR model. In the STZ-induced diabetic model, disruption of β-catenin in Müller cells attenuated over-expression of inflammatory cytokines and ameliorated pericyte dropout in the retina. These findings suggest that Wnt signaling activation in Müller cells contributes to retinal NV, vascular leakage and inflammation and represents a potential therapeutic target for DR.

  16. Wnt3A Induces GSK-3β Phosphorylation and β-Catenin Accumulation Through RhoA/ROCK.

    Science.gov (United States)

    Kim, Jae-Gyu; Kim, Myoung-Ju; Choi, Won-Ji; Moon, Mi-Young; Kim, Hee-Jun; Lee, Jae-Yong; Kim, Jaebong; Kim, Sung-Chan; Kang, Seung Goo; Seo, Goo-Young; Kim, Pyeung-Hyeun; Park, Jae-Bong

    2017-05-01

    In canonical pathway, Wnt3A has been known to stabilize β-catenin through the dissociation between β-catenin and glycogen synthase kinase-3β (GSK-3β) that suppresses the phosphorylation and degradation of β-catenin. In non-canonical signaling pathway, Wnt was known to activate Rho GTPases and to induce cell migration. The cross-talk between canonical and non-canonical pathways by Wnt signaling; however, has not been fully elucidated. Here, we revealed that Wnt3A induces not only the phosphorylation of GSK-3β and accumulation of β-catenin but also RhoA activation in RAW264.7 and HEK293 cells. Notably, sh-RhoA and Tat-C3 abolished both the phosphorylation of GSK-3β and accumulation of β-catenin. Y27632, an inhibitor of Rho-associated coiled coil kinase (ROCK) and si-ROCK inhibited both GSK-3β phosphorylation and β-catenin accumulation. Furthermore, active domain of ROCK directly phosphorylated the purified recombinant GSK-3β in vitro. In addition, Wnt3A-induced cell proliferation and migration, which were inhibited by Tat-C3 and Y27632. Taken together, we propose the cross-talk between canonical and non-canonical signaling pathways of Wnt3A, which induces GSK-3β phosphorylation and β-catenin accumulation through RhoA and ROCK activation. J. Cell. Physiol. 232: 1104-1113, 2017. © 2016 Wiley Periodicals, Inc.

  17. Cadmium-induced nephrotoxicity: from defense strategy to acclimation

    OpenAIRE

    RAVINDRAN NAIR, Ambily

    2013-01-01

    Cadmium (Cd) indirectly induces reactive oxygen species (ROS) by (1) a displacement of redox-active metals, (2) depletion of redox scavengers, (3) inhibition of anti-oxidant enzymes and (4) inhibition of the electron transport chain. This ultimately results in mitochondrial damage leading to loss of function or cell death in multiple organs. A disturbance of the redox balance by Cd at the cellular level has been studied repeatedly in different experimental set-ups including differentiated cel...

  18. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation.

    Science.gov (United States)

    Martínez-Moreno, Julio M; Muñoz-Castañeda, Juan R; Herencia, Carmen; Oca, Addy Montes de; Estepa, Jose C; Canalejo, Rocio; Rodríguez-Ortiz, Maria E; Perez-Martinez, Pablo; Aguilera-Tejero, Escolástico; Canalejo, Antonio; Rodríguez, Mariano; Almadén, Yolanda

    2012-10-15

    The present study investigates the differential effect of two vitamin D receptor agonists, calcitriol and paricalcitol, on human aortic smooth muscle cells calcification in vitro. Human vascular smooth muscle cells were incubated in a high phosphate (HP) medium alone or supplemented with either calcitriol 10(-8)M (HP + CTR) or paricalcitol 3·10(-8) M (HP + PC). HP medium induced calcification, which was associated with the upregulation of mRNA expression of osteogenic factors such as bone morphogenetic protein 2 (BMP2), Runx2/Cbfa1, Msx2, and osteocalcin. In these cells, activation of Wnt/β-catenin signaling was evidenced by the translocation of β-catenin into the nucleus and the increase in the expression of direct target genes as cyclin D1, axin 2, and VCAN/versican. Addition of calcitriol to HP medium (HP + CTR) further increased calcification and also enhanced the expression of osteogenic factors together with a significant elevation of nuclear β-catenin levels and the expression of cyclin D1, axin 2, and VCAN. By contrast, the addition of paricalcitol (HP + PC) not only reduced calcification but also downregulated the expression of BMP2 and other osteoblastic phenotype markers as well as the levels of nuclear β-catenin and the expression of its target genes. The role of Wnt/β-catenin on phosphate- and calcitriol-induced calcification was further demonstrated by the inhibition of calcification after addition of Dickkopf-related protein 1 (DKK-1), a specific natural antagonist of the Wnt/β-catenin signaling pathway. In conclusion, the differential effect of calcitriol and paricalcitol on vascular calcification appears to be mediated by a distinct regulation of the BMP and Wnt/β-catenin signaling pathways.

  19. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway.

    Science.gov (United States)

    Liu, Mei; Guo, Jingjing; Wang, Juan; Zhang, Luyong; Pang, Tao; Liao, Hong

    2014-08-01

    Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.

  20. Diabetes Impairs Wnt3 Protein-induced Neurogenesis in Olfactory Bulbs via Glutamate Transporter 1 Inhibition.

    Science.gov (United States)

    Wakabayashi, Tamami; Hidaka, Ryo; Fujimaki, Shin; Asashima, Makoto; Kuwabara, Tomoko

    2016-07-15

    Diabetes is associated with impaired cognitive function. Streptozotocin (STZ)-induced diabetic rats exhibit a loss of neurogenesis and deficits in behavioral tasks involving spatial learning and memory; thus, impaired adult hippocampal neurogenesis may contribute to diabetes-associated cognitive deficits. Recent studies have demonstrated that adult neurogenesis generally occurs in the dentate gyrus of the hippocampus, the subventricular zone, and the olfactory bulbs (OB) and is defective in patients with diabetes. We hypothesized that OB neurogenesis and associated behaviors would be affected in diabetes. In this study, we show that inhibition of Wnt3-induced neurogenesis in the OB causes several behavioral deficits in STZ-induced diabetic rats, including impaired odor discrimination, cognitive dysfunction, and increased anxiety. Notably, the sodium- and chloride-dependent GABA transporters and excitatory amino acid transporters that localize to GABAergic and glutamatergic terminals decreased in the OB of diabetic rats. Moreover, GAT1 inhibitor administration also hindered Wnt3-induced neurogenesis in vitro Collectively, these data suggest that STZ-induced diabetes adversely affects OB neurogenesis via GABA and glutamate transporter systems, leading to functional impairments in olfactory performance.

  1. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture.

    Science.gov (United States)

    López, E; Arce, C; Oset-Gasque, M J; Cañadas, S; González, M P

    2006-03-15

    Cadmium is a toxic agent that it is also an environmental contaminant. Cadmium exposure may be implicated in some humans disorders related to hyperactivity and increased aggressiveness. This study presents data indicating that cadmium induces cellular death in cortical neurons in culture. This death could be mediated by an apoptotic and a necrotic mechanism. The apoptotic death may be mediated by oxidative stress with reactive oxygen species (ROS) formation which could be induced by mitochondrial membrane dysfunction since this cation produces: (a) depletion of mitochondrial membrane potential and (b) diminution of ATP levels with ATP release. Necrotic death could be mediated by lipid peroxidation induced by cadmium through an indirect mechanism (ROS formation). On the other hand, 40% of the cells survive cadmium action. This survival seems to be mediated by the ability of these cells to activate antioxidant defense systems, since cadmium reduced the intracellular glutathione levels and induced catalase and SOD activation in these cells.

  2. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  3. Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons

    Science.gov (United States)

    Arrázola, Macarena S.; Ramos-Fernández, Eva; Cisternas, Pedro; Ordenes, Daniela; Inestrosa, Nibaldo C.

    2017-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder mainly known for synaptic impairment and neuronal cell loss, affecting memory processes. Beside these damages, mitochondria have been implicated in the pathogenesis of AD through the induction of the mitochondrial permeability transition pore (mPTP). The mPTP is a non-selective pore that is formed under apoptotic conditions, disturbing mitochondrial structure and thus, neuronal viability. In AD, Aβ oligomers (Aβos) favor the opening of the pore, activating mitochondria-dependent neuronal cell death cascades. The Wnt signaling activated through the ligand Wnt3a has been described as a neuroprotective signaling pathway against amyloid-β (Aβ) peptide toxicity in AD. However, the mechanisms by which Wnt signaling prevents Aβos-induced neuronal cell death are unclear. We proposed here to study whether Wnt signaling protects neurons earlier than the late damages in the progression of the disease, through the preservation of the mitochondrial structure by the mPTP inhibition. To study specific events related to mitochondrial permeabilization we performed live-cell imaging from primary rat hippocampal neurons, and electron microscopy to analyze the mitochondrial morphology and structure. We report here that Wnt3a prevents an Aβos-induced cascade of mitochondrial events that leads to neuronal cell death. This cascade involves (a) mPTP opening, (b) mitochondrial swelling, (c) mitochondrial membrane potential loss and (d) cytochrome c release, thus leading to neuronal cell death. Furthermore, our results suggest that the activation of the Wnt signaling prevents mPTP opening by two possible mechanisms, which involve the inhibition of mitochondrial GSK-3β and/or the modulation of mitochondrial hexokinase II levels and activity. This study suggests a possible new approach for the treatment of AD from a mitochondrial perspective, and will also open new lines of study in the field of Wnt signaling in neuroprotection

  4. Cadmium induced potassium efflux from Scenedesmus quadricauda

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G.N.; Prasad, M.N.V. [Univ. of Hyderabad (India)

    1992-10-01

    Plants, algae and bacteria respond to heavy metal toxicity by inducing different enzymes, ion influx/efflux for ionic balance and synthesize small peptides such as poly({gamma}-glutamyl cysteinyl) glycines called phytochelatins (PCs) mainly consisting of glutamate, cysteine and glycine. These peptides bind metal ions and reduce toxicity. The uptake of metal ions comprises two phases. The first phase consists of a quick and nonspecific binding of the cations to negatively-charged membrane components located at the cell surface. The second phase consists of energy-dependent intracellular uptake of the metal ions. During uptake of Co{sup 2+} by yeast cells, an electroneutral 2:1 exchange with K{sup +} was found. Cd{sup 2+} uptake by yeast also caused loss of cell K{sup +}, however, there was no electroneutral exchange of K{sup +}. The molar ratio of K{sup +} released and Cd{sup 2+} accumulated by yeast in the initial stage of incubation is 22 and seems to be independent of the Cd concentration. Disruption of the cell membrane of part of the cells, according to an all-or-none process, by Cd{sup 2+} may explain the disproportional loss of cell K{sup +} during Cd{sup 2+} uptake. This paper examines the exchange of K{sup +} with Cd{sup 2+} uptake in Scenedesmus quadricauda, and whether it follows an electroneutral 2:1 exchange or an all-or-none process. 11 refs., 2 figs.

  5. Up-regulation of fibroblast growth factor (FGF) 9 expression and FGF-WNT/β-catenin signaling in laser-induced wound healing.

    Science.gov (United States)

    Zheng, Zhenlong; Kang, Hye-Young; Lee, Sunha; Kang, Shin-Wook; Goo, Boncheol; Cho, Sung Bin

    2014-01-01

    Fibroblast growth factor (FGF) 9 is secreted by both mesothelial and epithelial cells, and plays important roles in organ development and wound healing via WNT/β-catenin signaling. The aim of this study was to evaluate FGF9 expression and FGF-WNT/β-catenin signaling during wound healing of the skin. We investigated FGF9 expression and FGF-WNT/β-catenin signaling after laser ablation of mouse skin and adult human skin, as well as in cultured normal human epidermal keratinocytes (NHEKs) upon stimulation with recombinant human (rh) FGF9 and rh-transforming growth factor (TGF)-β1. Our results showed that laser ablation of both mouse skin and human skin leads to marked overexpression of FGF9 and FGF9 mRNA. Control NHEKs constitutively expressed FGF9, WNT7b, WNT2, and β-catenin, but did not show Snail or FGF receptor (FGFR) 2 expression. We also found that FGFR2 was significantly induced in NHEKs by rhFGF9 stimulation, and observed that FGFR2 expression was slightly up-regulated on particular days during the wound healing process after ablative laser therapy. Both WNT7b and WNT2 showed up-regulated protein expression during the laser-induced wound healing process in mouse skin; moreover, we discerned that the stimulatory effect of rhFGF9 and rhTGF-β1 activates WNT/β-catenin signaling via WNT7b in cultured NHEKs. Our data indicated that rhFGF9 and/or rhTGF-β1 up-regulate FGFR2, WNT7b, and β-catenin, but not FGF9 and Snail; pretreatment with rh dickkopf-1 significantly inhibited the up-regulation of FGFR2, WNT7b, and β-catenin. Our results suggested that FGF9 and FGF-WNT/β-catenin signaling may play important roles in ablative laser-induced wound healing processes.

  6. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    Directory of Open Access Journals (Sweden)

    Upa Kukongviriyapan

    2014-03-01

    Full Text Available Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L in drinking water for eight weeks. Curcumin (50 or 100 mg/kg was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.

  7. Metformin-mediated Bambi expression in hepatic stellate cells induces prosurvival Wnt/β-catenin signaling.

    Science.gov (United States)

    Subramaniam, Nanthakumar; Sherman, Mara H; Rao, Renuka; Wilson, Caroline; Coulter, Sally; Atkins, Annette R; Evans, Ronald M; Liddle, Christopher; Downes, Michael

    2012-04-01

    AMP-activated protein kinase (AMPK) regulates lipid, cholesterol, and glucose metabolism in specialized metabolic tissues, such as muscle, liver, and adipose tissue. Agents that activate AMPK, such as metformin and 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), have beneficial effects on liver glucose and lipid metabolism. In addition, AMPK activation in proliferating hepatic stellate cells (HSC) induces growth arrest and inhibits hepatic fibrosis. As metformin and AICAR act in different ways to achieve their effects, our aim was to examine the effects of AMPK activation in quiescent HSCs with these two agents on HSC function. We found that phospho-AMPK levels were markedly upregulated by both AICAR and metformin in quiescent HSCs. However, although AICAR treatment induced cell death, cells treated with metformin did not differ from untreated controls. AICAR-mediated HSC cell death was paralleled by loss of expression of the TGF-β decoy receptor Bambi, whereas metformin increased Bambi expression. Transfection of siRNA-Bambi into HSCs also induced cell death, mimicking the effects of AICAR, whereas overexpression of Bambi partially rescued AICAR-treated cells. As Bambi has previously been shown to promote cell survival through Wnt/β-catenin signaling, a reporter incorporating binding sites for a downstream target of this pathway was transfected into HSCs and was induced. We conclude that although AICAR and metformin both activate AMPK in quiescent HSCs, AICAR rapidly induced cell death, whereas metformin-treated cells remained viable. The finding that metformin increases Bambi expression and activates Wnt/β-catenin signaling provides a possible mechanistic explanation for this observation. These results suggest that AICAR and metformin may confer disease-specific therapeutic benefits.

  8. Protective effect of hemin against cadmium-induced testicular damage in rats.

    Science.gov (United States)

    Fouad, Amr A; Qureshi, Habib A; Al-Sultan, Ali Ibrahim; Yacoubi, Mohamed T; Ali, Abdellah Abusrie

    2009-03-29

    The protective effect of hemin, the heme oxygenase-1 inducer, was investigated in rats with cadmium induced-testicular injury, in which oxidative stress and inflammation play a major role. Testicular damage was induced by a single i.p. injection of cadmium chloride (2mg/kg). Hemin was given for three consecutive days (40 micromol/kg/day, s.c.), starting 1 day before cadmium administration. Hemin treatment significantly increased serum testosterone level that was reduced by cadmium. Hemin compensated deficits in the antioxidant defense mechanisms (reduced glutathione, and catalase and superoxide dismutase activities), and suppressed lipid peroxidation in testicular tissue resulted from cadmium administration. Also, hemin attenuated the cadmium-induced elevations in testicular tumor necrosis factor-alpha and nitric oxide levels, and caspase-3 activity. Additionally, hemin ameliorated cadmium-induced testicular tissue damage observed by light and electron microscopic examinations. The protective effect afforded by hemin was abolished by prior administration of zinc protoporphyrin-IX, the heme oxygenase-1 inhibitor. It was concluded that hemin, through its antioxidant, anti-inflammatory and antiapoptotic effects, represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of cadmium.

  9. Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model

    Directory of Open Access Journals (Sweden)

    Sadia Benamrouz

    2014-06-01

    Full Text Available Cryptosporidium species are apicomplexan protozoans that are found worldwide. These parasites constitute a large risk to human and animal health. They cause self-limited diarrhea in immunocompetent hosts and a life-threatening disease in immunocompromised hosts. Interestingly, Cryptosporidium parvum has been related to digestive carcinogenesis in humans. Consistent with a potential tumorigenic role of this parasite, in an original reproducible animal model of chronic cryptosporidiosis based on dexamethasone-treated or untreated adult SCID mice, we formerly reported that C. parvum (strains of animal and human origin is able to induce digestive adenocarcinoma even in infections induced with very low inoculum. The aim of this study was to further characterize this animal model and to explore metabolic pathways potentially involved in the development of C. parvum-induced ileo-caecal oncogenesis. We searched for alterations in genes or proteins commonly involved in cell cycle, differentiation or cell migration, such as β-catenin, Apc, E-cadherin, Kras and p53. After infection of animals with C. parvum we demonstrated immunohistochemical abnormal localization of Wnt signaling pathway components and p53. Mutations in the selected loci of studied genes were not found after high-throughput sequencing. Furthermore, alterations in the ultrastructure of adherens junctions of the ileo-caecal neoplastic epithelia of C. parvum-infected mice were recorded using transmission electron microscopy. In conclusion, we found for the first time that the Wnt signaling pathway, and particularly the cytoskeleton network, seems to be pivotal for the development of the C. parvum-induced neoplastic process and cell migration of transformed cells. Furthermore, this model is a valuable tool in understanding the host-pathogen interactions associated with the intricate infection process of this parasite, which is able to modulate host cytoskeleton activities and several host

  10. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    Science.gov (United States)

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

  11. Cadmium-induced cancers in animals and in humans.

    Science.gov (United States)

    Huff, James; Lunn, Ruth M; Waalkes, Michael P; Tomatis, Lorenzo; Infante, Peter F

    2007-01-01

    Discovered in the early 1800s, the use of cadmium and various cadmium salts started to become industrially important near the close of the 19th century, rapidly thereafter began to flourish, yet has diminished more recently. Most cadmium used in the United States is a byproduct from the smelting of zinc, lead, or copper ores, and is used to manufacture batteries. Carcinogenic activity of cadmium was discovered first in animals and only subsequently in humans. Cadmium and cadmium compounds have been classified as known human carcinogens by the International Agency for Research on Cancer and the National Toxicology Program based on epidemiologic studies showing a causal association with lung cancer, and possibly prostate cancer, and studies in experimental animals, demonstrating that cadmium causes tumors at multiple tissue sites, by various routes of exposure, and in several species and strains. Epidemiologic studies published since these evaluations suggest that cadmium is also associated with cancers of the breast, kidney, pancreas, and urinary bladder. The basic metal cationic portion of cadmium is responsible for both toxic and carcinogenic activity, and the mechanism of carcinogenicity appears to be multifactorial. Available information about the carcinogenicity of cadmium and cadmium compounds is reviewed, evaluated, and discussed.

  12. WNT/β-catenin pathway modulates the TNF-α-induced inflammatory response in bronchial epithelial cells.

    Science.gov (United States)

    Jang, Jaewoong; Jung, Yoonju; Chae, Seyeon; Chung, Sang-In; Kim, Seok-Min; Yoon, Yoosik

    2017-03-04

    In this study, TNF-α was found to activate the WNT/β-catenin pathway in BEAS-2B human bronchial epithelial cells. Levels of phospho-LRP6, Dvl-2, and phospho-GSK-3β were elevated, while that of Axin was reduced by TNF-α treatment. Nuclear translocation of β-catenin and the reporter activity of a β-catenin-responsive promoter were increased by TNF-α treatment. Under the same experimental conditions, TNF-α activated the NF-κB signaling, which includes the phosphorylation and degradation of IκB and nuclear translocation and target DNA binding of NF-κB, and it was found that an inhibitor of NF-κB activation, JSH-23, inhibited TNF-α-induced Wnt signaling as well as NF-κB signaling. It was also found that recombinant Wnt proteins induced NF-κB nuclear translocations and its target DNA binding, suggesting that Wnt signaling and NF-κB signaling were inter-connected. TNF-α-induced modulations of IκB and NF-κB as well as pro-inflammatory cytokine expression were significantly suppressed by the transfection of β-catenin siRNA compared to that of control siRNA. Transfection of a β-catenin expression plasmid augmented the TNF-α-induced modulations of IκB and NF-κB as well as pro-inflammatory cytokine expression. These results clearly demonstrated that the WNT/β-catenin pathway modulates the inflammatory response induced by TNF-α, suggesting that this pathway may be a useful target for the effective treatment of bronchial inflammation.

  13. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S;

    2002-01-01

    . Experience from cadmium-poisoned humans and laboratory mammals indicates that concentrations above 50-200 microg/g wet wt. may induce histopathological changes. Overall, 31 of the ringed seals had cadmium concentrations in the kidney cortex above 50 microg/g wet wt., 11 had concentrations above 100 and one......The Greenland marine food chains contain high levels of cadmium, mercury and selenium. Concentrations of cadmium in the kidney of ringed seals (Phoca hispida) from the municipalities of Qaanaaq and Upernavik (Northwest Greenland) are among the highest recorded in the Arctic. The purpose...... of the study was to determine whether cadmium-induced damage in the kidneys and the skeletal system could be detected among 100 ringed seals from Northwest Greenland. The cadmium concentrations in the kidney cortex ranged from 0 to 248 microg/g wet weight (mean=44.5, N=100) in the 99 kidneys examined...

  14. Oxidative stress and DNA damages induced by cadmium accumulation

    Institute of Scientific and Technical Information of China (English)

    LIN Ai-jun; ZHANG Xu-hong; CHEN Mei-mei; CAO Qing

    2007-01-01

    Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.

  15. Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Ting; Chen, Zueng-Sang [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China); Hong, Chwan-Yang, E-mail: cyhong@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China)

    2011-05-30

    The accumulation and effect of cadmium (Cd) on the growth and enzymatic activities changes of antioxidants in Tagetes patula, French marigold, were investigated to reveal the physiological mechanisms corresponding to its Cd tolerance and accumulation. Hydroponically grown T. patula plants were treated with different concentrations of Cd (0, 10, 25, 50 {mu}M CdCl{sub 2}) at various regime of times. T. patula accumulated Cd to a maximum of 450 mg Cd kg{sup -1} dry weight (DW) in shoot and 3500 mg Cd kg{sup -1} DW in root after 14 days' exposure at 10 and 50 {mu}M CdCl{sub 2}, respectively. The translocation factors of Cd were greater than 1 in plants exposed to 10 {mu}M CdCl{sub 2}. Toxic effects were gradually observed with increasing Cd concentration (25 and 50 {mu}M) accompanied with the reduction of biomass, chlorophyll content, decrease of cell viability and the increase level of lipid peroxidation. In leaves of T. patula, the activities of ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase (SOD) were induced by Cd. However, in roots, activities of APX, GR, SOD and catalase (CAT) were significantly reduced by 25 and 50 {mu}M Cd treatment but not 10 {mu}M Cd. In-gel zymography analysis revealed that Cd induced the enzymatic activities of APX, MnSOD, CuZnSOD and different isozymes of GR in leaves. These results indicate that T. patula is a novel Cd accumulator and able to tolerate with Cd-induced toxicity by activation of its antioxidative defense system.

  16. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways.

    Directory of Open Access Journals (Sweden)

    Fátima Guerrero

    Full Text Available BACKGROUND: Transforming growth factor-β (TGF-β is a key cytokine during differentiation of mesenchymal stem cells (MSC into vascular smooth muscle cells (VSMC. High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS: Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. CONCLUSIONS: Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway.

  17. TGF-β Prevents Phosphate-Induced Osteogenesis through Inhibition of BMP and Wnt/β-Catenin Pathways

    Science.gov (United States)

    Almadén, Yolanda; Martínez-Moreno, Julio M.; Montes de Oca, Addy; Rodriguez-Ortiz, María Encarnación; Diaz-Tocados, Juan M.; Canalejo, Antonio; Florio, Mónica; López, Ignacio; Richards, William G.; Rodriguez, Mariano; Aguilera-Tejero, Escolástico; Muñoz-Castañeda, Juan R.

    2014-01-01

    Background Transforming growth factor-β (TGF-β) is a key cytokine during differentiation of mesenchymal stem cells (MSC) into vascular smooth muscle cells (VSMC). High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC) into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. Results Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. Conclusions Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway. PMID:24586576

  18. A review of molecular events of cadmium-induced carcinogenesis.

    Science.gov (United States)

    Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Recently, Cd and Cd-containing compounds have been classified as known human carcinogens, and epidemiological data show causal associations with prostate, breast, and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently attracted great interest due to the development of malignancies in Cd-induced tumorigenesis in animals models. Briefly, various in vitro studies demonstrate that Cd can act as a mitogen, can stimulate cell proliferation and inhibit apoptosis and DNA repair, and can induce carcinogenesis in several mammalian tissues and organs. Thus, the various mechanisms involved in chronic Cd exposure and malignant transformations warrant further investigation. In this review, we focus on recent evidence of various leading general and tissue-specific molecular mechanisms that follow chronic exposure to Cd in prostate-, breast-, and lung-transformed malignancies. In addition, in this review, we consider less defined mechanisms such as epigenetic modification and autophagy, which are thought to play a role in the development of Cd-induced malignant transformation.

  19. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhen [Huazhong University of Science and Technology, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Wuhan (China); Zhou, Lin [Huazhong University of Science and Technology, Department of Histoembryology, Tongji Medical College, Wuhan (China); Han, Na; Zhang, Mengxian [Huazhong University of Science and Technology, Department of Oncology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lyu, Xiaojuan [Huazhong University of Science and Technology, Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Wuhan (China)

    2015-08-15

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [German] Studien haben gezeigt, dass eine Strahlentherapie die Invasivitaet von

  20. Wnt signaling in cardiovascular physiology.

    Science.gov (United States)

    Marinou, K; Christodoulides, C; Antoniades, C; Koutsilieris, M

    2012-12-01

    Wnt signaling pathways play a key role in cardiac development, angiogenesis, and cardiac hypertrophy; emerging evidence suggests that they are also involved in the pathophysiology of atherosclerosis. Specifically, an important role for Wnts has been described in the regulation of endothelial inflammation, vascular calcification, and mesenchymal stem cell differentiation. Wnt signaling also induces monocyte adhesion to endothelial cells and is crucial for the regulation of vascular smooth-muscle cell (VSMC) behavior. We discuss how the Wnt pathways are implicated in vascular biology and outline the role of Wnt signaling in atherosclerosis. Dissecting Wnt pathways involved in atherogenesis and cardiovascular disease may provide crucial insights into novel mechanisms with therapeutic potential for atherosclerosis.

  1. Effect of tripterygium glycosides on Wnt/Frizzled signaling pathway in imiquimod-induced psoriasis-like mice

    Institute of Scientific and Technical Information of China (English)

    Xiu-Qing Liu; Zhuo-Cheng Li; Wen-Zhong Wu

    2016-01-01

    ABSTRACT Objective:To study the effect of tripterygium glycosides on Wnt/Frizzled signaling pathway in imiquimod-induced psoriasis-like mice.Methods:BALB/c female mice were selected as research objects and randomly divided into control group, model group and intervention group, model group and intervention group established the models of imiquimod-induced psoriasis-like mice, and intervention group received intragastric administration of tripterygium glycosides after establishment of models. Psoriasis lesion tissue was collected to detect the contents of Wnt/Frizzled signal molecules and downstream related molecules.Results:Wnt5a, Frizzled2, Frizzled3, Frizzled5, Frizzled6, NFAT, COX-2, VEGF, MIF, IFN-γ, IL-6, IL-17, IL-21, IL-23, JAK1, STAT3, Rsa, Raf, MEK, ERK1 and EKR2 contents in skin lesion tissue of model group were significantly higher than those of control group, cGMP and PKG contents were significantly lower than those of control group, and Frizzled4 content was not different from that of control group; Wnt5a, Frizzled2, Frizzled3, Frizzled5, Frizzled6, NFAT, COX-2, VEGF, MIF, IFN-γ, IL-6, IL-17, IL-21, IL-23, JAK1, STAT3, Rsa, Raf, MEK, ERK1 and EKR2 contents in skin lesion tissue of intervention group were significantly lower than those of model group, cGMP and PKG contents were significantly higher than those of model group, and Frizzled4 content was not different from that of model group.Conclusions:Tripterygium glycosides have inhibitory effect on the signaling pathway mediated by Wnt5a-Frizzled2/Frizzled3/Frizzled5/Frizzled6 in skin lesions of imiquimod-induced psoriasis-like mice.

  2. Wnt3a enhances bone morphogenetic protein 9-induced osteogenic differentiation of C3H10T1/2 cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; LIN Liang-bo; XU Dao-jing; CHEN Rong-fu; TAN Ji-xiang; LIANG Xi; HU Ning

    2013-01-01

    Background Bone morphogenetic protein 9 (BMP9) and Wnt/β-catenin signaling pathways are able to induce osteogenic differentiation of mesenchymal stem cells (MSCs),but the role of Wnt/β-catenin signaling pathway in BMP9-induced osteogenic differentiation is not well understood.Thus,our experiment was undertaken to investigate the interaction between BMP9 and Wnt/β-catenin pathway in inducing osteogenic differentiation of MSCs.Methods C3H10T1/2 cells were infected with recombinant adenovirus expressing BMP9,Wnt3a,and BMP9+Wnt3a.ALP,the early osteogenic marker,was detected by quantitative and staining assay.Later osteogenic marker,mineral calcium deposition,was determined by Alizarin Red S staining.The expression of osteopotin (OPN),osteocalcin (OC),and Runx2 was analyzed by Real time PCR and Western blotting.In vivo animal experiment was carried out to further confirm the role of Wnt3a in ectopic bone formation induced by BMP9.Results The results showed that Wnt3a enhanced the ALP activity induced by BMP9 and increased the expressions of OC and OPN,with increase of mineral calcium deposition in vitro and ectopic bone formation in vivo.Furthermore,we also found that Wnt3a increased the level of Runx2,an important nuclear transcription factor of BMP9.Conclusion Canonical Wnt/β-catenin signal pathway may play an important role in BMP9-induced osteogenic differentiation of MSCs,and Runx2 may be a linkage between the two signal pathways.

  3. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  4. PTH1–34 Blocks Radiation-induced Osteoblast Apoptosis by Enhancing DNA Repair through Canonical Wnt Pathway*

    Science.gov (United States)

    Chandra, Abhishek; Lin, Tiao; Zhu, Ji; Tong, Wei; Huo, Yanying; Jia, Haoruo; Zhang, Yejia; Liu, X. Sherry; Cengel, Keith; Xia, Bing; Qin, Ling

    2015-01-01

    Focal radiotherapy for cancer patients has detrimental effects on bones within the radiation field and the primary clinical signs of bone damage include the loss of functional osteoblasts. We reported previously that daily injection of parathyroid hormone (PTH, 1–34) alleviates radiation-induced osteopenia in a preclinical radiotherapy model by improving osteoblast survival. To elucidate the molecular mechanisms, we irradiated osteoblastic UMR 106-01 cells and calvarial organ culture and demonstrated an anti-apoptosis effect of PTH1–34 on these cultures. Inhibitor assay indicated that PTH exerts its radioprotective action mainly through protein kinase A/β-catenin pathway. γ-H2AX foci staining and comet assay revealed that PTH efficiently promotes the repair of DNA double strand breaks (DSBs) in irradiated osteoblasts via activating the β-catenin pathway. Interestingly, Wnt3a alone also blocked cell death and accelerated DNA repair in primary osteoprogenitors, osteoblastic and osteocytic cells after radiation through the canonical signaling. Further investigations revealed that both Wnt3a and PTH increase the amount of Ku70, a core protein for initiating the assembly of DSB repair machinery, in osteoblasts after radiation. Moreover, down-regulation of Ku70 by siRNA abrogated the prosurvival effect of PTH and Wnt3a on irradiated osteoblasts. In summary, our results identify a novel role of PTH and canonical Wnt signaling in regulating DSB repair machinery and apoptosis in osteoblasts and shed light on using PTH1–34 or Wnt agonist as possible therapy for radiation-induced osteoporosis. PMID:25336648

  5. The fast track to canonical Wnt signaling in MC3T3-E1 cells protected by substance P against serum deprivation-induced apoptosis.

    Science.gov (United States)

    Yang, Jianguo; Nie, Jiping; Fu, Su; Liu, Song; Wu, Jianqun; Cui, Liang; Zhang, Yongtao; Yu, Bin

    2017-01-01

    The canonical Wnt pathway is vital to bone physiology by increasing bone mass through elevated osteoblast survival. Although investigated extensively in stem cells, its role in osteoblastic MC3T3-E1 cells has not been completely determined. To explore how this pathway is regulated by different conditions, we assessed the anti-apoptotic effects of substance P on the canonical Wnt pathway in MC3T3-E1 cells by treating cells with serum deprivation or serum starving with "substance P," a neuropeptide demonstrated to promote bone growth and stimulate Wnt signaling. The results showed that serum deprivation both induced apoptosis and activated Wnt signal transduction while substance P further stimulated the Wnt pathway via the NK-1 receptor but protected the cells from apoptotic death. Fast-tracking of Wnt signaling by substance P was also noted. These results indicate that nutritional deprivation and substance P synergistically activated the canonical Wnt pathway, a finding that helps to reveal the role of Wnt signaling in bone physiology affected by nutritional deprivation and neuropeptide substance P.

  6. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  7. Diet- and Genetically-induced Obesity Produces Alterations in the Microbiome, Inflammation and Wnt Pathway in the Intestine of Apc+/1638N Mice: Comparisons and Contrasts

    OpenAIRE

    Liu, Wei; Crott, Jimmy W.; Lyu, Lin; Pfalzer, Anna C.; Li, Jinchao; Choi, Sang-Woon; Yang, Yingke; Mason, Joel B.; Liu, Zhenhua

    2016-01-01

    Obesity is an established risk factor for colorectal cancer (CRC). Our previous study indicated that obesity increases activity of the pro-tumorigenic Wnt-signaling. Presently, we sought to further advance our understanding of the mechanisms by which obesity promotes CRC by examining associations between microbiome, inflammation and Wnt-signaling in Apc+/1638N mice whose obesity was induced by one of two modalities, diet- or genetically-induced obesity. Three groups were employed: Apc+/1638NL...

  8. Captopril and telmisartan treatments attenuate cadmium-induced testicular toxicity in rats.

    Science.gov (United States)

    Fouad, Amr A; Jresat, Iyad

    2013-04-01

    The possible protective effect of captopril, an angiotensin-converting enzyme inhibitor, vs. telmisartan, an angiotensin II-receptor antagonist, was investigated in rats with testicular injury induced by a single i.p. injection of cadmium chloride (2 mg/kg). Captopril (60 mg/kg/day, p.o.) and telmisartan (10 mg/kg/day, p.o.) were given for five consecutive days, starting 3 days before cadmium administration. Both agents significantly increased serum testosterone level, which was reduced by cadmium, suppressed lipid peroxidation, restored the depleted reduced glutathione, decreased the elevations of nitric oxide, tumor necrosis factor-α, and cadmium ion levels, and attenuated the reductions of selenium and zinc ions in testicular tissue resulted from cadmium administration. Immunohistochemical analysis revealed that both captopril and telmisartan significantly reduced the cadmium-induced expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand, and caspase-3 in testicular tissue. The differences between the results obtained with captopril and telmisartan were insignificant, suggesting that both drugs equally protected the testicular tissue from the detrimental effects of cadmium.

  9. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the

  10. Protective role of pectin against cadmium-induced testicular toxicity and oxidative stress in rats.

    Science.gov (United States)

    Koriem, Khaled M M; Fathi, Gamal E; Salem, Huda A; Akram, Nabil H; Gamil, Sofie A

    2013-05-01

    Cadmium has been classified as an environmental pollutant and human carcinogen. Pectin is a family of complex polysaccharides that function as hydrating agents and cementing materials for the cellulosic network. The aim of this study was to evaluate the protective role of pectin against cadmium-induced testicular toxicity and oxidative stress in rats. Forty male Wistar rats were divided into five equal groups. Groups 1 and 2 were injected intraperitoneally (i.p.) saline (1 mg/kg) and pectin (50 mg/kg), respectively, two days/weeks over three weeks period. Groups 3-5 were injected i.p. with 1 mg/kg cadmium two days/week while groups 4 and 5 co-administrated i.p. with 25 and 50 mg/kg pectin, respectively, three days/week over three weeks period. The results of the present work revealed that cadmium-exposed rats showed decrease in serum testosterone, dehydroepiandrosterone sulfate and lactate dehydrogenase. Testicular cholesterol, total protein, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, catalase, glutathione S-transferase and reduced glutathione levels were also decreased while testicular malondialdehyde level was increased after cadmium injection. On the other hand, serum luteinizing hormone, follicle stimulating hormone, sex hormone binding globulin and γ-glutamyl transpeptidase were increased after cadmium exposure. Cadmium also induced sperms loss. Co-administration of pectin with cadmium restores all the above parameters and sperms to the normal levels where pectin at higher dose was more effective than lower one. These results were supported by histochemical investigations. In conclusion, pectin can counteract the testicular toxicity and oxidative stress induced by cadmium and the effect was dose-dependent.

  11. Sex-related differences in cadmium-induced alteration of drug action in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, R.C.; Pence, D.H.; Prosser, T.D.; Miya, T.S.

    1976-01-01

    Three days after pretreatment of rats of both sexes with cadmium (2 mg/kg, i.p.), the duration of hypnosis induced by hexobarbital (75 mg/kg, i.p.) was potentiated in males but not females. Likewise, similar treatment with cadmium leads to significant inhibition of the metabolism of hexobarbital by hepatic microsomal enzymes obtained from male but not female animals. These data suggest that there is a sex-related difference in the ability of cadmium to alter drug action in rats.

  12. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  13. p-Coumaric acid, a common dietary polyphenol, protects cadmium chloride-induced nephrotoxicity in rats.

    Science.gov (United States)

    Navaneethan, Dhanalakshmi; Rasool, Mahaboobkhan

    2014-03-01

    The present study was conducted to elucidate the protective role of p-coumaric acid, a common dietary polyphenol against cadmium induced nephrotoxicity in rats. For the purpose of comparison, a standard reference drug silymarin (50 mg/kg b. wt) was used. In this experiment, the animals were divided into four groups, with each consisting of six animals. The animals in Group I animals received saline and served as a control group and those in Group II received cadmium chloride (3 mg/kg b. wt) subcutaneously once daily for 3 weeks, but Group III and IV animals received cadmium chloride followed by p-coumaric acid (100 mg/kg b. wt, oral) and silymarin (50 mg/kg b. wt, oral), respectively, daily for 3 weeks. At the end of the treatment, the animals were sacrificed, and the blood and kidney samples were collected. The results obtained in this study revealed the fact that the levels of lipid peroxidation, lysosomal enzymes, glycoprotein, cadmium and metallothionein were increased in the cadmium chloride alone treated rats and antioxidant status was found to be decreased, when compared to the control group. The levels of kidney functional markers (urea, uric acid and creatinine) were also found to be abnormal in serum and urine of cadmium chloride alone treated rats. On the other hand, the administration of p-coumaric acid along with cadmium chloride significantly protected the biochemical alterations as observed in the cadmium chloride alone treated rats as evidenced by histopathology. Thus, the oral administration of p-coumaric acid significantly protected the cadmium-induced nephrotoxicity in rats.

  14. Gpr177 Deficiency Impairs Mammary Development and Prohibits Wnt-Induced Tumorigenesis

    OpenAIRE

    Eri Ohfuchi Maruyama; H-M Ivy Yu; Ming Jiang; Jiang Fu; Wei Hsu

    2013-01-01

    Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for ...

  15. Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3.

    Science.gov (United States)

    Hagar, Hanan; Al Malki, Waleed

    2014-03-01

    Cadmium (Cd) is an environmental and industrial pollutant that can induce a broad spectrum of toxicological effects that affect various organs in humans and experimental animals. This study aims to investigate the effect of betaine supplementation on cadmium-induced oxidative impairment in rat kidney. The animals were divided into four groups (n=10 per group): control, cadmium, betaine and betaine+cadmium (1) saline control group; (2) cadmium group in which cadmium chloride (CdCl2) was given orally at a daily dose of 5 mg/kg body weight for four weeks; (3) betaine group, in which betaine was given to rats at a dose of 250 mg/kg/day, orally via gavage for six weeks; (4) cadmium+betaine group in which betaine was given at a dose of 250 mg/kg/day, orally via gavage for two weeks prior to cadmium administration and concurrently during cadmium administration for four weeks. Cadmium nephrotoxicity was indicated by elevated blood urea nitrogen (BUN) and serum creatinine levels. Kidneys from cadmium-treated rats showed an increase in lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) concentration and reductions in total antioxidant status (TAS), reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px) activity, superoxide dismutase concentration (SOD) and catalase activity. Caspase-3 activity, a marker of DNA damage was also elevated in renal tissues of cadmium-treated rats. Pre-treatment of rats with betaine substantially attenuated the increase in BUN and serum creatinine levels. Betaine also inhibited the increase in TBARS concentration and reversed the cadmium-induced depletion in total antioxidant status, GSH, GSH-Px, SOD and catalase concentrations in renal tissues. Renal caspase-3 activity was also reduced with betaine supplementation. These data emphasize the importance of oxidative stress and caspase signaling cascade in cadmium nephrotoxicity and suggest that betaine pretreatment reduces severity of cadmium nephrotoxicity

  16. Pin1-mediated Modification Prolongs the Nuclear Retention of β-Catenin in Wnt3a-induced Osteoblast Differentiation*

    Science.gov (United States)

    Shin, Hye-Rim; Islam, Rabia; Yoon, Won-Joon; Lee, Taegyung; Cho, Young-Dan; Bae, Han-sol; Kim, Bong-Su; Woo, Kyung-Mi; Baek, Jeong-Hwa; Ryoo, Hyun-Mo

    2016-01-01

    The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis. PMID:26740630

  17. Selective inhibition of IFNG-induced autophagy by Mir155- and Mir31-responsive WNT5A and SHH signaling.

    Science.gov (United States)

    Holla, Sahana; Kurowska-Stolarska, Mariola; Bayry, Jagadeesh; Balaji, Kithiganahalli Narayanaswamy

    2014-02-01

    Autophagy is one of the major immune mechanisms engaged to clear intracellular infectious agents. However, several pathogens have evolved strategies to evade autophagy. Here, we demonstrated that Mycobacteria, Shigella, and Listeria but not Klebsiella, Staphylococcus, and Escherichia inhibit IFNG-induced autophagy in macrophages by evoking selective and robust activation of WNT and SHH pathways via MTOR. Utilization of gain- or loss-of-function analyses as well as mir155-null macrophages emphasized the role of MTOR-responsive epigenetic modifications in the induction of Mir155 and Mir31. Importantly, cellular levels of PP2A, a phosphatase, were regulated by Mir155 and Mir31 to fine-tune autophagy. Diminished expression of PP2A led to inhibition of GSK3B, thus facilitating the prolonged activation of WNT and SHH signaling pathways. Sustained WNT and SHH signaling effectuated the expression of anti-inflammatory lipoxygenases, which in tandem inhibited IFNG-induced JAK-STAT signaling and contributed to evasion of autophagy. Altogether, these results established a role for new host factors and inhibitory mechanisms employed by the pathogens to limit autophagy, which could be targeted for therapeutic interventions.

  18. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  19. Therapeutic effects of Cassia angustifolia in a cadmium induced hepatotoxicity assay conducted in male albino rats

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir Haidry

    2016-06-01

    Full Text Available The present study aims to investigate the therapeutic effects of Senna plant (Cassia angustifolia L. in a cadmium induced hepatotoxicity assay by evaluating the activity of alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALP and total protein (TP in the albino rats’ serum. A total of 30 white albino rats were taken and divided into three groups; each group comprising ten rats. The group A was taken as a control group; group B was given cadmium chloride concentration of 5 mg/kg (body weight for 42 days; and group C was given cadmium chloride 5 mg/kg body weight for first 21 days and then extract of C. angustifolia 100 mg/kg (body weight was given for remaining 21 days. The analysis were performed twice i.e., on 21st day and 42nd day. Results illustrated that the concentration of cadmium was significantly elevated (P<0.05 at the levels of serum biochemical markers namely ALT, AST, ALP which lowered the protein levels in albino rats. Moreover, treatment with the standard extracts of C. angustifolia observed to reverse the effects of the cadmium significantly (P<0.05. It is concluded that the C. angustifolia had hepatoprotective effects and therapeutic potential against the cadmium induced hepatotoxicity in albino rats.

  20. Protective effect of Irvingia gabonensis stem bark extract on cadmium-induced nephrotoxicity in rats.

    Science.gov (United States)

    Ojo, Oluwafemi Adeleke; Ajiboye, Basiru Olaitan; Oyinloye, Babatunji Emmanuel; Ojo, Adebola Busola; Olarewaju, Olaide Ibiwumi

    2014-12-01

    Cadmium has been considered a risk factor for humans as it accumulates in body tissues, such as the liver, lungs, kidneys, bones, and reproductive organs. The aim of the present study was to evaluate the effect of Irvingia gabonensis (IG) against cadmium (Cd)-induced nephrotoxicity. The study was performed on twenty (20) male rats divided into four groups: control group, cadmium group (4 mg/kg/day, intraperitoneally), cadmium + extract (200 mg/kg body weight by oral gavage) and cadmium + extract (400 mg/kg body weight by oral gavage). Changes in the kidney biochemical markers, namely glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), aminotransferase (ALT), aspartate aminotransferase (AST) activities and levels of malondialdehyde (MDA), urea, and creatinine were determined in serum. Histological examinations were monitored. Exposure to Cd lowered the activities of kidney antioxidants, while it increased LPO levels. Levels of all disrupted parameters were alleviated by co-administration of IG extract. The malondialdehyde concentration of the rats treated with 200 and 400 mg/kg body weight of the extract significantly decreased (prats. Yet the creatinine concentration decreased significantly (prats and these were ameliorated in cadmium treated rats by co-administration of IG extract. IG showed apparent protective and curative effect on Cd-induced nephrotoxicity.

  1. Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures.

    Science.gov (United States)

    Dew, William A; Veldhoen, Nik; Carew, Amanda C; Helbing, Caren C; Pyle, Greg G

    2016-03-01

    A functioning olfactory response is essential for fish to be able to undertake essential behaviors. The majority of work investigating the effects of metals on the olfactory response of fish has focused on single-metal exposures. In this study we exposed rainbow trout to cadmium, copper, nickel, zinc, or a mixture of these four metals at or below the current Canadian Council of Ministers of the Environment guidelines for the protection of aquatic life. Measurement of olfactory acuity using an electro-olfactogram demonstrated that cadmium causes significant impairment of the entire olfactory system, while the other three metals or the mixture of all four metals did not. Binary mixtures with cadmium and each of the other metals demonstrated that nickel and zinc, but not copper, protect against cadmium-induced olfactory dysfunction. Testing was done to determine if the protection from cadmium-induced olfactory dysfunction could be explained by binding competition between cadmium and the other metals at the cell surface, or if the protection could be explained by an up-regulation of an intracellular detoxification pathway, namely metallothionein. This study is the first to measure the effects of binary and quaternary metal mixtures on the olfactory response of fish, something that will aid in future assessments of the effects of metals on the environment.

  2. Mechanism of inhibition of MMTV-neu and MMTV-wnt1 induced mammary oncogenesis by RARalpha agonist AM580.

    Science.gov (United States)

    Lu, Y; Bertran, S; Samuels, T-A; Mira-y-Lopez, R; Farias, E F

    2010-06-24

    We hypothesized that specific activation of a single retinoic acid receptor-alpha (RARalpha), without direct and concurrent activation of RARbeta and gamma, will inhibit mammary tumor oncogenesis in murine models relevant to human cancer. A total of 50 uniparous mouse mammary tumor virus (MMTV)-neu and 50 nuliparous MMTV-wnt1 transgenic mice were treated with RARalpha agonist (retinobenzoic acid, Am580) that was added to the diet for 40 (neu) and 35 weeks (wnt1), respectively. Among the shared antitumor effects was the inhibition of epithelial hyperplasia, a significant increase (PAm580 also induced differentiation, in both in vivo and three-dimensional (3D) cultures. In these tumors Am580 inhibited the wnt pathway, measured by loss of nuclear beta-catenin, suggesting partial oncogene dependence of therapy. Am580 treatment increased RARbeta and lowered the level of RARgamma, an isotype whose expression we linked with tumor proliferation. The anticancer effect of RARalpha, together with the newly discovered pro-proliferative role of RARgamma, suggests that specific activation of RARalpha and inhibition of RARgamma might be effective in breast cancer therapy.

  3. Cadmium and mialgic encephalomyelitis/chronic fatigue syndrome; application of transcranial sonography to the study of cadmium-induced neuronal damage

    OpenAIRE

    G.Morucci; Gulisano, M; Pacini, S; J.J.V. Branca; Ruggiero, M

    2012-01-01

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (CFS) is a neurological disease characterized by widespread inflammation and neuropathology. Aetiology and pathogenesis are unknown and it has been hypothesized that exposure to heavy metals is among the triggers of CFS. We recently hypothesized that cadmium, an occupational and environmental heavy metal pollutant, might be associated with some of the neurological findings typical of CFS. It is worth noticing that cadmium induces neuronal dea...

  4. Cadmium and naphthalene-induced hyperglycemia in the fiddler crab, Uca pugilator: Differential modes of action on the neutroendocrine system

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, P.S.; Katyayani, R.V.; Fingerman, M. [Tulane Univ., New Orleans, LA (United States)

    1996-03-01

    Hyperglycemia is a typical response of aquatic organisms to heavy metals. In crustaceans, the medulla terminalis X-organ-sinus gland neuroendocrine complex in the eyestalk is the source of the crustacean hyperglycemic hormone (CHH). The role of CHH in pollutant-induced b1ood glucose changes has only recently begun to be studied. Reddy provided evidence that CHH mediates cadmium-induced hyperglycemia in the red swamp crayfish, Procambarus clarkii. In a study of another hormonally-regulated function, color changes, cadmium exposure resulted in pigment in the melanophores of the fiddler crab, Uca pugilator, becoming less dispersed than in unexposed crabs. Earlier studies showed that, like cadmium, both a PCB, Aroclor 1242, and naphthalene induced black pigment aggregation in Uca poor. In general, when crabs are exposed to a pollutant, hydrocarbon or cadmium, they aggregate the pigment in their melanophores, but apparently by different mechanisms. Hydrocarbons appear to inhibit release of black pigment-dispersing hormone (BDPH), whereas cadmium appears to inhibit its synthesis. These apparent different modes of action of cadmium and naphthalene on the color change mechanism led us to compare the impact of these pollutants on the hormonal regulation of blood glucose in Uca pugilator. The present study was performed to determine (1) whether cadmium and naphthalene induce hyperglycemia in Uca pugilator, (2) whether CH has a role, if naphthalene and cadmium do induce hyperglycemia, and (3) the effects, if any, of cadmium and naphthalene on CHH activity in the eyestalk neuroendocrine complex.

