WorldWideScience

Sample records for cadmium induces wnt

  1. Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Wolff Natascha A

    2010-05-01

    Full Text Available Abstract Background The class 1 carcinogen cadmium (Cd2+ disrupts the E-cadherin/β-catenin complex of epithelial adherens junctions (AJs and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/β-catenin signaling are known to contribute to carcinogenesis. Results We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC. Cd2+ (25 μM, 3-9 h caused nuclear translocation of β-catenin and triggered a Wnt response measured by TOPflash reporter assays. Cd2+ reduced the interaction of β-catenin with AJ components (E-cadherin, α-catenin and increased binding to the transcription factor TCF4 of the Wnt pathway, which was upregulated and translocated to the nucleus. While Wnt target genes (c-Myc, cyclin D1 and ABCB1 were up-regulated by Cd2+, electromobility shift assays showed increased TCF4 binding to cyclin D1 and ABCB1 promoter sequences with Cd2+. Overexpression of wild-type and mutant TCF4 confirmed Cd2+-induced Wnt signaling. Wnt signaling elicited by Cd2+ was not observed in confluent non-proliferating cells, which showed increased E-cadherin expression. Overexpression of E-cadherin reduced Wnt signaling, PTC proliferation and Cd2+ toxicity. Cd2+ also induced reactive oxygen species dependent expression of the pro-apoptotic ER stress marker and Wnt suppressor CHOP/GADD153 which, however, did not abolish Wnt response and cell viability. Conclusions Cd2+ induces Wnt signaling in PTC. Hence, Cd2+ may facilitate carcinogenesis of PTC by promoting Wnt pathway-mediated proliferation and survival of pre-neoplastic cells.

  2. Mechanisms of cadmium induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Filipic, Metka, E-mail: metka.filipic@nib.si [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana (Slovenia)

    2012-05-01

    Cadmium is an ubiquitous environmental contaminant that represents hazard to humans and wildlife. It is found in the air, soil and water and, due to its extremely long half-life, accumulates in plants and animals. The main source of cadmium exposure for non-smoking human population is food. Cadmium is primarily toxic to the kidney, but has been also classified as carcinogenic to humans by several regulatory agencies. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Cadmium dose not induce direct DNA damage, however it induces increase in reactive oxygen species (ROS) formation, which in turn induce DNA damage and can also interfere with cell signalling. More important seems to be cadmium interaction with DNA repair mechanisms, cell cycle checkpoints and apoptosis as well as with epigenetic mechanisms of gene expression control. Cadmium mediated inhibition of DNA repair mechanisms and apoptosis leads to accumulation of cells with unrepaired DNA damage, which in turn increases the mutation rate and thus genomic instability. This increases the probability of developing not only cancer but also other diseases associated with genomic instability. In the in vitro experiments cadmium induced effects leading to genomic instability have been observed at low concentrations that were comparable to those observed in target organs and tissues of humans that were non-occupationally exposed to cadmium. Therefore, further studies aiming to clarify the relevance of these observations for human health risks due to cadmium exposure are needed.

  3. Mechanisms of cadmium induced genomic instability

    International Nuclear Information System (INIS)

    Filipič, Metka

    2012-01-01

    Cadmium is an ubiquitous environmental contaminant that represents hazard to humans and wildlife. It is found in the air, soil and water and, due to its extremely long half-life, accumulates in plants and animals. The main source of cadmium exposure for non-smoking human population is food. Cadmium is primarily toxic to the kidney, but has been also classified as carcinogenic to humans by several regulatory agencies. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Cadmium dose not induce direct DNA damage, however it induces increase in reactive oxygen species (ROS) formation, which in turn induce DNA damage and can also interfere with cell signalling. More important seems to be cadmium interaction with DNA repair mechanisms, cell cycle checkpoints and apoptosis as well as with epigenetic mechanisms of gene expression control. Cadmium mediated inhibition of DNA repair mechanisms and apoptosis leads to accumulation of cells with unrepaired DNA damage, which in turn increases the mutation rate and thus genomic instability. This increases the probability of developing not only cancer but also other diseases associated with genomic instability. In the in vitro experiments cadmium induced effects leading to genomic instability have been observed at low concentrations that were comparable to those observed in target organs and tissues of humans that were non-occupationally exposed to cadmium. Therefore, further studies aiming to clarify the relevance of these observations for human health risks due to cadmium exposure are needed.

  4. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    International Nuclear Information System (INIS)

    Sakisaka, Yukihiko; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2015-01-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression

  5. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  6. A Monoclonal Antibody against Wnt-1 Induces Apoptosis in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Biao He

    2004-01-01

    Full Text Available Aberrant activation of the Wingless-type (Wnt/β-catenin signaling pathway is associated with a variety of human cancers. Little is known regarding the role that Wnt ligands play in human carcinogenesis. To test whether a Wnt-1 signal is a survival factor in human cancer cells and thus may serve as a potential cancer therapeutic target, we investigated the effect of inhibition of Wnt-1 signaling in a variety of human cancer cell lines, including non small cell lung cancer, breast cancer, mesothelioma, and sarcoma. Both monoclonal antibody and RNA interference (RNAi were used to inhibit Wnt-1 signaling. We found that incubation of a monoclonal anti-Wnt-1 antibody induced apoptosis and caused downstream protein changes in cancer cells overexpressing Wnt-1. In contrast, apoptosis was not detected in cells lacking or having minimal Wnt-1 expression after the antibody incubation. RNAi targeting of Wnt-1 in cancer cells overexpressing Wnt-1 demonstrated similar downstream protein changes and induction of apoptosis. The antibody also suppressed tumor growth in vivo. Our results indicate that both monoclonal anti-Wnt-1 antibody and Wnt-1 siRNA inhibit Wnt-1 signaling and can induce apoptosis in human cancer cells. These findings hold promise as a novel therapeutic strategy for cancer.

  7. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells.

    Science.gov (United States)

    Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; López-Sánchez, Inmaculada; Marra, Michele; Di Chiaro, Pierluigi; Kypta, Robert

    2017-10-01

    Wnt proteins preferentially activate either β-catenin-dependent or β-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a β-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a. Silencing of ROR2 increased neuronal differentiation, as measured by expression of the genes DCX, NEUROD1, and NGN1, suggesting ROR2 signals normally prevent differentiation. Silencing of the other Wnt receptors singly did not affect Wnt-3a-induced neuronal differentiation. However, pairwise silencing of ROR1 and FZD4 or FZD5 and of LRP6 and FZD4 or FZD5 inhibited neuronal differentiation, as detected by reductions in the expression of neuronal genes and immunocytochemical detection of DCX, NEUROD1 and DCX. Ectopic expression of these receptors in HEK 293 cells increased ATF2-dependent transcription. In addition, ROR1 coimmunoprecipitated with FZD4 and LRP6 in transfected HEK 293 cells and colocalized with FZD4 and with LRP6 at the cell surface of transfected L cells. Wnt-3a did not appear to affect these interactions but did alter the interactions between LRP6 and FZD4/5. Together, these observations highlight roles for ROR1, LRP6, FZD4, and FZD5 in neural stem cell differentiation and provide support for a model in which dynamic interactions among these receptors mediate Wnt-3a activation of ATF2 signaling.

  8. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/β-catenin signaling in the thymus resulting in altered thymocyte development

    International Nuclear Information System (INIS)

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-01

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/β-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/β-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4 + cells and a subpopulation of double-negative cells (DN; CD4 - CD8 - ), DN4 (CD44 - CD25 - ). Shh and Wnt/β-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/β-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  9. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  10. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice.

    Science.gov (United States)

    Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Wu, Hao; Edge, Albert S B; Shi, Fuxin

    2016-09-07

    Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient

  11. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  12. Wnt1 inhibits hydrogen peroxide-induced apoptosis in mouse cardiac stem cells.

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    Full Text Available BACKGROUND: Because of their regenerative and paracrine abilities, cardiac stem cells (CSCs are the most appropriate, optimal and promising candidates for the development of cardiac regenerative medicine strategies. However, native and exogenous CSCs in ischemic hearts are exposed to various pro-apoptotic or cytotoxic factors preventing their regenerative and paracrine abilities. METHODS AND RESULTS: We examined the effects of H2O2 on mouse CSCs (mCSCs, and observed that hydrogen peroxide (H2O2 treatment induces mCSCs apoptosis via the caspase 3 pathway, in a dose-dependent manner. We then examined the effects of Wnt1 over-expression on H2O2-induced apoptosis in mCSCs and observed that Wnt1 significantly decreased H2O2-induced apoptosis in mCSCs. On the other hand, inhibition of the canonical Wnt pathway by the secreted frizzled related protein 2 (SFRP2 or knockdown of β-catenin in mCSCs reduced cells resistance to H2O2-induced apoptosis, suggesting that Wnt1 predominantly prevents H2O2-induced apoptosis through the canonical Wnt pathway. CONCLUSIONS: Our results provide the first evidences that Wnt1 plays an important role in CSCs' defenses against H2O2-induced apoptosis through the canonical Wnt1/GSK3β/β-catenin signaling pathway.

  13. Canonical Wnt signaling induces a primitive endoderm metastable state in mouse embryonic stem cells.

    Science.gov (United States)

    Price, Feodor D; Yin, Hang; Jones, Andrew; van Ijcken, Wilfred; Grosveld, Frank; Rudnicki, Michael A

    2013-04-01

    Activation of the canonical Wnt signaling pathway synergizes with leukemia inhibitory factor (LIF) to maintain pluripotency of mouse embryonic stem cells (mESCs). However, in the absence of LIF, Wnt signaling is unable to maintain ESCs in the undifferentiated state. To investigate the role of canonical Wnt signaling in pluripotency and lineage specification, we expressed Wnt3a in mESCs and characterized them in growth and differentiation. We found that activated canonical Wnt signaling induced the formation of a reversible metastable primitive endoderm state in mESC. Upon subsequent differentiation, Wnt3a-stimulated mESCs gave rise to large quantities of visceral endoderm. Furthermore, we determined that the ability of canonical Wnt signaling to induce a metastable primitive endoderm state was mediated by Tbx3. Our data demonstrates a specific role for canonical Wnt signaling in promoting pluripotency while at the same time priming cells for subsequent differentiation into the primitive endoderm lineage. Copyright © 2013 AlphaMed Press.

  14. NRAGE induces β-catenin/Arm O-GlcNAcylation and negatively regulates Wnt signaling

    International Nuclear Information System (INIS)

    Chen, Yuxin; Jin, Lei; Xue, Bin; Jin, Dong; Sun, Fenyong; Wen, Chuanjun

    2017-01-01

    The Wnt pathway is crucial for animal development, as well as tumor formation. Understanding the regulation of Wnt signaling will help to elucidate the mechanism of the cell cycle, cell differentiation and tumorigenesis. It is generally accepted that in response to Wnt signals, β-catenin accumulates in the cytoplasm and is imported into the nucleus where it recruits LEF/TCF transcription factors to activate the expression of target genes. In this study, we report that human NRAGE, a neurotrophin receptor p75 (p75NTR) binding protein, markedly suppresses the expression of genes activated by the Wnt pathway. Consistent with this finding, loss of function of NRAGE by RNA interference (RNAi) activates the Wnt pathway. Moreover, NRAGE suppresses the induction of axis duplication by microinjected β-catenin in Xenopus embryos. To our surprise, NRAGE induces nuclear localization of β-catenin and increases its DNA binding ability. Further studies reveal that NRAGE leads to the modification of β-catenin/Arm with O-linked beta-N-acetylglucosamine (O-GlcNAc), and failure of the association between β-catenin/Arm and pygopus(pygo) protein, which is required for transcriptional activation of Wnt target genes. Therefore, our findings suggest a novel mechanism for regulating Wnt signaling. - Highlights: • NRAGE suppresses the expressions of Wnt pathway downstream genes. • NRAGE induces nuclear localization of β-catenin and increases its DNA binding ability. • NRAGE activity leads to the O-GlcNAcylation of β-catenin.

  15. Cadmium-induced fetal toxicity in the rat

    International Nuclear Information System (INIS)

    Levin, A.A.

    1980-01-01

    Cadmium, a heavy metal environment contaminant, induces fetal death and placental necrosis in the Wistar rat. This study investigated fetal, maternal, and placental responses to cadmium intoxication. Subcutaneous injection of CdCl 2 to dams on day 18 of pregnancy produced a high incidence of fetal death (75%) and placental necrosis. Death in the fetus was produced despite limited fetal accumulations of cadmium. Distribution studies using 109 Cd-labeled CdCl 2 demonstrated that less than 0.1% of the injected dose was associated with the fetus. To determine if fetuses were sensitive to these low levels of cadmium, direct injections of CdCl 2 into fetuses were performed in utero. Direct injections produced fetal accumulations 8-fold greater than those following maternal injections. The 8-fold greater fetal accumulations following direct injection were associated with only a 12% fetal mortality compared to the 75% mortality following maternal injections. The data indicated that the fetal toxicity of cadmium following maternal injections was not the result of direct effects of cadmium on the fetus. In conclusion, cadmium-induced fetal death was not the result of direct effects of cadmium on the fetus but may have been induced by placental cellular injury resulting from high accumulations of cadmium in the placenta. A vascular response to placental injury, leading to decreased utero-placental bood flow and cadmium-induced alterations in trophoblastic function, resulted in fetal death

  16. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    Energy Technology Data Exchange (ETDEWEB)

    Marschall, Zofia von [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD (United States); Fisher, Larry W., E-mail: lfisher@dir.nidcr.nih.gov [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD (United States)

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  17. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    International Nuclear Information System (INIS)

    Marschall, Zofia von; Fisher, Larry W.

    2010-01-01

    Research highlights: → sFRP2 enhances the Wnt3a-induced β-catenin stabilization and its nuclear translocation. → sFRP2 enhances LRP6 phosphorylation and Wnt3a/β-catenin transcriptional reporter activity. → Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. → sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic β-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/β-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  18. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  19. Wnt/β-catenin signalling pathway mediated aberrant hippocampal neurogenesis in kainic acid-induced epilepsy.

    Science.gov (United States)

    Qu, Zhengyi; Su, Fang; Qi, Xueting; Sun, Jianbo; Wang, Hongcai; Qiao, Zhenkui; Zhao, Hong; Zhu, Yulan

    2017-10-01

    Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis with massive neuronal loss and severe gliosis. Aberrant neurogenesis has been shown in the epileptogenesis process of temporal lobe epilepsy. However, the molecular mechanisms underlying aberrant neurogenesis remain unclear. The roles of Wnt signalling cascade have been well established in neurogenesis during multiple aspects. Here, we used kainic acid-induced rat epilepsy model to investigate whether Wnt/β-catenin signalling pathway is involved in the aberrant neurogenesis in temporal lobe epilepsy. Immunostaining and western blotting results showed that the expression levels of β-catenin, Wnt3a, and cyclin D1, the key regulators in Wnt signalling pathway, were up-regulated during acute epilepsy induced by the injection of kainic acids, indicating that Wnt signalling pathway was activated in kainic acid-induced temporal lobe epilepsy. Moreover, BrdU labelling results showed that blockade of the Wnt signalling by knocking down β-catenin attenuated aberrant neurogenesis induced by kainic acids injection. Altogether, Wnt/β-catenin signalling pathway mediated hippocampal neurogenesis during epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis. Aberrant neurogenesis has been shown to involve in the epileptogenesis process of temporal lobe epilepsy. In the present study, we discovered that Wnt3a/β-catenin signalling pathway serves as a link between aberrant neurogenesis and underlying remodelling in the hippocampus, leading to temporal lobe epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  1. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.

    Science.gov (United States)

    Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo

    2015-11-01

    The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell.

  2. nitrosoguanidine-induced cadmium resistant mutants of Aspergillus

    Indian Academy of Sciences (India)

    Unknown

    nitrosoguanidine-induced cadmium resistant mutants of. Aspergillus niger. SAMAR ... gens and UV irradiation to study transportation of cad- mium ion through cell ..... Rowley W S 1993 Yeast bZib proteins mediate pleiotropic drug and metal ...

  3. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    International Nuclear Information System (INIS)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-01-01

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein δ expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor γ expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-α did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  5. Cadmium exposure induces hematuria in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Seok [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Kim, Myounghee, E-mail: dkkim73@gmail.com [Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do 461-713 (Korea, Republic of); Lee, Su Mi [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jung Pyo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Sejoong [Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 463-707 (Korea, Republic of); Joo, Kwon Wook [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lim, Chun Soo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Yon Su; Kim, Dong Ki [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  6. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    Science.gov (United States)

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    SUMMARY The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identified as substrates for ADAM13. ADAM13 upregulates canonical Wnt signaling and early expression of the transcription factor snail2, whereas EfnB1 inhibits the canonical Wnt pathway and snail2 expression. We propose that by cleaving class B Efns, ADAM13 promotes canonical Wnt signaling and early CNC induction. PMID:20708595

  7. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  8. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  9. Early Transcriptional Changes Induced by Wnt/β-Catenin Signaling in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Eduardo Pérez-Palma

    2016-01-01

    Full Text Available Wnt/β-catenin signaling modulates brain development and function and its deregulation underlies pathological changes occurring in neurodegenerative and neurodevelopmental disorders. Since one of the main effects of Wnt/β-catenin signaling is the modulation of target genes, in the present work we examined global transcriptional changes induced by short-term Wnt3a treatment (4 h in primary cultures of rat hippocampal neurons. RNAseq experiments allowed the identification of 170 differentially expressed genes, including known Wnt/β-catenin target genes such as Notum, Axin2, and Lef1, as well as novel potential candidates Fam84a, Stk32a, and Itga9. Main biological processes enriched with differentially expressed genes included neural precursor (GO:0061364, p-adjusted = 2.5 × 10−7, forebrain development (GO:0030900, p-adjusted = 7.3 × 10−7, and stem cell differentiation (GO:0048863 p-adjusted = 7.3 × 10−7. Likewise, following activation of the signaling cascade, the expression of a significant number of genes with transcription factor activity (GO:0043565, p-adjusted = 4.1 × 10−6 was induced. We also studied molecular networks enriched upon Wnt3a activation and detected three highly significant expression modules involved in glycerolipid metabolic process (GO:0046486, p-adjusted = 4.5 × 10−19, learning or memory (GO:0007611, p-adjusted = 4.0 × 10−5, and neurotransmitter secretion (GO:0007269, p-adjusted = 5.3 × 10−12. Our results indicate that Wnt/β-catenin mediated transcription controls multiple biological processes related to neuronal structure and activity that are affected in synaptic dysfunction disorders.

  10. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  11. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2014-01-01

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially

  12. WNT16B from Ovarian Fibroblasts Induces Differentiation of Regulatory T Cells through β-Catenin Signal in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Cong-Cong Shen

    2014-07-01

    Full Text Available Treatment for cancer can induce a series of secreted factors into the tumor microenvironment, which can affect cancer progression. Wingless-type MMTV (mouse mammary tumor virus integration site 16B (WNT16B is a new member of the WNT family and has been reported to play growth-related roles in previous studies. In this study, we found WNT16B could be expressed and secreted into the microenvironment by human ovarian fibroblasts after DNA damage-associated treatment, including chemotherapy drugs and radiation. We also demonstrated that fibroblast-derived WNT16B could result in accumulation of β-catenin in dendritic cells and secretion of interleukin-10 (IL-10 and transforming growth factor beta (TGF-β, which contributed to the differentiation of regulatory T cells in a co-culture environment. These results shed light on the roles of WNT16B in immune regulation, especially in regard to cancer treatment.

  13. Wnt7b can replace Ihh to induce hypertrophic cartilage vascularization but not osteoblast differentiation during endochondral bone development.

    Science.gov (United States)

    Joeng, Kyu Sang; Long, Fanxin

    2014-01-01

    Indian hedgehog (Ihh) is an essential signal that regulates endochondral bone development. We have previously shown that Wnt7b promotes osteoblast differentiation during mouse embryogenesis, and that its expression in the perichondrium is dependent on Ihh signaling. To test the hypothesis that Wnt7b may mediate some aspects of Ihh function during endochondral bone development, we activated Wnt7b expression from the R26-Wnt7b allele with Col2-Cre in the Ihh(-/-) mouse. Artificial expression of Wnt7b rescued vascularization of the hypertrophic cartilage in the Ihh(-/-) mouse, but failed to restore orthotopic osteoblast differentiation in the perichondrium. Similarly, Wnt7b did not recover Ihh-dependent perichondral bone formation in the Ihh(-/-); Gli3(-/-) embryo. Interestingly, Wnt7b induced bone formation at the diaphyseal region of long bones in the absence of Ihh, possibly due to increased vascularization in the area. Thus, Ihh-dependent expression of Wnt7b in the perichondrium may contribute to vascularization of the hypertrophic cartilage during endochondral bone development.

  14. Wnt signaling induces differentiation of progenitor cells in organotypic keratinocyte cultures

    Directory of Open Access Journals (Sweden)

    Liu Bob Y

    2007-02-01

    Full Text Available Abstract Background Interfollicular skin develops normally only when the activity of the progenitor cells in the basal layer is counterbalanced by the exit of cells into the suprabasal layers, where they differentiate and cornify to establish barrier function. Distinct stem and progenitor compartments have been demonstrated in hair follicles and sebaceous glands, but there are few data to describe the control of interfollicular progenitor cell activity. Wnt signaling has been shown to be an important growth-inducer of stem cell compartments in skin and many other tissues. Results Here, we test the effect of ectopic Wnt1 expression on the behavior of interfollicular progenitor cells in an organotypic culture model, and find that Wnt1 signaling inhibits their growth and promotes terminal differentiation. Conclusion These results are consistent with the phenotypes reported for transgenic mice engineered to have gain or loss of function of Wnt signaling in skin, which would recommend our culture model as an accurate one for molecular analysis. Since it is known that canonical ligands are expressed in skin, it is likely that this pathway normally regulates the balance of growth and differentiation, and suggests it could be important to pathogenesis.

  15. Cadmium

    NARCIS (Netherlands)

    Meulenbelt, Jan

    2017-01-01

    Together with zinc and mercury, cadmium belongs to group IIb of the periodic table. It can be found in rocks, soil, water, coal, zinc ore, lead ore, and copper ore. In the environment, cadmium is present predominantly as the oxide or as the chloride, sulfide, or sulfate salt. It has no recognizable

  16. Scaffold attachment factor B1 (SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced tumorigenesis

    Directory of Open Access Journals (Sweden)

    Lewis Michael T

    2009-03-01

    Full Text Available Abstract Background Scaffold Attachment Factor B1 (SAFB1 is a multifunctional protein which has been implicated in breast cancer previously. We recently generated SAFB1 knockout mice (SAFB1-/-, but pleiotropic phenotypes including high lethality, dwarfism associated with low IGF-I levels, and infertility and subfertility in male and female mice, respectively, do not allow for straightforward tumorigenesis studies in these mice. Therefore, we asked whether SAFB1 heterozygosity would influence tumor development and progression in MMTV-Wnt-1 oncomice or DMBA induced tumorigenicity, in a manner consistent with haploinsufficiency of the remaining allele. Methods We crossed female SAFB1+/- (C57B6/129 mice with male MMTV-Wnt-1 (C57B6/SJL mice to obtain SAFB1+/+/Wnt-1, SAFB1+/-/Wnt-1, and SAFB1+/- mice. For the chemical induced tumorigenesis study we treated 8 weeks old SAFB1+/- and SAFB+/+ BALB/c mice with 1 mg DMBA once per week for 6 weeks. Animals were monitored for tumor incidence and tumor growth. Tumors were characterized by performing H&E, and by staining for markers of proliferation and apoptosis. Results We did not detect significant differences in tumor incidence and growth between SAFB1+/+/Wnt-1 and SAFB1+/-/Wnt-1 mice, and between DMBA-treated SAFB1+/+ and SAFB1+/-mice. Histological evaluation of tumors showed that SAFB1 heterozygosity did not lead to changes in proliferation or apoptosis. There were, however, significant differences in the distribution of tumor histologies with an increase in papillary and cribriform tumors, and a decrease in squamous tumors in the SAFB1+/-/Wnt-1 compared to the SAFB1+/+/Wnt-1 tumors. Of note, DMBA treatment resulted in shortened survival of SAFB1+/- mice compared to their wildtype littermates, however this trend did not reach statistical significance. Conclusion Our data show that SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced mammary tumorigenesis.

  17. Endogenous WNT Signals Mediate BMP-Induced and Spontaneous Differentiation of Epiblast Stem Cells and Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Dorota Kurek

    2015-01-01

    Full Text Available Therapeutic application of human embryonic stem cells (hESCs requires precise control over their differentiation. However, spontaneous differentiation is prevalent, and growth factors induce multiple cell types; e.g., the mesoderm inducer BMP4 generates both mesoderm and trophoblast. Here we identify endogenous WNT signals as BMP targets that are required and sufficient for mesoderm induction, while trophoblast induction is WNT independent, enabling the exclusive differentiation toward either lineage. Furthermore, endogenous WNT signals induce loss of pluripotency in hESCs and their murine counterparts, epiblast stem cells (EpiSCs. WNT inhibition obviates the need to manually remove differentiated cells to maintain cultures and improves the efficiency of directed differentiation. In EpiSCs, WNT inhibition stabilizes a pregastrula epiblast state with novel characteristics, including the ability to contribute to blastocyst chimeras. Our findings show that endogenous WNT signals function as hidden mediators of growth factor-induced differentiation and play critical roles in the self-renewal of hESCs and EpiSCs.

  18. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    Science.gov (United States)

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  19. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway.

    Science.gov (United States)

    Liu, Mei; Guo, Jingjing; Wang, Juan; Zhang, Luyong; Pang, Tao; Liao, Hong

    2014-08-01

    Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.

  20. WNT7A/β-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer.

    Science.gov (United States)

    King, M L; Lindberg, M E; Stodden, G R; Okuda, H; Ebers, S D; Johnson, A; Montag, A; Lengyel, E; MacLean Ii, J A; Hayashi, K

    2015-06-01

    We previously characterized the link between WNT7A and the progression of ovarian cancer. Other groups have identified FGF1 as a relevant risk factor in ovarian cancer. Here, we show a linkage between these two signaling pathways that may be exploited to improve treatment and prognosis of patients with ovarian cancer. High expression of WNT7A and FGF1 are correlated in ovarian carcinomas and poor overall patient survival. A chromatin immunoprecipitation assay demonstrated that WNT7A/β-catenin signaling directly regulates FGF1 expression via TCF binding elements in the FGF1-1C promoter locus. In vitro gene manipulation studies revealed that FGF1 is sufficient to drive the tumor-promoting effects of WNT7A. In vivo xenograft studies confirmed that the stable overexpression of WNT7A or FGF1 induced a significant increase in tumor incidence, whereas FGF1 knockdown in WNT7A overexpressing cells caused a significant reduction in tumor size. Niclosamide most efficiently abrogated WNT7A/β-catenin signaling in our model, inhibited β-catenin transcriptional activity and cell viability, and increased cell death. Furthermore, niclosamide decreased cell migration following an increase in E-cadherin subsequent to decreased levels of SLUG. The effects of niclosamide on cell functions were more potent in WNT7A-overexpressing cells. Oral niclosamide inhibited tumor growth and progression in an intraperitoneal xenograft mouse model representative of human ovarian cancer. Collectively, these results indicate that FGF1 is a direct downstream target of WNT7A/β-catenin signaling and this pathway has potential as a therapeutic target in ovarian cancer. Moreover, niclosamide is a promising inhibitor of this pathway and may have clinical relevance.

  1. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage.

    Directory of Open Access Journals (Sweden)

    Francesco Matrisciano

    Full Text Available The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1, an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central

  2. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis.

    Science.gov (United States)

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2017-10-27

    Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.

  3. Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells.

    Science.gov (United States)

    Park, Young-Kwon; Park, Bongju; Lee, Seongyeol; Choi, Kang; Moon, Yunwon; Park, Hyunsung

    2013-09-06

    Adipocyte hyperplasia and hypertrophy in obesity can lead to many changes in adipose tissue, such as hypoxia, metabolic dysregulation, and enhanced secretion of cytokines. In this study, hypoxia increased the expression of Wnt10b in both human and mouse adipogenic cells, but not in hypoxia-inducible factor (HIF)-2α-deficient adipogenic cells. Chromatin immunoprecipitation analysis revealed that HIF-2α, but not HIF-1α, bound to the Wnt10b enhancer region as well as upstream of the Wnt1 gene, which is encoded by an antisense strand of the Wnt10b gene. Hypoxia-conditioned medium (H-CM) induced phosphorylation of lipoprotein-receptor-related protein 6 as well as β-catenin-dependent gene expression in normoxic cells, which suggests that H-CM contains canonical Wnt signals. Furthermore, adipogenesis of both human mesenchymal stem cells and mouse preadipocytes was inhibited by H-CM even under normoxic conditions. These results suggest that O2 concentration gradients influence the formation of Wnt ligand gradients, which are involved in the regulation of pluripotency, cell proliferation, and cell differentiation.

  4. TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/β-catenin signaling.

    Science.gov (United States)

    Peng, Yun; Cao, Jun; Yao, Xiao-Yi; Wang, Jian-Xin; Zhong, Mei-Zuo; Gan, Ping-Ping; Li, Jian-Huang

    2017-08-08

    We investigated the effects of tumor suppressor candidate 3 ( TUSC3 ) on autophagy in human non-small cell lung cancer (NSCLC) cells. A total of 118 NSCLC patients (88 males and 30 females) who underwent surgery at our institute were enrolled in the study. Immunohistochemical analysis revealed that TUSC3 protein expression was lower in NSCLC specimens than adjacent normal tissue. Correspondingly, there was greater methylation of TUSC3 in NSCLC than adjacent normal tissue. After transient transfection of A549 NSCLC cells with constructs designed to up-regulate or down-regulate TUSC3 expression, we analyzed the effects of inhibiting the Wnt pathway (XAV939) and autophagy (chloroquine, CQ) on the behavior of NSCLC cells. We also performed TOP/FOP-Flash reporter assays, MTT assays, Annexin V-FITC/propidium iodide staining, and acridine orange staining to evaluate Wnt/β-catenin signaling, cell proliferation, apoptosis, and autophagy, respectively. Expression of Wnt/β-catenin pathway components and autophagy-related proteins was analyzed using qRT-PCR and Western blotting. We found that TUSC3 inhibited cell proliferation and promoted both apoptosis and autophagy in A549 cells. In addition, TUSC3 increased expression of autophagy-related proteins. It also increased expression of Wnt/β-catenin signaling pathway components and promoted nuclear transfer of β-catenin, resulting in activation of Wnt/β-catenin signaling. TUSC3 thus induces autophagy in human NSCLC cells through activation of the Wnt/β-catenin signaling pathway.

  5. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  7. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    International Nuclear Information System (INIS)

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-01-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression

  8. The role of Wnt/β-catenin signaling in enterocyte turnover during methotrexate-induced intestinal mucositis in a rat.

    Directory of Open Access Journals (Sweden)

    Igor Sukhotnik

    Full Text Available BACKGROUND/AIMS: Intestinal mucositis is a common side-effect in patients who receive aggressive chemotherapy. The Wnt signaling pathway is critical for establishing and maintaining the proliferative compartment of the intestine. In the present study, we tested whether Wnt/β-catenin signaling is involved in methotrexate (MTX-induced intestinal damage in a rat model. METHODS: Non-pretreated and pretreated with MTX Caco-2 cells were evaluated for cell proliferation and apoptosis using FACS analysis. Adult rats were divided into three experimental groups: Control rats; MTX-2 animals were treated with a single dose of MTX given IP and were sacrificed on day 2, and MTX-4 rats were treated with MTX similar to group B and were sacrificed on day 4. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation, and enterocyte apoptosis were measured at sacrifice. Real Time PCR and Western blot was used to determine the level of Wnt/β-catenin related genes and protein expression. RESULTS: In the vitro experiment, treatment with MTX resulted in marked decrease in early cell proliferation rates following by a 17-fold increase in late cell proliferation rates compared to early proliferation. Treatment with MTX resulted in a significant increase in early and late apoptosis compared to Caco-2 untreated cells. In the vivo experiment, MTX-2 and MTX-4 rats demonstrated intestinal mucosal hypoplasia. MTX-2 rats demonstrated a significant decrease in FRZ-2, Wnt 3A Wnt 5A, β-catenin, c-myc mRNA expression and a significant decrease in β-catenin and Akt protein levels compared to control animals. Four days following MTX administration, rats demonstrated a trend toward a restoration of Wnt/β-catenin signaling especially in ileum. CONCLUSIONS: Wnt/β-catenin signaling is involved in enterocyte turnover during MTX-induced intestinal mucositis in a rat.

  9. Updating the Wnt pathways

    Science.gov (United States)

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  10. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    International Nuclear Information System (INIS)

    Waalkes, M.P.; Wilson, M.J.; Poirier, L.A.

    1985-01-01

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure

  11. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    International Nuclear Information System (INIS)

    Dong, Zhen; Zhou, Lin; Han, Na; Zhang, Mengxian; Lyu, Xiaojuan

    2015-01-01

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [de

  12. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    Science.gov (United States)

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling

    International Nuclear Information System (INIS)

    Peng Sha; Miao Chenglin; Li Jing; Fan Xiujun; Cao Yujing; Duan Enkui

    2006-01-01

    Placental choriocarcinoma, a reproductive system carcinoma in women, has about 0.81% occurrence frequency in China, which leads to over 90% lethality due to indistinct pathogenesis and the absence of efficient therapeutic treatment. In the present study, using immunostaining and reverse transcription PCR, we reported that Dickkopf-1 (Dkk-1) is prominently expressed in human cytotrophoblast (CTB) cell, but absent in the human placental choriocarcinoma cell line JAR and JEG3, implicating an unknown correlation between Dkk-1 and carcinogenesis of placental choriocarcinoma. Further, through exogenous introduction of Dkk-1, we found repressed proliferation in JAR and JEG3, induced apoptosis in JAR, and discovered significant tumor suppression effects of Dkk-1 in placental choriocarcinoma. Moreover we found that this function of Dkk-1 is achieved through c-Jun N-terminal kinase (JNK), whereas the canonical Wnt pathway may not have a great role. This discovery is not symphonic to previous functional understanding of Dkk-1, a canonical Wnt signaling antagonist. Together, our data indicate the possible correlation between Dkk-1 and human placental choriocarcinoma and suggest potential applications of Dkk-1 in treatment of human placental choriocarcinomas

  14. Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model

    Directory of Open Access Journals (Sweden)

    Sadia Benamrouz

    2014-06-01

    Full Text Available Cryptosporidium species are apicomplexan protozoans that are found worldwide. These parasites constitute a large risk to human and animal health. They cause self-limited diarrhea in immunocompetent hosts and a life-threatening disease in immunocompromised hosts. Interestingly, Cryptosporidium parvum has been related to digestive carcinogenesis in humans. Consistent with a potential tumorigenic role of this parasite, in an original reproducible animal model of chronic cryptosporidiosis based on dexamethasone-treated or untreated adult SCID mice, we formerly reported that C. parvum (strains of animal and human origin is able to induce digestive adenocarcinoma even in infections induced with very low inoculum. The aim of this study was to further characterize this animal model and to explore metabolic pathways potentially involved in the development of C. parvum-induced ileo-caecal oncogenesis. We searched for alterations in genes or proteins commonly involved in cell cycle, differentiation or cell migration, such as β-catenin, Apc, E-cadherin, Kras and p53. After infection of animals with C. parvum we demonstrated immunohistochemical abnormal localization of Wnt signaling pathway components and p53. Mutations in the selected loci of studied genes were not found after high-throughput sequencing. Furthermore, alterations in the ultrastructure of adherens junctions of the ileo-caecal neoplastic epithelia of C. parvum-infected mice were recorded using transmission electron microscopy. In conclusion, we found for the first time that the Wnt signaling pathway, and particularly the cytoskeleton network, seems to be pivotal for the development of the C. parvum-induced neoplastic process and cell migration of transformed cells. Furthermore, this model is a valuable tool in understanding the host-pathogen interactions associated with the intricate infection process of this parasite, which is able to modulate host cytoskeleton activities and several host

  15. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    Directory of Open Access Journals (Sweden)

    Upa Kukongviriyapan

    2014-03-01

    Full Text Available Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L in drinking water for eight weeks. Curcumin (50 or 100 mg/kg was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.

  16. The human PKP2/plakophilin-2 gene is induced by Wnt/β-catenin in normal and colon cancer-associated fibroblasts.

    Science.gov (United States)

    Niell, Núria; Larriba, María Jesús; Ferrer-Mayorga, Gemma; Sánchez-Pérez, Isabel; Cantero, Ramón; Real, Francisco X; Del Peso, Luis; Muñoz, Alberto; González-Sancho, José Manuel

    2018-02-15

    Colorectal cancer results from the malignant transformation of colonic epithelial cells. Stromal fibroblasts are the main component of the tumour microenvironment, and play an important role in the progression of this and other neoplasias. Wnt/β-catenin signalling is essential for colon homeostasis, but aberrant, constitutive activation of this pathway is a hallmark of colorectal cancer. Here we present the first transcriptomic study on the effect of a Wnt factor on human colonic myofibroblasts. Wnt3A regulates the expression of 1,136 genes, of which 662 are upregulated and 474 are downregulated in CCD-18Co cells. A set of genes encoding inhibitors of the Wnt/β-catenin pathway stand out among those induced by Wnt3A, which suggests that there is a feedback inhibitory mechanism. We also show that the PKP2 gene encoding the desmosomal protein Plakophilin-2 is a novel direct transcriptional target of Wnt/β-catenin in normal and colon cancer-associated fibroblasts. PKP2 is induced by β-catenin/TCF through three binding sites in the gene promoter and one additional binding site located in an enhancer 20 kb upstream from the transcription start site. Moreover, Plakophilin-2 antagonizes Wnt/β-catenin transcriptional activity in HEK-293T cells, which suggests that it may act as an intracellular inhibitor of the Wnt/β-catenin pathway. Our results demonstrate that stromal fibroblasts respond to canonical Wnt signalling and that Plakophilin-2 plays a role in the feedback control of this effect suggesting that the response to Wnt factors in the stroma may modulate Wnt activity in the tumour cells. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  17. Protective effect of hemin against cadmium-induced testicular damage in rats

    International Nuclear Information System (INIS)

    Fouad, Amr A.; Qureshi, Habib A.; Al-Sultan, Ali Ibrahim; Yacoubi, Mohamed T.; Ali, Abdellah Abusrie

    2009-01-01

    The protective effect of hemin, the heme oxygenase-1 inducer, was investigated in rats with cadmium induced-testicular injury, in which oxidative stress and inflammation play a major role. Testicular damage was induced by a single i.p. injection of cadmium chloride (2 mg/kg). Hemin was given for three consecutive days (40 μmol/kg/day, s.c.), starting 1 day before cadmium administration. Hemin treatment significantly increased serum testosterone level that was reduced by cadmium. Hemin compensated deficits in the antioxidant defense mechanisms (reduced glutathione, and catalase and superoxide dismutase activities), and suppressed lipid peroxidation in testicular tissue resulted from cadmium administration. Also, hemin attenuated the cadmium-induced elevations in testicular tumor necrosis factor-α and nitric oxide levels, and caspase-3 activity. Additionally, hemin ameliorated cadmium-induced testicular tissue damage observed by light and electron microscopic examinations. The protective effect afforded by hemin was abolished by prior administration of zinc protoporphyrin-IX, the heme oxygenase-1 inhibitor. It was concluded that hemin, through its antioxidant, anti-inflammatory and antiapoptotic effects, represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of cadmium

  18. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways.

    Directory of Open Access Journals (Sweden)

    Fátima Guerrero

    Full Text Available BACKGROUND: Transforming growth factor-β (TGF-β is a key cytokine during differentiation of mesenchymal stem cells (MSC into vascular smooth muscle cells (VSMC. High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS: Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. CONCLUSIONS: Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway.

  19. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature

    OpenAIRE

    Lobov, Ivan B.; Rao, Sujata; Carroll, Thomas J.; Vallance, Jefferson E.; Ito, Masataka; Ondr, Jennifer K.; Kurup, Savita; Glass, Donald A.; Patel, Millan S.; Shu, Weiguo; Morrisey, Edward E.; McMahon, Andrew P.; Karsenty, Gerard; Lang, Richard A.

    2005-01-01

    Macrophages have a critical role in inflammatory and immune responses through their ability to recognize and engulf apoptotic cells1. Here we show that macrophages initiate a cell-death programme in target cells by activating the canonical WNT pathway. We show in mice that macrophage WNT7b is a short-range paracrine signal required for WNT-pathway responses and programmed cell death in the vascular endothelial cells of the temporary hyaloid vessels of the developing eye. These findings indica...

  20. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    Science.gov (United States)

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

  1. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    Science.gov (United States)

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  2. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system.

    Science.gov (United States)

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Tong, Chuan; Ti, Dongdong; Chen, Deyun; Chen, Li; Li, Meirong; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2017-05-01

    Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhen [Huazhong University of Science and Technology, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Wuhan (China); Zhou, Lin [Huazhong University of Science and Technology, Department of Histoembryology, Tongji Medical College, Wuhan (China); Han, Na; Zhang, Mengxian [Huazhong University of Science and Technology, Department of Oncology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lyu, Xiaojuan [Huazhong University of Science and Technology, Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Wuhan (China)

    2015-08-15

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [German] Studien haben gezeigt, dass eine Strahlentherapie die Invasivitaet von

  4. Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Ting; Chen, Zueng-Sang [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China); Hong, Chwan-Yang, E-mail: cyhong@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China)

    2011-05-30

    The accumulation and effect of cadmium (Cd) on the growth and enzymatic activities changes of antioxidants in Tagetes patula, French marigold, were investigated to reveal the physiological mechanisms corresponding to its Cd tolerance and accumulation. Hydroponically grown T. patula plants were treated with different concentrations of Cd (0, 10, 25, 50 {mu}M CdCl{sub 2}) at various regime of times. T. patula accumulated Cd to a maximum of 450 mg Cd kg{sup -1} dry weight (DW) in shoot and 3500 mg Cd kg{sup -1} DW in root after 14 days' exposure at 10 and 50 {mu}M CdCl{sub 2}, respectively. The translocation factors of Cd were greater than 1 in plants exposed to 10 {mu}M CdCl{sub 2}. Toxic effects were gradually observed with increasing Cd concentration (25 and 50 {mu}M) accompanied with the reduction of biomass, chlorophyll content, decrease of cell viability and the increase level of lipid peroxidation. In leaves of T. patula, the activities of ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase (SOD) were induced by Cd. However, in roots, activities of APX, GR, SOD and catalase (CAT) were significantly reduced by 25 and 50 {mu}M Cd treatment but not 10 {mu}M Cd. In-gel zymography analysis revealed that Cd induced the enzymatic activities of APX, MnSOD, CuZnSOD and different isozymes of GR in leaves. These results indicate that T. patula is a novel Cd accumulator and able to tolerate with Cd-induced toxicity by activation of its antioxidative defense system.

  5. Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula

    International Nuclear Information System (INIS)

    Liu, Yu-Ting; Chen, Zueng-Sang; Hong, Chwan-Yang

    2011-01-01

    The accumulation and effect of cadmium (Cd) on the growth and enzymatic activities changes of antioxidants in Tagetes patula, French marigold, were investigated to reveal the physiological mechanisms corresponding to its Cd tolerance and accumulation. Hydroponically grown T. patula plants were treated with different concentrations of Cd (0, 10, 25, 50 μM CdCl 2 ) at various regime of times. T. patula accumulated Cd to a maximum of 450 mg Cd kg -1 dry weight (DW) in shoot and 3500 mg Cd kg -1 DW in root after 14 days' exposure at 10 and 50 μM CdCl 2 , respectively. The translocation factors of Cd were greater than 1 in plants exposed to 10 μM CdCl 2 . Toxic effects were gradually observed with increasing Cd concentration (25 and 50 μM) accompanied with the reduction of biomass, chlorophyll content, decrease of cell viability and the increase level of lipid peroxidation. In leaves of T. patula, the activities of ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase (SOD) were induced by Cd. However, in roots, activities of APX, GR, SOD and catalase (CAT) were significantly reduced by 25 and 50 μM Cd treatment but not 10 μM Cd. In-gel zymography analysis revealed that Cd induced the enzymatic activities of APX, MnSOD, CuZnSOD and different isozymes of GR in leaves. These results indicate that T. patula is a novel Cd accumulator and able to tolerate with Cd-induced toxicity by activation of its antioxidative defense system.

  6. Cadmium induced oxidative stress in kidney epithelia cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    2007-01-01

    Cadmium (Cd) is an important industrial and environmental pollutant. In humans exposed to Cd via oral and/or pulmonary routes, the kidney is by far the primary organ affected adversely by Cd. It have been estimated that 7% of the human population may develop renal dysfunction from Cd exposure...... of generation of ROS in this pathway remains unclear.     The aim of the present study was to monitor, in real time, the rates of ROS generation to be able to directly determine their production dynamics in living cells in response to drugs. Initial studies were planed in to use 2,7-dichlorofluorescein...... production from mitochondria due to an increase in the intracellular calcium concentration. Visual inspection of cultured cells showed that the Cd induced destruction of the cell membrane after three hours was abolished when cells were pretreated with N-acetylcysteine or CCCP, indicating that ROS generation...

  7. Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity.

    Science.gov (United States)

    Li, Xia; Jiang, Xinwei; Sun, Jianxia; Zhu, Cuijuan; Li, Xiaoling; Tian, Lingmin; Liu, Liu; Bai, Weibin

    2017-06-01

    Cadmium (Cd) damages the liver, kidney, bones, reproductive system, and other organs. Flavonoids, such as anthocyanins and flavonols, which are commonly found in plant foods, have shown protective effects against Cd-induced damage. The cytoprotective effects of flavonoids against Cd-induced diseases are mainly attributable to three mechanisms. First, flavonoids clear reactive oxygen species, thereby reducing lipid peroxide production and improving the activity of antioxidation enzymes. Second, flavonoids chelate Cd, thus reducing the accumulation of Cd and altering the levels of other essential metal ions in vivo. Third, flavonoids reduce DNA damage and inhibit apoptosis. In addition, flavonoids were found to inhibit inflammation and fibrosis and improve glycometabolism and the secretion of reproductive hormones. We introduce the daily dosage and absorption rate of flavonoids and then focus on their bioactive effects against Cd-induced toxicity and reveal the underlying metabolic pathway, which provides a basis for further study of the nutritional prevention of Cd-induced injury. In particular, a better understanding is needed of the structure-activity relationship of flavonoids against Cd toxicity, which has not yet been reported. © 2017 New York Academy of Sciences.

  8. Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice

    Directory of Open Access Journals (Sweden)

    Wiwit Ananda Wahyu Setyaningsih

    2018-03-01

    Full Text Available Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT. Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury. Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old, 30–40 g with daily intraperitoneal injections of 125 mg/kg body weight (BW of uric acid. The mice were terminated on day 7 (UA7, n=5 and on day 14 (UA14, n=5. Allopurinol groups (UAl7 and UAl14, each n=5 were added with oral 50 mg/kg BW of allopurinol treatment. The serum uric acid level was quantified, and tubular injury was assessed based on PAS staining. Reverse transcriptase-PCR was done to quantify Wnt5a, Ror2, E-cadherin, and vimentin expressions. IHC staining was done for E-cadherin and collagen I. We used the Shapiro–Wilk for normality testing and one-way ANOVA for variance analysis with a P<0.05 as significance level using SPSS 22 software. Results: The hyperuricemia groups had a higher uric acid level, which was associated with a higher tubular injury score. Meanwhile, the allopurinol groups had a significantly lower uric acid level and tubular injury than the uric acid groups. Reverse transcriptase-PCR revealed downregulation of the E-cadherin expression. While vimentin and collagen I expression are upregulated, which was associated with a higher Wnt5a expression. However, the allopurinol groups had reverse results. Immunostaining revealed a reduction in E-cadherin staining in the epithelial cells and collagen I positive staining in the epithelial cells and the interstitial areas. Conclusion: Hyperuricemia induced tubular injury, which might have been mediated by EMT through the activation of Wnt5a.

  9. Calcitonin protects chondrocytes from lipopolysaccharide-induced apoptosis and inflammatory response through MAPK/Wnt/NF-κB pathways.

    Science.gov (United States)

    Zhang, Lai-Bo; Man, Zhen-Tao; Li, Wei; Zhang, Wei; Wang, Xian-Quan; Sun, Shui

    2017-07-01

    Calcitonin (CT) is an anti-absorbent, which has long been used for treatment of osteoporosis. However, little information is available about the effects of CT on osteoarthritis (OA). This study was mainly aimed to explore the effects of CT on the treatment of OA, as well as the underlying mechanisms. Chondrocytes were isolated from immature mice and then were incubated with lipopolysaccharide (LPS), CT, small interfering (si) RNA against bone morphogenetic protein (BMP)-2, and/or the inhibitors of MAPK/Wnt/NF-κB pathway. Thereafter, cell viability, apoptosis, nitric oxide (NO) and inflammatory factors productions, and expression levels of cartilage synthesis protein key factors, cartilage-derived morphogenetic protein (CDMP) 1, SRY (sex-determining region Y)-box 9 protein (SOX9), and MAPK/Wnt/NF-κB pathways key factors were determined. CT significantly reversed LPS-induced cell viability decrease, apoptosis increase, the inflammatory factors and NO secretion, the abnormally expression of cartilage synthesis proteins and the activation of MAPK/Wnt/NF-κB pathways (Ppathways statistically further increased the levels of CDMP1 and SOX9 (Ppathways, and could partially abolish CT-modulated the expression changes in CDMP1 and SOX9, and MAPK/Wnt/NF-κB pathways key factors (Ppathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  11. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism

    International Nuclear Information System (INIS)

    Del Pino, Javier; Zeballos, Garbriela; Anadon, María José; Capo, Miguel Andrés; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2014-01-01

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases

  12. Cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waalkes, Michael P.

    2003-01-01

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis

  13. Cadmium carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, Michael P

    2003-12-10

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis.

  14. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    Science.gov (United States)

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  15. "Fibrous nests" in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome.

    Science.gov (United States)

    Désert, Romain; Mebarki, Sihem; Desille, Mireille; Sicard, Marie; Lavergne, Elise; Renaud, Stéphanie; Bergeat, Damien; Sulpice, Laurent; Perret, Christine; Turlin, Bruno; Clément, Bruno; Musso, Orlando

    2016-12-01

    Hepatocellular carcinoma (HCC) is the 3rd cause of cancer-related death worldwide. Most cases arise in a background of chronic inflammation, extracellular matrix (ECM) remodeling, severe fibrosis and stem/progenitor cell amplification. Although HCCs are soft cellular tumors, they may contain fibrous nests within the tumor mass. Thus, the aim of this study was to explore cancer cell phenotypes in fibrous nests. Combined anatomic pathology, tissue microarray and real-time PCR analyses revealed that HCCs (n=82) containing fibrous nests were poorly differentiated, expressed Wnt pathway components and target genes, as well as markers of stem/progenitor cells, such as CD44, LGR5 and SOX9. Consistently, in severe liver fibroses (n=66) and in HCCs containing fibrous nests, weighted correlation analysis revealed a gene network including the myofibroblast marker ACTA2, the basement membrane components COL4A1 and LAMC1, the Wnt pathway members FZD1; FZD7; WNT2; LEF1; DKK1 and the Secreted Frizzled Related Proteins (SFRPs) 1; 2 and 5. Moreover, unbiased random survival forest analysis of a transcriptomic dataset of 247 HCC patients revealed high DKK1, COL4A1, SFRP1 and LAMC1 to be associated with advanced tumor staging as well as with bad overall and disease-free survival. In vitro, these genes were upregulated in liver cancer stem/progenitor cells upon Wnt-induced mesenchymal commitment and myofibroblast differentiation. In conclusion, fibrous nests express Wnt target genes, as well as markers of cancer stem cells and mesenchymal commitment. Fibrous nests embody the specific microenvironment of the cancer stem cell niche and can be detected by routine anatomic pathology analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  17. Impairment induced by chronic occupational cadmium exposure during brazing process

    International Nuclear Information System (INIS)

    Anwar, S.M.; Aly, M.M.

    2002-01-01

    Cadmium (CD) is considered a metal of the 20 th century to which all inhabitants of develop societies are exposed. Long-term occupational and environmental exposure to CD often results in renal dysfunction as the kidney is considered the critical target organ. The aim of this work was to evalutate both resporatory and renal manifestations induced by occupational exposure to CD compounds during brazing process, and suggesting a protocol for prevention and control for CD- induced health effects. This study was conducted on 20 males occupationally exposed workers. They are divided into two groups: Group-1 included (10) exposed smokers and group-2 included (10) exposed non-smokers. Results of both groups were compared with those of 10 healthy age and sex matched non-smokers. All subjects were subjected to detailed history taking and laboratory investigations including blood and urinary CD, liver profile (SGOT, SGPT and alkline phosphates), kindey function tests (blood urea, creatinine and urinary beta 2 - microglobulin). The level of Cd in the atmosphere of the work plase air was also assessed to detect the degree of exposure as it was about 6 times greater than thesave level (1 mu /m 3 ). (1) This study demonstrated elevation levels of blood CD, urea, creatinine and urinary CD and beta 2 -microglobulin for both exposed worker groups than the controls. In additions no appreciable were noted for liver function tests, although the levels fell within normal range

  18. Cirmtuzumab inhibits Wnt5a-induced Rac1 activation in chronic lymphocytic leukemia treated with ibrutinib.

    Science.gov (United States)

    Yu, J; Chen, L; Cui, B; Wu, Christina; Choi, M Y; Chen, Y; Zhang, L; Rassenti, L Z; Widhopf Ii, G F; Kipps, T J

    2017-06-01

    Signaling via the B cell receptor (BCR) plays an important role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). This is underscored by the clinical effectiveness of ibrutinib, an inhibitor of Bruton's tyrosine kinase (BTK) that can block BCR-signaling. However, ibrutinib cannot induce complete responses (CR) or durable remissions without continued therapy, suggesting alternative pathways also contribute to CLL growth/survival that are independent of BCR-signaling. ROR1 is a receptor for Wnt5a, which can promote activation of Rac1 to enhance CLL-cell proliferation and survival. In this study, we found that CLL cells of patients treated with ibrutinib had activated Rac1. Moreover, Wnt5a could induce Rac1 activation and enhance proliferation of CLL cells treated with ibrutinib at concentrations that were effective in completely inhibiting BTK and BCR-signaling. Wnt5a-induced Rac1 activation could be blocked by cirmtuzumab (UC-961), an anti-ROR1 mAb. We found that treatment with cirmtuzumab and ibrutinib was significantly more effective than treatment with either agent alone in clearing leukemia cells in vivo. This study indicates that cirmtuzumab may enhance the activity of ibrutinib in the treatment of patients with CLL or other ROR1 + B-cell malignancies.

  19. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    International Nuclear Information System (INIS)

    Yoshida, Go J.; Saya, Hideyuki

    2014-01-01

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high / Fbw7 high / c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high / Fbw7 low / c-Myc high

  20. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  1. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  2. Sex-related differences in cadmium-induced alteration of drug action in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, R.C.; Pence, D.H.; Prosser, T.D.; Miya, T.S.

    1976-01-01

    Three days after pretreatment of rats of both sexes with cadmium (2 mg/kg, i.p.), the duration of hypnosis induced by hexobarbital (75 mg/kg, i.p.) was potentiated in males but not females. Likewise, similar treatment with cadmium leads to significant inhibition of the metabolism of hexobarbital by hepatic microsomal enzymes obtained from male but not female animals. These data suggest that there is a sex-related difference in the ability of cadmium to alter drug action in rats.

  3. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S

    2002-01-01

    The Greenland marine food chains contain high levels of cadmium, mercury and selenium. Concentrations of cadmium in the kidney of ringed seals (Phoca hispida) from the municipalities of Qaanaaq and Upernavik (Northwest Greenland) are among the highest recorded in the Arctic. The purpose of the st......The Greenland marine food chains contain high levels of cadmium, mercury and selenium. Concentrations of cadmium in the kidney of ringed seals (Phoca hispida) from the municipalities of Qaanaaq and Upernavik (Northwest Greenland) are among the highest recorded in the Arctic. The purpose...... of the study was to determine whether cadmium-induced damage in the kidneys and the skeletal system could be detected among 100 ringed seals from Northwest Greenland. The cadmium concentrations in the kidney cortex ranged from 0 to 248 microg/g wet weight (mean=44.5, N=100) in the 99 kidneys examined....... Experience from cadmium-poisoned humans and laboratory mammals indicates that concentrations above 50-200 microg/g wet wt. may induce histopathological changes. Overall, 31 of the ringed seals had cadmium concentrations in the kidney cortex above 50 microg/g wet wt., 11 had concentrations above 100 and one...

  4. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Xiaoyan Jiao

    2017-12-01

    Full Text Available Background/Aims: Cisplatin-induced acute kidney injury (AKI involves damage to tubular cells via excess reactive oxygen species (ROS generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC-derived conditioned medium (CM against cisplatin-induced AKI. Methods: In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. Results: CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data

  5. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury.

    Science.gov (United States)

    Jiao, Xiaoyan; Cai, Jieru; Yu, Xiaofang; Ding, Xiaoqiang

    2017-01-01

    Cisplatin-induced acute kidney injury (AKI) involves damage to tubular cells via excess reactive oxygen species (ROS) generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived conditioned medium (CM) against cisplatin-induced AKI. In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data showed that the tubular β-catenin level was lower in

  6. Integrin Activation Contributes to Lower Cisplatin Sensitivity in MV3 Melanoma Cells by Inducing the Wnt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Maria B. R. Piva

    2017-09-01

    Full Text Available Background: integrins have been associated with the development of chemotherapy resistant tumour cells, mostly those of hematopoietic origin, by mediating the binding to the extracellular matrix. The relevance for solid tumour cells and the underlying mechanisms remain elusive. Methods: using MTT assays, we detected the loss in cisplatin sensitivity of human MV3 melanoma cells upon integrin activation. Underlying cellular pathways were evaluated by flow cytometry. A crosstalk between integrin activation and the canonical wnt signalling pathway was tested by measuring β-catenin activity. Results: MV3 cells display a higher resistance against cisplatin cytotoxicity when cellular integrins were activated by manganese or collagen. Proteome profiler array showed a deregulation of the integrin expression pattern by cisplatin. Integrin activation by manganese induces the phosphorylation of PI3K/AKT. The inhibition of PI3K using BEZ235 strongly increases cell sensitivity to cisplatin, blocking manganese and collagen effects. PI3K/AKT activates wnt signalling by blocking Gsk3-β, which was confirmed by β-catenin up-regulation and nuclear localization. Integrins did not affect E-cadherin expression levels, thus endothelial to mesenchymal transition (EMT can be excluded. Conclusion: This is the first report on an integrin/wnt signalling activation axis addressing the consequences for chemotherapy sensitiveness of melanoma cells, which thus offers novel therapeutic targets for approaches to interfere with chemoresistance.

  7. VDR Activation Reduces Proteinuria and High-Glucose-Induced Injury of Kidneys and Podocytes by Regulating Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2017-08-01

    Full Text Available Background: Diabetic nephropathy (DN is a major cause of end-stage renal disease and proteinuria is one of the most prominent clinical manifestations. The expression of Vitamin D receptor (VDR in patients with chronic kidney diseases was decreased, while VDR agonists could partially alleviate the proteinuria of DN in animal models. The present study was designed to determine the expression of VDR in renal tissues and its relationship with proteinuria the diabetic model db/db mice. Methods: The regulation effects of VDR on the Wnt signaling pathway were analyzed using RNA interference and VDR agonist paricalcitol. Results: With the increase in age of the db/db mice, the VDR protein and mRNA levels in renal tissues were decreased, proteinuria increased, and the protein and mRNA levels of GSK-3β of and β-catenin increased. Paricalcitol treatment resulted in the up-regulation of VDR and down-regulation of GSK-3β and β-catenin, indicating that VDR had a regulatory effect on the Wnt signaling pathway. Conclusion: VDR activation could reduce proteinuria of DN mice and alleviate high-glucose-induced injury of kidneys and podocytes by regulating the key molecules of Wnt signaling pathway.

  8. γ-Oryzanol protects against acute cadmium-induced oxidative damage in mice testes.

    Science.gov (United States)

    Spiazzi, Cristiano C; Manfredini, Vanusa; Barcellos da Silva, Fabiana E; Flores, Erico M M; Izaguirry, Aryele P; Vargas, Laura M; Soares, Melina B; Santos, Francielli W

    2013-05-01

    Cadmium is a non-essential heavy metal that is present at low levels mainly in food and water and also in cigar smoke. The present study evaluated the testicular damage caused by acute cadmium exposure and verified the protective role of γ-oryzanol (ORY). Mice were administrated with a single dose of 2.5mg/kg of CdCl2, and then treated with ORY (50mM in canola oil, 5mL/kg). Testes were removed after 24h and tested for lipid peroxidation (TBARS), protein carbonylation, DNA breakage, ascorbic acid, cadmium and non-proteic thiols contents, and for the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and δ-aminolevulic acid dehydratase (δ-ALA-D). Cadmium presented a significant alteration in all parameters, except GPx and CAT activities. Therapy reduced in a slight degree cadmium concentration in testes (around 23%). ORY restored SOD and GST activities as well as TBARS production to the control levels. Furthermore, ORY partially recovered δ-ALA-D activity inhibited by cadmium. This study provides the first evidence on the therapeutic properties of ORY in protecting against cadmium-induced testicular toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal.

    Science.gov (United States)

    Lee, Min Young; Lim, Hyun Woo; Lee, Sang Hun; Han, Ho Jae

    2009-08-01

    It is known that bone morphogenetic protein 4 (BMP-4) has a diverse effect on ESCs. However, its precise mechanism in mouse ESCs is not fully understood. We evaluated the effect of BMP-4 on ESC proliferation and its related signal cascades in this study. BMP-4 significantly increased the level of [(3)H]-thymidine incorporation in time- (> or =8 hours) and dose- (> or =10 ng/ml) dependent manners. Additionally, BMP-4 increased cyclin D1 and decreased p27(kip1) expression values in a time-dependent manner. The increases in BMP-4-induced [(3)H]-thymidine incorporation and cyclin D1 expression were inhibited by the BMP-4 receptor antagonist noggin. BMP-4 increased Wnt1 expression. Wnt1 expression was attenuated by Smad4 small interfering RNA (siRNA), and BMP-4-induced cyclin D1 expression was inhibited by Smad4 and Wnt1 siRNAs. BMP-4 also activated beta-catenin, which was blocked by Smad4 and Wnt1 siRNAs. In addition, BMP-4 induced Akt phosphorylation. BMP-4-induced beta-catenin activation and cyclin D1 expression were attenuated by phosphatidyl inositol 3-kinase (PI3K) siRNA and Akt inhibitor. Additionally, downregulation of Smad4, Wnt1, and PI3K expression by siRNA decreased the levels of pluripotency marker mRNAs of ESCs, including Oct4, Sox2, and FoxD3. Our results suggested that BMP-4-induced [(3)H]-thymidine incorporation was significantly attenuated by Smad4, Wnt1, and PI3K knockdown. In conclusion, BMP-4 contributed to the maintenance of cell proliferation and the pluripotent state by Smad, PI3K/Akt, and Wnt1/beta-catenin in mouse ESCs.

  10. A late requirement for Wnt and FGF signalling during activin-induced formation of foregut endoderm from mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Hansson, Mattias; Petersen, Dorthe Rønn; Peterslund, Janny M.L.

    2009-01-01

    Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous...... is found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin....... Notably, activin induction of Gsc-GFP(+) cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17(+) cells by activin while BMP4-induced T expression...