  5. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Laarhoven, L.J.; Harren, F.; Woltering, E.J.

    2006-01-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO4. Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 2¿3 days which indicates the existence

  6. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Yakimova, E.T.; Kapchina-Toteva, V.M.; Laarhoven, L.J.J.; Harren, F.J.M.; Woltering, E.J.

    2006-01-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO4. Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 23 days which indicates the existence

  7. Nanotoxicological evaluation of oxidative responses in rat nephrocytes induced by cadmium

    Directory of Open Access Journals (Sweden)

    Trabelsi H

    2013-09-01

    Full Text Available Hamdi Trabelsi, Inès Azzouz, Soumaya Ferchichi, Olfa Tebourbi, Mohsen Sakly, Hafedh Abdelmelek Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Tunisia Abstract: The aim of this study was to investigate the interaction of cadmium chloride with mineral elements in rat nephrocytes in terms of the biosynthesis of nanocomplexes. The results show that selenium supplementation enhanced cadmium accumulation in kidneys. Analysis of the fluorescence revealed an increase in red fluorescence in the kidneys of rats co-exposed to cadmium and selenium. Interestingly, X-ray diffraction measurements carried out on kidney fractions of co-exposed rats point to the biosynthesis of cadmium selenide and/or sulfide nanoparticles (about 62 nm in size. Oxidative stress assays showed the ability of selenium to reduce lipid peroxidation and to restore glutathione peroxidase and superoxide dismutase activity in kidneys. Hence, cadmium complexation with selenium and sulfur at a nanoscale level could reduce oxidative stress induced by cadmium in kidneys. Keywords: nanoparticles, detoxification, oxidative stress, X-ray diffraction, fluorescence microscopy, kidneys

  8. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings.

    Science.gov (United States)

    Chen, Yi-ping; Li, Ran; He, Jun-Min

    2011-06-01

    To alleviate toxicological effect induced by cadmium in mungbean seedlings, seeds were divided into four groups: The controls groups (CK, without treatment), magnetic field treated groups (MF), cadmium treated groups (CS), and magnetic field treated followed by cadmium treated groups (MF + CS).The results showed: (i) Compared with the controls, cadmium stress resulted in enhancing in the concentration of malondialdehyde, H(2)O(2) and O(2-), and the conductivity of electrolyte leakage while decreasing in the nitrice oxide synthase (NOS) activity, the concentration of nitrice oxide (NO), chlorophyll and total carbon and nitrogen, the net photosynthetic rate, the stomatal conductance, the transpiration rate, the water use efficiency, the lateral number and seedlings growth except for intercellular CO(2) concentration increase. However, the seedlings treated with 600 mT magnetic field followed by cadmium stress the concentration of malondialdehyde, H(2)O(2) and O(2-), and the conductivity of electrolyte leakage decreased, while the above mentioned NO concentration, NOS activity, photosynthesis and growth parameters increased compared to cadmium stress alone. (ii) Compared with the cadmium stress (CS), the seedling growth were inhibited when the seeds were treated with NO scavenger (hemoglobin, HB) and inhibition of NO generating enzyme (sodium tungstate, ST), conversely, the seedling growth were improved by the NO donor sodium nitroprusside (SNP) and CaCl(2). In the case of the HB and ST treatment followed by magnetic field and then the seedling subjected to CS, the seedlings growth was better than that of hemoglobin (HB) followed by CS and ST followed by CS. The seeds were treated with SNP and CaCl(2) followed by MF, and then subjected to CS, the seedlings growth were better than that of SNP followed by CS, and CaCl(2) followed by CS. These results suggested that magnetic field compensates for the toxicological effects of cadmium exposure are related to NO signal.

  9. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    Energy Technology Data Exchange (ETDEWEB)

    Mehinto, Alvine C., E-mail: alvinam@sccwrp.org [Southern California Coastal Water Research Project, Costa Mesa, CA 92626 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Prucha, Melinda S. [Department of Human Genetics, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Colli-Dula, Reyna C.; Kroll, Kevin J.; Lavelle, Candice M.; Barber, David S. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Vulpe, Christopher D. [Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720 (United States); Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States)

    2014-07-01

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  10. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF

    NARCIS (Netherlands)

    Schuijers, Jurian; Mokry, Michal; Hatzis, Pantelis; Cuppen, Edwin; Clevers, Hans

    2014-01-01

    Active canonical Wnt signaling results in recruitment of β-catenin to DNA by TCF/LEF family members, leading to transcriptional activation of TCF target genes. However, additional transcription factors have been suggested to recruit β-catenin and tether it to DNA. Here, we describe the genome-wide p

  11. Effect of Physalis peruviana L. on cadmium-induced testicular toxicity in rats.

    Science.gov (United States)

    Othman, Mohamed S; Nada, Ahmed; Zaki, Hassan S; Abdel Moneim, Ahmed E

    2014-06-01

    Cadmium (Cd) stimulates the production of reactive oxygen species and causes tissue damage. We investigated here the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced testes toxicity in rats. Twenty-eight Wistar albino rats were used. They were divided into four groups (n=7). Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg body weight (bwt) of cadmium chloride for 5 days. Group 3 was orally treated with 200 mg/kg bwt of methanolic extract of physalis (MEPh). Group 4 was pretreated with MEPh before cadmium for 5 days. Changes in body and testes weights were determined. Oxidative stress markers, antioxidant enzymes, and testosterone level were measured. Histopathological changes of testes were examined, and the immunohistochemical staining for the proapoptotic (caspase-3) protein was performed. The injection of cadmium caused a significant decrease in body weight, while a significant increase in testes weight and testes weight index was observed. Pretreatment with MEPh was associated with significant reduction in the toxic effects of Cd as shown by reduced testicular levels of malondialdehyde, nitric oxide, and caspase-3 expression and increased glutathione content, and the activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and testosterone were also increased. Testicular histopathology showed that Cd produced an extensive germ cell apoptosis, and the pretreatment of MEPh in Cd-treated rats significantly reduced Cd-induced testicular damage. On the basis of the above results, it can be hypothesized that P. peruviana L. has a protective effect against cadmium-induced testicular oxidative stress and apoptosis in the rat.

  12. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    Science.gov (United States)

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to Cadmium-Induced Testicular Injury in MiceJie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2 and Curtis D. Klaassen1 ABSTRACTParenteral administrati...

  13. Chelidonium majus leaves methanol extract and its chelidonine alkaloid ingredient reduce cadmium-induced nephrotoxicity in rats.

    Science.gov (United States)

    Koriem, Khaled M M; Arbid, Mahmoud S; Asaad, Gihan F

    2013-01-01

    The kidney is one of the critical target organs for chronic cadmium toxicity. Cadmium is a cumulative nephrotoxicant, and preferentially accumulates and persists in the kidneys. The natriuretic and antidiuretic effects of methyl alcohol extracts of Chelidonium majus L. (C. majus) leaves were evaluated in kidney of cadmium-intoxicated rats. Ninety-six male Sprague-Dawley Albino rats were divided into two major groups (toxicity and biochemical, 60 and 36 rats, respectively). There was a decrease in kidney weight and serum electrolytes, but an increase in urinary volume, excretion of electrolytes, serum urea and creatinine, after 9 weeks of cadmium chloride intoxication. Treatment of C. majus methyl alcohol extract for 10 weeks starting 1 week before cadmium administration shifted the above parameters towards the normal values. These results were supported by molecular and histological investigations. Treatment with C. majus methyl alcohol extract has natriuretic and antidiuretic effects against cadmium-induced nephrotoxicity in rats.

  14. Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm.

    Science.gov (United States)

    Sudheer, Smita; Liu, Jinhua; Marks, Matthias; Koch, Frederic; Anurin, Anna; Scholze, Manuela; Senft, Anna Dorothea; Wittler, Lars; Macura, Karol; Grote, Phillip; Herrmann, Bernhard G

    2016-07-01

    Presomitic mesoderm (PSM) cells are the precursors of the somites, which flank both sides of the neural tube and give rise to the musculo-skeletal system shaping the vertebrate body. WNT and FGF signaling control the formation of both the PSM and the somites and show a graded distribution with highest levels in the posterior PSM. We have used reporters for the mesoderm/PSM control genes T, Tbx6, and Msgn1 to investigate the differentiation of mouse ESCs from the naïve state via EpiSCs to PSM cells. Here we show that the activation of WNT signaling by CHIR99021 (CH) in combination with FGF ligand induces embryo-like PSM at high efficiency. By varying the FGF ligand concentration, the state of PSM cells formed can be altered. High FGF concentration supports posterior PSM formation, whereas low FGF generates anterior/differentiating PSM, in line with in vivo data. Furthermore, the level of Msgn1 expression depends on the FGF ligand concentration. We also show that Activin/Nodal signaling inhibits CH-mediated PSM induction in EpiSCs, without affecting T-expression. Inversely, Activin/Nodal inhibition enhances PSM induction by WNT/high FGF signaling. The ability to generate PSM cells of either posterior or anterior PSM identity with high efficiency in vitro will promote the investigation of the gene regulatory networks controlling the formation of nascent PSM cells and their switch to differentiating/somitic paraxial mesoderm. Stem Cells 2016;34:1790-1800.

  15. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S;

    2002-01-01

    of the study was to determine whether cadmium-induced damage in the kidneys and the skeletal system could be detected among 100 ringed seals from Northwest Greenland. The cadmium concentrations in the kidney cortex ranged from 0 to 248 microg/g wet weight (mean=44.5, N=100) in the 99 kidneys examined...... to the proximal kidney tubules is known to induce demineralisation of the skeletal system (Fanconi's syndrome). Therefore, the three lowest lumbar vertebrae were scanned in 91 seals to measure the content of calcium. The 10 cases of nephropathy could neither be linked to the degree of mineralisation...

  16. Metallothionein-like proteins induced by cadmium stress in the scallop Mizuhopecten yessoensis

    Science.gov (United States)

    Zhukovskaya, Avianna F.; Belcheva, Nina N.; Slobodskova, Valentina S.; Chelomin, Viktor P.

    2012-09-01

    Organisms have evolved a cellular response called stress protein response that increases their tolerance in adverse environmental conditions. Well known stress proteins that bind essential and toxic metals are metallothionein (MT). The scallop Mizuhopecten yessoensis is the most interesting organism because it is able to accumulate toxic cadmium in its digestive gland. However, in the tissue of the digestive gland of Mizuhopecten yessoensis MT (metallothioneins) have not been found. Eastern scallops, Mizuhopecten yessoensis, were collected from two locations — one clean and one polluted site. The concentrations of cadmium (Cd), copper (Cu) and zinc (Zn) were measured in the digestive gland. There was a significant increase in Cd concentrations in this studied tissue. We found that in the presence of cadmium Mizuhopecten yessoensis can induce high molecular proteins. The results of experiments have shown that Cd-binding ligands have a number of properties similar to MT: acetone and temperature stability; the ability to bind some metals, including Cd, Cu and Zn. Protein chromatography (FPLC, Superosa 12) from the digestive gland of scallop M. yessoensis has shown that cadmium is associated with high molecular weight Cd-binding proteins (72 kDa and 43 kDa). The major cadmium-binding protein 72 kDa is glycoprotein. In experiments we have demonstrated that Cd-binding proteins can be induced when there is cadmium exposure. The results of this study strongly suggest that the far eastern scallop Mizuhopecten yessoensis has a unique and well-developed system for the detoxification of heavy metals and it allows for biochemical systems to be maintained in a relatively stable manner in the presence of heavy metals.

  17. Cellular proton dynamics in Elodea canadensis leaves induced by cadmium.

    Science.gov (United States)

    Tariq Javed, M; Lindberg, Sylvia; Greger, Maria

    2014-04-01

    Our earlier investigations showed that Elodea canadensis shoots, grown in the presence of cadmium (Cd), caused basification of the surrounding medium. The present study was aimed to examine the proton dynamics of the apoplastic, cytosolic and vacuolar regions of E. canadensis leaves upon Cd exposure and to establish possible linkage between cellular pH changes and the medium basification. The changes in cytosolic calcium [Ca(2+)]cyt was also investigated as the [Ca(2+)]cyt and [pH]cyt homeostasis are closely linked. The cellular H(+) and Ca(2+) concentrations were monitored by fluorescence microscopy and ion-specific fluorescent dyes. Cadmium concentration of leaf-cell walls was measured after plant cultivation at different fixed levels of starting pH. The protoplasts from E. canadensis leaves were isolated by use of a newly developed enzymatic method. Upon Cd addition, both cytosolic and vacuolar pH of leaf protoplasts increased with a concomitant rise in the cytosolic Ca(2+) concentration. Time course studies revealed that changes in [Ca(2+)]cyt and [pH]cyt followed similar dynamics. Cadmium (0.5 μM) exposure decreased the apoplastic pH by 0.85 units. The maximum cell wall bound Cd-contents were obtained in plants grown at low starting pH. It is concluded that Cd treatment causes apoplastic acidosis in E. canadensis leaves associated with enhanced Cd binding to the cell walls and, consequently, reduced Cd influx into the cytosol.

  18. Cadmium induced oxidative stress in kidney epithelia cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    2007-01-01

    Cadmium (Cd) is an important industrial and environmental pollutant. In humans exposed to Cd via oral and/or pulmonary routes, the kidney is by far the primary organ affected adversely by Cd. It have been estimated that 7% of the human population may develop renal dysfunction from Cd exposure....... To minimize DCF photo-oxidation, illumination was limited to 100 ms exposures at 30 s intervals. ROS production rate was determined by linear regression analysis of change in the fluorescence intensity (FI) and expressed as increase in fluorescence intensity units (FIU) per min.    In order to evaluate...

  19. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China); Jia Xiuying, E-mail: hznujiaxiuying@126.com [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. Black-Right-Pointing-Pointer Cd can result in oxidative stress in the frog testes. Black-Right-Pointing-Pointer Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. Black-Right-Pointing-Pointer Cd can cause apoptosis in the testes of male R. limnocharis. Black-Right-Pointing-Pointer Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose-effect relationship. Moreover, the same dosages of Cd{sup 2+} solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5-7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a

  20. Wnt11 gene therapy with adeno-associated virus 9 improves the survival of mice with myocarditis induced by coxsackievirus B3 through the suppression of the inflammatory reaction.

    Science.gov (United States)

    Aoyama, Yutaka; Kobayashi, Koichi; Morishita, Yoshihiro; Maeda, Kengo; Murohara, Toyoaki

    2015-07-01

    The wnt signaling pathway plays important roles in development and in many diseases. Recently several reports suggest that non-canonical Wnt proteins contribute to the inflammatory response in adult animals. However, the effects of Wnt proteins on virus-induced myocarditis have not been explored. Here, we investigated the effect of Wnt11 protein in a model of myocarditis induced by coxsackievirus B3 (CVB3) using recombinant adeno-associated virus 9 (rAAV9). The effect of Wnt11 gene therapy on a CVB3-induced myocarditis model was examined using male BALB/c mice. Mice received a single intravenous injection of either rAAV9-Wnt11 or rAAV9-LacZ 2 weeks before intraperitoneal administration of CVB3. Intravenous injection of the rAAV9 vector resulted in efficient, durable, and relatively cardiac-specific transgene expression. Survival was significantly greater among rAAV9-Wnt11 treated mice than among mice treated with rAAV9-LacZ (87.5% vs. 54.1%, P myocarditis. AAV9-mediated Wnt11 gene therapy produces beneficial effects on cardiac function and increases the survival of mice with CVB3-induced myocarditis through the suppression of both infiltration of inflammatory cells and gene expression of inflammatory cytokines.

  1. Wnt/β-catenin signaling pathway and lipolysis enzymes participate in methylprednisolone induced fat differential distribution between subcutaneous and visceral adipose tissue.

    Science.gov (United States)

    Xiao, Xinhua; Li, Han; Yang, Jiaojiao; Qi, Xiaoyan; Zu, Xuyu; Yang, Jing; Zhong, Jing; Cao, Renxian; Liu, Jianghua; Wen, Gebo

    2014-06-01

    Glucocorticoids (GCs) are well known to induce fat distribution, which is consistent with the central adiposity phenotype seen in Cushing's syndrome. GCs have been proposed to be both adipogenic and lipolytic in action within adipose tissues. Different adipogenic and lipolytic effects between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) are likely to play a role in GCs induced fat differential distribution. Wnt/β-catenin signaling pathway is one of the most important regulators in adipogenesis. Adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) are the major lipases contributing to lipolysis. In the present study, we measured fat depot masses and the expression of Wnt/β-catenin signaling pathway and lipolytic enzymes of female Sprague-Dawley rats treated with or without methylprednisolone. We assessed the roles of Wnt/β-catenin signaling pathway and lipolytic enzymes in fat differential distribution between SAT and VAT. Our data suggested that methylprednisolone could inhibit Wnt/β-catenin signaling pathway in SAT and VAT, increase the expression of ATGL and HSL in SAT, and decrease the expression of ATGL and HSL in VAT. The differential expression of lipolysis enzymes induced by methylprednisolone between SAT and VAT might play a crucial role in fat distribution. Those findings would offer novel insights into the mechanisms of GCs induced fat distribution.

  2. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  3. Noncanonical Wnt5a-Ca(2+) -NFAT signaling axis in pesticide induced bone marrow aplasia mouse model: A study to explore the novel mechanism of pesticide toxicity.

    Science.gov (United States)

    Chattopadhyay, Sukalpa; Chatterjee, Ritam; Law, Sujata

    2016-10-01

    According to case-control studies, long-term pesticide exposure can cause bone marrow aplasia like hematopoietic degenerative disease leading to impaired hematopoiesis and increased risk of aplastic anemia in human subjects. However, the exact mechanism of pesticide mediated hematotoxicity still remains elusive. In this study, we investigated the role of noncanonical Wnt signaling pathway, a crucial regulator of adult hematopoiesis, in pesticide induced bone marrow aplasia mouse model. Aplasia mouse model was developed following inhalation and dermal exposure of 5% aqueous mixture of common agriculturally used pesticides for 6 h/day for 5 days a week up to 90 days. After that, blood hemogram, marrow smear, cellularity, scanning electron microscopy, extramedullary hematopoiesis and flowcytometric expression analysis of noncanonical Wnt signaling components, such as Wnt 5a, fzd5, NFAT, IFN-γ, intracellular Ca(2+) level were evaluated in the bone marrow hematopoietic stem/progenitor compartment of the control and pesticide induced aplasia groups of animals. Results showed that pesticide exposed mice were anemic with peripheral blood pancytopenia, hypocellular degenerative marrow, and extramedullary hematopoiesis in the spleen. Upon pesticide exposure, Wnt 5a expression was severely downregulated with a decline in intracellular Ca(2+) level. Moreover, downstream of Wnt5a, we observed sharp downregulation of NFATc2 transcription factor expression, the major target of pesticide toxicity and its target molecule IFN-γ. Taken together, our result suggests that deregulation of Wnt5a-Ca(2+) -NFAT signaling axis in the hematopoietic stem/progenitor compartment plays a crucial role behind the pathogenesis of pesticide mediated bone marrow aplasia by limiting primitive hematopoietic stem cells' ability to maintain hematopoietic homeostasis and reconstitution mechanism in vivo during xenobiotic stress leading to ineffective hematopoiesis and evolution of bone marrow aplasia.

  4. Role of zinc as an antioxidant and anti-inflammatory to relieve cadmium oxidative stress induced testicular damage in rats

    Institute of Scientific and Technical Information of China (English)

    Samir Abd El-Monem Bashandy; Enayat Abdel Aziz Omara; Hossam Ebaid; Mohamed Mahmoud Amin; Mahmoud Sanad Soliman

    2016-01-01

    Objective: To investigate the role of zinc in reducing the deleterious effects of cadmium on male gonads. Methods: Rats were injected subcutaneously with CdCl2 and ZnCl2 at dose level of 2.2 mg/kg (1/40 of LD50 of cadmium per day). Results: The rats treated with cadmium exhibited a significant increase in levels of testicular malondialdehyde, tumor necrosis factor-alpha, nitrogen oxide and inducible nitrogen oxide synthase immunostaining reaction, as well as an elevation of blood hydroperoxide and follicle stimulating hormone. In addition, a significant decrease in testicular ascorbic acid, zinc, reduced glutathione, catalase, superoxide dismutase, sex organ weight, plasma testosterone and luteinizing hormone were observed in the cadmium group. Sperm motility and count were decreased with cadmium treatment, while sperm abnormalities elevated significantly. Zinc treatment was found to mitigate the toxic effects of cadmium on oxidative stress, spermatogenesis, sex hormones, and inflammatory markers. Rats injected with cadmium showed intense histopathological changes. Zinc manifested protective role and markedly reduced tissues damage induced by cadmium. Conclusions: The protective effect of zinc can be attributed to its antioxidant and anti-inflammatory properties.

  5. COX-2 Induces Breast Cancer Stem Cells via EP4/PI3K/AKT/NOTCH/WNT Axis.

    Science.gov (United States)

    Majumder, Mousumi; Xin, Xiping; Liu, Ling; Tutunea-Fatan, Elena; Rodriguez-Torres, Mauricio; Vincent, Krista; Postovit, Lynne-Marie; Hess, David; Lala, Peeyush K

    2016-09-01

    Cancer stem-like cells (SLC) resist conventional therapies, necessitating searches for SLC-specific targets. We established that cyclo-oxygenase(COX)-2 expression promotes human breast cancer progression by activation of the prostaglandin(PG)E-2 receptor EP4. Present study revealed that COX-2 induces SLCs by EP4-mediated NOTCH/WNT signaling. Ectopic COX-2 over-expression in MCF-7 and SKBR-3 cell lines resulted in: increased migration/invasion/proliferation, epithelial-mesenchymal transition (EMT), elevated SLCs (spheroid formation), increased ALDH activity and colocalization of COX-2 and SLC markers (ALDH1A, CD44, β-Catenin, NANOG, OCT3/4, SOX-2) in spheroids. These changes were reversed with COX-2-inhibitor or EP4-antagonist (EP4A), indicating dependence on COX-2/EP4 activities. COX-2 over-expression or EP4-agonist treatments of COX-2-low cells caused up-regulation of NOTCH/WNT genes, blocked with PI3K/AKT inhibitors. NOTCH/WNT inhibitors also blocked COX-2/EP4 induced SLC induction. Microarray analysis showed up-regulation of numerous SLC-regulatory and EMT-associated genes. MCF-7-COX-2 cells showed increased mammary tumorigenicity and spontaneous multiorgan metastases in NOD/SCID/IL-2Rγ-null mice for successive generations with limiting cell inocula. These tumors showed up-regulation of VEGF-A/C/D, Vimentin and phospho-AKT, down-regulation of E-Cadherin and enrichment of SLC marker positive and spheroid forming cells. MCF-7-COX-2 cells also showed increased lung colonization in NOD/SCID/GUSB-null mice, an effect reversed with EP4-knockdown or EP4A treatment of the MCF-7-COX-2 cells. COX-2/EP4/ALDH1A mRNA expression in human breast cancer tissues were highly correlated with one other, more marked in progressive stage of disease. In situ immunostaining of human breast tumor tissues revealed co-localization of SLC markers with COX-2, supporting COX-2 inducing SLCs. High COX-2/EP4 mRNA expression was linked with reduced survival. Thus, EP4 represents a novel SLC

  6. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S

    2002-01-01

    or osteodystrophy. This might be explained by the composition of the ringed seals diet, which contains high levels of vitamin D, calcium, phosphorus, zinc, selenium and protein. These elements are all likely to counteract cadmium-induced damage. It is speculated that ringed seal are not particularly vulnerable...

  7. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway.

    Directory of Open Access Journals (Sweden)

    Da-yong Zhang

    Full Text Available Recent studies have demonstrated the importance of cellular extrinsic factors in the aging of adult stem cells. However, the effects of an aged cell-extrinsic environment on mesenchymal stem cell (MSC aging and the factors involved remain unclear. In the current study, we examine the effects of old rat serum (ORS on the aging of MSCs, and explore the effects and mechanisms of Wnt/β-catenin signaling on MSC aging induced by ORS treatment. Senescence-associated changes in the cells are examined with SA-β-galactosidase staining and ROS staining. The proliferation ability is detected by MTT assay. The surviving and apoptotic cells are determined using AO/EB staining. The results suggest that ORS promotes MSC senescence and reduces the proliferation and survival of cells. The immunofluorescence staining shows that the expression of β-catenin increases in MSCs of old rats. To identify the effects of Wnt/β-catenin signaling on MSC aging induced with ORS, the expression of β-catenin, GSK-3β, and c-myc are detected. The results show that the Wnt/β-catenin signaling in the cells is activated after ORS treatment. Then we examine the aging, proliferation, and survival of MSCs after modulating Wnt/β-catenin signaling. The results indicate that the senescence and dysfunction of MSCs in the medium containing ORS is reversed by the Wnt/β-catenin signaling inhibitor DKK1 or by β-catenin siRNA. Moreover, the expression of γ-H2A.X, a molecular marker of DNA damage response, p16(INK4a, p53, and p21 is increased in senescent MSCs induced with ORS, and is also reversed by DKK1 or by β-catenin siRNA. In summary, our study indicates the Wnt/β-catenin signaling may play a critical role in MSC aging induced by the serum of aged animals and suggests that the DNA damage response and p53/p21 pathway may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling.

  8. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.

    Science.gov (United States)

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Diab, Marwa M S; Othman, Mohamed S; Aref, Ahmed M; Abdel Moneim, Ahmed E

    2014-12-01

    This study aimed to investigate the potential protective role of Physalis peruviana L. (family Solanaceae) against cadmium-induced hepatorenal toxicity in Wistar rats. Herein, cadmium chloride (CdCl2) (6.5 mg/kg bwt/day) was intraperitoneally injected for 5 days, and methanolic extract of physalis (MEPh) was pre-administered to a group of Cd-treated rats by an oral administration at a daily dose of 200 mg/kg bwt for 5 days. The findings revealed that CdCl2 injection induced significant decreases in kidney weight and kidney index. Cadmium intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of uric acid, urea and creatinine were increased in the serum. The pre-administration of MEPh alleviated hepatorenal toxicity in Cd-treated rats. Physalis was noted to play a good hepatorenal protective role, reducing lipid peroxidation, nitric oxide, and enhancing enzymatic activities and non-enzymatic antioxidant molecule, glutathione, in hepatic and renal tissues of Cd-treated rats. Moreover, physalis treatment was able to reverse the histopathological changes in liver and kidney tissues and also increased the expression of Bcl-2 protein in liver and kidney of rats. Overall, the results showed that MEPh can induce antioxidant and anti-apoptotic effects and also exerts beneficial effects for the treatment of Cd-induced hepatorenal toxicity.

  9. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF.

    Science.gov (United States)

    Schuijers, Jurian; Mokry, Michal; Hatzis, Pantelis; Cuppen, Edwin; Clevers, Hans

    2014-01-13

    Active canonical Wnt signaling results in recruitment of β-catenin to DNA by TCF/LEF family members, leading to transcriptional activation of TCF target genes. However, additional transcription factors have been suggested to recruit β-catenin and tether it to DNA. Here, we describe the genome-wide pattern of β-catenin DNA binding in murine intestinal epithelium, Wnt-responsive colorectal cancer (CRC) cells and HEK293 embryonic kidney cells. We identify two classes of β-catenin binding sites. The first class represents the majority of the DNA-bound β-catenin and co-localizes with TCF4, the prominent TCF/LEF family member in these cells. The second class consists of β-catenin binding sites that co-localize with a minimal amount of TCF4. The latter consists of lower affinity β-catenin binding events, does not drive transcription and often does not contain a consensus TCF binding motif. Surprisingly, a dominant-negative form of TCF4 abrogates the β-catenin/DNA interaction of both classes of binding sites, implying that the second class comprises low affinity TCF-DNA complexes. Our results indicate that β-catenin is tethered to chromatin overwhelmingly through the TCF/LEF transcription factors in these three systems.

  10. Molecular toxicity of earthworms induced by cadmium contaminated soil and biomarkers screening

    Institute of Scientific and Technical Information of China (English)

    Xiaohui MO; Yuhui Qiao; Zhenjun Sun; Xiaofei Sun; Yang Li

    2012-01-01

    Earthworms(Eiseniafetida)were used to study the impact of low-dose cadmium in treated artificial soil(0,0.6,3,6,15,30 mg/kg)and contaminated natural soil(1.46 mg/kg).The changes of earthworms' physiological related gene expressions of metallothionein (MT),annetocin,calreticulin and antimicrobial peptides were detected using real-time PCR after a 70-day incubation period.The results showed that low doses of cadmium could up regulate earthworms' MT and down regulate armetocin gene expression and show a significant positive and negative correlation respectively.The expression of two other genes,calreticulin and anti-microbial peptides,was induced at low doses of cadmium(highest gene expression at 0.6 mg/kg for calreticulin and 6 mg/kg for anti-microbial peptides)and inhibited at high doses.No significant correlation was found for these two genes.This study shows that MT and annetocin genes expression found in earthworms in contaminated soil have the potential to be developed as biomarkers of soil cadmium pollution.

  11. The hepatoprotective effect of putrescine against cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Tzirogiannis, Konstantinos N.; Panoutsopoulos, Georgios I.; Papadimas, George K.; Kondyli, Vasiliki G.; Kourentzi, Kalliopi T.; Hereti, Rosa I.; Mykoniatis, Michael G. [Department of Experimental Pharmacology, Medical School, Athens University, 75 Mikras Asias St., 115 27, Athens (Greece); Demonakou, Maria D. [Histopathology Laboratory, Sismanoglion G.D. Hospital, Sismanogliou 1, Marousi 151 27, Attiki (Greece)

    2004-06-01

    The hepatoprotective effect of putrescine against cadmium liver injury was investigated. Male Wistar rats were injected with a dose of cadmium (6.5 mg CdCl{sub 2}/kg bodyweight, intraperitoneally). Normal saline (group I) or putrescine (300 {mu}mol/kg bodyweight; group II) were injected 2, 5 and 8 h later. A number of animals of both groups were killed 0, 12, 16, 24, 48 or 60 h after cadmium intoxication. Liver tissue was histologically assessed for necrosis, apoptosis, peliosis, mitoses, and inflammatory infiltration. Apoptosis was also quantified by the TUNEL assay for hepatocytes and nonparenchymal liver cells. The discrimination between hepatic cell subpopulations was achieved histochemically. The mitotic index in hematoxylin-eosin-stained sections and by the immunochemical detection of Ki67 nuclear antigen, {sup 3}H-thymidine incorporation into hepatic DNA, and hepatic thymidine kinase activity were all used as indices of liver regeneration. Both hepatocyte apoptosis and liver necrosis evolved in a biphasic temporal pattern. Nonparenchymal cell apoptosis and peliosis hepatis evolved in a monophasic pattern and were correlated closely. Putrescine administration totally reversed liver necrosis and hepatocyte apoptosis. The time profile of nonparenchymal apoptosis was altered and peliosis hepatis was also totally attenuated. In conclusion, putrescine protected hepatocytes and modulated the mechanism of cadmium-induced acute hepatotoxicity. (orig.)

  12. Cadmium-induced colony disintegration of duckweed (Lemna paucicostata Hegelm.) and as biomarker of phytotoxicity.

    Science.gov (United States)

    Li, T Y; Xiong, Z T

    2004-10-01

    The toxic effect of cadmium on Lemna paucicostata was investigated with hydroponic culture in a culture facility. Cadmium treatment (0.4-6.4 micromol L(-1) Cd) induced L. paucicostata to release daughter fronds from the mother frond before maturity, resulting in colony disintegration. The 8-h and 24-h EC(50) values for colony disintegration in L. paucicostata plants were 0.12 and 0.11 mg L(-1), respectively. The maximum permissible concentrations (MPCs) were 0.012 and 0.011 mg L(-1) accordingly (MPC = 10% x EC(50)). These values were lower than the values of most of these biomarkers in duckweed reported in the literature, suggesting that colony disintegration in L. paucicostata may serve as a sensitive biomarker for the phytotoxicity test. Nutrient concentrations (1/2, 1/10, 1/20, 1/40, and 0-fold concentrations of Hoagland's solution) and Cd salt form (CdCl(2) or CdSO(4)) did not have a significant effect on colony disintegration. In addition, resistance to Cd stress differed significantly among clones of the plants. Approximately 2% of colonies in the wild population of L. paucicostata were tolerant of cadmium. These results indicate that colony disintegration of L. paucicostata could be used as a sensitive, cost-effective, and valuable biomarker to assess the acute phytotoxicity of cadmium and other heavy metals.

  13. Cadmium induces vascular permeability via activation of the p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Fengyun [Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Guo, Fang [Department of Cardiology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021 (China); Li, Liqun [Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Guo, Ling; Hou, Yinglong; Hao, Enkui; Yan, Suhua [Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Allen, Thaddeus D. [G.W. Hooper Research Foundation, University of California at San Francisco, 513 Parnassus Ave., HSW1501, San Francisco, CA 94143-0552 (United States); Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China)

    2014-07-18

    Highlights: • Low-dose cadmium (Cd) induces vascular hyper-permeability. • p38 MAPK mediates Cd-induced disruption of endothelial cell barrier function. • SB203850 inhibits Cd-induced membrane dissociation of VE-cadherin and β-catenin. • SB203850 reduces Cd-induced expression and secretion of TNF-α. - Abstract: The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl{sub 2}) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl{sub 2} induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl{sub 2} was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl{sub 2}-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.

  14. A paradox of cadmium: a carcinogen that impairs the capability of human breast cancer cells to induce angiogenesis.

    Science.gov (United States)

    Pacini, Stefania; Punzi, Tiziana; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco

    2009-01-01

    Cadmium, a highly persistent heavy metal, has been categorized as a human carcinogen. Even though it is known that cadmium acts as estrogens in breast cancer cells, several studies failed to demonstrate whether cadmium is a causal factor for breast cancer. The lack of a strong association between cadmium and breast cancer could be found in the antiangiogenic properties of this heavy metal, which might counteract its carcinogenic properties in the progression of breast cancer. In this study, we exposed estrogen-responsive breast cancer cells to subtoxic levels of cadmium, and we evaluated their angiogenic potential using the chick embryo chorioallantoic membrane assay. Exposure of breast cancer cells to subtoxic levels of cadmium significantly inhibited the angiogenic potential of the breast cancer cell line, suggesting the possibility that cadmium might negatively regulate the production of proangiogenic factors in breast cancer cells. Our results suggest that cadmium might exert a paradoxical effect in breast cancer: on the one hand, it could promote carcinogenesis, and, on the other hand, it could delay the onset of tumors by inhibiting breast cancer cell-induced angiogenesis.

  15. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Tanya L Medley

    Full Text Available BACKGROUND: Disturbances in oxygen levels have been found to impair cardiac organogenesis. It is known that stem cells and differentiating cells may respond variably to hypoxic conditions, whereby hypoxia may enhance stem cell pluripotency, while differentiation of multiple cell types can be restricted or enhanced under hypoxia. Here we examined whether HIF-1alpha modulated Wnt signaling affected differentiation of iPS cells into beating cardiomyocytes. OBJECTIVE: We investigated whether transient and sustained hypoxia affects differentiation of cardiomyocytes derived from murine induced pluripotent stem (iPS cells, assessed the involvement of HIF-1alpha (hypoxia-inducible factor-1alpha and the canonical Wnt pathway in this process. METHODS: Embryoid bodies (EBs derived from iPS cells were differentiated into cardiomyocytes and were exposed either to 24 h normoxia or transient hypoxia followed by a further 13 days of normoxic culture. RESULTS: At 14 days of differentiation, 59 ± 2% of normoxic EBs were beating, whilst transient hypoxia abolished beating at 14 days and EBs appeared immature. Hypoxia induced a significant increase in Brachyury and islet-1 mRNA expression, together with reduced troponin C expression. Collectively, these data suggest that transient and sustained hypoxia inhibits maturation of differentiating cardiomyocytes. Compared to normoxia, hypoxia increased HIF-1alpha, Wnt target and ligand genes in EBs, as well as accumulation of HIF-1alpha and beta-catenin in nuclear protein extracts, suggesting involvement of the Wnt/beta-catenin pathway. CONCLUSION: Hypoxia impairs cardiomyocyte differentiation and activates Wnt signaling in undifferentiated iPS cells. Taken together the study suggests that oxygenation levels play a critical role in cardiomyocyte differentiation and suggest that hypoxia may play a role in early cardiogenesis.

  16. Cadmium-Induced Toxicity and the Hepatoprotective Potentials of Aqueous Extract of Jessiaea Nervosa Leaf

    Directory of Open Access Journals (Sweden)

    Ama Udu Ibiam

    2013-08-01

    Full Text Available Purpose: Hepatoprotective potentials of Jussiaea nervosa leaf extract against Cadmium-induced hepatotoxicity were investigated. Methods: Forty albino rats were randomly assigned into groups A-G with 4 rats in each of the groups A-F. Group A served as control and were given feed only while rats in groups B-F were orally exposed to varying concentrations of cadmium for six weeks. Effects of cadmium were most significant at 12 mg/Kg body weight (BW, and this dose was used for subsequent test involving oral administration of Jussiaea nervosa leaf extracts. In this segment, group G (n= 16 was sub-divided into four: G1-G4, with each sub-group containing four rats. Rats in sub-group G1 were given cadmium and feed only and served as positive control. Rats in sub-groups G2, G3, and G4 were given cadmium and 20, 50 and 100g/kg BW of Jussiaea nervosa extract, respectively, for six weeks. Blood and liver were analysed using standard laboratory techniques and methods. Results: Liver function parameters (ALT, AST, ALP, bilirubin were significantly (p<0.05 elevated in exposed rats in comparison to the controls, except for total protein and albumin, which were significantly decreased. Histopathological assessment reveals renal pathology in exposed rats in sharp contrast with the controls. Jussiaea nervosa extract however lowered the values of liver function parameters with 100mg/Kg BW dose producing the highest ameliorative effects. Similarly, the serum albumin and total protein significantly (p<0.05 improved with normal liver architecture. Conclusion: The results show the hepatoprotective potentials of Jussiaea nervosa extract against Cd toxicity.

  17. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Martinez-Guitarte, J.L. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Morcillo, G. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain)]. E-mail: gmorcillo@ccia.uned.es

    2007-02-01

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  18. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

    Science.gov (United States)

    Zhang, Jingyu; Tian, Xiao-Jun; Xing, Jianhua

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery. PMID:27043642

  19. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks.

    Science.gov (United States)

    Zhang, Jingyu; Tian, Xiao-Jun; Xing, Jianhua

    2016-03-28

    Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery.

  20. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-03-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β, Sonic Hedgehog (SHH, and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1 to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery.

  1. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Hansson, Mattias; Olesen, Dorthe R; Peterslund, Janny M L

    2009-01-01

    Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous....... Notably, activin induction of Gsc-GFP(+) cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17(+) cells by activin while BMP4-induced T expression...... requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro....

  2. Influence of cadmium on ketamine-induced anesthesia and brain microsomal Na[sup +], K[sup +]-ATPase in mice

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.; Sangiah, S. (Oklahoma State Univ., Stillwater, OK (United States))

    1994-10-01

    Cadmium is a rare metallic element, present in almost all types of food. Shellfish, wheat and rice accumulate very high amounts. Occupational and environmental pollutants are the main sources of cadmium exposure. Cadmium has a very long biologic half-life. Exposure to Cadmium causes anemia, hypertension, hepatic, renal, pulmonary and cardiovascular disorders as well as being a possible mutagen, teratogen and carcinogen. Acute cadmium treatment increased the hexobarbital sleeping time and inhibited hepatic microsomal drug metabolism due to a decrease in cytochrome P[sub 450] content. Cadmium potentiated ethanol-induced sleep in a dose-dependent manner. Cadmium has been shown to inhibit brain microsomal Na[sup +], K[sup +]-ATPase activity in vitro and in vivo. Cadmium and ethanol additively inhibited brain Na[sup +], K[sup +]-ATPase. This might be a direct interaction between cadmium and ethanol in the central nervous system. Ketamine is an intravenous anesthetic agent. It acts on central nervous system and produces [open quotes]dissociative anaesthesia.[close quotes] Ketamine provides adequate surgical anesthesia and is used alone in humans and/or combination with xylazine, an [alpha][sub 2]-adrenergic agonist in animals. It produces CNS depression, analgesia, amnesia, immobility and a feeling of dissociation from the environment. Ketamine is a non-competitive antagonist of the NMDA subset of the glutamate receptor. This perhaps results in an increase in neuronal activity leading to disorganization of normal neurotransmission and produces dissociative anesthetic state. Because it is different from most other anesthetics, ketamine may be expected to have a unique effect on brain biochemical parameters and enzymes. The purpose of this study was to examine the interactions between cadmium and ketamine on the central nervous system and ATPase, in an attempt to further understand the mechanism of action. 12 refs., 3 figs.

  3. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  4. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Ling Ye; Tian-Qian Hui; Dong-Mei Yang; Ding-Ming Huang; Xue-Dong Zhou; Jeremy J Mao; Cheng-Lin Wang

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/b-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/b-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/b-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of b-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced b-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of b-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.

  5. Coordination of kidney organogenesis by Wnt signaling.

    Science.gov (United States)

    Halt, Kimmo; Vainio, Seppo

    2014-04-01

    Several Wnt proteins are expressed in the embryonic kidney during various stages of development. Gene knockout models and ex vivo studies have provided strong evidence that Wnt-mediated signals are essential in renal ontogeny. Perhaps the most critical factors, Wnt9b and Wnt4, function during the early phase when the cap mesenchyme is induced to undergo morphogenesis into a nephron. Wnt11 controls early ureteric bud branching and contributes to the final kidney size. In addition to its inductive role, later on Wnt9b plays a significant role in the convergent extension of the tubular epithelial cells, while Wnt4 signaling controls smooth muscle cell fates in the medulla. Wnt7b has a specific function together with its likely antagonist Dkk1 in controlling the morphogenesis of the renal medulla. The signal-transduction mechanisms of the Wnts in kidney ontogeny have not been resolved, but studies characterizing the downstream signaling pathways are emerging. Aberrant Wnt signaling may lead to kidney diseases ranging from fatal kidney agenesis to more benign phenotypes. Wnt-mediated signaling regulates several critical aspects of kidney development from the early inductive stages to later steps of tubular epithelial maturation.

  6. Effects of cadmium on hypoxia-induced expression of hemoglobin and erythropoietin in larval sheepshead minnow, Cyprinodon variegatus

    Energy Technology Data Exchange (ETDEWEB)

    Dangre, A.J.; Manning, S. [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States); Brouwer, M., E-mail: marius.brouwer@usm.edu [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States)

    2010-08-15

    Hypoxia and toxic metals are two common stressors found in the estuarine environment. To date little information is available on the combined effects of these stressors on early larval development in fish. We investigated the effect of cadmium and hypoxia exposure alone as well in combination on larval Cyprinodon variegatus. The LC{sub 10} for cadmium was determined to be 0.3 ppm in a 96 h acute exposure. This concentration was used in all studies. Cadmium in larvae increased significantly with exposure time (1, 3, 5 and 7 days post-hatch). The increase was proportional to body weight and not affected by hypoxia. Cadmium responsive genes were identified by suppression subtractive hybridization (SSH) in Cyprinodonvariegatus larvae after exposure to cadmium for 1, 3, 5 and 7 days. We obtained over 700 sequences from the cadmium cDNA library. Blast search of ESTs suggested that cadmium modulates multiple physiological processes. Pertinent to this study, cadmium was found to down-regulate both embryonic {alpha} and {beta} globin, which are expressed in erythrocytes generated during the first, or primitive, wave of erythropoiesis in teleosts. Hemoglobin (Hb) and erythropoietin (Epo) (the hormone that promotes red blood cell production) are known hypoxia-inducible genes. To explore the possibility that cadmium might offset the hypoxia-induced expression of Hb and Epo, we investigated the expression of both genes following hypoxia, cadmium and combined exposures for 1, 3, 5 and 7 days post-hatch. Since Epo had not yet been identified in C. variegatus we first successfully cloned a partial coding sequence of the C. variegatus hormone. Subsequent studies revealed that expression levels of Hb and Epo remained unchanged in the normoxic controls during the time course of the study. Hypoxia increased Epo expression relative to normoxic controls, on days 3, 5 and 7, while cadmium in hypoxia inhibited the increase. Only the changes on days 5 and 7 were statistically significant

  7. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs.

    Directory of Open Access Journals (Sweden)

    Jesús Villar

    Full Text Available BACKGROUND: Mechanical ventilation (MV with high tidal volumes (V(T can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI. The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI. METHODOLOGY/PRINCIPAL FINDINGS: Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (V(T (6 mL/kg or high V(T (20 mL/kg. Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41 β-catenin, matrix metalloproteinase-7 (MMP-7, cyclin D1, vascular endothelial growth factor (VEGF, and axis inhibition protein 2 (AXIN2 protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-V(T MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-V(T MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.

  8. Cadmium-induced microsatellite instability in the kidneys and leukocytes of C57BL/6J mice.

    Science.gov (United States)

    Du, Xiaoyan; Lan, Tianfeng; Yuan, Bao; Chen, Jian; Hu, Jinping; Ren, Wenzhi; Chen, Zhenwen

    2015-01-01

    Cadmium is a cytotoxic, carcinogenic, and mutagenic industrial product or byproduct. The correlation between metal exposure and microsatellite instability (MSI) has been reported by several groups. In the present study, 50 C57BL/6J mice at 6 weeks of age were divided into five groups and intraperitoneally injected with 0, 0.25, 0.5, 1, or 2 mg/kg cadmium chloride quaque die alterna for 4 weeks. Then, the liver, kidney, testis, leukocytes, bone marrow, and small intestine were collected from the treated mice and weighed. Portions of these tissues were fixed for further histological analysis, and the remaining tissues were subjected to genomic DNA extraction for the analysis of a panel of 42 microsatellite markers. The liver and testis weight coefficients were significantly changed in the 1 and 2 mg/kg cadmium chloride-treated groups compared with the control group. Simultaneously, severe histopathologic changes in the liver and kidneys, along with a complete disorganization of testicular structure and obvious severe necrosis in the testes were observed in the cadmium-treated group. The cadmium accumulated in the liver and kidneys of the mice in all cadmium-treated groups; the tissue cadmium concentrations were significantly higher than those in the control group. After STR scanning, MSI was found at three loci (D15Mit5, D10Mit266, and DxMit172) in the kidneys and leukocytes of mice in the lower dose groups (0.25 and 0.5 mg/kg). In summary, we have successfully established a sub-chronic cadmium exposure model and confirmed that cadmium exposure can induce MSI in mice. We also identified two loci that could be regarded as "hotspots" of microsatellite mutation in mice.

  9. Cadmium-induced immune abnormality is a key pathogenic event in human and rat models of preeclampsia.

    Science.gov (United States)

    Zhang, Qiong; Huang, Yinping; Zhang, Keke; Huang, Yanjun; Yan, Yan; Wang, Fan; Wu, Jie; Wang, Xiao; Xu, Zhangye; Chen, Yongtao; Cheng, Xue; Li, Yong; Jiao, Jinyu; Ye, Duyun

    2016-11-01

    With increased industrial development, cadmium is an increasingly important environmental pollutant. Studies have identified various adverse effects of cadmium on human beings. However, the relationships between cadmium pollution and the pathogenesis of preeclampsia remain elusive. The objective of this study is to explore the effects of cadmium on immune system among preeclamptic patients and rats. The results showed that the cadmium levels in the peripheral blood of preeclamptic patients were significantly higher than those observed in normal pregnancy. Based on it, a novel rat model of preeclampsia was established by the intraperitoneal administration of cadmium chloride (CdCl2) (0.125 mg of Cd/kg body weight) on gestational days 9-14. Key features of preeclampsia, including hypertension, proteinuria, placental abnormalities and small foetal size, appeared in pregnant rats after the administration of low-dose of CdCl2. Cadmium increased immunoglobulin production, mainly angiotensin II type 1-receptor-agonistic autoantibodies (AT1-AA), by increasing the expression of activation-induced cytosine deaminase (AID) in B cells. AID is critical for the maturation of antibody and autoantibody responses. In addition, angiotensin II type 1-receptor-agonistic autoantibody, which emerged recently as a potential pathogenic contributor to PE, was responsible for the deposition of complement component 5 (C5) in kidneys of pregnant rats via angiotensin II type 1 receptor (AT1R) activation. C5a is a fragment of C5 that is released during C5 activation. Selectively interfering with C5a signalling by a complement C5a receptor-specific antagonist significantly attenuated hypertension and proteinuria in Cd-injected pregnant rats. Our results suggest that cadmium induces immune abnormalities that may be a key pathogenic contributor to preeclampsia and provide new insights into treatment strategies of preeclampsia.

  10. Preferential Elimination of Older Erythrocytes in Circulation and Depressed Bone Marrow Erythropoietic Activity Contribute to Cadmium Induced Anemia in Mice.

    Science.gov (United States)

    Chatterjee, Sreoshi; Saxena, Rajiv K

    2015-01-01

    Feeding cadmium chloride (50 or 1000 ppm CdCl2 in drinking water, ad libitum) to C57BL/6 mice resulted in a significant and sustained fall in blood erythrocyte count and hemoglobin levels that started 4 and 3 weeks after the start of 50 and 1000 ppm cadmium doses respectively. A transient yet significant reticulocytosis occurred during the first 4 weeks of cadmium treatment. Using the recently developed double in vivo biotinylation (DIB) technique, turnover of erythrocyte cohorts of different age groups was simultaneously monitored in control and cadmium treated mice. A significant accumulation of younger erythrocytes and a concomitant decline in the relative proportions of older erythrocytes in circulation was observed in both 50 and 1000 ppm cadmium groups indicating that older erythrocytes were preferentially eliminated in cadmium induced anemia. A significant increase in the erythropoietin levels in plasma was seen in mice exposed to 1000 ppm cadmium. Levels of inflammatory cytokines (IL1A, IL6, TNFα, IFNγ) were however not significantly altered in cadmium treated mice. A significant increase in cellular levels of reactive oxygen species (ROS) was observed in older erythrocytes in circulation but not in younger erythrocytes. Erythropoietic activity in the bone marrows and spleens of cadmium treated mice was examined by monitoring the relative proportion of cells belonging to the erythroid line of differentiation in these organs. Erythroid cells in bone marrow declined markedly (about 30%) in mice in the 1000 ppm cadmium group but the decline was not significant in the 50 ppm cadmium group. Cells representing various stages of erythroid differentiation in bone marrow and spleen were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71) monoclonal antibodies. Decline of erythroid cells was essentially confined to pro-erythroblast and erythroblast-A, along with a concurrent increase in the splenic erythroid

  11. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ting; Wang, Wei-Na, E-mail: weina63@aliyun.com; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-06-15

    Highlights: • Cd{sup 2+} induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd{sup 2+}. • DsRNA-suppression of LvCdc42 and MAPKs during Cd{sup 2+} stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd{sup 2+} stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd{sup 2+}. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses.

  12. Application of path analysis to urinary findings of cadmium-induced renal dysfunction.

    Science.gov (United States)

    Abe, T; Kobayashi, E; Okubo, Y; Suwazono, Y; Kido, T; Shaikh, Z A; Nogawa, K

    2001-01-01

    In order to identify some causal relations among various urinary indices of cadmium-induced renal dysfunction, such as glucose, total protein, amino nitrogen, beta 2-microglobulin (beta 2-m), metallothionein (MT), and cadmium (Cd), we applied path analysis method to previous epidemiological studies targeting the residents of the Cd-polluted Kakehashi River basin of Ishikawa Prefecture, Japan. We obtained a diagram-termed path model, representing some causal relations among the above urinary indices. It shows that urinary Cd is located at the beginning point in the diagram, and Cd-induced renal dysfunction develops in the following order: Cd exposure-->increase of beta 2-m and/or MT excretion-->increase of amino-N and/or total protein excretion-->increase of glucose excretion. It was proved mathematically, that in the case of both males and females, increased excretions of beta 2-m and/or MT were the most sensitive urinary indices of the early stage of chronic Cd-induced renal dysfunction.