  11. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    International Nuclear Information System (INIS)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu; Jia Xiuying

    2012-01-01

    Highlights: ► Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. ► Cd can result in oxidative stress in the frog testes. ► Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. ► Cd can cause apoptosis in the testes of male R. limnocharis. ► Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose–effect relationship. Moreover, the same dosages of Cd 2+ solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5–7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a scientific basis accounting for the global population decline in amphibian species.

  12. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus

    International Nuclear Information System (INIS)

    Jaeckel, Petra; Krauss, Gudrun; Menge, Sieglinde; Schierhorn, Angelika; Ruecknagel, Peter; Krauss, Gerd-Joachim

    2005-01-01

    Cadmium stress response was measured at the thiol peptide level in an aquatic hyphomycete (Heliscus lugdunensis). In liquid culture, 0.1mM cadmium increased the glutathione (GSH) content and induced the synthesis of additional thiol peptides. HPLC, electrospray ionization mass spectrometry, and Edman degradation confirmed that a novel small metallothionein as well as phytochelatin (PC2) were synthesized. The metallothionein has a high homology to family 8 metallothioneins (http://www.expasy.ch/cgi-bin/lists?metallo.txt). The bonding of at least two cadmium ions to the metallothionein was demonstrated by mass spectrometry (MALDI MS). This is the first time that simultaneous induction of metallothionein and phytochelatin accompanied by an increase in GSH level has been shown in a fungus under cadmium stress, indicating a potential function of these complexing agents for in vivo heavy metal detoxification. The method presented here should be applicable as biomarker tool. ol

  13. Therapeutic Effects of Cassia angustifolia in a Cadmium Induced Hepatotoxicity Assay Conducted in Male Albino Rats

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir Haidry

    2016-04-01

    Full Text Available The present study aims to investigate the therapeutic effects of Senna plant (Cassia angustifolia L. in a cadmium-induced hepatotoxicity assay by evaluating the activity of alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALP and total protein (TP in the albino rats’ serum. A total of 30 white albino rats were taken and divided into three groups; each group comprising ten rats. The group A was taken as a control group; group B was given cadmium chloride concentration of 5 mg/kg (body weight for 42 days; and group C was given cadmium chloride 5 mg/kg body weight for first 21 days and then extract of C. angustifolia 100 mg/kg (body weight was given for remaining 21 days. The analysis were performed twice i.e., on 21stst day and 42nd day. Results illustrated that the concentration of cadmium was significantly elevated (P<0.05 at the levels of serum biochemical markers namely ALT, AST, ALP which lowered the protein levels in albino rats. Moreover, treatment with the standard extracts of C. angustifolia observed to reverse the effects of the cadmium significantly (P<0.05. It is concluded that the C. angustifolia had hepatoprotective effects and therapeutic potential against the cadmium-induced hepatotoxicity in albino rats.

  14. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    Science.gov (United States)

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. Copyright © 2014 Elsevier B.V. All rights

  15. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Yakimova, E.T.; Kapchina-Toteva, V.M.; Laarhoven, L.J.J.; Harren, F.J.M.; Woltering, E.J.

    2006-01-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO4. Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 23 days which indicates the existence

  16. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Laarhoven, L.J.; Harren, F.; Woltering, E.J.

    2006-01-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO4. Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 2¿3 days which indicates the existence

  17. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  18. Phosphate-induced cadmium adsorption in a tropical savannah soil ...

    African Journals Online (AJOL)

    The influence of phosphate (P) on cadmium (Cd) adsorption was examined in a savanna soil with long history of different fertilizer amendment. The soil was incubated with P at 0, 250 and 500 mg P kg-1 soil and left to equilibrate for 2 weeks. Cd was added to the P-incubated soil at concentrations ranging from 27, 49 and ...

  19. Histopathological changes in the head kidney induced by cadmium ...

    African Journals Online (AJOL)

    We evaluated the effect of cadmium (Cd) on the structure and function of the head kidney in the freshwater fish Colossoma macropomum (C. macropomum). Juveniles were exposed to 0.1 mg/L CdCl2 for 31 days. Blood samples were examined using hematological tests and head kidney histology was determined by light ...

  20. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    Science.gov (United States)

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Upregulation of Klotho potentially inhibits pulmonary vascular remodeling by blocking the activation of the Wnt signaling pathway in rats with PM2.5-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Cong, Lu-Hong; Du, Shi-Yu; Wu, Yi-Na; Liu, Ying; Li, Tao; Wang, Hui; Li, Gang; Duan, Jun

    2018-01-30

    We evaluated the effects of Klotho on pulmonary vascular remodeling and cell proliferation and apoptosis in rat models with PM2.5-induced pulmonary arterial hypertension (PAH) via the Wnt signaling pathway. After establishing rat models of PM2.5-induced PAH, these Sprague-Dawley male rats were randomized into control and model groups. Cells extracted from the model rats were sub-categorized into different groups. Activation of Wnt/β-catenin signaling transcription factor was detected by a TOPFlash/FOPFlash assay. A serial of experiment was conducted to identify the mechanism of Klotho on PHA via the Wnt signaling pathway. VEGF levels and PaCO 2 content were higher in the model group, while PaO 2, NO 2 - /NO 3 - content and Klotho level was lower compared to the control group. In comparison to the control group, the model group had decreased Klotho and Bax levels, and elevated Wnt-1, β-catenin, bcl-2, survivin, and PCNA expression, VEGF, IL-6, TNF-α, TNF-β1, and bFGF levels, as well as the percentage of pulmonary artery ring contraction. The Klotho vector, DKK-1 and DKK-1 + Klotho vector groups exhibited reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as shortened S phase compared with the blank and NC groups. Compared with the Klotho vector and DKK-1 groups, the DKK-1 + Klotho vector groups had reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as a shortened S phase. Conclusively, Klotho inhibits pulmonary vascular remodeling by inactivation of Wnt signaling pathway. © 2018 Wiley Periodicals, Inc.

  2. Effect of cadmium on genetic toxicity and protection of cortex acanthopanasia radicis against genetic damage induced by cadmium

    International Nuclear Information System (INIS)

    Liu Bing; Pang Huimin; Chen Minyi

    1999-01-01

    Objective and Methods: The test of sperm aberration and micronucleus of bone marrow cells in mice were used to detect the mutagenicity of cadmium and anti-mutagenicity of Cortex Acanthopanasia Radicis (CAR) on germ cell and somatic cell. Kunming mice were divided randomly into four groups: normal saline control group (NS): MMC control group (MMC 1.0 mg/kg); Cd-mutate group (1/5 LD 50 ), 17.6 mg/kg); CAR anti-mutate group (CAR 1,2,4 g/kg + Cd). Ridit test and x 2 were used to evaluate the statistical significance of the date. Results: The experiment demonstrated that Chinese medicine CAR can significantly decrease sperm aberration and micronuclei frequencies induced by Cd (P<0.01). Conclusion: As an anti-mutagen CAR has practical value in occupational protection against genetic damage induced by Cd

  3. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    International Nuclear Information System (INIS)

    Mehinto, Alvine C.; Prucha, Melinda S.; Colli-Dula, Reyna C.; Kroll, Kevin J.; Lavelle, Candice M.; Barber, David S.; Vulpe, Christopher D.; Denslow, Nancy D.

    2014-01-01

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  4. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    Energy Technology Data Exchange (ETDEWEB)

    Mehinto, Alvine C., E-mail: alvinam@sccwrp.org [Southern California Coastal Water Research Project, Costa Mesa, CA 92626 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Prucha, Melinda S. [Department of Human Genetics, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Colli-Dula, Reyna C.; Kroll, Kevin J.; Lavelle, Candice M.; Barber, David S. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Vulpe, Christopher D. [Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720 (United States); Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States)

    2014-07-01

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  5. Effect of Physalis peruviana L. on cadmium-induced testicular toxicity in rats.

    Science.gov (United States)

    Othman, Mohamed S; Nada, Ahmed; Zaki, Hassan S; Abdel Moneim, Ahmed E

    2014-06-01

    Cadmium (Cd) stimulates the production of reactive oxygen species and causes tissue damage. We investigated here the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced testes toxicity in rats. Twenty-eight Wistar albino rats were used. They were divided into four groups (n=7). Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg body weight (bwt) of cadmium chloride for 5 days. Group 3 was orally treated with 200 mg/kg bwt of methanolic extract of physalis (MEPh). Group 4 was pretreated with MEPh before cadmium for 5 days. Changes in body and testes weights were determined. Oxidative stress markers, antioxidant enzymes, and testosterone level were measured. Histopathological changes of testes were examined, and the immunohistochemical staining for the proapoptotic (caspase-3) protein was performed. The injection of cadmium caused a significant decrease in body weight, while a significant increase in testes weight and testes weight index was observed. Pretreatment with MEPh was associated with significant reduction in the toxic effects of Cd as shown by reduced testicular levels of malondialdehyde, nitric oxide, and caspase-3 expression and increased glutathione content, and the activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and testosterone were also increased. Testicular histopathology showed that Cd produced an extensive germ cell apoptosis, and the pretreatment of MEPh in Cd-treated rats significantly reduced Cd-induced testicular damage. On the basis of the above results, it can be hypothesized that P. peruviana L. has a protective effect against cadmium-induced testicular oxidative stress and apoptosis in the rat.

  6. Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils

    International Nuclear Information System (INIS)

    Santos, Dario; Nunes, Lidiane C.; Trevizan, Lilian C.; Godoi, Quienly; Leme, Flavio O.; Braga, Jez Willian B.; Krug, Francisco Jose

    2009-01-01

    Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (LIBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, λ = 1064 nm) and the emission signals were collimated by lenses into an optical fiber coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils.

  7. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  8. Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer

    Science.gov (United States)

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induce...

  9. Wnt family genes and their modulation in the ovary-independent and persistent vaginal epithelial cell proliferation and keratinization induced by neonatal diethylstilbestrol exposure in mice

    International Nuclear Information System (INIS)

    Nakamura, Takeshi; Miyagawa, Shinichi; Katsu, Yoshinao; Watanabe, Hajime; Mizutani, Takeshi

    2012-01-01

    Proliferation and differentiation of cells in female reproductive organs, the oviduct, uterus and vagina, are regulated by endogenous estrogen. In utero exposure to a synthetic estrogen, diethylstilbestrol (DES), induces vaginal clear-cell adenocarcinoma in humans. In mice, perinatal exposure to DES results in abnormalities such as polyovular follicles, uterine circular muscle disorganization and persistent vaginal epithelial cell proliferation. We reported the persistent gene expression change such as interleukin-1 (IL-1) related genes, insulin-like growth factor-I (IGF-I) and its downstream signaling in the mouse vagina exposed neonatally to DES. In this study, we found persistent up-regulation of Wnt4 and persistent down-regulation of Wnt11 in the vagina of mice exposed neonatally to DES and estrogen receptor α specific ligand. Also Wnt4 expression in vagina is correlated to the stratification of epithelial cells with the superficial keratinization of vagina, but not epithelial cell stratification only.

  10. Cellular proton dynamics in Elodea canadensis leaves induced by cadmium.

    Science.gov (United States)

    Tariq Javed, M; Lindberg, Sylvia; Greger, Maria

    2014-04-01

    Our earlier investigations showed that Elodea canadensis shoots, grown in the presence of cadmium (Cd), caused basification of the surrounding medium. The present study was aimed to examine the proton dynamics of the apoplastic, cytosolic and vacuolar regions of E. canadensis leaves upon Cd exposure and to establish possible linkage between cellular pH changes and the medium basification. The changes in cytosolic calcium [Ca(2+)]cyt was also investigated as the [Ca(2+)]cyt and [pH]cyt homeostasis are closely linked. The cellular H(+) and Ca(2+) concentrations were monitored by fluorescence microscopy and ion-specific fluorescent dyes. Cadmium concentration of leaf-cell walls was measured after plant cultivation at different fixed levels of starting pH. The protoplasts from E. canadensis leaves were isolated by use of a newly developed enzymatic method. Upon Cd addition, both cytosolic and vacuolar pH of leaf protoplasts increased with a concomitant rise in the cytosolic Ca(2+) concentration. Time course studies revealed that changes in [Ca(2+)]cyt and [pH]cyt followed similar dynamics. Cadmium (0.5 μM) exposure decreased the apoplastic pH by 0.85 units. The maximum cell wall bound Cd-contents were obtained in plants grown at low starting pH. It is concluded that Cd treatment causes apoplastic acidosis in E. canadensis leaves associated with enhanced Cd binding to the cell walls and, consequently, reduced Cd influx into the cytosol. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Cadmium-induced genomic instability in Arabidopsis: Molecular toxicological biomarkers for early diagnosis of cadmium stress.

    Science.gov (United States)

    Wang, Hetong; He, Lei; Song, Jie; Cui, Weina; Zhang, Yanzhao; Jia, Chunyun; Francis, Dennis; Rogers, Hilary J; Sun, Lizong; Tai, Peidong; Hui, Xiujuan; Yang, Yuesuo; Liu, Wan

    2016-05-01

    Microsatellite instability (MSI) analysis, random-amplified polymorphic DNA (RAPD), and methylation-sensitive arbitrarily primed PCR (MSAP-PCR) are methods to evaluate the toxicity of environmental pollutants in stress-treated plants and human cancer cells. Here, we evaluate these techniques to screen for genetic and epigenetic alterations of Arabidopsis plantlets exposed to 0-5.0 mg L(-1) cadmium (Cd) for 15 d. There was a substantial increase in RAPD polymorphism of 24.5, and in genomic methylation polymorphism of 30.5-34.5 at CpG and of 14.5-20 at CHG sites under Cd stress of 5.0 mg L(-1) by RAPD and of 0.25-5.0 mg L(-1) by MSAP-PCR, respectively. However, only a tiny increase of 1.5 loci by RAPD occurred under Cd stress of 4.0 mg L(-1), and an additional high dose (8.0 mg L(-1)) resulted in one repeat by MSI analysis. MSAP-PCR detected the most significant epigenetic modifications in plantlets exposed to Cd stress, and the patterns of hypermethylation and polymorphisms were consistent with inverted U-shaped dose responses. The presence of genomic methylation polymorphism in Cd-treated seedlings, prior to the onset of RAPD polymorphism, MSI and obvious growth effects, suggests that these altered DNA methylation loci are the most sensitive biomarkers for early diagnosis and risk assessment of genotoxic effects of Cd pollution in ecotoxicology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Wnt ligands signal in a cooperative manner to promote foregut organogenesis

    OpenAIRE

    Miller, Mayumi F.; Cohen, Ethan David; Baggs, Julie E.; Lu, Min Min; Hogenesch, John B.; Morrisey, Edward E.

    2012-01-01

    Endoderm-mesenchyme cross-talk is a central process in the development of foregut-derived organs. How signaling pathways integrate the activity of multiple ligands to guide organ development is poorly understood. We show that two Wnt ligands, Wnt2 and Wnt7b, cooperatively induce Wnt signaling without affecting the stabilization of the Wnt canonical effector β-catenin despite it being necessary for Wnt2–Wnt7b cooperativity. Wnt2–Wnt7b cooperation is specific for mesenchymal cell lineages and t...

  13. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China); Jia Xiuying, E-mail: hznujiaxiuying@126.com [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. Black-Right-Pointing-Pointer Cd can result in oxidative stress in the frog testes. Black-Right-Pointing-Pointer Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. Black-Right-Pointing-Pointer Cd can cause apoptosis in the testes of male R. limnocharis. Black-Right-Pointing-Pointer Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose-effect relationship. Moreover, the same dosages of Cd{sup 2+} solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5-7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a

  14. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  15. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer.

    Science.gov (United States)

    Liu, Zhenhua; Brooks, Ryan S; Ciappio, Eric D; Kim, Susan J; Crott, Jimmy W; Bennett, Grace; Greenberg, Andrew S; Mason, Joel B

    2012-10-01

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induced elevation of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Animal studies were conducted on C57BL/6 mice, and obesity was induced by utilizing a high-fat diet (60% kcal). An inflammation-specific microarray was performed, and results were confirmed with real-time polymerase chain reaction. The array revealed that diet-induced obesity increased the expression of TNF-α in the colon by 72% (P=.004) and that of interleukin-18 by 41% (P=.023). The concentration of colonic TNF-α protein, determined by ex vivo culture assay, was nearly doubled in the obese animals (P=.002). The phosphorylation of glycogen synthase kinase 3 beta (GSK3β), an important intermediary inhibitor of Wnt signaling and a potential target of TNF-α, was quantitated by immunohistochemistry. The inactivated (phosphorylated) form of GSK3β was elevated in the colonic mucosa of obese mice (P<.02). Moreover, β-catenin, the key effector of canonical Wnt signaling, was elevated in the colons of obese mice (P<.05), as was the expression of a downstream target gene, c-myc (P<.05). These data demonstrate that diet-induced obesity produces an elevation in colonic TNF-α and instigates a number of alterations of key components within the Wnt signaling pathway that are protransformational in nature. Thus, these observations offer evidence for a biologically plausible avenue, the Wnt pathway, by which obesity increases the risk of colorectal cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. WNT7A/?-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer

    OpenAIRE

    King, Mandy L.; Lindberg, Mallory E.; Stodden, Genna R.; Okuda, Hiroshi; Ebers, Steven D.; Johnson, Alyssa; Montag, Anthony; Lengyel, Ernst; MacLean, James A.; Hayashi, Kanako

    2014-01-01

    We previously characterized the link between WNT7A and the progression of ovarian cancer. Other groups have identified FGF1 as a relevant risk factor in ovarian cancer. Here, we show a linkage between these two signaling pathways that may be exploited to improve treatment and prognosis of patients with ovarian cancer. High expression of WNT7A and FGF1 are correlated in ovarian carcinomas and poor overall patient survival. A chromatin immunoprecipitation assay demonstrated that WNT7A/?-catenin...

  17. Cadmium and the kidney.

    OpenAIRE

    Friberg, L

    1984-01-01

    The paper is a review of certain aspects of importance of cadmium and the kidney regarding the assessment of risks and understanding of mechanisms of action. The review discusses the following topics: history and etiology of cadmium-induced kidney dysfunction and related disorders; cadmium metabolism, metallothionein and kidney dysfunction; cadmium in urine as indicator of body burden, exposure and kidney dysfunction; cadmium levels in kidney and liver as indicators of kidney dysfunction; cha...

  18. Pentazocine Protects SN4741 Cells Against MPP+-Induced Cell Damage via Up-Regulation of the Canonical Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jiancai Wang

    2017-06-01

    Full Text Available The Wnt/β-catenin signaling pathway has been linked to many neurodegenerative diseases including Parkinson’s disease (PD. A glycoprotein named Dickkopf-1 (Dkk1 can combine with the receptor complex on cell membrane to inhibit Wnt/β-catenin signaling. Opioids, a series of compounds including morphine, fentanyl and pentazocine, have been reported to contribute to the up-regulation of Wnt/β-catenin signaling. Naloxone is an antagonist that has been used as an antidote to opioids through mu-opioid receptor. 1-methyl-4-phenylpyridinium (MPP+, which serves as a selective toxin for dopaminergic neurons, has been used to create experimental models of PD. In our study, we examined the protective effects of pentazocine against MPP+-induced cell death in the nigral dopaminergic cell line, SN4741 and tried to elucidate the molecular mechanisms underlying such protective effects. The data showed that pretreatment with pentazocine significantly rescued the SN4741 cell against MPP+. Moreover, the MPP+-exposed SN4741 cells exhibited a down-regulation of β-catenin, which could be restored by treatment with pentazocine. However, Dkk1 but not naloxonewas associated with the abrogation of protective effect of pentazocine. These results suggest that pentazocine alleviates MPP+-induced SN4741 cells apoptosis via the up-regulation of canonical Wnt/β-catenin signaling.

  19. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Science.gov (United States)

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  20. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  1. Strain differences of cadmium-induced hepatotoxicity in Wistar-Imamichi and Fischer 344 rats: involvement of cadmium accumulation

    International Nuclear Information System (INIS)

    Shimada, Hideaki; Takamure, Yasutaka; Shimada, Akinori; Yasutake, Akira; Waalkes, Michael P.; Imamura, Yorishige

    2004-01-01

    We previously reported that Wistar-Imamichi (WI) rats have a strong resistance to cadmium (Cd)-induced lethality compared to other strains such as Fischer 344 (Fischer) rats. The present study was designed to establish biochemical and histological differences in Cd toxicity in WI and Fischer rats, and to clarify the mechanistic basis of these strain differences. A single Cd (4.5 mg/kg, s.c.) treatment caused a significant increase in serum alanine aminotransferase activity, indicative of hepatotoxicity, in Fischer rats, but did not in WI rats. This difference in hepatotoxic response to Cd was supported by pathological analysis. After treatment with Cd at doses of 3.0, 3.5 and 4.5 mg/kg, the hepatic and renal accumulation of Cd was significantly lower in the WI rats than in the Fischer rats, indicating a kinetic mechanism for the observed strain differences in Cd toxicity. Thus, the remarkable resistance to Cd-induced hepatotoxicity in WI rats is associated, at least in part, with a lower tissue accumulation of the metal. Hepatic and renal zinc (Zn) contents after administration were similarly lower in WI than in Fischer rats. When Zn was administered in combination with Cd to Fischer rats, it decreased Cd contents in the liver and kidney, and exhibited a significant protective effect against the toxicity of Cd. We propose the possibility that Zn transporter plays an important role in the strain difference of Cd toxicity in WI and Fischer rats

  2. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Tanya L Medley

    Full Text Available BACKGROUND: Disturbances in oxygen levels have been found to impair cardiac organogenesis. It is known that stem cells and differentiating cells may respond variably to hypoxic conditions, whereby hypoxia may enhance stem cell pluripotency, while differentiation of multiple cell types can be restricted or enhanced under hypoxia. Here we examined whether HIF-1alpha modulated Wnt signaling affected differentiation of iPS cells into beating cardiomyocytes. OBJECTIVE: We investigated whether transient and sustained hypoxia affects differentiation of cardiomyocytes derived from murine induced pluripotent stem (iPS cells, assessed the involvement of HIF-1alpha (hypoxia-inducible factor-1alpha and the canonical Wnt pathway in this process. METHODS: Embryoid bodies (EBs derived from iPS cells were differentiated into cardiomyocytes and were exposed either to 24 h normoxia or transient hypoxia followed by a further 13 days of normoxic culture. RESULTS: At 14 days of differentiation, 59 ± 2% of normoxic EBs were beating, whilst transient hypoxia abolished beating at 14 days and EBs appeared immature. Hypoxia induced a significant increase in Brachyury and islet-1 mRNA expression, together with reduced troponin C expression. Collectively, these data suggest that transient and sustained hypoxia inhibits maturation of differentiating cardiomyocytes. Compared to normoxia, hypoxia increased HIF-1alpha, Wnt target and ligand genes in EBs, as well as accumulation of HIF-1alpha and beta-catenin in nuclear protein extracts, suggesting involvement of the Wnt/beta-catenin pathway. CONCLUSION: Hypoxia impairs cardiomyocyte differentiation and activates Wnt signaling in undifferentiated iPS cells. Taken together the study suggests that oxygenation levels play a critical role in cardiomyocyte differentiation and suggest that hypoxia may play a role in early cardiogenesis.

  3. Cadmium induced changes in cell organelles: An ultrastructural study using cadmium sensitive and resistant muntjac fibroblast cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Ord, M.J.; Chibber, R.; Bouffler, S.D.

    1988-09-01

    A detailed electron microscopy study of cadmium sensitive and resistant muntjac fibroblast cell lines has identified a wide range of intracellular damage following exposure to cadmium. Damaged organelles included cell membrane, mitochondria, Golgi cisternae and tubular network, chromatin, nucleoli, microfilaments and ribosomes. Although cell membrane damage was generally the earliest indication of adverse cadmium action, particularly with continuous cadmium exposures, cells could tolerate extensive membrane loss. Mitochondrial distortion and some damage to Golgi was also tolerated. The turning point at which cadmium became lethal was generally marked by a cascade of events which included damage to both nuclear and cytoplasmic components. These results for fibroblasts are discussed and compared with damage reported in other types of cells.

  4. Wnt-1 Signaling in Mammary Carcinogenesis

    Science.gov (United States)

    2000-04-01

    and the notochord (4), Wnt-5A/LRP6 or LRP6 (higher doses) alone induced trunk axis duplication with muscle and neural tissues but lacking head or the... notochord (Fig. lb). It remains unclear whether this is due to quantitative or qualitative differences between Wnt-5a/LRP6 and Wnt-5a/hFz5 co...2 ng) or Wnt-5a (20 pg) plus LRP6 (100 pg) induced trunk axis duplication lacking head and the notochord . Top: the whole embryo phenotype at stage 40

  5. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.

    Science.gov (United States)

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Diab, Marwa M S; Othman, Mohamed S; Aref, Ahmed M; Abdel Moneim, Ahmed E

    2014-12-01

    This study aimed to investigate the potential protective role of Physalis peruviana L. (family Solanaceae) against cadmium-induced hepatorenal toxicity in Wistar rats. Herein, cadmium chloride (CdCl2) (6.5 mg/kg bwt/day) was intraperitoneally injected for 5 days, and methanolic extract of physalis (MEPh) was pre-administered to a group of Cd-treated rats by an oral administration at a daily dose of 200 mg/kg bwt for 5 days. The findings revealed that CdCl2 injection induced significant decreases in kidney weight and kidney index. Cadmium intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of uric acid, urea and creatinine were increased in the serum. The pre-administration of MEPh alleviated hepatorenal toxicity in Cd-treated rats. Physalis was noted to play a good hepatorenal protective role, reducing lipid peroxidation, nitric oxide, and enhancing enzymatic activities and non-enzymatic antioxidant molecule, glutathione, in hepatic and renal tissues of Cd-treated rats. Moreover, physalis treatment was able to reverse the histopathological changes in liver and kidney tissues and also increased the expression of Bcl-2 protein in liver and kidney of rats. Overall, the results showed that MEPh can induce antioxidant and anti-apoptotic effects and also exerts beneficial effects for the treatment of Cd-induced hepatorenal toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. WNT Signaling Is Required for Peritoneal Membrane Angiogenesis.

    Science.gov (United States)

    Padwal, Manreet Kaur; Cheng, Genyang; Liu, Limin; Boivin, Felix J; Gangji, Azim; Brimble, Kenneth Scott; Bridgewater, Darren; Margetts, Peter J

    2018-01-24

    The WNT signaling pathway is involved in wound healing and fibrosis. We evaluated the WNT signaling pathway in peritoneal membrane injury. We assessed WNT1 protein expression in the peritoneal effluents of 54 stable peritoneal dialysis (PD) patients and WNT-related gene expression in ex vivo mesothelial cell cultures from 21 PD patients. In a transforming growth factor beta (TGFB) mediated animal model of peritoneal fibrosis, we evaluated regulation of the WNT pathway and the effect of WNT inhibition on peritoneal fibrosis and angiogenesis. WNT1 and WNT2 gene expression were positively correlated with peritoneal membrane solute transport in PD patients. In the mouse peritoneum, TGFΒ-induced peritoneal fibrosis was associated with increased expression of WNT2 and WNT4. Peritoneal b-catenin protein was significantly upregulated after infection with AdTGFB along with elements of the WNT signaling pathway. Treatment with a b-catenin inhibitor (ICG-001) in mice with AdTGFB-induced peritoneal fibrosis resulted in attenuation of peritoneal angiogenesis and reduced vascular endothelial growth factor. Similar results were also observed with the WNT antagonist Dickkopf related protein (DKK) 1. In addition to this, DKK-1 blocked epithelial to mesenchymal transition and increased levels of the cell adhesion protein E-cadherin. We provide evidence that WNT signaling is active in the setting of experimental peritoneal fibrosis and WNT1 correlates with patient peritoneal membrane solute transport in PD patients. Intervention in this pathway is a possible therapy for peritoneal membrane injury.

  7. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  8. [Expression of ICAT and Wnt signaling-related proteins in the monocytic differentiation of HL-60 cells induced by a new steroidal drug NSC67657].

    Science.gov (United States)

    Wang, J S; Wang, W J; Wang, T; Zhang, Y

    2016-04-01

    To investigate the expression of mRNA and proteins of β-catenin, TCF-4 (ICAT) and Wnt signaling pathway-related genes in the monocytic differentiation of acute myeloid leukemia HL-60 cells induced by a new steroidal drug NSC67657. Wright's staining and α-NBE staining were used to observe the differentiation of HL-60 cells after 5 days of 10 μmol/L NSC67657 treatment. Flow cytometry (FCM) was used to detect the differentiation and cell cycles. The expressions of mRNA and proteins of ICAT and Wnt signaling pathway-related factors, including β-catenin, TCF-4, c-myc, cyclin D1 and TCF-1 before and after differentiation, were detected by RT-PCR and Western blot. Morphological observation showed that NSC67657 induced monocytic differentiation of HL-60 cells. At 5 days after 10 μmol/L NSC67657 treatment, the number of CD14(+) HL-60 cells was (94.37±2.84)%, significantly higher than the (1.31±0.09)% in control group (Pcells were of (18.76±0.98)%, significantly lower than that of (34.38±2.61) % in the control group (Pprotein, and down-regulated the expression of β-catenin mRNA and protin (Pprotein and nuclear protein in the HL-60 cells (P>0.05 for all). The target genes of Wnt signaling pathway, including c-myc, cyclinD1 and TCF-1 mRNA and proteins in the HL-60 cells were significantly down-regulated after NSC67657 treatment (Pcells, and down-regulates the expression of β-catenin and target genes of Wnt signaling pathway. These results indicate that Wnt signaling pathway may be directly or indirectly involved in the monocytic differentiation process of HL-60 cells.

  9. Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ahmad, R; Kumar, B; Chen, Z; Chen, X; Müller, D; Lele, S M; Washington, M K; Batra, S K; Dhawan, P; Singh, A B

    2017-11-23

    The hyperactivated Wnt/β-catenin signaling acts as a switch to induce epithelial to mesenchymal transition and promote colorectal cancer. However, due to its essential role in gut homeostasis, therapeutic targeting of this pathway has proven challenging. Additionally, IL-6/Stat-3 signaling, activated by microbial translocation through the dysregulated mucosal barrier in colon adenomas, facilitates the adenoma to adenocarcinomas transition. However, inter-dependence between these signaling pathways and key mucosal barrier components in regulating colon tumorigenesis and cancer progression remains unclear. In current study, we have discovered, using a comprehensive investigative regimen, a novel and tissue-specific role of claudin-3, a tight junction integral protein, in inhibiting colon cancer progression by serving as the common rheostat of Stat-3 and Wnt-signaling activation. Loss of claudin-3 also predicted poor patient survival. These findings however contrasted an upregulated claudin-3 expression in other cancer types and implicated role of the epigenetic regulation. Claudin-3-/- mice revealed dedifferentiated and leaky colonic epithelium, and developed invasive adenocarcinoma when subjected to colon cancer. Wnt-signaling hyperactivation, albeit in GSK-3β independent manner, differentiated colon cancer in claudin-3-/- mice versus WT-mice. Claudin-3 loss also upregulated the gp130/IL6/Stat3 signaling in colonic epithelium potentially assisted by infiltrating immune components. Genetic and pharmacological studies confirmed that claudin-3 loss induces Wnt/β-catenin activation, which is further exacerbated by Stat-3-activation and help promote colon cancer. Overall, these novel findings identify claudin-3 as a therapeutic target for inhibiting overactivation of Wnt-signaling to prevent CRC malignancy.

  10. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Ma, Wenwen; Xu, Wenzhong; Xu, Hua; Chen, Yanshan; He, Zhenyan; Ma, Mi

    2010-07-01

    Nitric oxide (NO) is a bioactive gas and functions as a signaling molecule in plants exposed to diverse biotic and abiotic stresses including cadmium (Cd(2+)). Cd(2+) is a non-essential and toxic heavy metal, which has been reported to induce programmed cell death (PCD) in plants. Here, we investigated the role of NO in Cd(2+)-induced PCD in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2). In this work, BY-2 cells exposed to 150 microM CdCl(2) underwent PCD with TUNEL-positive nuclei, significant chromatin condensation and the increasing expression of a PCD-related gene Hsr203J. Accompanied with the occurring of PCD, the production of NO increased significantly. The supplement of NO by sodium nitroprusside (SNP) had accelerated the PCD, whereas the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) alleviated this toxicity. To investigate the mechanism by which NO exerted its function, Cd(2+) concentration was measured subsequently. SNP led more Cd(2+) content than Cd(2+) treatment alone. By contrast, the prevention of NO by L-NAME decreased Cd(2+) accumulation. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd(2+) fluxes. This analysis revealed the promotion of Cd(2+) influxes into cells by application of SNP, while L-NAME and cPTIO reduced the rate of Cd(2+) uptake or even resulted in net Cd(2+) efflux. Based on these founding, we concluded that NO played a positive role in CdCl(2)-induced PCD by modulating Cd(2+) uptake and thus promoting Cd(2+) accumulation in BY-2 cells.

  11. Yi Qi Qing Re Gao-containing serum inhibits lipopolysaccharide-induced rat mesangial cell proliferation by suppressing the Wnt pathway and TGF-β1 expression.

    Science.gov (United States)

    Yang, Liping; Sun, Xueyan; Zhan, Yongli; Liu, Huijie; Wen, Yumin; Mao, Huimin; Dong, X I; Li, Ping

    2016-04-01

    The aim of the present study was to investigate the effect of Yi Qi Qing Re Gao-containing serum (YQ-S) on rat mesangial cell (MC) proliferation and to investigate the underlying mechanism. MCs were divided into the control, lipopolysaccharide (LPS)-stimulated, YQ-S and fosinopril-containing serum (For-S) groups, and cultured for 48 h. An MTT assay was used to evaluate the proliferation of MCs. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were conducted to detect the expression levels of Wnt4, β-catenin and transforming growth factor (TGF)-β1 in MCs. The results indicated that YQ-S inhibited LPS-induced MC proliferation. The Wnt4 and TGF-β1 mRNA expression levels were reduced in the YQ-S group (P<0.01 or P<0.05). Furthermore, the Wnt4, β-catenin and TGF-β1 protein expression levels were suppressed in the YQ-S group (P<0.01 or P<0.05). Therefore, YQ-S appears to inhibit MC proliferation, and its mechanism may involve the inhibition of the Wnt signaling pathway and downregulation of TGF-β1 expression.

  12. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  13. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice

    International Nuclear Information System (INIS)

    Eybl, Vladislav; Kotyzova, Dana; Koutensky, Jaroslav

    2006-01-01

    The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50 mg/kg b.w., p.o.), resveratrol (20 mg/kg b.w., p.o.) or melatonin (12 mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7 mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p < 0.001), decreased GSH content (to 65%, p < 0.001) and inhibited catalase (to 68%, p < 0.001) and GPx activity (to 60%, p < 0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p < 0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden

  14. Cadmium-Induced Hydrogen Accumulation Is Involved in Cadmium Tolerance in Brassica campestris by Reestablishment of Reduced Glutathione Homeostasis.

    Science.gov (United States)

    Wu, Qi; Su, Nana; Chen, Qin; Shen, Wenbiao; Shen, Zhenguo; Xia, Yan; Cui, Jin

    2015-01-01

    Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.

  15. Cadmium-Induced Toxicity and the Hepatoprotective Potentials of Aqueous Extract of Jessiaea Nervosa Leaf

    Directory of Open Access Journals (Sweden)

    Ama Udu Ibiam

    2013-08-01

    Full Text Available Purpose: Hepatoprotective potentials of Jussiaea nervosa leaf extract against Cadmium-induced hepatotoxicity were investigated. Methods: Forty albino rats were randomly assigned into groups A-G with 4 rats in each of the groups A-F. Group A served as control and were given feed only while rats in groups B-F were orally exposed to varying concentrations of cadmium for six weeks. Effects of cadmium were most significant at 12 mg/Kg body weight (BW, and this dose was used for subsequent test involving oral administration of Jussiaea nervosa leaf extracts. In this segment, group G (n= 16 was sub-divided into four: G1-G4, with each sub-group containing four rats. Rats in sub-group G1 were given cadmium and feed only and served as positive control. Rats in sub-groups G2, G3, and G4 were given cadmium and 20, 50 and 100g/kg BW of Jussiaea nervosa extract, respectively, for six weeks. Blood and liver were analysed using standard laboratory techniques and methods. Results: Liver function parameters (ALT, AST, ALP, bilirubin were significantly (p<0.05 elevated in exposed rats in comparison to the controls, except for total protein and albumin, which were significantly decreased. Histopathological assessment reveals renal pathology in exposed rats in sharp contrast with the controls. Jussiaea nervosa extract however lowered the values of liver function parameters with 100mg/Kg BW dose producing the highest ameliorative effects. Similarly, the serum albumin and total protein significantly (p<0.05 improved with normal liver architecture. Conclusion: The results show the hepatoprotective potentials of Jussiaea nervosa extract against Cd toxicity.

  16. Prevention of radiation and cadmium induced haematological alternations in the Swiss albino mice by Aloe Vera

    International Nuclear Information System (INIS)

    Agarwal, Manisha; Songara, Venkteshwar; Singariya, Seema; Meena, Dinesh; Chakrawarti, Aruna; Purohit, R.K.

    2013-01-01

    The development of effective radio protectors and radio recovery drugs is of great importance in view of their potential application during both planned (i.e., radiotherapy) and unplanned radiation exposure (i.e., in the nuclear industry and natural background radiation). The combined effect of radiation and cadmium further increases the causation of damages to organs and tissues. Aloe vera has enjoyed a reputation as a healer for millennia, based primarily on anecdotal evidence. For the last 40 years concerted efforts by the scientific research community has brought Aloe vera out of the realm of folk medicine, providing it solid medical and scientific foundation. Haematopoietic organs are among the most radiosensitive cells in the living organisms. Therefore, present study was carried out to study the modulatory influence of Aloe vera against radiation and cadmium induced hematological changes in the Swiss albino mice. For the study, six to eight weeks old male Swiss albino mice were procured and kept in polypropylene cages.The animals were exposed 3.5 Gy and 7.0 Gy of gamma radiation with or without cadmium chloride treatment. The Aloe vera was administered seven days prior to irradiation or cadmium chloride treatment. Five animals from each group were autopsied by cervical dislocation at each post treatment interval of 1, 2, 4, 7, 14 and 28 days. Blood was collected in heparinized tubes to estimate various haematological parameters viz. RBC, WBC, PCV, Haemoglobin and MCV. Radiation exposure resulted in a significant decline in RBC, WBC, PCV, Haemoglobin and MCV up to day-14 in peripheral blood, thereafter it increased up to day-28 without reaching to normal. After combined treatment of radiation and cadmium chloride the more severe changes were noticed showing synergistic or additive effect. An early and fast recovery was seen in Aloe vera pretreatment groups. Thus, it may be concluded from above observation that Aloe vera has the potential of combating the

  17. WNT signalling and haematopoiesis: a WNT-WNT situation.

    NARCIS (Netherlands)

    Staal, F.J.T.; Clevers, J.C.

    2005-01-01

    The evolutionarily conserved WNT-signalling pathway has pivotal roles during the development of many organ systems, and dysregulated WNT signalling is a key factor in the initiation of various tumours. Recent studies have implicated a role for WNT signal transduction at several stages of lymphocyte

  18. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    International Nuclear Information System (INIS)

    Planello, R.; Martinez-Guitarte, J.L.; Morcillo, G.

    2007-01-01

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  19. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Martinez-Guitarte, J.L. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Morcillo, G. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain)]. E-mail: gmorcillo@ccia.uned.es

    2007-02-01

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  20. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  1. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    International Nuclear Information System (INIS)

    Krumschnabel, Gerhard; Ebner, Hannes L.; Hess, Michael W.; Villunger, Andreas

    2010-01-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  2. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs.

    Directory of Open Access Journals (Sweden)

    Jesús Villar

    Full Text Available BACKGROUND: Mechanical ventilation (MV with high tidal volumes (V(T can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI. The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI. METHODOLOGY/PRINCIPAL FINDINGS: Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (V(T (6 mL/kg or high V(T (20 mL/kg. Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41 β-catenin, matrix metalloproteinase-7 (MMP-7, cyclin D1, vascular endothelial growth factor (VEGF, and axis inhibition protein 2 (AXIN2 protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-V(T MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-V(T MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.

  3. Influence of cadmium on ketamine-induced anesthesia and brain microsomal Na[sup +], K[sup +]-ATPase in mice

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.; Sangiah, S. (Oklahoma State Univ., Stillwater, OK (United States))

    1994-10-01

    Cadmium is a rare metallic element, present in almost all types of food. Shellfish, wheat and rice accumulate very high amounts. Occupational and environmental pollutants are the main sources of cadmium exposure. Cadmium has a very long biologic half-life. Exposure to Cadmium causes anemia, hypertension, hepatic, renal, pulmonary and cardiovascular disorders as well as being a possible mutagen, teratogen and carcinogen. Acute cadmium treatment increased the hexobarbital sleeping time and inhibited hepatic microsomal drug metabolism due to a decrease in cytochrome P[sub 450] content. Cadmium potentiated ethanol-induced sleep in a dose-dependent manner. Cadmium has been shown to inhibit brain microsomal Na[sup +], K[sup +]-ATPase activity in vitro and in vivo. Cadmium and ethanol additively inhibited brain Na[sup +], K[sup +]-ATPase. This might be a direct interaction between cadmium and ethanol in the central nervous system. Ketamine is an intravenous anesthetic agent. It acts on central nervous system and produces [open quotes]dissociative anaesthesia.[close quotes] Ketamine provides adequate surgical anesthesia and is used alone in humans and/or combination with xylazine, an [alpha][sub 2]-adrenergic agonist in animals. It produces CNS depression, analgesia, amnesia, immobility and a feeling of dissociation from the environment. Ketamine is a non-competitive antagonist of the NMDA subset of the glutamate receptor. This perhaps results in an increase in neuronal activity leading to disorganization of normal neurotransmission and produces dissociative anesthetic state. Because it is different from most other anesthetics, ketamine may be expected to have a unique effect on brain biochemical parameters and enzymes. The purpose of this study was to examine the interactions between cadmium and ketamine on the central nervous system and ATPase, in an attempt to further understand the mechanism of action. 12 refs., 3 figs.

  4. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model.

    Science.gov (United States)

    Tokunaga, Yuko; Osawa, Yosuke; Ohtsuki, Takahiro; Hayashi, Yukiko; Yamaji, Kenzaburo; Yamane, Daisuke; Hara, Mitsuko; Munekata, Keisuke; Tsukiyama-Kohara, Kyoko; Hishima, Tsunekazu; Kojima, Soichi; Kimura, Kiminori; Kohara, Michinori

    2017-03-23

    Chronic hepatitis C virus (HCV) infection is one of the major causes of serious liver diseases, including liver cirrhosis. There are no anti-fibrotic drugs with efficacy against liver cirrhosis. Wnt/β-catenin signaling has been implicated in the pathogenesis of a variety of tissue fibrosis. In the present study, we investigated the effects of a β-catenin/CBP (cyclic AMP response element binding protein) inhibitor on liver fibrosis. The anti-fibrotic activity of PRI-724, a selective inhibitor of β-catenin/CBP, was assessed in HCV GT1b transgenic mice at 18 months after HCV genome expression. PRI-724 was injected intraperitoneally or subcutaneously in these mice for 6 weeks. PRI-724 reduced liver fibrosis, which was indicated by silver stain, Sirius Red staining, and hepatic hydroxyproline levels, in HCV mice while attenuating αSMA induction. PRI-724 led to increased levels of matrix metalloproteinase (MMP)-8 mRNA in the liver, along with elevated levels of intrahepatic neutrophils and macrophages/monocytes. The induced intrahepatic neutrophils and macrophages/monocytes were identified as the source of MMP-8. In conclusion, PRI-724 ameliorated HCV-induced liver fibrosis in mice. We hypothesize that inhibition of hepatic stellate cells activation and induction of fibrolytic cells expressing MMP-8 contribute to the anti-fibrotic effects of PRI-724. PRI-724 is a drug candidate which possesses anti-fibrotic effect.

  5. Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D

    International Nuclear Information System (INIS)

    Engstroem, Annette; Skerving, Staffan; Lidfeldt, Jonas; Burgaz, Ann; Lundh, Thomas; Samsioe, Goeran; Vahter, Marie; Akesson, Agneta

    2009-01-01

    Cadmium is a widespread environmental pollutant, which is associated with increased risk of osteoporosis. It has been proposed that cadmium's toxic effect on bone is exerted via impaired activation of vitamin D, secondary to the kidney effects. To test this, we assessed the association of cadmium-induced bone and kidney effects with serum 1,25-dihydroxyvitamin D (1,25(OH) 2 D); measured by enzyme immunoassay. For the assessment, we selected 85 postmenopausal women, based on low (0.14-0.39 μg/L) or high (0.66-2.1 μg/L) urinary cadmium, within a cross-sectional population-based women's health survey in Southern Sweden. We also measured 25-hydroxy vitamin D, cadmium in blood, bone mineral density and several markers of bone remodeling and kidney effects. Although there were clear differences in both kidney and bone effect markers between women with low and high cadmium exposure, the 1,25(OH) 2 D concentrations were not significantly different (median, 111 pmol/L (5-95th percentile, 67-170 pmol/L) in low- and 125 pmol/L (66-200 pmol/L) in high-cadmium groups; p=0.08). Also, there was no association between 1,25(OH) 2 D and markers of bone or kidney effects. It is concluded that the low levels of cadmium exposure present in the studied women, although high enough to be associated with lower bone mineral density and increased bone resorption, were not associated with lower serum concentrations of 1,25(OH) 2 D. Hence, decreased circulating levels of 1,25(OH) 2 D are unlikely to be the proposed link between cadmium-induced effects on kidney and bone

  6. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells

    International Nuclear Information System (INIS)

    He, Licheng; Lu, Na; Dai, Qinsheng; Zhao, Yue; Zhao, Li; Wang, Hu; Li, Zhiyu; You, Qidong; Guo, Qinglong

    2013-01-01

    Highlights: • Wogonin inhibited HCT116 cells growth and arrested at G1 phase of the cell cycle. • Wogonin down-regulated the canonical Wnt/β-catenin signaling pathway. • Wogonin interfered in the combination of β-catenin and TCF/Lef. • Wogonin limited the kinase activity of CDK8. - Abstract: Wogonin, a naturally occurring mono-flavonoid, has been reported to have tumor therapeutic potential and good selectivity both in vitro and in vivo. Herein, we investigated the anti-proliferation effects and associated mechanisms of wogonin in human colorectal cancer in vitro. The flow-cytometric analysis showed that wogonin induced a G1 phase cell cycle arrest in HCT116 cells in a concentration- and time-dependent manner. Meanwhile, the cell cycle-related proteins, such as cyclin A, E, D1, and CDK2, 4 were down-regulated in wogonin-induced G1 cell cycle arrest. Furthermore, we showed that the anti-proliferation and G1 arrest effect of wogonin on HCT116 cells was associated with deregulation of Wnt/β-catenin signaling pathway. Wogonin-treated cells showed decreased intracellular levels of Wnt proteins, and activated degradation complex to phosphorylated and targeted β-catenin for proteasomal degradation. Wogonin inhibited β-catenin-mediated transcription by interfering in the transcriptional activity of TCF/Lef, and repressing the kinase activity of CDK8 which has been considered as an oncogene involving in the development of colorectal cancers. Moreover, CDK8 siRNA-transfected HCT116 cells showed similar results to wogonin treated cells. Thus, our data suggested that wogonin induced anti-proliferation and G1 arrest via Wnt/β-catenin signaling pathway and it can be developed as a therapeutic agent against human colorectal cancer

  7. Effects of cadmium on hypoxia-induced expression of hemoglobin and erythropoietin in larval sheepshead minnow, Cyprinodon variegatus

    Energy Technology Data Exchange (ETDEWEB)

    Dangre, A.J.; Manning, S. [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States); Brouwer, M., E-mail: marius.brouwer@usm.edu [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States)

    2010-08-15

    Hypoxia and toxic metals are two common stressors found in the estuarine environment. To date little information is available on the combined effects of these stressors on early larval development in fish. We investigated the effect of cadmium and hypoxia exposure alone as well in combination on larval Cyprinodon variegatus. The LC{sub 10} for cadmium was determined to be 0.3 ppm in a 96 h acute exposure. This concentration was used in all studies. Cadmium in larvae increased significantly with exposure time (1, 3, 5 and 7 days post-hatch). The increase was proportional to body weight and not affected by hypoxia. Cadmium responsive genes were identified by suppression subtractive hybridization (SSH) in Cyprinodonvariegatus larvae after exposure to cadmium for 1, 3, 5 and 7 days. We obtained over 700 sequences from the cadmium cDNA library. Blast search of ESTs suggested that cadmium modulates multiple physiological processes. Pertinent to this study, cadmium was found to down-regulate both embryonic {alpha} and {beta} globin, which are expressed in erythrocytes generated during the first, or primitive, wave of erythropoiesis in teleosts. Hemoglobin (Hb) and erythropoietin (Epo) (the hormone that promotes red blood cell production) are known hypoxia-inducible genes. To explore the possibility that cadmium might offset the hypoxia-induced expression of Hb and Epo, we investigated the expression of both genes following hypoxia, cadmium and combined exposures for 1, 3, 5 and 7 days post-hatch. Since Epo had not yet been identified in C. variegatus we first successfully cloned a partial coding sequence of the C. variegatus hormone. Subsequent studies revealed that expression levels of Hb and Epo remained unchanged in the normoxic controls during the time course of the study. Hypoxia increased Epo expression relative to normoxic controls, on days 3, 5 and 7, while cadmium in hypoxia inhibited the increase. Only the changes on days 5 and 7 were statistically significant

  8. The Use of cDNA Microarray to Study Gene Expression in Wnt-1 Induced Mammary Tumors

    National Research Council Canada - National Science Library

    Huang, Shixia

    2002-01-01

    .... Specifically, we have collected tissue samples from virgin mammary glands, hyperplastic mammary glands, Wnt- 1 mammary tumors, and tumors metastasized to the lung, and compared their gene expression patterns...

  9. Cadmium-induced disruption of environmental exploration and chemical communication in matrinxa, Brycon amazonicus

    International Nuclear Information System (INIS)

    Honda, R.T.; Fernandes-de-Castilho, M.; Val, A.L.

    2008-01-01

    The effects of cadmium exposure on both environment exploration and behavioral responses induced by alarm substance in matrinxa (Brycon amazonicus), a fish species endemic to the Amazon basin, were investigated. Fish exposed to 9.04 ± 0.07 μg/L waterborne cadmium for 96 h followed by 24 h depuration period in clean water, were video-recorded for 15 min, followed by immediate introduction of conspecific skin extract to the tank and a new 30 min period of fish video-recording. Cd-exposed matrinxa showed a significantly lowered locomotor activity (t-test t 12 = 2.7; p = 0.025) and spatial distribution (t-test t 12 = 2.4; p = 0.03) relative to the unexposed control fish prior to the alarm substance introduction, and did not present any significant reaction when the skin extract was introduced. The control fish, in opposite, showed a higher level of activity and spatial distribution prior the skin extract contact and significantly decreased their response after the chemical stimulus (locomotion-repeated-measure ANOVA F 1,11 = 5.6; p = 0.04; spatial distribution F 1,11 = 19.4; p = 0.001). In conclusion, exposure to a low level of cadmium affects both the environment exploration performance and the conspecific chemical communication in matrinxa. If the reduced environmental exploration performance of Cd-exposed fish is an adjustment to the compromised chemical communication or an independent effect of cadmium is the next step to be investigated

  10. Cadmium-induced disruption of environmental exploration and chemical communication in matrinxa, Brycon amazonicus

    Energy Technology Data Exchange (ETDEWEB)

    Honda, R.T. [Centro Universitario Nilton Lins - CUNL, Laboratory of Toxicology, Av. Prof. Nilton Lins 3259, Parque das Laranjeiras, Zip 69058-040 Manaus, AM (Brazil)], E-mail: rhonda@niltonlins.br; Fernandes-de-Castilho, M. [Universidade Federal do Parana - UFPR, Research Center on Animal Welfare (RECAW), Laboratory of Studies on Animal Stress, Department of Physiology, Sector of Biological Science, Jardim das Americas, Zip 81531-970 Curitiba, PR (Brazil); Val, A.L. [Instituto Nacional de Pesquisas da Amazonia - INPA, Laboratory of Ecophysiology and Molecular Evolution, Av. Andre Araujo 2936, Aleixo, Zip 69083-000 Manaus, AM (Brazil)

    2008-09-17

    The effects of cadmium exposure on both environment exploration and behavioral responses induced by alarm substance in matrinxa (Brycon amazonicus), a fish species endemic to the Amazon basin, were investigated. Fish exposed to 9.04 {+-} 0.07 {mu}g/L waterborne cadmium for 96 h followed by 24 h depuration period in clean water, were video-recorded for 15 min, followed by immediate introduction of conspecific skin extract to the tank and a new 30 min period of fish video-recording. Cd-exposed matrinxa showed a significantly lowered locomotor activity (t-test t{sub 12} = 2.7; p = 0.025) and spatial distribution (t-test t{sub 12} = 2.4; p = 0.03) relative to the unexposed control fish prior to the alarm substance introduction, and did not present any significant reaction when the skin extract was introduced. The control fish, in opposite, showed a higher level of activity and spatial distribution prior the skin extract contact and significantly decreased their response after the chemical stimulus (locomotion-repeated-measure ANOVA F{sub 1,11} = 5.6; p = 0.04; spatial distribution F{sub 1,11} = 19.4; p = 0.001). In conclusion, exposure to a low level of cadmium affects both the environment exploration performance and the conspecific chemical communication in matrinxa. If the reduced environmental exploration performance of Cd-exposed fish is an adjustment to the compromised chemical communication or an independent effect of cadmium is the next step to be investigated.

  11. Degraded iota-carrageenan can induce apoptosis in human osteosarcoma cells via the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Jin, Zhe; Han, Ya-Xin; Han, Xiao-Rui

    2013-01-01

    Osteosarcoma (OS) is a high-grade malignant bone tumor. Therefore, using both in vitro and in vivo assays, the effects of degraded iota-Carrageenan (ι-CGN) on a human osteosarcoma cell line, HOS, were examined. Degraded ι-CGN was observed to induce apoptosis and G(1) phase arrest in HOS cells. Moreover, degraded ι-CGN suppressed tumor growth in established xenograft tumor models. Accordingly, the survival rate of these mice was significantly higher than that of mice bearing tumors treated with native ι-CGN or PBS. In addition, the formation of intratumoral microvessels was inhibited following treatment with degraded ι-CGN. In Western blot assays, degraded ι-CGN was found to inhibit the Wnt/β-catenin signaling pathway. Overall, these studies demonstrate the antitumor activity of degraded ι-CGN toward the OS cell line, HOS. Moreover, valuable insight into the mechanisms mediated by degraded ι-CGN was obtained, potentially leading to the identification of novel treatments for OS. However, additional studies are needed to confirm these results in other cell types, particularly in human umbilical vein endothelial cells.

  12. Modulatory influence of Aloe vera against radiation and cadmium induced hepatic lesions in Swiss albino mice

    International Nuclear Information System (INIS)

    Harsha, Radha; Purohit, R.K.

    2012-01-01

    The major objectives in radiobiology has been the development of agents that can mitigate the damage produced by ionizing radiation to normal tissues and thus reduces the side effects caused by radiation and improvement of cancer radiotherapy. The various agents have drawn attention of researchers as they provide wider acceptability and least side effects. The current study was aimed to investigate the protective effect of Aloe vera against radiation and cadmium induced changes in the liver of Swiss albino mice. For the study healthy male Swiss albino mice (6 to 8 weeks old) were selected from an inbred colony and kept in polypropylene cages. They were provided with standard mice feed and tap water ad libitum. The animals were exposed to 3.0 and 6.0 Gy of gamma radiation with or without cadmium chloride treatment. The animals of experimental groups were administered Aloe vera juice seven days prior to irradiation or cadmium chloride treatment. The animals of each group were autopsied at each post treatment interval of 1, 2, 4, 7, 14 and 28 days of treatment. The various biochemical parameters estimated were total proteins, glycogen, cholesterol, acid and alkaline phosphatase activities, DNA and RNA. After routine procedure, histopathological changes were also observed. The changes in various biochemical parameters were observed in the form of increase of decrease in values. The histopathological changes observed on day-1 after exposure to 3.0 Gy were distortion of hepatic architecture, intracellular oedema, narrower sinusoids, cytoplasmic degranulation, vacuolation and pycnotic nuclei. The changes were more marked on day-4 and continued up to day-14. But on day-28 the sign of recovery was observed. After exposure to a higher dose (6.0 Gy) similar changes were noticed but they were more pronounced and there was late manifestation of recovery. In the combined treatment of radiation and cadmium chloride synergistic effects were observed. The liver of Aloe vera treated

  13. Study on damage of DNA in mice induced by mercury cadmium and/or lead

    International Nuclear Information System (INIS)

    Hu Xiaopan; Zhou Jianhua; Shi Xijing; Yan Liping

    2004-01-01

    Objective: To explore the joint injury actions of mercury, cadmium and/or lead on DNA in peripheral blood lymphocytes of mice. Methods: The blood specimens were obtained from mice at the 2 day after the peritoneal injections. DNA damages were determined by single cell gel electrophoresis (SCGE) and 3 H-TdR incorporation. Results: Acquired by SCGE technique, tail movement of DNA in mercury-cadmium-lead group was significantly greater than that in the single exposure group, the difference was significant too between mercury-cadmium group and cadmium group, cadmium-lead group and cadmium group. The results of 3 H-TdR incorporation showed: the values of DPM in mercury-cadmium group and cadmium-lead group were lower than that in the single exposure group and the value of DPM lowered more significantly after exposure to mercury-cadmium-lead. Conclusion: The combined effects of mercury, cadmium, lead on DNA damage are more significant. (author)

  14. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    International Nuclear Information System (INIS)

    Peng, Ting; Wang, Wei-Na; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-01-01

    Highlights: • Cd 2+ induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd 2+ . • DsRNA-suppression of LvCdc42 and MAPKs during Cd 2+ stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd 2+ stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd 2+ . They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses

  15. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ting; Wang, Wei-Na, E-mail: weina63@aliyun.com; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-06-15

    Highlights: • Cd{sup 2+} induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd{sup 2+}. • DsRNA-suppression of LvCdc42 and MAPKs during Cd{sup 2+} stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd{sup 2+} stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd{sup 2+}. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses.

  16. Cadmium-induced immune abnormality is a key pathogenic event in human and rat models of preeclampsia.

    Science.gov (United States)

    Zhang, Qiong; Huang, Yinping; Zhang, Keke; Huang, Yanjun; Yan, Yan; Wang, Fan; Wu, Jie; Wang, Xiao; Xu, Zhangye; Chen, Yongtao; Cheng, Xue; Li, Yong; Jiao, Jinyu; Ye, Duyun

    2016-11-01

    With increased industrial development, cadmium is an increasingly important environmental pollutant. Studies have identified various adverse effects of cadmium on human beings. However, the relationships between cadmium pollution and the pathogenesis of preeclampsia remain elusive. The objective of this study is to explore the effects of cadmium on immune system among preeclamptic patients and rats. The results showed that the cadmium levels in the peripheral blood of preeclamptic patients were significantly higher than those observed in normal pregnancy. Based on it, a novel rat model of preeclampsia was established by the intraperitoneal administration of cadmium chloride (CdCl2) (0.125 mg of Cd/kg body weight) on gestational days 9-14. Key features of preeclampsia, including hypertension, proteinuria, placental abnormalities and small foetal size, appeared in pregnant rats after the administration of low-dose of CdCl2. Cadmium increased immunoglobulin production, mainly angiotensin II type 1-receptor-agonistic autoantibodies (AT1-AA), by increasing the expression of activation-induced cytosine deaminase (AID) in B cells. AID is critical for the maturation of antibody and autoantibody responses. In addition, angiotensin II type 1-receptor-agonistic autoantibody, which emerged recently as a potential pathogenic contributor to PE, was responsible for the deposition of complement component 5 (C5) in kidneys of pregnant rats via angiotensin II type 1 receptor (AT1R) activation. C5a is a fragment of C5 that is released during C5 activation. Selectively interfering with C5a signalling by a complement C5a receptor-specific antagonist significantly attenuated hypertension and proteinuria in Cd-injected pregnant rats. Our results suggest that cadmium induces immune abnormalities that may be a key pathogenic contributor to preeclampsia and provide new insights into treatment strategies of preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Application of path analysis to urinary findings of cadmium-induced renal dysfunction.

    Science.gov (United States)

    Abe, T; Kobayashi, E; Okubo, Y; Suwazono, Y; Kido, T; Shaikh, Z A; Nogawa, K

    2001-01-01

    In order to identify some causal relations among various urinary indices of cadmium-induced renal dysfunction, such as glucose, total protein, amino nitrogen, beta 2-microglobulin (beta 2-m), metallothionein (MT), and cadmium (Cd), we applied path analysis method to previous epidemiological studies targeting the residents of the Cd-polluted Kakehashi River basin of Ishikawa Prefecture, Japan. We obtained a diagram-termed path model, representing some causal relations among the above urinary indices. It shows that urinary Cd is located at the beginning point in the diagram, and Cd-induced renal dysfunction develops in the following order: Cd exposure-->increase of beta 2-m and/or MT excretion-->increase of amino-N and/or total protein excretion-->increase of glucose excretion. It was proved mathematically, that in the case of both males and females, increased excretions of beta 2-m and/or MT were the most sensitive urinary indices of the early stage of chronic Cd-induced renal dysfunction.

  18. Low-dose cadmium exposure exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice.

    Science.gov (United States)

    Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Han, Jin-Young; Kim, Bumseok; Lee, Kyuhong

    2018-01-01

    Cadmium (Cd) is a toxic metal present in tobacco smoke, air, food, and water. Inhalation is an important route of Cd exposure, and lungs are one of the main target organs for metal-induced toxicity. Cd inhalation is associated with an increased risk of pulmonary diseases. The present study aimed to assess the effects of repeated exposure to low-dose Cd in a mouse model of polyhexamethylene guanidine (PHMG)-induced lung fibrosis. Mice were grouped into the following groups: vehicle control (VC), PHMG, cadmium chloride (CdCl 2 ), and PHMG + CdCl 2 . Animals in the PHMG group exhibited increased numbers of total cells and inflammatory cells in the bronchoalveolar lavage fluid (BALF) accompanied by inflammation and fibrosis in lung tissues. These parameters were exacerbated in mice in the PHMG + CdCl 2 group. In contrast, mice in the CdCl 2 group alone displayed only minimal inflammation in pulmonary tissue. Expression of inflammatory cytokines and fibrogenic mediators was significantly elevated in lungs of mice in the PHMG group compared with that VC. Further, expression of these cytokines and mediators was enhanced in pulmonary tissue in mice administered PHMG + CdCl 2 . Data demonstrate that repeated exposure to low-dose Cd may enhance the development of PHMG-induced pulmonary fibrosis.

  19. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    Science.gov (United States)

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-RasV12 -induced cell transformation.

    Science.gov (United States)

    Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chiou, Yu-Wei; Wu, Ching-Lung; Chiu, Wen-Tai; Tang, Ming-Jer

    2018-05-01

    Caveolin-1 (Cav1) is down-regulated during MK4 (MDCK cells harbouring inducible Ha-Ras V12 gene) transformation by Ha-Ras V12 . Cav1 overexpression abrogates the Ha-Ras V12 -driven transformation of MK4 cells; however, the targeted down-regulation of Cav1 is not sufficient to mimic this transformation. Cav1-silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction-related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I-CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha-Ras V12 -inducing MK4 cells increased exosome-like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I-CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I-CM (MK4+I-EXs). Wnt5a, a downstream product of Ha-Ras V12 , was markedly secreted by MK4+I-CM and MK4+I-EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha-Ras V12 - and MK4+I-CM-induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down-regulation, either by Ha-Ras V12 or targeted shRNA, increased frizzled-2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I-EXs in MDCK cells. These data suggest that Cav1-dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha-Ras V12 -Wnt5a-Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha-Ras V12 -driven cell transformation. © 2018 The Authors

  1. Inhibition of Wnt/β-catenin signaling by IWR1 induces expression of Foxd3 to promote mouse epiblast stem cell self-renewal.