  13. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction.

    Science.gov (United States)

    Wolf, Matthew B; Baynes, John W

    2007-02-01

    We investigated the ability of cadmium and mercury ions to cause endothelial dysfunction in bovine pulmonary artery endothelial cell monolayers. Exposure of monolayers for 48 h to metal concentrations greater than 3-5 microM produced profound cytotoxicity (increased lactate dehydrogenase leakage), a permeability barrier failure, depletion of glutathione and ATP and almost complete inhibition of the activity of key thiol enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, metal concentrations less than 1-2 microM induced increases in glutathione and thiol-enzyme activities with minimal changes in LDH leakage, barrier function and ATP content. At shorter incubation times (24 h or less), high concentrations of cadmium caused glutathione induction rather than depletion. Thus, oxidative stress and cytotoxicity induced by lower concentrations of the metal ions stimulate compensatory responses, including increased synthesis of glutathione, which presumably preserved the activity of key thiol enzymes, however these responses were not sustainable at higher metal ion concentrations. We conclude, while high concentrations of heavy metals are cytotoxic, lower concentration induce a compensatory protective response, which may explain threshold effects in metal-ion toxicity.

  14. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  15. Loss of PKCδ Induces Prostate Cancer Resistance to Paclitaxel through Activation of Wnt/β-Catenin Pathway and Mcl-1 Accumulation.

    Science.gov (United States)

    Flores, M Luz; Castilla, Carolina; Gasca, Jessica; Medina, Rafael; Pérez-Valderrama, Begoña; Romero, Francisco; Japón, Miguel A; Sáez, Carmen

    2016-07-01

    Prostate cancer is the leading cause of cancer-related death among men in developed countries. Although castration therapy is initially effective, prostate cancers progress to hormone-refractory disease and in this case taxane-based chemotherapy is widely used. Castration-resistant prostate cancer cells often develop resistance to chemotherapy agents and the search for new therapeutic strategies is necessary. In this article, we demonstrate that PKCδ silencing favors mitotic arrest after paclitaxel treatment in PC3 and LNCaP cells; however, this is associated with resistance to paclitaxel-induced apoptosis. In prostate cancer cells, PKCδ seems to exert a proapoptotic role, acting as a negative regulator of the canonical Wnt/β-catenin pathway. PKCδ silencing induces activation of Wnt/β-catenin pathway and the expression of its target genes, including Aurora kinase A, which is involved in activation of Akt and both factors play a key role in GSK3β inactivation and consequently in the stabilization of β-catenin and antiapoptotic protein Mcl-1. We also show that combined treatments with paclitaxel and Wnt/β-catenin or Akt inhibitors improve the apoptotic response to paclitaxel, even in the absence of PKCδ. Finally, we observe that high Gleason score prostate tumors lose PKCδ expression and this correlates with higher activation of β-catenin, inactivation of GSK3β, and higher levels of Aurora kinase A and Mcl-1 proteins. These findings suggest that targeting Wnt/β-catenin or Akt pathways may increase the efficacy of taxane chemotherapy in advanced human prostate cancers that have lost PKCδ expression. Mol Cancer Ther; 15(7); 1713-25. ©2016 AACR.

  16. A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling.

    Directory of Open Access Journals (Sweden)

    Evelien Gebruers

    Full Text Available Zebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen - Jasminum gilgianum, an Oleaceae species native to Papua New Guinea - induced ectopic tails during zebrafish embryonic development. As ectopic tail formation occurs when BMP or non-canonical Wnt signaling is inhibited during the tail protrusion process, we suspected a constituent of this extract to act as a modulator of these pathways. A bioassay-guided isolation was carried out on the basis of this zebrafish phenotype, identifying para-coumaric acid methyl ester (pCAME as the active compound. We then performed an in-depth phenotypic analysis of pCAME-treated zebrafish embryos, including a tissue-specific marker analysis of the secondary tails. We found pCAME to synergize with the BMP-inhibitors dorsomorphin and LDN-193189 in inducing ectopic tails, and causing convergence-extension defects in compound-treated embryos. These results indicate that pCAME may interfere with non-canonical Wnt signaling. Inhibition of Jnk, a downstream target of Wnt/PCP signaling (via morpholino antisense knockdown and pharmacological inhibition with the kinase inhibitor SP600125 phenocopied pCAME-treated embryos. However, immunoblotting experiments revealed pCAME to not directly inhibit Jnk-mediated phosphorylation of c-Jun, suggesting additional targets of SP600125, and/or other pathways, as possibly being involved in the ectopic tail formation activity of pCAME. Further investigation of pCAME's mechanism of action will help determine this compound's pharmacological utility.

  17. Laser induced damage studies in mercury cadmium telluride

    Science.gov (United States)

    Garg, Amit; Kapoor, Avinashi; Tripathi, K. N.; Bansal, S. K.

    2007-10-01

    We have investigated laser induced damage at 1.06 μm laser wavelength in diamond paste polished (mirror finish) and carborundum polished Hg0.8Cd0.2Te (MCT) samples with increasing fluence as well as number of pulses. Evolution of damage morphology in two types of samples is quite different. In case of diamond paste polished samples, evolution of damage morphological features is consistent with Hg evaporation with transport of Cd/Te globules towards the periphery of the molten region. Cd/Te globules get accumulated with successive laser pulses at the periphery indicating an accumulation effect. Real time reflectivity (RTR) measurement has been done to understand melt pool dynamics. RTR measurements along with the thermal profile of the melt pool are in good agreement with thermal melting model of laser irradiated MCT samples. In case of carborundum polished samples, laser damage threshold is significantly reduced. Damage morphological features are significantly influenced by surface microstructural condition. From comparison of the morphological features in the two cases, it can be inferred that laser processing of MCT for device applications depends significantly on surface preparation conditions.

  18. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Ramaraj Thirugnanasampandan; Rajarajeswaran Jayakumar

    2011-01-01

    Objective: To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods: The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results: Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions: The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.

  19. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    Science.gov (United States)

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  20. Plant stanols induce intestinal tumor formation by up-regulating Wnt and EGFR signaling in Apc Min mice.

    Science.gov (United States)

    Marttinen, Maija; Päivärinta, Essi; Storvik, Markus; Huikko, Laura; Luoma-Halkola, Heli; Piironen, Vieno; Pajari, Anne-Maria; Mutanen, Marja

    2013-01-01

    The rate of APC mutations in the intestine increases in middle-age. At the same period of life, plant sterol and stanol enriched functional foods are introduced to diet to lower blood cholesterol. This study examined the effect of plant stanol enriched diet on intestinal adenoma formation in the Apc(Min) mouse. Apc(Min) mice were fed 0.8% plant stanol diet or control diet for nine weeks. Cholesterol, plant sterols and plant stanols were analyzed from the caecum content and the intestinal mucosa. Levels of β-catenin, cyclin D1, epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase 1/2 (ERK1/2) were measured from the intestinal mucosa by Western blotting. Gene expression was determined from the intestinal mucosa using Affymetrix and the data were analyzed for enriched categories and pathways. Plant stanols induced adenoma formation in the small intestine, however, the adenoma size was not affected. We saw increased levels of nuclear β-catenin, phosphorylated β-catenin (Ser675 and Ser552), nuclear cyclin D1, total and phosphorylated EGFR and phosphorylated ERK1/2 in the intestinal mucosa after plant stanol feeding. The Affymetrix data demonstrate that several enzymes of cholesterol synthesis pathway were up-regulated, although the cholesterol level in the intestinal mucosa was not altered. We show that plant stanols induce adenoma formation by activating Wnt and EGFR signaling. EGFR signaling seems to have promoted β-catenin phosphorylation and its translocation into the nucleus, where the expression of cyclin D1 was increased. Up-regulated cholesterol synthesis may partly explain the increased EGFR signaling in the plant stanol-fed mice.

  1. Livolin Forte Ameliorates Cadmium-Induced Kidney Injury in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Akomolafe Rufus O.

    2016-06-01

    Full Text Available The kidney, which is an integral part of the drug excretion system, was reported as one of the targets of cadmium toxicity. Early events of cadmium toxicity in the cell include a decrease in cell membrane fluidity, breakdown of its integrity, and impairment of its repair mechanisms. Phosphatidylcholine and vitamin E have a marked fluidizing effect on cellular membranes. We hypothesized that Livolin forte (LIV could attenuate kidney damage induced by cadmium in rats. Twenty-five adult male Wistar rats were divided into five groups of five rats each: group I (control group received 0.3 ml/kg/day of propylene glycol for six weeks; group II was given 5 mg/kg/day of cadmium (Cd i.p for 5 consecutive days; group III rats were treated in a similar way as group II but were allowed a recovery period of 4 weeks; group IV was treated with LIV (5.2 mg/kg/day for a period of 4 weeks after inducing renal injury with Cd similarly to group II; and group V was allowed a recovery period of 2 weeks after a 4-week LIV treatment (5.2 mg/kg/day following Cd administration. A significant increase in plasma creatinine, urea, uric acid, and TBARS were observed in groups II and III compared to the control rats. Significant reductions in total protein, glucose, and GSH activity were also recorded. The urine concentrations of creatinine, urea, and uric acid in groups II and III were significantly lower than the control group. Th is finding was accompanied by a significant decrease in creatinine and urea clearance. Post-treatment with LIV caused significant decreases in plasma creatinine, urea, uric acid, and TBARS. Significant increases in total protein, glucose, and GSH activity of groups IV and V were observed compared to group II. A significant increase in urine concentrations of creatinine, urea, and uric acid and significant decreases in total protein, glucose, and GSH activity were observed in groups IV and V compared to group II. Photomicrographs of the rat kidneys

  2. Expression of MIG-6, WNT-9A, and WNT-7B during osteoarthritis.

    Science.gov (United States)

    Velasquillo, Cristina; Garciadiego-Cázares, David; Almonte, Maylin; Bustamante, Marcia; Ibarra, Clemente; Kouri, Juan B; Chimal-Monroy, Jesús

    2007-11-01

    Although the molecular mechanisms for initiation of cartilage destruction in osteoarthritis (OA) are unknown, it has been demonstrated that disruption of mitogen-inducible gene 6 (Mig-6) in mice leads to the onset of a degenerative joint disease like OA. On this basis, we correlated gene expression of Mig-6 with Wnt-9a and Wnt-7b genes; we showed downregulation of Mig-6, Wnt-7b, and Wnt-9a during OA, while Wnt-7b was expressed also in osteoblast-like cells. Here we suggest that Aggrecan degradation occurs before the downregulation of Mig-6. It remains to be proven whether there is any relation between Wnt signaling and Aggrecan degradation.

  3. Effect of Herbal Preparation on Heavy Metal (Cadmium) Induced Antioxidant System in Female Wistar Rats

    OpenAIRE

    2011-01-01

    Cadmium is one of the elements found to damage antioxidant systems in mammals. To ameliorate cadmium toxicity and to prevent oxidative stress, natural products may be useful. In Indian ethnobotanical practice, a mixture of 17 herbal products is used to fortify the reproductive system of women after parturition and to reverse ovarian oxidative stress. Oral administration of this extract to rats exposed to cadmium was useful in reversing oxidative stress. Two different doses of cadmium (50 ppm ...

  4. Ameliorative Effect of Green Tea Catechin Against Cadmium Chloride-Induced Testicular Toxicity in Mice.

    Science.gov (United States)

    Sharma, Priyanka; Goyal, Pradeep Kumar

    2015-01-01

    The present study was designed to evaluate the effect of green tea catechin (7500 µg/kg/animal/day) against cadmium-induced testicular dysfunctions and oxidative stress in the testes of mice. For this purpose, Swiss albino mice were divided into six groups: group I, negative control; group II, catechin-treated control; group III, cadmium chloride (CdCl2)-treated control; group IV, experimental group I; group V, experimental group II; and group VI, experimental group III. Animals from all of these groups were necropsied at various post-treatment intervals between 12 hours and 30 days for various biochemical alterations in the testes. CdCl2 intoxication resulted in a significant decline in testicular total proteins, cholesterol, and alkaline phosphatase, whereas acid phosphatase and lipid peroxidation exhibited a noticeable augmentation as compared to negative control. Catechin treatment effectively protected CdCl2-induced alterations in all such parameters throughout the experiment. Catechin was effective in reducing the CdCl2-induced augmentation of phase I (P450 and CYPB5) as well as phase II (DT-diaphorase and glutathione-S-transferase) enzymes in testes. Furthermore, CdCl2 intoxication was found to attenuate the antioxidant potential of testes, which was however augmented when supplemented with green tea extract. Compared to CdCl2-treated control mice, superoxide dismutase, glutathione peroxidase, glutathione, and catalase levels were significantly decreased in testes. Indeed, green tea catechin significantly increased testicular antioxidant enzymatic activities compared to those given CdCl2 alone. In conclusion, the use of green tea extract appeared to be beneficial to a great extent in inhibiting and restoring the testicular injuries induced by CdCl2 intoxication in mammals.

  5. HIV-1 protein induced modulation of primary human osteoblast differentiation and function via a Wnt/β-catenin-dependent mechanism.

    LENUS (Irish Health Repository)

    Butler, Joseph S

    2013-02-01

    HIV infection is associated with metabolic bone disease resulting in bone demineralization and reduced bone mass. The molecular mechanisms driving this disease process have yet to be elucidated. Wnt\\/β-catenin signaling plays a key role in bone development and remodeling. We attempted to determine the effects of the HIV-1 protein, gp120, on Wnt\\/β-catenin signaling at an intracellular and transcriptional level in primary human osteoblasts (HOBs). This work, inclusive of experimental controls, was part of a greater project assessing the effects of a variety of different agents on Wnt\\/β-catenin signaling (BMC Musculoskelet Disord 2010;11:210).We examined the phenotypic effects of silencing and overexpressing the Wnt antagonist, Dickkopf-1 (Dkk1) in HOBs treated with gp120. HOBs exposed to gp120 displayed a significant reduction in alkaline phosphatase activity (ALP) activity and cell proliferation and increased cellular apoptosis over a 48 h time course. Immunocytochemistry demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to HIV-1 protein exposure. These changes were associated with a reduction of TCF\\/LEF-mediated transcription, the transcriptional outcome of canonical Wnt β-catenin signaling. Silencing Dkk1 expression in HOBs exposed to gp120 resulted in increased ALP activity and cell proliferation, and decreased cellular apoptosis relative to scrambled control. Dkk1 overexpression exacerbated the inhibitory effect of gp120 on HOB function, with decreases in ALP activity and cell proliferation and increased cellular apoptosis relative to vector control. Wnt\\/β-catenin signaling plays a key regulatory role in HIV-associated bone loss, with Dkk1, aputative central mediator in this degenerative process. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 218-226, 2013.

  6. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus

    Energy Technology Data Exchange (ETDEWEB)

    Ledda, F.D., E-mail: f.ledda@hotmail.it [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy); Ramoino, P. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Ravera, S. [Dipartimento di Farmacia (DIFAR), Viale Cembrano 4, I-16147 Genova (Italy); Perino, E. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Bianchini, P. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Diaspro, A. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Dipartimento di Fisica (DIFI), Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Gallus, L.; Pronzato, R. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Manconi, R. [Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy)

    2013-09-15

    Highlights: •The effect of Cd{sup 2+} on Clathrina clathrus microtubule network was studied. •Cd{sup 2+} exposure increases acetylated and detyrosinated α-tubulin levels. •Microtubules enriched in acetylated/detyrosinated α-tubulin were resistant to cold. •Clathrina clathrus exposed to Cd{sup 2+} showed cytoplasmic microtubules with an enhanced stability. -- Abstract: As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl{sub 2}, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24 h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd{sup 2+}-treated cells

  7. Toxin- and cadmium-induced cell death events in tomato suspension cells resemble features of hypersensitive response

    NARCIS (Netherlands)

    Iakimova, E.T.; Woltering, E.J.; Yordanova, Z.P.

    2007-01-01

    Elicitors of different origin (fumonisin B1, fungal toxin), camptothecin (alkaloid from Camptotheca acuminata), mastoparan (wasp venom) and the heavy metal (cadmium) were tested for their ability to induce programmed cell death (PCD) in a model system of tomato cell culture, line MsK8. By employing

  8. Gender Difference of Cadmium-induced Renal Tubular Dysfunction for Inhabitants in Toyama,Japan

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective The aim of the present study was to compare the gender differencefor cadmium-induced renal tubular dysfunction between the male and female inhabitants. MethodsUrinary β2-microglobulin was measured in 299 male (94%) and 342 female (92%) inhabitants aged54 - 72 years,and the development of renal tubular dysfunction for 11 years was studied in the 62married couples from them. Results A significantly higher cumulative incidence was found in bothmen and women in cudmium-polluted area,showing 68. 4% in men and 64.8% in women compared to15.3 % in men and 5.9 % in women in the reference areas. Relative risk of renal tubular dysfunctionin females (11.0) was higher than males (4.5). The ratios of urinary β2-nicroglobulin and glucosewere higher in women than those in men in both the cadmium-polluted areas and the reference areas.Conclusion Although almost identical incidences were detected between men and wonen, the changesin excretion of β2-microglobulin and glucose was greater in women than those in men. These findings sug-gest that renal tubular dysfunction might be more progressive in women than that in men.

  9. Identification of cadmium-induced Agaricus blazei genes through suppression subtractive hybridization.

    Science.gov (United States)

    Wang, Liling; Li, Haibo; Wei, Hailong; Wu, Xueqian; Ke, Leqin

    2014-01-01

    Cadmium (Cd) is one of the most serious environmental pollutants. Filamentous fungi are very promising organisms for controlling and reducing the amount of heavy metals released by human and industrial activities. However, the molecular mechanisms involved in Cd accumulation and tolerance of filamentous fungi are not fully understood. Agaricus blazei Murrill, an edible mushroom with medicinal properties, demonstrates high tolerance for heavy metals, especially Cd. To investigate the molecular mechanisms underlying the response of A. blazei after Cd exposure, we constructed a forward subtractive library that represents cadmium-induced genes in A. blazei under 4 ppm Cd stress for 14 days using suppression subtractive hybridization combined with mirror orientation selection. Differential screening allowed us to identify 39 upregulated genes, 26 of which are involved in metabolism, protein fate, cellular transport, transport facilitation and transport routes, cell rescue, defense and virulence, transcription, and the action of proteins with a binding function, and 13 are encoding hypothetical proteins with unknown functions. Induction of six A. blazei genes after Cd exposure was further confirmed by RT-qPCR. The cDNAs isolated in this study contribute to our understanding of genes involved in the biochemical pathways that participate in the response of filamentous fungi to Cd exposure.

  10. PATHOLOGICAL TISSUE LESIONS INDUCED BY CHRONIC CADMIUM INTOXICATION IN SILVER CRUCIAN CARP CARASSIUS AURATUS GIBELIO

    Directory of Open Access Journals (Sweden)

    NICULA MARIOARA

    2013-07-01

    Full Text Available The purpose of this work was to describe the histopathological effects of chronic cadmium intoxication on liver, gill, kidney, intestine and striated muscle in silver crucian carp Carassius auratus gibelio. 25 immature 1+-year-old crucian carp were obtained from a private fishfarm and acclimated to laboratory conditions. After a 21 days exposure to a sublethal cadmium concentration (1.625 ppm from a Cd (CH3COO2 x2H2O stock solution, liver, gill, kidney, small intestine and striated muscle were sampled and processed for histological examination. Histopathological alterations induced by studied heavy metal in the tissues of silver crucian carp specimenes were: nephrocite hypertrophic processes, distruction of intercellular jonctions, stratification of epitelium and congestions both in renal glomerulis and in interstitium; hyalinizations, congestions of blood vassels and vacuolations associated with lipid accumulation at the hepatic level; into intestinal mucosa revealed rich leucocyte infiltrates, with numerous leucocytes situated intraepithelial; branchial lamelles with disordered aspect and multilayered epithelium, vascular ectasias and leucocyte infiltrates into subepithelial connective tissue at the gill level; miolisis processes in peripheral muscular fibers manifested by contractile apparatus alteration on large areas.

  11. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain*

    OpenAIRE

    Sousa, Kyle M.; Villaescusa, J. Carlos; Cajanek, Lukas; Ondr, Jennifer K.; Castelo-branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A.; Arenas, Ernest

    2009-01-01

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases p...

  12. Purification and characterization of a cadmium-induced metallothionein from the shore crab Carcinus maenas (L.)

    DEFF Research Database (Denmark)

    Pedersen, K L; Pedersen, S N; Højrup, P;

    1994-01-01

    Two metallothionein variants were purified from the midgut gland of crabs (Carcinus maenas) exposed to a high cadmium concentration (2 p.p.m.). One of the variants was purified from crabs exposed to a low cadmium concentration (0.5 p.p.m.). The purification method involved acetone precipitation...... from crabs exposed to the high cadmium concentration differed only by a single residue of methionine at the N-terminus. The single variant isolated from crabs exposed to the low cadmium concentration was the one without the N-terminal methionine, indicating that high cadmium concentrations either...

  13. Prednisolone induces the Wnt signalling pathway in 3T3-L1 adipocytes

    NARCIS (Netherlands)

    Fleuren, W.W.M.; Linssen, M.M.; Toonen, E.J.M.; Zon, G.C. van der; Guigas, B.; Vlieg, J. de; Dokter, W.H.; Ouwens, D.M.; Alkema, W.

    2013-01-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in t

  14. Presenilin 1/gamma-secretase is associated with cadmium-induced E-cadherin cleavage and COX-2 gene expression in T47D breast cancer cells.

    Science.gov (United States)

    Park, Chang Seok; Kim, Ohn Soon; Yun, Sang-Moon; Jo, Sangmee A; Jo, Inho; Koh, Young Ho

    2008-12-01

    Cadmium is a heavy metal that has multiple toxic effects on human health and has been classified as a human carcinogen. E-cadherin is a major target of cadmium; however, the roles of E-cadherin and cadmium and the mechanisms of tumor progression remain to be defined. Here, we demonstrate that cadmium increases E-cadherin processing via a gamma-secretase in the T47D breast cancer cell lines. This presenilin 1 (PS1)/gamma-secretase-dependent cleavage of E-cadherin was accompanied by changes in reactive oxygen species or calcium. E-cadherin cleavage was blocked by a PS1 dominant-negative mutant, gamma-secretase inhibitors [N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) and L-685,486], antioxidants (N-acetylcysteine and Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride), or a calcium chelating drug 1,2-bis(o-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester. Immunofluorescence analysis confirmed the disappearance of E-cadherin staining at the cell surface. Those inhibitors attenuated cadmium-induced cytotoxicity. Additionally, cadmium treatment increased cell motility and invasion ability, which was abated by DAPT. Interestingly, cyclooxygenase-2 (COX-2) expression induced by cadmium was also inhibited by DAPT. The cadmium-induced cell motility and invasion ability were inhibited by a COX-2 inhibitor, NS398. Our data indicate a novel molecular mechanism that links cytotoxicity of cadmium and disrupted E-cadherin processing to adherens junctions; cadmium induces COX-2 expression via gamma-secretase, which increases cell motility and invasion ability. Understanding the downstream signaling cascades of cadmium that promote tumor progression might be a key to the development of novel therapeutic strategies.

  15. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway.

    Directory of Open Access Journals (Sweden)

    Lin Guo

    Full Text Available Hydrogen sulfide (H2S has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1-induced EMT in renal tubular epithelial cells (HK-2 cells and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I and TGF-β receptor type II (TβR II. In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways.

  16. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway

    Science.gov (United States)

    Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways. PMID:26760502

  17. Adamantyl Retinoid-Related Molecules Induce Apoptosis in Pancreatic Cancer Cells by Inhibiting IGF-1R and Wnt/β-Catenin Pathways

    Directory of Open Access Journals (Sweden)

    Lulu Farhana

    2012-01-01

    Full Text Available Pancreatic carcinoma has a dismal prognosis as it often presents as locally advanced or metastatic. We have found that exposure to adamantyl-substituted retinoid-related (ARR compounds 3-Cl-AHPC and AHP3 resulted in growth inhibition and apoptosis induction in PANC-1, Capan-2, and MiaPaCa-2 pancreatic cancer cell lines. In addition, AHP3 and 3-Cl-AHPC inhibited growth and induced apoptosis in spheres derived from the CD44+/CD24+ (CD133+/EpCAM+ stem-like cell population isolated from the pancreatic cancer cell lines. 3-Cl-AHPC-induced apoptosis was preceded by decreasing expression of IGF-1R, cyclin D1, β-catenin, and activated Notch-1 in the pancreatic cancer cell lines. Decreased IGF-1R expression inhibited PANC-1 proliferation, enhanced 3-Cl-AHPC-mediated apoptosis, and significantly decreased sphere formation. 3-Cl-AHPC inhibited the Wnt/β-catenin pathway as indicated by decreased β-catenin nuclear localization and inhibited Wnt/β-catenin activation of transcription factor TCF/LEF. Knockdown of β-catenin using sh-RNA also induced apoptosis and inhibited growth in pancreatic cancer cells. Thus, 3-Cl-AHPC and AHP3 induce apoptosis in pancreatic cancer cells and cancer stem-like cells and may serve as an important potential therapeutic agent in the treatment of pancreatic cancer.

  18. Wnt7a treatment ameliorates muscular dystrophy.

    Science.gov (United States)

    von Maltzahn, Julia; Renaud, Jean-Marc; Parise, Gianni; Rudnicki, Michael A

    2012-12-11

    Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder of childhood marked by progressive debilitating muscle weakness and wasting, and ultimately death in the second or third decade of life. Wnt7a signaling through its receptor Fzd7 accelerates and augments regeneration by stimulating satellite stem cell expansion through the planar cell polarity pathway, as well as myofiber hypertrophy through the AKT/mammalian target of rapamycin (mTOR) anabolic pathway. We investigated the therapeutic potential of the secreted factor Wnt7a for focal treatment of dystrophic DMD muscles using the mdx mouse model, and found that Wnt7a treatment efficiently induced satellite cell expansion and myofiber hypertrophy in treated mucles in mdx mice. Importantly, Wnt7a treatment resulted in a significant increase in muscle strength, as determined by generation of specific force. Furthermore, Wnt7a reduced the level of contractile damage, likely by inducing a shift in fiber type toward slow-twitch. Finally, we found that Wnt7a similarly induced myotube hypertrophy and a shift in fiber type toward slow-twitch in human primary myotubes. Taken together, our findings suggest that Wnt7a is a promising candidate for development as an ameliorative treatment for DMD.

  19. Rutin- and selenium-attenuated cadmium-induced testicular pathophysiology in rats.

    Science.gov (United States)

    Abarikwu, S O; Iserhienrhien, B O; Badejo, T A

    2013-04-01

    Cadmium (Cd) is known to cause oxidative damage in the testes of rats. The aim of this study was to investigate the protective role of rutin (RUT, 30 mg/kg) and selenium (Se, 0.15 ppm) alone or in combination against Cd (200 ppm)-induced lipid peroxidation, steroidogenesis and changes in antioxidant defence system in the rat testes. The obtained results showed that Cd increased lipid peroxidation and abnormal sperm count and decreased plasma testosterone, lactate dehydrogenase, acid phosphatase, alkaline phosphatase and testicular steroidogenic enzymes: 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD activities as well as epididymal sperm counts and motility, while RUT and Se treatment reversed this change to control values. Acute intoxication with Cd was also followed by significantly decreased activity of the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione (GSH), and glutathione-S-transferase (GST)). Treatment with RUT and Se reversed Cd-induced alterations of antioxidant defence system and significantly prevented Cd-induced testes damage and depletion of plasma and testicular Se levels. RUT and Se appear not to have more profound effects than their separate effects against Cd-induced testicular toxicity, although Se was more potent than RUT in the recovery of testosterone levels. These results suggest that both RUT and Se do not have synergistic role against Cd-induced testicular injury.

  20. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Zhao, Hongyan; Liu, Wei; Wang, Yi; Dai, Nannan; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Bian, Jianchun; Liu, Zong-Ping

    2015-01-01

    Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs.

  1. Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiying [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Newman, Donna R. [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Bonner, James C. [Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Sannes, Philip L., E-mail: philip_sannes@ncsu.edu [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States)

    2012-11-15

    Environmental exposure to cadmium is known to cause damage to alveolar epithelial cells of the lung, impair their capacity to repair, and result in permanent structural alterations. Cell surface heparan sulfate proteoglycans (HSPGs) can modulate cell responses to injury through their interactions with soluble effector molecules. These interactions are often sulfate specific, and the removal of sulfate groups from HS side chains could be expected to influence cellular injury, such as that caused by exposure to cadmium. The goal of this study was to define the role 6-O-sulfate plays in cellular responses to cadmium exposure in two pulmonary epithelial cancer cell lines (H292 and A549) and in normal human primary alveolar type II (hAT2) cells. Sulfate levels were modified by transduced transient over-expression of 6-O-endosulfatase (HSulf-1), a membrane-bound enzyme which specifically removes 6-O-sulfate groups from HSPG side chains. Results showed that cadmium decreased cell viability and activated apoptosis pathways at low concentrations in hAT2 cells but not in the cancer cells. HSulf-1 over-expression, on the contrary, decreased cell viability and activated apoptosis pathways in H292 and A549 cells but not in hAT2 cells. When combined with cadmium, HSulf-1 over-expression further decreased cell viability and exacerbated the activation of apoptosis pathways in the transformed cells but did not add to the toxicity in hAT2 cells. The finding that HSulf-1 sensitizes these cancer cells and intensifies the injury induced by cadmium suggests that 6-O-sulfate groups on HSPGs may play important roles in protection against certain environmental toxicants, such as heavy metals. -- Highlights: ► Primary human lung alveolar type 2 (hAT2) cells and H292 and A549 cells were used. ► Cadmium induced apoptosis in hAT2 cells but not in H292 or A549 cells. ► HSulf-1exacerbates apoptosis induced by cadmium in H292 and A549 but not hAT2 cells.

  2. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors

    NARCIS (Netherlands)

    Koo, B.K.; Spit, M.; Jordens, I.; Low, T.Y.; Stange, D.E.; van de Wetering, M.; van Es, J.H.; Mohammed, S.; Heck, A.J.R.; Maurice, M.M.; Clevers, H.

    2012-01-01

    LGR5+ stem cells reside at crypt bottoms, intermingled with Paneth cells that provide Wnt, Notch and epidermal growth factor signals. Here we find that the related RNF43 and ZNRF3 transmembrane E3 ubiquitin ligases are uniquely expressed in LGR5+ stem cells. Simultaneous deletion of the two genes en

  3. Optical absorption, induced bleaching, and photoluminescence of CdSe nanoplatelets grown in cadmium octanoate matrix

    Science.gov (United States)

    Lyashchova, Alina; Dmytruk, Andriy; Dmitruk, Igor; Klimusheva, Gertruda; Mirnaya, Tetyana; Asaula, Vitaliy

    2014-02-01

    CdSe nanoparticles (NPs) are chemically synthesized in thermotropic ionic liquid crystalline (LC) phase of cadmium octanoate that was used as a nanoreactor. The nanocomposite samples are obtained by the rapid cooling of the LC phase to room temperature. Observed doublet structure in absorption spectra of the nanocomposites is characteristic for the two-dimensional CdSe nanoplatelets (NPLs). The thicknesses of the CdSe NPLs are 1.6, 1.9 and 2.3 nm as determined from the absorption spectra, and correspond to 4, 5 and 6 CdSe monolayers, respectively. Induced simultaneous bleaching of the doublet components observed under femtosecond laser excitation, as well as photoluminescence spectra and their kinetics are found compatible with the model of excitons with heavy- and light-hole valence bands confined in nanoplatelets.

  4. Dose-response relationship of cadmium or radiation-induced embryotoxicity in mouse whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Kiyohito; Kawamata, Akitoshi; Matsuoka, Masato; Wakisaka, Takashi; Fujiki, Yoshishige (Asahi University School of Dentistry, Gifu (Japan))

    1988-12-01

    Mouse embryos of B6C3F/sub 1/ strain were exposed in vitro to 1.2 to 2.2 {mu}M cadmium chloride (Cd) or to 100 to 320 R x-rays, and the effects of the exposure on development were examined after 39 h of culture. Development of embryos was assessed from lethality, formation of the neural tube defect, diameter and protein of yolk sac, crown-rump and head lengths, embryonic protein, and number of somites. Incidence of the neural tube defect increased from 3.4 to 100% by 1.2 to 2.0 {mu}M Cd, while embryo deaths increased from 13.8 to 93.3% by 2.0 to 2.2 {mu}M Cd. Embryonic protein was significantly reduced at the teratogenic range, but the number of somites was only affected by 1.6 to 2.0 {mu}M Cd. X-irradiation at 100 to 320 R induced the neural tube defect in 2.9 to 72.7% of the embryos. An embryolethal effect was observed only at the 320 R dose. Crown-rump and head lengths and embryonic protein were significantly affected at the teratogenic range, but the diameter and protein of yolk sac and number of somites were hardly affected. Cadmium- or radiation-induced response data of both teratogenicity and endpoints indicating inhibition of embryonic development were acceptably fitted to a linear log-probit regression. These regressions suggest that as an estimation of interference in development of embryos, embryonic protein and head length are sensitive endpoints while the number of somites is an insensitive criterion. (author).

  5. Tunisian radish (Raphanus sativus) extract prevents cadmium-induced immunotoxic and biochemical alterations in rats.

    Science.gov (United States)

    ben Salah-Abbès, Jalila; Abbès, Samir; Zohra, Haous; Oueslati, Ridha

    2015-01-01

    Cadmium (Cd), a known carcinogen and potent immunotoxicant in humans and animals, is dispersed throughout the environment as a result of pollution from a variety of sources. Tunisian radish (Raphanus sativus) extract (TRE) is a known anti-oxidant and free radical scavenger that has been shown to help alleviate immune system disorders, including some induced by environmental toxicants. The present study was undertaken to investigate potential protective effects of TRE against Cd-induced immunotoxicities (and general toxicities) in situ. Cadmium chloride (at 2.5 mg CdCl2/kg BW) and TRE (5, 10, or 15 mg/kg BW) were given (alone or in combination [actually, in sequence of Cd and then TRE]) to rats daily by oral gavage for 2 weeks. Results indicated that treatment with CdCl2 alone resulted in significant decreases in plasma levels of total protein, triglycerides, creatine kinase, creatinine, IgG and IgA, T-lymphocyte sub-types (CD4(+), CD3(+), CD56(+), and CD8(+)), and in thymic and hepatic indices (relative weights). In contrast, CdCl2 treatment caused significant increases in serum LDH, AST, and ALT, in the formation/release of pro-inflammatory cytokines (IL-1 and TNFα), and in the relative weights of host spleen and kidneys. Rats treated with TRE alone had no discernable changes compared to the controls with regard to all test parameters. Combined treatment of CdCl2 and TRE-at any dose-resulted in a significant improvement of all test parameters compared to those seen with Cd alone. These results illustrated (and provided further support for a continuing belief in) the beneficial effects of TRE in reducing the harmful outcomes of commonly encountered toxicants (like Cd) on the immune system and on overall host health status.

  6. Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation.

    Science.gov (United States)

    Schulte, Gunnar; Bryja, Vítezslav; Rawal, Nina; Castelo-Branco, Goncalo; Sousa, Kyle M; Arenas, Ernest

    2005-03-01

    The Wnt family of lipoproteins regulates several aspects of the development of the nervous system. Recently, we reported that Wnt-3a enhances the proliferation of midbrain dopaminergic precursors and that Wnt-5a promotes their differentiation into dopaminergic neurones. Here we report the purification of hemagglutinin-tagged Wnt-5a using a three-step purification method similar to that previously described for Wnt-3a. Haemagglutinin-tagged Wnt-5a was biologically active and induced the differentiation of immature primary midbrain precursors into tyrosine hydroxylase-positive dopaminergic neurones. Using a substantia nigra-derived dopaminergic cell line (SN4741), we found that Wnt-5a, unlike Wnt-3a, did not promote beta-catenin phosphorylation or stabilization. However, both Wnt-5a and Wnt-3a activated dishevelled, as assessed by a phosphorylation-dependent mobility shift. Moreover, the activity of Wnt-5a on dishevelled was blocked by pre-treatment with acyl protein thioesterase-1, indicating that palmitoylation of Wnt-5a is necessary for its function. Thus, our results suggest that Wnt-3a and Wnt-5a, respectively, activate canonical and non-canonical Wnt signalling pathways in ventral midbrain dopaminergic cells. Furthermore, we identify dishevelled as a key player in transducing both Wnt canonical and non-canonical signals in dopaminergic cells.

  7. miR-373-3p Targets DKK1 to Promote EMT-Induced Metastasis via the Wnt/β-Catenin Pathway in Tongue Squamous Cell Carcinoma

    Science.gov (United States)

    Zhang, Hui; Wang, Cheng; Liang, Jianfeng; Chen, Guanhui; Li, Wenqing; Tang, Haikuo

    2017-01-01

    MicroRNAs (miRNAs) regulate gene expression and at the same time mediate tumorigenesis. miR-373-3p has diverse effects in tumors, but its role in tongue squamous cell carcinoma (TSCC) remains unknown. The purpose of this study is to determine the function of miR-373-3p in the progression of TSCC. Our results brought to light that miR-373-3p is markedly upregulated in clinical TSCC tissues compared with paired adjacent normal tissues and has significant correlation with a more aggressive TSCC phenotype in patients. Gain-of-function and loss-of-function studies revealed that ectopic miR-373-3p overexpression promoted the metastasis of TSCC cells. Notably, Wnt/β-catenin signaling was hyperactivated in TSCC cells overexpressing miR-373-3p, and this pathway was responsible for the epithelial-mesenchymal transition (EMT) induced by miR-373-3p. Furthermore, miR-373-3p directly targeted and suppressed Dickkopf-1 (DKK1), a negative regulator of the Wnt/β-catenin signaling cascade. These results demonstrate that, by directly targeting DKK1, miR-373-3p constitutively activated Wnt/β-catenin signaling, thus promoting the EMT-induced metastasis of TSCC. Taken together, our findings reveal a new regulatory mechanism for miR-373-3p and suggest that miR-373-3p might be a potential target in TSCC therapy.

  8. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain.

    Science.gov (United States)

    Daniel, Sheril; Limson, Janice L; Dairam, Amichand; Watkins, Gareth M; Daya, Santy

    2004-02-01

    Curcumin, the major constituent of turmeric is a known, naturally occurring antioxidant. The present study examined the ability of this compound to protect against lead-induced damage to hippocampal cells of male Wistar rats, as well as lipid peroxidation induced by lead and cadmium in rat brain homogenate. The thiobarbituric assay (TBA) was used to measure the extent of lipid peroxidation induced by lead and cadmium in rat brain homogenate. The results show that curcumin significantly protects against lipid peroxidation induced by both these toxic metals. Coronal brain sections of rats injected intraperitoneally with lead acetate (20 mg/kg) in the presence and absence of curcumin (30 mg/kg) were compared microscopically to determine the extent of lead-induced damage to the cells in the hippocampal CA1 and CA3 regions, and to establish the capacity of curcumin to prevent such damage. Lead-induced damage to the neurons was significantly curtailed in the rats injected with curcumin. Possible chelation of lead and cadmium by curcumin as its mechanism of neuroprotection against such heavy metal insult to the brain was investigated using electrochemical, ultraviolet spectrophotometric and infrared spectroscopic analyses. The results of the study show that there is an interaction between curcumin and both cadmium and lead, with the possible formation of a complex between the metal and this ligand. These results imply that curcumin could be used therapeutically to chelate these toxic metals, thus potentially reducing their neurotoxicity and tissue damage.

  9. Salidroside Protects against Cadmium-Induced Hepatotoxicity in Rats via GJIC and MAPK Pathways.

    Science.gov (United States)

    Zou, Hui; Liu, Xuezhong; Han, Tao; Hu, Di; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Zhu, Jiaqiao; Liu, Zong-ping

    2015-01-01

    It is known that cadmium (Cd) induces cytotoxicity in hepatocytes; however, the underlying mechanism is unclear. Here, we studied the molecular mechanisms of Cd-induced hepatotoxicity in rat liver cells (BRL 3A) and in vivo. We observed that Cd treatment was associated with a time- and concentration-dependent decrease in the cell index (CI) of BRL 3A cells and cellular organelle ultrastructure injury in the rat liver. Meanwhile, Cd treatment resulted in the inhibition of gap junction intercellular communication (GJIC) and activation of mitogen-activated protein kinase (MAPK) pathways. Gap junction blocker 18-β-glycyrrhetinic acid (GA), administered in combination with Cd, exacerbated cytotoxic injury in BRL 3A cells; however, GA had a protective effect on healthy cells co-cultured with Cd-exposed cells in a co-culture system. Cd-induced cytotoxic injury could be attenuated by co-treatment with an extracellular signal-regulated kinase (ERK) inhibitor (U0126) and a p38 inhibitor (SB202190) but was not affected by co-treatment with a c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results indicate that ERK and p38 play critical roles in Cd-induced hepatotoxicity and mediate the function of gap junctions. Moreover, MAPKs induce changes in GJIC by controlling connexin gene expression, while GJIC has little effect on the Cd-induced activation of MAPK pathways. Collectively, our study has identified a possible mechanistic pathway of Cd-induced hepatotoxicity in vitro and in vivo, and identified the participation of GJIC and MAPK-mediated pathways in Cd-induced hepatotoxicity. Furthermore, we have shown that salidroside may be a functional chemopreventative agent that ameliorates the negative effects of Cd via GJIC and MAPK pathways.

  10. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain*

    Science.gov (United States)

    Sousa, Kyle M.; Villaescusa, J. Carlos; Cajanek, Lukas; Ondr, Jennifer K.; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A.; Arenas, Ernest

    2010-01-01

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development. PMID:20018874

  11. Wnt2 regulates progenitor proliferation in the developing ventral midbrain.

    Science.gov (United States)

    Sousa, Kyle M; Villaescusa, J Carlos; Cajanek, Lukas; Ondr, Jennifer K; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A; Arenas, Ernest

    2010-03-05

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates beta-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.

  12. N-acetylcysteine prevents cadmium-induced apoptosis in human breast cancer MDA-MB468 cell line.

    Science.gov (United States)

    Panjehpour, M; Alaie, S H

    2014-05-11

    Cadmium is a heavy metal posing severe risks and destructive effects on human health. Although cadmium was classified as a human carcinogen, it has been also shown to be a cytotoxic agent that induces cell death either by necrosis or apoptosis. In this study, we investigated the protective role of N-acetylcysteine, a free radical scavenger, on cadmium induced apoptosis in MDA-MB468 cells. The breast cancer cells were exposed to increasing concentrations of CdCl2 in the presence and absence of NAC and the cell viability was assessed using MTT assay. The microscopic studies of apoptosis were carried out with fluorescent staining. To investigate the induction of apoptosis, cellular DNA was isolated using DNA kit extraction and analyzed electrophoretically. The results showed significant decrease in cellular viability upon 48 hours exposure to CdCl2 in a dose-dependent manner (p cadmium cytotoxicity effects and protected cells from apoptotic death. DNA Hoechst staining showed the apoptotic bodies. The electrophoresis of extracted DNA identified a fragmentation pattern consistent with apoptosis mechanism. The results suggest that cytotoxic effects and induction of apoptosis caused by CdCl2 are mediated, by oxidative stress.

  13. Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies

    Science.gov (United States)

    Ettenberg, Seth A.; Charlat, Olga; Daley, Michael P.; Liu, Shanming; Vincent, Karen J.; Stuart, Darrin D.; Schuller, Alwin G.; Yuan, Jing; Ospina, Beatriz; Green, John; Yu, Qunyan; Walsh, Renee; Schmitz, Rita; Heine, Holger; Bilic, Sanela; Ostrom, Lance; Mosher, Rebecca; Hartlepp, K. Felix; Zhu, Zhenping; Fawell, Stephen; Yao, Yung-Mae; Stover, David; Finan, Peter M.; Porter, Jeffery A.; Sellers, William R.; Klagge, Ingo M.; Cong, Feng

    2010-01-01

    Disregulated Wnt/β-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins. Using a phage-display library, we identified anti-LRP6 antibodies that either inhibit or enhance Wnt signaling. Two classes of LRP6 antagonistic antibodies were discovered: one class specifically inhibits Wnt proteins represented by Wnt1, whereas the second class specifically inhibits Wnt proteins represented by Wnt3a. Epitope-mapping experiments indicated that Wnt1 class-specific antibodies bind to the first propeller and Wnt3a class-specific antibodies bind to the third propeller of LRP6, suggesting that Wnt1- and Wnt3a-class proteins interact with distinct LRP6 propeller domains. This conclusion is further supported by the structural functional analysis of LRP5/6 and the finding that the Wnt antagonist Sclerostin interacts with the first propeller of LRP5/6 and preferentially inhibits the Wnt1-class proteins. We also show that Wnt1 or Wnt3a class-specific anti-LRP6 antibodies specifically block growth of MMTV-Wnt1 or MMTV-Wnt3 xenografts in vivo. Therapeutic application of these antibodies could be limited without knowing the type of Wnt proteins expressed in cancers. This is further complicated by our finding that bivalent LRP6 antibodies sensitize cells to the nonblocked class of Wnt proteins. The generation of a biparatopic LRP6 antibody blocks both Wnt1- and Wnt3a-mediated signaling without showing agonistic activity. Our studies provide insights into Wnt-induced LRP5/6 activation and show the potential utility of LRP6 antibodies in Wnt-driven cancer. PMID:20713706

  14. Mechanism of Wnt/β-catenin signaling pathway in enhanced malignant phenotype of non-small cell lung cancer induced by anti-angiogenesis therapy

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xue Zhang; Ling-Ling Zhang; Huan-Lian Yang; Xiu-Wen Wang

    2016-01-01

    Objective: To study the mechanism of Wnt/β-catenin signaling pathway in the enhanced malignant phenotype of A549 cells of human non-small cell lung cancer induced by the anti-angiogenesis therapy. Methods: The siRNA technique was employed to inhibit the expression of vascular endothelial growth factor (VEGF) in A549 cells and simulate the clinical course of anti-angiogenesis therapy. Real-time PCR and western-blot were used to study the change in the expression of Wnt/β-catenin signaling molecules at the mRNA and protein level respectively, as well as the effect on the epithelial mesenchymal transition in A549 cells. The proliferation and invasion abilities of tumor cells were detected to discuss the mechanism of Wnt/β-catenin signaling pathway in the enhanced malignant phenotype of non-small cell lung cancer induced by the anti-angiogenesis therapy. Results: The specific siRNA could significantly inhibit the expression of VEGF in cells to simulate the anti-angiogenesis therapy. Under the action of 50nM VEGF siRNA, the proliferation ability of A549 significantly increased (P<0.05). After being treated with VEGF siRNA, the invasion ability of cells increased. Twenty-four hours after the transcription of 50 nM siRNA into cells, the number of cells that come through the membrane was 278.3 ± 12.9. Compared with the Ctrl siRNA group, when VEGF was inhibited, the expression ofβ-catenin and Cyclin D1 increased by 86% and 55% respectively. Meanwhile, the expression of E-cadherin decreased, while the one of vimentin increased. Conclusions: siRNA can significantly inhibit the expression of VEGF. For the anti-angiogenesis therapy, the inhibited expression of VEGF can activate the Wnt/β-catenin signaling pathway to cause the epithelial mesenchymal transition and then the enhanced malignant phenotype of non-small cell lung cancer.

  15. Effect of herbal preparation on heavy metal (cadmium) induced antioxidant system in female Wistar rats.

    Science.gov (United States)

    Dailiah Roopha, P; Padmalatha, C

    2012-06-01

    Cadmium is one of the elements found to damage antioxidant systems in mammals. To ameliorate cadmium toxicity and to prevent oxidative stress, natural products may be useful. In Indian ethnobotanical practice, a mixture of 17 herbal products is used to fortify the reproductive system of women after parturition and to reverse ovarian oxidative stress. Oral administration of this extract to rats exposed to cadmium was useful in reversing oxidative stress. Two different doses of cadmium (50 ppm and 200 ppm) were given to Wistar rats aged 45 and 65 days. An herbal extract derived from 17 plants was administered orally every day at a dose level of 200 mg/kg of body weight to the rats exposed to cadmium. A battery of enzymes involved in antioxidant activity in the ovary, including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were measured in the control, cadmium-exposed rats without treatment and in the cadmium-exposed rats treated with herbal extract. The reduction in SOD, catalase, GPx and GST activity after cadmium exposure improved significantly in the rats treated with the herbal extract (p antioxidant enzymes due to cadmium exposure was reversed significantly with herbal extract administration. The synergistic effect of each bioactive compound in different herbal extracts requires further study.

  16. Ameliorating effect of black tea extract on cadmium chloride-induced alteration of serum lipid profile and liver histopathology in rats.

    Science.gov (United States)

    Mantur, Venkappa S; Somannavarib, Manjunath S; Yendigeri, Saeed; Das, Kusal K; Goudar, Shivaprasad S

    2014-01-01

    Cadmium is one among the most environmental pollutants that affects many organs like kidney, liver and testis. The present study was aimed to assess the simultaneous effects of black tea extracts (BTE) on cadmium chloride induced alterations in lipid profile and liver histology. Adult rats were divided into four groups (n=6/group), group I (normal saline), group II (CdCl2, 1.0 mg/kg, b.wt; i.p), group III (black tea extract, 2.5 gm tea leaf/dl of water that is 2.5% of aqueous BTE) and group IV (cadmium chloride + BTE). Cadmium chloride intoxicated rats showed significant increase in serum total cholesterol, triglycerides, and low density lipoprotein-cholesterol and there is a significant decrease in the serum high density lipoprotein-cholesterol. In the liver, cadmium chloride showed changes in normal architecture, swollen hepatocytes, kupffer cells hyperplasia, dilation and congestion of central vein. Oral administration of black tea extracts with cadmium chloride significantly improves lipid profile and liver architecture as compared to the cadmium chloride group. The results indicate that BTE is beneficial in preventing cadmium-induced lipid alterations and hepatocellular damage.

  17. Low-molecular-weight-chitosan ameliorates cadmium-induced toxicity in the freshwater crab, Sinopotamon yangtsekiense.

    Science.gov (United States)

    Li, Ruijin; Zhou, Yanying; Wang, Lan; Ren, Guorui

    2011-07-01

    Cadmium (Cd) has been shown to induce oxidative stress. Low-molecular-weight-chitosan (LMWC) has been demonstrated to exhibit potent antioxidant effects. We investigated the regulation role in Cd²⁺-induced oxidative damage in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense and the protective effect of LMWC. The results showed that Cd²⁺ significantly increased the hepatopancreatic metallothionein (MT) mRNA levels and protein kinase C (PKC) activity while decreasing the activities of Na⁺,K⁺-ATPase and Ca²⁺-ATPase in crabs relative to the control group. Co-treatment with LMWC suppressed the levels of MT and PKC but raised the activities of Na⁺,K+-ATPase and Ca²⁺-ATPase in hepatopancreatic tissues compared with the crabs exposed to Cd²⁺ alone. We postulate that LMWC may exert its protective effect through regulating the expressions of MT, PKC, Na⁺,K⁺-ATPase and Ca²⁺-ATPase, thereby enhancing antioxidant defense. These observations suggest that LMWC may be beneficial because of its ability to alleviate the Cd²⁺-induced damages to the crabs.