    Science.gov (United States)

    Liu, Kuisheng; Sun, Yuanyuan; Liu, Dahai; Ye, Shoudong

    2017-08-26

    Inhibition of Wnt/β-catenin signaling facilitates the derivation of mouse epiblast stem cells (EpiSCs), as well as dramatically promotes EpiSC self-renewal. The specific mechanism, however, is still unclear. Here, we showed that IWR1, a Wnt/β-catenin signaling inhibitor, allowed long-term self-renewal of EpiSCs in serum medium in combination with ROCK inhibitor Y27632. Through transcriptome data analysis, we arrived at a set of candidate transcription factors induced by IWR1. Among these, Forkhead box D3 (Foxd3) was most abundant. Forced expression of Foxd3 could recapitulate the self-renewal-promoting effect of IWR1 in EpiSCs. Conversely, knockdown of Foxd3 profoundly compromised responsiveness to IWR1, causing extinction of pluripotency markers and emergence of differentiation phenotype. Foxd3 thus is necessary and sufficient to mediate self-renewal downstream of Wnt/β-catenin signaling inhibitor. These findings highlight an important role for Foxd3 in regulating EpiSCs and will expand current understanding of the primed pluripotency. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hypoxia-inducible factor-1α and Wnt/β-catenin signaling pathways promote the invasion of hypoxic gastric cancer cells.

    Science.gov (United States)

    Liu, Hong-Lan; Liu, Dang; Ding, Guang-Rong; Liao, Peng-Fei; Zhang, Jun-Wen

    2015-09-01

    The present study aimed to examine the association between hypoxia-inducible factor (HIF)-1α and the Wnt/β-catenin signaling pathway in a hypoxic environment. The study also aimed to explore the possible mechanisms underlying the invasion of hypoxic gastric cancer cells in vitro and in vivo. The pcDNA™ 6.2‑GW/EmGFP‑miR‑β‑catenin plasmid was transfected into SGC‑7901 gastric cancer cells, resulting in cells with stable suppression of β‑catenin expression. The biological characteristics of the control, liposome, negative control, β‑catenin knockdown, hypoxia and hypoxia β‑catenin knockdown groups were tested using an invasion assay. The differences in the invasive capacity of the control, negative control and liposome groups were not statistically significant. However, the hypoxia group demonstrated a significantly enhanced invasive capacity, as compared with that in the control group (Phypoxic and control cells was high alongside increased HIF‑1α, β‑catenin, uPA and MMP‑7 levels according to western blot and immunohistochemical analyses, while growth and protein levels of tumors from hypoxic β‑catenin knockdown cells were significantly lower and those of β‑catenin knockdown cells were lowest. In conclusion, these results suggested that HIF‑1α activation was able to regulate the Wnt/β‑catenin pathway, and that HIF‑1α may be controlled by the Wnt/β‑catenin pathway. A potential mechanism underlying SGC‑7901 tumorigenicity is the activation of the Wnt/β‑catenin signaling pathway, which activates uPA and MMP‑7 expression and contributes to the enhanced invasion of hypoxic cancer cells.

  3. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  4. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    Science.gov (United States)

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  5. Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers

    International Nuclear Information System (INIS)

    Horiguchi, Hyogo; Oguma, Etsuko; Sasaki, Satoshi; Miyamoto, Kayoko; Ikeda, Yoko; Machida, Munehito; Kayama, Fujio

    2005-01-01

    Some recent research suggests that environmental exposure to cadmium, even at low levels, may increase the risk of osteoporosis, and that the bone demineralization is not just a secondary effect of renal dysfunction induced by high doses of cadmium as previously reported. To investigate the effect of exposure to cadmium at a level insufficient to induce kidney damage on bone mineral density (BMD) and bone metabolism, we conducted health examinations on 1380 female farmers from five districts in Japan who consumed rice contaminated by low-to-moderate levels of cadmium. We collected peripheral blood and urine samples and medical and nutritional information, and measured forearm BMD. Analysis of the data for subjects grouped by urinary cadmium level and age-related menstrual status suggested that cadmium accelerates both the increase of urinary calcium excretion around the time of menopause and the subsequent decrease in bone density after menopause. However, multivariate analyses showed no significant contribution of cadmium to bone density or urinary calcium excretion, indicating that the results mentioned above were confounded by other factors. These results indicate that environmental exposure to cadmium at levels insufficient to induce renal dysfunction does not increase the risk of osteoporosis, strongly supporting the established explanation for bone injury induced by cadmium as a secondary effect

  6. Livolin Forte Ameliorates Cadmium-Induced Kidney Injury in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Akomolafe Rufus O.

    2016-06-01

    Full Text Available The kidney, which is an integral part of the drug excretion system, was reported as one of the targets of cadmium toxicity. Early events of cadmium toxicity in the cell include a decrease in cell membrane fluidity, breakdown of its integrity, and impairment of its repair mechanisms. Phosphatidylcholine and vitamin E have a marked fluidizing effect on cellular membranes. We hypothesized that Livolin forte (LIV could attenuate kidney damage induced by cadmium in rats. Twenty-five adult male Wistar rats were divided into five groups of five rats each: group I (control group received 0.3 ml/kg/day of propylene glycol for six weeks; group II was given 5 mg/kg/day of cadmium (Cd i.p for 5 consecutive days; group III rats were treated in a similar way as group II but were allowed a recovery period of 4 weeks; group IV was treated with LIV (5.2 mg/kg/day for a period of 4 weeks after inducing renal injury with Cd similarly to group II; and group V was allowed a recovery period of 2 weeks after a 4-week LIV treatment (5.2 mg/kg/day following Cd administration. A significant increase in plasma creatinine, urea, uric acid, and TBARS were observed in groups II and III compared to the control rats. Significant reductions in total protein, glucose, and GSH activity were also recorded. The urine concentrations of creatinine, urea, and uric acid in groups II and III were significantly lower than the control group. Th is finding was accompanied by a significant decrease in creatinine and urea clearance. Post-treatment with LIV caused significant decreases in plasma creatinine, urea, uric acid, and TBARS. Significant increases in total protein, glucose, and GSH activity of groups IV and V were observed compared to group II. A significant increase in urine concentrations of creatinine, urea, and uric acid and significant decreases in total protein, glucose, and GSH activity were observed in groups IV and V compared to group II. Photomicrographs of the rat kidneys

  7. HIV-1 protein induced modulation of primary human osteoblast differentiation and function via a Wnt/β-catenin-dependent mechanism.

    LENUS (Irish Health Repository)

    Butler, Joseph S

    2013-02-01

    HIV infection is associated with metabolic bone disease resulting in bone demineralization and reduced bone mass. The molecular mechanisms driving this disease process have yet to be elucidated. Wnt\\/β-catenin signaling plays a key role in bone development and remodeling. We attempted to determine the effects of the HIV-1 protein, gp120, on Wnt\\/β-catenin signaling at an intracellular and transcriptional level in primary human osteoblasts (HOBs). This work, inclusive of experimental controls, was part of a greater project assessing the effects of a variety of different agents on Wnt\\/β-catenin signaling (BMC Musculoskelet Disord 2010;11:210).We examined the phenotypic effects of silencing and overexpressing the Wnt antagonist, Dickkopf-1 (Dkk1) in HOBs treated with gp120. HOBs exposed to gp120 displayed a significant reduction in alkaline phosphatase activity (ALP) activity and cell proliferation and increased cellular apoptosis over a 48 h time course. Immunocytochemistry demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to HIV-1 protein exposure. These changes were associated with a reduction of TCF\\/LEF-mediated transcription, the transcriptional outcome of canonical Wnt β-catenin signaling. Silencing Dkk1 expression in HOBs exposed to gp120 resulted in increased ALP activity and cell proliferation, and decreased cellular apoptosis relative to scrambled control. Dkk1 overexpression exacerbated the inhibitory effect of gp120 on HOB function, with decreases in ALP activity and cell proliferation and increased cellular apoptosis relative to vector control. Wnt\\/β-catenin signaling plays a key regulatory role in HIV-associated bone loss, with Dkk1, aputative central mediator in this degenerative process. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 218-226, 2013.

  8. Electroacupuncture stimulation at CV4 prevents ovariectomy-induced osteoporosis in rats via Wnt-β-catenin signaling.

    Science.gov (United States)

    Fan, Huailing; Ji, Feng; Lin, Ying; Zhang, Mulan; Qin, Wei; Zhou, Qi; Wu, Qiang

    2016-03-01

    The present study aimed to investigate the effect of electroacupuncture stimulation at CV4 (also termed Guanyuan) on femoral osteocalcin also termed bone gla protein (BGP), alkaline phosphatase (ALP), bone mineral density (BMD) and biomechanics, as well as the Wnt‑β‑catenin signaling pathway in rats with postmenopausal osteoporosis. Female Sprague‑Dawley rats (4.5‑months old) were randomly divided into sham, Ovx, CV4 and mock groups (n=10/group). With the exception of those in the sham group, the rats were ovariectomized to induce postmenopausal osteoporosis. The rats in the CV4 and mock groups were given electroacupuncture at CV4 and non‑acupoint, respectively. The rats in the Ovx model and sham groups underwent identical fixing procedures, but did not undergo electroacupuncture. Following treatment, hematoxylin and eosin staining was used to observe morphological changes in the left femoral trabecular bone, and a three‑point‑bending test was used to analyze femur biomechanics and determine the BMD. In addition, an enzyme‑linked immunosorbent assay was used to measure the serum levels of ALP/BGP and reverse transcription‑quantitative polymerase chain reaction was used detect the expression levels of Wnt3a, β‑catenin and Runx2. In the present study, it was demonstrated that electroacupuncture at CV4 significantly improved the osteoporotic morphological changes that occurred in the ovariectomized rats, increased serum ALP and BGP levels, enhanced the maximum and fracture loads, increased BMD (Pelectroacupuncture stimulation at CV4 affected bone formation and promoted bone metabolism in rats with postmenopausal osteoporosis, possibly by activating the Wnt‑β‑catenin signaling pathway.

  9. Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings

    Czech Academy of Sciences Publication Activity Database

    Najmanová, J.; Neumannová, E.; Leonhardt, T.; Zítka, O.; Kižek, R.; Macek, Tomáš; Macková, M.; Kotrba, P.

    2012-01-01

    Roč. 36, č. 1 (2012), s. 536-542 ISSN 0926-6690 R&D Projects: GA MŠk 1M06030 Grant - others:GA ČR(CZ) GA522/07/0692 Institutional research plan: CEZ:AV0Z40550506 Keywords : flax * cadmium * heavy metal tolerance * phytochelatins * phytoremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.468, year: 2012

  10. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling

    NARCIS (Netherlands)

    Janda, Claudia Y.; Dang, Luke T.; You, Changjiang; Chang, Junlei; Lau, Wim De; Zhong, Zhendong A.; Yan, Kelley S.; Marecic, Owen; Siepe, DIrk; Li, Xingnan; Moody, James D.; Williams, Bart O.; Clevers, Hans; Piehler, Jacob; Baker, David; Kuo, Calvin J.; Garcia, K. Christopher

    2017-01-01

    Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing β-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19

  11. Protective efficacy of Emblica officinalis Linn. against radiation and cadmium induced biochemical alterations in the liver of Swiss albino mice

    International Nuclear Information System (INIS)

    Purohit, P.K.; Chakrawarti, Aruna; Agarwal, Manisha

    2012-01-01

    All organisms living on earth are being perpetually exposed to some amount of radiation originating from a variety of sources. Radiation causes deleterious effects in all forms of life due to increasing utilization and production of modern technology, a simultaneous exposure of organisms to heavy metals is also unavoidable. These heavy metals become toxic when present in large quantities, with increasing the industrial revolution and industrial waste, the emission of cadmium has increased into the environment. Thus concomitant exposure to cadmium chloride and ionizing radiation might produce deleterious effect upon biological system. The total environmental burden of toxicants may have greater effect as against their individual impact as expected by their nature. So interaction between radiation and other toxicants represents a field of great potential importance. In the recent years, immense interest has been developed in the field of chemoprotection against radiation and heavy metals induced changes. In view of the potential for practical application, a variety of compounds are being tested for their radioprotective activities. Among these, Emblica holds a great promise. In light of the above, the present study was aimed to evaluate the protective effect of Emblica against radiation and cadmium induced biochemical alterations in the liver of Swiss albino mice. The animals were exposed to 6.0 Gy of gamma rays with or without cadmium chloride treatment. The Emblica was administered seven days prior to irradiation or cadmium chloride treatment

  12. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  13. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    OpenAIRE

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. Th...

  14. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    OpenAIRE

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identif...

  15. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus

    Energy Technology Data Exchange (ETDEWEB)

    Ledda, F.D., E-mail: f.ledda@hotmail.it [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy); Ramoino, P. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Ravera, S. [Dipartimento di Farmacia (DIFAR), Viale Cembrano 4, I-16147 Genova (Italy); Perino, E. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Bianchini, P. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Diaspro, A. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Dipartimento di Fisica (DIFI), Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Gallus, L.; Pronzato, R. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Manconi, R. [Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy)

    2013-09-15

    Highlights: •The effect of Cd{sup 2+} on Clathrina clathrus microtubule network was studied. •Cd{sup 2+} exposure increases acetylated and detyrosinated α-tubulin levels. •Microtubules enriched in acetylated/detyrosinated α-tubulin were resistant to cold. •Clathrina clathrus exposed to Cd{sup 2+} showed cytoplasmic microtubules with an enhanced stability. -- Abstract: As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl{sub 2}, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24 h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd{sup 2+}-treated cells

  16. Wnt-expressing rat embryonic fibroblasts suppress Apo2L/TRAIL-induced apoptosis of human leukemia cells

    Czech Academy of Sciences Publication Activity Database

    Doubravská, Lenka; Šímová, Šárka; Čermák, Lukáš; Valenta, Tomáš; Kořínek, Vladimír; Anděra, Ladislav

    2008-01-01

    Roč. 13, č. 4 (2008), s. 573-587 ISSN 1360-8185 Institutional research plan: CEZ:AV0Z50520514 Keywords : Wnt * Apo2L/TRAIL * pre-B lymphocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.971, year: 2008

  17. Cadmium induces the expression of specific stress proteins in sea urchin embryos

    International Nuclear Information System (INIS)

    Roccheri, Maria Carmela; Agnello, Maria; Bonaventura, Rosa; Matranga, Valeria

    2004-01-01

    Marine organisms are highly sensitive to many environmental stresses, and consequently, the analysis of their bio-molecular responses to different stress agents is very important for the understanding of putative repair mechanisms. Sea urchin embryos represent a simple though significant model system to test how specific stress can simultaneously affect development and protein expression. Here, we used Paracentrotus lividus sea urchin embryos to study the effects of time-dependent continuous exposure to subacute/sublethal cadmium concentrations. We found that, between 15 and 24 h of exposure, the synthesis of a specific set of stress proteins (90, 72-70, 56, 28, and 25 kDa) was induced, with an increase in the rate of synthesis of 72-70 kDa (hsps), 56 kDa (hsp), and 25 kDa, which was dependent on the lengths of treatment. Recovery experiments in which cadmium was removed showed that while stress proteins continued to be synthesized, embryo development was resumed only after short lengths of exposure

  18. Toxin- and cadmium-induced cell death events in tomato suspension cells resemble features of hypersensitive response

    NARCIS (Netherlands)

    Iakimova, E.T.; Woltering, E.J.; Yordanova, Z.P.

    2007-01-01

    Elicitors of different origin (fumonisin B1, fungal toxin), camptothecin (alkaloid from Camptotheca acuminata), mastoparan (wasp venom) and the heavy metal (cadmium) were tested for their ability to induce programmed cell death (PCD) in a model system of tomato cell culture, line MsK8. By employing

  19. Mitigation by Aloe Vera of cadmium chloride and radiation induced biochemical changes in the brain of Swiss albino mice

    International Nuclear Information System (INIS)

    Chakrawarti, Aruna; Kanwar, Om; Nayak, Kamal Kumar; Ranga, Deepti; Jangir, Ashok; Ram, Purkha

    2013-01-01

    Whole body exposure to ionizing radiation provokes oxidative damage, organ dysfunction and metabolic disturbance. Herbal drugs offer an alternative to the synthetic radioprotective compounds which are either non-toxic or less toxic. Aloe vera rich in polyphenolic compound is known to possess antioxidant properties. In the context, the present study, effect of Aloe vera against radiation and cadmium induced changes in the brain of Swiss albino mice. For the purpose, six to eight weeks old male Swiss albino mice were selected and divided into seven groups:- Group I (Sham-irradiated), Group II (treated with cadmium chloride 20 ppm), Group III (Irradiated with 7.0 Gy gamma rays), Group IV (Both irradiated and treated with cadmium chloride solution), Group V (Cadmium and Aloe vera treated), Group VI (radiation and Aloe vera treated), Group VII (radiation, and cadmium chloride and Aloe vera treated). The animals were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. The brain (cerebral cortex) was taken out and quantitatively analyzed for different biochemical parameters such as total proteins, glycogen, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA. The value of cholesterol, glycogen, RNA, acid phosphatase activity, and alkaline phosphatase activity increased up to day-14 in non drug-treated groups and day-7 in Aloe vera treated groups and thereafter decreased up to day-28. The value of total proteins and DNA decreased up to day-14 in non drug-treated groups and day-7 in the drug treated groups then increased in all groups. In only cadmium chloride (Without and with drug) treated animals (Groups II and V) the value of cholesterol decreased during early intervals (days-14 and 7 respectively) and increased thereafter. Severe changes were observed after combined exposure to radiation and cadmium chloride showing synergistic effect. Aloe vera reduced the severity of damage and made the

  20. Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis.

    Science.gov (United States)

    Poliandri, Ariel H B; Velardez, Miguel O; Cabilla, Jimena P; Bodo, Cristian C A; Machiavelli, Leticia I; Quinteros, Alnilan F; Duvilanski, Beatriz H

    2004-11-01

    Cadmium (Cd2+) is a potent toxic metal for both plants and animals. Chronic exposure to low doses of Cd2+ results in damage to several organs. We have previously reported that Cd2+ induces apoptosis in anterior pituitary cells by a caspase- and oxidative stress-dependent mechanism. Nitric oxide (NO) synthesis is affected by Cd2+ in several systems. NO has been shown to be either cytoprotective or cytotoxic in many systems. The aim of this study was to evaluate the possible participation of NO in the cytotoxic effect of Cd2+ on rat anterior pituitary cells. Cell viability was evaluated by mitochondrial dehydrogenase activity assay and confirmed by microscopy, studying nuclear morphology. Here we show that DETA NONOate ((Z)-1-[2 (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long-term NO donor, at concentrations below 0.5 mM, reduces nuclear condensation and fragmentation and reverses the decrease in cellular activity induced by Cd2+. Cd2+, by itself, induced NO synthesis, and inhibition of this synthesis enhanced Cd2+ cytotoxicity. NO also prevented caspase-3 activation and lipidic peroxidation induced by Cd2+. The NO/cGMP pathway does not seem to be involved in the cytoprotective effect of NO. These results indicate that NO has a cytoprotective role in Cd2+ -induced apoptosis, suggesting that endogenous NO could have a physiological role in protecting anterior pituitary cells.

  1. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    Science.gov (United States)

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cadmium induced radioadaptive response via an ATM-independent H2S/cystathionine γ-lyase modulation

    International Nuclear Information System (INIS)

    Pan Yan; Yuan Dexiao; Zhang Jianghong; Shao Chunlin

    2011-01-01

    The combined exposure to environmental toxicants such as heavy metals and radiation is an important research area in health protection. Here we explored cadmium induced radioadaptive response (RAR) and investigated the role of hydrogen sulfide (H 2 S) and ATM kinase in this response. Our data showed that the cadmium ions with a sub-lethal concentration could induce RAR in Chang liver cells towards subsequent γ-irradiation and this response could be abrogated by DL-propargylglycine (PPG), the endogenous H 2 S synthetase inhibitor of cystathionine γ-lyase (CSE), but not by aminooxyacetic acid (AOAA), the inhibitor of cystathionine β-synthase (CBS). Moreover, the pretreatment of cells with NaHS also stimulated cellular adaptive response to radiation. Both cadmium treatment and irradiation up-regulated the expression of CSE protein in a time-dependent manner but had no influence on the expression of CBS protein. In the primed cells, the time course of CBS expression showed no significant difference with the cells treated with 2Gy irradiation alone, however, the CSE expression was easier to reach the maximum level, indicating a more efficient H 2 S production by CSE. Moreover, the cadmium-induced RAR was totally suppressed by KU-55933, a specific ATM inhibitor that did not change the CSE expression after radiation. However, exogenous H 2 S decreased the phosphorylation level of radiation-induced ATM. In conclusion, the present results demonstrate firstly that H 2 S is involved in the cadmium induced cross-adaptive response to challenging radiation. CSE, rather than CBS, may mainly responsible for the H 2 S production during this RAR which may also be mediated by ATM pathway. However, the activation of CSE is independent of ATM but could negatively regulate the phosphorylation of ATM.

  3. Protection of betulin against cadmium-induced apoptosis in hepatoma cells

    International Nuclear Information System (INIS)

    Oh, Seon-Hee; Choi, Jeong-Eun; Lim, Sung-Chul

    2006-01-01

    The protective effects of betulin (BT) against cadmium (Cd)-induced cytotoxicity have been previously reported. However, the mechanisms responsible for these protective effects are unclear. Therefore, this study investigated the mechanisms responsible for the protection of BT against Cd-induced cytotoxicity in human hepatoma cell lines. The protection of BT against Cd cytotoxicity was more effective in the HepG2 than in the Hep3B cells. The protection of BT on Cd-induced cytotoxicity in the HepG2 cells appeared to be related to the inhibition of apoptosis, as determined by PI staining and DNA fragmentation analysis. The anti-apoptosis exerted by BT involved the blocking of Cd-induced reactive oxygen species (ROS) generation, the abrogation of the Cd-induced Fas upregulation, the blocking of caspase-8-dependent Bid activation, and subsequent inhibition of mitochondrial pathway. The BT pretreatment did not affect the p21 and p53 expression levels, when compared with those of the treated cells with Cd alone. BT induced the transient S phase arrest at an early stage and the G /G 1 arrest at a relatively late stage, but it did not observe the sub-G1 apoptotic peak. In the Hep3B cells, Cd did not induce ROS generation. The BT pretreatment partially inhibited the Cd-induced apoptosis, which was related with the incomplete blockage in caspase-9 or -3 activation, as well as in Bax activation. Taken together, it was found that Cd can induce apoptosis via the Fas-dependent and -independent apoptosis pathways. However, the observed protective effects of BT were clearly more sensitive to Fas-expressing HepG2 cells than to Fas-deficient Hep3B cells

  4. Trace analysis in cadmium telluride by heavy ion induced X-ray emission and by SIMS

    International Nuclear Information System (INIS)

    Scharager, C.; Stuck, R.; Siffert, P.; Cailleret, J.; Heitz, Ch.; Lagarde, G.; Tenorio, D.

    1979-01-01

    The possibilities of using both selective heavy ion induced X-ray emission and secondary ion mass spectroscopy (SIMS), for the identification of impurities present at low concentrations in cadmium telluride are examined. The relative concentrations of the impurities along CdTe crystals have been determined by exciting the X-ray emission of the elements in several slices with Ar and Kr ions and by comparing the relative characteristic X-ray emission yields. As a consequence of the quasimolecular inner shell ionization mechanism in heavy ion-atom collisions, Ar and Kr ions allow a strong excitation of the main impurities seen by SIMS namely Si, Cl and Ge, As, with only a minor contribution of Cd and Te. From the changes of the concentrations of the various impurities along the crystal, informations about segregation coefficients and compensation can be obtained

  5. Impacts of fullerene C60 and virgin olive oil on cadmium-induced genotoxicity in rats.

    Science.gov (United States)

    Aly, Fayza M; Kotb, Ahmed M; Haridy, Mohie A M; Hammad, Seddik

    2018-07-15

    Currently, cadmium is considered to be one of the major environmental pollutants. Environmentally, cadmium is released in various forms e.g. oxide, chloride and sulphide. The aim of the present study was to examine the genotoxic impact of fullerene nanoparticles C 60 (C 60 ) and virgin olive oil (VOO) on cadmium chloride (CdCl 2 )-induced genotoxicity in rats. To evaluate these effects on DNA damage and chromosomal frequency, 25 albino rats were randomly assigned to 5 groups (n=5 per group): Group 1 served as a control; Group 2 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg); Group 3 animals were treated with C 60 (4mg/kg, orally) every other day for 20days; Group 4 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and an oral dose of C 60 (4mg/kg); and Group 5 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and oral doses of VOO every other day for 20 consecutive days. Genotoxic and anti-genotoxic effects of C 60 and VOO were evaluated in the liver, kidney and bone marrow using molecular and cytogenetic assays. As expected, CdCl 2 and C 60 administration was associated with band number alterations in both liver and kidney; however, C 60 pretreatment recovered to approximately basal number. Surprisingly, C 60 and VOO significantly attenuated the genotoxic effects caused by CdCl 2 in livers and kidneys. In bone marrow, in addition to a reduction in the chromosomal number, several chromosomal aberrations were caused by CdCl 2 . These chromosomal alterations were also reversed by C 60 and VOO. In conclusion, molecular and cytogenetic studies showed that C 60 and VOO exhibit anti-genotoxic agents against CdCl 2 -induced genotoxicity in rats. Further studies are needed to investigate the optimal conditions for potential biomedical applications of these anti-genotoxic agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Dose-response relationship of cadmium or radiation-induced embryotoxicity in mouse whole embryo culture

    International Nuclear Information System (INIS)

    Nakashima, Kiyohito; Kawamata, Akitoshi; Matsuoka, Masato; Wakisaka, Takashi; Fujiki, Yoshishige

    1988-01-01

    Mouse embryos of B6C3F 1 strain were exposed in vitro to 1.2 to 2.2 μM cadmium chloride (Cd) or to 100 to 320 R x-rays, and the effects of the exposure on development were examined after 39 h of culture. Development of embryos was assessed from lethality, formation of the neural tube defect, diameter and protein of yolk sac, crown-rump and head lengths, embryonic protein, and number of somites. Incidence of the neural tube defect increased from 3.4 to 100% by 1.2 to 2.0 μM Cd, while embryo deaths increased from 13.8 to 93.3% by 2.0 to 2.2 μM Cd. Embryonic protein was significantly reduced at the teratogenic range, but the number of somites was only affected by 1.6 to 2.0 μM Cd. X-irradiation at 100 to 320 R induced the neural tube defect in 2.9 to 72.7% of the embryos. An embryolethal effect was observed only at the 320 R dose. Crown-rump and head lengths and embryonic protein were significantly affected at the teratogenic range, but the diameter and protein of yolk sac and number of somites were hardly affected. Cadmium- or radiation-induced response data of both teratogenicity and endpoints indicating inhibition of embryonic development were acceptably fitted to a linear log-probit regression. These regressions suggest that as an estimation of interference in development of embryos, embryonic protein and head length are sensitive endpoints while the number of somites is an insensitive criterion. (author)

  7. A paraptosis-like cell death induced by δ-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jing-Shu; Li, Da-Ming; He, Ning; Liu, Ying-Hua; Wang, Chun-Hua; Jiang, Shu-Qing; Chen, Bing-Qing; Liu, Jia-Ren

    2011-01-01

    Tocotrienol is considered a beneficial effect agent on inhibition of tumor development. In this study, we focused on the effects of δ-tocotrienol and its possible mechanism on induction of death in human colon cancer SW620 cells. δ-Tocotrienol inhibited proliferation of SW620 cell in a dose-dependent manner. Our findings showed that δ-tocotrienol effectively induced paraptosis-like death in SW620 cells, correlated with the vacuolation that may be from welling and fusion of mitochondria and/or the endoplasmic reticulum (ER) as well as caspase-3 nonactivated. However, there were no changes in apoptosis based on flow cytometry analysis. Of being noted, δ-tocotrienol reduced the expression of β-catenin and wnt-1 proteins by about 50% at the highest dose (20 μmol/L). δ-Tocotrienol also decreased cyclin D1, c-jun and MMP-7 protein levels in SW620 cells. Altogether, these data indicate that δ-tocotrienol induces paraptosis-like cell death, which is associated with the suppression of the Wnt signaling pathway. Thus, our findings may provide a novel application in treatment of human colon carcinoma.

  8. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E{sub 2}-induced activation of canonical Wnt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2013-09-06

    Highlights: •Three-dimensional culture generates “semi-vivo” sebaceous glands. •Xenograft model failed to mimic the biology of sebaceous glands in vivo. •Proinflammatory cytokine PGE{sub 2} enhances Wnt signal activity in the organoids. •PGE{sub 2} influences on the mitochondrial and lipid metabolism in the organoids. •Considering 3R agenda, “semi-vivo” sebaceous glands are useful for research. -- Abstract: Background: Prostaglandin E{sub 2} (PGE{sub 2}) is a proinflammatory mediator and activates the canonical Wnt–β-catenin signaling pathway in hematopoietic stem cells. The SZ95 cell line was established from human sebaceous gland cells and is studied as a model system for these cells. Given that 2D culture of SZ95 cells does not recapitulate the organization of sebaceous glands in situ, we developed a 3D culture system for these cells and examined the effects of PGE{sub 2} on cell morphology and function. Results: SZ95 cells maintained in 3D culture formed organoids that mimicked the organization of sebaceous glands in situ, including the establishment of a basement membrane. Organoids exposed to PGE{sub 2} were larger and adopted a more complex organization compared with control organoids. PGE{sub 2} activated the canonical Wnt signaling pathway as well as increased cell viability and proliferation, mitochondrial metabolism, and lipid synthesis in the organoids. Conclusions: Culture of SZ95 cells in 3D culture system recapitulates the structure and susceptibility to PGE{sub 2} of sebaceous glands in situ and should prove useful for studies of the response of these glands to inflammation and other environmental stressors. Our results also implicate PGE{sub 2}-induced activation of canonical Wnt signaling pathway in regulation of the morphology,proliferation, and function of “semi-vivo” sebaceous glands.

  9. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway.

    Science.gov (United States)

    Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K

    2001-12-21

    Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.

  10. Wnt signaling in cancer

    Science.gov (United States)

    Zhan, T; Rindtorff, N; Boutros, M

    2017-01-01

    Wnt signaling is one of the key cascades regulating development and stemness, and has also been tightly associated with cancer. The role of Wnt signaling in carcinogenesis has most prominently been described for colorectal cancer, but aberrant Wnt signaling is observed in many more cancer entities. Here, we review current insights into novel components of Wnt pathways and describe their impact on cancer development. Furthermore, we highlight expanding functions of Wnt signaling for both solid and liquid tumors. We also describe current findings how Wnt signaling affects maintenance of cancer stem cells, metastasis and immune control. Finally, we provide an overview of current strategies to antagonize Wnt signaling in cancer and challenges that are associated with such approaches. PMID:27617575

  11. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    Energy Technology Data Exchange (ETDEWEB)

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M., E-mail: doug.templeton@utoronto.ca

    2013-10-15

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd{sup 2+}-associated cytoskeletal reorganization. Low concentrations of Cd{sup 2+} (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd{sup 2+}-dependent effect, as only Cd{sup 2+} concentrations above 2 μM were sufficient to increase ROS. However, low [Cd{sup 2+}] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd{sup 2+} exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd{sup 2+} concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations.

  12. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    International Nuclear Information System (INIS)

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M.

    2013-01-01

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd 2+ -associated cytoskeletal reorganization. Low concentrations of Cd 2+ (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd 2+ -dependent effect, as only Cd 2+ concentrations above 2 μM were sufficient to increase ROS. However, low [Cd 2+ ] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd 2+ exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd 2+ concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations. • Glutathionylation requires glutathione

  13. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  14. Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Antonio Micali

    2018-01-01

    Full Text Available Background. Cadmium (Cd, a diffused environmental pollutant, has adverse effects on urinary apparatus. The role of flavocoxid, a natural flavonoid with antioxidant activity, on the morphological and biochemical changes induced in vivo by Cd in mice kidney was evaluated. Methods. C57 BL/6J mice received 0.9% NaCl alone, flavocoxid (20 mg/kg/day i.p. alone, Cd chloride (CdCl2 (2 mg/kg/day i.p. alone, or CdCl2 plus flavocoxid (2 mg/kg/day i.p. plus 20 mg/kg/day i.p. for 14 days. The kidneys were processed for biochemical, structural, ultrastructural, and morphometric evaluation. Results. Cd treatment alone significantly increased urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; reduced GSH, GR, and GPx; and induced structural and ultrastructural changes in the glomeruli and in the tubular epithelium. After 14 days of treatment, flavocoxid administration reduced urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; increased GSH, GR, and GPx; and showed an evident preservation of the glomerular and tubular structure and ultrastructure. Conclusions. A protective role of flavocoxid against Cd-induced oxidative damages in mouse kidney was demonstrated for the first time. Flavocoxid may have a promising antioxidant role against environmental Cd harmful effects on glomerular and tubular lesions.

  15. Preventive effects of β-cryptoxanthin against cadmium-induced oxidative stress in the rat testis

    Directory of Open Access Journals (Sweden)

    Xiao-Ran Liu

    2016-01-01

    Full Text Available β-cryptoxanthin (CRY, a major carotenoid of potential interest for health, is obtained naturally from orange vegetables and fruits. A few research studies have reported that CRY could decrease oxidative stress and germ cell apoptosis. The purpose of this study was to examine the effects of CRY on acute cadmium chloride (CdCl 2 -induced oxidative damage in rat testes. For this study, 24 rats were divided into four groups, one of which serves as a control group that received intraperitoneal (i.p. injections of corn oil and physiological saline. The other rats were i.p. injected with CRY (10 μg kg−1 every 8 h, beginning 8 h before CdCl 2 (2.0 mg kg−1 treatment. The pathological and TUNEL findings revealed that CRY ameliorated the Cd-induced testicular histological changes and germ cell apoptosis in the rats. Furthermore, the Cd-induced decrease in the testicular testosterone (T level was attenuated after CRY administration (P < 0.05. The administration of CRY significantly reversed the Cd-induced increases in the lipid peroxide (LPO and malondialdehyde (MDA levels (P < 0.01. The testicular antioxidants superoxide dismutase (SOD, catalase (CAT and glutathione (GSH were decreased by treatment with Cd alone but were restored by CRY co-treatment. These results demonstrated that the application of CRY can enhance the tolerance of rats to Cd-induced oxidative damage and suggest that it has promised as a pharmacological agent to protect against Cd-induced testicular toxicity.

  16. Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and enphysema in rats

    International Nuclear Information System (INIS)

    Kirschvink, Nathalie; Vincke, Gregoire; Fievez, Laurence; Onclinx, Cecile; Wirth, Delphine; Belleflamme, Michele; Louis, Renaud; Cataldo, Didier; Peck, Michael J.; Gustin, Pascal

    2005-01-01

    This study describes induction of pulmonary inflammation, production of matrix metalloprotease of type 2 (MMP-2) and type 9 (MMP-9), and emphysema in cadmium (Cd)-exposed rats. Sprague-Dawley rats were randomly distributed into two groups: one placebo-exposed group undergoing saline (NaCl 0.9%) inhalation (n = 30) and one Cd-exposed group undergoing cadmium (CdCl 2 0.1%) inhalation (n = 30). The animals of the placebo- and Cd-exposed groups were divided in five subgroups (n = 6). Subgroups underwent either a single exposure of 1 h or repeated exposures three times weekly for 1 h during 3 weeks (3W), 5 weeks (5W), 5 weeks followed by 2 weeks without exposure (5W + 2) or 5 weeks followed by 4 weeks without exposure (5W + 4). Each animal underwent determination of enhanced pause (Penh) as index of airflow limitation prior to the first exposure as well as before sacrifice. The animals were sacrificed the day after their last exposure. The left lung was fixed for histomorphometric analysis (determination of median interwall distance (MIWD)), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. BALF was analyzed cytologically, and MMP-2 and MMP-9 levels were determined by gelatine zymography. Twelve rats previously instilled with pancreatic elastase were used as positive emphysema controls and underwent the same investigations. Cd-exposure induced a significant increase of BALF macrophages, neutrophils and MMP-9 up to 5W + 4, whereas MMP-2 gelatinolytic activity returned to baseline levels within 5W. MIWD was significantly increased in all repeatedly Cd-exposed groups and elastase-treated rats. Penh was increased in Cd-exposed rats after a single exposure and after 3W. MMP gelatinolytic activity was significantly correlated with macrophages, neutrophils and Penh. In repeatedly exposed rats, MIWD was positively and significantly correlated with MMP gelatinolytic activity, suggesting that increased MMP-2 and MMP-9 production favours the development

  17. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells

    International Nuclear Information System (INIS)

    Mikami, Iwao; Koizumi, Kiyoshi; Jablons, David M; You, Liang; He, Biao; Xu, Zhidong; Batra, Sonny; Lee, Amie Y; Mazieres, Julien; Reguart, Noemi; Uematsu, Kazutsugu

    2005-01-01

    Sarcomas are one of the most refractory diseases among malignant tumors. More effective therapies based on an increased understanding of the molecular biology of sarcomas are needed as current forms of therapy remain inadequate. Recently, it has been reported that Wnt-1/β-catenin signaling inhibits apoptosis in several cancers. In this study, we investigated the efficacy of a monoclonal anti-Wnt-1 antibody in sarcoma cells. We treated cell lines A-204, SJSA-1, and fresh primary cultures of lung metastasis of sarcoma with a monoclonal anti-Wnt-1 antibody. Wnt-1 siRNA treatment was carried out in A-204. We assessed cell death using Crystal Violet staining. Apoptosis induction was estimated by flow cytometry analysis (Annexin V and PI staining). Cell signaling changes were determined by western blotting analysis. We detected Wnt-1 expression in all tissue samples and cell lines. Significant apoptosis induction was found in monoclonal anti-Wnt-1 antibody treated cells compared to control monoclonal antibody treated cells (p < 0.02). Similarly, we observed increased apoptosis in Wnt-1 siRNA treated cells. Blockade of Wnt-1 signaling in both experiments was confirmed by analyzing intracellular levels of Dishevelled-3 and of cytosolic β-catenin. Furthermore, the monoclonal anti-Wnt-1 antibody also induced cell death in fresh primary cultures of metastatic sarcoma in which Wnt-1 signaling was active. Our results indicate that Wnt-1 blockade by either monoclonal antibody or siRNA induces cell death in sarcoma cells. These data suggest that Wnt-1 may be a novel therapeutic target for the treatment of a subset of sarcoma cells in which Wnt-1/β-catenin signaling is active

  18. Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects

    Energy Technology Data Exchange (ETDEWEB)

    Soetaert, Anneleen [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: anneleen.soetaert@ua.ac.be; Vandenbrouck, Tine [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Ven, Karlijn van der [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Maras, Marleen [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Remortel, Piet van [Department of Mathematics and Informatics, Intelligent Systems Laboratory, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp (Belgium); Blust, Ronny [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coen, Wim M. de [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2007-07-20

    DNA microarrays offer great potential in revealing insight into mechanistic toxicity of contaminants. The aim of the present study was (i) to gain insight in concentration- and time-dependent cadmium-induced molecular responses by using a customized Daphnia magna microarray, and (ii) to compare the gene expression profiles with effects at higher levels of biological organization (e.g. total energy budget and growth). Daphnids were exposed to three cadmium concentrations (nominal value of 10, 50, 100 {mu}g/l) for two time intervals (48 and 96 h). In general, dynamic expression patterns were obtained with a clear increase of gene expression changes at higher concentrations and longer exposure duration. Microarray analysis revealed cadmium affected molecular pathways associated with processes such as digestion, oxygen transport, cuticula metabolism and embryo development. These effects were compared with higher-level effects (energy budgets and growth). For instance, next to reduced energy budgets due to a decline in lipid, carbohydrate and protein content, we found an up-regulated expression of genes related to digestive processes (e.g. {alpha}-esterase, cellulase, {alpha}-amylase). Furthermore, cadmium affected the expression of genes coding for proteins involved in molecular pathways associated with immune response, stress response, cell adhesion, visual perception and signal transduction in the present study.

  19. Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants

    International Nuclear Information System (INIS)

    Poliandri, Ariel H.B.; Cabilla, Jimena P.; Velardez, Miguel O.; Bodo, Cristian C.A.; Duvilanski, Beatriz H.

    2003-01-01

    Cadmium (Cd 2+ ) is an ubiquitous toxic metal that is involved in a variety of pathological conditions. Several reports indicate that Cd 2+ alters normal pituitary hormone secretion; however, little is known about the mechanisms that induce this misregulation. This paper reports the effect of Cd 2+ on anterior pituitary cell viability and its relation to prolactin secretion. Cd 2+ concentrations above 10 μM were found to be cytotoxic for pituitary cells. Morphological studies as well as DNA ladder fragmentation and caspase activation showed that Cd 2+ -treated cells undergo apoptosis. Even though several hours were needed to detect Cd 2+ -induced cytotoxicity, the effect of the metal became irreversible very quickly, requiring only 3 h of treatment. Prolactin release (measured at 48 h) was inhibited when the cells were exposed to Cd 2+ for 1 h, before any change in cell viability was observed. The antioxidants N-acetyl-cysteine and Trolox (a hydrosoluble derivative of vitamin E), but not ascorbic acid, reversed both Cd 2+ -mediated cytotoxicity and the inhibition of prolactin release, supporting the involvement of oxidative stress in the mechanism of Cd 2+ action. In summary, the present work demonstrates that Cd 2+ is cytotoxic for anterior pituitary cells, that this effect is due to an induction of apoptosis, and that it can be reversed by antioxidants

  20. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    International Nuclear Information System (INIS)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang

    2012-01-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl 2 (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl 2 . In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl 2 . Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER stress might

  1. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats.

    Science.gov (United States)

    Wang, Wei; Li, Mingchang; Wang, Yuefei; Li, Qian; Deng, Gang; Wan, Jieru; Yang, Qingwu; Chen, Qianxue; Wang, Jian

    2016-12-01

    Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke who are treated with tissue plasminogen activator (tPA). It is associated with high morbidity and mortality, but no effective treatments are currently available to reduce HT risk. Therefore, methods to prevent HT are urgently needed. In this study, we used TWS119, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt/β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke and then were administered rtPA, rtPA combined with TWS119, or vehicle at 4 h. The animals were sacrificed 24 h after infarct induction. Rats treated with rtPA showed evident HT, had more severe neurologic deficit, brain edema, and blood-brain barrier breakdown, and had larger infarction volume than did the vehicle group. Rats treated with TWS119 had significantly improved outcomes compared with those of rats treated with rtPA alone. In addition, Western blot analysis showed that TWS119 increased the protein expression of β-catenin, claudin-3, and ZO-1 while suppressing the expression of GSK-3β. These results suggest that TWS119 reduces rtPA-induced HT and attenuates blood-brain barrier disruption, possibly through activation of the Wnt/β-catenin signaling pathway. This study provides a potential therapeutic strategy to prevent tPA-induced HT after acute ischemic stroke.

  2. Antioxidant Effect of Pollen Grains and Soya Lecithin on Cadmium-induced Biochemical and Structural disorders in the Ovary of Female Rats during Estrus Cycle

    International Nuclear Information System (INIS)

    Mansour, S. Z.; Ramadan, F. L.

    2010-01-01

    This work aims at assessing the role of pollen grains with soya lecithin on cadmium-induced damage. Cadmium chloride was administered to female albino rats (0.5 mg/kg b. wt, i.p.) during 6 weeks. Pollen grains (54 mg/kg b.wt), and soya lecithin (18 mg/kg b.wt), were given, via gavages, 7 days before cadmium administration, and during cadmium treatment. The results demonstrate that cadmium exposure induces different distortions in ovarian tissues, fibrotic follicular cortex, appearance of atretic follicles, partial oocytes degeneration and significant decreases in the number of primordial, primary, secondary and antral follicles associated with significant increase in MDA levels , significant decreases in GSH content, GSH-Px, SOD and Cat activities. Significant increases in total saturated and monounsaturated fatty acids and significant decreases in polyunsaturated fatty acids levels were recorded. Significant decreases in plasma calcium, progesterone, estradiol and HDL-C and significant increases in triglycerides, total cholesterol, LDL-C levels were recorded. Administration of pollen grains with soya lecithin has significantly improved the antioxidant status and fatty acids levels associated with regeneration of ovarian tissues. Significant amelioration in saturated and unsaturated fatty acids, and hormones levels were also recorded. It is concluded that pollen grains with soya lecithin may protect the ovary during estrus cycle from cadmium-induced toxicity. Key words: pollen, soya lecithin, cadmium, oxidative stress, ovary, fatty acids, follicle numbers

  3. Endomorphin 1 effectively protects cadmium chloride-induced hepatic damage in mice

    International Nuclear Information System (INIS)

    Gong Pin; Chen Fuxin; Ma Guofen; Feng Yun; Zhao Qianyu; Wang Rui

    2008-01-01

    The antioxidative capacity of endomorphin 1 (EM1), an endogenous μ-opioid receptor agonist, has been demonstrated by in vivo assays. The present study reports the effect of EM1 on hepatic damage induced by cadmium chloride (Cd(II)) in adult male mouse. Mouse were given intraperitoneally (i.p.) a single dose of Cd(II) (1 mg/kg body weight per day) and the animals were co-administrated with a dose of EM1 (50 μM/kg body weight per day) for 6 days. Since hepatic damage induced by Cd(II) is related to oxidative stress, lipid peroxidation (LPO), protein carbonyl (PCO), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were evaluated. The parameter indicating tissue damage such as liver histopathology was also determined. In addition, the concentrations of Cd and zinc (Zn) in the liver were analyzed. The intoxication of Cd(II) lead to the enhanced production of LPO and PCO, treatment with EM1 can effectively ameliorate the increase of LPO and PCO compared to the Cd(II) group. The increased activities of CAT, SOD and the elevated GSH induced by Cd(II) may relate to an adaptive-response to the oxidative damage, the effect of EM1 can restore the elevated antioxidant defense. Our results suggested that the structure features and the ability of chelating metal of EM1 may play a major role in the antioxidant effect of EM1 in vivo and opioid receptors may be involved in the protection of hepatic damage induced by Cd(II)

  4. Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/β-catenin pathway

    International Nuclear Information System (INIS)

    Patel, Rachana; Ingle, Arvind; Maru, Girish B.

    2008-01-01

    Tea polyphenols like epigallocatechin gallate and theaflavins are established chemopreventive agents for colorectal carcinogenesis. However, studies on evaluating similar chemopreventive properties of thearubigins or polymeric black tea polyphenols (PBPs), the most abundant polyphenols in black tea, are limited. Hence, in the present study we aim to investigate chemopreventive effects along with probable mechanisms of action of PBP extract employing 1,2-dimethylhydrazine (DMH)-induced colorectal carcinogenesis in Sprague-Dawley rats as experimental model. The present study suggests that PBPs, like other tea polyphenols, also inhibit DMH-induced colorectal tumorigenesis by decreasing tumor volume and multiplicity. This study also shows that although the pretreatment with PBP extract could induce detoxifying enzymes in hepatic and colorectal tissue, it did not show any additional chemopreventive effects when compared to treatments with PBP extract after initiation with DMH. Mechanistically, PBP extract may inhibit colorectal carcinogenesis by decreasing DMH-induced cell proliferation via Wnt/β-catenin pathway. Treatments with PBP extract showed decreased levels of COX-2, c-MYC and cyclin D1 proteins which aid cell proliferation probably by regulating β-catenin by maintaining expression of APC and decreasing inactivation of GSK3β. DMH-induced activation of MAP kinases such as ERK and JNK was also found to be inhibited by treatments with PBP extract. In conclusion, the protective effects of PBP extract could be attributed to inhibition of DMH-induced cellular proliferation probably through β-catenin regulation

  5. Probing the canonicity of the Wnt/Wingless signaling pathway.

    Directory of Open Access Journals (Sweden)

    Alexandra Franz

    2017-04-01

    Full Text Available The hallmark of canonical Wnt signaling is the transcriptional induction of Wnt target genes by the beta-catenin/TCF complex. Several studies have proposed alternative interaction partners for beta-catenin or TCF, but the relevance of potential bifurcations in the distal Wnt pathway remains unclear. Here we study on a genome-wide scale the requirement for Armadillo (Arm, Drosophila beta-catenin and Pangolin (Pan, Drosophila TCF in the Wnt/Wingless(Wg-induced transcriptional response of Drosophila Kc cells. Using somatic genetics, we demonstrate that both Arm and Pan are absolutely required for mediating activation and repression of target genes. Furthermore, by means of STARR-sequencing we identified Wnt/Wg-responsive enhancer elements and found that all responsive enhancers depend on Pan. Together, our results confirm the dogma of canonical Wnt/Wg signaling and argue against the existence of distal pathway branches in this system.

  6. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Marina Pasca di Magliano

    2007-11-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  7. Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Tzirogiannis, Konstantinos N.; Panoutsopoulos, Georgios I.; Hereti, Rosa I.; Alexandropoulou, Katerina N.; Basayannis, Aristidis C.; Mykoniatis, Michael G. [Department of Experimental Pharmacology, Medical School, Athens University, 75 Mikras Asias St., 115 27, Athens (Greece); Demonakou, Maria D. [Histopathology Laboratory, Sismanoglion G.D. Hospital, Sismanogliou 1, Marousi, Attiki 151 27 (Greece)

    2003-12-01

    Exposure to toxic metals and pollutants is a major environmental problem. Cadmium is a metal causing acute hepatic injury but the mechanism of this phenomenon is poorly understood. In the present study, we investigated the mechanism and time-course of cadmium-induced liver injury in rats, with emphasis being placed on apoptosis in parenchymal and nonparenchymal liver cells. Cadmium (3.5 mg/kg body weight) was injected intraperitoneally and the rats were killed 0, 9, 12, 16, 24, 48 and 60 h later. The extent of liver injury was evaluated for necrosis, apoptosis, peliosis, mitoses and inflammatory infiltration in hematoxylin-eosin-stained liver sections, and by assaying serum enzyme activities. The number of cells that died via apoptosis was quantified by TUNEL assay. The identification of nonparenchymal liver cells and activated Kupffer cells was performed histochemically. Liver regeneration was evaluated by assaying the activity of liver thymidine kinase and by the rate of {sup 3}H-thymidine incorporation into DNA. Both cadmium-induced necrotic cell death and parenchymal cell apoptosis showed a biphasic elevation at 12 and 48 h and peaked at 48 and 12 h, respectively. Nonparenchymal cell apoptosis peaked at 48 h. Peliosis hepatis, another characteristic form of liver injury, was first observed at 16 h and, at all time points, closely correlated with the apoptotic index of nonparenchymal liver cells, where the lesion was also maximial at 48 h. Kupffer cell activation and neutrophil infiltration were minimal for all time points examined. Based on thymidine kinase activity, liver regeneration was found to discern a classic biphasic peak pattern at 12 and 48 h. It was very interesting to observe that cadmium-induced liver injury did not involve inflammation at any time point. Apoptosis seems to be a major mechanism for the removal of damaged cells, and constitutes the major type of cell death in nonparenchymal liver cells. Apoptosis of nonparenchymal cells is the basis

  8. Intracellular Wnt/Beta-Catenin Signaling Underlying 17beta-Estradiol-Induced Matrix Metalloproteinase 9 Expression in Human Endometriosis.

    Science.gov (United States)

    Zhang, Ling; Xiong, Wenqian; Xiong, Yao; Liu, Hengwei; Li, Na; Du, Yu; Liu, Yi

    2016-03-01

    Extracellular matrix remodeling is necessary for ectopic endometrium implantation. Many studies have shown an increased expression of matrix metalloproteinase 9 (MMP9) in the ectopic endometrium of endometriosis. However, the signaling pathways and cellular effects related to this process remain incompletely elucidated. The objective of our study was to investigate the association between MMP9 and the Wnt signaling pathway under the regulation of 17beta-estradiol (E2) in endometrial stromal cells. We found that MMP9 was elevated in tissues from women with endometriosis compared with normal women. Furthermore, MMP9 and beta-catenin increased concurrently in a time- and dose-dependent manner after E2 treatment. To clarify the relationship between MMP9 and beta-catenin, we performed luciferase promoter reporter and chromatin immunoprecipitation assays. A beta-catenin/TCF3/LEF1 complex bound to a specific site on the MMP9 promoter that promoted MMP9 gene and protein expression. The promotion of MMP9 by the Wnt signaling pathway under the regulation of E2 may contribute to the pathophysiology of this disease. © 2016 by the Society for the Study of Reproduction, Inc.

  9. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Pradeepkiran Jangampalli Adi

    Full Text Available This study was aimed to examine the protective effects of supplementation with calcium + zinc (Ca + Zn or vitamin E (Vit-E on Cd-induced renal oxidative damage. Young albino Wistar rats (180 ± 10 g (n = 6 control rats, Cd, Cd + Ca + Zn, and Cd + Vit-E experimental groups and the experimental period was 30 days. Rats were exposed to Cd (20 mg/kg body weight alone treated as Cd treated group and the absence or presence of Ca + Zn (2 mg/kg each or Vit-E (20 mg/kg body weight supplementation treated as two separate groups. The activities of the stress marker enzymes superoxide dismutase (SOD, catalase (CAT, glutathione reductase (GR, glutathione peroxidase (GPx, glutathione-S-transferase (GST and lipid peroxidase (LPx were determined in renal mitochondrial fractions of experimental rats. We observed quantitative changes in SOD isoenzymatic patterns by non-denaturing PAGE analysis, and quantified band densities. These results showed that Cd exposure leads to decreases in SOD, CAT, GR, and GPx activities and a concomitant increase in LPx and GST activities. Ca + Zn and Vit-E administration with Cd significantly reversed Cd-induced perturbations in oxidative stress marker enzymes. However, Vit-E showed more inhibitory activity against Cd than did Ca + Zn, and it protected against Cd-induced nephrotoxicity. Keywords: Cadmium (Cd, Oxidative stress, Lipid peroxidation, Nephrotoxicity, PAGE analysis

  10. Cadmium-induced apoptosis through the mitochondrial pathway in rainbow trout hepatocytes: involvement of oxidative stress

    International Nuclear Information System (INIS)

    Risso-de Faverney, C.; Orsini, N.; Sousa, G. de; Rahmani, R.

    2004-01-01

    Cadmium (Cd) induces oxidative stress and apoptosis in trout hepatocytes. We therefore investigated the involvement of the mitochondrial pathway in the initiation of apoptosis and the possible role of oxidative stress in that process. This study demonstrates that hepatocyte exposure to Cd (2, 5 and 10 μM) triggers significant caspase-3, but also caspase-8 and -9 activation in a dose-dependent manner. Western-blot analysis of hepatocyte mitochondrial and cytosolic fractions revealed that cytochrome c (Cyt c) was released in the cytosol in a dose-dependent manner, whereas the pro-apoptotic protein Bax was redistributed to mitochondria after 24 and 48 h exposure. We also found that the expression of anti-apoptotic protein Bcl-xL, known to be regulated under mild oxidative stress to protect cells from apoptosis, did not change after 3 and 6 h exposure to Cd, then increased after 24 and 48 h exposure to 10 μM Cd. In the second part of this work, two antioxidant agents, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) (100 μM) and N-acetylcysteine (NAC, 100 μM) were used to determine the involvement of reactive oxygen species (ROS) in Cd-induced apoptosis. Simultaneously exposing trout hepatocytes to Cd and TEMPO or NAC significantly reduced caspase-3 activation after 48 h and had a suppressive effect on caspase-8 and -9 also, mostly after 24 h. Lastly, the presence of either one of these antioxidants in the treatment medium also attenuated Cd-induced Cyt c release in cytosol and the level of Bax in the mitochondria after 24 and 48 h, while high Bcl-xL expression was observed. Taken together, these data clearly evidenced the key role of mitochondria in the cascade of events leading to trout hepatocyte apoptosis in response to Cd and the relationship that exists between oxidative stress and cell death

  11. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    International Nuclear Information System (INIS)

    Ramos-Solano, Moisés; Meza-Canales, Ivan D.; Torres-Reyes, Luis A.; Alvarez-Zavala, Monserrat

    2015-01-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation

  12. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  13. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation

    International Nuclear Information System (INIS)

    Lu, Jian; Zhou, Zhongping; Zheng, Jianzhou; Zhang, Zhuyi; Lu, Rongzhu; Liu, Hanqing; Shi, Haifeng; Tu, Zhigang

    2015-01-01

    Cadmium is a toxic heavy metal present in the environment and in industrial materials. Cadmium has demonstrated carcinogenic activity that induces cell transformation, but how this occurs is unclear. We used 2D-DIGE and MALDI TOF/TOF MS combined with bioinformatics and immunoblotting to investigate the molecular mechanism of cadmium transformation. We found that small GTPases were critical for transformation. Additionally, proteins involved in mitochondrial transcription, DNA repair, and translation also had altered expression patterns in cadmium treated cells. Collectively, our results suggest that activation of small GTPases contributes to cadmium-induced transformation of colon cells. - Highlights: • Colon epithelial cell line is firstly successfully transformed by cadmium. • 2D-DIGE is applied to visualize the differentially expressed proteins. • RhoA plays an important role in cadmium induced malignant transformation. • Bioinformatic and experimental methods are combined to explore new mechanisms.

  14. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian, E-mail: lujian@ujs.edu.cn [School of Medicine, Jiangsu University, Zhenjiang 212013 (China); Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhongping [School of Medicine, Jiangsu University, Zhenjiang 212013 (China); Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China); Zheng, Jianzhou [Department of Respiration Medicine, Changzhou No.2 People' s Hospital, Changzhou 213003 (China); Zhang, Zhuyi [School of Medicine, Jiangsu University, Zhenjiang 212013 (China); Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China); Lu, Rongzhu [School of Medicine, Jiangsu University, Zhenjiang 212013 (China); Liu, Hanqing [School of Pharmacy, Jiangsu University, Zhenjiang 212013 (China); Shi, Haifeng [Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China); Tu, Zhigang, E-mail: tuzg_ujs@ujs.edu.cn [Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China)

    2015-10-01

    Cadmium is a toxic heavy metal present in the environment and in industrial materials. Cadmium has demonstrated carcinogenic activity that induces cell transformation, but how this occurs is unclear. We used 2D-DIGE and MALDI TOF/TOF MS combined with bioinformatics and immunoblotting to investigate the molecular mechanism of cadmium transformation. We found that small GTPases were critical for transformation. Additionally, proteins involved in mitochondrial transcription, DNA repair, and translation also had altered expression patterns in cadmium treated cells. Collectively, our results suggest that activation of small GTPases contributes to cadmium-induced transformation of colon cells. - Highlights: • Colon epithelial cell line is firstly successfully transformed by cadmium. • 2D-DIGE is applied to visualize the differentially expressed proteins. • RhoA plays an important role in cadmium induced malignant transformation. • Bioinformatic and experimental methods are combined to explore new mechanisms.

  15. Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Manwoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-08-15

    We measured production cross-sections of Sn, In, and Cd radionuclides from alpha-induced reactions on {sup nat}Cd from their respective threshold to 45 MeV by using a stacked-foil activation technique at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Sciences. The results were compared with the earlier measurements as well as with the theoretical values obtained from the TENDL-2012 library based on the TALYS 1.4 code. Our measurements for the {sup 110,113g,117m}Sn, {sup 108m,108g,109g,110m,110g,111g,113m,114m,115m,116m,117m,117g}In, and {sup 111m,115g}Cd radionuclides in the energy region from the threshold energy to 45 MeV are in general good agreement with the other experimental data and calculated results. The integral yields for thick target were also deduced using the measured cross-sections and the stopping power of natural cadmium target and found in agreement with the directly measured yields available in the literature. The measured cross-sections find importance in various practical applications including nuclear medicine and improvement of nuclear model calculations.

  16. Curcumin inhibits adenosine deaminase and arginase activities in cadmium-induced renal toxicity in rat kidney

    Directory of Open Access Journals (Sweden)

    Ayodele Jacob Akinyemi

    2017-04-01

    Full Text Available In this study, the effect of enzymes involved in degradation of renal adenosine and l-arginine was investigated in rats exposed to cadmium (Cd and treated with curcumin, the principal active phytochemical in turmeric rhizome. Animals were divided into six groups (n = 6: saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. The results of this study revealed that the activities of renal adenosine deaminase and arginase were significantly increased in Cd-treated rats when compared with the control (p < 0.05. However, co-treatment with curcumin inhibits the activities of these enzymes compared with Cd-treated rats. Furthermore, Cd intoxication increased the levels of some renal biomarkers (serum urea, creatinine, and electrolytes and malondialdehyde level with a concomitant decrease in functional sulfhydryl group and nitric oxide (NO. However, co-treatment with curcumin at 12.5 mg/kg and 25 mg/kg, respectively, increases the nonenzymatic antioxidant status and NO in the kidney, with a concomitant decrease in the levels of malondialdehyde and renal biomarkers. Therefore, our results reinforce the importance of adenosine deaminase and arginase activities in Cd poisoning conditions and suggest some possible mechanisms of action by which curcumin prevent Cd-induced renal toxicity in rats.

  17. Sex-related differences in NADPH-dependent lipid peroxidation induced by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masao; Nagai, Yasushi

    1986-10-01

    Male and female rats were dosed once a day for 2 days with injections of 1.5 mg Cd/kg. Formation of thiobarbituric acid reactive substances (TBA-RS) was significantly increased in male rat liver but not in the females. NADPH-dependent lipid peroxidation in vitro in microsomes derived from untreated rat liver was greater in males than in females. Furthermore, addition of cadmium (Cd) to microsomes isolated from male rat liver produced a dose-dependent potentiation of NADPH-dependent lipid peroxidation from low concentrations of CD. In microsomes derived from females a significant increase in lipid peroxidation was observed only at high Cd concentrations. NADPH-dependent lipid peroxidation enhanced by Cd was greater in the males than in the females. These data suggest that a sex-related difference in the ability of Cd to induce lipid peroxidation in vivo in rat liver appears to be mediated partly through differences in hepatic microsomal NADPH-dependent lipid peroxidation.

  18. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    Science.gov (United States)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  19. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos

    International Nuclear Information System (INIS)

    Choi, V W Y; Ng, C Y P; Kong, M K Y; Yu, K N; Cheng, S H

    2013-01-01

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ∼4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. (paper)

  20. Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Sato, Masao [Department of Biomolecular Sciences, Institute of Biomedical Sciences, Fukushima Medical College, Fukushima (Japan); Konno, Nobuhiro [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Fukushima, Masaaki [Department of Public Health, Fukushima Medical College, Fukushima (Japan)

    1996-11-01

    Cadmium (Cd), a highly toxic heavy metal, is distributed widely in the general environment of today. The characteristic clinical manifestations of chronic Cd intoxication include renal proximal tubular dysfunction, general osteomalacia with severe pains, and anemia. We have recently reported that the serum level of erythropoietin (EPO) remained low despite the severe anemia in patients with Itai-itai disease, the most severe form of chronic Cd intoxication. In order to prove that the anemia observed in chronic Cd intoxication arises from low production of EPO in the kidneys following the renal injury, we administered Cd to rats for a long period and performed the analysis of EPO mRNA inducibility in the kidneys. The rats administered Cd for 6 and 9 months showed anemia with low levels of plasma EPO as well as biochemical and histological renal tubular damage, and also hypoinduction of EPO mRNA in the kidneys. The results indicate that chronic Cd intoxication causes anemia by disturbing the EPO-production capacity of renal cells. (orig.). With 4 figs., 4 tabs.