  18. Polyhydroxyfullerene binds cadmium ions and alleviates metal-induced oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pradhan, Arunava; Pinheiro, José Paulo; Seena, Sahadevan; Pascoal, Cláudia; Cássio, Fernanda

    2014-09-01

    The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigated the interactive effects of PHF and cadmium ions (Cd) on the model yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg liter(-1)) in the absence or presence of PHF (≤500 mg liter(-1)) at different pHs (5.8 to 6.8). In the absence of Cd, PHF stimulated yeast growth up to 10.4%. Cd inhibited growth up to 79.7%, induced intracellular accumulation of reactive oxygen species (ROS), and promoted plasma membrane disruption in a dose- and pH-dependent manner. The negative effects of Cd on growth were attenuated by the presence of PHF, and maximum growth recovery (53.8%) was obtained at the highest PHF concentration and pH. The coexposure to Cd and PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 30.7% in a dose- and pH-dependent manner. Two mechanisms helped to explain the role of PHF in alleviating Cd toxicity to yeasts: PHF decreased Cd-induced oxidative stress and bound significant amounts of Cd in the extracellular medium, reducing its bioavailability to the cells.

  19. Cell apoptosis of caprine spleen induced by toxicity of cadmium with different levels of molybdenum.

    Science.gov (United States)

    Gu, Xiaolong; Chen, Rongrong; Hu, Guoliang; Zhuang, Yu; Luo, Junrong; Zhang, Caiying; Guo, Xiaoquan; Huang, Aiming; Cao, Huabin

    2015-07-01

    In order to clarify the effects of the combination of Mo and Cd on goat and relationship between the two elements, combined chronic toxicity of cadmium with different levels of molybdenum in vivo on apoptosis gene and ultrastructure of spleen was evaluated with the methods of RT-qPCR and transmission electron microscopy. A total of thirty-six goats were randomly distributed in equal number into four groups. These groups were randomly assigned with one of three oral treatments of CdCl2 (0.5 mgCd kg(-1)) and [(NH4)6Mo7O24·4H2O] (15 mg Mo kg(-1), group I; 30 mg Mo kg(-1), group II; 45 mg Mo kg(-1), group III), while the control group received deionized water. Spleen tissues were taken from individual goat at different time intervals to measure the levels of apoptosis genes including Bcl-2, Bax, Cyt c, Caspase-3, Smac and ceruloplasmin (Cp). The results revealed that a significant suppression in Bcl-2 expression and increase in Cyt c, Caspase-3 and Cp expression in splenic cells. The Bax expression in group I and II was up-regulated, however, it displayed reduction in group III, whereas no statistical significance was observed on Smac expression. In addition, histopathologic injury revealed remarkable morphplogical changes on the splenocytes in the means of apoptosis including fragmentized nucleus, apoptotic body and vesiculation of cytoplasma and mitochondria. Taken together, combined chronic toxicity of cadmium with different levels of molybdenum induce goat spleen cell apoptosis associated with mitochondrial intrinsic pathway, and the two elements showed possible antergic relationship.

  20. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E{sub 2}-induced activation of canonical Wnt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2013-09-06

    Highlights: •Three-dimensional culture generates “semi-vivo” sebaceous glands. •Xenograft model failed to mimic the biology of sebaceous glands in vivo. •Proinflammatory cytokine PGE{sub 2} enhances Wnt signal activity in the organoids. •PGE{sub 2} influences on the mitochondrial and lipid metabolism in the organoids. •Considering 3R agenda, “semi-vivo” sebaceous glands are useful for research. -- Abstract: Background: Prostaglandin E{sub 2} (PGE{sub 2}) is a proinflammatory mediator and activates the canonical Wnt–β-catenin signaling pathway in hematopoietic stem cells. The SZ95 cell line was established from human sebaceous gland cells and is studied as a model system for these cells. Given that 2D culture of SZ95 cells does not recapitulate the organization of sebaceous glands in situ, we developed a 3D culture system for these cells and examined the effects of PGE{sub 2} on cell morphology and function. Results: SZ95 cells maintained in 3D culture formed organoids that mimicked the organization of sebaceous glands in situ, including the establishment of a basement membrane. Organoids exposed to PGE{sub 2} were larger and adopted a more complex organization compared with control organoids. PGE{sub 2} activated the canonical Wnt signaling pathway as well as increased cell viability and proliferation, mitochondrial metabolism, and lipid synthesis in the organoids. Conclusions: Culture of SZ95 cells in 3D culture system recapitulates the structure and susceptibility to PGE{sub 2} of sebaceous glands in situ and should prove useful for studies of the response of these glands to inflammation and other environmental stressors. Our results also implicate PGE{sub 2}-induced activation of canonical Wnt signaling pathway in regulation of the morphology,proliferation, and function of “semi-vivo” sebaceous glands.

  1. Melatonin inhibits both ER alpha activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium.

    Science.gov (United States)

    Martínez-Campa, C; Alonso-González, C; Mediavilla, M D; Cos, S; González, A; Ramos, S; Sánchez-Barceló, E J

    2006-05-01

    Cadmium (Cd) is a heavy metal affecting human health both through environmental and occupational exposure. There is evidence that Cd accumulates in several organs and is carcinogenic to humans. In vivo, Cd mimics the effect of estrogens in the uterus and mammary gland. In estrogen-responsive breast cancer cell lines, Cd stimulates proliferation and can also activate the estrogen receptor independent of estradiol. The ability of this metalloestrogen to increase gene expression in MCF7 cells is blocked by anti-estrogens suggesting that the activity of these compounds is mediated by ER alpha. The aims of this work were to test whether melatonin inhibits Cd-induced proliferation in MCF7 cells, and also to study whether melatonin specifically inhibits Cd-induced ER alpha transactivation. We show that melatonin prevents the Cd-induced growth of synchronized MCF7 breast cancer cells. In transient transfection experiments, we prove that both ER alpha- and ER beta-mediated transcription are stimulated by Cd. Melatonin is a specific inhibitor of Cd-induced ER alpha-mediated transcription in both estrogen response elements (ERE)- and AP1-containing promoters, whereas ER beta-mediated transcription is not inhibited by the pineal indole. Moreover, the mutant ER alpha-(K302G, K303G), unable to bind calmodulin, is activated by Cd but becomes insensitive to melatonin treatment. These results proved that melatonin inhibits MCF7 cell growth induced by Cd and abolishes the stimulatory effect of the heavy metal in cells expressing ER alpha at both ERE-luc and AP1-luc sites. We can infer from these experiments that melatonin regulates Cd-induced transcription in both ERE- and AP1 pathways. These results also reinforce the hypothesis of the anti-estrogenic properties of melatonin as a valuable tool in breast cancer therapies.

  2. Preventive effects of β-cryptoxanthin against cadmium-induced oxidative stress in the rat testis

    Directory of Open Access Journals (Sweden)

    Xiao-Ran Liu

    2016-01-01

    Full Text Available β-cryptoxanthin (CRY, a major carotenoid of potential interest for health, is obtained naturally from orange vegetables and fruits. A few research studies have reported that CRY could decrease oxidative stress and germ cell apoptosis. The purpose of this study was to examine the effects of CRY on acute cadmium chloride (CdCl 2 -induced oxidative damage in rat testes. For this study, 24 rats were divided into four groups, one of which serves as a control group that received intraperitoneal (i.p. injections of corn oil and physiological saline. The other rats were i.p. injected with CRY (10 μg kg−1 every 8 h, beginning 8 h before CdCl 2 (2.0 mg kg−1 treatment. The pathological and TUNEL findings revealed that CRY ameliorated the Cd-induced testicular histological changes and germ cell apoptosis in the rats. Furthermore, the Cd-induced decrease in the testicular testosterone (T level was attenuated after CRY administration (P < 0.05. The administration of CRY significantly reversed the Cd-induced increases in the lipid peroxide (LPO and malondialdehyde (MDA levels (P < 0.01. The testicular antioxidants superoxide dismutase (SOD, catalase (CAT and glutathione (GSH were decreased by treatment with Cd alone but were restored by CRY co-treatment. These results demonstrated that the application of CRY can enhance the tolerance of rats to Cd-induced oxidative damage and suggest that it has promised as a pharmacological agent to protect against Cd-induced testicular toxicity.

  3. Effects of butane-2,3-dione thiosemicarbazone oxime on testicular damage induced by cadmium in mice.

    Science.gov (United States)

    de Freitas, Mayara Lutchemeyer; Dalmolin, Laíza; Oliveira, Lia Pavelacki; da Rosa Moreira, Laís; Roman, Silvane Souza; Soares, Félix Alexandre Antunes; Bresolin, Leandro; Duarte, Marta Maria Medeiros Frescura; Brandão, Ricardo

    2012-01-01

    Our group of studies investigated the action of butane-2,3-dione thiosemicarbazone oxime against the testicular damage caused by cadmium chloride (CdCl(2)) in mice. Mice received a single injection of CdCl(2 )(5 mg/kg, intraperitoneally) and, after thirty minutes, the oxime (10 mg/kg, subcutaneously) was administered. Twenty four hours after the last administration, the animals were killed by cervical dislocation and the testes and serum were removed for analysis. The parameters determined were δ-aminolevulinate dehydratase (δ-ALA-D), myeloperoxidase (MPO), glutathione-S-transferase (GST) and glutathione peroxidase (GPx) activities. The levels of thiobarbituric acid-reactive substances (TBARS), nonprotein thiols (NPSH), ascorbic acid, cadmium and testosterone were also determined. In addition, histological analysis and cytokines quantification (IL-1, IL-6, IL-10, TNF-α and IFN-γ) were performed. Our results demonstrated that the oxime was effective in restoring the inhibition in δ-ALA-D activity induced by CdCl(2). The activation of MPO and increase in IL-1, IL-6, TNF-α and IFN-γ levels induced by CdCl(2) were also reduced by oxime. IL-10, which was reduced by cadmium, was restored by oxime administration. In addition, the oxime was effective in restoring the increase in TBARS levels and the reduction on NPSH levels induced by CdCl(2). Our results demonstrated that oxime was effective in containing the histological alterations induced by CdCl(2). In addition, oxime was able to increase the testosterone levels, reduced by cadmium exposure. In conclusion, the oxime tested was effective in reducing the testicular damage induced by CdCl(2) in mice. The beneficial effects of this oxime are related to its antioxidant and anti-inflammatory action.

  4. Experimental study of the synergistic effect of Wnt11 and BMP-2 on inducing the differentiation of rat bone marrow mesenchymal stem cells into myocardium-like cells under%心肌微环境中Wnt11与BMP2协同作用促大鼠BM-MSCs分化为心肌样细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    马志峰; 董红燕; 张志峰; 袁红花; 张中明

    2011-01-01

    Objective To investigate the synergetic effect of Wnt11 and BMP2 on inducing differentiation of BM -MSCs into cardiomyocyte - like cells under the paracrine effect of myocardial micro - environment. Methods The Transwell co - culture model of BM - MSCs cells was establishment, with cardiac myocytes (CMs) together with Wnt11 plasmid -transfected 3T3 cells laid on the upper layer and BM - MSCs underneath. For the first three days, cells were cultured with 50 μg/L noggin ( BMP - inhibitor), followed by replacement with 0.5 μg/L BMP2 protein till the 14th day. According to the different inducing conditions, cells were divided into seven groups: positive control (heart group), myocardial -induction ( CM group), BMP2 - induction in myocardial micro - environment ( CM + BMP2 group), Wnt11 - induction in myocardial micro- environment (CM + Wnt11 group), Wnt11 and BMP2 co- induction (Wnt11 + BMP2 group), Wnt11 and BMP2 co- induction in myocardial micro- environment (CM + Wnt11 + BMP2 group), and negative control (BM -MSCs group). At the end of 14 days of induction culture, RT - PCR was employed to detect the expression levels of nucleic acid of the myocardium- specific transcription factors (Nkx2.5, GATA4 and Mef2c) and mature CM -specific genes (cTrtl, ANP, α - MHC and β - MHC) to evaluate the biological effect of diversified induction on the differentiation of BM -MSCs into cardiomyocyte - like cells. Results RT - PCR results revealed that in the myocardial micro - environment of paracrine the expression levels of myocardium - specific transcription factors and mature CM - specific genes in CM + Wnt11 + BMP2 group was significantly higher than the BM - MSCs group and the other co - culture groups but lower than the heart group ( P < 0. 05 ). Conclusions In cardiac paracrine micro - environment, the synergistic effect of Wnt11 and BMP - 2 can improve the efficiency of the differentiation from BM - MSCs into cardiomyocyte - like cells.%目的 探讨在心肌微环境的旁分泌作用中,Wnt

  5. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis.

    Science.gov (United States)

    Madan, Babita; Patel, Mehul B; Zhang, Jiandong; Bunte, Ralph M; Rudemiller, Nathan P; Griffiths, Robert; Virshup, David M; Crowley, Steven D

    2016-05-01

    Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.

  6. Protective effects of selenium on cadmium-induced brain damage in chickens.

    Science.gov (United States)

    Liu, Li-Li; Li, Cheng-Ming; Zhang, Zi-Wei; Zhang, Jiu-Li; Yao, Hai-Dong; Xu, Shi-Wen

    2014-05-01

    Selenium (Se) is an important dietary micronutrient with antioxidative roles. Cadmium (Cd), a ubiquitous environmental pollutant, is known to cause brain lesion in rats and humans. However, little is reported about the deleterious effects of subchronic Cd exposure on the brain of poultry and the protective roles on the brain by Se against Cd. The aim of this study was to investigate the protective effects of Se on Cd-induced brain damage in chickens. One hundred twenty 100-day-old chickens were randomly assigned to four groups and were fed a basal diet, or Se (as 10 mg Na2SeO3/kg dry weight of feed), Cd (as 150 mg CdCl2/kg dry weight of feed), or Cd + Se in their basic diets for 60 days. Then, concentrations of Cd and Se, production of nitric oxide (NO), messenger RNA (mRNA) level and activity of inducible NO synthase (iNOS), level of oxidative stress, and histological and ultrastructural changes of the cerebrum and cerebellum were examined. The results showed that Cd exposure significantly increased Cd accumulation, NO production, iNOS activities, iNOS mRNA level, and MDA content in the cerebrum and cerebellum. Cd treatment obviously decreased Se content and antioxidase activities and caused histopathological changes in the cerebrum and cerebellum. Se supplementation during dietary Cd obviously reduced Cd accumulation, NO production, mRNA level and activity of iNOS, oxidative stress, and histopathological damage in the cerebrum and cerebellum of chickens. It indicated that Se ameliorates Cd-induced brain damage in chickens by regulating iNOS-NO system changes, and oxidative stress induced by Cd and Se can serve as a potential therapeutic for Cd-induced brain lesion of chickens.

  7. Urine analysis for detection of cadmium-induced renal changes, with special reference to b/sub 2/-microglobulin

    Energy Technology Data Exchange (ETDEWEB)

    Shiroishi, K. (Toyama Inst. of Health, Japan); Kjellstrom, T.; Kubota, K.; Evrin, P.E.; Anayama, M.; Vesterberg, O.; Shimada, T.; Piscator, M.; Iwata, T.; Nishino, H.

    1977-06-01

    An analysis of total protein, ..beta../sub 2/-microglobulin, glucose, and cadmium was performed on urine samples from people with Itai-itai disease and glomerular kidney disease, as well as on samples from a reference group. Blind analyses of creatinine, protein, and cadmium performed in Japanese and Swedish laboratories correlated well, but there was a tendency toward systematic differences between the laboratories' analyses of creatinine and protein. Within the range of the samples analyzed the difference was never larger than 30%. The use of three different methods of electrophoresis of urine proteins verified that the proteinuria in Itai-itai disease is tubular. On an average, urinary ..beta../sub 2/-microglobulin excretion among Itai-itai disease patients was 100 to 300 times higher than among the reference group, whereas total protein excretion was only 7 to 17 times higher. In a group of women with different degrees of cadmium exposure urinary excretion of proteins was evaluated with qualitative determination of protein, electrophoresis, and radioimmunoassay of ..beta../sub 2/-microglobulin. At slightly elevated ..beta../sub 2/-microglobulin excretion the first two methods gave negative results and it was concluded that radioimmunoassay of ..beta../sub 2/-microglobulin in urine is a sensitive indicator of cadmium-induced proteinuria.

  8. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo

    Science.gov (United States)

    Varela-Nallar, Lorena; Rojas-Abalos, Macarena; Abbott, Ana C.; Moya, Esteban A.; Iturriaga, Rodrigo; Inestrosa, Nibaldo C.

    2014-01-01

    Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible transcription factor-1α (HIF-1α) was analyzed as a molecular control of the physiological hypoxic response. Exposure to chronic hypoxia (10% oxygen for 6–72 h) stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, Bromodeoxyuridine (BrdU) incorporation and double labeling with doublecortin (DCX). Chronic hypoxia also induced neurogenesis in a double transgenic APPswe-PS1ΔE9 mouse model of Alzheimer’s disease (AD), which shows decreased levels of neurogenesis in the SGZ. Our results show for the first time that exposure to hypoxia in vivo can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorders associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired. PMID:24574965

  9. Chronic hypoxia induces the in vivo activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1deltaE9 transgenic mice

    Directory of Open Access Journals (Sweden)

    Lorena eVarela-Nallar

    2014-02-01

    Full Text Available Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin a key component of the canonical Wnt signaling pathway. Here we studied in vivo the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice. As a molecular control of the physiological hypoxic response the hypoxia-inducible transcription factor-1α (HIF-1α was analyzed. Exposure to chronic hypoxia (10% oxygen for 6-72 h stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, BrdU incorporation and double labeling with doublecortin. Chronic hypoxia also induced neurogenesis in double transgenic APPswe-PS1deltaE9 mouse model of Alzheimer’s disease (AD, which shows decreased levels of neurogenesis at the SGZ. Our results show for the first time that in vivo exposure to hypoxia can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorder associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired.

  10. Short-term cadmium exposure induces stress responses in frog (Pelophylax bergeri) skin organ culture.

    Science.gov (United States)

    Simoncelli, Francesca; Belia, Silvia; Di Rosa, Ines; Paracucchi, Romina; Rossi, Roberta; La Porta, Gianandrea; Lucentini, Livia; Fagotti, Anna

    2015-12-01

    There have been a few studies on the negative effects of pollutants on amphibian skin, the first structural barrier that interacts with the environment and its potential contaminants. In this study an ex vivo skin organ culture from the amphibian Pelophylax bergeri was used to evaluate cell stress responses induced by short-term exposure to cadmium (Cd), a toxic heavy metal known to be an environmental hazard to both humans and wildlife. Histopathological studies were carried out on skin explants using light microscopy and changes in the expression of stress proteins, such as Metallothionein (MT) and Heat shock proteins (HSPs), were investigated by Real-time RT-PCR. Results revealed that amphibian skin reacts to Cd-induced stress by activating biological responses such as morphological alterations and dose- and time-dependent induction of Mt and Hsp70 mRNA expression, suggesting their potential role as biomarkers of exposure to Cd. This work provides a basis for a better understanding of the tissue-specific responses of amphibian skin as a target organ to Cd exposure and its in vitro use for testing potentially harmful substances present in the environment.

  11. Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Guan, Junjie; Zhang, Jieyuan; Guo, Shangchun; Zhu, Hongyi; Zhu, Zhenzhong; Li, Haiyan; Wang, Yang; Zhang, Changqing; Chang, Jiang

    2015-07-01

    Human urine-derived stem cells (USCs) have great application potential for cytotherapy as they can be obtained by non-invasive and simple methods. Silicate bioceramics, including calcium silicate (CS), can stimulate osteogenic differentiation of stem cells. However, the effects of silicate bioceramics on osteogenic differentiation of USCs have not been reported. In this study, at first, we investigated the effects of CS ion extracts on proliferation and osteogenic differentiation of USCs, as well as the related mechanism. CS particles were incorporated into poly (lactic-co-glycolic acid) (PLGA) to obtain PLGA/CS composite scaffolds. USCs were then seeded onto these scaffolds, which were subsequently transplanted into nude mice to analyze the osteogenic differentiation of USCs and mineralization of extracellular matrix formed by USCs in vivo. The results showed that CS ion extracts significantly enhanced cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and expression of certain osteoblast-related genes and proteins. In addition, cardamonin, a Wnt/β-catenin signaling inhibitor, reduced the stimulatory effects of CS ion extracts on osteogenic differentiation of USCs, indicating that the observed osteogenic differentiation of USCs induced by CS ion extracts involves Wnt/β-catenin signaling pathway. Furthermore, histological analysis showed that PLGA/CS composite scaffolds significantly enhanced the osteogenic differentiation of USCs in vivo. Taken together, these results suggest the therapeutic potential of combining USCs and PLGA/CS scaffolds in bone tissue regeneration.

  12. Influence of Isoflavones on Cadmium-induced Adverse Effects in Vascular Endothelial Cells (ECV 304)

    Institute of Scientific and Technical Information of China (English)

    JUE CHEN; TAI-YI JIN

    2005-01-01

    Objective To study the possible intervention of isoflavones in cytotoxicity induced by cadmium in vascular endothelial cells. Methods An ECV 304 cell line derived from human umbilical vein endothelial cells was adopted. Genistein / daidzein was added prior to or simultaneously with CdCl2, cell viability was determined by MTT assay, and metallothionein mRNA expression was monitored by RT-PCR method. Results Cell viability was higher in isoflavone and CdCl2 co-treated groups than that in CdCl2 treated group, with CdCl2 concentration at 10, 20, 40, and 80 μmol/L, respectively. However this increase was not observed in the group treated with CdCl2 at a concentration of 60 μmol/L. Isoflavones (10-10 mol/L to 10-5 mol/L) were added 24 h before cells were challenged with 80 μmol/L CdCl2 for 24 h or simultaneously with 80 μmol/L CdCl2. Genistein increased cell viability only at 10-5 mol/L, while daidzein caused a dose-dependent increase from 10-10 mol/L to 10-5 mol/L in co-treatment with CdCl2. In pre-treatment, genistein (10-7 to 10-5 mol/L) increased cell viability whereas only 10-5 mol/L of daidzein exerted protection. Apparent protection could be found when the cells were pre-treated with 10-5 mol/L isoflavones for over 12 h, whereas 24 h incubation was required in such a co-treatment, with the exception of daidzein that had a significant protection in only 3 h. Isoflavones (10-6 mol/L) incubated for 3 h to 24 h, increased MT IIA and MT IF mRNA expression, but the induction could not last for more than 24 h. Co-treatment with isoflavones could induce an additional induction of MT IIA mRNA expression in cells exposed to cadmium. However, the additional induction of MT IIA and MT IF mRNA was not seen when pre-treatment was carried out with isoflavones, with the exception of an increase in MT IIA mRNA expression in the daidzein pre-treated group. Conclusion Genistein/daidzein could reverse the cytotoxicity of cadmium either in pre-treatment or in co-treatment. The

  13. Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain

    Directory of Open Access Journals (Sweden)

    Mattes Benjamin

    2012-04-01

    Full Text Available Abstract Background A fundamental requirement for development of diverse brain regions is the function of local organizers at morphological boundaries. These organizers are restricted groups of cells that secrete signaling molecules, which in turn regulate the fate of the adjacent neural tissue. The thalamus is located in the caudal diencephalon and is the central relay station between the sense organs and higher brain areas. The mid-diencephalic organizer (MDO orchestrates the development of the thalamus by releasing secreted signaling molecules such as Shh. Results Here we show that canonical Wnt signaling in the caudal forebrain is required for the formation of the Shh-secreting MD organizer in zebrafish. Wnt signaling induces the MDO in a narrow time window of 4 hours - between 10 and 14 hours post fertilization. Loss of Wnt3 and Wnt3a prevents induction of the MDO, a phenotype also observed upon blockage of canonical Wnt signaling per se. Pharmaceutical activation of the canonical Wnt pathways in Wnt3/Wnt3a compound morphant embryos is able to restore the lack of the MDO. After blockage of Wnt signaling or knock-down of Wnt3/Wnt3a we find an increase of apoptotic cells specifically within the organizer primordium. Consistently, blockage of apoptosis restores the thalamus organizer MDO in Wnt deficient embryos. Conclusion We have identified canonical Wnt signaling as a novel pathway, that is required for proper formation of the MDO and consequently for the development of the major relay station of the brain - the thalamus. We propose that Wnt ligands are necessary to maintain the primordial tissue of the organizer during somitogenesis by suppressing Tp53-mediated apoptosis.

  14. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang, E-mail: xudex@126.com

    2012-03-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl{sub 2} (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl{sub 2}. In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl{sub 2}. Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER

  15. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling.

    NARCIS (Netherlands)

    Schwarz-Romond, T.; Asbrand, C.; Bakkers, J.; Kuhl, M.; Schaeffer, H.J.; Huelsken, J.; Behrens, J.; Hammerschmidt, M.; Birchmeier, W.

    2002-01-01

    Wnt signals control decisive steps in development and can induce the formation of tumors. Canonical Wnt signals control the formation of the embryonic axis, and are mediated by stabilization and interaction of beta-catenin with Lef/Tcf transcription factors. An alternative branch of the Wnt pathway

  16. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis.

    Science.gov (United States)

    Chen, Jinglou; Du, Lifen; Li, Jingjing; Song, Hongping

    2016-10-01

    Cadmium (Cd) pollution is a serious environmental problem. Kidney is a main target organ of Cd toxicity. This study was undertaken to investigate the potential protective effects of epigallocatechin-3-gallate (EGCG) against chronic renal injury and fibrosis induced by CdCl2. Rat model was induced by exposing to 250 mg/L CdCl2 through drinking water. The renal function was evaluated by detecting the levels of blood urea nitrogen (BUN) and serum creatinine (SCR). The oxidative stress was measured by detecting the levels of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione/oxidized glutathione (GSH/GSSG) and renal enzymatic antioxidant status. Additionally, the renal levels of transforming growth factor-β1 (TGF-β1), Smad3, phosphorylation-Smad3 (pp-Smad3), α-smooth muscle actin (α-SMA), vimentin and E-cadherin were measured by western blot assay. Renal levels of microRNA-21 (miR-21), miR-29a/b/c and miR-192 were measured by quantitative RT-PCR. It was found that EGCG ameliorated the CdCl2-induced renal injury, inhibited the level of oxidative stress, normalized renal enzymatic antioxidant status and E-cadherin level, as well as attenuated the over generation of TGF-β1, pp-Smad3, vimentin and α-SMA. EGCG also decreased the production of miR-21 and miR-192, and enhanced the levels of miR-29a/b/c. These results showed that EGCG could attenuate Cd induced chronic renal injury.

  17. Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Seth, Brashket; Agarwal, Swati; Yadav, Anuradha; Karmakar, Madhumita; Gupta, Shailendra Kumar; Choubey, Vinay; Sharma, Abhay; Chaturvedi, Rajnish Kumar

    2015-11-20

    Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling.

  18. Cadmium carcinogenesis – some key points

    OpenAIRE

    2011-01-01

    The article presents briefly the main mechanisms of cadmium carcinogenesis and the most important sites of cancer (lung, breast, prostate, testes, kidney) induced by cadmium. In spite of some evidence showing carcinogenic potential of cadmium, further research is still required to elucidate the relative contributions of various molecular mechanisms involved in cadmium carcinogenesis

  19. Cadmium carcinogenesis – some key points

    Directory of Open Access Journals (Sweden)

    Loreta Strumylaite

    2011-09-01

    Full Text Available The article presents briefly the main mechanisms of cadmium carcinogenesis and the most important sites of cancer (lung, breast, prostate, testes, kidney induced by cadmium. In spite of some evidence showing carcinogenic potential of cadmium, further research is still required to elucidate the relative contributions of various molecular mechanisms involved in cadmium carcinogenesis

  20. Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Tzirogiannis, Konstantinos N.; Panoutsopoulos, Georgios I.; Hereti, Rosa I.; Alexandropoulou, Katerina N.; Basayannis, Aristidis C.; Mykoniatis, Michael G. [Department of Experimental Pharmacology, Medical School, Athens University, 75 Mikras Asias St., 115 27, Athens (Greece); Demonakou, Maria D. [Histopathology Laboratory, Sismanoglion G.D. Hospital, Sismanogliou 1, Marousi, Attiki 151 27 (Greece)

    2003-12-01

    Exposure to toxic metals and pollutants is a major environmental problem. Cadmium is a metal causing acute hepatic injury but the mechanism of this phenomenon is poorly understood. In the present study, we investigated the mechanism and time-course of cadmium-induced liver injury in rats, with emphasis being placed on apoptosis in parenchymal and nonparenchymal liver cells. Cadmium (3.5 mg/kg body weight) was injected intraperitoneally and the rats were killed 0, 9, 12, 16, 24, 48 and 60 h later. The extent of liver injury was evaluated for necrosis, apoptosis, peliosis, mitoses and inflammatory infiltration in hematoxylin-eosin-stained liver sections, and by assaying serum enzyme activities. The number of cells that died via apoptosis was quantified by TUNEL assay. The identification of nonparenchymal liver cells and activated Kupffer cells was performed histochemically. Liver regeneration was evaluated by assaying the activity of liver thymidine kinase and by the rate of {sup 3}H-thymidine incorporation into DNA. Both cadmium-induced necrotic cell death and parenchymal cell apoptosis showed a biphasic elevation at 12 and 48 h and peaked at 48 and 12 h, respectively. Nonparenchymal cell apoptosis peaked at 48 h. Peliosis hepatis, another characteristic form of liver injury, was first observed at 16 h and, at all time points, closely correlated with the apoptotic index of nonparenchymal liver cells, where the lesion was also maximial at 48 h. Kupffer cell activation and neutrophil infiltration were minimal for all time points examined. Based on thymidine kinase activity, liver regeneration was found to discern a classic biphasic peak pattern at 12 and 48 h. It was very interesting to observe that cadmium-induced liver injury did not involve inflammation at any time point. Apoptosis seems to be a major mechanism for the removal of damaged cells, and constitutes the major type of cell death in nonparenchymal liver cells. Apoptosis of nonparenchymal cells is the basis

  1. Evaluation of cadmium-induced nephrotoxicity using urinary metabolomic profiles in sprague-dawley male rats.

    Science.gov (United States)

    Lee, Yu Kyung; Park, Eun Young; Kim, Shiwon; Son, Ji Yeon; Kim, Tae Hyung; Kang, Won Gu; Jeong, Tae Chun; Kim, Kyu-Bong; Kwack, Seung Jun; Lee, Jaewon; Kim, Suhkmann; Lee, Byung-Mu; Kim, Hyung Sik

    2014-01-01

    The aim of this study was to investigate urinary metabolomic profiles associated with cadmium (Cd)-induced nephrotoxicity and their potential mechanisms. Metabolomic profiles were measured by high-resolution (1)H-nuclear magnetic resonance (NMR) spectroscopy in the urine of rats after oral exposure to CdCl2 (1, 5, or 25 mg/kg) for 6 wk. The spectral data were further analyzed by a multivariate analysis to identify specific urinary metabolites. Urinary excretion levels of protein biomarkers were also measured and CdCl2 accumulated dose-dependently in the kidney. High-dose (25 mg/kg) CdCl2 exposure significantly increased serum blood urea nitrogen (BUN), but serum creatinine (sCr) levels were unchanged. High-dose CdCl2 (25 mg/kg) exposure also significantly elevated protein-based urinary biomarkers including osteopontin, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecules-1 (Kim-1), and selenium-binding protein 1 (SBP1) in rat urine. Under these conditions, six urinary metabolites (citrate, serine, 3-hydroxyisovalerate, 4-hydroxyphenyllactate, dimethylamine, and betaine) were involved in mitochondrial energy metabolism. In addition, a few number of amino acids such as glycine, glutamate, tyrosine, proline, or phenylalanine and carbohydrate (glucose) were altered in urine after CdCl2 exposure. In particular, the metabolites involved in the glutathione biosynthesis pathway, including cysteine, serine, methionine, and glutamate, were markedly decreased compared to the control. Thus, these metabolites are potential biomarkers for detection of Cd-induced nephrotoxicity. Our results further indicate that redox metabolomics pathways may be associated with Cd-mediated chronic kidney injury. These findings provide a biochemical pathway for better understanding of cellular mechanism underlying Cd-induced renal injury in humans.

  2. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells.

    Science.gov (United States)

    Yu, Xinyuan; Filardo, Edward J; Shaikh, Zahir A

    2010-05-15

    Cadmium (Cd) is a nonessential metal that is dispersed throughout the environment. It is an endocrine-disrupting element which mimics estrogen, binds to estrogen receptor alpha (ERalpha), and promotes cell proliferation in breast cancer cells. We have previously published that Cd promotes activation of the extracellular regulated kinases, erk-1 and -2 in both ER-positive and ER-negative human breast cancer cells, suggesting that this estrogen-like effect of Cd is not associated with the ER. Here, we have investigated whether the newly appreciated transmembrane estrogen receptor, G-protein coupled receptor 30 (GPR30), may be involved in Cd-induced cell proliferation. Towards this end, we compared the effects of Cd in ER-negative human SKBR3 breast cancer cells in which endogenous GPR30 signaling was selectively inhibited using a GPR30 interfering mutant. We found that Cd concentrations from 50 to 500 nM induced a proliferative response in control vector-transfected SKBR3 cells but not in SKBR3 cells stably expressing interfering mutant. Similarly, intracellular cAMP levels increased about 2.4-fold in the vector transfectants but not in cells in which GPR30 was inactivated within 2.5 min after treatment with 500 nM Cd. Furthermore, Cd treatment rapidly activated (within 2.5 min) raf-1, mitogen-activated protein kinase kinase, mek-1, extracellular signal regulated kinases, erk-1/2, ribosomal S6 kinase, rsk, and E-26 like protein kinase, elk, about 4-fold in vector transfectants. In contrast, the activation of these signaling molecules in SKBR3 cells expressing the GPR30 mutant was only about 1.4-fold. These results demonstrate that Cd-induced breast cancer cell proliferation occurs through GPR30-mediated activation in a manner that is similar to that achieved by estrogen in these cells.

  3. Let -7c suppresses the activity of estrogen induced Wnt signaling and represses the self-renewal ability of breast cancer stem cells%Let -7c 通过阻断雌激素激活的 Wnt 信号通路活性而抑制乳腺癌干细胞的自我更新能力

    Institute of Scientific and Technical Information of China (English)

    魏辉; 张勇; 江静; 贾奇; 罗璐; 侯俊明; 任宏

    2016-01-01

    c repressed estrogen in-duced self -renewal of stem cells.We confirmed that Let -7 decreased ERαby degrading the mRNA,and also,en-forced Let -7c inhibited the activity of estrogen induction of Wnt signaling pathway.Conclusion:Let -7c inhibited estrogen induced Wnt activity through decreasing ERαexpression level.

  4. Low Doses of Cadmium Chloride and Methallothionein-1-Bound Cadmium Display Different Accumulation Kinetics and Induce Different Genes in Cells of the Human Nephron

    Directory of Open Access Journals (Sweden)

    Dana Cucu

    2011-08-01

    Full Text Available Background/Aims: The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+ by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2. Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1. Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1 in renal cells on the expression of genes relevant to nephrotoxic processes. Methods: Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results: Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1 and heme-oxygenase-1 (HO-1 as well as the pro-apoptotic Bcl-2-associated X protein (Bax were upregulated by CdCl2 and not by Cd7MT1. Conclusion: In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity.

  5. In vitro and in vivo responses of rat tissues to cadmium-induced lipid peroxidation

    Energy Technology Data Exchange (ETDEWEB)

    Manca, D.; Ricard, A.C.; Trottier, B.; Chevalier, G. (Univ. of Quebec, Montreal (Canada))

    1991-06-01

    Oxidative destruction of polyunsaturated fatty acids of membrane phospholipids, a phenomenon generally termed lipid peroxidation (LPO), is considered to be an important mechanism of toxicity for a wide variety of chemicals. Among these, cadmium (Cd), a pollutant of industrial and environmental importance, induces LPO in various tissues despite its apparent inability to directly generate free radicals under physiological conditions. Consequently, although LPO is not the primary mechanism of Cd toxicity, it represents an early intracellular response of tissues following exposure to Cd compounds. Recently, the authors reported the in vitro specific response to LPO of liver, lung, heart, kidney, testes and brain tissues incubated with various concentrations of CdCl{sub 2}. LPO was assessed by the measurement of thiobarbituric acid reactive substances (TBARS) which include malondialdehyde and lipid hydroperoxydes, and by gaz chromatographic analysis of evolved hydrocarbons, namely ethane and pentane. To compare the results obtained by both methods, they standardized TEP and TBARS values against incubated controls after subtracting endogenous levels of TBARS (time 0 values) because the measurement of endogenous levels of TEP in tissue incubates is not practicable. The objective of the present report is to clarify this concept in order to adequately compare the data obtained from in vitro and in vivo studies. This should permit a better assessment of the relative importance of tissue responses to LPO following exposure to Cd.

  6. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-09-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations.

  7. Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Sato, Masao [Department of Biomolecular Sciences, Institute of Biomedical Sciences, Fukushima Medical College, Fukushima (Japan); Konno, Nobuhiro [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Fukushima, Masaaki [Department of Public Health, Fukushima Medical College, Fukushima (Japan)

    1996-11-01

    Cadmium (Cd), a highly toxic heavy metal, is distributed widely in the general environment of today. The characteristic clinical manifestations of chronic Cd intoxication include renal proximal tubular dysfunction, general osteomalacia with severe pains, and anemia. We have recently reported that the serum level of erythropoietin (EPO) remained low despite the severe anemia in patients with Itai-itai disease, the most severe form of chronic Cd intoxication. In order to prove that the anemia observed in chronic Cd intoxication arises from low production of EPO in the kidneys following the renal injury, we administered Cd to rats for a long period and performed the analysis of EPO mRNA inducibility in the kidneys. The rats administered Cd for 6 and 9 months showed anemia with low levels of plasma EPO as well as biochemical and histological renal tubular damage, and also hypoinduction of EPO mRNA in the kidneys. The results indicate that chronic Cd intoxication causes anemia by disturbing the EPO-production capacity of renal cells. (orig.). With 4 figs., 4 tabs.

  8. Protective effects of thymoquinone and l-cysteine on cadmium-induced reproductive toxicity in rats

    Directory of Open Access Journals (Sweden)

    Manal M. Sayed

    2014-01-01

    Full Text Available This study was conducted to investigate the possible protective role of thymoquinone (TQ and l-cysteine on the reproductive toxicity of male rats induced by cadmium chloride (CdCl2. Forty rats were divided into four even groups. The first group served as untreated control. The second, third and fourth groups received CdCl2, CdCl2 and TQ, and CdCl2 and l-cysteine, respectively for 56 days. Cd exposure caused spermatological damage (decrease sperm count and motility and increased the rates of sperm abnormalities, decrease serum testosterone level and increased oxidative stress. Histological alterations were also observed in the form of vascular and cellular changes in CdCl2 treated rats. The vascular changes were congestion of the blood vessels with interstitial edema in the testes, epididymis, seminal vesicle and prostate. The cellular changes were in the form of degenerative changes with presence of multinucleated giant cells in the lumen of seminiferous tubules, vacuolation and sloughing of the lining epithelium of the epididymis, seminal vesiculitis and prostatitis. Co-administration of TQ and l-cysteine with CdCl2 increased glutathione (GSH, superoxide dismutase (SOD, catalase (CAT and testosterone and reduced lipid peroxidation (LPO activity. In conclusion, our results showed that TQ and l-cysteine can ameliorate the deleterious effects of CdCl2 probably by activating testicular endocrine and antioxidant systems.

  9. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-01-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations. PMID:27669995

  10. Immunohistochemical Study of Nrf2-Antioxidant Response Element as Indicator of Oxidative Stress Induced by Cadmium in Developing Rats

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2015-01-01

    Full Text Available In developing animals, Cadmium (Cd induces toxicity to many organs including brain. Reactive oxygen species (ROS are often implicated in Cd-inducedtoxicity and it has been clearly demonstrated that oxidative stress interferes with the expression of genes as well as transcriptional factors such as Nrf2-dependent Antioxidant Response Element (Nrf2-ARE. Cd-generated oxidative stress and elevated Nrf2 activity have been reported in vitro and in situ cells. In this study we evaluated the morphological changes and the expression pattern of Nrf2 and correlated them with the Cd concentrations in different ages of developing rats in heart, lung, kidney, liver, and brain. The Cd content in different organs of rats treated with the metal was increased in all ages assayed. Comparatively, lower Cd brain levels were found in rats intoxicated at the age of 12 days, then pups treated at 5, 10, or 15 days old, at the same metal dose. No evident changes, as a consequence of cadmium exposure, were evident in the morphological analysis in any of the ages assayed. However, Nrf2-ARE immunoreactivity was observed in 15-day-old rats exposed to Cd. Our results support that fully developed blood-brain barrier is an important protector against Cd entrance to brain and that Nrf2 increased expression is a part of protective mechanism against cadmium-induced toxicity.

  11. Secretion and extracellular space travel of Wnt proteins.

    Science.gov (United States)

    Gross, Julia Christina; Boutros, Michael

    2013-08-01

    Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion.

  12. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity

    Science.gov (United States)

    Pi, Huifeng; Li, Min; Tian, Li; Yang, Zhiqi; Yu, Zhengping; Zhou, Zhou

    2017-01-01

    Cadmium (Cd), a highly ubiquitous heavy metal, is a well-known inducer of neurotoxicity. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. In this study, we found that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function by reducing the levels of lysosomal-associated membrane proteins, inhibiting lysosomal proteolysis and altering lysosomal pH, contributing to defects in autophagic clearance and subsequently leading to nerve cell death. In addition, Cd decreases transcription factor EB (TFEB) expression at both the mRNA and protein levels. Furthermore, Cd induces the nuclear translocation of TFEB and TFEB target-gene expression, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Notably, restoration of the levels of lysosomal-associated membrane protein, lysosomal proteolysis, lysosomal pH and autophagic flux through Tfeb overexpression protects against Cd-induced neurotoxicity, and this protective effect is incompletely dependent on TFEB nuclear translocation. Moreover, gene transfer of the master autophagy regulator TFEB results in the clearance of toxic proteins and the correction of Cd-induced neurotoxicity in vivo. Our study is the first to demonstrate that Cd disrupts lysosomal function and autophagic flux and manipulation of TFEB signalling may be a therapeutic approach for antagonizing Cd-induced neurotoxicity. PMID:28240313

  13. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  14. Immunological, hematological and biochemical changes induced by short term exposure to cadmium in catfish (Clarias gariepinus)

    Institute of Scientific and Technical Information of China (English)

    Mohamed El-Said El-Boshy; Hossam Ali Gadalla; Fatma Mostafa Abd El-Hamied

    2014-01-01

    Objective: To investigate the hematological, biochemical and immunological changes in catfish (Clarias gariepinus) (C. gariepinus) experimental exposed to cadmium. Methods: C. gariepinus were exposed to different concentrations of cadmium (Cd) (0, 2, 5, and 10 mg/L) for 3 weeks. Blood samples were collected for assessing some hematological, biochemical and immunological studies at the end of experiment. Results:neutrophilia and lymphopenia in 5, 10 mg/L in cadmium exposed fish. Also the blood level activities of ALT and AST significantly increased, as well as glucose, creatinine, urea, potassium and uric acid. Meanwhile total protein, albumin and sodium were significantly decreased at 5, 10 mg/L of cadmium exposed fish. The immunological parameters in cadmium exposed experimental dose groups decreased serum bactericidal activity, lysozyme, neutrophils adhesion test as well as decreased resistance to Aeromonas hydrophilla with increasing exposure dose seemed to correspond with suppressive of non-specific immune functions. Conclusions: The treatment of C. gariepinus with cadmium under the same conditions had immunosuppressive and decrease diseases resistance in a dose-dependent effect.

  15. Immunological, hematological and biochemical changes induced by short term exposure to cadmium in catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    Mohamed El-Said El-Boshy

    2014-03-01

    Full Text Available Objective: To investigate the hematological, biochemical and immunological changes in catfish (Clarias gariepinus (C. gariepinus experimental exposed to cadmium. Methods: C. gariepinus were exposed to different concentrations of cadmium (Cd (0, 2, 5, and 10 mg/L for 3 weeks. Blood samples were collected for assessing some hematological, biochemical and immunological studies at the end of experiment. Results: The results showed marked normocytic normochromic anemia, leukocytosis, neutrophilia and lymphopenia in 5, 10 mg/L in cadmium exposed fish. Also the blood level activities of ALT and AST significantly increased, as well as glucose, creatinine, urea, potassium and uric acid. Meanwhile total protein, albumin and sodium were significantly decreased at 5, 10 mg/L of cadmium exposed fish. The immunological parameters in cadmium exposed experimental dose groups decreased serum bactericidal activity, lysozyme, neutrophils adhesion test as well as decreased resistance to Aeromonas hydrophilla with increasing exposure dose seemed to correspond with suppressive of non-specific immune functions. Conclusions: The treatment of C. gariepinus with cadmium under the same conditions had immunosuppressive and decrease diseases resistance in a dose-dependent effect

  16. Parallel molecular dynamics simulations of pressure-induced structural transformations in cadmium selenide nanocrystals

    Science.gov (United States)

    Lee, Nicholas Jabari Ouma

    Parallel molecular dynamics (MD) simulations are performed to investigate pressure-induced solid-to-solid structural phase transformations in cadmium selenide (CdSe) nanorods. The effects of the size and shape of nanorods on different aspects of structural phase transformations are studied. Simulations are based on interatomic potentials validated extensively by experiments. Simulations range from 105 to 106 atoms. These simulations are enabled by highly scalable algorithms executed on massively parallel Beowulf computing architectures. Pressure-induced structural transformations are studied using a hydrostatic pressure medium simulated by atoms interacting via Lennard-Jones potential. Four single-crystal CdSe nanorods, each 44A in diameter but varying in length, in the range between 44A and 600A, are studied independently in two sets of simulations. The first simulation is the downstroke simulation, where each rod is embedded in the pressure medium and subjected to increasing pressure during which it undergoes a forward transformation from a 4-fold coordinated wurtzite (WZ) crystal structure to a 6-fold coordinated rocksalt (RS) crystal structure. In the second so-called upstroke simulation, the pressure on the rods is decreased and a reverse transformation from 6-fold RS to a 4-fold coordinated phase is observed. The transformation pressure in the forward transformation depends on the nanorod size, with longer rods transforming at lower pressures close to the bulk transformation pressure. Spatially-resolved structural analyses, including pair-distributions, atomic-coordinations and bond-angle distributions, indicate nucleation begins at the surface of nanorods and spreads inward. The transformation results in a single RS domain, in agreement with experiments. The microscopic mechanism for transformation is observed to be the same as for bulk CdSe. A nanorod size dependency is also found in reverse structural transformations, with longer nanorods transforming more

  17. Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure.

    Science.gov (United States)

    Chargui, Abderrahman; Zekri, Sami; Jacquillet, Gregory; Rubera, Isabelle; Ilie, Marius; Belaid, Amine; Duranton, Christophe; Tauc, Michel; Hofman, Paul; Poujeol, Philippe; El May, Michèle V; Mograbi, Baharia

    2011-05-01

    Environmental exposures to cadmium (Cd) are a major cause of human toxicity. The kidney is the most sensitive organ; however, the natures of injuries and of adaptive responses have not been adequately investigated, particularly in response to environmental relevant Cd concentrations. In this study, rats received a daily ip injection of low CdCl₂ dose (0.3 mg Cd/kg body mass) and killed at 1, 3, and 5 days of intoxication. Functional, ultrastructural, and biochemical observations were used to evaluate Cd effects. We show that Cd at such subtoxic doses does not affect the tubular functions nor does it induce apoptosis. Meanwhile, Cd accumulates within lysosomes of proximal convoluted tubule (PCT) cells where it triggers cell proliferation and autophagy. By developing an immunohistochemical assay, a punctate staining of light chain 3-II is prominent in Cd-intoxicated kidneys, as compared with control. We provide the evidence of a direct upregulation of autophagy by Cd using a PCT cell line. Compared with the other heavy metals, Cd is the most powerful inducer of endoplasmic reticulum stress and autophagy in PCT cells, in relation to the hypersensitivity of PCT cells. Altogether, these findings suggest that kidney cortex adapts to subtoxic Cd dose by activating autophagy, a housekeeping process that ensures the degradation of damaged proteins. Given that Cd is persistent within cytosol, it might damage proteins continuously and impair at long-term autophagy efficiency. We therefore propose the autophagy pathway as a new sensitive biomarker for renal injury even after exposure to subtoxic Cd doses.

  18. [Cadmium induces p53-dependent apoptosis through the inhibition of Ube2d family gene expression].

    Science.gov (United States)

    Tokumoto, Maki; Satoh, Masahiko

    2012-01-01

    Cadmium (Cd), a harmful metal, exerts severe toxic effects on various tissues such as those in the kidney, liver, lung, and bone. In particular, renal toxicity with damage to proximal tubule cells is caused by chronic exposure to Cd. However, the molecular mechanism underlying chronic Cd renal toxicity remains to be understood. In this review, we present our recent findings since we examined to search for the target molecules involved in the renal toxicity of Cd using toxicogenomics. In NRK-52E rat renal tubular epithelial cells, we found using DNA microarrays that Cd suppressed the expression of the gene encoding Ube2d4, a member of the Ube2d family. The Ube2d family consists of selective ubiquitin-conjugating enzymes associated with p53 degradation. Moreover, Cd suppressed the expressions of genes encoding all Ube2d family members (Ube2d1/2/3/4) prior to the appearance of cytotoxicity in NRK-52E cells. Cd markedly increased p53 protein level and induced p53 phosphorylation and apoptosis in the cells. In vivo studies showed that chronic Cd exposure also suppressed Ube2d family gene expression and induced p53 accumulation and apoptosis in the renal tubules of the mouse kidney. These findings suggest that Cd causes p53-dependent apoptosis due to the inhibition of p53 degradation through the down-regulation of Ube2d family genes in NRK-52E cells and mouse kidney. Thus, the Ube2d family genes may be one of the key targets of renal toxicity caused by Cd.

  19. Cadmium induces urokinase-type plasminogen activator receptor expression and the cell invasiveness of human gastric cancer cells via the ERK-1/2, NF-κB, and AP-1 signaling pathways.

    Science.gov (United States)

    Khoi, Pham Ngoc; Xia, Yong; Lian, Sen; Kim, Ho Dong; Kim, Do Hyun; Joo, Young Eun; Chay, Kee-Oh; Kim, Kyung Keun; Jung, Young Do

    2014-10-01

    Cadmium exposure has been linked to human cancers, including stomach cancer. In this study, the effects of cadmium on urokinase-type plasminogen activator receptor (uPAR) expression in human gastric cancer cells and the underlying signal transduction pathways were investigated. Cadmium induced uPAR expression in a time- and concentration-dependent manner. Cadmium also induced uPAR promoter activity. Additionally, cadmium induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2), p38 mitogen-activated protein kinase (MAPK), and the activation of c-Jun amino terminal kinase (JNK). A specific inhibitor of MEK-1 (PD98059) inhibited cadmium-induced uPAR expression, while JNK and p38 MAPK inhibitors did not. Expression vectors encoding dominant-negative MEK-1 (pMCL-K97M) also prevented cadmium-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift studies showed that sites for the transcription factors nuclear factor (NF)-κB and activator protein-1 (AP-1) were involved in cadmium-induced uPAR transcription. Suppression of the cadmium-induced uPAR promoter activity by a mutated-type NF-κB-inducing kinase and I-κB and an AP-1 decoy oligonucleotide confirmed that the activation of NF-κB and AP-1 are essential for cadmium-induced uPAR upregulation. Cells pretreated with cadmium showed markedly enhanced invasiveness and this effect was partially abrogated by uPAR-neutralizing antibodies and by inhibitors of ERK-1/2, NF-κB, and AP-1. These results suggest that cadmium induces uPAR expression via ERK-1/2, NF-κB, and AP-1 signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.