  1. Low Doses of Cadmium Chloride and Methallothionein-1-Bound Cadmium Display Different Accumulation Kinetics and Induce Different Genes in Cells of the Human Nephron

    Directory of Open Access Journals (Sweden)

    Dana Cucu

    2011-08-01

    Full Text Available Background/Aims: The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+ by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2. Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1. Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1 in renal cells on the expression of genes relevant to nephrotoxic processes. Methods: Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results: Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1 and heme-oxygenase-1 (HO-1 as well as the pro-apoptotic Bcl-2-associated X protein (Bax were upregulated by CdCl2 and not by Cd7MT1. Conclusion: In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity.

  2. Use of a molecular genetic platform technology to produce human Wnt proteins reveals distinct local and distal signaling abilities.

    Directory of Open Access Journals (Sweden)

    Jennifer L Green

    Full Text Available Functional and mechanistic studies of Wnt signaling have been severely hindered by the inaccessibility of bioactive proteins. To overcome this long-standing barrier, we engineered and characterized a panel of Chinese hamster ovary (CHO cell lines with inducible transgenes encoding tagged and un-tagged human WNT1, WNT3A, WNT5A, WNT7A, WNT11, WNT16 or the soluble Wnt antagonist Fzd8CRD, all integrated into an identical genomic locus. Using a quantitative real-time bioluminescence assay, we show that cells expressing WNT1, 3A and 7A stimulate Wnt/beta-catenin reporter activity, while the other WNT expressing cell lines interfere with this activation. Additionally, in contrast to WNT3A, WNT1 only exhibits activity when cell-associated, and thus only signals to neighboring cells. The reporter assay also revealed a rapid decline of Wnt activity at 37°C, indicating that Wnt activity is highly labile. These engineered cell lines will reduce the cost of making and purifying Wnt proteins and serve as a continuous, reliable and regulatable source of Wnts to research laboratories around the world.

  3. Protective efficacy of Aloe vera against radiation and cadmium induced haematological changes in the Swiss Albino mice

    International Nuclear Information System (INIS)

    Agarwal, Manisha; Purohit, R.K.; Chakrawarti, Aruna; Basu, Arindam; Bhartiya, K.M.

    2011-01-01

    The aim of the present study was to evaluate the protective effect of Aloe vera against radiation and cadmium induced haematological changes in the Swiss albino mice; 6-8 weeks old animals from each of the experimental groups were sacrificed by cervical dislocation at each post treatment intervals of 1,2,4,7,14 and 28 day. After sacrificing the animals, the blood was collected by cardiac puncture in heparinized tubes for various haematological studies. The values of RBC, WBC, Haemoglobin and PCV were found to decrease up to day-14 in non drug treated groups (II,III and IV), thereafter they increased on day-28. Whereas the values decreased upto day-7 in Aloe vera treated groups (V,VI,VlI) thereafter increased tip to day-28. On the other hand, the value of MCV increased upto day- 14 in non-drug treated groups (II, III, IV) and tip to day-7 in drug treated groups (V, VI, VII), thereafter it decreased tip to day-28. After combined treatment of radiation and cadmium chloride synergistic effects were observed. The Aloe vera treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was noticed in Aloe vera pretreated animals. Thus, it appears that Aloe vera is potent enough to check cadmium and radiation induced haematological changes in the Swiss albino mice. (author)

  4. Caffeic acid phenethyl ester prevents cadmium-induced cardiac impairment in rat

    International Nuclear Information System (INIS)

    Mollaoglu, Hakan; Gokcimen, Alpaslan; Ozguner, Fehmi; Oktem, Faruk; Koyu, Ahmet; Kocak, Ahmet; Demirin, Hilmi; Gokalp, Osman; Cicek, Ekrem

    2006-01-01

    Caffeic acid phenethyl ester (CAPE), a flavonoid like compound, is one of the major components of honeybee propolis. It was found to be a potent free radical scavenger and antioxidant recently. The aim of this study was to examine the effect of CAPE on cadmium (Cd)-induced hypertension and cardiomyopathy in rats. In particular, nitric oxide (NO) may contribute to the pathophysiology of Cd induced cardiac impairment. Malondialdehyde (MDA, an index of lipid peroxidation) levels and nitric oxide (NO, a vasodilator) levels were used as markers Cd-induced cardiac impairment and the success of CAPE treatment. Also, the findings have been supported by the histopathologic evidences. The rats were randomly divided into three experimental groups each (12), as follows: the control group, Cd-treated group (Cd) and Cd plus CAPE-treated group (Cd + CAPE). CdCl 2 in 0.9% NaCl was administrated intraperitoneally (i.p.) with a dose of 1 mg/kg/day. CAPE was co-administered i.p. a dose of 10 μM/kg for 15 days. Hypertension was found to be induced by intraperitoneal administration of Cd in a dose of 1 mg/kg/day on the measurements taken 15 days later. MDA levels were increased (p < 0.001) in cardiac tissue and NO levels were decreased (p < 0.05) in serum in the Cd group than those of the control group had. On the other hand, there was a slight difference (increase) in MDA levels in the Cd + CAPE group than the ones in the control group (p < 0.003). In addition, MDA levels were decreased and NO levels were increased in the Cd + CAPE group compared with the Cd group (p < 0.001, p < 0.0001, respectively). As a result, treatment with CAPE significantly reversed the increased lipid peroxidation (LPO) product, MDA, and decreased NO levels in Cd treated animals. In the histopathologic examination, a significant hypertrophy in atrial and ventricular myofibrils was observed in only Cd administered group, in comparison with the control group. There was no statistically significant difference

  5. Protective effects of blueberries (Vaccinium corymbosum L.) extract against cadmium-induced hepatotoxicity in mice.

    Science.gov (United States)

    Gong, Pin; Chen, Fu-xin; Wang, Lan; Wang, Jing; Jin, Sai; Ma, Yang-min

    2014-05-01

    The oxidative status and morphological changes of mouse liver exposed to cadmium chloride (Cd(II)) and therapeutic potential of blueberry (Vaccinium corymbosum L.) extract against Cd(II)-induced hepatic injury were investigated. A variety of parameters were evaluated, including lipid peroxidation (LPO), protein carbonyl (PCO) level, DNA fragment, as well as antioxidative defense system (i.e., superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH)). Elemental analysis and evaluation of morphological changes and NO levels were also performed. Exposure to Cd(II) led to increased LPO and PCO as well as DNA fragment and a reduction of SOD and CAT activities, however, the content of GSH elevated probably due to biological adaptive-response. In contrast, co-treatment of anthocyanin (Ay) inhibited the increased oxidative parameters as well as restored the activities of antioxidative defense system in a dose-dependent manner. Ay administration regained these morphological changes caused by intoxication of Cd(II) to nearly normal levels. Moreover, the accumulation of Cd(II) in liver may be one of the reasons for Cd(II) toxicity and Ay can chelate with Cd(II) to reduce Cd(II) burden. The influence of Cd(II) on the Zn and Ca levels can also be adjusted by the co-administration of Ay. Exposure to Cd(II) led to an increase of NO and Ay reduced NO contents probably by directly scavenging. Potential mechanisms for the protective effect of Ay have been proposed, including its anti-oxidative and anti-inflammatory effect along with the metal-chelating capacity. These results suggest that blueberry extract may be valuable as a therapeutic agent in combating Cd(II)-induced tissue injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comparative molecular pathology of cadmium- and all-trans-retinoic acid-induced postaxial forelimb ectrodactyly

    International Nuclear Information System (INIS)

    Liao Xiaoyan; Lee, Grace S.; Shimizu, Hirohito; Collins, Michael D.

    2007-01-01

    Cadmium chloride (CdCl 2 ) and all-trans-retinoic acid (RA) induce postaxial forelimb ectrodactyly in C57BL/6N mice when administered during early limb development, and co-administration yields a synergistic response suggesting a common final pathway to the defect. In the current study, forelimb buds from embryos given high maternal teratogenic doses of CdCl 2 or RA, or the combination of both agents at low doses were collected at various time points after treatment on GD 9.5 and examined for cellular apoptosis, proliferation, and patterning genes. Some cellular perturbations detected in the developing limb bud were similar for both teratogens, whereas other alterations were unique to each agent. For example, at 12 and 18 h, CdCl 2 treatment increased apoptotic cells in the mesenchyme underneath the apical ectodermal ridge (AER), whereas RA caused apoptosis in the AER and proximal mesenchyme. Further, the combined low-dose treatment increased cell death synergistically in all three regions. CdCl 2 and the low-dose combined treatment inhibited mesenchymal proliferation at 12 h, which was associated with induction of p21 cip1 and inhibition of phospho-c-Jun. In contrast, RA did not inhibit mesenchymal proliferation and did not induce p21 cip1 expression or change c-Jun phosphorylation. All three treatment groups showed a delay in the patterning of distal chondrogenesis centers as indicated by Sox9 expression. There was also common inhibition in the expression of AER markers, Fgf8 and Fgf4, and the mesenchymal marker Msx1 involved in the maintenance of epithelial-mesenchymal interactions. Collectively, a model is hypothesized where limb patterning can be perturbed by insults to both ectoderm and mesoderm

  7. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.

    Science.gov (United States)

    Chen, Lianghua; Han, Ying; Jiang, Hao; Korpelainen, Helena; Li, Chunyang

    2011-10-01

    Populus yunnanensis was employed as a model species to detect sexual differences in growth, physiological, biochemical, and ultrastructural responses to cadmium (Cd) stress, nitrogen (N) deposition, and their combination. Compared with the control conditions, Cd decreased plant biomass, damaged the photosynthetic apparatus, visible as a decreased maximum efficiency of photosystem II (PSII; F(v)/F(m)) and effective quantum yield of PSII (Yield), depressed gas exchange capacity, and induced oxidative stress, visible as the disruption of antioxidative enzymes and accumulation of reactive oxygen species (ROS), in both sexes. On the other hand, Cd toxicity was mitigated by the recovery of gas exchange capacity, a decrease in ROS, and improvement of the redox imbalance in both sexes when N deposition was applied. However, males showed a higher gas exchange capacity, lower enzyme inhibition and ROS accumulation, stronger abilities to maintain cellular redox homeostasis, and a better maintenance of chloroplast ultrastructure than did females when exposed to Cd stress alone. Although males exhibited a higher Cd content in leaves than did females, males also accumulated higher levels of non-protein thiols (NP-SHs) and free amino acids (FAAs) for detoxification than did females. Sexual differences induced by Cd, visible, for example, in F(v)/F(m), Yield, net photosynthesis rate (A), and stomatal conductance (g(s)), decreased under N deposition, as no significant differences between the sexes existed in these parameters under the combined treatment. The results indicated that females are more sensitive to Cd stress and suffer more injuries than do males. Moreover, N deposition can mitigate Cd toxicity and decrease sexual differences in Cd sensitivity.

  8. Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways

    International Nuclear Information System (INIS)

    Samarzija, Ivana; Sini, Patrizia; Schlange, Thomas; MacDonald, Gwen; Hynes, Nancy E.

    2009-01-01

    Untangling the signaling pathways involved in endothelial cell biology is of central interest for the development of antiangiogenesis based therapies. Here we report that Wnt3a induces the proliferation and migration of HUVECs, but does not affect their survival. Wnt3a-induced proliferation was VEGFR signaling independent, but reduced upon CamKII inhibition. In a search for the downstream mediators of Wnt3a's effects on HUVEC biology, we found that Wnt3a treatment leads to phosphorylation of DVL3 and stabilization of β-catenin. Moreover, under the same conditions we observed an upregulation in c-MYC, TIE-2 and GJA1 mRNA transcripts. Although treatment of HUVECs with Wnt5a induced DVL3 phosphorylation, we did not observe any of the other effects seen upon Wnt3a stimulation. Taken together, our data indicate that Wnt3a induces canonical and non-canonical Wnt signaling in HUVECs, and stimulates their proliferation and migration.

  9. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    International Nuclear Information System (INIS)

    Misu, Masayasu; Ouji, Yukiteru; Kawai, Norikazu; Nishimura, Fumihiko; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2015-01-01

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage

  10. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Misu, Masayasu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kawai, Norikazu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nishimura, Fumihiko [Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakamura-Uchiyama, Fukumi [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Yoshikawa, Masahide, E-mail: myoshika@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  11. Unterschiede und Gemeinsamkeiten der nicht-kanonischen Wnt-Liganden Wnt5a und Wnt11

    OpenAIRE

    Wallkamm, Veronika

    2014-01-01

    Die nicht-kanonischen Zweige des Wnt-Signalnetzwerkes sind Regulatoren der konvergenten Extension während der Xenopus Gastrulation. Dabei übernehmen die nicht-kanonischen Wnt-Liganden Wnt5a und Wnt11 nicht-redundante Aufgaben.

  12. Wnt/β-catenin signaling activates nephronectin expression in osteoblasts

    International Nuclear Information System (INIS)

    Ikehata, Mikiko; Yamada, Atsushi; Morimura, Naoko; Itose, Masakatsu; Suzawa, Tetsuo; Shirota, Tatsuo; Chikazu, Daichi; Kamijo, Ryutaro

    2017-01-01

    Nephronectin (Npnt), an extracellular matrix protein, is considered to play critical roles as an adhesion molecule in the development and functions of various organs and tissues, such as the kidneys and bone. In the present study, we found that Wnt3a strongly enhanced Npnt mRNA expression in osteoblast-like MC3T3-E1 cells, while it also induced an increase in Npnt gene expression in both time- and dose-dependent manners via the Wnt/β-catenin signaling pathway. These results suggest novel mechanisms for Wnt3a-induced osteoblast proliferation and cell survival via Npnt gene expression. - Highlights: • Wnt3a enhances nephronectin gene expression. • Nephronectin gene induction by Wnt3a is occurred by time- and dose-dependent manner. • Expression of nephronectin is regulated via β-catenin activation.

  13. Development of a Method for the Determination of Chromium and Cadmium in Tannery Wastewater Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mahwish Bukhari

    2012-01-01

    Full Text Available This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS. A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy, 4.5 μs (delay time, 70 mm (lens to sample surface distance, and 7 mm (light collection system to sample surface distance. Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium.

  14. Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines.

    Science.gov (United States)

    Naderi, Saeed; Zare, Hakimeh; Taghavinia, Nima; Irajizad, Azam; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2018-05-01

    Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was applied for observation of morphological changes due to apoptosis. Apoptotic DNA fragmentation was visualized by the agarose gel electrophoresis assay. Flow cytometric annexin V/propidium iodide (PI) measurement was used for apoptosis detection. A significant decrease in cell viability was observed after QDs treatment ( p < 0.05). Apoptotic bodies and chromatin condensation was observed by Hoechst staining. DNA fragmentation assay demonstrated a DNA ladder profile in the exposed cells and also annexin V/PI flow cytometry confirmed apoptosis in a dose-dependent manner. Our results revealed that CdTe, high yield CdTe, and CdTe/CdS core/shell QDs induce apoptosis in breast cancer cell lines in a dose-dependent manner. This study would help realizing the underlying cytotoxicity mechanism, at least partly, of CdTe QDs and may provide information for the development of nanotoxicology and safe use of biological applications of QDs.

  15. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    Science.gov (United States)

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  16. Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage

    Science.gov (United States)

    Rajendar, B.; Bharavi, K.; Rao, G. S.; Kishore, P.V.S; Kumar, P. Ravi; Kumar, C.S.V Satish; Patel, T. Pankaj

    2011-01-01

    Aim: The aim of the present study was to investigate whether Tribulus terrestris Linn (TT) could protect the cadmium (Cd)-induced testicular tissue peroxidation in rats and to explore the underlying mechanism of the same. Materials and Methods: In vitro and in vivo studies were conducted to know the protective effect of ethanolic extract of TT (eTT) in Cd toxicity. In in vitro studies, total antioxidant and ferrous metal ion chelating activity of TT was studied. In vivo studies were conducted in rats. A total of 40 Wistar strain adult male rats were divided into four groups. Group 1 served as control, while group 2 to 4 received CdCl2 (3 mg/kg b. wt. s/c once a week). In addition to Cd, group 3 and 4 rats also received eTT (5 mg/kg b.wt. daily as oral gavage) and α-tocopherol (75 mg/kg daily by oral gavage), respectively. At the end of 6th week, all the rats were sacrificed and the separated testes were weighted and processed for estimation of tissue peroxidation markers, antioxidant markers, functional markers, and Cd concentration. The testes were also subjected to histopathological screening. Results: In in vitro studies, the percentage of metal ion chelating activity of 50 μg/ml of eTT and α-tocopherol were 2.76 and 9.39, respectively, and the antioxidant capacity of eTT was equivalent to 0.063 μg of α-tocopherol/μg of eTT. In in vivo studies, administration of Cd significantly reduced the absolute and relative testicular weight, antioxidant markers such as superoxide dismutase and glutathione, and functional markers such as LDH and ALP, along with significant increase in peroxidation markers such as malondialdehyde and protein carbonyls in testicular tissue. Testes of Cd only-treated group showed histological insults like necrotic changes in seminiferous tubules and interstitium, shrunken tubules with desquamated basal lamina, vacuolization and destruction of sertoli cells, and degenerating Leydig cells. This group also had higher Cd levels in testicular

  17. Effects of Spirulina platensis on DNA damage and chromosomal aberration against cadmium chloride-induced genotoxicity in rats.

    Science.gov (United States)

    Aly, Fayza M; Kotb, Ahmed M; Hammad, Seddik

    2018-04-01

    Todays, bioactive compounds extracted from Spirulina platensis have been intensively studied for their therapeutical values. Therefore, in the present study, we aimed to evaluate the effects of S. platensis extract on DNA damage and chromosomal aberrations induced by cadmium in rats. Four groups of male albino rats (n = 7 rats) were used. The first group served as a control group and received distilled water. The second group was exposed intraperitoneally to cadmium chloride (CdCl 2 ) (3.5 mg/kg body weight dissolved in 2 ml distilled water). The third group included the rats that were orally treated with S. platensis extract (1 g/kg dissolved in 5 ml distilled water, every other day for 30 days). The fourth group included the rats that were intraperitoneally and orally exposed to cadmium chloride and S. platensis, respectively. The experiment in all groups was extended for 60 days. The results of cadmium-mediated toxicity revealed significant genetic effects (DNA fragmentation, deletion or disappearance of some base pairs of DNA, and appearance of few base pairs according to ISSR-PCR analysis). Moreover, chromosomes showed structural aberrations such as reduction of chromosomal number, chromosomal ring, chromatid deletions, chromosomal fragmentations, and dicentric chromosomes. Surprisingly, S. platensis extract plus CdCl 2 -treated group showed less genetic effects compared with CdCl 2 alone. Further, S. platensis extract upon CdCl 2 toxicity was associated with less chromosomal aberration number and nearly normal appearance of DNA fragments as indicated by the bone marrow and ISSR-PCR analysis, respectively. In conclusion, the present novel study showed that co-treatment with S. platensis extract could reduce the genotoxic effects of CdCl 2 in rats.

  18. A comparative investigation of DNA strand breaks, sister chromatid exchanges and K-ras gene mutations induced by cadmium salts in cultured human cells

    International Nuclear Information System (INIS)

    Mouron, Silvana Andrea; Grillo, Claudia Alejandra; Dulout, Fernando Noel; Golijow, Carlos Daniel

    2004-01-01

    Cadmium (Cd) is a toxic heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. Several studies have shown that cadmium produces DNA strand breaks, DNA-protein cross-links, oxidative DNA damage, chromosomal aberrations, dysregulation of gene expression resulting in enhanced proliferation, depressed apoptosis and/or altered DNA repair. This study was undertaken to investigate the ability of cadmium chloride (CdCl 2 ) and cadmium sulphate (CdSO 4 ) to induce point mutations in codon 12 of the K-ras protooncogene assessed by polymerase chain reaction-single strand conformation polymorphisms (PCR-SSCP) and RFLP-enriched PCR methods. Also their genotoxic effects were analyzed by the comet assay and sister chromatid exchanges test. The human lung fibroblast cell line MRC-5 was used for the experiments. Sister chromatid exchanges assay (SCEs) frequencies were significantly increased in cells exposed to cadmium salts in relation to controls (p < 0.001). Despite the slow increment observed in the three comet parameters considered when cells were treated with cadmium chloride, significant differences between groups were only found in the variable comet moment (CM) (p < 0.005). On the other hand, when cells were exposed to cadmium sulphate, the Kruskal-Wallis test showed highly significant differences between groups for migration, tail moment and comet moment parameters (p < 0.001). Nevertheless, a null or weak point mutation induction in K-ras protooncogene was detected using polymerase chain reaction-low ionic strength-single strand conformation polymorphisms (PCR-LIS-SSCP) and RFLP-enriched PCR methods when cells were treated with cadmium salts. Thus, inorganic cadmium produces genotoxicity in human lung fibroblast MRC-5 cells, in the absence of significant point mutation of the K-ras gene

  19. Cadmium Bio sorption by Some Bacterial Isolates and Their Mutants Induced by gamma Radiation

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Elsonbaty, S.M.; Abdalla, N.M.

    1999-01-01

    Cadmium bio sorption by bacterial cells is recognized as a potential alternative to existing recovery technologies. Bacterial strains under investigation were isolated from air surrounding gamma industrial facility Co 60 source of the NCRRT, Cairo. The effect of different concentrations of cadmium on the growth was determined for the spore forming bacteria B.coagulans, B.megaterium, B.pumilus, B.pantothenticus, and also for Staphylo coccus aureus, the reference standard strain used in these study for comparison was B.subtilis MERK 10646. The results indicated that, B.pantothenticus was the most tolerant isolate, and it can resist up to 400 ppm. Cadmium capacity for B.subtilis parent strain was increased through the influence of different doses of gamma radiation, selected mutant of B.subtilis show enhanced level of cadmium accumulation. The effect of environmental parameters as ph, temperature and also the effect of biomass factor on cadmium uptake by B.pantothenticus and B.subtilis (m) was traced

  20. Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats.

    Science.gov (United States)

    Milton Prabu, S; Muthumani, M; Shagirtha, K

    2012-04-01

    The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.

  1. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  2. An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development

    Science.gov (United States)

    Boman, Bruce M.; Fields, Jeremy Z.

    2013-01-01

    APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156

  3. Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β Signaling in Cadmium-Induced DA-D2 Receptor-Mediated Motor Dysfunctions: Protective Role of Quercetin.

    Science.gov (United States)

    Gupta, Richa; Shukla, Rajendra K; Pandey, Ankita; Sharma, Tanuj; Dhuriya, Yogesh K; Srivastava, Pranay; Singh, Manjul P; Siddiqi, Mohammad Imran; Pant, Aditya B; Khanna, Vinay K

    2018-02-06

    Given increasing risk of cadmium-induced neurotoxicity, the study was conducted to delineate the molecular mechanisms associated with cadmium-induced motor dysfunctions and identify targets that govern dopaminergic signaling in the brain involving in vivo, in vitro, and in silico approaches. Selective decrease in dopamine (DA)-D2 receptors on cadmium exposure was evident which affected the post-synaptic PKA/DARPP-32/PP1α and β-arrestin/Akt/GSK-3β signaling concurrently in rat corpus striatum and PC12 cells. Pharmacological inhibition of PKA and Akt in vitro demonstrates that both pathways are independently modulated by DA-D2 receptors and associated with cadmium-induced motor deficits. Ultrastructural changes in the corpus striatum demonstrated neuronal degeneration and loss of synapse on cadmium exposure. Further, molecular docking provided interesting evidence that decrease in DA-D2 receptors may be due to direct binding of cadmium at the competitive site of dopamine on DA-D2 receptors. Treatment with quercetin resulted in the alleviation of cadmium-induced behavioral and neurochemical alterations. This is the first report demonstrating that cadmium-induced motor deficits are associated with alteration in postsynaptic dopaminergic signaling due to a decrease in DA-D2 receptors in the corpus striatum. The results further demonstrate that quercetin has the potential to alleviate cadmium-induced dopaminergic dysfunctions.

  4. Wnt pathway in Dupuytren disease: connecting profibrotic signals.

    Science.gov (United States)

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2015-12-01

    A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Wise, a context-dependent activator and inhibitor of Wnt signalling.

    Science.gov (United States)

    Itasaki, Nobue; Jones, C Michael; Mercurio, Sara; Rowe, Alison; Domingos, Pedro M; Smith, James C; Krumlauf, Robb

    2003-09-01

    We have isolated a novel secreted molecule, Wise, by a functional screen for activities that alter the anteroposterior character of neuralised Xenopus animal caps. Wise encodes a secreted protein capable of inducing posterior neural markers at a distance. Phenotypes arising from ectopic expression or depletion of Wise resemble those obtained when Wnt signalling is altered. In animal cap assays, posterior neural markers can be induced by Wnt family members, and induction of these markers by Wise requires components of the canonical Wnt pathway. This indicates that in this context Wise activates the Wnt signalling cascade by mimicking some of the effects of Wnt ligands. Activation of the pathway was further confirmed by nuclear accumulation of beta-catenin driven by Wise. By contrast, in an assay for secondary axis induction, extracellularly Wise antagonises the axis-inducing ability of Wnt8. Thus, Wise can activate or inhibit Wnt signalling in a context-dependent manner. The Wise protein physically interacts with the Wnt co-receptor, lipoprotein receptor-related protein 6 (LRP6), and is able to compete with Wnt8 for binding to LRP6. These activities of Wise provide a new mechanism for integrating inputs through the Wnt coreceptor complex to modulate the balance of Wnt signalling.

  6. Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells

    Czech Academy of Sciences Publication Activity Database

    Kuthanová, A.; Gemperlová, Lenka; Zelenková, S.; Eder, Josef; Macháčková, Ivana; Opatrný, Z.; Cvikrová, Milena

    2004-01-01

    Roč. 42, č. 2 (2004), s. 149-156 ISSN 0981-9428 R&D Projects: GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z5038910 Keywords : BY-2 cells * cadmium * DAO Subject RIV: EF - Botanics Impact factor: 1.414, year: 2004

  7. Combined protective effect of vitamins C and E on cadmium induced ...

    African Journals Online (AJOL)

    uwerhiavwe

    cadmium toxicity also causes an oxidative stress through lipid peroxidation ... lines for Animal Care and approved by the Ethics Committee of our. Institution. ... enzyme activity was calculated by using an extinction coefficient of. 0.043 mM -1 cm ...

  8. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Nejdet [University of Atatuerk, Faculty of Veterinary Medicine, Department of Histology and Embryology, 25700 Erzurum (Turkey); Karadeniz, Ali, E-mail: karadenizali@gmail.com [University of Atatuerk, Faculty of Veterinary Medicine, Department of Physiology, 25700 Erzurum (Turkey); Kalkan, Yildiray; Keles, Osman N.; Unal, Buenyami [University of Atatuerk, Faculty of Medicine, Department of Histology and Embryology, 25240 Erzurum (Turkey)

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the {alpha}-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  9. Wnt Signaling Is Required for Long-Term Memory Formation

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-09-01

    Full Text Available Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with β-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type β-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.

  10. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis (IPF is a fatal lung disease, characterized by distorted lung architecture and loss of respiratory function. Alveolar epithelial cell injury and hyperplasia, enhanced extracellular matrix deposition, and (myofibroblast activation are features of IPF. Wnt/beta-catenin signaling has been shown to determine epithelial cell fate during development. As aberrant reactivation of developmental signaling pathways has been suggested to contribute to IPF pathogenesis, we hypothesized that Wnt/beta-catenin signaling is activated in epithelial cells in IPF. Thus, we quantified and localized the expression and activity of the Wnt/beta-catenin pathway in IPF. METHODOLOGY/PRINCIPAL FINDINGS: The expression of Wnt1, 3a, 7b, and 10b, the Wnt receptors Fzd1-4, Lrp5-6, as well as the intracellular signal transducers Gsk-3beta, beta-catenin, Tcf1, 3, 4, and Lef1 was analyzed in IPF and transplant donor lungs by quantitative real-time (qRT-PCR. Wnt1, 7b and 10b, Fzd2 and 3, beta-catenin, and Lef1 expression was significantly increased in IPF. Immunohistochemical analysis localized Wnt1, Wnt3a, beta-catenin, and Gsk-3beta expression largely to alveolar and bronchial epithelium. This was confirmed by qRT-PCR of primary alveolar epithelial type II (ATII cells, demonstrating a significant increase of Wnt signaling in ATII cells derived from IPF patients. In addition, Western blot analysis of phospho-Gsk-3beta, phospho-Lrp6, and beta-catenin, and qRT-PCR of the Wnt target genes cyclin D1, Mmp 7, or Fibronectin 1 demonstrated increased functional Wnt/beta-catenin signaling in IPF compared with controls. Functional in vitro studies further revealed that Wnt ligands induced lung epithelial cell proliferation and (myofibroblast activation and collagen synthesis. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that the Wnt/beta-catenin pathway is expressed and operative in adult lung epithelium. Increased Wnt/beta-catenin signaling

  11. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.

    Science.gov (United States)

    Krishnamurthy, Nithya; Kurzrock, Razelle

    2018-01-01

    The Wnt/beta-catenin pathway is a family of proteins that is implicated in many vital cellular functions such as stem cell regeneration and organogenesis. Several intra-cellular signal transduction pathways are induced by Wnt, notably the Wnt/beta-catenin dependent pathway or canonical pathway and the non-canonical or beta-catenin-independent pathway; the latter includes the Wnt/Ca2+ and Planar Cell Polarity pathway (PCP). Wnt activation occurs at the intestinal crypt floor, and is critical to optimal maintenance of stem cells. Colorectal cancers show evidence of Wnt signaling pathway activation and this is associated with loss of function of the tumor regulator APC. Wnt activation has been observed in breast, lung, and hematopoietic malignancies and contributes to tumor recurrence. The Wnt pathway cross talks with the Notch and Sonic Hedgehog pathways, which has implications for therapeutic interventions in cancers. There are significant challenges in targeting the Wnt pathway, including finding agents that are efficacious without damaging the system of normal somatic stem cell function in cellular repair and tissue homeostasis. Here, we comprehensively review the Wnt pathway and its interactions with the Notch and Sonic Hedgehog pathways. We present the state of the field in effectors and inhibitors of Wnt signaling, including updates on clinical trials in various cancers with inhibitors of Wnt, Notch, and Sonic Hedgehog. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis.

    Science.gov (United States)

    Yang, Yingzi

    2003-11-01

    In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.

  13. Wnt-inducible protein (WISP-1 is a key regulator of alveolar epithelial cell hyperplasia in pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    2006-12-01

    Full Text Available Fibrotic lung disease is characterized by distorted lung architecture and severe loss of respiratory function secondary to alveolar epithelial cell (AEC hyperplasia, enhanced extracellular matrix (ECM deposition and fibroblast proliferation. Repetitive epithelial injuries with impaired alveolar wound healing and altered AEC gene expression represent a trigger mechanism for development of fibrosis. To reveal gene regulatory networks in lung fibrosis, we compared gene expression profiles of freshly isolated AEC obtained from mice 14 days after saline or bleomycin (BM instillation using whole genome microarray analysis. Several genes of the Wnt signaling pathway, in particular WISP-1, a member of the CCN family, were highly regulated. WISP-1 protein expression was demonstrated in proliferating AEC in BM-treated lungs by immunofluorescence. When analyzing all six CCN family members, WISP-1 was upregulated the most 14 days after BM challenge, as analyzed by qRT-PCR. To elucidate WISP-1 function, cultured primary mouse AEC were stimulated with WISP-1 and demonstrated a 230% increase in proliferation, analyzed by 3H-thymidine incorporation. This was mediated through enhanced phosphorylation, but not expression of protein kinase B (PKB/Akt, as detected by immunoblot. Finally, increased expression of WISP-1 was detected in lung homogenates and isolated AEC from IPF patients, using qRT-PCR. Immunohistochemical analysis of WISP-1 and Ki67 verified the existence of hyperplastic and proliferative AEC expressing WISP-1 in vivo. Our study thus identifies WISP-1 as a novel regulator of AEC injury and repair, and suggests that WISP-1 is a key mediator in pulmonary fibrosis.