  20. Wnt3a nanodisks promote ex vivo expansion of hematopoietic stem and progenitor cells

    DEFF Research Database (Denmark)

    Lalefar, Nahal R.; Witkowski, Andrzej; Simonsen, Jens Bæk;

    2016-01-01

    -elutes with ND. In signaling assays, Wnt3a ND induced β-catenin stabilization in mouse fibroblasts as well as hematopoietic stem and progenitor cells (HSPC). Prolonged exposure of HSPC to Wnt3a ND stimulated proliferation and expansion of Lin- Sca-1+ c-Kit+ cells. Surprisingly, ND lacking Wnt3a contributed...

  1. PR72, a novel regulator of Wnt signaling required for Naked cuticle function

    NARCIS (Netherlands)

    Creyghton, M.P.; Roël, G.; Eichhorn, P.J.A.; Hijmans, E.M.; Maurer, I.; Destrée, O.; Bernards, R.A.

    2005-01-01

    The Wnt signaling cascade is a central regulator of cell fate determination during embryonic development, whose deregulation contributes to oncogenesis. Naked cuticle is the first Wnt-induced antagonist found in this pathway, establishing a negative-feedback loop that limits the Wnt signal required

  2. Organic cadmium complexes as proteasome inhibitors and apoptosis inducers in human breast cancer cells.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Buac, Daniela; Fan, Yuhua; Zhang, Xia; Zuo, Jian; Zhang, Pengfei; Zhang, Nan; Dong, Lili; Dou, Q Ping

    2013-06-01

    Although cadmium (Cd) is a widespread environmental contaminant and human carcinogen, our studies indicate an organic Cd complex to be a potent inhibitor of proteasomal chymotrypsin-like (CT-like) activity, further capable of inducing apoptosis in a cancer cell-specific manner. It has been reported that the ligands indole-3-butyric acid (L1) and indole-3-propionic acid (L2) have cancer-fighting effects when tested in a rat carcinoma model. In addition, 3, 5-diaminobenzoic acid o-vanillin Schiff bases (L3) have high antimicrobial activity and a large number of Schiff base complexes have been reported to have proteasome-inhibitory activity. We therefore hypothesized that synthetic forms of Cd in combination with L1, L2 and L3 may have proteasome-inhibitory and apoptosis-inducing activities, which would be cancer cell-specific. To test this hypothesis, we have synthesized three novel Cd-containing complexes: [Cd2(C12H12O2N)4(H2O)2]·2H2O (Cd1), [Cd2(C11H10O2N)4(H2O)2]·2H2O (Cd2) and [Cd(C7H4N2O2)(C8H6O2)2]·2H2O (Cd3), by using these three ligands. We sought out to characterize and assess the proteasome-inhibitory and anti-proliferative properties of these three Cd complexes in human breast cancer cells. Cd1, Cd2 and Cd3 were found to effectively inhibit the chymotrypsin-like activity of purified 20S proteasome with IC50 values of 2.6, 3.0 and 3.3 μΜ, respectively. Moreover, inhibition of cancer cell proliferation also correlated with this effect. As a result of proteasomal shutdown, the accumulation of ubiquitinated proteins and the proteasome target IκB-α protein as well as induction of apoptosis were observed. To account for the cancer specificity of this effect, immortalized, non-tumorigenic breast MCF10A cells were used under the same experimental conditions. Our results indicate that MCF10A cells are much less sensitive to the Cd1, Cd2 and Cd3 complexes when compared to MDA MB 231 breast cancer cells. Therefore, our study suggests that these Cd organic

  3. Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage

    Directory of Open Access Journals (Sweden)

    B Rajendar

    2011-01-01

    Full Text Available Aim : The aim of the present study was to investigate whether Tribulus terrestris Linn (TT could protect the cadmium (Cd-induced testicular tissue peroxidation in rats and to explore the underlying mechanism of the same. Materials and Methods : In vitro and in vivo studies were conducted to know the protective effect of ethanolic extract of TT (eTT in Cd toxicity. In in vitro studies, total antioxidant and ferrous metal ion chelating activity of TT was studied. In vivo studies were conducted in rats. A total of 40 Wistar strain adult male rats were divided into four groups. Group 1 served as control, while group 2 to 4 received CdCl 2 (3 mg/kg b. wt. s/c once a week. In addition to Cd, group 3 and 4 rats also received eTT (5 mg/kg b.wt. daily as oral gavage and α-tocopherol (75 mg/kg daily by oral gavage, respectively. At the end of 6th week, all the rats were sacrificed and the separated testes were weighted and processed for estimation of tissue peroxidation markers, antioxidant markers, functional markers, and Cd concentration. The testes were also subjected to histopathological screening. Results : In in vitro studies, the percentage of metal ion chelating activity of 50 μg/ml of eTT and α-tocopherol were 2.76 and 9.39, respectively, and the antioxidant capacity of eTT was equivalent to 0.063 μg of α-tocopherol/μg of eTT. In in vivo studies, administration of Cd significantly reduced the absolute and relative testicular weight, antioxidant markers such as superoxide dismutase and glutathione, and functional markers such as LDH and ALP, along with significant increase in peroxidation markers such as malondialdehyde and protein carbonyls in testicular tissue. Testes of Cd only-treated group showed histological insults like necrotic changes in seminiferous tubules and interstitium, shrunken tubules with desquamated basal lamina, vacuolization and destruction of sertoli cells, and degenerating Leydig cells. This group also had higher Cd

  4. Canonical Wnt signaling is necessary for object recognition memory consolidation.

    Science.gov (United States)

    Fortress, Ashley M; Schram, Sarah L; Tuscher, Jennifer J; Frick, Karyn M

    2013-07-31

    Wnt signaling has emerged as a potent regulator of hippocampal synaptic function, although no evidence yet supports a critical role for Wnt signaling in hippocampal memory. Here, we sought to determine whether canonical β-catenin-dependent Wnt signaling is necessary for hippocampal memory consolidation. Immediately after training in a hippocampal-dependent object recognition task, mice received a dorsal hippocampal (DH) infusion of vehicle or the canonical Wnt antagonist Dickkopf-1 (Dkk-1; 50, 100, or 200 ng/hemisphere). Twenty-four hours later, mice receiving vehicle remembered the familiar object explored during training. However, mice receiving Dkk-1 exhibited no memory for the training object, indicating that object recognition memory consolidation is dependent on canonical Wnt signaling. To determine how Dkk-1 affects canonical Wnt signaling, mice were infused with vehicle or 50 ng/hemisphere Dkk-1 and protein levels of Wnt-related proteins (Dkk-1, GSK3β, β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, Wnt1, and PSD95) were measured in the dorsal hippocampus 5 min or 4 h later. Dkk-1 produced a rapid increase in Dkk-1 protein levels and a decrease in phosphorylated GSK3β levels, followed by a decrease in β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, and PSD95 protein levels 4 h later. These data suggest that alterations in Wnt/GSK3β/β-catenin signaling may underlie the memory impairments induced by Dkk-1. In a subsequent experiment, object training alone rapidly increased DH GSK3β phosphorylation and levels of β-catenin and Cyclin D1. These data suggest that canonical Wnt signaling is regulated by object learning and is necessary for hippocampal memory consolidation.

  5. Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats.

    Science.gov (United States)

    Milton Prabu, S; Muthumani, M; Shagirtha, K

    2012-04-01

    The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.

  6. Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats.

    Science.gov (United States)

    Amamou, Fouzia; Nemmiche, Saïd; Meziane, Radjaa Kaouthar; Didi, Amal; Yazit, Sidi Mohamed; Chabane-Sari, Daoudi

    2015-04-01

    Cadmium (Cd) is one of the most common heavy metal pollutants. It is accumulated particularly in liver and kidney. The present study examined the possible protective effect of olive oil and colocynth oil consumption against Cd-induced damage on plasma lipids and stress biochemical parameters of rats. Male albino Wistar rats were randomly divided into 6 groups of 5 animals each and treated orally with Cd (50 mg/l), olive oil and colocynth oil (4%) alone or in combination with cadmium for 8 weeks. It was shown that Cd exposure induced significant increases in the activities of serum alanine aminotransferase, aspartate aminotransferase, lipid peroxidation levels (MDA) and protein carbonyl contents in exposed groups of rats compared to control group while the antioxidant enzymes, reduced glutathione and vitamins (C, A and E) were significantly decreased. Co-treatment with olive oil or colocynth oil significantly improved the oxidative damage induced by Cd. The antioxidant potential in plasma and liver were markedly restored with a significant decline in MDA levels and activity of transaminases. In conclusion, these results suggest that olive oil or colocynth oil consumption could protect the rat liver against Cd-induced injury by increasing the activities of antioxidant enzymes and reducing oxidative stress.

  7. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Misu, Masayasu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kawai, Norikazu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nishimura, Fumihiko [Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakamura-Uchiyama, Fukumi [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Yoshikawa, Masahide, E-mail: myoshika@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  8. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostases.

    Science.gov (United States)

    Cui, Weiti; Chen, Huiping; Zhu, Kaikai; Jin, Qijiang; Xie, Yanjie; Cui, Jin; Xia, Yan; Zhang, Jing; Shen, Wenbiao

    2014-01-01

    Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases.

  9. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homoglutathione and reactive oxygen species homeostases.

    Directory of Open Access Journals (Sweden)

    Weiti Cui

    Full Text Available Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd tolerance mediated by endogenous hydrogen sulfide (H2S have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homoglutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD and D-cysteine desulfhydrase (DCD, in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS, not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homoglutathione and reactive oxygen species (ROS homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH. Meanwhile, NaHS responses were sensitive to a (homoglutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homoglutathione and ROS homeostases.

  10. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Ren-Jun Hsu

    Full Text Available Renal cell carcinoma (RCC is a malignancy with poor prognosis. WNT/β-catenin signaling dysregulation, especially β-catenin overactivation and WNT antagonist silencing, is associated with RCC carcinogenesis and progression. However, the role of WNT ligands in RCC has not yet been determined. We screened 19 WNT ligands from normal kidney and RCC cell lines and tissues and found that WNT10A was significantly increased in RCC cell lines and tissues as compared to that in normal controls. The clinical significance of increase in WNT10A was evaluated by performing an immunohistochemical association study in a 19-year follow-up cohort comprising 284 RCC and 267 benign renal disease (BRD patients. The results of this study showed that WNT10A was dramatically upregulated in RCC tissues as compared to that in BRD tissues. This result suggests that WNT10A, nuclear β-catenin, and nuclear cyclin D1 act as independent risk factors for RCC carcinogenesis and progression, with accumulative risk effects. Molecular validation of cell line models with gain- or loss-of-function designs showed that forced WNT10A expression induced RCC cell proliferation and aggressiveness, including higher chemoresistance, cell migration, invasiveness, and cell transformation, due to the activation of β-catenin-dependent signaling. Conversely, WNT10A siRNA knockdown decreased cell proliferation and aggressiveness of RCC cells. In conclusion, we showed that WNT10A acts as an autocrine oncogene both in RCC carcinogenesis and progression by activating WNT/β-catenin signaling.

  11. Inhibition of benzopyrene-diol-epoxide (BPDE)-induced bax and caspase-9 by cadmium: Role of mitogen activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jagat J.; Gupta, Suresh K. [State University of New York College at Buffalo, Environ. Toxicol. and Chem., Great Lakes Center, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States); Kumar, Subodh [State University of New York College at Buffalo, Environ. Toxicol. and Chem., Great Lakes Center, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)], E-mail: kumars@buffalostate.edu

    2009-02-10

    Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other polynuclear aromatic hydrocarbons (PAHs). The mechanism underlying this synergism is not clearly understood. Present study demonstrates that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in human leukemic HL-60 cells and others, and cadmium at non-cytotoxic concentration inhibits BPDE-induced apoptosis. We observed that BPDE treatment also activates all three MAP kinases e.g. ERK1/2, p38 and JNK in HL-60 cells, and inhibition of BPDE-induced apoptosis by cadmium is associated with down-regulation of pro-apoptotic bax induction/caspase-9 activation and up-regulation of ERK phosphorylation, whereas p38 MAP kinase and c-Jun phosphorylation (indicative of JNK activation) remain unaffected. Inhibition of ERKs by prior treatment of cells with 10 {mu}M U0126 relieves cadmium-mediated inhibition of apoptosis/bax induction/caspase-9 activation. Our results suggest that cadmium inhibits BPDE-induced apoptosis by modulating apoptotic signaling through up-regulation of ERK, which is known to promote cell survival.

  12. Wnt/β-catenin signaling plays an important role in the protective effects of FDP-Sr against oxidative stress induced apoptosis in MC3T3-E1 cell.

    Science.gov (United States)

    Qi, Huan-Huan; Bao, Jun; Zhang, Qi; Ma, Bo; Gu, Gui-Ying; Zhang, Peng-Ling; Ou-Yang, Gang; Wu, Zi-Mei; Ying, Han-Jie; Ou-Yang, Ping-Kai

    2016-10-01

    Strontium fructose 1,6-diphosphate (FDP-Sr) is a new strontium-containing compound. The primary aim of this study was to clarify whether the structure component of FDP-Sr, FDP could benefit the protective effect of Sr (II) against oxidative stress induced apoptosis, and meanwhile to further explore the important role of Wnt/β-catenin signaling in the anti-apoptosis effect of FDP-Sr in response to oxidative stress induced by H2O2 in an osteoblastic MC3T3-E1 cell line. Results showed that FDP-Sr could improve the osteoblastic differentiation under oxidative stress with induced cell proliferation and improved mineralization. The inhibition effect of FDP-Sr on cell apoptosis induced by H2O2 was proved by reduced reactive oxygen species production and activated caspase3. Under oxidative stress, mRNA and protein levels of phospho-β-catenin reduced, while β-catenin increased in the FDP-Sr treatment cell, leaded to the up-regulations of Runx2 and OPG at both mRNA and protein levels, finally improved the differentiation of osteoblasts. By the engagement of Wnt/β-catenin pathway's inhibitor (XAV-939), the protective effects of FDP-Sr on osteoblastic differentiation against oxidative stress were repressed along with inhibited wnt/β-catenin signaling and reduced mRNA and protein levels of Runx2 and OPG. In conclusion, FDP-Sr was demonstrated to protect osteoblast differentiation from oxidative damage induced by H2O2 through up-regulation of Wnt/β-catenin signaling, and FDP in FDP-Sr was able to directly improve the oxidative stress injury through its ROS scavenging ability.

  13. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes.

    Science.gov (United States)

    Rivera-Becerril, Facundo; Calantzis, Catherine; Turnau, Katarzyna; Caussanel, Jean-Pierre; Belimov, Andrei A; Gianinazzi, Silvio; Strasser, Reto J; Gianinazzi-Pearson, Vivienne

    2002-05-01

    The role of arbuscular mycorrhiza in reducing Cd stress was investigated in three genotypes of Pisum sativum L. (cv. Frisson, VIR4788, VIR7128), grown in soil/sand pot cultures in the presence and absence of 2-3 mg kg(-1) bioavailable Cd, and inoculated or not with the arbuscular mycorrhizal fungus Glomus intraradices. Shoot, root and pod biomass were decreased by Cd in non-mycorrhizal plants. The presence of mycorrhiza attenuated the negative effect of Cd so that shoot biomass and activity of photosystem II, based on chlorophyll a fluorescence, were not significantly different between mycorrhizal plants growing in the presence or absence of the heavy metal (HM). Total P concentrations were not significantly different between mycorrhizal and non-mycorrhizal plants treated with Cd. From 20-50-fold more Cd accumulated in roots than in shoots of Cd-treated plants, and overall levels were comparable to other metal-accumulating plants. Genetic variability in Cd accumulation existed between the pea genotypes. Concentration of the HM was lowest in roots of VIR4788 and in pods of VIR4788 and VIR7128. G. intraradices inoculation decreased Cd accumulation in roots and pods of cv. Frisson, whilst high concentrations were maintained in roots and pods of mycorrhizal VIR7128. Shoot concentrations of Cd increased in mycorrhizal cv. Frisson and VIR4788. Sequestration of Cd in root cell walls and/or cytoplasm, measured by EDS/SEM, was comparable between non-mycorrhizal pea genotypes but considerably decreased in mycorrhizal cv. Frisson and VIR7128. Possible mechanisms for mycorrhiza buffering of Cd-induced stress in the pea genotypes are discussed.

  14. Study on the influence of Wnt3a on osteogenetic differentiation ability of dental pulp stem cells induced by mineralizing medium%Wnt3a蛋白影响矿化液诱导牙髓干细胞分化能力的研究

    Institute of Scientific and Technical Information of China (English)

    孙艳艳; 袁梦桐; 史欣; 刘明月; 胡伟平

    2016-01-01

    Objective To investigate the effects of Wnt3a protein on proliferation and osteogenic differentiation of human dental pulp stem cells(DPSC). Methods Intact human permanent teeth extracted for orthodontic reasons were collected and used as study models. The biological effects of Wnt3a on DPSC were investigated using methyl thiazolyl tetrazolium(MTT), alkaline phosphatase(ALP) activity assay, alizarin red S staining and realtime fluorescence quantitative PCR. Osteogenic-related gene expression of induced DPSC was examinedby using tests of bone sialoprotein(BSP), osteocalcin(OCN), collagen typeⅠ(COL-Ⅰ) and Runt-related transcription factor 2(RUNX-2). Results Wnt3a proteininduced an increase of cell growth and treatment of DPSC with Wnt3a induced a highest increase in cell growth at the concentration of 5μg/L. 5 μg/L Wnt3a proteins combined with the osteogenic medium treatment caused up-regulated osteogenic differentiation, ALP activity and express of osteogenic-related genes of DPSC, and the ALP activity(0.47 ± 0.04) was significantly stronger than the other groups(osteogenic medium: 0.39 ± 0.05;20μg/L:0.34 ± 0.03;50 μg/L: 0.27 ± 0.07; 100 μg/L: 0.20 ± 0.03). Conclusions Exogenous Wnt3a protein treatment on DPSC could affect the proliferation and osteogenic differentiation.%目的:研究Wnt3a蛋白对牙髓干细胞(dental pulp stem cells,DPSC)增殖及成骨向分化的影响。方法对培养液和矿化液分别加入不同质量浓度的Wnt3a蛋白(0、5、20、50、100μg/L)作用于DPSC,应用甲基噻唑基四唑法于不同作用时间(1、3、5、7 d)检测DPSC的增殖情况及碱性磷酸酶活性;茜素红染色检测矿化结节形成情况;通过实时荧光定量PCR(real-time quantitative PCR,RT-PCR)法检测骨涎蛋白、Ⅰ型胶原、Runt相关转录因子2(Runt-related transcription factor 2,RUNX-2)及骨钙蛋白4种骨源性基因的表达情况。结果5μg/L的Wnt3a蛋白对DPSC的

  15. Gender Differences in Acute Cadmium-Induced Systemic Inflammation in Rats

    Institute of Scientific and Technical Information of China (English)

    MILENA KATARANOVSKI; SRDJA JANKOVI(C); DRAGAN KATARANOVSKI; JELENA (S)TOSI(C); DESA BOGOJEVI(C)

    2009-01-01

    Objective To examine the presence of gender differences in pro-inflammatory potential of cadmium in rats by comparing systemic inflammatory response to acute cadmium intoxication in animals of the two sexes. Methods Basic aspects of this response were evaluated, including plasma levels of inflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) and of major rat acute phase protein alpha 2-macroglobulin (alpha2-M), as soluble indicators of inflammation, and the number and activity of peripheral blood leukocytes, as cellular indicators of inflammation. Results Differential increases of IL-6 and alpha 2-M (higher in males than in females) in peripheral blood cell counts and types (leukocytosis and shift in the ratio of granulocytes to lymphocytes more pronounced in males vs females) and in levels of neutrophil priming (higher in males vs females) were noted. Conclusion The data document a more intense inflammatory response to cadmium administration in males. The sex differences in inflammatory effects of cadmium might be taken into consideration in studying the toxicity of this heavy metal.

  16. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats.

    Science.gov (United States)

    Simsek, Nejdet; Karadeniz, Ali; Kalkan, Yildiray; Keles, Osman N; Unal, Bünyami

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina+lead (Sp+Pb), cadmium (Cd), and Spirulina+cadmium (Sp+Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the alpha-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  17. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Nejdet [University of Atatuerk, Faculty of Veterinary Medicine, Department of Histology and Embryology, 25700 Erzurum (Turkey); Karadeniz, Ali, E-mail: karadenizali@gmail.com [University of Atatuerk, Faculty of Veterinary Medicine, Department of Physiology, 25700 Erzurum (Turkey); Kalkan, Yildiray; Keles, Osman N.; Unal, Buenyami [University of Atatuerk, Faculty of Medicine, Department of Histology and Embryology, 25240 Erzurum (Turkey)

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the {alpha}-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  18. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  19. The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation through Direct Control of N-Cadherin

    Directory of Open Access Journals (Sweden)

    Tadahiro Nagaoka

    2014-03-01

    Full Text Available Although regulators of the Wnt/planar cell polarity (PCP pathway are widely expressed in vertebrate nervous systems, their roles at synapses are unknown. Here, we show that Vangl2 is a postsynaptic factor crucial for synaptogenesis and that it coprecipitates with N-cadherin and PSD-95 from synapse-rich brain extracts. Vangl2 directly binds N-cadherin and enhances its internalization in a Rab5-dependent manner. This physical and functional interaction is suppressed by β-catenin, which binds the same intracellular region of N-cadherin as Vangl2. In hippocampal neurons expressing reduced Vangl2 levels, dendritic spine formation as well as synaptic marker clustering is significantly impaired. Furthermore, Prickle2, another postsynaptic PCP component, inhibits the N-cadherin-Vangl2 interaction and is required for normal spine formation. These results demonstrate direct control of classic cadherin by PCP factors; this control may play a central role in the precise formation and maturation of cell-cell adhesions at the synapse.

  20. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin.

    Science.gov (United States)

    Pi, Huifeng; Xu, Shangcheng; Reiter, Russel J; Guo, Pan; Zhang, Lei; Li, Yuming; Li, Min; Cao, Zhenwang; Tian, Li; Xie, Jia; Zhang, Ruiqi; He, Mindi; Lu, Yonghui; Liu, Chuan; Duan, Weixia; Yu, Zhengping; Zhou, Zhou

    2015-01-01

    Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 μM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3(H248Y)) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2(•-) production and suppressed the autophagy induced by 10 μM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2(•-)-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway.

  1. Wnt pathway in Dupuytren disease: connecting profibrotic signals.

    Science.gov (United States)

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2015-12-01

    A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways.

  2. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  3. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaopeng; Xia Yan; Hu Wei [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Zhang Hongxiao, E-mail: hxzhang@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China)

    2010-08-15

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 {mu}M significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H{sub 2}O{sub 2} and superoxide anion (O{sub 2}{center_dot}{sup -}), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 {mu}M NAC decreased the contents of TBARS and production of H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -}, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  4. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N;

    2012-01-01

    Disturbed Wnt signaling has been implicated in numerous diseases, including type 2 diabetes and the metabolic syndrome. In the present study, we have investigated cross-talk between insulin and Wnt signaling pathways using preadipocytes with and without knockdown of the Wnt co-receptors LRP5...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  5. Wnt Signaling Is Required for Long-Term Memory Formation

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-09-01

    Full Text Available Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with β-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type β-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.

  6. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis (IPF is a fatal lung disease, characterized by distorted lung architecture and loss of respiratory function. Alveolar epithelial cell injury and hyperplasia, enhanced extracellular matrix deposition, and (myofibroblast activation are features of IPF. Wnt/beta-catenin signaling has been shown to determine epithelial cell fate during development. As aberrant reactivation of developmental signaling pathways has been suggested to contribute to IPF pathogenesis, we hypothesized that Wnt/beta-catenin signaling is activated in epithelial cells in IPF. Thus, we quantified and localized the expression and activity of the Wnt/beta-catenin pathway in IPF. METHODOLOGY/PRINCIPAL FINDINGS: The expression of Wnt1, 3a, 7b, and 10b, the Wnt receptors Fzd1-4, Lrp5-6, as well as the intracellular signal transducers Gsk-3beta, beta-catenin, Tcf1, 3, 4, and Lef1 was analyzed in IPF and transplant donor lungs by quantitative real-time (qRT-PCR. Wnt1, 7b and 10b, Fzd2 and 3, beta-catenin, and Lef1 expression was significantly increased in IPF. Immunohistochemical analysis localized Wnt1, Wnt3a, beta-catenin, and Gsk-3beta expression largely to alveolar and bronchial epithelium. This was confirmed by qRT-PCR of primary alveolar epithelial type II (ATII cells, demonstrating a significant increase of Wnt signaling in ATII cells derived from IPF patients. In addition, Western blot analysis of phospho-Gsk-3beta, phospho-Lrp6, and beta-catenin, and qRT-PCR of the Wnt target genes cyclin D1, Mmp 7, or Fibronectin 1 demonstrated increased functional Wnt/beta-catenin signaling in IPF compared with controls. Functional in vitro studies further revealed that Wnt ligands induced lung epithelial cell proliferation and (myofibroblast activation and collagen synthesis. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that the Wnt/beta-catenin pathway is expressed and operative in adult lung epithelium. Increased Wnt/beta-catenin signaling

  7. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen

    2014-01-01

    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  8. Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: a study with light-induced synchronized cultures of algae.

    Science.gov (United States)

    Pokora, Wojciech; Baścik-Remisiewicz, Agnieszka; Tukaj, Stefan; Kalinowska, Renata; Pawlik-Skowrońska, Barbara; Dziadziuszko, Małgorzata; Tukaj, Zbigniew

    2014-01-15

    During the Desmodesmus armatus cell cycle, 8-celled coenobia of 276-4d strain accumulated a much lower amounts of cadmium than unicells of B1-76 strain. Cadmium reduced growth and photosynthesis in the cells of strain B1-76, but not those of 276-4d strain. Cells of 276-4d strain revealed a higher activity of superoxide dismutase (SOD) isoforms, in particular the activity and protein content of Fe-SOD. Cu/Zn-SOD was earlier and much stronger induced by cadmium in 276-4d than in B1-76 strain, whereas Fe- and Mn-SOD activity and Fe-SOD synthesis were induced only in 276-4d strain. Cadmium did not affect the heat shock protein 70 synthesis in B1-76 strain, but significantly stimulated this process in 276-4d strain. The level of glutathione increased 30-fold during cell development of Cd-exposed 276-4d strain, while in B1-76 it increased about 12 timed. Matured cells of both strains exposed to cadmium produced comparable amounts of phytochelatins and other thiol peptides, but their production in young cells of B1-76 strain was much higher than in 276-4d strain. In conclusion, a complex of internal detoxification mechanisms appeared to be more efficient in cells of 276-4d strain than B1-76 one.

  9. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation.

    Science.gov (United States)

    Fu, Jiang; Jiang, Ming; Mirando, Anthony J; Yu, Hsiao-Man Ivy; Hsu, Wei

    2009-11-03

    Members of the Wnt family are secreted glycoproteins that trigger cellular signals essential for proper development of organisms. Cellular signaling induced by Wnt proteins is involved in diverse developmental processes and human diseases. Previous studies have generated an enormous wealth of knowledge on the events in signal-receiving cells. However, relatively little is known about the making of Wnt in signal-producing cells. Here, we describe that Gpr177, the mouse orthologue of Drosophila Wls, is expressed during formation of embryonic axes. Embryos with deficient Gpr177 exhibit defects in establishment of the body axis, a phenotype highly reminiscent to the loss of Wnt3. Although many different mammalian Wnt proteins are required for a wide range of developmental processes, the Wnt3 ablation exhibits the earliest developmental abnormality. This suggests that the Gpr177-mediated Wnt production cannot be substituted. As a direct target of Wnt, Gpr177 is activated by beta-catenin and LEF/TCF-dependent transcription. This activation alters the cellular distributions of Gpr177 which binds to Wnt proteins and assists their sorting and secretion in a feedback regulatory mechanism. Our findings demonstrate that the loss of Gpr177 affects Wnt production in the signal-producing cells, leading to alterations of Wnt signaling in the signal-receiving cells. A reciprocal regulation of Wnt and Gpr177 is essential for the patterning of the anterior-posterior axis during mammalian development.

  10. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  11. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    Science.gov (United States)

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation.

  12. Soil pH effect on phosphate induced cadmium precipitation in Arable soil.

    Science.gov (United States)

    Hong, Chang Oh; Owens, Vance N; Kim, Yong Gyun; Lee, Sang Mong; Park, Hyean Cheal; Kim, Keun Ki; Son, Hong Joo; Suh, Jeong Min; Kim, Pil Joo

    2014-07-01

    The objective of this study was to determine soil pH conditions that allow cadmium (Cd) to precipitate as Cd minerals in phosphate (P) amended soil. Cadmium immobilization could be attributed primarily to Cd adsorption due to increase in pH and negative charge. Soil pH might not affect Cd precipitation as Cd3(PO4)2 by direct reaction of Cd and P in the studied soil, even when soil pH increased up to 9.0. However, Cd might precipitate as CdCO3 with increasing pH up to 9.0 in P untreated soil and up to 8.0 in P treated soil depending on CO2 level.

  13. Cadmium Induced Histopathological Changes in the Intestine of Indian Flying Barb, Esomus danricus

    Directory of Open Access Journals (Sweden)

    Suchismita Das

    2013-08-01

    Full Text Available Indian flying barb (Esomus danricus was exposed to sublethal concentrations of 636.3, 63.6 and 6.3 µgl-1 Cadmium for 28 days and intestinal histopathology was observed by light microscopy after staining with Haematoxylin-Eosine. Exposed fishes showed severe to mild superficial erosion of mucosa, dense lamina propria, chronic inflammatory cell infiltration as well as vacuolation. With the increase in exposure dose, severity of effects was observed.

  14. Cadmium-induced Functional and Ultrastructural Alterations in Roots of Two Transgenic Cotton Cultivars

    Institute of Scientific and Technical Information of China (English)

    DAUD M K; SUN Yu-qiang; ZHU Shui-jin

    2008-01-01

    @@ The toxic effect of cadmium (Cd) at increasing concentrations has been studied with special attention being given to root morphological and ultrastructural changes in two transgenic cotton cultivars viz.BR001 and GK30 and their wild relative cotton genotype viz.Coker 312.In comparison to their respective controls,low concentration (10 and 100 M) of Cd greatly stimulated seed germination,while it was inhibited by highest concentration of Cd (1000 M) in case of two transgenic cultivars.

  15. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.

    Directory of Open Access Journals (Sweden)

    Bai-Wei Gu

    Full Text Available Dyskeratosis congenita (DC is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells

  16. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  17. Cadmium induced histopathology in the olfactory epithelium of a snakehead fish, Channa punctatus (Bloch

    Directory of Open Access Journals (Sweden)

    Debraj Roy

    2013-10-01

    Full Text Available Histopathology on the olfactory organ of a snakehead fish, Channa punctatus (Bloch, 1793 were assessed after exposing the fish to 2.5 mg/L and 5mg/L of CdCl2 for 15 days, 30 days and 45 days. Cellular organization of the epithelium was affected severely with degeneration of sensory and supporting cells and hyperplasia of basal cells and mucous cells. Mucous cell proliferation indicates the upregulation of mucous secretion to protect the epithelium from toxic effect of cadmium. The olfactory epithelium was endowed with the multipotent basal cells which differentiate into sensory cells, supporting cells and other cell types of the epithelium during normal cells turn over and in the event of cell death.  However, due to cadmium exposure proliferating basal cells failed to differentiate into normal cells and the undifferentiated proliferated cell formed lump and intraepithelial lesion altering the composition of the entire epithelium. Present study indicates that in prolonged exposure to cadmium chloride olfactory functions of the fish might be impaired due to loss of all sensory cells.

  18. Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars.

    Science.gov (United States)

    Hasan, Syed Aiman; Hayat, Shamsul; Ahmad, Aqil

    2011-09-01

    The present study was conducted with an aim to gain better insight of brassinosteroid generated response on the effects of cadmium on photosynthetic machinery and active oxygen metabolism in two tomato cultivars (K-25 and Sarvodya). These tomato cultivars were subjected to graded cadmium levels in soil (0, 3, 6, 9 or 12 mg kg(-1) soil) with their foliage being sprayed with 0 or 10(-8) M of 28-homobrassinolide/24-epibrassinolide (HBL/EBL) at 59 d stage. The results suggested that photosynthetic parameters, leaf water potential and activity of several enzymes (nitrate reductase and carbonic anhydrase) decreased significantly in both the cultivars, to a lesser extent in K-25 than Sarvodya with the increasing levels of cadmium in the soil. However, the activity of antioxidant enzymes and proline content increased in response to metal treatment as well as the application of brassinosteroids (HBL/EBL). Overall, exogenous application of brassinosteroids improved the activity of photosynthetic machinery and that of antioxidant defense system in both the cultivars, and also nullified the damaging effect of metal on these parameters.

  19. Metallothionein 1 Isoform Gene Expression Induced by Cadmium in Human Peripheral Blood Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the gene expression of metallothionein 1 (MT-1) isoforms in human peripheral blood lymphocytes (HPBLs). Methods The expression of mRNA representing the seven active MT-1 genes was determined in HPBLs by quantitative RT-PCR before and after exposure to cadmium. Results Basal expressions of MT-1X, and MT-1A in HPBLs were similar to expression of housekeeping gene. In contrast, the basal gene expressions of MT-1H, 1F, 1E, and 1G were a little transcripts in human HPBLs. No signal was detected for MT-1B. There was a sex difference (P<0.05). in basal gene expression of MT-1E. The levels of gene expression of MT-1A, 1E, 1F, 1G, 1H, and 1X increased, but the level of MT-1B did not increase after exposure to cadmium. Conclusions Gene expressions of MT-1G, MT-1H, MT-1F, and MT-1X in HPBLs can be used as a potential biomarker of cadmium exposure.

  20. Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in Vitro

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2015-09-01

    Full Text Available Hepatocellular carcinoma (HCC is a malignant tumor that can cause systemic invasion; however, the exact etiology and molecular mechanism are unknown. Astaxanthin (ASX, a powerful antioxidant, has efficient anti-oxidant, anti-inflammatory, and other activities, and has great research prospects in cancer therapy. We selected the human hepatoma cell lines, LM3 and SMMC-7721, to study the anti-tumor effect and related mechanisms of ASX. The cell lines were treated with different concentrations of ASX, and its solvent DMSO as a control, for different time periods and the results were determined using CCK8, qRT-PCR, WB, apoptotic staining, and flow cytometry. ASX induced significant apoptosis of HCC cells, and its effect may have been caused by NF-κB p65 and Wnt/β-catenin down-regulation via negative activation of PI3K/Akt and ERK. Antitumor research on ASX has provided us with a potential therapy for patients with hepatomas.

  1. Cadmium chloride induced cell injury through oxidative stress%镉通过氧化应激机制诱导LLC-PK1细胞损伤

    Institute of Scientific and Technical Information of China (English)

    方鑫; 李海玲; 安彩艳

    2014-01-01

    目的:探讨镉诱导猪肾近曲小管上皮细胞(LLC-PK1)毒性及氧化应激在其中的作用。方法用不同浓度的氯化镉刺激细胞9h和25μmol/L的氯化镉刺激细胞不同时间,采用Formazan 分析细胞存活率反映镉对细胞的损伤程度;以还原型谷胱甘肽(GSH)为靶点,影响GSH浓度的两个试剂BSO和NAC,观察镉诱导细胞损伤中氧化应激的作用。结果随着氯化镉染毒时间延长,细胞存活率下降,同样,随着剂量的增加,细胞的存活率逐渐也下降。同时BSO加重镉诱导的细胞损伤,NAC完全抑制镉诱导的细胞损伤。结论氯化镉对LLC- PK1细胞具有明显的毒性,细胞损伤是通过氧化应激介导,且与细胞内的谷胱甘肽的水平有着密切关系。%Objective To investigate the possible mechanisms of cadmium chloride-induced LLC-PK1 cell toxicity and the role of oxidative stress during the progress. Methods LLC-PK1 cells were treated with different concentrations of cadmium chloride for 9h,and different times at the same dose of cadmium chloride (25μmol/L), respectively.Formazan was used to analyze the cells viability.GSH was taken as a target,and the role of oxidative stress in the progress of cadmium chloride-induced cell injury was assessed by BSO and NAC. Results With the increasing of treatment time and cadmium concentration,Cadmium-induced cell toxicity became more serious and the viability of cells decreased.The cell susceptibility to cadmium chloride could be substantially altered by glutathione (GSH)-modulating agents.Depletion of GSH with BSO increased, whereas supply of cells with NAC decreased subsequent cell injury. Conclusion Cadmium chloride induced cell injury through oxidative stress,which was closely associated with the expression level of intracellular GSH.

  2. Protective role of diallyl tetrasulfide on cadmium-induced testicular damage in adult rats: a biochemical and histological study.

    Science.gov (United States)

    Ponnusamy, Murugavel; Pari, Leelavinothan

    2011-06-01

    Cadmium (Cd)-induced oxidative damage is the most serious problem that leads to reproductive system failure in both human and animals. Our previous studies indicate that diallyl tetrasulfide (DTS) from garlic has the cytoprotective and antioxidant activity against Cd-induced toxicity in vivo and in vitro. The present investigation was carried out to find the influence of DTS on peroxidative damage induced by Cd in rat testes. The Cd-exposed rat testis showed a significant (p glutathione peroxidase) and glutathione metabolizing (glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase) enzymes as well as reduced levels of non-enzymic (reduced glutathione, ascorbate and total sulphydryl groups) antioxidants. In contrast, treatment with DTS (40 mg/kg body weight orally) significantly (p Testicular protection by DTS is further substantiated by remarkable reduction of Cd-induced pathological changes. Our study has revealed that DTS renders protection against Cd-induced testicular injury by reducing Cd-mediated oxidative damage.

  3. l-Theanine attenuates cadmium-induced neurotoxicity through the inhibition of oxidative damage and tau hyperphosphorylation.

    Science.gov (United States)

    Ben, Peiling; Zhang, Zhengping; Zhu, Yanyan; Xiong, Aiying; Gao, Yanhong; Mu, Jianyun; Yin, Zhimin; Luo, Lan

    2016-12-01

    Cadmium (Cd) has long been known to induce neurological degenerative disorders. We studied effects of l-theanine, one of the major amino acid components in green tea, on Cd-induced brain injury in mice. Male ICR mice were intraperitoneally injected with l-theanine (100 or 200mg/kg/day) or saline and after one hour these mice were orally administrated with CdCl2 (3.75-6mg/kg). The treatment was conducted for 8 weeks. l-Theanine significantly reduced Cd level in the mouse brain and plasma. Cd-induced neuronal cell death in the mouse cortex and hippocampus were apparently inhibited by l-theanine treatment. l-Theanine also decreased the levels of malondialdehyde (MDA) and ROS, and obviously elevated the levels of glutathione (GSH) and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the mouse brain. Hyperphosphorylation of tau protein is proposed to be an early event for the evolution of tau pathology, and may play an important role in Cd-induced neurodegeneration. Our results showed that l-theanine significantly suppressed Cd-induced tau protein hyperphosphorylation at Ser199, Ser202, and Ser396. Mechanism study showed that l-theanine inhibited the activation of glycogen synthase kinase-3β (GSK-3β) which contributed to the hyperphosphorylation of tau and Cd-induced cytotoxicity. Furthermore, l-theanine reduced Cd-induced cytotoxicity possibly by interfering with the Akt/mTOR signaling pathway. In conclusion, our study indicated that l-theanine protected mice against Cd-induced neurotoxicity through reducing brain Cd level and relieved oxidative damage and tau hyperphosphorylation. Our foundings provide a novel insight into the potential use of l-theanine as prophylactic and therapeutic agents for Cd-induced neurodegenerative diseases.

  4. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Francisco [Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY (United States); Oguma, Junya; Brown, Anthony M.C. [Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (United States); Laurence, Jeffrey, E-mail: jlaurenc@med.cornell.edu [Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. Black-Right-Pointing-Pointer Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. Black-Right-Pointing-Pointer Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. Black-Right-Pointing-Pointer Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/{beta}-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of {beta}-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, {beta}-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in

  5. Some bioactive potentials of two biflavanols isolated from Garcinia kola on cadmium-induced alterations of raw U937 cells and U937-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    Tebekeme Okoko; Diepreye Ere

    2013-01-01

    Objective: To investigate the abilities of two flavonoids - Garcinia biflavanol-1 (GB-1) and Garcinia biflavanol-2 (GB-2) from Garcinia kola (G. kola) in reducing cadmium-induced effects on raw U937 cells and U937-derived macrophages. Methods: Macrophage U937 cells were incubated with cadmium followed by treatment with the flavonoids and cell viability assessed via trypan blue staining. In the other experiment, the U937 cells were transformed to the macrophage form and treated with cadmium in order to activate them. The cells were later incubated with the flavonoids and finally the supernatant of each cell culture was analysed for the secretion of nitric oxide, catalyse activity, and the release of tumour necrosis factor-alpha, interleukin-1 and interleukin-2 as indices of macrophage activation. Quercetin (a flavonol) was used as the reference flavonoid in all experiments. Results: It revealed that the flavonoids significantly increased the viability of the cells and also reduced the cadmium-induced activation of the macrophage cells in a concentration-dependent manner. The flavanols GB-1 and GB-2 possessed higher activities than quercetin in all cases (P<0.05). Garcinia biflavanol-2 possessed a higher bioactivity than GB-1 significantly (P<0.05). Conclusions: In addition to corroborating the several reported importance of G. kola as a potential neutraceutical and pharmacological condiment, the study also clearly indicates the role hydroxylation especially at the 3´- position of polyphenols could play in enhancing bioactivities of flavonoids.

  6. Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Najeeb, Ullah [Institute of Crop Science, Zhejiang University, Hangzhou 310029 (China); Crop Sciences Institute, National Agriculture Research Centre, Islamabad 45500 (Pakistan); Jilani, Ghulam, E-mail: jilani@uaar.edu.pk [Department of Soil Science, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300 (Pakistan); Ali, Shafaqat [Institute of Crop Science, Zhejiang University, Hangzhou 310029 (China); Sarwar, Muhammad [Land Resources Research Institute, National Agriculture Research Centre, Islamabad 45500 (Pakistan); Xu Ling [Institute of Crop Science, Zhejiang University, Hangzhou 310029 (China); Zhou, Weijun, E-mail: wjzhou@zju.edu.cn [Institute of Crop Science, Zhejiang University, Hangzhou 310029 (China)

    2011-02-15

    This study appraised cadmium (Cd) toxicity stress in wetland plant Juncus effusus, and explored its potential for Cd phytoextraction through chelators (citric acid and EDTA). Cadmium altered morphological and physiological attributes of J. effusus as reflected by growth retardation. Citric acid in the presence of 100 {mu}M Cd significantly countered Cd toxicity by improving plant growth. Elevated Cd concentrations reduced translocation factor that was increased under application of both chelators. Citric acid enhanced Cd accumulation, while EDTA reduced its uptake. Cadmium induced oxidative stress modified the antioxidative enzyme activity. Both levels of citric acid (2.5 and 5.0 mM) and lower EDTA concentration (2.5 mM) helped plants to overcome oxidative stress by enhancing their antioxidative enzyme activities. Cadmium damaged the root cells through cytoplasmic shrinkage and metal deposition. Citric acid restored structure and shape of root cells and eliminated plasmolysis; whereas, EDTA exhibited no positive effect on it. Shoot cells remained unaffected under Cd treatment alone or with citric acid except for chloroplast swelling. Only EDTA promoted starch accumulation in chloroplast reflecting its negative impact on cellular structure. It concludes that Cd and EDTA induce structural and morphological damage in J. effusus; while, citric acid ameliorates Cd toxicity stress.

  7. Induction of Wnt-inducible signaling protein-1 correlates with invasive breast cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective study.

    Science.gov (United States)

    Klinke, David J

    2014-01-01

    Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be used as design constraints in genetically engineering better pre

  8. Efficacy of Crocus sativus L. on reduction of cadmium-induced toxicity on spermatogenesis in adult rats.

    Science.gov (United States)

    Yari, A; Sarveazad, A; Asadi, E; Raouf Sarshoori, J; Babahajian, A; Amini, N; Amidi, F; Bahadoran, H; Joghataei, M T; Asadi, M H; Shams, A

    2016-12-01

    Cadmium is a toxic heavy metal element, which probably cause infertility by impairment in spermatogenesis. The present work aimed (i) to study the toxic effect of cadmium on spermatogenesis in rat, as well as (ii) the protective effect of Crocus sativus L. on cadmium-intoxicated rats. Cadmium chloride was administered intraperitoneally during 16 days at intervals of 48 h between subsequent treatments. Crocus sativus L. was pre-treated in both of control and cadmium-injected rats. Animals were sacrificed on day 17 after the first treatment. The left cauda epididymis was removed and immediately immersed into Hank's balanced salt solution for the evaluation of sperm count and viability, and left testis was fixed in 10% formalin for histological evaluation. Following contamination with cadmium, a decrease was observed in the number and viability of cauda epididymis sperm, which were increased by Crocus sativus L. pre-treatment (P spermatogenesis.

  9. Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties

    Science.gov (United States)

    Gillers, Benjamin S; Chiplunkar, Aditi; Aly, Haytham; Valenta, Tomas; Basler, Konrad; Christoffels, Vincent M.; Efimov, Igor R; Boukens, Bastiaan J; Rentschler, Stacey

    2014-01-01

    Rationale Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. Objective To determine the role of canonical Wnt signaling in the myocardium during AVC development. Methods and Results We utilized a novel allele of β-catenin that preserves β-catenin’s cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiologic criteria. Aberrant AVC development can lead to ventricular preexcitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of β-catenin protein levels can rescue Notch-mediated ventricular preexcitation and dysregulated ion channel gene expression. Conclusions Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electrical programming upstream of Tbx3. Our data further suggests that ventricular preexcitation may require both morphologic patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue. PMID:25599332

  10. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Puneet, E-mail: puneetbiochem@gmail.com [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Prasad, Y. [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Patra, A.K. [West Bengal University of Animal and Fishery Sciences, Kolkata-700037 (India); Ranjan, R.; Swarup, D.; Patra, R.C. [Division of Medicine, Indian Veterinary Research Institute, Izatnagar-243122 (India); Pal, Satya [Env. Eng. Lab., Deptt. of Civil Engineering, I.I.T., Roorkee-247667 (India)

    2009-09-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 {+-} 4 cm and weight of 86 {+-} 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl{sub 2}.H{sub 2}O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl{sub 2}.H{sub 2}O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and

  11. TNF-related apoptosis-inducing ligand cooperates with NSAIDs via activated Wnt signalling in (pre)malignant colon cells

    NARCIS (Netherlands)

    Heijink, Dianne M.; Jalving, Mathilde; Oosterhuis, Dorenda; Sloots, Ineke A.; Koster, Roelof; Hollema, Harry; Kleibeuker, Jan H.; Koornstra, Jan J.; de Vries, Elisabeth G. E.; de Jong, Steven

    2011-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) receptor agonistic agents and non-steroidal anti-inflammatory drugs (NSAIDs) are interesting agents for the chemoprevention and treatment of colorectal cancer. We investigated whether NSAIDs sensitize colon cancer and adenoma cell lines and ex vivo cultu

  12. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics

    Science.gov (United States)

    Silva-Alvarez, Carmen; Arrázola, Macarena S.; Godoy, Juan A.; Ordenes, Daniela; Inestrosa, Nibaldo C.

    2013-01-01

    Alzheimer's disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, preventing the changes induced by Aβ oligomers (Aβo) in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca2+signaling modulates mitochondrial dysfunction. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident. PMID:23805073

  13. Histopathological changes in the head kidney induced by cadmium in a neotropical fish Colossoma macropomum.

    Science.gov (United States)

    Salazar-Lugo, R; Vargas, A; Rojas, L; Lemus, M

    2013-01-01

    We evaluated the effect of cadmium (Cd) on the structure and function of the head kidney in the freshwater fish Colossoma macropomum (C. macropomum). Juveniles were exposed to 0.1 mg/L CdCl2 for 31 days. Blood samples were examined using hematological tests and head kidney histology was determined by light microscopy. The concentration of Cd in the head and trunk kidneys was measured using an atomic absorption spectrophotometer. Cd produced histopathological changes in the head kidney, the most evident of these being: the thickening of the vein wall, an increase in the number of basophils/mast cells close to blood vessels and a severe depletion of hematopoietic precursors especially the granulopoietic series. In the blood, a decrease in the total leucocytes and hemoglobin concentration was observed. Cd-exposed fish showed higher Cd concentrations in the trunk kidney than the head kidney. In conclusion, exposure to Cd affected precursor hematopoietic cells in C. macropomum.

  14. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  15. Protective effect of probiotic bacteria against cadmium-induced genotoxicity in rat hepatocytes in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Đurašević Siniša F.

    2012-01-01

    Full Text Available The protective effect of probiotic bacteria against cadmium (Cd-induced genotoxicity was studied in rat hepatocytes in vivo and in vitro. Male Wistar rats, Rattus norvegicus, were treated for five weeks with (i CdCl2 (70 ppm in the drinking water, (ii a mixture of lyophilized probiotic bacteria Lactobacillus rhamnosus, L. acidophilus and Bifido-bacterium longum (5×108 cfu/g of food, or (iii CdCl2 and probiotic bacteria. In addition, single cells obtained from the untreated rat liver were exposed to CdCl2 (70 ppm, probiotic bacteria (1.28 mg/ml, or CdCl2 and probiotic bacteria, for 15 min at 22°C in the dark. The level of Cd-induced DNA damage in hepatocytes was determined by the comet assay. The obtained results show that probiotic bacteria significantly reduced Cd-induced genotoxicity, both in vivo and in vitro (20% and 48%, respectively. Moreover, the toxicity of Cd to lactobacilli in the gastrointestinal tracts of rats was significantly decreased in the probiotic-treated animals. The binding of Cd2+ to probiotic bacteria was proposed as the most probable protection mechanism. [Acknowledgments. This research was financially supported by the Ministry of Education and Science of the Government of Serbia, projects No 172058 and 173023

  16. Ameliorative Effect of Grape Seed Proanthocyanidin Extract on Cadmium-Induced Meiosis Inhibition During Oogenesis in Chicken Embryos.

    Science.gov (United States)

    Hou, Fuyin; Xiao, Min; Li, Jian; Cook, Devin W; Zeng, Weidong; Zhang, Caiqiao; Mi, Yuling

    2016-04-01

    Cadmium (Cd) is an environmental endocrine disruptor that has toxic effects on the female reproductive system. Here the ameliorative effect of grape seed proanthocyanidin extract (GSPE) on Cd-induced meiosis inhibition during oogenesis was explored. As compared with controls, chicken embryos exposed to Cd (3 µg/egg) displayed a changed oocyte morphology, decreased number of meiotic germ cells, and decreased expression of the meiotic marker protein γH2AX. Real time RT-PCR also revealed a significant down-regulation in the mRNA expressions of various meiosis-specific markers (Stra8, Spo11, Scp3, and Dmc1) together with those of Raldh2, a retinoic acid (RA) synthetase, and of the receptors (RARα and RARβ). In addition, exposure to Cd increased the production of H2 O2 and malondialdehyde in the ovaries and caused a corresponding reduction in glutathione and superoxide dismutase. Simultaneous supplementation of GSPE (150 µg/egg) markedly alleviated the aforementioned Cd-induced embryotoxic effects by upregulating meiosis-related proteins and gene expressions and restoring the antioxidative level. Collectively, the findings provided novel insights into the underlying mechanism of Cd-induced meiosis inhibition and indicated that GSPE might potentially ameliorate related reproductive disorders.

  17. Amelioration of Cadmium-Induced Nephropathy using Polyphenol-rich Extract of Vernonia amygdalina (Del. Leaves in Rat Model

    Directory of Open Access Journals (Sweden)

    Christian E. Imafidon

    2015-11-01

    Full Text Available AIM: To determine the effects of polyphenol-rich extract of the leaves of Vernonia amygdalina (PEVA in rats with Cd-induced nephropathy. MATERIALS AND METHODS: Sixty five male Wistar rats were divided into five groups as follows; Group 1 received distilled water throughout the period of study. Group 2 received 5 mg/kg body weight of cadmium (Cd, in the form of CdSO4, for five consecutive days via intraperitoneal route. Groups 3, 4 and 5 were pretreated with Cd as group 2 and thereafter received oral treatment of PEVA for 4 weeks at 100 mg/kg, 200 mg/kg and 400 mg/kg body weight, respectively. RESULTS: Exposure to Cd toxicity significantly induced deleterious alterations in plasma and urine levels of creatinine, urea and glucose as well as creatinine and urea clearance (p < 0.05 in the rat model. There was a significant disturbance in the antioxidant system as revealed by the levels of thiobarbituric acid reactive substance (TBARS and reduced glutathione (GSH (p < 0.05 in the kidney tissue of the rats. With marked improvements in renal histoarchitecture, PEVA treatment showed a duration and non dose-dependent ameliorative potential. CONCLUSION: PEVA treatment reversed the compromise of renal function that was induced by Cd toxicity in rat model.

  18. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    CERN Document Server

    Ditrói, F; Haba, H; Komori, Y; Aikawa, M

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope $^{117m}$Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets $^{117m}$Sn, $^{113}$Sn, $^{110}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In, $^{114m}$In, $^{113m}$In, $^{111}$In, $^{110m,g}$In, $^{109m}$I...

  19. Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses

    Directory of Open Access Journals (Sweden)

    H. N. Shiyntum

    2015-09-01

    Full Text Available Cadmiumclassified as a major carcinogen is considered a poisonous and unwanted heavy metal to a lot of tissues in many organisms. Of many publications already available, the general consensus is that the cadmium attenuating element is metallothionein (MT through its interchangeable mechanism with Zn triggered by the presence of Cd, providing binding sites for Cd ions. MT was first discovered in the kidney cortex of the horse; it represents a low molecular weight protein, rich in cysteine residues which effectively bind with metals. Its functions consist in detoxification of heavy metals like mercury, arsenic, cadmium, homeostasis of essential metals including copper and zinc, anti-oxidation against reactive oxygen species, protection against DNA damage, oxidative stress, cell survival, angiogenesis, apoptosis, and increase of proliferation. In this work, we sought to highlight the protective function of MT in the brain and serum of rats by means of detoxification under induced effects of controlled Cd doses. We have done this by exposing Wistar rats to Cd at different doses in drinking water at different time intervals. In two independent experiments, 58 rats were subjected to 0.1 or 1.0 µg Cd2+/kg of body weight for 15 or 36 days under different conditions. The obtained data indicates the different functioning systems for the brain and the blood for MT metabolism under Cd effect. Our results indicate significant loss of metallothionein level in the brain and important increases in the amount of MT in serum proving that even minimal ingestion of toxic Cd is enough to trigger the release of MT protein in blood.

  20. The Co-induced Effects of Molybdenum and Cadmium on Antioxidants and Heat Shock Proteins in Duck Kidneys.

    Science.gov (United States)

    Xia, Bing; Cao, Huabin; Luo, Junrong; Liu, Ping; Guo, Xiaoquan; Hu, Guoliang; Zhang, Caiying

    2015-11-01

    Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is harmful to health. To investigate the toxicity of Mo combined with Cd in duck kidneys, 240 ducks were randomly divided into six groups and treated with a commercial diet containing Mo, Cd or Mo combined with Cd. Kidneys were collected on days 30, 60, 90 and 120 for determining the expression of heat shock proteins (HSPs), including HSP60, HSP70 and HSP90 in the kidney through quantitative RT-PCR. We also determined the antioxidant activity indexes in the kidney mitochondria. Moreover, kidney tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results indicated that the expression of HSPs was highly significantly (P kidneys of the combination groups and the Cd group. Exposure to Cd and a high dose of Mo decreased the total antioxidative capacity and the activity of xanthine oxidase, while malondialdehyde levels and the activity of nitric oxide synthase increased compared with those of the control groups in the kidney mitochondria. This was particularly evident at 90 and 120 days. Histopathological lesions included congestion and bleeding in the renal interstitium, swelling of the distal convoluted tubule epithelial cells, granular degeneration and blister degeneration in the renal tubular epithelial cells. These results suggest that a combination of Mo and Cd leads to greater tissue damage and has a synergistic effect on kidney damage. Oxidative damage of kidney mitochondria may be a potential nephrotoxicity mechanism of molybdenum and cadmium, and the high expression of HSPs may play a role in the resistance of kidney toxicity induced by Mo and Cd.

  1. Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition.

    Science.gov (United States)

    Meng, Hui; Li, Fei; Hu, Rong; Yuan, Yikai; Gong, Guoqi; Hu, Shengli; Feng, Hua

    2015-03-30

    Post-hemorrhagic chronic hydrocephalus (PHCH) is a common complication after intraventricular hemorrhage (IVH). The mechanism of PHCH is not fully understood, and its treatment is relatively difficult. In the present study, a rat model of PHCH was used to elucidate the role of iron in the pathogenesis of PHCH. The action of deferoxamine (DFX) in IVH-induced PHCH, the expression of brain ferritin, the concentration of iron in cerebrospinal fluid (CSF), and changes in Wnt1/Wnt3a gene expression were determined. Results indicate that iron plays an important role in the occurrence of hydrocephalus after IVH. The iron chelator, DFX, can decrease the concentrations of iron and ferritin after cerebral hemorrhage and can thereby decrease the incidence of hydrocephalus. In addition, after IVH, the gene expression of Wnt1 and Wnt3a was enhanced, with protein expression also upregulated; DFX was able to suppress both gene and protein expression of Wnt1 and Wnt3a in brain tissue. This indicates that iron may be the key stimulus that activates the Wnt signaling pathway and regulates subarachnoid fibrosis after cerebral hemorrhage, and that DFX may be a candidate for preventing PHCH in patients with IVH.

  2. Strain difference of cadmium-induced testicular toxicity in inbred Wistar-Imamichi and Fischer 344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hideaki; Narumi, Rika [Kumamoto University, Faculty of Education, Kumamoto (Japan); Nagano, Masaaki; Yasutake, Akira [National Institute for Minamata Disease, Biochemistry Section, Kumamoto (Japan); Waalkes, Michael P. [National Cancer Institute at the National Institute of Environmental Health Sciences, Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, Research Triangle Park, NC (United States); Imamura, Yorishige [Kumamoto University, Graduate School of Pharmaceutical Sciences, Kumamoto (Japan)

    2009-07-15

    Previously, we reported that Wistar-Imamichi (WI) rats are highly resistant to cadmium (Cd)-induced lethality and hepatotoxicity compared to Fischer 344 (F344) rats. Since the testes are one of the most sensitive organs to acute Cd toxicity, we examined possible strain-related differences in Cd-induced testicular toxicity between inbred WI and F344 rats. Rats were treated with a single dose of 0.5, 1.0 or 2.0 mg Cd/kg, as CdCl{sub 2}, sc and killed 24 h later. Cd at doses of 1.0 and 2.0 mg/kg induced severe testicular hemorrhage, as assessed by pathological and testis hemoglobin content, in F344 rats, but not WI rats. After Cd treatment (2.0 mg/kg), the testicular Cd content was significantly lower in WI rats than in the F344 rats, indicating a toxiokinetic mechanism for the observed strain difference. Thus, the remarkable resistance to Cd-induced testicular toxicity in WI rats is associated, at least in part, with lower testicular accumulation of Cd. When zinc (Zn; 10 mg/kg, sc) was administered in combination with Cd (2.0 mg/kg) to F344 rats, the Cd-induced increase in testicular hemoglobin content, indicative of hemorrhage, was significantly reduced. Similarly, the testicular Cd content was significantly decreased with Zn co-treatment compared to Cd treatment alone. Thus, it can be concluded that the testicular Cd accumulation partly competes with Zn transport systems and that these systems may play an important role in the strain-related differences in Cd-induced testicular toxicity between WI and F344 rats. (orig.)

  3. Wnt gene loss in flatworms.

    Science.gov (United States)

    Riddiford, Nick; Olson, Peter D

    2011-10-01

    Wnt genes encode secreted glycoproteins that act in cell-cell signalling to regulate a wide array of developmental processes, ranging from cellular differentiation to axial patterning. Discovery that canonical Wnt/β-catenin signalling is responsible for regulating head/tail specification in planarian regeneration has recently highlighted their importance in flatworm (phylum Platyhelminthes) development, but examination of their roles in the complex development of the diverse parasitic groups has yet to be conducted. Here, we characterise Wnt genes in the model tapeworm Hymenolepis microstoma and mine genomic resources of free-living and parasitic species for the presence of Wnts and downstream signalling components. We identify orthologs through a combination of BLAST and phylogenetic analyses, showing that flatworms have a highly reduced and dispersed complement that includes orthologs of only five subfamilies (Wnt1, Wnt2, Wnt4, Wnt5 and Wnt11) and fewer paralogs in parasitic flatworms (5-6) than in planarians (9). All major signalling components are identified, including antagonists and receptors, and key binding domains are intact, indicating that the canonical (Wnt/β-catenin) and non-canonical (planar cell polarity and Wnt/Ca(2+)) pathways are functional. RNA-Seq data show expression of all Hymenolepis Wnts and most downstream components in adults and larvae with the notable exceptions of wnt1, expressed only in adults, and wnt2 expressed only in larvae. The distribution of Wnt subfamilies in animals corroborates the idea that the last common ancestor of the Cnidaria and Bilateria possessed all contemporary Wnts and highlights the extent of gene loss in flatworms.

  4. Metformin-mediated Bambi expression in Hepatic Stellate Cells induces pro-survival Wnt/β-catenin signaling

    OpenAIRE

    Subramaniam, Nanthakumar; Sherman, Mara H.; Rao, Renuka; Wilson, Caroline; Coulter, Sally; Atkins, Annette R.; Evans, Ronald M.; Liddle, Christopher; Downes, Michael

    2012-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues, such as muscle, liver and adipose tissue. Agents that activate AMPK, such as metformin and AICAR, have beneficial effects on liver glucose and lipid metabolism. Additionally, AMPK activation in proliferating hepatic stellate cells (HSCs) induces growth arrest and inhibits hepatic fibrosis. As metformin and AICAR act in different ways to achieve their ef...

  5. Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture.

    Science.gov (United States)

    Sakakura, Eriko; Eiraku, Mototsugu; Takata, Nozomu

    2016-08-01

    The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro.

  6. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation

    OpenAIRE

    Fu, Jiang; Jiang, Ming; Mirando, Anthony J.; Yu, Hsiao-Man Ivy; Hsu, Wei

    2009-01-01

    Members of the Wnt family are secreted glycoproteins that trigger cellular signals essential for proper development of organisms. Cellular signaling induced by Wnt proteins is involved in diverse developmental processes and human diseases. Previous studies have generated an enormous wealth of knowledge on the events in signal-receiving cells. However, relatively little is known about the making of Wnt in signal-producing cells. Here, we describe that Gpr177, the mouse orthologue of Drosophila...

  7. Expression of brain-derived neurotrophic factor (BDNF) is regulated by the Wnt signaling pathway

    OpenAIRE

    Yi, Hyun; Hu, Jianfei; Qian, Jiang; Hackam, Abigail S.

    2012-01-01

    BDNF is a well-characterized neurotrophin that mediates a wide variety of activities in the central nervous system (CNS), including neuronal differentiation, neuroprotection and synaptic plasticity. The canonical Wnt signaling pathway is a critical regulator of embryonic development and homeostasis in adult tissues. Our group and others recently demonstrated that Wnt signaling induces BDNF expression in neurons and glia. However, the precise relationship between BDNF and Wnt signaling pathway...

  8. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Diez Soraya

    2010-03-01

    Full Text Available Abstract Background Wnt-11 is a secreted protein that modulates cell growth, differentiation and morphogenesis during development. We previously reported that Wnt-11 expression is elevated in hormone-independent prostate cancer and that the progression of prostate cancer from androgen-dependent to androgen-independent proliferation correlates with a loss of mutual inhibition between Wnt-11- and androgen receptor-dependent signals. However, the prevalence of increased expression of Wnt-11 in patient tumours and the functions of Wnt-11 in prostate cancer cells were not known. Results Wnt-11 protein levels in prostate tumours were determined by immunohistochemical analysis of prostate tumour tissue arrays. Wnt-11 protein was elevated in 77/117 of tumours when compared with 27 benign prostatic hypertrophy specimens and was present in 4/4 bone metastases. In addition, there was a positive correlation between Wnt-11 expression and PSA levels above 10 ng/ml. Androgen-depleted LNCaP prostate cancer cells form neurites and express genes associated with neuroendocrine-like differentiation (NED, a feature of prostate tumours that have a poor prognosis. Since androgen-depletion increases expression of Wnt-11, we examined the role of Wnt-11 in NED. Ectopic expression of Wnt-11 induced expression of NSE and ASCL1, which are markers of NED, and this was prevented by inhibitors of cyclic AMP-dependent protein kinase, consistent with the known role of this kinase in NED. In contrast, Wnt-11 did not induce NSE expression in RWPE-1 cells, which are derived from benign prostate, suggesting that the role of Wnt-11 in NED is specific to prostate cancer. In addition, silencing of Wnt-11 expression in androgen-depleted LNCaP cells prevented NED and resulted in apoptosis. Silencing of Wnt-11 gene expression in androgen-independent PC3 cells also reduced expression of NSE and increased apoptosis. Finally, silencing of Wnt-11 reduced PC3 cell migration and ectopic

  9. Oral cadmium chloride intoxication in mice

    DEFF Research Database (Denmark)

    Andersen, O; Nielsen, J B; Svendsen, P

    1988-01-01

    Diethyldithiocarbamate (DDC) is known to alleviate acute toxicity due to injection of cadmium salts. However, when cadmium chloride was administered by the oral route, DDC enhanced rather than alleviated the acute toxicity; both oral and intraperitoneal (i.p.) administration of DDC had this effect....... Thus, orally administered DDC enhanced cadmium-induced duodenal and ileal tissue damage and inhibition of peristalsis, as indicated by an increased intestinal transit time. At low cadmium doses, the whole-body retention of cadmium was increased by oral DDC administration. Intraperitoneally administered...

  10. Ameliorative effects of Rosmarinus officinalis leaf extract and Vitamin C on cadmium-induced oxidative stress in Nile tilapia Oreochromis niloticus.

    Science.gov (United States)

    Al-Anazi, Marim Saleh; Virk, Promy; Elobeid, Mai; Siddiqui, Muzammil Iqbal

    2015-11-01

    The present studywas undertaken to assess the bioaccumulation potential of cadmium in liver, kidney, gills and muscles of freshwater fish, Nile tilapia Oreochromis niloticus and the changes in oxidative stress indices in liver and kidney with or without simultaneous treatment with waterborne vitamin C and rosemary leaf extract. Adult tilapia were divided into seven groups. Six groups were exposed to sublethal concentrations of Cd, three groups to 5 ppm, while other three to 10 ppm. Two groups from each of the Cd exposed groups were treated with Vitamin C (5ppm) and rosemary leaf extract (2.5 ppm) for a period of 21 days. Cadmium concentration in liver, kidneys and gills was significantly higher in the cadmium exposed groups being invariably high in the groups exposed to 10 ppm CdCl2.H2O.Treatment with Vitamin C and rosemary leaf extract significantly reduced cadmium concentration in comparison to non-treated Cd exposed groups. Treatment with Vitamin C and rosemary leaf extract significantly reduced oxidative stress in Cd exposed fish as evidenced from lower concentration of lipid peroxides and reduced activity of catalase and higher activity of superoxide dismutase in liver and kidney as compared to control fish. Reduction in Cd induced oxidative stress and bioaccumulation was comparable between the two antioxidant treatments, Vitamin C and rosemary leaf extract. The key findings suggest that both the antioxidants used showed ameliorative potential to reduce tissue accumulation of Cd and associated oxidative stress in fresh water fish, Nile tilapia.

  11. Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-04-01

    Full Text Available Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd. The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium but were well expressed in the presence of iron (+Fe/+Cd. Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  12. Cadmium toxicity induced alterations in the root proteome of green gram in contrasting response towards iron supplement.

    Science.gov (United States)

    Muneer, Sowbiya; Hakeem, Khalid Rehman; Mohamed, Rozi; Lee, Jeong Hyun

    2014-04-15

    Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd). The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium but were well expressed in the presence of iron (+Fe/+Cd). Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  13. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  14. Biochemical characterization of N-methyl N' -nitro-N-nitrosoguanidine-induced cadmium resistant mutants of Aspergillus niger

    Indian Academy of Sciences (India)

    Samar Kumar Pal; Tapan Kumar Das

    2005-12-01

    Two cadmium resistant mutants (Cd1 and Cd2) of Aspergillus niger, among the six isolated by mutagenization with N-methyl N′-nitro-N-nitrosoguanidine (MNNG) at pH 6.4 were selected for the study. Analysis of lipid composition of the mutants and the wildtype indicated that total lipid as well as individual lipids of the cadmium resistant mutants were changed as compared with that of the wildtype. The increased activities of metal-lothionein and reduced activities of D-xylose isomerase and L-phenylalanine ammonia lyase in cell free extract of the cadmium resistant mutants suggested that mutants could allow high concentration of cadmium salt as compared with that of the wildtype. The respiratory activity and intracellular as well as extracellular Cd2+ concentration of the mutants reflected the high tolerance of the Cd mutants to cadmium ion.

  15. Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity.

    Science.gov (United States)

    El-Mansy, A A; Mazroa, S A; Hamed, W S; Yaseen, A H; El-Mohandes, E A

    2016-01-01

    The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.

  16. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    Science.gov (United States)

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages.

  17. Hydrogen Sulfide Alleviates Cadmium-Induced Cell Death through Restraining ROS Accumulation in Roots of Brassica rapa L. ssp. pekinensis

    Science.gov (United States)

    2015-01-01

    Hydrogen sulfide (H2S) is a cell signal molecule produced endogenously and involved in regulation of tolerance to biotic and abiotic stress in plants. In this work, we used molecular biology, physiology, and histochemical methods to investigate the effects of H2S on cadmium- (Cd-) induced cell death in Chinese cabbage roots. Cd stress stimulated a rapid increase of endogenous H2S in roots. Additionally, root length was closely related to the cell death rate. Pretreatment with sodium hydrosulfide (NaHS), a H2S donor, alleviated the growth inhibition caused by Cd in roots—this effect was more pronounced at 5 μM NaHS. Cd-induced cell death in roots was significantly reduced by 5 μM NaHS treatment. Under Cd stress, activities of the antioxidant enzymes were significantly enhanced in roots. NaHS + Cd treatment made their activities increase further compared with Cd exposure alone. Enhanced antioxidant enzyme activity led to a decline in reactive oxygen species accumulation and lipid peroxidation. In contrast, these effects were reversed by hydroxylamine, a H2S inhibitor. These results suggested that H2S alleviated the cell death caused by Cd via upregulation of antioxidant enzyme activities to remove excessive reactive oxygen species and reduce cell oxidative damage. PMID:26078819

  18. Hydrogen Sulfide Alleviates Cadmium-Induced Cell Death through Restraining ROS Accumulation in Roots of Brassica rapa L. ssp. pekinensis

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2015-01-01

    Full Text Available Hydrogen sulfide (H2S is a cell signal molecule produced endogenously and involved in regulation of tolerance to biotic and abiotic stress in plants. In this work, we used molecular biology, physiology, and histochemical methods to investigate the effects of H2S on cadmium- (Cd- induced cell death in Chinese cabbage roots. Cd stress stimulated a rapid increase of endogenous H2S in roots. Additionally, root length was closely related to the cell death rate. Pretreatment with sodium hydrosulfide (NaHS, a H2S donor, alleviated the growth inhibition caused by Cd in roots—this effect was more pronounced at 5 μM NaHS. Cd-induced cell death in roots was significantly reduced by 5 μM NaHS treatment. Under Cd stress, activities of the antioxidant enzymes were significantly enhanced in roots. NaHS + Cd treatment made their activities increase further compared with Cd exposure alone. Enhanced antioxidant enzyme activity led to a decline in reactive oxygen species accumulation and lipid peroxidation. In contrast, these effects were reversed by hydroxylamine, a H2S inhibitor. These results suggested that H2S alleviated the cell death caused by Cd via upregulation of antioxidant enzyme activities to remove excessive reactive oxygen species and reduce cell oxidative damage.

  19. Onion and garlic extracts as potential antidotes for cadmium-induced biochemical alterations in prostate glands of rats.

    Science.gov (United States)

    Ola-Mudathir, F K; Suru, S M

    2015-11-01

    Cadmium (Cd) has been implicated in increased prostate gland malignancy risk in both wildlife and humans. This study examines the chemoprotective roles of onion and garlic extracts on Cd-induced biochemical alterations in the prostate glands of rats. Adult male Wistar rats were randomly divided into nine groups: control group received double distilled water; Cd group received Cd alone (1.5 mg/100 g bwt per day); extract-treated groups were pre-treated with varied doses of onion and/or garlic extract (0.5 ml and 1.0 ml/100 g bwt per day) for 1 week and then co-treated with Cd (1.5 mg/100 g bwt per day) for additional 3 weeks. Oxidant/antioxidant status and acid phosphatase (ACPtotal and ACPprostatic ) activity were examined in prostate glands. Cd intoxication caused a marked (P garlic extract significantly minimised these alterations. The onion extract offered a dose-dependent protection. Our findings suggest a chemoprotective capability for onion and garlic extracts against Cd-induced biochemical alteration in the prostate glands.

  20. PORCN moonlights in a Wnt-independent pathway that regulates cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Tracy M Covey

    Full Text Available Porcupine (PORCN is a membrane-bound O-acyl transferase that is required for the palmitoylation of Wnt proteins, and that is essential in diverse Wnt pathways for Wnt-Wntless (WLS binding, Wnt secretion, and Wnt signaling activity. We tested if PORCN was required for the proliferation of transformed cells. Knockdown of PORCN by multiple independent siRNAs results in a cell growth defect in a subset of epithelial cancer cell lines. The growth defect is transformation-dependent in human mammary epithelial (HMEC cells. Additionally, inducible PORCN knockdown by two independent shRNAs markedly reduces the growth of established MDA-MB-231 cancers in orthotopic xenografts in immunodeficient mice. Unexpectedly, the proliferation defect resulting from loss of PORCN occurs in a Wnt-independent manner, as it is rescued by re-expression of catalytically inactive PORCN, and is not seen after RNAi-mediated knockdown of the Wnt carrier protein WLS, nor after treatment with the PORCN inhibitor IWP. Consistent with a role in a Wnt-independent pathway, knockdown of PORCN regulates a distinct set of genes that are not altered by other inhibitors of Wnt signaling. PORCN protein thus appears to moonlight in a novel signaling pathway that is rate-limiting for cancer cell growth and tumorigenesis independent of its enzymatic function in Wnt biosynthesis and secretion.

  1. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  2. Analysis of metal profile in soybean after cadmium-induced oxidative damage

    Institute of Scientific and Technical Information of China (English)

    Emiliano Felici; Cesar Almeida; Martin Fernndez Baldo; Luis D Martnez; Fanny Zirulnik; Mara R Gomez

    2014-01-01

    Objective: To analyze the effect of cadmium (Cd) on soybean seedlings growth and the relationship with the distribution and concentration of macro-microelements. Methods: The ions concentrations were determined by ICP-MS. The extraction efficiency and digestion time were optimized. Also, oxidative stress parameters were determined and related with metal content. Results:The accumulated amount of dry matter in roots and leaves was lower in the Cd-treated group. Regression analysis showed that the exposure to Cd affected the accumulated amount of dry matter as well as the content of mineral elements in the analysis samples. In Cd treated plants, electrical conductivity increased respect to the controls, indicating that ionic permeability became altered. A strong inhibition of the chlorophylls (chl) biosynthesis in the Cd-treated group was also demonstrated by a decrease of chla and chlb concentration. This result was related with the observed significant decrease in the Mg uptake at the roots and leaves level. Conclusions: The stress caused by Cd exposure, evidenced by significantly high hydrogen peroxide levels in roots and leaves after 24 h and the content of specific macro-microelements is a factor that affects the accumulation of dry matter, electrical conductivity and chlorophylls concentration.

  3. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems.

  4. Histopathological changes in the head kidney induced by cadmium in a neotropical fish Colossoma macropomum

    Directory of Open Access Journals (Sweden)

    R. Salazar-Lugo

    2013-12-01

    Full Text Available We evaluated the effect of cadmium (Cd on the structure and function of the head kidney in the freshwater fish Colossoma macropomum (C. macropomum. Juveniles were exposed to 0.1 mg/L CdCl2 for 31 days. Blood samples were examined using hematological tests and head kidney histology was determined by light microscopy. The concentration of Cd in the head and trunk kidneys was measured using an atomic absorption spectrophotometer. Cd produced histopathological changes in the head kidney, the most evident of these being: the thickening of the vein wall, an increase in the number of basophils/mast cells close to blood vessels and a severe depletion of hematopoietic precursors especially the granulopoietic series. In the blood, a decrease in the total leucocytes and hemoglobin concentration was observed. Cd-exposed fish showed higher Cd concentrations in the trunk kidney than the head kidney. In conclusion, exposure to Cd affected precursor hematopoietic cells in C. macropomum.

  5. Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera).

    Science.gov (United States)

    Polykretis, P; Delfino, G; Petrocelli, I; Cervo, R; Tanteri, G; Montori, G; Perito, B; Branca, J J V; Morucci, G; Gulisano, M

    2016-11-01

    In the last decades a dramatic loss of Apis mellifera hives has been reported in both Europe and USA. Research in this field is oriented towards identifying a synergy of contributing factors, i.e. pathogens, pesticides, habitat loss and pollution to the weakening of the hive. Cadmium (Cd) is a hazardous anthropogenic pollutant whose effects are proving to be increasingly lethal. Among the multiple damages related to Cd contamination, some studies report that it causes immunosuppression in various animal species. The aim of this paper is to determine whether contamination by Cd, may have a similar effect on the honey bees' immunocompetence. Our results, obtained by immune challenge experiments and confirmed by structural and ultrastructural observations show that such metal causes a reduction in immunocompetence in 3 days Cd exposed bees. As further evidence of honey bee response to Cd treatment, Energy Dispersive X-ray Spectroscopy (X-EDS) has revealed the presence of zinc (Zn) in peculiar electron-dense granules in fat body cells. Zn is a characteristic component of metallothioneins (MTs), which are usually synthesized as anti-oxidant and scavenger tools against Cd contamination. Our findings suggest that honey bee colonies may have a weakened immune system in Cd polluted areas, resulting in a decreased ability in dealing with pathogens.

  6. Cadmium induces mitogenic signaling in breast cancer cell by an ERalpha-dependent mechanism.

    Science.gov (United States)

    Brama, Marina; Gnessi, Lucio; Basciani, Sabrina; Cerulli, Nicola; Politi, Laura; Spera, Giovanni; Mariani, Stefania; Cherubini, Sara; Scotto d'Abusco, Anna; Scandurra, Roberto; Migliaccio, Silvia

    2007-01-29

    Breast cancer (BC) is linked to estrogen exposure. Estradiol (E2) stimulates BC cells proliferation by binding the estrogen receptor (ER). Hormone-related cancers have been linked to estrogenic environmental contaminants. Cadmium (Cd) a toxic pollutant, acts as estrogens in BC cells. Purpose of our study was to evaluate whether Cd regulates MCF-7 cell proliferation by activating ERK1/2, Akt and PDGFRalpha kinases. Cd increased cell proliferation and the ER-antagonist ICI 182,780 blunted it. To characterize an ER-dependent mechanism, ERalpha/beta expression was evaluated. Cd decreased ERalpha expression, but not ERbeta. Cd also increased ERK1/2, Akt and PDGFRalpha phosphorylation while ICI blocked it. Since stimulation of phosphorylation was slower than expected, c-fos and c-jun proto-oncogenes, and PDGFA were analyzed. Cd rapidly increased c-jun, c-fos and PDGFA expression. Cells were also co-incubated with the Cd and specific kinases inhibitors, which blocked the Cd-stimulated proliferation. In conclusion, our results indicate that Cd increases BC cell proliferation in vitro by stimulating Akt, ERK1/2 and PDGFRalpha kinases activity likely by activating c-fos, c-jun and PDGFA by an ERalpha-dependent mechanism.

  7. Cadmium-induced accumulation of metallothionein messenger RNA in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, S.; Cardenosa, G.; Pine, R.; Huang, P.C.

    1981-03-10

    Multiple injections of nontoxic levels of cadmium to a rat result in much higher level of metallothionein (MT) production in the liver than does the single injection. In order to understand the underlying mechanisms we have quantitated and compared the metallothionein-specific messenger RNA contents in the livers following the two induction regimens. Cell-free translation assays coupled with specific immunoprecipitation of MT revealed that MT-mRNA activity in livers of animals multiply injected with Cd is 7- to 10-fold higher than that in livers 4 h after a single Cd-induction. By oligo(dT)-cellulose chromatography, sucrose density gradient centrifugation, and methylmercuric hydroxide-agarose gel electrophoresis this mRNA has been enriched approximately 100-fold from the total RNA. The size of the mRNA is about 400 nucleotides. Hybridization assays with a complementary DNA probe synthesized against the enriched MT-mRNA showed a 4-fold difference in the level of MT-mRNA between the two induction regimens in agreement with the results obtained by the cell-free translation assays. The possible mechanisms for these observations in consideration of the short lived nature of MT-mRNA are discussed.

  8. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures.

    Science.gov (United States)

    Lopes Júnior, Cícero Alves; Barbosa, Herbert de Sousa; Moretto Galazzi, Rodrigo; Ferreira Koolen, Hector Henrique; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2015-09-01

    The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characterized using nESI-LC-MS/MS. The protein content decreases by approximately 41% in plants treated with 700mg Cd compared with control plants. By comparing all groups of plants evaluated in this study (Control vs. Cd-lower, Control vs. Cd-higher and Cd-lower vs. Cd-higher), 39 proteins are found differential and 18 accurately identified; the control vs. Cd-higher treatment is that presenting the most differential proteins. From identified proteins, those involved in energy and disease/defense (including stress), are the ribulose bisphosphate carboxylase large chain, transketolase, and heat shock proteins are the most differential abundant proteins. Thus, at the present study, photosynthesis is the main process affected by Cd in sunflowers, although these plants are highly tolerant to Cd.

  9. 34. Effect and the Possible Mediated Pathway of Cortisol Secretion in Adrenocortical Cells Induced by Lead and Cadmium in Vitro

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To understand the direct effect on the secretion of adreno-cortical cells induced by lead and cadmium and the possible mediated pathway. Methods: The adrenocortical cells of male guinea pigs were dispersed and primarily cultured, then the cells were incubated wich cadmiun chloride and lead acetate in dosage as 0,6.25, 12.5, 25, 50, 100 μmol/L respectively for different periods (30, 60, 120 and 240 minutes). The cortisol levels in culture medium and cellular cAMP concentration were measured with RIA. Results: Under the existence of ACTH, the levels of cortisol secreted from the cultured cells were showed significantly declined in dose-dependent manner when the cells were treated in 6.25-100μmol/L CdCl2 for 30 to 240 minutes. There would be an interaction for cortisol secretion between the dose of CdCl2 and the incubatal period. Nevertheless, it seemed to have no obvious linear relation in the alterations of cortisol secretion after 12.5~100μmol/L PbAc incubated for 30~240 minutes. It appeared to have a tendency of dual-phase response in a manner of inhibiting the cortisol secretion in low dose (lower than 25μmol/L) and stimulating the secretion function in high dose (50 and 100μmol/L). The cAMP level was presented a remarkably decrease after 6.25~100 μmol/L CdCl2 incubated with the cells. It was proved that the cAMP level had does-effect relations with the CdCl2 dose. PbAc appeared not only dual response with the tendency of cAMP inhibition in low dose and activating to raise in high dose but also dose-effect relationship. Conclusion: CdCl2 could directly inhibit the secretion of cortisol. PbAc is also of the toxic effect on the cortisol secretion with the characteristic of dual-response as inhibition in early phase and low dose while induction to raising in high dose. cAMP, as an important second messenger, play a role in synthesis and secretion of adrenocorticoids. The toxic effects on steroids secretion induced by cadmium and lead were

  10. Effects of Wnt/β-catenin on repetitive/stereotypic-like movements in an autistic model induced by prenatal exposure to valproic acid%Wnt/β-catenin信号通路对孤独症模型大鼠重复呆板样行为的影响

    Institute of Scientific and Technical Information of China (English)

    张应花; 贾云杰; 张天然; 崔卫刚; 王中平; 小军

    2015-01-01

    Objective To investigate the effects of Wnt/β-catenin on repetitive/stereotypic-like movements in autism. Methods With an autistic model induced by prenatal exposure to valproic acid (VPA), we detected the expression of GSK-3β, β-catenin, the signaling molecules of the canonical Wnt pathway in the cerebellum of autistic rats. The expression levels of GSK-3β, phosphorylated GSK-3β, β-catenin, phosphorylated β-catenin were observed by Western blotting. The number of repetitive/stereotypic-like behaviors and time engaged in repetitive/stereotypic-like movements were observed by open field. Results The phospholated protein levels of GSK-3βwere higher, whereas those ofβ-catenin were lower in VPA-exposed group than those in the control group. In contrast, the number of repetitive/stereotypic-like behaviors and time engaged in repetitive/stereotypic-like movements were significantly higher in the animals treated with VPA than those in the control group. Conclusion Hyperkinetics and increased activity of the canonical Wnt pathway in cerebellum of autistic rats suggest that increased activity of the canonical Wnt pathway may result in repetitive/stereotypic-like mobility disorders and further contribute to the susceptibility to autism.%目的:探讨Wnt/β-catenin信号通路对孤独症发生过程中重复呆板样行为的影响。方法利用丙戊酸(valproic acid,VPA)孤独症动物模型,检测了经典Wnt信号通路关键信号分子β-catenin及其负性调节因子GSK-3β在孤独症模型大鼠小脑脑区的表达变化;同时检测孤独症模型大鼠重复呆板样行为变化。Western blotting法检测GSK-3β、β-catenin总蛋白及磷酸化蛋白表达,运用旷场实验检测重复呆板样行为持续的时间、次数。结果与对照组相比,在小脑脑区模型组GSK-3β磷酸化蛋白表达增加,β-catenin磷酸化蛋白表达减少;重复呆板样行为持续的时间、次数均增加。结论孤独症大鼠小脑

  11. In vitro studies on mangiferin protection against cadmium-induced human renal endothelial damage and cell death via the MAP kinase and NF-κB pathways.

    Science.gov (United States)

    Rajendran, Peramaiyan; Rengarajan, Thamaraiselvan; Nishigaki, Yutaka; Palaniswami, Rajendran; Nishigaki, Ikuo

    2016-01-01

    The therapeutic effects of the natural antioxidant mangiferin (a xanthonoid and potent oxygen free radical scavenger), which is widely distributed in mango fruit, against CdCl(2)-induced toxicity in human renal glomerulus endothelial cells (HRGEC) were investigated. The viability of HREGCs that were treated with CdCl(2) (25 µ mol) and co-treated with mangiferin (75 µ mol) for 24 h was measured by crystal violet dye. The exposure of human glomerulus renal endothelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal proinflammatory cytokines known to play a significant role in renal inflammation. Proinflammatory cytokine secretion by human renal glomerulus endothelial cells could be the result of cadmium-induced IL-6 secretion via an NF-κB-dependent pathway. However, IL-8 secretion involves the phosphor-JNK phospho-p38 signaling pathway. The results of the current study reveal that mangiferin could prevent both cadmium-induced IL-6 and IL-8 secretion by human glomerulus endothelial cells and be used to prevent renal inflammation.

  12. Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development.

    Science.gov (United States)

    Sinha, Tanvi; Lin, Lizhu; Li, Ding; Davis, Jennifer; Evans, Sylvia; Wynshaw-Boris, Anthony; Wang, Jianbo

    2015-02-15

    Planar cell polarity (PCP) signaling is an evolutionarily conserved mechanism that coordinates polarized cell behavior to regulate tissue morphogenesis during vertebrate gastrulation, neurulation and organogenesis. In Xenopus and zebrafish, PCP signaling is activated by non-canonical Wnts such as Wnt11, and detailed understanding of Wnt11 expression has provided important clues on when, where and how PCP may be activated to regulate tissue morphogenesis. To explore the role of Wnt11 in mammalian development, we established a Wnt11 expression and lineage map with high spatial and temporal resolution by creating and analyzing a tamoxifen-inducible Wnt11-CreER BAC (bacterial artificial chromosome) transgenic mouse line. Our short- and long-term lineage tracing experiments indicated that Wnt11-CreER could faithfully recapitulate endogenous Wnt11 expression, and revealed for the first time that cells transiently expressing Wnt11 at early gastrulation were fated to become specifically the progenitors of the entire endoderm. During mid-gastrulation, Wnt11-CreER expressing cells also contribute extensively to the endothelium in both embryonic and extraembryonic compartments, and the endocardium in all chambers of the developing heart. In contrast, Wnt11-CreER expression in the myocardium starts from late-gastrulation, and occurs in three transient, sequential waves: first in the precursors of the left ventricular (LV) myocardium from E7.0 to 8.0; subsequently in the right ventricular (RV) myocardium from E8.0 to 9.0; and finally in the superior wall of the outflow tract (OFT) myocardium from E8.5 to 10.5. These results provide formal genetic proof that the majority of the endocardium and myocardium diverge by mid-gastrulation in the mouse, and suggest a tight spatial and temporal control of Wnt11 expression in the myocardial lineage to coordinate with myocardial differentiation in the first and second heart field progenitors to form the LV, RV and OFT. The insights gained

  13. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available BACKGROUND: Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells. METHODS: MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting. RESULTS: HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels. CONCLUSION: These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1

  14. Antioxidants, cadmium-induced toxicity, serum biochemical and the histological abnormalities of the kidney and testes of the male Wistar rats.

    Science.gov (United States)

    Obianime, A W; Roberts, I I

    2009-12-01

    The effect of different doses of cadmium [CD] on some biochemical, hormonal and histopathological parameters of the liver, kidney and testes of the Wistar rate were investigated. Cadmium in the dose range 0-40 mg/kg while causing a time-and dose-dependent decrease of the basal serum levels of alkaline phosphatase [ALP] also caused a dose-dependent increase in the serum concentration of the acid and prostatic acid phosphatases. The value of the ALP changed from 148.7+/-1.0 IU/L in the control to 53.7+/-0.098 at 40 mg/kg of cadmium. While the ACP and ACPT changed from 32.6+/-0.72 and 7 Units in the control to 54 and 17 units respectively at 40 mg/kg of CD. Furthermore cadmium also caused positively correlated dose-and time-dependent destruction of the histology of the liver, kidney and testes. These were characterized by vascular congestion, vacuolation, destruction of the seminal epithelial layers, focal necrosis of nucleus, oedema of the seminal epithelia layers, focal necrosis of nucleus, oedema of the seminiferous tubules and reduction of spermatogenesis. CD also caused granular and eosinophilic cytoplasm, enlargement of sinusoids with kupffer cells, haemorrhage and apoptosis of cells. Finally pre-treatment with vitamin C [0.0015/kg], vitamin E [1.51/g] and selenium [0.25 mg] which on their own had little or no effects on the serum basal phosphatases, hormonal and histological stability caused a reversal of the cadmium-induced biochemical, hormonal and histological toxicities of the liver, kidney and testes. These results may be explained by the oxidational/antioxidational properties of these xenobiotics and their mechanisms of actions.

  15. Insulin Expression in Rats Exposed to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives To investigate the effects of cadmium exposure on insulin expression in rats. Methods Eighteen adult SD assessed. The levels of cadmium and zinc in pancreas, blood and urine glucose, serum insulin and urine NAG (N-acyetyl-β-glucosaminidase) were determined. The gene expressions of metallothionein (MT) and insulin were also measured,and the oral glucose tolerance tests (OGTT) were carried out. Results The contents of cadmium in pancreas in cadmium-treated rats were higher than that in the control group, which was associated with slight increase of zinc in pancreas.not change significantly after cadmium administration, and the UNAG had no change in Cd-treated group. The gene expression the change of the expression of insulin, MT-Ⅰ and MT-Ⅱ genes. Cadmium can influence the biosynthesis of insulin, but does not induce the release of insulin. The dysfunction of pancreas occurs earlier than that of kidney after administration of cadmium.

  16. Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline

    Energy Technology Data Exchange (ETDEWEB)

    Dhir, Bhupinder; Sharmila, P.; Saradhi, P. Pardha

    2004-02-10

    Investigations were carried out to evaluate if hydrophytes (viz. Ceratophyllum, Wolffia, and Hydrilla) can be used as markers to assess the level of heavy metal pollution in aquatic bodies. The potential of these hydrophytes for lipid peroxidation and accumulation of proline in response to cadmium (Cd{sup 2+}) pollution was studied. Hydrophytes were raised in artificial pond water (APW) supplemented with various levels of Cd{sup 2+}. Interestingly, unlike mesophytes none of the hydrophytes showed ability to accumulate proline. Infact, in response to Cd{sup 2+} pollution hydrophytes exhibited a decline in proline levels in comparison to controls but mesophytes (viz. Brassica juncea, Vigna radiata and Triticum aestivum) showed progressive increase in the level of proline with increase in the extent of Cd{sup 2+} pollution. Mesophytes showed six to nine-fold increase in the level of proline in response to 1 mM Cd{sup 2+}. The potential of the above hydrophytes for lipid peroxidation was also low under Cd{sup 2+} stress. In contrast, as expected a significant enhancement in the lipid peroxidation was observed in all three mesophytes in response to their exposure to Cd{sup 2+}. About two-fold increase in production of malondialdehyde (a cytotoxic product of lipid peroxidation) was recorded in mesophytes exposed to 1 mM Cd{sup 2+}. However, a decline in chlorophyll (Chl a and Chl b) levels was recorded in response to Cd{sup 2+}pollution both in hydrophytes as well as mesophytes. In summary, hydrophytes neither have potential to accumulate proline nor have ability to accelerate lipid peroxidation under heavy metal stress. This suggests that the adaptive mechanism(s) existing in hydrophytes to tackle heavy metal stress is distinct from that in mesophytes.

  17. Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings

    Institute of Scientific and Technical Information of China (English)

    Long Zhang; Zhen Chen; Cheng Zhu

    2012-01-01

    The effect of calcium chloride (CaCl2) on rice seedling growth under cadmium chloride (CdCl2) stress,as well as the possible role of endogenous nitric oxide (NO) in this process,was studied.The growth of rice seedlings was seriously inhibited by CdCl2,and the inhibition was significantly mitigated by CaCl2.However,hemoglobin (Hb) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline1-oxyl-3-oxide (cPTIO) weakened the promotion effect of CaCl2.The resuhs of NO fluorescence localization suggest that growth accelerated by CaCl2 might be associated with elevated NO levels.The content of Cd,protein thiols (PBT),and nonprotein thiols (NPT) in cell walls,cell organelles,and soluble fractions,respectively,of rice seedlings decreased considerably in the presence of CaCl2,whereas the content of pectin,hemicellulose 1 (HC1),and hemicellulose 2 (HC2) increased significantly.Elimination of endogenous NO in Cd+Ca treatment could promote the transportation of Cd2+ to cell organelles and soluble fractions and increase the content of NPT and PBT in leaves.In addition,transportation of Cd2+ to cell organelles and soluble fractions was retarded in roots,the content of NPT increased,and the content of PBT decreased.With elimination of endogenous NO in Cd+Ca treatment,the content of pectin,HC 1,and HC2 decreased significantly.Thus,Ca may alleviate Cd toxicity via endogenous NO with variation in the levels of NPT,PBT,and matrix polysaccharides.

  18. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide–copper sulfide heterostructured nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haimei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sadtler, Bryce; Habenicht, Carsten [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Freitag, Bert [FEI Company, P.O. Box 80066, KA 5600 Eindhoven (Netherlands); Alivisatos, A. Paul [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Kisielowski, Christian, E-mail: CFKisielowski@lbl.gov [National Center for Electron Microcopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Joint Center for Artificial Photosynthesis, Berkeley, CA 94720 (United States)

    2013-11-15

    The atomic structure and interfaces of CdS/Cu{sub 2}S heterostructured nanorods are investigated with the aberration-corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in-line holography and complementary techniques. Cu{sub 2}S exhibits a low-chalcocite structure in pristine CdS/Cu{sub 2}S nanorods. Under electron beam irradiation the Cu{sub 2}S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time-resolved experiments reveal that Cu{sup +}–Cd{sup 2+} cation exchange at the CdS/Cu{sub 2}S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sub-lattice. A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper–cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu{sub 2}S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3–10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu{sub 2}S thin film solar cells with an activation energy of 0.96 eV. - Highlights: • Heterostructured nanorods were investigated at atomic resolution showing that they are free of extended defects. • Beam–sample interactions are controlled by current and voltage variations to provide pristine crystal structures. • Beam-induced migration of heterointerfaces are measured time-resolved and compared with Cu diffusion coefficients. • Beam–sample interaction overwrite possible signal improvements that can be expected by sample cooling.

  19. Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension

    Science.gov (United States)

    Ye, Zhongde; Zhang, Chunxia; Tu, Tao; Sun, Min; Liu, Dan; Lu, Di; Feng, Jing; Yang, Dongling; Liu, Feng; Yan, Xiyun

    2013-12-01

    Dysregulation of Wnt signalling leads to developmental defects and diseases. Non-canonical Wnt signalling via planar cell polarity proteins regulates cell migration and convergent extension; however, the underlying mechanisms are poorly understood. Here we report that Wnt5a uses CD146 as a receptor to regulate cell migration and zebrafish embryonic convergent extension. CD146 binds to Wnt5a with the high affinity required for Wnt5a-induced activation of Dishevelled (Dvl) and c-jun amino-terminal kinase (JNK). The interaction between CD146 and Dvl2 is enhanced on Wnt5a treatment. Mutation of the Dvl2-binding region impairs its ability to activate JNK, promote cell migration and facilitate the formation of cell protrusions. Knockdown of Dvls impairs CD146-induced cell migration. Interestingly, CD146 inhibits canonical Wnt signalling by promoting β-catenin degradation. Our results suggest a model in which CD146 acts as a functional Wnt5a receptor in regulating cell migration and convergent extension, turning off the canonical Wnt signalling branch.

  20. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  1. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2016-01-01

    Full Text Available Pulsed electromagnetic field (PEMF has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP, but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation.

  2. Wnt signaling pathway: implications for therapy in lung cancer and bone metastasis.

    Science.gov (United States)

    Xi, Yongming; Chen, Yan

    2014-10-10

    Lung cancer remains a major worldwide health problem and patients have high rate of metastasis including bone. Although pathologic characteristics of this disease are clear and well established, much remains to be understood about this tumor, particularly at the molecular signaling level. Secreted signaling molecules of the Wnt family have been widely investigated and found to play a prominent role to induce human malignant diseases, such as breast and prostate cancer. A variety of studies have also demonstrated that the Wnt signaling pathway is closely associated with bone malignancies including osteosarcoma, multiple myeloma, and breast or prostate cancer induced bone metastasis. The aim of this review is to provide a summary regarding the role of the Wnt signaling pathway in lung cancer and bone metastasis, highlighting the aberrant activation of Wnt in this malignancy. We also discuss the potential therapeutic applications for the treatment of lung cancer and cancer induced bone metastasis targeting the Wnt pathway.

  3. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation.

    Science.gov (United States)

    Kumar, Manoj; Bijo, A J; Baghel, Ravi S; Reddy, C R K; Jha, Bhavanath

    2012-02-01

    The protective role of exogenously supplied selenium (Se) and polyamines (PAs) such as putrescine (Put) and spermine (Spm) in detoxifying the cadmium (Cd) induced toxicity was studied in the marine red alga Gracilaria dura in laboratory conditions. The Cd exposure (0.4 mM) impede the growth of alga while triggering the reactive oxygen species (ROS viz. O(2)(•-) and H(2)O(2)) generation, inhibition of antioxidant system, and enhancing the lipoxygenase (LOX) activity, malondialdehyde (MDA) level and demethylation of DNA. Additions of Se (50 μM) and/or Spm (1 mM) to the culture medium in contrast to Put, efficiently ameliorated the Cd toxicity by decreasing the accumulation of ROS and MDA contents, while restoring or enhancing the level of enzymatic and nonenzymatic antioxidants and their redox ratio, phycobiliproteins and phytochelatins, over the controls. The isoforms of antioxidant enzymes namely superoxide dismutase (Mn-SOD, ~150 kDa; Fe-SOD ~120 kDa), glutathione peroxidase (GSH-Px, ~120 and 140 kDa), glutathione reductase (GR, ~110 kDa) regulated differentially to Se and/or Spm supplementation. Furthermore, it has also resulted in enhanced levels of endogenous PAs (specially free and bound insoluble Put and Spm) and n-6 PUFAs (C20-3, n-6 and C20-4, n-6). This is for the first time wherein Se and Spm were found to regulate the stabilization of DNA methylation by reducing the events of cytosine demethylation in a mechanism to alleviate the Cd stress in marine alga. The present findings reveal that both Se and Spm play a crucial role in controlling the Cd induced oxidative stress in G. dura.

  4. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  5. Inhibition of Wnt/β-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8.

    Directory of Open Access Journals (Sweden)

    Ismaïl Hendaoui

    Full Text Available The Wnt/β-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/β-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs, which have a cysteine-rich domain (CRD structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18 inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/β-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/β-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced β-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth.

  6. Selective modulation of Wnt ligands and their receptors in adipose tissue by chronic hyperadiponectinemia.

    Directory of Open Access Journals (Sweden)

    Nobuhiko Wada

    Full Text Available BACKGROUND: Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue. MATERIALS AND METHODS: We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells. RESULTS: The Wnt5b, Wnt6, Frizzled 6 (Fzd6, and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6 were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII and phosphorylated Jun N-terminal kinase (p-JNK were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin. CONCLUSION: Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors

  7. Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane.

    Science.gov (United States)

    Witzel, Sabine; Zimyanin, Vitaly; Carreira-Barbosa, Filipa; Tada, Masazumi; Heisenberg, Carl-Philipp

    2006-12-04

    Wnt11 is a key signal, determining cell polarization and migration during vertebrate gastrulation. It is known that Wnt11 functionally interacts with several signaling components, the homologues of which control planar cell polarity in Drosophila melanogaster. Although in D. melanogaster these components are thought to polarize cells by asymmetrically localizing at the plasma membrane, it is not yet clear whether their subcellular localization plays a similarly important role in vertebrates. We show that in zebrafish embryonic cells, Wnt11 locally functions at the plasma membrane by accumulating its receptor, Frizzled 7, on adjacent sites of cell contacts. Wnt11-induced Frizzled 7 accumulations recruit the intracellular Wnt signaling mediator Dishevelled, as well as Wnt11 itself, and locally increase cell contact persistence. This increase in cell contact persistence is mediated by the local interaction of Wnt11, Frizzled 7, and the atypical cadherin Flamingo at the plasma membrane, and it does not require the activity of further downstream effectors of Wnt11 signaling, such as RhoA and Rok2. We propose that Wnt11, by interacting with Frizzled 7 and Flamingo, modulates local cell contact persistence to coordinate cell movements during gastrulation.

  8. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    Science.gov (United States)

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells.

  9. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  10. Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings.

    Science.gov (United States)

    Li, Song; Chen, Junren; Islam, Ejazul; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Yan, Wenbo; Peng, Danli; Liu, Dan

    2016-06-01

    Moso bamboo (Phyllostachys pubescens (Pradelle) Mazel ex J.Houz.) is recognized as a potential phytoremediation plant due to its huge biomass and high tolerance to environmental stresses. The objectives of this study were to investigate mechanism related to cadmium (Cd) tolerance and to evaluate Cd accumulation capacity of moso bamboo. The results of the pot experiment showed that Cd accumulation by bamboo increased with increasing the Cd levels in soil and the values in stem ranged from 28.51 to 132.13 mg kg(-1). Meanwhile chlorophyll in leaves and total biomass showed a decreasing trend. The bioaccumulation factors (BAF) for roots and stem in all the treatments were more than 1.0 and the translocation factor (TF) ranged from 0.70 to 1.06. In hydroponics experiment, the concentrations of malondialdehyde (MDA) in the leaves were significantly increased in Cd treated plants as compared with control. The activities of superoxide dismutase (SOD) and peroxidase (POD) were enhanced at initial stage and then decreased consistently with the increase of Cd addition. The proline concentrations were also increased due to the presence of Cd, particularly at 25 μM Cd treatment. According to TEM-EDX analysis, the cytoplasm was the main site for accumulation of Cd in moso bamboo. On the basis of overall results, it is suggested that moso bamboo could be successfully used for the remediation of low Cd (no more than 5 mg kg(-1)) contaminated soils.

  11. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  12. In vivo study of cadmium-induced chromsomal changes in somatic and germinal tissue of C57BI/6J male mice

    Energy Technology Data Exchange (ETDEWEB)

    Felten, T.L.

    1978-08-01

    The objectives of this study were to determine if cadmium would induce chromosomal aberration, to determine if simultaneous aberration events occurred in somatic and germinal tissue, and to determine an estimated minimum exposure time required for significant chromosomal change. Bone marrow chromosome aberrations, specifically breaks and deletions, were found to increase after acute cadmium exposure both at MTD and normal exposure levels. Subacute exposure also resulted in increased occurrences of breaks, deletions, and despiralization. With longer in vivo exposure to cadmium, bone marrow cells continued to show increased numbers of breaks, as well as a physiological effect, despiralization, and more severe break-related aberrations; rearrangements and pulverization. In spermatocytes of the same animals, gaps, breaks, rearrangements, stickiness, and autosomal univalents were the principle aberrations. Correlation of bone marrow and spermatocyte aberrations indicated that in treated mice significant relationships existed for gaps, breaks, rearrangements, and stickiness in the tissues. An estimate of the minimum exposure time to produce chromosomal damage, based on the acute exposure experiment, would be 6 hours for bone marrow. This was confirmed by the exposure duration experiment. Spermatocytes also had chromosomal damage within 24 hours.

  13. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  14. Mitochondrial Electron Transport Chain in Heavy Metal-Induced Neurotoxicity: Effects of Cadmium, Mercury, and Copper

    Directory of Open Access Journals (Sweden)

    Elena A. Belyaeva

    2012-01-01

    Full Text Available To clarify the role of mitochondrial electron transport chain (mtETC in heavy-metal-induced neurotoxicity, we studied action of Cd2+, Hg2+, and Cu2+ on cell viability, intracellular reactive oxygen species formation, respiratory function, and mitochondrial membrane potential of rat cell line PC12. As found, the metals produced, although in a different way, dose- and time-dependent changes of all these parameters. Importantly, Cd2+ beginning from 10 [mu]M and already at short incubation time (3 h significantly inhibited the FCCP-uncoupled cell respiration; besides, practically the complete inhibition of the respiration was reached after 3 h incubation with 50 [mu]M Hg2+ or 500 [mu]M Cd2+, whereas even after 48 h exposure with 500 [mu]M Cu2+, only a 50% inhibition of the respiration occurred. Against the Cd2+-induced cell injury, not only different antioxidants and mitochondrial permeability transition pore inhibitors were protective but also such mtETC effectors as FCCP and stigmatellin (complex III inhibitor. However, all mtETC effectors used did not protect against the Hg2+- or Cu2+-induced cell damage. Notably, stigmatellin was shown to be one of the strongest protectors against the Cd2+-induced cell damage, producing a 15–20% increase in the cell viability. The mechanisms of the mtETC involvement in the heavy-metal-induced mitochondrial membrane permeabilization and cell death are discussed.

  15. Effects of Arctium lappa on Cadmium-Induced Damage to the Testis and Epididymis of Adult Wistar Rats.

    Science.gov (United States)

    Predes, Fabricia de Souza; Diamante, M A S; Foglio, M A; Dolder, H

    2016-10-01

    The protective role of Arctium lappa (AL) on the testes of rats acutely exposed to cadmium (Cd) was tested. The rats were randomly divided into a control group (C-group) and three major experimental groups, which were further subdivided into minor groups (n = 6) according to the experimental period (7 or 56 days). The C-group was subdivided into C-7 and C-56 [receiving a single saline solution, intraperitoneal (i.p.), on the first day]; the AL-group, AL-7, and AL-56, received AL extract (300 mg/kg/daily); the Cd group, Cd-7 and Cd-56, received a single i.p. dose of CdCl2 (1.2 mg/kg body weight (BW)) on the first day; the CdAL group, CdAL-7 and CdAL-56, received the same Cd dose, followed by AL extract. Water or AL extract was administered daily by gavage. After either 7 or 56 days, the testis and accessory glands were removed after whole-body perfusion. Exposure to Cd and CdAL decreased the weight of the testis and epididymis, the gonadosomatic index, seminiferous tubular (ST) diameter, and ST volumetric proportion, and increased the volumetric proportion of interstitium after 56 days. In the epididymis caput, the tubular volumetric proportion decreased along with an increase of interstitial volumetric proportion and epithelium height after 56 days. The alterations observed were less severe only after 7 days. A progressive testicular damage resulted mainly in tubules lined only by Sertoli cells. The sperm number and cell debris decreased in the epididymis. We demonstrated that the testicular damage induced by single acute i.p. exposure to Cd occurred despite the daily oral intake of AL extract.

  16. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots.

    Science.gov (United States)

    Li, Le; Wang, Yanqin; Shen, Wenbiao

    2012-06-01

    Despite hydrogen sulfide (H(2)S) and nitric oxide (NO) are important endogenous signals or bioregulators involved in many vital aspects of plant growth and responses against abiotic stresses, little information was known about their interaction. In the present study, we evaluated the effects of H(2)S and NO on alfalfa (Medicago sativa L.) plants exposed to cadmium (Cd) stress. Pretreatment with an H(2)S donor sodium hydrosulfide (NaHS) and well-known NO donor sodium nitroprusside (SNP) decreased the Cd toxicity. This conclusion was supported by the decreases of lipid peroxidation as well as the amelioration of seedling growth inhibition and Cd accumulation, in comparison with the Cd-stressed alone plants. Total activities and corresponding transcripts of antioxidant enzymes, including superoxide dismutase, peroxidase and ascorbate peroxidase were modulated differentially, thus leading to the alleviation of oxidative damage. Effects of H(2)S above were reversed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the specific scavenger of NO. By using laser confocal scanning microscope combined with Greiss reagent method, further results showed that NO production increased significantly after the NaHS pretreatment regardless of whether Cd was applied or not, all of which were obviously inhibited by cPTIO. These decreases of NO production were consistent with the exaggerated syndromes associated with Cd toxicity. Together, above results suggested that NO was involved in the NaHS-induced alleviation of Cd toxicity in alfalfa seedlings, and also indicated that there exists a cross-talk between H(2)S and NO responsible for the increased abiotic stress tolerance.

  17. Vitamin C modulates cadmium-induced hepatic antioxidants' gene transcripts and toxicopathic changes in Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    El-Sayed, Yasser S; El-Gazzar, Ahmed M; El-Nahas, Abeer F; Ashry, Khaled M

    2016-01-01

    Cadmium (Cd) is one of the naturally occurring heavy metals having adverse effects, while vitamin C (L-ascorbic acid) is an essential micronutrient for fish, which can attenuate tissue damage owing to its chain-breaking antioxidant and free radical scavenger properties. The adult Nile tilapia fish were exposed to Cd at 5 mg/l with and without vitamin C (500 mg/kg diet) for 45 days in addition to negative and positive controls fed with the basal diet and basal diet supplemented with vitamin C, respectively. Hepatic relative mRNA expression of genes involved in antioxidant function, metallothionein (MT), glutathione S-transferase (GST-α1), and glutathione peroxidase (GPx1), was assessed using real-time reverse transcription polymerase chain reaction (RT-PCR). Hepatic architecture was also histopathologically examined. Tilapia exposed to Cd exhibited upregulated antioxidants' gene transcript levels, GST-⍺1, GPx1, and MT by 6.10-, 4.60-, and 4.29-fold, respectively. Histopathologically, Cd caused severe hepatic changes of multifocal hepatocellular and pancreatic acinar necrosis, and lytic hepatocytes infiltrated with eosinophilic granular cells. Co-treatment of Cd-exposed fish with vitamin C overexpressed antioxidant enzyme-related genes, GST-⍺1 (16.26-fold) and GPx1 (18.68-fold), and maintained the expression of MT gene close to control (1.07-fold), averting the toxicopathic lesions induced by Cd. These results suggested that vitamin C has the potential to protect Nile tilapia from Cd hepatotoxicity via sustaining hepatic antioxidants' genes transcripts and normal histoarchitecture.

  18. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  19. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis.

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-07-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC-Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2.

  20. The Wnt pathway: a key network in cell signalling dysregulated by viruses.

    Science.gov (United States)

    van Zuylen, Wendy J; Rawlinson, William D; Ford, Caroline E

    2016-09-01

    Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Efficient Purification and Optimization of Wnt3a, a Novel Therapeutic for Tissue Regeneration

    Science.gov (United States)

    Madhav, D.; Helms, J.; Dhamdhere, G.

    2012-12-01

    Wnt is a secreted protein that is present naturally in the body. When an organism is injured the amount of Wnt in the affected area increases. This protein acts as an activator of adult stem cells and signals them to begin differentiating and proliferating. This stem cell response augments the ongoing efforts of injured cells to heal faster by becoming the cells that were damaged by the injury. Adult stem cells play a great role in the healing of wounds, but as organisms age the amount of stem cells in their body decreases. This decrease, in effect, slows the healing of injuries because no stem cells are present to help the regenerative efforts of the body. The Wnt protein induces these stem cells not only to differentiate and proliferate, but also to self-replicate. The ability of Wnt to induce adult stem cells to self -replicate gives us an option to use the protein as a potential tissue regenerative drug. Post-translational Wnt has a lipid modification that makes the protein insoluble in water. To overcome this we fuse the protein with a liposome. A liposome is a lipid sphere with an aqueous center and a phospholipid membrane. The Wnt protein does not lose its function when joined with a liposome. Using this knowledge we can develop a viable means to inject the Wnt protein directly into organisms. The big problem now is to make enough purified Wnt to manufacture on a large scale.

  2. FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step EMT.

    Science.gov (United States)

    Goto, Hana; Kimmey, Samuel C; Row, Richard H; Matus, David Q; Martin, Benjamin L

    2017-02-27

    Mesoderm induction begins during gastrulation. Recent evidence from several vertebrate species indicates mesoderm induction continues after gastrulation in neuromesodermal progenitor cells (NMPs) within the posterior-most embryonic structure called the tailbud. It is unclear to what extent the molecular mechanisms of mesoderm induction are conserved between gastrula and post-gastrula stages of development. Fibroblast growth factor (FGF) signaling is required for mesoderm induction during gastrulation through positive transcriptional regulation of the t-box transcription factor brachyury (ntla in zebrafish). We find that FGF is continuously required for paraxial mesoderm (PM) induction in post-gastrula NMPs, but has the opposite effect on brachyury expression. FGF signaling represses brachyury and the NMP marker sox2 through regulation of tbx16 and msgn1, thereby committing cells to a PM fate. FGF mediated PM induction in NMPs functions in tight coordination with canonical Wnt signaling during the epithelial to mesenchymal transition from NMP to mesodermal progenitor. Wnt signaling initiates the EMT, while FGF signaling terminates this event. Our results indicate that germ layer induction in the tailbud is not a simple continuation of gastrulation events.

  3. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Pradeepkiran Jangampalli Adi

    2016-01-01

    Full Text Available This study was aimed to examine the protective effects of supplementation with calcium + zinc (Ca + Zn or vitamin E (Vit-E on Cd-induced renal oxidative damage. Young albino Wistar rats (180 ± 10 g (n = 6 control rats, Cd, Cd + Ca + Zn, and Cd + Vit-E experimental groups and the experimental period was 30 days. Rats were exposed to Cd (20 mg/kg body weight alone treated as Cd treated group and the absence or presence of Ca + Zn (2 mg/kg each or Vit-E (20 mg/kg body weight supplementation treated as two separate groups. The activities of the stress marker enzymes superoxide dismutase (SOD, catalase (CAT, glutathione reductase (GR, glutathione peroxidase (GPx, glutathione-S-transferase (GST and lipid peroxidase (LPx were determined in renal mitochondrial fractions of experimental rats. We observed quantitative changes in SOD isoenzymatic patterns by non-denaturing PAGE analysis, and quantified band densities. These results showed that Cd exposure leads to decreases in SOD, CAT, GR, and GPx activities and a concomitant increase in LPx and GST activities. Ca + Zn and Vit-E administration with Cd significantly reversed Cd-induced perturbations in oxidative stress marker enzymes. However, Vit-E showed more inhibitory activity against Cd than did Ca + Zn, and it protected against Cd-induced nephrotoxicity.

  4. Cadmium and cancer.

    Science.gov (United States)

    Hartwig, Andrea

    2013-01-01

    Cadmium is an established human and animal carcinogen. Most evidence is available for elevated risk for lung cancer after occupational exposure; however, associations between cadmium exposure and tumors at other locations including kidney, breast, and prostate may be relevant as well. Furthermore, enhanced cancer risk may not be restricted to comparatively high occupational exposure, but may also occur via environmental exposure, for example in areas in close proximity to zinc smelters. The underlying mechanisms are still a matter of manifold research activities. While direct interactions with DNA appear to be of minor importance, elevated levels of reactive oxygen species (ROS) have been detected in diverse experimental systems, presumably due to an inactivation of detoxifying enzymes. Also, the interference with proteins involved in the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis appears to be involved in cadmium-induced carcinogenicity. Within this context, cadmium has been shown to disturb nucleotide excision repair, base excision repair, and mismatch repair. Particularly sensitive targets appear to be proteins with zinc-binding structures, present in DNA repair proteins such as XPA, PARP-1 as well as in the tumor suppressor protein p53. Whether or not these interactions are due to displacement of zinc or due to reactions with thiol groups involved in zinc complexation or in other critical positions under realistic exposure conditions remains to be elucidated. Further potential mechanisms relate to the interference with cellular redox regulation, either by enhanced generation of ROS or by reaction with thiol groups involved in the regulation of signaling pathways. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability evident in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development.

  5. Cadmium-induced accumulation of putrescine in oat and bean leaves

    Science.gov (United States)

    Weinstein, L. H.; Kaur-Sawhney, R.; Rajam, M. V.; Wettlaufer, S. H.; Galston, A. W.

    1986-01-01

    The effects of Cd2+ on putrescine (Put), spermidine (Spd), and spermine (Spm) titers were studied in oat and bean leaves. Treatment with Cd2+ for up to 16 hours in the light or dark resulted in a large increase in Put titer, but had little or no effect on Spd or Spm. The activity of arginine decarboxylase (ADC) followed the pattern of Put accumulation, and experiments with alpha-difluoromethylarginine established that ADC was the enzyme responsible for Put increase. Concentrations of Cd2+ as low as 10 micromolar increased Put titer in oat segments. In bean leaves, there was a Cd(2+)-induced accumulation of Put in the free and soluble conjugated fractions, but not in the insoluble fraction. This suggests a rapid exchange between Put that exists in the free form and Put found in acid soluble conjugate forms. It is concluded that Cd2+ can act like certain other stresses (K+ and Mg2+ deficiency, excess NH4+, low pH, salinity, osmotic stress, wilting) to induce substantial increases in Put in plant cells.

  6. Preventive effect of zinc against cadmium-induced oxidative stress in the rat testis.

    Science.gov (United States)

    Amara, Salem; Abdelmelek, Hafedh; Garrel, Catherine; Guiraud, Pascale; Douki, Thierry; Ravanat, Jean-Luc; Favier, Alain; Sakly, Mohsen; Ben Rhouma, Khémais

    2008-04-01

    The aim of this study was to investigate the antioxidant role of zinc (Zn) in the Cd-exposed testes of Wistar rats. Subchronic exposure to Cd (CdCl(2), 40 mg/l, per os) for 30 days resulted in a significant reduction in growth rate (-11%) and relative weights of testes (-36%) and seminal vesicles (-80%). Treated rats displayed a decrease in testicular and plasma testosterone levels, respectively (-70%, Pspermatozoa motility (-35%, PZinc supplementation (ZnCl(2), 40 mg/l, per os) in the Cd-exposed rats restored the activities of GPx, CuZn-SOD, and Mn-SOD in the testes to the levels of the control group. Moreover, zinc administration was capable of reducing the elevated levels of malondialdehyde in the testis. Interestingly, zinc supplementation attenuated DNA oxidation induced by Cd in the gonad and restored the testosterone level and sperm count to the levels of the control group. Zinc administration minimized oxidative damage and reversed the impairment of spermatogenesis and testosterone production induced by Cd in the rat testis.

  7. Inorganic salt-induced phase control and optical characterization of cadmium sulfide nanoparticles

    Science.gov (United States)

    Tai, Guo'an; Zhou, Jianxin; Guo, Wanlin

    2010-04-01

    Phase-controlled synthesis of CdS nanoparticles from zinc-blende to wurtzite has been successfully realized by an inorganic salt-induced process with no use of surfactants or other ligands in an ultrasound-assisted microwave synthesis system. Pure zinc-blende CdS nanoparticles were produced without adding NaCl, while mixed zinc-blende and wurtzite nanoparticles were obtained by adding NaCl/Cd2 + molar ratios below 1, and pure wurtzite nanoparticles were produced at a molar ratio of 1. The energy bandgap (Eg) of the CdS nanoparticles calculated from optical absorption spectra increases as the phase transformation from zinc-blende to wurtzite occurs. Additionally, the CdS nanoparticles showed a 489 nm band-edge emission without adding NaCl, and a 501 nm emission when the molar ratios of NaCl to Cd2 + are 0.25, 0.5 and 1. It was found that the phase transformation originates from the effect of the halide ion Cl - . We also found that some other halide ions such as Br - and I - can induce the phase transformation. It is shown that the phase, size and optical properties of the anisotropic nanoparticles can be well tuned by varying the concentration of the halide ions.

  8. Inorganic salt-induced phase control and optical characterization of cadmium sulfide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Guo' an; Zhou Jianxin; Guo Wanlin, E-mail: taiguoan@nuaa.edu.cn, E-mail: wlguo@nuaa.edu.cn [Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)

    2010-04-30

    Phase-controlled synthesis of CdS nanoparticles from zinc-blende to wurtzite has been successfully realized by an inorganic salt-induced process with no use of surfactants or other ligands in an ultrasound-assisted microwave synthesis system. Pure zinc-blende CdS nanoparticles were produced without adding NaCl, while mixed zinc-blende and wurtzite nanoparticles were obtained by adding NaCl/Cd{sup 2+} molar ratios below 1, and pure wurtzite nanoparticles were produced at a molar ratio of 1. The energy bandgap (E{sub g}) of the CdS nanoparticles calculated from optical absorption spectra increases as the phase transformation from zinc-blende to wurtzite occurs. Additionally, the CdS nanoparticles showed a 489 nm band-edge emission without adding NaCl, and a 501 nm emission when the molar ratios of NaCl to Cd{sup 2+} are 0.25, 0.5 and 1. It was found that the phase transformation originates from the effect of the halide ion Cl{sup -}. We also found that some other halide ions such as Br{sup -} and I{sup -} can induce the phase transformation. It is shown that the phase, size and optical properties of the anisotropic nanoparticles can be well tuned by varying the concentration of the halide ions.

  9. Wnt/β-catenin和OPG/RANKL/RANK信号通路探讨糖皮质激素诱发骨质疏松症的可能途径%Discussion of possible pathways of Wnt/β-catenin and OPG/RANKL/RANK in the pathogenesis of glucocorticoid-induced osteoporosis

    Institute of Scientific and Technical Information of China (English)

    魏秋实; 邓伟民; 陈现红; 黄伟毅; 谭新; 孙伟珊; 邵玉; 潘志国

    2013-01-01

    糖皮质激素(Glucocorticoid,GC)主要由肾上腺皮质分泌,因其廉价及具有抗炎和免疫抑制作用,常在肾病综合症、类风湿性关节炎、风湿性多肌痛、结肠炎和慢性阻塞性肺疾病等许多疾病中广泛应用.然而,GC有许多影响代谢的副作用,比如胰岛素抵抗、高血压、青光眼、和骨质疏松症(Osteoporosis,OP).糖皮质激素性骨质疏松症(Glucocorticoid-induced Osteoporosis,GIOP)是在使用GC治疗疾病过程中引起的骨量丢失,以骨量减少,骨微结构破坏,骨强度下降为特征,导致骨脆性增强,易于发生骨折.GIOP已成为影响人类生活质量的主要问题.随着骨分子生物学的不断发展,GIOP发病机制的研究已渗透到组织,细胞和分子改变的过程中.本文将围绕Wnt/β-catenin与OPG/RANKL/RANK信号通路的交联反应在GIOP发病机制中作用进行讨论,为GIOP基础研究提供新思路.%Glucocorticoid ( GC) is mainly secreted by adrenal cortex, which is frequently used in the treatment of a variety of diseases, including nephropathy syndrome, rheumatoid arthritis, polymyalgia rheumatica, colonitis, and chronic obstractive pulmonary disease due to its cheap price, strong anti inflammatory effect, and immunosuppressive effect. However, GC has many metabolic side effects, such as insulin resistance, hypertension, glaucoma, and osteoporosis (OP). GC-induced osteoporosis (GIOP), bone mass loss caused during the treatment using GC, is a disease characterized by bone mass decreasing, microstructural changes of bone tissue, bone strength decreasing, and bone friability increasing, thus being prone to bone fractures. GIOP has become a main problem affecting the quality of human life. With the continuous development of bone molecular biology, the researches of GIOP pathogenesis have penetrated into the processes of the tissue, cell, and molecule changes. This article discusses the crosstalk between Wnt/β-catenin and OPG/RANKL/ RANK in the

  10. In vitro studies on protective effect of Glycyrrhiza glabra root extracts against cadmium-induced genetic and oxidative damage in human lymphocytes.

    Science.gov (United States)

    Dirican, Ebubekir; Turkez, Hasan

    2014-01-01

    Cadmium is a modern environmental contaminant that is toxic and carcinogenic. Glycyrrhiza glabra is a traditional medicinal herb which grows in the various parts of the World. Recent studies demonstrated that G. glabra has antifungal, antimicrobial, antioxidant, and powerful antiinflammatory features. The purpose of this study was to investigate the genetic safety of extracts from G. glabra and its effects on cadmium (as CdCl2) induced genotoxicity. Therefore we evaluated the capability of G. glabra extract to inhibit the rate of micronucleus (MN), sister chromatid exchange (SCE) formations induced by CdCl2. Moreover, to assess the effects of G. glabra on cell viability and oxidative status, we performed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and total antioxidant capacity (TAC) assays. Our results showed that there were significant increases (P glabra extract (5, 10 and 20 ppm) and CdCl2 resulted in decreases of MN and SCE rates as compared to the group treated with CdCl2 alone. Again, the results of MTT and TAC assays clearly indicated dose dependent ameliorative effects of G. glabra extracts against CdCl2 toxicity. In conclusion, this study demonstrated for the first time that G. glabra extracts provided increased resistance of DNA against CdCl2 induced genetic and oxidative damage in human lymphocytes. So, the risk on target tissues of CdCl2 could be reduced and ensured early recovery from its toxicity.

  11. Recent Research Progress in Molecular Mechanisms of Cadmium Induced Carcinogenesis%镉致癌的分子机制研究进展

    Institute of Scientific and Technical Information of China (English)

    吴婧; 董欣敏; 郑燕芳; 张积仁

    2015-01-01

    Cadmium (Cd) is a ubiquitous environmental heavy metal pollutant which causes increasing worldwide concern. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smok-ing, and drinking water. Cadmium has been classified as a human carcinogen by the international agency for re-search on cancer (IARC). In 1993, its carcinogenicity has been long established;most evidence is available for ele-vated risk for lung cancer, prostate cancer, breast cancer, gastroenteric cancer and so on. But the underlying mecha-nisms of cadmium carcinogenesis are still not clear. Many studies have been demonstrated that Cd induces cancer by multiple mechanisms:induction of oxidative stress, inhibition of DNA damage repair as well as apoptosis, aber-rant methylation and gene expression, resulting in cell cycle arrest, as a metalloestrogen, promotion of cancer stem cell growth and induction of cancer via chronic inflammation. This review summarizes the recent advances in the carcinogenic mechanism of cadmium on the molecular medicine level.%镉是一种无处不在的重金属环境污染物,广泛用于工业环境中。普通人主要通过摄食、吸烟及饮水等方式摄入镉。1993年国际肿瘤研究机构(IARC)就已将镉及其化合物列为第1类人致癌物,镉的致癌性被广泛研究,大量研究发现镉会提高肺癌、前列腺癌、乳腺癌、消化道肿瘤等肿瘤的患病风险。但至目前为止,镉的致癌分子机制尚不清楚。大量研究认为镉通过以下几方面致癌:氧化应激、抑制DNA损伤修复、DNA异常甲基化、抑制细胞凋亡、影响细胞周期调控、致多种基因异常表达、雌激素样效应、促进肿瘤干细胞生长、慢性炎症刺激。

  12. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Franzellitti, Silvia [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); Fabbri, Elena [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna (Italy); Kaloyianni, Martha, E-mail: kaloyian@bio.auth.gr [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-01-15

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na{sup +}/H{sup +} exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca{sup 2+}-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and

  13. Wnt5a and Wnt11 are essential for second heart field progenitor development

    Science.gov (United States)

    Cohen, Ethan David; Miller, Mayumi F.; Wang, Zichao; Moon, Randall T.; Morrisey, Edward E.

    2012-01-01

    Wnt/β-catenin has a biphasic effect on cardiogenesis, promoting the induction of cardiac progenitors but later inhibiting their differentiation. Second heart field progenitors and expression of the second heart field transcription factor Islet1 are inhibited by the loss of β-catenin, indicating that Wnt/β-catenin signaling is necessary for second heart field development. However, expressing a constitutively active β-catenin with Islet1-Cre also inhibits endogenous Islet1 expression, reflecting the inhibitory effect of prolonged Wnt/β-catenin signaling on second heart field development. We show that two non-canonical Wnt ligands, Wnt5a and Wnt11, are co-required to regulate second heart field development in mice. Loss of Wnt5a and Wnt11 leads to a dramatic loss of second heart field progenitors in the developing heart. Importantly, this loss of Wnt5a and Wnt11 is accompanied by an increase in Wnt/β-catenin signaling, and ectopic Wnt5a/Wnt11 inhibits β-catenin signaling and promotes cardiac progenitor development in differentiating embryonic stem cells. These data show that Wnt5a and Wnt11 are essential regulators of the response of second heart field progenitors to Wnt/β-catenin signaling and that they act by restraining Wnt/β-catenin signaling during cardiac development. PMID:22569553

  14. Protection by clinoptilolite or zeolite NaA against cadmium-induced anemia in growing swine.

    Science.gov (United States)

    Pond, W G; Yen, J T

    1983-07-01

    Weanling Landrace X Yorkshire swine were fed a basal diet or a diet containing 3% clinoptilolite (a natural zeolite) with or without 150 ppm CdCl2 or 3% zeolite NaA (a synthetic zeolite) with or without 150 ppm CdCl2 for 31 days. Hematocrit and hemoglobin were depressed significantly in animals fed Cd in the absence of zeolites, but not in their presence. Liver Cd concentration was increased dramatically by added dietary Cd but was significantly lower in animals fed clinoptilolite with Cd than in those fed Cd alone (11.4 vs 16.5 ppm). Liver Fe and Zn were decreased by dietary Cd; liver Fe was not affected significantly by clinoptilolite or zeolite NaA, but liver Zn was increased by zeolite NaA. Kidney dry matter, Zn, and Cd concentrations were increased by dietary Cd; neither clinoptilolite nor zeolite NaA affected kidney Cd concentration. Zeolite NaA increased kidney dry matter both in the presence and in the absence of dietary Cd. Plasma urea-N, K, Na, and Mg were unaffected by Cd or by either zeolite. The data illustrate the different effects of dietary clinoptilolite compared with zeolite NaA on blood plasma, liver, and kidney concentrations of minerals and provide evidence that both zeolites offer some protection against Cd-induced Fe-deficiency anemia; the magnitude of this protection and the effects of each zeolite on tissue concentrations of Cd and other materials need further quantification.

  15. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury.

    Science.gov (United States)

    Hou, Yakun; Wu, Pingxiao; Zhu, Nengwu

    2014-01-01

    The adsorption of Salmon Sperm DNA on three kinds of raw clay (rectorite, montmorillonite and sericite) was investigated as a function of pH, ionic strength and the concentrations of DNA and phosphate ions in solution. The DNA adsorption was reduced in the following order: rectorite>montmorillonite>sericite. Based on these findings, there is a strong evidence that the mechanisms for DNA adsorption on clay involve electrostatic forces, cation bridging and ligand exchange. Cyclic voltammetry (CV) and UV-vis absorption and fluorescence spectroscopy were used to compare the properties of unbound DNA and the absorbed DNA on rectorite, both in the absence and presence of Cd(2+) and Hg(2+) inaqueous solutions. The interaction of heavy metals with the unbound DNA was evidenced by the disappearance of reduction peaks in CV, a small bathochromic shift in UV-vis spectroscopy and an incomplete quenching in the emission spectra. Such changes were not observed in the DNA-rectorite hybrids, which is evidence that adsorption on the clay can reduce the extent of the DNA damage caused by heavy metals. Therefore, in these experience the rectorite played an important role in protecting DNA against Cd(2+) and Hg(2+) induced damage.

  16. Life history changes in the benthic cladoceran Chydorus piger induced by low concentrations of sediment-bound cadmium

    NARCIS (Netherlands)

    Dekker, T.; Krips, O.E.; Admiraal, W.

    2002-01-01

    The effect of sediment-bound cadmium on several life history parameters of the benthic cladoceran Chydorus piger, was tested in the laboratory. It was investigated whether a test with C. piger is an ecologically realistic alternative for the Daphnia test applied to sediments. Therefore, a culture of

  17. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Toledo Enrique M

    2008-07-01

    Full Text Available Abstract Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD. In fact, a relationship between amyloid-β-peptide (Aβ-induced neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently Aβ binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz inhibiting Wnt/β-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/β-catenin signaling, including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR α, γ agonists, nicotine and some antioxidants, results in neuroprotection against Aβ. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Aβ-dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD.

  18. Melatonin down-regulates hTERT expression induced by either natural estrogens (17beta-estradiol) or metalloestrogens (cadmium) in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Martínez-Campa, Carlos M; Alonso-González, Carolina; Mediavilla, Maria D; Cos, Samuel; González, Alicia; Sanchez-Barcelo, Emilio J

    2008-09-18

    The goal was to evaluate whether melatonin (Mel) down-regulates hTERT expression induced by 17beta-estradiol (E(2)) or cadmium (Cd) in breast cancer cells. We found that: (a) Mel inhibits E(2) or Cd-induced hTERT transcription in hTERT-Luc transfected MCF-7 cells, (b) Mel significantly reduces E(2)- and Cd-mediated hTERT transactivation triggered by ERalpha in transfected HeLa cells, (c) Mel inhibits hTERT expression induced by E(2) or Cd in MCF-7 cells. Melatonin inhibition of telomerase activity supports a possible role in treatment of estrogen-dependent tumors or carcinogenesis by environmental or occupational exposure to xenoestrogens.

  19. Cadmium Toxicity to Ringed Seals (Phoca hispida)

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, R.; Riget, F. F.;

    as laboratory mammals. We have studied possible cadmium induced histopathological changes in the kidneys as well as a demineralisation of the skeletal system (DXA-scanning of lumbal vertebraes). No obvious cadmium induced toxic changes were found. Food composition and physiological adaptations may explain......Cadmium concentrations in kidneys from ringed seals (Phoca hispida) from North West Greenland (Qaanaaq) are high. Concentrations range at level known to induce renal toxic effects (mainly tubulopathy) and demineralisation (osteopenia) of the skeletal system (Fanconi's Syndrome) in humans as well...

  20. Alterations in Lipid Mediated Signaling and Wnt/β-Catenin Signaling in DMH Induced Colon Cancer on Supplementation of Fish Oil

    Directory of Open Access Journals (Sweden)

    Shevali Kansal

    2014-01-01

    Full Text Available Ceramide mediates inhibition of cyclooxygenase-2 (COX-2 which catalyzes formation of prostaglandin further activating peroxisome proliferator-activated receptorγ (PPARγ and Wnt/β-catenin pathway; and hence plays a critical role in cancer. Therefore, in current study, ceramide, COX-2, 15-deoxy prostaglandin J2(15-deoxy PGJ2, PPARγ, and β-catenin were estimated to evaluate the effect of fish oil on lipid mediated and Wnt/β-catenin signaling in colon carcinoma. Male Wistar rats in Group I received purified diet while Groups II and III received modified diet supplemented with FO : CO(1 : 1 and FO : CO(2.5 : 1, respectively. These were further subdivided into controls receiving ethylenediaminetetraacetic acid and treated groups receiving dimethylhydrazine dihydrochloride (DMH/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and those sacrificed after 16 weeks constituted postinitiation phase. Decreased ceramide and increased PPARγ were observed in postinitiation phase only. On receiving FO+CO(1 : 1+DMH and FO+CO(2.5 : 1+DMH in both phases, ceramide was augmented whereas COX-2, 15-deoxy PGJ2, and nuclear translocation of β-catenin were reduced with respect to cancerous animals. Decrease was more significant in postinitiation phase with FO+CO(2.5 : 1+DMH. Treatment with oils increased PPARγ in initiation phase but decreased it in postinitiation phase. Hence, fish oil altered lipid mediated signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.

  1. Wnt-β-Catenin Signaling Promotes the Maturation of Mast Cells

    Directory of Open Access Journals (Sweden)

    Tomoko Yamaguchi

    2016-01-01

    Full Text Available Mast cells play an important role in the pathogenesis of allergic diseases. Immature mast cells migrate into peripheral tissues from the bone marrow and undergo complete maturation. Interestingly, mast cells have characteristics similar to hematopoietic stem cells (HSCs, such as self-renewal and c-kit expression. In HSCs, Wnt signaling is involved in their maintenance and differentiation. On the other hand, the relation between Wnt signaling and mast cell differentiation is poorly understood. To study whether Wnt signals play a role in the maturation of mast cells, we studied the effect of Wnt proteins on mast cell maturation of bone marrow-derived mast cells (BMMCs. The expression levels of CD81 protein and histidine decarboxylase mRNA and activity of mast cell-specific protease were all elevated in BMMCs treated with Wnt5a. In addition, Wnt5a induced the expression of Axin2 and TCF mRNA in BMMCs. These results showed that Wnt5a could promote the maturation of mast cells via the canonical Wnt signaling pathway and provide important insights into the molecular mechanisms underlying the differentiation of mast cells.

  2. Curcumin Rescues Diabetic Renal Fibrosis by Targeting Superoxide-Mediated Wnt Signaling Pathways.

    Science.gov (United States)

    Ho, Cheng; Hsu, Yung-Chien; Lei, Chen-Chou; Mau, Shu-Ching; Shih, Ya-Hsueh; Lin, Chun-Liang

    2016-03-01

    The purposes of this study were to investigate whether curcumin can weaken diabetic nephropathy by modulating both oxidative stress and renal injury from Wnt signaling mediation. Wnt5a/β-catenin depression and induction of superoxide synthesis are associated with high glucose (HG) induced transforming growth factor (TGF)-β1 and fibronectin expression in mesangial cells. Curcumin resumes HG depression of Wnt/β-catenin signaling and alleviates HG induction of superoxide, TGF-β1 and fibronectin expression in renal mesangial cell. Exogenous curcumin alleviated urinary total proteinuria and serum superoxide level in diabetic rats. Based on laser-captured microdissection for quantitative real-time polymerase chain reaction, it was found that diabetes significantly increased TGF-β1 and fibronectin expression in line with depressed Wnt5a expression. Curcumin treatment reduced the TGF-β1 and fibronectin activation and the inhibiting effect of diabetes on Wnt5a/β-catenin expression in renal glomeruli. Immunohistochemistry showed that curcumin treatment significantly reduced 8-hydroxy-2'-deoxyguanosine, TGF-β1 and fibronectin, and was in line with the restoration of the suppressed Wnt5a expression immunoreactivities in glomeruli of diabetic rats. Curcumin alleviated extracellular matrix accumulation in diabetic nephropathy by not only preventing the diabetes-mediated superoxide synthesis but also resuming downregulation of Wnt/β-catenin signaling. These findings suggest that regulation of Wnt activity by curcumin is a feasible alternative strategy to rescue diabetic renal injury.

  3. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  4. Wnt Secretion and Gradient Formation

    Directory of Open Access Journals (Sweden)

    Vladimir L. Katanaev

    2013-03-01

    Full Text Available Concentration gradients formed by the lipid-modified morphogens of the Wnt family are known for their pivotal roles during embryogenesis and adult tissue homeostasis. Wnt morphogens are also implicated in a variety of human diseases, especially cancer. Therefore, the signaling cascades triggered by Wnts have received considerable attention during recent decades. However, how Wnts are secreted and how concentration gradients are formed remains poorly understood. The use of model organisms such as Drosophila melanogaster has provided important advances in this area. For instance, we have previously shown that the lipid raft-associated reggie/flotillin proteins influence Wnt secretion and spreading in Drosophila. Our work supports the notion that producing cells secrete Wnt molecules in at least two pools: a poorly diffusible one and a reggie/flotillin-dependent highly diffusible pool which allows morphogen spreading over long distances away from its source of production. Here we revise the current views of Wnt secretion and spreading, and propose two models for the role of the reggie/flotillin proteins in these processes: (i reggies/flotillins regulate the basolateral endocytosis of the poorly diffusible, membrane-bound Wnt pool, which is then sorted and secreted to apical compartments for long-range diffusion, and (ii lipid rafts organized by reggies/flotillins serve as “dating points” where extracellular Wnt transiently interacts with lipoprotein receptors to allow its capture and further spreading via lipoprotein particles. We further discuss these processes in the context of human breast cancer. A better understanding of these phenomena may be relevant for identification of novel drug targets and therapeutic strategies.

  5. Paracrine WNT5A Signaling Inhibits Expansion of Tumor-Initiating Cells.

    Science.gov (United States)

    Borcherding, Nicholas; Kusner, David; Kolb, Ryan; Xie, Qing; Li, Wei; Yuan, Fang; Velez, Gabriel; Askeland, Ryan; Weigel, Ronald J; Zhang, Weizhou

    2015-05-15

    It is not well understood how paracrine communication between basal and luminal cell populations in the mammary gland affects tumorigenesis. During ErbB2-induced mammary tumorigenesis, enriched mammary stem cells that represent a subpopulation of basal cells exhibit enhanced tumorigenic capacity compared with the corresponding luminal progenitors. Transcript profiling of tumors derived from basal and luminal tumor-initiating cells (TIC) revealed preferential loss of the noncanonical Wnt ligand WNT5A in basal TIC-derived tumors. Heterozygous loss of WNT5A was correlated with shorter survival of breast cancer patients. In a mouse model of ErbB2-induced breast cancer, Wnt5a heterozygosity promoted tumor multiplicity and pulmonary metastasis. As a TGFβ substrate, luminal cell-produced WNT5A induced a feed-forward loop to activate SMAD2 in a RYK and TGFβR1-dependent manner to limit the expansion of basal TIC in a paracrine fashion, a potential explanation for the suppressive effect of WNT5A in mammary tumorigenesis. Our results identify the WNT5A/RYK module as a spatial regulator of the TGFβ-SMAD signaling pathway in the context of mammary gland development and carcinogenesis, offering a new perspective on tumor suppression provided by basal-luminal cross-talk in normal mammary tissue.

  6. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, E.M. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Gleichmann, M. [Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Yshii, L.M.; Sá Lima, L. de [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Mattson, M.P. [Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Scavone, C. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2011-11-25

    Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ{sub 25-35}; 50 µM). Cells (1 × 10{sup 6} cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases.

  7. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    Directory of Open Access Journals (Sweden)

    E.M. Kawamoto

    2012-01-01

    Full Text Available Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells to the cytotoxic compounds ferrous sulfate (10 mM, staurosporine (100 and 500 nM, 3-nitropropionic acid (5 mM, and amyloid β-peptide (Aβ25-35; 50 µM. Cells (1 x 10(6 cells/mL were treated with the Wnt-3a recombinant peptide (200 ng/mL for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.

  8. Wnt signaling in the murine diastema

    Science.gov (United States)

    Porntaveetus, Thantrira; Ohazama, Atsushi; Choi, Hong Y.; Herz, Joachim

    2012-01-01

    The correct number and shape of teeth are critical factors for an aesthetic and functional dentition. Understanding the molecular mechanisms regulating tooth number and shape are therefore important in orthodontics. Mice have only one incisor and three molars in each jaw quadrant that are divided by a tooth-less region, the diastema. Although mice lost teeth in the diastema during evolution, the remnants of the evolutionary lost teeth are observed as transient epithelial buds in the wild-type diastema during early stages of development. Shh and Fgf signaling pathways that are essential for tooth development have been shown to be repressed in the diastema. It remains unclear however how Wnt signaling, that is also required for tooth development, is regulated in the diastema. In this study we found that in the embryonic diastema, Wnt5a expression was observed in mesenchyme, whereas Wnt4 and Wnt10b were expressed in epithelium. The expression of Wnt6 and Wnt11 was found in both tissues. The Wnt co-receptor, Lrp6, was weakly expressed in the diastema overlapping with weak Lrp4 expression, a co-receptor that inhibits Wnt signaling. Secreted Wnt inihibitors Dkk1, Dkk2, and Dkk3 were also expressed in the diastema. Lrp4 mutant mice develop supernumerary teeth in the diastema that is accompanied by upregulation of Wnt signaling and Lrp6 expression. Wnt signaling is thus usually attenuated in the diastema by these secreted and membrane bound Wnt inhibitors. PMID:21531785

  9. Assessing of plasma protein denaturation induced by exposure to cadmium, electromagnetic fields and their combined actions on rat.

    Science.gov (United States)

    Hassan, Nahed S; Abdelkawi, Salwa A

    2014-06-01

    In our environment, we have numerous chances to be exposed to not only electromagnetic fields (EMFs) but also many chemicals containing mutagens. Therefore, the aim of this study was to estimate whether rat's exposure to cadmium and/or EMFs could cause oxidative damage to molecular structure of proteins and whether and to what extent the effects of co-exposure differ from those observed under the treatment with each exposure alone. Thirty-two rats were divided into four groups. Group 1 was termed as control, group 2 was treated with cadmium (3.0 mg/Kg), group 3 was exposed to EMF (10 mT/h/day) and group 4 was treated with cadmium and exposed to EMF. Protein carbonyls (PCO) in the plasma as a marker of oxidative protein damage and total oxidant status (TOS), as well as electrical conductivity and SDS electrophoresis to estimate changes in molecular structure of protein, were determined. The exposure to Cd and/or EMF led to oxidative protein damage (increased PCO and TOS) accomplished by increased stress of electrical charges on the surface of the protein molecule (increased electrical conductivity) and changes in the molecular structure of protein. The effects were more pronounced after treatment with both Cd and EMF than at the treatment with each exposure alone. The serious damage to proteins at the co-exposure to Cd and EMF seems to be due to the interference of the EMF with the toxic activity of cadmium. This work concluded that combined exposure to Cd and EMFs might increase the risk of plasma damage via enhancing free radical generation and protein oxidation.

  10. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  11. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce.

    Science.gov (United States)

    Zorrig, Walid; Rouached, Aïda; Shahzad, Zaigham; Abdelly, Chedly; Davidian, Jean-Claude; Berthomieu, Pierre

    2010-10-15

    Lettuce (Lactuca sativa) is a plant species that shows high accumulation of cadmium, a toxic heavy metal. Lettuce is therefore a good model both for identifying determinants controlling cadmium accumulation in plant tissues and for developing breeding strategies aimed at limiting cadmium accumulation in edible tissues. In this work, 14-day-old plants from three lettuce varieties were grown for 8 days on media supplemented with cadmium concentrations ranging from 0 to 50 microM. Growth, as well as Cd(2+), Zn(2+), K(+), Ca(2+), NO(3)(-), SO(4)(2-), Cl(-), phosphate, malate and citrate root an shoot contents were analyzed. The three lettuce varieties Paris Island Cos, Red Salad Bowl and Kordaat displayed differential abilities to accumulate cadmium in roots and shoots, Paris Island Cos displaying the lowest cadmium content and Kordaat the highest. From the global analysis of the three varieties, three main trends were identified. First, a common negative correlation linked cadmium tissue content and relative dry weight reduction in response to cadmium treatments in the three varieties. Second, increasing cadmium concentration in the culture medium resulted in a parallel increase in zinc tissue content in all lettuce varieties. A common strong positive correlation between cadmium and zinc contents was observed for all varieties. This suggested that systems enabling zinc and cadmium transport were induced by cadmium. Finally, the cadmium treatments had a contrasting effect on anion contents in tissues. Interestingly, citrate content in shoots was correlated with cadmium translocation from roots to shoots, suggesting that citrate might play a role in cadmium transport in the xylem vessels. Altogether, these results shed light on three main strategies developed by lettuce to cope with cadmium, which could help to develop breeding strategies aimed at limiting cadmium accumulation in lettuce.

  12. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells.

    Science.gov (United States)

    Etheridge, S Leah; Spencer, Gary J; Heath, Deborah J; Genever, Paul G

    2004-01-01

    Through their broad differentiation potential, mesenchymal stem cells (MSCs) are candidates for a range of therapeutic applications, but the precise signaling pathways that determine their differentiated fate are not fully understood. Evidence is emerging that developmental signaling cues may be important in regulating stem cell self-renewal and differentiation programs. Here we have identified a consistent expression profile of Wnt signaling molecules in MSCs and provide evidence that an endogenous canonical Wnt pathway functions in these cells. Wnts bind to Frizzled (Fz) receptors and subsequent canonical signaling inhibits glycogen synthase kinase-3beta (GSK-3beta), causing beta-catenin translocation into the nucleus to induce target gene expression. In human MSCs isolated from bone marrow of different donors, we appear to have identified a common Wnt/Fz expression profile using reverse transcriptase polymerase chain reaction (RT-PCR). Associated Wnt signaling components, including low-density lipoprotein receptor-related protein-5 (LRP-5), kremen-1, dickkopf-1 (Dkk-1), secreted Frizzled-related peptide (sFRP)-2, sFRP3, sFRP4, Disheveled (Dvl), GSK-3beta, adenomatous polyposis coli (APC), beta-catenin,T-cell factor (TCF)-1, and TCF-4, were also identified. Nuclear beta-catenin was observed in 30%-40% of MSCs, indicative of endogenous Wnt signaling. Exposure to both Wnt3a and Li+ ions, which promotes canonical Wnt signaling by inhibiting GSK-3beta, reduced phosphorylation of beta-catenin in MSCs and increased beta-catenin nuclear translocation approximately threefold over that of the controls. Our findings indicate that autocrine Wnt signaling operates in primitive MSC populations and supports previous evidence that Wnt signaling regulates mesenchymal lineage specification. The identification of a putative common Wnt/Fz molecular signature in MSCs will contribute to our understanding of the molecular mechanisms that regulate self-renewal and lineage

  13. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis.

    Science.gov (United States)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  14. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2015-01-01

    Full Text Available Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4 to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  15. Wnt3a upregulates transforming growth factor-β-stimulated VEGF synthesis in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Matsushima-Nishiwaki, Rie; Kato, Kenji; Yamakawa, Kengo; Otsuka, Takanobu; Kozawa, Osamu

    2011-07-01

    It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.

  16. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling.

    Science.gov (United States)

    Karner, Courtney M; Esen, Emel; Okunade, Adewole L; Patterson, Bruce W; Long, Fanxin

    2015-02-01

    WNT signaling stimulates bone formation by increasing both the number of osteoblasts and their protein-synthesis activity. It is not clear how WNT augments the capacity of osteoblast progenitors to meet the increased energetic and synthetic needs associated with mature osteoblasts. Here, in cultured osteoblast progenitors, we determined that WNT stimulates glutamine catabolism through the tricarboxylic acid (TCA) cycle and consequently lowers intracellular glutamine levels. The WNT-induced reduction of glutamine concentration triggered a general control nonderepressible 2-mediated (GCN2-mediated) integrated stress response (ISR) that stimulated expression of genes responsible for amino acid supply, transfer RNA (tRNA) aminoacylation, and protein folding. WNT-induced glutamine catabolism and ISR were β-catenin independent, but required mammalian target of rapamycin complex 1 (mTORC1) activation. In a hyperactive WNT signaling mouse model of human osteosclerosis, inhibition of glutamine catabolism or Gcn2 deletion suppressed excessive bone formation. Together, our data indicate that glutamine is both an energy source and a protein-translation rheostat that is responsive to WNT and suggest that manipulation of the glutamine/GCN2 signaling axis may provide a valuable approach for normalizing deranged protein anabolism associated with human diseases.

  17. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Institute of Scientific and Technical Information of China (English)

    Kenneth Maiese

    2015-01-01

    Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in sig-niifcant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Dia-betes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel target-ing of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and au-tophagy. Pathways that involve insulin-like growth factor-1, ifbroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signal-ing is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  18. L-Ornithine Schiff base-copper and -cadmium complexes as new proteasome inhibitors and apoptosis inducers in human cancer cells.

    Science.gov (United States)

    Zhang, Zhongyu; Bi, Caifeng; Fan, Yuhua; Zhang, Nan; Deshmukh, Rahul; Yan, Xingchen; Lv, Xiuwen; Zhang, Pengfei; Zhang, Xia; Dou, Q Ping

    2015-01-01

    Ubiquitin-proteasome system (UPS) plays a crucial role in many cellular processes such as cell cycle, proliferation and apoptosis. Aberrant activation of UPS may result in cellular transformation or other altered pathological conditions. Previous studies have shown that metal-based complexes could inhibit proteasome activity and induce apoptosis in certain human cancer cells. In the current study, we report that the cadmium and copper complexes with heterocycle-ornithine Schiff base are potent inhibitors of proteasomal chymotrypsin-like (CT-like) activity, leading to induction of apoptosis in cancer cells. Two novel copper-containing complexes and two novel cadmium-containing complexes with different heterocycle-ornithine Schiff base structures as ligands were synthesized and characterized. We found that complexes Cu1, Cd1 and Cd2 show proteasome-inhibitory activities in human breast cancer MDA-MB-231 and human prostate cancer LNCaP cells, resulting in the accumulation of p27, a natural proteasome substrate and other ubiquitinated proteins, followed by the induction of apoptosis. Our results suggest that metal complexes with heterocycle-ornithine Schiff base have proteasome-inhibitory capabilities and have the potential to be developed into novel anticancer drugs.

  19. A role for Wnt/planar cell polarity signaling during lens fiber cell differentiation?

    Science.gov (United States)

    Chen, Y; Stump, R J W; Lovicu, F J; McAvoy, J W

    2006-12-01

    Wnt signaling through frizzled (Fz) receptors plays key roles in just about every developmental system that has been studied. Several Wnt-Fz signaling pathways have been identified including the Wnt/planar cell polarity (PCP) pathway. PCP signaling is crucial for many developmental processes that require major cytoskeletal rearrangements. Downstream of Fz, PCP signaling is thought to involve the GTPases, Rho, Rac and Cdc42 and regulation of the JNK cascade. Here we report on the localization of these GTPases and JNK in the lens and assess their involvement in the cytoskeletal reorganisation that is a key element of FGF-induced lens fiber cell differentiation.

  20. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  1. Non-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells.

    Directory of Open Access Journals (Sweden)

    Laura Corbett

    Full Text Available The Wnt system is highly complex and is comprised of canonical and non-canonical pathways leading to the activation of gene expression. Our aim was to examine changes in the expression of Wnt ligands and regulators during hepatic stellate cell (HSC transdifferentiation and assess the relative contributions of the canonical and non-canonical Wnt pathways in fibrogenic activated HSC. The expression profile of Wnt ligands and regulators in HSC was not supportive for a major role for β-catenin-dependent canonical Wnt signalling, this verified by inability to induce Topflash reporter activity in HSC even when expressing a constitutive active β-catenin. We detected expression of Wnt5a in activated HSC which can signal via non-canonical mechanisms and showed evidence for non-canonical signalling in these cells involving phosphorylation of Dvl2 and pJNK. Stimulation of HSC or Kupffer cells with Wnt5a regulated HSC apoptosis and expression of TGF-β1 and MCP1 respectively. We were unable to confirm a role for β-catenin-dependent canonical Wnt in HSC and instead propose autocrine and paracrine functions for Wnts expressed by activated HSC via non-canonical pathways. The data warrant detailed investigation of Wnt5a in liver fibrosis.

  2. Fresh WNT into the regulation of mitosis.

    Science.gov (United States)

    Stolz, Ailine; Bastians, Holger

    2015-01-01

    Canonical Wnt signaling triggering β-catenin-dependent gene expression contributes to cell cycle progression, in particular at the G1/S transition. Recently, however, it became clear that the cell cycle can also feed back on Wnt signaling at the G2/M transition. This is illustrated by the fact that mitosis-specific cyclin-dependent kinases can phosphorylate the Wnt co-receptor LRP6 to prime the pathway for incoming Wnt signals when cells enter mitosis. In addition, there is accumulating evidence that various Wnt pathway components might exert additional, Wnt-independent functions that are important for proper regulation of mitosis. The importance of Wnt pathways during mitosis was most recently enforced by the discovery of Wnt signaling contributing to the stabilization of proteins other than β-catenin, specifically at G2/M and during mitosis. This Wnt-mediated stabilization of proteins, now referred to as Wnt/STOP, might on one hand contribute to maintaining a critical cell size required for cell division and, on the other hand, for the faithful execution of mitosis itself. In fact, most recently we have shown that Wnt/STOP is required for ensuring proper microtubule dynamics within mitotic spindles, which is pivotal for accurate chromosome segregation and for the maintenance of euploidy.

  3. Wnt signaling: the good and the bad

    Institute of Scientific and Technical Information of China (English)

    Xi Chen; Jun Yang; Paul M Evans; Chunming Liu

    2008-01-01

    Since the first Wnt gene was identified in 1982,the functions and mechanisms of Wnt signaling have been extensively studied.Wnt signaling is conserved from invertebrates to vertebrates and regulates early embryonic development as well as the homeostasis of adult tissues.In addition,both embryonic stem cells and adult stem cells are regulated by Wnt signaling.Deregulation of Wnt signaling is associated with many human diseases,particularly cancers.In this review,we will discuss in detail the functions of many components involved in the Wnt signal transduction pathway.Then,we will explore what is known about the role of Wnt signaling in stem cells and cancers.

  4. Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: Influence of elevated dietary iron

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Raymond W.M. [Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3 (Canada); Andres, Jose A. [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada); Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada)

    2011-03-15

    Recent evidences suggest that dietary cadmium (Cd) uptake likely occurs via the dietary iron (Fe) uptake pathway in freshwater fish, at least in part. The present study investigated the interactive effects of dietary Cd and Fe in juvenile rainbow trout (Oncorhynchus mykiss). Fish were treated for four weeks with four different diets: normal Fe, high Fe, normal Fe plus Cd, and high Fe plus Cd. Physiological parameters, tissue-specific Fe and Cd level, plasma Fe status, and tissue-specific mRNA expression of transferrin, metallothioneins (MT-A and MT-B) and heat shock proteins 70 (HSP70a and HSP70b) were analyzed. Exposure to dietary Cd increased Cd burden in the following order: intestine > kidney > stomach > liver > gill > carcass. Interestingly, high dietary Fe reduced Cd accumulation in the stomach and intestine as well as in the wholebody of fish. Dietary Cd increased hepatic transferrin mRNA expression and total Fe binding capacity in the plasma, indicating the effect of Cd on Fe handling in fish. The mRNA expression of MTs and HSP70s was also increased in various tissues following dietary Cd exposure, however the response profile of different MT and HSP70 genes was not consistent among different tissues. In general, MT-A was more responsive to Cd exposure in the intestine and liver, whereas MT-B was more responsive in the kidney. Similarly, HSP70a expression was more sensitive to Cd exposure than HSP70b, particularly in the intestine. Interestingly, high Fe diet suppressed Cd-induced induction of transferrin, MT and HSP70 genes in various tissues. Overall, our study suggests that elevated dietary Fe can reduce Cd accumulation and ameliorate Cd-induced stress responses in freshwater fish.

  5. Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: influence of elevated dietary iron.

    Science.gov (United States)

    Kwong, Raymond W M; Andrés, Jose A; Niyogi, Som

    2011-03-01

    Recent evidences suggest that dietary cadmium (Cd) uptake likely occurs via the dietary iron (Fe) uptake pathway in freshwater fish, at least in part. The present study investigated the interactive effects of dietary Cd and Fe in juvenile rainbow trout (Oncorhynchus mykiss). Fish were treated for four weeks with four different diets: normal Fe, high Fe, normal Fe plus Cd, and high Fe plus Cd. Physiological parameters, tissue-specific Fe and Cd level, plasma Fe status, and tissue-specific mRNA expression of transferrin, metallothioneins (MT-A and MT-B) and heat shock proteins 70 (HSP70a and HSP70b) were analyzed. Exposure to dietary Cd increased Cd burden in the following order: intestine>kidney>stomach>liver>gill>carcass. Interestingly, high dietary Fe reduced Cd accumulation in the stomach and intestine as well as in the wholebody of fish. Dietary Cd increased hepatic transferrin mRNA expression and total Fe binding capacity in the plasma, indicating the effect of Cd on Fe handling in fish. The mRNA expression of MTs and HSP70s was also increased in various tissues following dietary Cd exposure, however the response profile of different MT and HSP70 genes was not consistent among different tissues. In general, MT-A was more responsive to Cd exposure in the intestine and liver, whereas MT-B was more responsive in the kidney. Similarly, HSP70a expression was more sensitive to Cd exposure than HSP70b, particularly in the intestine. Interestingly, high Fe diet suppressed Cd-induced induction of transferrin, MT and HSP70 genes in various tissues. Overall, our study suggests that elevated dietary Fe can reduce Cd accumulation and ameliorate Cd-induced stress responses in freshwater fish.

  6. Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium-induced changes in Padina tetrastromatica (Hauck)

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, L.; PrabhaDevi; DivyaShridhar, M.P.; Naik, C.G.

    ions in the walls. Agricultural and Biological Chemistry, 38:343–8. Murata, I., Hirano, T., Saeki, Y. and Nakagawa, S. 1970. Cadmium enteropathy, renal osteomalacia (“Ita-Ita’’ disease in Japan). Bull de la Soc. Internationale de Chirurgie, 1..., W.C. 1999. Brown algae species as biomonitors of Zn and Cd at Sepetiba Bay, Rio de Janeiro, Brazil. Mar. Environ. Res., 48:213–24. (ATSDR) Agency for Toxic Substances and Disease Registry. 1999. Toxicological Profiles, U.S. Department of Health...

  7. 壳聚糖对镉致小鼠睾丸损伤的干预作用%Intervention of chitosan on cadmium induced testicle injury in mice

    Institute of Scientific and Technical Information of China (English)

    徐光翠; 高启禹; 赵英政; 张合喜

    2013-01-01

    目的 探讨壳聚糖对镉致小鼠睾丸损伤的干预作用.方法 50只健康昆明种雄性小鼠,随机分为5组,即对照组,单纯镉染毒组,壳聚糖50、150、450 mg/kg 3个剂量干预组.壳聚糖干预组分别灌胃50、150、450 mg/kg壳聚糖,对照组和单纯镉染毒组灌胃蒸馏水.2h后单纯镉染毒组和各剂量壳聚糖干预组腹腔注射氯化镉0.8 mg/kg,对照组腹腔注射蒸馏水.连续14 d.末次染毒后处死动物,剖取附睾和睾丸,分别测定精子畸形率、睾丸超氧化物歧化酶(SOD)活力和丙二醛(MDA)含量.结果 小鼠染毒14 d后,各处理组小鼠精子畸形率明显升高,与对照组比较,差异有统计学意义(P<0.05);睾丸SOD活力明显下降,其中单纯镉染毒组与对照组比较,差异有统计学意义(P<0.05);其余各剂量壳聚糖干预组与对照组比较,差异均无统计学意义(P>0.05).MDA含量明显升高,与对照组比较,单纯镉染毒组、50和150mg/kg壳聚糖干预组差异有统计学意义(P<0.05).随着壳聚糖摄入剂量的逐渐升高,小鼠精子畸形率有所降低,睾丸SOD活力有所升高,MDA含量有所下降,与单纯镉染毒组比较,差异均有统计学意义(P<0.05).结论 壳聚糖对镉致小鼠睾丸损伤有一定的干预作用.%Objective To explore the intervention of chitosan on cadmium induced testicle injury in mice.Methods 50 Kunming male mice were randomly divided into 5 groups including the control group,cadmium alone exposed group and 3 different dosages of chitosan intervention groups (50,150 and 450 mg/kg of chitosan).50,150 and 450 mg/kg of chitosan were instilled into intervention groups respectively.The control group and cadmium alone exposed group were instilled with water.Two hours later the cadmium alone exposed group and three chitosan intervention groups were intraperitoneally injected with CdCl2 solution of 0.8 mg/kg.The control group was given intraperitoneally injection with distilled water.All the

  8. Effect of exogenous TGF-β1 on the cadmium-induced nephrotoxicity by inhibiting apoptosis of proximal tubular cells through PI3K-AKT-mTOR signaling pathway.

    Science.gov (United States)

    Huang, Minyi; Su, Li; Yang, Limin; Zhu, Liangliang; Liu, Zhaowen; Duan, Renyan

    2017-03-22

    Heavy metal polluted soils have been a serious problem for the global ecological balance and people's health. Cadmium (Cd), one of the heavy metals, could induce apoptosis of proximal tubular cells in many experimental models and lead to damage the human kidney. Here, we reported a potent chemokine TGF-β1 which could ameliorate cadmium-induced nephrotoxicity. Interestingly, western blotting and TUNEL staining assays indicated that PI3K-AKT-mTOR signaling pathway was involved in the protective mechanism of TGF-β1 in vitro and in vivo. Moreover, TGF-β1 could alleviate Cd-induced nephrotoxicity by inhibiting apoptosis of proximal tubular cells through detecting the level of caspase 3, 8 and 9. Therefore, up-regulation of exogenous TGF-β1 may be a potential strategy to reverse cadumium-induced nephrotoxicity.

  9. A truncated Wnt7a retains full biological activity in skeletal muscle

    Science.gov (United States)

    von Maltzahn, Julia; Zinoviev, Radoslav; Chang, Natasha C.; Bentzinger, C. Florian; Rudnicki, Michael A.

    2013-11-01

    Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.

  10. Nanoparticle-Mediated Expression of a Wnt Pathway Inhibitor Ameliorates Ocular Neovascularization

    Science.gov (United States)

    Wang, Zhongxiao; Cheng, Rui; Lee, Kyungwon; Puneet, Tyagi; Ding, Lexi; Kompella, Uday B.; Chen, Jing; Xu, Xun; Ma, Jian-xing

    2015-01-01

    Objective The deficiency of very low-density lipoprotein receptor (VLDLR) resulted in Wnt signaling activation and neovascularization (NV) in the retina. The present study sought to determine if the VLDLR extracellular domain (VLN) is responsible for the inhibition of Wnt signaling in ocular tissues. Approach and Results A plasmid expressing the soluble VLN was encapsulated with poly (lactide-co-glycolide acid) (PLGA) to form VLN nanoparticles (VLN-NP). Nanoparticles containing a plasmid expressing the low-density lipoprotein receptor extracellular domain (LN-NP) were used as negative control. MTT, modified Boyden chamber and Matrigel (™) assays were used to evaluate the inhibitory effect of VLN-NP on Wnt3a-stimulated endothelial cell (EC) proliferation, migration and tube formation. Vldlr−/− mice, oxygen-induced retinopathy (OIR) and alkali burn-induced corneal NV models were used to evaluate the effect of VLN-NP on ocular NV. Wnt reporter mice (BAT-gal), Western blotting and luciferase assay were used to evaluate Wnt pathway activity. Our results showed that VLN-NP specifically inhibited Wnt3a-induced EC proliferation, migration and tube formation. Intravitreal injection of VLN-NP inhibited abnormal NV in Vldlr−/−, OIR and alkali burn-induced corneal NV models, compared with LN-NP. VLN-NP significantly inhibited the phosphorylation of LRP6, the accumulation of β-catenin and the expression of VEGF in vivo and in vitro. Conclusions Taken together, these results suggest that the soluble VLN is a negative regulator of the Wnt pathway and has anti-angiogenic activities. Nanoparticle-mediated expression of VLN may thus represent a novel therapeutic approach to treat pathologic ocular angiogenesis and potentially other vascular diseases impacted by Wnt signaling. PMID:25657312

  11. Murine strain differences and the effects of zinc on cadmium concentrations in tissues after acute cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    King, L.M. [ARS USDA, Germplasm and Gamete Physiology Lab., Beltsville, MD (United States); Anderson, M.B. [Dept. of Anatomy, Tulane Univ. School of Medicine, New Orleans, LA (United States); Sikka, S.C. [Dept. of Urology, Tulane Univ. School of Medicine, New Orleans, LA (United States); George, W.J. [Dept. of Pharmacology, Tulane Univ. School of Medicine, New Orleans, LA (United States)

    1998-10-01

    The role of strain differences in cadmium tissue distribution was studied using sensitive (129/J) and resistant (A/J) mice. These murine strains have previously been shown to differ in their susceptibility to cadmium-induced testicular toxicity. Cadmium concentration was measured in testis, epididymis, seminal vesicle, liver, and kidney at 24 h after cadmium chloride exposure (4, 10, and 20 {mu}mol/kg CdCl{sub 2}). The 129/J mice exhibited a significant increase in cadmium concentration in testis, epididymis, and seminal vesicle at all cadmium doses used, compared to A/J mice. However, cadmium concentrations in liver and kidney were not different between the strains, at any dose, indicating that cadmium uptake is similar in these organs at 24 h. These murine strains demonstrate similar hepatic and renal cadmium uptake but significantly different cadmium accumulation in the reproductive organs at 24 h. The mechanism of the protective effect of zinc on cadmium toxicity was studied by assessing the impact of zinc acetate (ZnAc) treatment on cadmium concentrations in 129/J mice after 24 h. Zinc pretreatment (250 {mu}mol/kg ZnAc), given 24 h prior to 20 {mu}mol/kg CdCl{sub 2} administration, significantly decreased the amount of cadmium in the testis, epididymis, and seminal vesicle of 129/J mice, and significantly increased the cadmium content of the liver after 24 h. Cadmium levels in the kidney were unaffected at this time. Zinc pretreatment also prevented the cadmium-induced decrease in testicular sperm concentration and epididymal sperm motility seen in 129/J mice. These findings suggest that the differences in the two murine strains may be attributed partly to the differential accumulation of cadmium in murine gonads. This may be caused by strain differences in the specificity of cadmium transport mechanisms. The protective role of zinc in cadmium-induced testicular toxicity in the sensitive strain may be due to an interference in the cadmium uptake by susceptible

  12. β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+ pathway in xenopus gastrulation.

    Directory of Open Access Journals (Sweden)

    Katharina Seitz

    Full Text Available β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca(2+ cascades. Wnt/Planar Cell Polarity and Wnt/Ca(2+ pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca(2+ signaling cascade upstream of Protein Kinase C (PKC and Ca(2+/Calmodulin-dependent Protein Kinase II (CamKII. We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca(2+ signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.

  13. Impact of UV-B on drought- or cadmium-induced changes in the fatty acid composition of membrane lipid fractions in wheat.

    Science.gov (United States)

    Gondor, Orsolya Kinga; Szalai, Gabriella; Kovács, Viktória; Janda, Tibor; Pál, Magda

    2014-10-01

    UV-B radiation may have either a positive or negative impact under the same conditions in wheat, depending on the type of secondary abiotic stressor: Cd or drought. Supplemental UV-B prevented the wilting and leaf rolling induced by PEG treatment. In contrast, combined UV-B and Cd treatment resulted in pronounced oxidative stress. The opposite effect of UV-B radiation in the case of drought or cadmium stress may be related to the alteration induced in the fatty acid composition. UV-B caused changes in the unsaturation of leaf phosphatidylglycerol fractions, and the accumulation of flavonoid in the leaves may prevent the stress induced by subsequent drought treatment. However it resulted in pronounced injury despite the increased flavonoid content in roots exposed to Cd. This was manifested in a drastic decrease in the unsaturation of the leaf monogalactosyldiacylglycerol and the root phosphatidylglycerol and digalactosyldiacylglycerol fractions. Data on the flavonoid content and fatty acid composition showed that oxidative stress was induced by drought in the leaves, by Cd in the roots, and interestingly, by UV-B radiation in both the leaves and roots. The additive effect of the combined stresses was also detected in the roots. The results presented here suggest a relationship between the capacity of the plant to remodel the fatty acid composition and its resistance to various stress factors.

  14. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/− or Rb1+/− backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling

    Science.gov (United States)

    Almeida, Madson Q.; Muchow, Michael; Boikos, Sosipatros; Bauer, Andrew J.; Griffin, Kurt J.; Tsang, Kit Man; Cheadle, Chris; Watkins, Tonya; Wen, Feng; Starost, Matthew F.; Bossis, Ioannis; Nesterova, Maria; Stratakis, Constantine A.

    2010-01-01

    PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a+/− mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a+/− mice when bred within the Rb1+/− or Trp53+/− backgrounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a+/− Trp53+/− mice developed more sarcomas than Trp53+/− mice (P < 0.05) and Prkar1a+/− Rb1+/− mice grew more (and larger) pituitary and thyroid tumors than Rb1+/− mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a+/− mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT–PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a+/− mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling activation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects. PMID:20080939

  15. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling.

    Science.gov (United States)

    Efthymiou, Anastasia G; Steiner, Joe; Pavan, William J; Wincovitch, Stephen; Larson, Denise M; Porter, Forbes D; Rao, Mahendra S; Malik, Nasir

    2015-03-01

    Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1.

  16. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling.

    Science.gov (United States)

    Schwarz-Romond, Thomas; Asbrand, Christian; Bakkers, Jeroen; Kühl, Michael; Schaeffer, Hans-Joerg; Huelsken, Jörg; Behrens, Jürgen; Hammerschmidt, Matthias; Birchmeier, Walter

    2002-08-15

    Wnt signals control decisive steps in development and can induce the formation of tumors. Canonical Wnt signals control the formation of the embryonic axis, and are mediated by stabilization and interaction of beta-catenin with Lef/Tcf transcription factors. An alternative branch of the Wnt pathway uses JNK to establish planar cell polarity in Drosophila and gastrulation movements in vertebrates. We describe here the vertebrate protein Diversin that interacts with two components of the canonical Wnt pathway, Casein kinase Iepsilon (CKIepsilon) and Axin/Conductin. Diversin recruits CKIepsilon to the beta-catenin degradation complex that consists of Axin/Conductin and GSK3beta and allows efficient phosphorylation of beta-catenin, thereby inhibiting beta-catenin/Tcf signals. Morpholino-based gene ablation in zebrafish shows that Diversin is crucial for axis formation, which depends on beta-catenin signaling. Diversin is also involved in JNK activation and gastrulation movements in zebrafish. Diversin is distantly related to Diego of Drosophila, which functions only in the pathway that controls planar cell polarity. Our data show that Diversin is an essential component of the Wnt-signaling pathway and acts as a molecular switch, which suppresses Wnt signals mediated by the canonical beta-catenin pathway and stimulates signaling via JNK.

  17. Wnt3a regulates tumor necrosis factor-α-stimulated interleukin-6 release in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Adachi, Seiji; Matsushima-Nishiwaki, Rie; Kato, Kenji; Minamitani, Chiho; Otsuka, Takanobu; Kozawa, Osamu

    2011-01-01

    It is recognized that Wnt pathways regulate bone metabolism. We have previously shown that tumor necrosis factor-α (TNF-α) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3-kinase)/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TNF-α-stimulated IL-6 synthesis in these cells. Wnt3a, which alone did not affect the IL-6 levels, significantly suppressed the TNF-α-stimulated IL-6 release. Lithium Chloride (LiCl), which is an inhibitor of GSK3β, markedly reduced the TNF-α-stimulated IL-6 release, similar to the results with Wnt3a. The suppression by Wnt3a or LiCl was also observed in the intracellular protein levels of IL-6 elicited by TNF-α. Wnt3a failed to affect the TNF-α-induced phosphorylation of p44/p42 MAP kinase, Akt, IκB or NFκB. Either Wnt3a or LiCl failed to reduce, rather increased the IL-6 mRNA expression stimulated by TNF-α. Lactacystin, a proteasome inhibitor, and bafilomycin A1, a lysosomal protease inhibitor, significantly restored the suppressive effect of Wnt3a on TNF-α-stimulated IL-6 release. Taken together, our results strongly suggest that Wnt3a regulates IL-6 release stimulated by TNF-α at post-transcriptional level in osteoblasts.

  18. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells

    Science.gov (United States)

    Ploper, Diego; Taelman, Vincent F.; Robert, Lidia; Perez, Brian S.; Titz, Björn; Chen, Hsiao-Wang; Graeber, Thomas G.; von Euw, Erika; Ribas, Antoni; De Robertis, Edward M.

    2015-01-01

    Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer. PMID:25605940

  19. Cadmium and zinc relationships.

    Science.gov (United States)

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  20. A Second WNT for Old Drugs: Drug Repositioning against WNT-Dependent Cancers

    OpenAIRE

    Kamal Ahmed; Shaw, Holly V.; Alexey Koval; Katanaev, Vladimir L.

    2016-01-01

    Aberrant WNT signaling underlies cancerous transformation and growth in many tissues, such as the colon, breast, liver, and others. Downregulation of the WNT pathway is a desired mode of development of targeted therapies against these cancers. Despite the urgent need, no WNT signaling-directed drugs currently exist, and only very few candidates have reached early phase clinical trials. Among different strategies to develop WNT-targeting anti-cancer therapies, repositioning of existing drugs p...

  1. Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo.

    Science.gov (United States)

    Andersson, Emma R; Prakash, Nilima; Cajanek, Lukas; Minina, Eleonora; Bryja, Vitezslav; Bryjova, Lenka; Yamaguchi, Terry P; Hall, Anita C; Wurst, Wolfgang; Arenas, Ernest

    2008-01-01

    Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.

  2. Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo.

    Directory of Open Access Journals (Sweden)

    Emma R Andersson

    Full Text Available Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1 precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (midbrain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.

  3. Effects of cadmium-induced oxidative stress on growth and nitrogen assimilation in blackgram [Vigna mungo (L. Hepper

    Directory of Open Access Journals (Sweden)

    Mobin Mohammad

    2013-01-01

    Full Text Available Cadmium (Cd accumulation, oxidative damage, and nitrogen metabolism were studied in roots and leaves of 30-d-old blackgram plants [Vigna mungo (L. Hepper], grown in a mixture of soil and compost (3:1 with different Cd concentrations. Significant reductions in both root and shoot dry weight were noted. The concentration of Cd in roots and leaves increased with increasing Cd levels. The level of lipid peroxidation elevated with a consequent increase in H2O2 content under Cd stress in both plant organs. The activity of enzymes mediating the nitrogen assimilation in roots and leaves was greatly reduced in the presence of Cd, except glutamate dehydrogenase (GDH which showed a significant increase.

  4. Hwanggunchungyitang prevents cadmium-induced ototoxicity through suppression of the activation of caspase-9 and extracellular signal-related kinase in auditory HEI-OC1 cells.

    Science.gov (United States)

    Kim, Su-Jin; Shin, Bong-Gi; Choi, In-Young; Kim, Dong-Hyun; Kim, Min-Cheol; Myung, Noh-Yil; Moon, Phil-Dong; Lee, Jeong-Han; An, Hyo-Jin; Kim, Na-Hyung; Lee, Joo-Young; So, Hong-Seob; Park, Rae-Kil; Jeong, Hyun-Ja; Um, Jae-Young; Kim, Hyung-Min; Hong, Seung-Heon

    2009-02-01

    Hwanggunchungyitang (HGCYT) is a newly designed herbal drug formula for the purpose of treating auditory diseases. A number of heavy metals have been associated with toxic effects to the peripheral or central auditory system. Cadmium (Cd(2+)) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. However, the auditory effect of Cd(2+) is not poorly understood. The purpose of the present study was to investigate whether HGCYT prevent the ototoxic effects induced by Cd(2+) in auditory cell line, HEI-OC1. HGCYT inhibited the cell death, reactive oxygen species generation (ROS), activation of caspase-9, and extracellular signal-related kinase (ERK) induced by Cd(2+). In addition, we observed that cochlear hair cells in middle turn were damaged by Cd(2+). However, HGCYT prevented the destruction of hair cell arrays of the rat primary organ of Corti explants in the presence of Cd(2+). These results support the notion that ROS are involved in Cd(2+) ototoxicity and suggest HGCYT therapeutic usefulness, against Cd(2+)-induced activation of caspase-9 and ERK.

  5. Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa.

    Science.gov (United States)

    Cui, Weiti; Fu, Guangqing; Wu, Honghong; Shen, Wenbiao

    2011-02-01

    Following previous findings that cadmium (Cd) induces heme oxygenase-1 (HO1) gene expression in alfalfa seedling roots, we now show that the decreased glutathione (GSH) and ascorbic acid (AsA) contents, induction of HO-1 gene expression and its protein level by Cd was mimicked by a GSH depletor diethylmaleate (DEM). Meanwhile, above Cd- or DEM-induced decreased GSH content followed by HO-1 up-regulation could be strengthened or reversed differentially by the application of a selective inhibitor of GSH biosynthesis L: -buthionine-sulfoximine (BSO), or exogenous GSH and AsA, respectively. The antioxidative behavior of HO-1 induction was further confirmed by histochemical staining for the detection of loss of membrane integrity in a short period of treatment time. Additionally, the induction of HO-1 transcript was inhibited by the transcriptional inhibitor actinomycin D (ActD) or protein synthesis inhibitor cycloheximide (CX, especially). In contrast, the level of HO-2 transcript did not change upon various treatments. Together, above results suggested that Cd-induced up-regulation of HO-1 gene expression is associated with GSH depletion, which is at least existing transcriptional regulation level, thus leading to enhanced antioxidative capability transiently.

  6. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  7. Application of Cold-Induced Aggregation Microextraction Based on Ionic Liquid for Determination of Trace Amount of Cadmium and Lead in Powder Milk Samples

    Directory of Open Access Journals (Sweden)

    Mostafa Delavar

    2014-06-01

    Full Text Available Background: cold-induced aggregation micro extraction based (CIAME based on ionic liquid was used as a rapid and simple method for determination trace amounts of cadmium and lead in milk powder by analysis with flame atomic absorption spectrometry (FAAS. Methods: Sample solution containing of Cd2+ and Pb2+ in dynamic range, phosphate buffer (pH = 9, 3 ml, diethyl dithiocarbamate (complexing agent, Triton X-100, NaPF6 ,[HMIM][PF6] (extraction solvent were transferred into conical bottom glass tube. Sample was kept in a thermostated bath and then ice bath; a cloudy solution was formed. Two phases separated by centrifugation. After removing of aqueous phase, IL-phase was dissolved in methanol and diluted was injected to the FAAS by microsampler introduction. Results: ILs, containing imidazoliumcation and hexafluoro phosphate anion, [HMIM][PF6](70mg, 200 mg NaPF6 ,0.01 mol.L-1 DDTC, 0.015% of Triton X-100 obtained, pH 9 and centrifuge time; 5 min (4000 rmp was chosen. Detection limit were obtained 0.12 µgL-1, 1.61µgL-1, RSD 0.95%, 2.2% and enrichment factor of 70, 67 for Cd and Pb, respectively. Conclusion: CIAME allows determination of cadmium and lead in real samples in a simple, rapid and safe method with only a small amount of ionic liquid was used. In comparison with the organic solvent extraction, CIAME is much safer and the determination of species in high ionic strength samples is possible.

  8. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1

    Directory of Open Access Journals (Sweden)

    Purna A. Joshi

    2015-07-01

    Full Text Available Systemic and local signals must be integrated by mammary stem and progenitor cells to regulate their cyclic growth and turnover in the adult gland. Here, we show RANK-positive luminal progenitors exhibiting WNT pathway activation are selectively expanded in the human breast during the progesterone-high menstrual phase. To investigate underlying mechanisms, we examined mouse models and found that loss of RANK prevents the proliferation of hormone receptor-negative luminal mammary progenitors and basal cells, an accompanying loss of WNT activation, and, hence, a suppression of lobuloalveologenesis. We also show that R-spondin1 is depleted in RANK-null progenitors, and that its exogenous administration rescues key aspects of RANK deficiency by reinstating a WNT response and mammary cell expansion. Our findings point to a novel role of RANK in dictating WNT responsiveness to mediate hormone-induced changes in the growth dynamics of adult mammary cells.

  9. WNT7A Regulation by miR-15b in Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    James A MacLean

    Full Text Available WNT signaling is well known to play an important role in the regulation of development, cell proliferation and cell differentiation in a wide variety of normal and cancerous tissues. Despite the wealth of knowledge concerning when and where various WNT genes are expressed and downstream events under their control, there is surprisingly little published evidence of how they are regulated. We have recently reported that aberrant WNT7A is observed in serous ovarian carcinomas, and WNT7A is the sole ligand accelerating ovarian tumor progression through CTNNB1 (β-catenin/TCF signaling in the absence of CTNNB1 mutations. In the present study, we report that WNT7A is a direct target of miR-15b in ovarian cancer. We showed that a luciferase reporter containing the putative binding site of miR-15b in the WNT7A 3'-UTR was significantly repressed by miR-15b. Mutation of the putative binding site of miR-15b in the WNT7A 3'-UTR restored luciferase activity. Furthermore, miR-15b was able to repress increased levels of TOPFLASH activity by WNT7A, but not those induced by S33Y. Additionally, miR-15b dose-dependently decreased WNT7A expression. When we evaluated the prognostic impact of WNT7A and miR-15b expression using TCGA datasets, a significant inverse correlation in which high-expression of WNT7A and low-expression of miR-15b was associated with reduced survival rates of ovarian cancer patients. Treatment with decitabine dose-dependently increased miR-15b expression, and silencing of DNMT1 significantly increased miR-15b expression. These results suggest that WNT7A is post-transcriptionally regulated by miR-15b, which could be down-regulated by promoter hypermethylation, potentially via DNMT1, in ovarian cancer.

  10. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  11. Hepatoprotective activity of Moringa oleifera against cadmium toxicity in rats

    Directory of Open Access Journals (Sweden)

    Reetu Toppo

    2015-04-01

    Full Text Available Aim: The present investigation has been conducted to evaluate the hepatoprotective activity of Moringa oleifera against cadmium-induced toxicity in rats. Materials and Methods: For this study, 18 Wistar albino rats were taken. Control group, Group I rats were given cadmium chloride @ 200 ppm per kg and Group II rats were treated with M. oleifera extract @ 500 mg/kg along with cadmium chloride @ 200 ppm per kg (daily oral for 28 days. On 29th day, animals were slaughtered and various parameters were determined. Serum biomarkers, oxidative stress parameters, histomorphological examination were carried out with estimation of cadmium concentration in liver tissues. Results: Oral administration of cadmium chloride @ 200 ppm/kg for 28 days resulted in a significant increase in aspartate aminotransferase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP, significant (p≤0.01 increase of lipid peroxidation (LPO and decrease in superoxide dismutase (SOD, and increase in cadmium accumulation in liver. Treatment with M. oleifera @ 500 mg/kg significantly (p<0.01 decreased the elevated ALP, AST, ALT, LPO levels and increase in SOD levels, and as compared to cadmium chloride treated group. However, there was no significant difference in cadmium concentration in liver when compared with cadmium chloride treated group. Conclusion: The study conclude that supplementation of M. oleifera (500 mg/kg, daily oral for 28 days has shown protection against cadmium-induced hepatotoxicity.

  12. Wnt signaling and colon carcinogenesis: Beyond APC

    Directory of Open Access Journals (Sweden)

    Rani Najdi

    2011-01-01

    Full Text Available Activation of the Wnt signaling pathway via mutation of the adenomatous polyposis coli gene (APC is a critical event in the development of colon cancer. For colon carcinogenesis, however, constitutive signaling through the canonical Wnt pathway is not a singular event. Here we review how canonical Wnt signaling is modulated by intracellular LEF/TCF composition and location, the action of different Wnt ligands, and the secretion of Wnt inhibitory molecules. We also review the contributions of non-canonical Wnt signaling and other distinct pathways in the tumor micro environment that cross-talk to the canonical Wnt pathway and thereby influence colon cancer progression. These ′non-APC′ aspects of Wnt signaling are considered in relation to the development of potential agents for the treatment of patients with colon cancer. Regulatory pathways that influence Wnt signaling highlight how it might be possible to design therapies that target a network of signals beyond that of APC and β-catenin.

  13. Hipk2 and PP1c Cooperate to Maintain Dvl Protein Levels Required for Wnt Signal Transduction

    Directory of Open Access Journals (Sweden)

    Nobuyuki Shimizu

    2014-09-01

    Full Text Available The phosphoprotein Dishevelled (Dvl is a common essential component of Wnt/β-catenin and Wnt/planar cell polarity (PCP signaling pathways. However, the regulation and significance of Dvl phosphorylation are not fully understood. Here, we show that homeodomain-interacting protein kinase 2 (Hipk2 facilitates protein phosphatase 1 catalytic subunit (PP1c-mediated dephosphorylation of Dvl via its C-terminal domain and that this dephosphorylation blocks ubiquitination and consequent degradation mediated by the E3 ubiquitin ligase Itch, which targets the phosphorylated form of Dvl proteins. Inhibition of Hipk2 or PP1c function reduces Dvl protein levels and suppresses Wnt/β-catenin and Wnt/PCP pathway-dependent events in mammalian cells and zebrafish embryos, suggesting that Hipk2 and PP1c are essential for maintaining Dvl protein levels that are sufficient to activate Wnt signaling. We also show that Wnt-3a, a Wnt/β-catenin ligand, induces dissociation of the Dvl-Hipk2-PP1c complex and Dvl degradation under high-cell-density conditions. This regulation may be a negative feedback mechanism that fine-tunes Wnt/β-catenin signaling.

  14. Cadmium inhalation and male reproductive toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, H.A.; Mast, T.J. (Battelle Pacific Northwest Laboratories, Richland, WA (USA))

    1990-01-01

    Cadmium is a highly toxic element that is cumulative and has a long biological half-life in mammals. The severe toxicity of cadmium in man has been known for more than 100 years. Despite the knowledge that cadmium is toxic, only 20 human cases of poisoning via ingestion were recorded prior to 1941, whereas in the ensuing five-year period more than 680 cases of cadmium poisonings from accidental oral ingestion of this metal were documented. Some of the recorded effects of exposure to cadmium in laboratory animals include renal tubular damage, placental and testicular necrosis, structural and functional liver damage, osteomalacia, testicular tumors, teratogenic malformations, anemia, hypertension, pulmonary edema, chronic pulmonary emphysema, and induced deficiencies of iron, copper, and zinc. Some of these effects have also been observed in human after accidental exposures to cadmium oxide fumes and are characteristic of the syndrome described in Japan as Itai Itai disease in which ingestion of cadmium is the inciting chemical.134 references.

  15. Avian facial morphogenesis is regulated by c-Jun N-terminal kinase/planar cell polarity (JNK/PCP) wingless-related (WNT) signaling.

    Science.gov (United States)

    Geetha-Loganathan, Poongodi; Nimmagadda, Suresh; Fu, Katherine; Richman, Joy M

    2014-08-29

    Wingless-related proteins (WNTs) regulate extension of the central axis of the vertebrate embryo (convergent extension) as well as morphogenesis of organs such as limbs and kidneys. Here, we asked whether WNT signaling directs facial morphogenesis using a targeted approach in chicken embryos. WNT11 is thought to mainly act via β-catenin-independent pathways, and little is known about its role in craniofacial development. RCAS::WNT11 retrovirus was injected into the maxillary prominence, and the majority of embryos developed notches in the upper beak or the equivalent of cleft lip. Three-dimensional morphometric analysis revealed that WNT11 prevented lengthening of the maxillary prominence, which was due in part to decreased proliferation. We next determined, using a series of luciferase reporters, that WNT11 strongly induced JNK/planar cell polarity signaling while repressing the β-catenin-mediated pathway. The activation of the JNK-ATF2 reporter was mediated by the DEP domain of Dishevelled. The impacts of altered signaling on the mesenchyme were assessed by implanted Wnt11- or Wnt3a-expressing cells (activates β-catenin pathway) into the maxillary prominence or by knocking down endogenous WNT11 with RNAi. Host cells were attracted to Wnt11 donor cells. In contrast, cells exposed to Wnt3a or the control cells did not migrate. Cells in which endogenous WNT11 was knocked down were more oriented and shorter than those exposed to exogenous WNT11. The data suggest that JNK/planar cell polarity WNT signaling operates in the face to regulate several morphogenetic events leading to lip fusion.

  16. Probing Wnt Receptor Turnover: A Critical Regulatory Point of Wnt Pathway.

    Science.gov (United States)

    Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Wnt pathways are critical for embryonic development and adult tissue homeostasis in all multicellular animals. Many regulatory mechanisms exist to control proper signaling output. Recent studies suggest that cell surface Wnt receptor level is controlled by ubiquitination, and serve as a critical regulatory point of Wnt pathway activity as it determines the responsiveness of cells to Wnt signal. Here, we describe flow cytometry, cell surface protein biotinylation, and immunofluorescence pulse-chase methods to probe the surface expression, ubiquitination, and internalization of the Wnt receptors FZD and LRP6.

  17. Polymorphisms in WNT6 and WNT10A and Colorectal Adenoma Risk

    OpenAIRE

    Galbraith, Rachel L.; Poole, Elizabeth M; Duggan, David; Muehling, Jill; Hsu, Li; Makar, Karen; Xiao, Liren; Potter, John D.; Ulrich, Cornelia M.

    2011-01-01

    The WNT/β-catenin signaling pathway upregulates transcription of genes involved in cell proliferation and cancer progression; it has been implicated in colorectal adenoma formation. To date, no studies have examined polymorphisms in WNT genes or WNT gene–environment interactions in relation to adenoma risk. Within a colonoscopy-based case-control study of 628 adenoma cases and 516 polyp-free controls, we analyzed two tagSNPs in WNT6 (rs6747776 G > C, rs6754599 G > C) and WNT10A (rs7349332 G >...

  18. Whole-body aerosol exposure of cadmium chloride (CdCl2) and tetrabromobisphenol A (TBBPA) induced hepatic changes in CD-1 male mice.

    Science.gov (United States)

    Chen, Yuanhong; Hu, Yabing; Liu, Shuyun; Zheng, Huiying; Wu, Xiaojuan; Huang, Zhengyu; Li, Hao; Peng, Baoqi; Long, Jinlie; Pan, Bishu; Huang, Changjiang; Dong, Qiaoxiang

    2016-11-15

    Cadmium (Cd) and tetrabromobisphenol A (TBBPA) are two prevalent contaminants in e-waste recycling facilities. However, the potential adversely health effect of co-exposure to these two types of pollutants in an occupational setting is unknown. In this study, we investigated co-exposure of these two pollutants on hepatic toxicity in CD-1 male mice through a whole-body aerosol inhalation route. Specifically, mice were exposed to solvent control (5% DMSO), Cd (8μg/m(3)), TBBPA (16μg/m(3)) and Cd/TBBPA mixture for 8h/day and 6days a week for 60 days. Hepatic changes include increased organ weight, focal necrosis, and elevated levels of liver enzymes in serum. These changes were most severe in mice exposed to TBBPA, followed by Cd/TBBPA mixture and Cd. These chemicals also led to suppressed antioxidant defensive mechanisms and increased oxidative stress. Further, these chemicals induced gene expression of apoptosis-related genes, activated genes encoding for phase I detoxification enzymes and inhibited genes encoding for phase II detoxification enzymes. These findings indicate that the hepatic damages induced by subchronic aerosol exposure of Cd and TBBPA may result from the oxidative damages caused by excessive ROS production when these chemicals were metabolized in the liver.

  19. First principles phase transition, elastic properties and electronic structure calculations for cadmium telluride under induced pressure: density functional theory, LDA, GGA and modified Becke-Johnson potential

    Science.gov (United States)

    Kabita, Kh; Maibam, Jameson; Indrajit Sharma, B.; Brojen Singh, R. K.; Thapa, R. K.

    2016-01-01

    We report first principles phase transition, elastic properties and electronic structure for cadmium telluride (CdTe) under induced pressure in the light of density functional theory using the local density approximation (LDA), generalised gradient approximation (GGA) and modified Becke-Johnson (mBJ) potential. The structural phase transition of CdTe from a zinc blende (ZB) to a rock salt (RS) structure within the LDA calculation is 2.2 GPa while that within GGA is found to be at 4 GPa pressure with a volume collapse of 20.9%. The elastic constants and parameters (Zener anisotropy factor, Shear modulus, Poisson’s ratio, Young’s modulus, Kleinmann parameter and Debye’s temperature) of CdTe at different pressures of both the phases have been calculated. The band diagram of the CdTe ZB structure shows a direct band gap of 1.46 eV as predicted by mBJ calculation which gives better results in close agreement with experimental results as compared to LDA and GGA. An increase in the band gap of the CdTe ZB phase is predicted under induced pressure while the metallic nature is retained in the CdTe RS phase.

  20. Cadmium-induced calcium release and prostaglandin E[sub 2] production in neonatal mouse calvaria are dependent on cox-2 induction and protein kinase C activation

    Energy Technology Data Exchange (ETDEWEB)

    Romare, A. (Department of Pharmacology, Faculty of Health Sciences, Univ. of Linkoeping (Sweden)); Lundholm, C.E. (Department of Pharmacology, Univ. of Linkoeping (Sweden) Astra Haessle AB, Regulatory Affairs, Moendal (Sweden))

    The mechanisms by which cadmium (Cd) causes skeletal impairment have not been fully clarified. Release of calcium from neonatal mouse calvaria in organ culture is stimulated by submicromolar concentrations of Cd, an effect that is associated with increased production of prostaglandin E[sub 2] (PGE[sub 2]). The prostaglandin-synthesising enzyme cyclooxygenase (cox) exists in two forms, one constitutive (cox-1) and the other inducible (cox-2). Cox-2 can be induced by mitogenic stimuli and inflammatory cytokines, such as parathyroid hormone (PTH), interleukin-1[alpha] and tumour necrosis factor-[alpha]. Cd potently activates protein kinase C (PKC), which in turn induces cox-2 production in several cell types. Our aim was to determine whether Cd-induced Ca release and PGE[sub 2] production in neonatal mouse calvaria involve induction of cox-2 and, if so, to ascertain whether that effect is mediated by activation of PKC. Cd dose-dependently stimulated Ca release from cultured neonatal mouse calvaria, with a maximal effect at 0.4-0.8 [mu]M. Different sensitivity was observed to Cd-induced Ca release between two breeds of mice suggesting that the susceptibility to Cd may be genetically determined. Dexamethasone (10 [mu]M) added to the culture medium abolished the Ca releasing effect of Cd, an effect not overcome by addition of arachidonic acid (10 [mu]M). The cox-2-selective inhibitors NS-398 and DFU and the less selective inhibitor meloxicam, potently impeded Cd-induced Ca release (IC[sub 50] of 1 nM, 41 nM and 7 nM, respectively) and calvarial production of PGE[sub 2]. Cd-induced and phorbol 12-myristate 13-acetate (PMA; 20 nM)-induced Ca release was inhibited by the PKC inhibitor calphostin C (0.5 [mu]M) and by NS-398. The effects of PMA and Cd on Ca release were not additive, suggesting that both operated via the PKC pathway. We suggest that Cd-induced Ca release from neonatal mouse calvaria in culture depends on induction of cox-2 that occurs via the PKC signalling

  1. Cadmium-induced calcium release and prostaglandin E{sub 2} production in neonatal mouse calvaria are dependent on cox-2 induction and protein kinase C activation

    Energy Technology Data Exchange (ETDEWEB)

    Romare, A. [Department of Pharmacology, Faculty of Health Sciences, Univ. of Linkoeping (Sweden); Lundholm, C.E. [Department of Pharmacology, Univ. of Linkoeping (Sweden)]|[Astra Haessle AB, Regulatory Affairs, Moendal (Sweden)

    1999-06-01

    The mechanisms by which cadmium (Cd) causes skeletal impairment have not been fully clarified. Release of calcium from neonatal mouse calvaria in organ culture is stimulated by submicromolar concentrations of Cd, an effect that is associated with increased production of prostaglandin E{sub 2} (PGE{sub 2}). The prostaglandin-synthesising enzyme cyclooxygenase (cox) exists in two forms, one constitutive (cox-1) and the other inducible (cox-2). Cox-2 can be induced by mitogenic stimuli and inflammatory cytokines, such as parathyroid hormone (PTH), interleukin-1{alpha} and tumour necrosis factor-{alpha}. Cd potently activates protein kinase C (PKC), which in turn induces cox-2 production in several cell types. Our aim was to determine whether Cd-induced Ca release and PGE{sub 2} production in neonatal mouse calvaria involve induction of cox-2 and, if so, to ascertain whether that effect is mediated by activation of PKC. Cd dose-dependently stimulated Ca release from cultured neonatal mouse calvaria, with a maximal effect at 0.4-0.8 {mu}M. Different sensitivity was observed to Cd-induced Ca release between two breeds of mice suggesting that the susceptibility to Cd may be genetically determined. Dexamethasone (10 {mu}M) added to the culture medium abolished the Ca releasing effect of Cd, an effect not overcome by addition of arachidonic acid (10 {mu}M). The cox-2-selective inhibitors NS-398 and DFU and the less selective inhibitor meloxicam, potently impeded Cd-induced Ca release (IC{sub 50} of 1 nM, 41 nM and 7 nM, respectively) and calvarial production of PGE{sub 2}. Cd-induced and phorbol 12-myristate 13-acetate (PMA; 20 nM)-induced Ca release was inhibited by the PKC inhibitor calphostin C (0.5 {mu}M) and by NS-398. The effects of PMA and Cd on Ca release were not additive, suggesting that both operated via the PKC pathway. We suggest that Cd-induced Ca release from neonatal mouse calvaria in culture depends on induction of cox-2 that occurs via the PKC signalling

  2. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Science.gov (United States)

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Ti, Dongdong; Tong, Chuan; Hou, Qian; Li, Meirong; Zheng, Jingxi; Liu, Gang

    2017-01-01

    Mesenchymal stem cells (MSCs) can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM) from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs) overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM) components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM) can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  3. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  4. Wnt3a/β-catenin Signaling Pathway Mediates Inhibition of Proliferation of Mesenchymal Stem Cells Induced by Modeled Microgravity%Wnt3a/β-catenin信号通路调节模拟微重力诱导的骨髓间充质干细胞增殖抑制

    Institute of Scientific and Technical Information of China (English)

    杨先炯; 毛新建; 罗庆; 宋关斌

    2016-01-01

    微重力环境对骨髓间充质干细胞(MSCs)的增殖行为起着重要调节作用,但其中的分子机理尚不清楚.采用平行平板旋转培养装置模拟微重力效应,考察了模拟微重力效应下MSCs增殖行为的变化以及Wnt3a/β-catenin信号通路在该过程中的作用.结果发现,模拟微重力效应明显抑制MSCs的增殖行为,下调Wnt3a mRNA的表达,降低细胞质中游离β-catenin,减少β-catenin向细胞核转移,抑制Cyclin D1的表达.结果表明,Wnt3a/β-catenin信号通路可能介导了微重力效应诱导的MSCs增殖抑制.

  5. Dual regulation of cadmium-induced apoptosis by mTORC1 through selective induction of IRE1 branches in unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Hironori Kato

    Full Text Available Cadmium (Cd causes generation of reactive oxygen species (ROS that trigger renal tubular injury. We found that rapamycin, an inhibitor of mTORC1, attenuated Cd-induced apoptosis in renal tubular cells. Knockdown of Raptor, a positive regulator of mTORC1, also had the similar effect. However, rapamycin did not alter generation of ROS, suggesting that mTORC1 is a target downstream of ROS. Indeed, ROS caused activation of mTORC1, which contributed to induction of a selective branch of the unfolded protein response (UPR; i.e., the IRE1 pathway. Although Cd triggered three major UPR pathways, activation of mTORC1 by Cd did not contribute to induction of the PERK-eIF2α and ATF6 pathways. Consistently, knockdown of Raptor caused suppression of JNK without affecting the PERK-eIF2α pathway in Cd-exposed cells. Knockdown of TSC2, a negative regulator of mTORC1, caused activation of mTORC1 and enhanced Cd induction of the IRE1-JNK pathway and apoptosis without affecting other UPR branches. Inhibition of IRE1α kinase led to suppression of JNK activity and apoptosis in Cd-treated cells. Dominant-negative inhibition of JNK also suppressed Cd-induced apoptosis. In contrast, inhibition of IRE1α endoribonuclease activity or downstream XBP1 modestly enhanced Cd-induced apoptosis. In vivo, administration with rapamycin suppressed activation of mTORC1 and JNK, but not eIF2α, in the kidney of Cd-treated mice. It was correlated with attenuation of tubular injury and apoptotic cell death in the tubules. These results elucidate dual regulation of Cd-induced renal injury by mTORC1 through selective induction of IRE1 signaling.

  6. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa.</