  14. Preventive action of Aloe vera against radiation and cadmium induced haematological changes in Swiss albino mice

    International Nuclear Information System (INIS)

    Agarwal, Manisha; Purohit, R.K.; Chakrawarti, Aruna; Bhartiya, K.M.

    2012-01-01

    Haematopoietic organs are markedly sensitive to ionizing radiation due to its proliferate activity. The changes found in the circulating blood are primarily due to damage in the radio sensitive haematopoeitic organs. A very small dose of radiation to a blood forming organ causes an arrest of haematopoiesis with changes in peripheral blood count. Certain trace elements are essential for normal growth and development of organisms but their concentration beyond threshold may produce damage to blood forming organs and tissues thus affecting the peripheral blood. Aloe vera has been claimed to contain several important therapeutic properties including anti cancer effects. Various studies showed the prevention of radiation induced suppression of immunity by Aloe vera components. Having these unique properties, Aloe vera could be used in clinical field as a protector against radiation and heavy metal toxicity in human beings. For the study, six to eight weeks old Swiss albino mice were procured and kept in polypropylene cages. The animals were fed with standard mice feed and water was provided to them ad libitum. Cadmium chloride was administered orally to the animals in drinking water at the dose rate of 20 ppm. The animals were exposed to sub lethal doses of 2.0 Gy and 4.0 Gy of gamma radiation from cobalt 60 source. The Aloe vera was given seven days prior to irradiation and continued up to last autopsy day in experimental animals. Five animals from each group were autopsied by cervical dislocation at each post treatment interval of 1,2,4,7,14 and 28 days. The differential leucocytes count was estimated by preparing smear of the blood. The value of lymphocyte decreased up to day-14 in non drug treated groups thereafter it increased up to day-28 whereas the count decreased up to day-7 in drug treated groups and showed an increasing trend at day-14 which continues up to day-28. The value of monocyte and granulocyte percentage increased up to day-7 in drug treated groups

  15. Role of L-carnitine in Ameliorating the Cadmium Chloride and/or Irradiation-Induced Testicular Toxicity

    International Nuclear Information System (INIS)

    Ramadan, L.A.

    2003-01-01

    The role of oxidative stress in chronic administration of CdCl2 and/or irradiation toxicity and its prevention by pretreatment with L-carnitine was investigated. Adult male rats were administered with CdCl2 (3 mg/kg S.C. three times a week for three weeks) and /or irradiated at (2 Gy) dose level of gamma radiation. CdCl2 administration and/or irradiation induced cellular damage was indicated by significant decrease in lactate dehydrogenase isoenzyme (LDH-X), glutathione level (GSH) and glutathione peroxidase enzyme activity (GSH-PX) as well as significant increase in malonaldehyde (MDA) in testicular tissues. Administration of L-carnitine (200 mg/kg I.P.) 1 hr before CdCl2 and/or irradiation, ameliorated the decrease in LDH-X, GSH and GSH-PX and the increase in MDA induced by CdCl2 and/or irradiation indicating the prophylactic action of L-carnitine on CdCl2 and /or irradiation toxicity. Various studies have indicated that cadmium is a potent heavy metal carcinogen in experimental animals (Poirier et al., 1983 and Waalkes et al..,1988) and is possibly carcinogenic in human populations exposed either occupationally or environmentally (Bako et al., 1982). Target sites for cadmium carcinogenesis in rodents have been shown to include testes after parenteral exposure (Poirier et al., 1983 and Waalkes et al., 1988) and lung after chronic inhalation (Takenaka et al., 1983)

  16. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  17. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-01-01

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G 0 /G 1 -S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  18. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.

    Directory of Open Access Journals (Sweden)

    Bai-Wei Gu

    Full Text Available Dyskeratosis congenita (DC is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells

  19. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.

    Science.gov (United States)

    Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A; French, Deborah; Podsakoff, Gregory M; Bessler, Monica; Mason, Philip J

    2015-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human

  20. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  1. Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in Vitro

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2015-09-01

    Full Text Available Hepatocellular carcinoma (HCC is a malignant tumor that can cause systemic invasion; however, the exact etiology and molecular mechanism are unknown. Astaxanthin (ASX, a powerful antioxidant, has efficient anti-oxidant, anti-inflammatory, and other activities, and has great research prospects in cancer therapy. We selected the human hepatoma cell lines, LM3 and SMMC-7721, to study the anti-tumor effect and related mechanisms of ASX. The cell lines were treated with different concentrations of ASX, and its solvent DMSO as a control, for different time periods and the results were determined using CCK8, qRT-PCR, WB, apoptotic staining, and flow cytometry. ASX induced significant apoptosis of HCC cells, and its effect may have been caused by NF-κB p65 and Wnt/β-catenin down-regulation via negative activation of PI3K/Akt and ERK. Antitumor research on ASX has provided us with a potential therapy for patients with hepatomas.

  2. Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Dina Ivanyuk

    2015-05-01

    Full Text Available Background: Reproducible and efficient differentiation of pluripotent stem cells (PSCs to cardiomyocytes (CMs is essential for their use in regenerative medicine, drug testing and disease modeling. The aim of this study was to evaluate the effect of some previously reported cardiogenic substances on cardiac differentiation of mouse PSCs. Methods: Differentiation was performed by embryoid body (EB-based method using three different murine PSC lines. The differentiation efficiency was monitored by RT-qPCR, immunocytochemistry and flow cytometry, and the effect mechanistically evaluated by transcriptome analysis of treated EBs. Results: Among the five tested compounds (ascorbic acid, dorsomorphin, cyclic adenosine 3',5'-monophosphate, cardiogenol C, cyclosporin A only ascorbic acid (AA exerted a strong and reproducible cardiogenic effect in CGR8 cells which was less consistent in other two PSC lines. AA induced only minor changes in transcriptome of CGR8 cells after administration during the initial two days of differentiation. Cardiospecific genes and transcripts involved in angiogenesis, erythropoiesis and hematopoiesis were up-regulated on day 5 but not on days 2 or 3 of differentiation. The cardiac differentiation efficiency was improved when QS11, a small-molecule synergist of Wnt/β-catenin signaling pathway, was added to cultures after AA-treatment. Conclusion: This study demonstrates that only minor transcriptional changes are sufficient for enhancement of cardiogenesis of murine PSCs by AA and that AA and QS11 exhibit synergistic effects and enhance the efficiency of CM differentiation of murine PSCs.

  3. Protective role of Liv.52 against radiation and cadmium induced haematological changes in the Swiss albino mice

    International Nuclear Information System (INIS)

    Sharma, Ramakant; Purohit, Ramesh K.; Sharma, Sampat; Rao, R.; Purohit, R.K.

    2012-01-01

    This study aim to evaluate protective role of Liv.52 against radiation and cadmium induced haematological changes in the Swiss Albino Mice. The animals were exposed with 3.0 and 6.0 Gy of gamma rays with or without Cadmium Chloride treatment. In the drug treated groups. The liv-52 was given seven days prior to irradiation or Cadmium Chloride treatment The animals from the entire experimental group were sacrificed by cervical dislocation at post treatment intervals of 1, 2, 4, 7, 14 and 28 days. The value of red blood cells (RBC), white blood cell (WBC), Haemoglobin (Hb), packed cell volume (PCV), mean cell volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), different leucocytes counts (DLC), SGOT and SGPT were estimated. The values of RBC, WBC, Hb and PCV were found to decrease in all the groups as compared to normal group, but the decrease in these values was lesser in Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). The values of MCV were also found to decrease but the difference from normal value was significant at previous intervals and it was significant on later intervals. The values of MCH increased in all the groups as compared with normal group after 1, 2, 4, 7, 14 and 28 days of post-treatment intervals. The increase in the values of MCH was lesser in Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). Besides this values of MCHC increased in all the groups at various intervals but the values were lower in the Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). The difference from the normal was non-significant in all the groups. The values of lymphocytes declined up to day-14 in non-drug treated groups and day-7 in the Liv.52 treated groups. Similarly the values of monocytes and granulocytes percentage increased up to day-14 in the non-drug treated animals and day-7 in the drug treated animals thereafter; a

  4. Radiation and cadmium induced biochemical changes in the kidney of Swiss albino mice

    International Nuclear Information System (INIS)

    Bissa, Prashant; Purohit, Suresh; Purohit, R.K.

    2012-01-01

    Radiation causes deleterious effects in all forms of life due to increasing utilization and production of modern technology, a simultaneous exposure of organisms to heavy metals is also unavoidable. The concomitant exposure to cadmium chloride and ionizing radiation might produce deleterious effect upon biological system. The total environmental burden of toxicants may have greater effect as against their individual impact as expected by their nature. So interaction between radiation and other toxicants represents a field of great potential importance. Therefore, the present study was planned to evaluate the effect of cadmium and radiation alone or in combination, on the kidney of Swiss albino mice. In the present investigation, adult male mice were divided into four groups. Group I included Sham irradiated normal mice. Group II was treated with Cadmium Chloride at the dose of 20 ppm while Group III was exposed to 5.0 Gy of gamma rays. Animals of Group IV were treated with both Cadmium Chloride and 5.0 Gy of gamma radiation. The animals from each group were sacrificed by cervical dislocation at each post treatment interval of 1, 2, 4, 7, 14 and 28 days. In Cadmium Chloride treated group the values of total proteins and cholesterol declined up to day-14 thereafter the values increased up to day-28 without reaching to the normal. The values of glycogen, acid phosphatase and alkaline phosphatase activities increased up to day-14 then decreased up to day-28 without reaching to the norma. Mice exposed to 5.0 Gy of gamma rays showed increased in the values of total proteins, glycogen, acid phosphatase and alkaline phosphatase activities increased up to day-24 and declined thereafter up to day-28 . Whereas the value of cholesterol decreased up to day-14 and then increased up to day-28 without reaching to the normal level. Combined exposure to Cadmium chloride and radiation registered similar pattern of decrease and increase but the changes were more pronounced in all the

  5. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    International Nuclear Information System (INIS)

    Deng Xiaopeng; Xia Yan; Hu Wei; Zhang Hongxiao; Shen Zhenguo

    2010-01-01

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H 2 O 2 ) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 μM significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H 2 O 2 and superoxide anion (O 2 · - ), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN 3 as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 μM NAC decreased the contents of TBARS and production of H 2 O 2 and O 2 · - , but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  6. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaopeng; Xia Yan; Hu Wei [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Zhang Hongxiao, E-mail: hxzhang@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China)

    2010-08-15

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 {mu}M significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H{sub 2}O{sub 2} and superoxide anion (O{sub 2}{center_dot}{sup -}), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 {mu}M NAC decreased the contents of TBARS and production of H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -}, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  7. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Onukwufor, John O.; Kibenge, Fred; Stevens, Don; Kamunde, Collins

    2015-01-01

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q 10 values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying

  8. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  9. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species.

    Science.gov (United States)

    Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela

    2017-01-01

    Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes-Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress.

  10. Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative

    International Nuclear Information System (INIS)

    Daud, M.K.; Variath, M.T.; Ali, Shafaqat; Najeeb, U.; Jamil, Muhammad; Hayat, Y.; Dawood, M.; Khan, Muhammad Imran; Zaffar, M.; Cheema, Sardar Alam; Tong, X.H.; Zhu Shuijin

    2009-01-01

    The present study describes cadmium-induced alterations in the leaves as well as at the whole plant level in two transgenic cotton cultivars (BR001 and GK30) and their wild relative (Coker 312) using both ultramorphological and physiological indices. With elevated levels of Cd (i.e. 10, 100, 1000 μM), the mean lengths of root, stem and leaf and leaf width as well as their fresh and dry biomasses linearly decreased over their respective controls. Moreover, root, stem and leaf water absorption capacities progressively stimulated, which were high in leaves followed by roots and stems. BR001 accumulated more cadmium followed by GK30 and Coker 312. Root and shoot cadmium uptakes were significantly and directly correlated with each other as well as with leaf, stem and root water absorption capacities. The ultrastructural modifications in leaf mesophyll cells were triggered with increase in Cd stress regime. They were more obvious in BR001 followed by GK30 and Coker 312. Changes in morphology of chloroplast, increase in number and size of starch grains as well as increase in number of plastoglobuli were the noticed qualitative effects of Cd on photosynthetic organ. Cd in the form of electron dense granules could be seen inside the vacuoles and attached to the cell walls in all these cultivars. From the present experiment, it can be well established that both apoplastic and symplastic bindings are involved in Cd detoxification in these cultivars. Absence of tonoplast invagination reveals that Cd toxic levels did not cause water stress in any cultivars. Additionally, these cultivars possess differential capabilities towards Cd accumulation and its sequestration.

  11. Wnt signaling in limb organogenesis

    OpenAIRE

    Geetha-Loganathan, Poongodi; Nimmagadda, Suresh; Scaal, Martin

    2008-01-01

    Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Und...

  12. APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.

    Science.gov (United States)

    Saito-Diaz, Kenyi; Benchabane, Hassina; Tiwari, Ajit; Tian, Ai; Li, Bin; Thompson, Joshua J; Hyde, Annastasia S; Sawyer, Leah M; Jodoin, Jeanne N; Santos, Eduardo; Lee, Laura A; Coffey, Robert J; Beauchamp, R Daniel; Williams, Christopher S; Kenworthy, Anne K; Robbins, David J; Ahmed, Yashi; Lee, Ethan

    2018-03-12

    Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes.

    Science.gov (United States)

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-03-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.

  14. Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig

    Energy Technology Data Exchange (ETDEWEB)

    Nascarella, Marc A.; Stoffolano, John G.; Stanek, Edward J.; Kostecki, Paul T.; Calabrese, Edward J

    2003-07-01

    This is the first report of a heavy metal displaying a hormetic-like biphasic response for early developmental success, while at the same time displaying stage-specific toxicity at a later developmental stage. - Hormesis is an adaptive response, commonly characterized by a biphasic dose-response that can be either directly induced, or the result of compensatory biological processes following an initial disruption in homeostasis [Calabrese and Baldwin, Hum. Exp. Toxicol., 21 (2002), 91]. Low and environmentally relevant levels of dietary cadmium significantly enhanced the pupation rate of blowfly larvae, while higher doses inhibited pupation success. However, dietary cadmium at all exposure levels adversely affected the emergence of the adult fly from the pupal case. Such findings represent the first report of a heavy metal displaying a hormetic-like biphasic response for pupation success, while at the same time displaying stage-specific toxicity at a later developmental period. These conclusions are based on substantial experimentation of over 1750 blowflies, in seven replicate experiments, involving 10 concentrations per experiment. These findings indicate the need to assess the impact of environmental stressors over a broad range of potential exposures as well as throughout the entire life cycle.

  15. Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig

    International Nuclear Information System (INIS)

    Nascarella, Marc A.; Stoffolano, John G.; Stanek, Edward J.; Kostecki, Paul T.; Calabrese, Edward J.

    2003-01-01

    This is the first report of a heavy metal displaying a hormetic-like biphasic response for early developmental success, while at the same time displaying stage-specific toxicity at a later developmental stage. - Hormesis is an adaptive response, commonly characterized by a biphasic dose-response that can be either directly induced, or the result of compensatory biological processes following an initial disruption in homeostasis [Calabrese and Baldwin, Hum. Exp. Toxicol., 21 (2002), 91]. Low and environmentally relevant levels of dietary cadmium significantly enhanced the pupation rate of blowfly larvae, while higher doses inhibited pupation success. However, dietary cadmium at all exposure levels adversely affected the emergence of the adult fly from the pupal case. Such findings represent the first report of a heavy metal displaying a hormetic-like biphasic response for pupation success, while at the same time displaying stage-specific toxicity at a later developmental period. These conclusions are based on substantial experimentation of over 1750 blowflies, in seven replicate experiments, involving 10 concentrations per experiment. These findings indicate the need to assess the impact of environmental stressors over a broad range of potential exposures as well as throughout the entire life cycle

  16. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor.

    Science.gov (United States)

    Povinelli, Benjamin J; Nemeth, Michael J

    2014-01-01

    Proper regulation of the balance between hematopoietic stem cell (HSC) proliferation, self-renewal, and differentiation is necessary to maintain hematopoiesis throughout life. The Wnt family of ligands has been implicated as critical regulators of these processes through a network of signaling pathways. Previously, we have demonstrated that the Wnt5a ligand can induce HSC quiescence through a noncanonical Wnt pathway, resulting in an increased ability to reconstitute hematopoiesis. In this study, we tested the hypothesis that the Ryk protein, a Wnt ligand receptor that can bind the Wnt5a ligand, regulated the response of HSCs to Wnt5a. We observed that inhibiting Ryk blocked the ability of Wnt5a to induce HSC quiescence and enhance short-term and long-term hematopoietic repopulation. We found that Wnt5a suppressed production of reactive oxygen species, a known inducer of HSC proliferation. The ability of Wnt5a to inhibit ROS production was also regulated by Ryk. From these data, we propose that Wnt5a regulates HSC quiescence and hematopoietic repopulation through the Ryk receptor and that this process is mediated by suppression of reactive oxygen species. © 2013 AlphaMed Press.

  17. Inducibility of metallothionein biosynthesis in the whole soft tissue of zebra mussels Dreissena polymorpha exposed to cadmium, copper, and pentachlorophenol.

    Science.gov (United States)

    Ivanković, Dusica; Pavicić, Jasenka; Beatović, Vanja; Klobucar, Roberta Sauerborn; Klobucar, Göran Igor Vinko

    2010-04-01

    Freshwater mussels Dreissena polymorpha (Pallas, 1771) were exposed to the elevated concentrations of Cd (10, 50, 100, and 500 microg/L), Cu (10, 30, 50, and 80 microg/L), and an organochlorinated pesticide, pentachlorophenol (PCP) (1, 10, and 100 microg/L). Induced synthesis of biomarker metallothionein (MT) and changes in concentrations of cytosolic Cd, Cu, and Zn in the whole soft tissue of mussels were monitored after a 7-day laboratory exposure to the contaminants. A clear dose-dependent elevation in the MT concentration was observed after exposure to Cd at doses of 10-100 microg/L, and this increase of MT content was accompanied with a linear increase of cytosolic Cd. Cd concentration of 500 microg/L caused no additional increase of MT and Cd in mussel cytosol, suggesting possible toxic effects due to exceeding cellular inducible/defense capacity. Cu exposure resulted with variable changes in MT concentrations, with no clear linear relationship between MT and Cu concentrations in water, although a progressive dose-dependent accumulation of Cu in the soluble fraction of mussel tissues was recorded. A decrease of cytosolic Zn was evident at higher exposure concentrations of both metals used. PCP in concentrations applied was unable to induce MT synthesis, but the higher concentrations of PCP influenced the cytosolic metal concentrations. In conclusion, the results obtained confirm the specificity of MT induction in D. polymorpha as an biological response on metal stimulation, especially by cadmium, being more closely correlated to MT than copper within the ecologically relevant concentration range. The strong induction potential of cadmium as well as an absence of MT induction following exposure to PCP as an organic chemical contaminant are supporting evidences for usage of zebra mussel MT as a specific biomarker of Cd exposure in biomonitoring programs.

  18. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    International Nuclear Information System (INIS)

    Santiago, Francisco; Oguma, Junya; Brown, Anthony M.C.; Laurence, Jeffrey

    2012-01-01

    Highlights: ► First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. ► Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. ► Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. ► Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/β-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of β-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, β-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in regulation of osteoclast differentiation, and its modulation by a clinically important drug, ritonavir. These studies

  19. Blueberry (Vaccinium ashei Reade) extract ameliorates ovarian damage induced by subchronic cadmium exposure in mice: Potential δ-ALA-D involvement.

    Science.gov (United States)

    Izaguirry, Aryele Pinto; Soares, Melina Bucco; Vargas, Laura Musacchio; Spiazzi, Cristiano Chiapinotto; Dos Santos Brum, Daniela; Noremberg, Simone; Mendez, Andreas Sebastian Loureiro; Santos, Francielli Weber

    2017-01-01

    Females are born with a finite number of oocyte-containing follicles and ovary damage results in reduced fertility. Cadmium accumulates in the reproductive system, damaging it, and the cigarette smoke is a potential exposure route. Natural therapies are relevant to health benefits and disease prevention. This study verified the effect of cadmium exposure on the ovaries of mice and the blueberry extract as a potential therapy. Blueberry therapy was effective in restoring reactive species levels and δ-aminolevulinate dehydratase activity, and partially improved the viability of cadmium-disrupted follicles. This therapy was not able to restore the 17 β-hydroxysteroid dehydrogenase activity. Extract HPLC evaluation indicated the presence of quercetin, quercitrin, isoquercetin, and ascorbic acid. Ascorbic acid was the major substance and its concentration was 620.24 µg/mL. Thus, cadmium accumulates in the ovaries of mice after subchronic exposure, inducing cellular damage, and the blueberry extract possesses antioxidant properties that could protect, at least in part, the ovarian tissue from cadmium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 188-196, 2017. © 2015 Wiley Periodicals, Inc.

  20. Induced synthesis of metallothionein by pig kidney cells in vitro in response to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M; Daniel, M

    1975-01-01

    Cells of a line (K7), derived from the cortex of the adult pig kidney, synthesize and accumulate high levels of metallothionein when grown in vitro in the presence of low concentrations (0.5 ..mu..g/ml) of Cd/sup 2 +/. This indicates that the accumulation of this protein in the kidneys of animals exposed to cadmium is due at least partly to synthesis in situ, and not solely to uptake by the renal cells of metallothionein produced by the liver. It is suggested that the ability to synthesize large amounts of metallothionein indicates the tubular origin of the cells of this line.

  1. Evaluation Of Proteome Alterations Induced By Cadmium Stress In Sunflower (helianthus Annuus L.) Cultures.

    OpenAIRE

    Lopes Júnior, Cícero Alves; Barbosa, Herbert de Sousa; Moretto Galazzi, Rodrigo; Ferreira Koolen, Hector Henrique; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2016-01-01

    The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700 mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characteriz...

  2. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines.

    Science.gov (United States)

    Sikora, Matthew J; Jacobsen, Britta M; Levine, Kevin; Chen, Jian; Davidson, Nancy E; Lee, Adrian V; Alexander, Caroline M; Oesterreich, Steffi

    2016-09-20

    Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. WNT4 drives a novel signaling pathway in ILC cells, with a

  3. Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Suebsoonthron, Junjira; Jaroonwitchawan, Thiranut; Yamabhai, Montarop; Noisa, Parinya

    2017-06-01

    Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.

  4. Molecular basis of cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nath, R; Prasad, R; Palinal, V K; Chopra, R K

    1984-01-01

    Cadmium has been shown to manifest its toxicity in human and animals by mainly accumulating in almost all of the organs. The kidney is the main target organ where it is concentrated mainly in the cortex. Environmental exposure of cadmium occurs via food, occupational industries, terrestrial and aquatic ecosystem. At molecular level, cadmium interferes with the utilization of essential metals e.g. Ca, Zn, Se, Cr and Fe and deficiencies of these essential metals including protein and vitamins, exaggerate cadmium toxicity, due to its increased absorption through the gut and greater retention in different organs as metallothionein (Cd-Mt). Cadmium transport, across the intestinal and renal brush border membrane vesicles, is carrier mediated and it competes with zinc and calcium. It has been postulated that cadmium shares the same transport system. Cadmium inhibits protein synthesis, carbohydrate metabolism and drug metabolizing enzymes in liver of animals. Chronic environmental exposure of cadmium produces hypertension in experimental animals. Functional changes accompanying cadmium nephropathy include low molecular weight proteinuria which is of tubular origin associated with excess excretion of proteins such as beta 2 microglobulin, metallothionein and high molecular weight proteinuria of glomerular origin (excretion of proteins such as albumin IgG, transferrin etc.). Recent data has shown that metallothionein is more nephrotoxic to animals. Cadmium is also toxic to central nervous system. It causes an alterations of cellular functions in lungs. Cadmium affects both humoral and cell mediated immune response in animals. Cadmium induces metallothionein in liver and kidney but under certain nutritional deficiencies like protein-calorie malnutrition and calcium deficiency, enhanced induction and greater accumulation of cadmium metallothionein has been observed.

  5. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize.

    Science.gov (United States)

    Anwar, Sumera; Khan, Shahbaz; Ashraf, M Yasin; Noman, Ali; Zafar, Sara; Liu, Lijun; Ullah, Sana; Fahad, Shah

    2017-06-03

    Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd 15 ) or 30 mg Cd kg -1 soil (Cd 30 ). EDTA and citric acid at 0.5 g kg -1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.

  6. Influence of protein deficiency on cadmium toxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, P C; Jain, V K; Ashquin, M; Tandon, S K

    1986-07-01

    The effects of a low protein diet on the body uptake and retention of cadmium, levels of essential trace elements, and cadmium-induced biochemical alterations in liver and kidneys of the rat were investigated. Low dietary protein disturbs cadmium induced alterations in carbohydrate metabolism, essential trace elements metabolism and offsets the hepatic and renal process of cadmium detoxification. Protein malnutrition enhances the susceptibility to cadmium intoxication.

  7. Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid

    International Nuclear Information System (INIS)

    Najeeb, Ullah; Jilani, Ghulam; Ali, Shafaqat; Sarwar, Muhammad; Xu Ling; Zhou, Weijun

    2011-01-01

    This study appraised cadmium (Cd) toxicity stress in wetland plant Juncus effusus, and explored its potential for Cd phytoextraction through chelators (citric acid and EDTA). Cadmium altered morphological and physiological attributes of J. effusus as reflected by growth retardation. Citric acid in the presence of 100 μM Cd significantly countered Cd toxicity by improving plant growth. Elevated Cd concentrations reduced translocation factor that was increased under application of both chelators. Citric acid enhanced Cd accumulation, while EDTA reduced its uptake. Cadmium induced oxidative stress modified the antioxidative enzyme activity. Both levels of citric acid (2.5 and 5.0 mM) and lower EDTA concentration (2.5 mM) helped plants to overcome oxidative stress by enhancing their antioxidative enzyme activities. Cadmium damaged the root cells through cytoplasmic shrinkage and metal deposition. Citric acid restored structure and shape of root cells and eliminated plasmolysis; whereas, EDTA exhibited no positive effect on it. Shoot cells remained unaffected under Cd treatment alone or with citric acid except for chloroplast swelling. Only EDTA promoted starch accumulation in chloroplast reflecting its negative impact on cellular structure. It concludes that Cd and EDTA induce structural and morphological damage in J. effusus; while, citric acid ameliorates Cd toxicity stress.

  8. Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Najeeb, Ullah [Institute of Crop Science, Zhejiang University, Hangzhou 310029 (China); Crop Sciences Institute, National Agriculture Research Centre, Islamabad 45500 (Pakistan); Jilani, Ghulam, E-mail: jilani@uaar.edu.pk [Department of Soil Science, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300 (Pakistan); Ali, Shafaqat [Institute of Crop Science, Zhejiang University, Hangzhou 310029 (China); Sarwar, Muhammad [Land Resources Research Institute, National Agriculture Research Centre, Islamabad 45500 (Pakistan); Xu Ling [Institute of Crop Science, Zhejiang University, Hangzhou 310029 (China); Zhou, Weijun, E-mail: wjzhou@zju.edu.cn [Institute of Crop Science, Zhejiang University, Hangzhou 310029 (China)

    2011-02-15

    This study appraised cadmium (Cd) toxicity stress in wetland plant Juncus effusus, and explored its potential for Cd phytoextraction through chelators (citric acid and EDTA). Cadmium altered morphological and physiological attributes of J. effusus as reflected by growth retardation. Citric acid in the presence of 100 {mu}M Cd significantly countered Cd toxicity by improving plant growth. Elevated Cd concentrations reduced translocation factor that was increased under application of both chelators. Citric acid enhanced Cd accumulation, while EDTA reduced its uptake. Cadmium induced oxidative stress modified the antioxidative enzyme activity. Both levels of citric acid (2.5 and 5.0 mM) and lower EDTA concentration (2.5 mM) helped plants to overcome oxidative stress by enhancing their antioxidative enzyme activities. Cadmium damaged the root cells through cytoplasmic shrinkage and metal deposition. Citric acid restored structure and shape of root cells and eliminated plasmolysis; whereas, EDTA exhibited no positive effect on it. Shoot cells remained unaffected under Cd treatment alone or with citric acid except for chloroplast swelling. Only EDTA promoted starch accumulation in chloroplast reflecting its negative impact on cellular structure. It concludes that Cd and EDTA induce structural and morphological damage in J. effusus; while, citric acid ameliorates Cd toxicity stress.

  9. Chondrocytes damage induced by T-2 toxin via Wnt/β-catenin signaling pathway is involved in the pathogenesis of an endemic osteochondropathy, Kashin-Beck disease.

    Science.gov (United States)

    Wang, Xi; Ning, Yujie; Zhang, Pan; Yang, Lei; Wang, Yingting; Guo, Xiong

    2017-12-01

    Kashin-Beck disease (KBD), an endemic osteochondropathy, is characterized by cartilage degeneration which is caused by abnormal catabolism in the extracellular matrix (ECM). In this study, we investigated the expression of the Wnt/β-catenin signaling pathway in KBD pathogenesis. Among the proteins involved in the Wnt/β-catenin signaling pathway, WNT-3A, FZD1, SOX9, and β-catenin were up-regulated, while FRZB was down-regulated in KBD cartilage. C28/I2 cells were evaluated for cell viability using the MTT assay after exposure to T-2 toxin, a suspicious environmental pathogenic factors of KBD. C28/I2 cells were treated with different intervening concentrations (0.001μg/mL,0.005μg/mL and 0.01μg/mL) of T-2 toxin for 24h. The expression of FZD1 and CTNNB1 (i.e.,β-catenin) was significantly reduced and SOX9 expression was significantly increased in chondrocytes after treatment with different intervening concentrations of T-2 toxin. Our results indicate that alterations in the Wnt/β-catenin signaling pathway in articular cartilage play an important role in the onset and pathogenesis of KBD. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Diet- and genetically-induced obesity produces alterations in the microbiome, inflammation and Wnt pathway in the intestine of Apc+/1638N mice: comparisons and contrasts

    Science.gov (United States)

    Obesity is an established risk factor for colorectal cancer (CRC). Our previous study indicated that obesity increases activity of the pro-tumorigenic Wnt-signaling. Presently, we sought to further advance our understanding of the mechanisms by which obesity promotes CRC by examining associations be...

  11. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Puneet, E-mail: puneetbiochem@gmail.com [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Prasad, Y. [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Patra, A.K. [West Bengal University of Animal and Fishery Sciences, Kolkata-700037 (India); Ranjan, R.; Swarup, D.; Patra, R.C. [Division of Medicine, Indian Veterinary Research Institute, Izatnagar-243122 (India); Pal, Satya [Env. Eng. Lab., Deptt. of Civil Engineering, I.I.T., Roorkee-247667 (India)

    2009-09-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 {+-} 4 cm and weight of 86 {+-} 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl{sub 2}.H{sub 2}O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl{sub 2}.H{sub 2}O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and

  12. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    International Nuclear Information System (INIS)

    Kumar, Puneet; Prasad, Y.; Patra, A.K.; Ranjan, R.; Swarup, D.; Patra, R.C.; Pal, Satya

    2009-01-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 ± 4 cm and weight of 86 ± 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl 2 .H 2 O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl 2 .H 2 O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and taurine have potential to

  13. [Effect of ginseng polysaccharide-induced wnt/beta-catenin signal transduction pathway on apoptosis of human nasopharyngeal cancer cells CNE-2].

    Science.gov (United States)

    Fan, Jia-Ming; Liu, Ze-Hong; Li, Jing; Wang, Ya-Ping; Yang, Lv-Yuan; Huang, Jiang-Ju

    2013-10-01

    proliferation of CNE-2 cells and promote thier apoptosis. The obstruction of Wnt/beta-catenin signaling pathway may be an important mechanism for GPS to induce the apoptosis of human nasopharyngeal cancer cells CNE-2.

  14. Protective role of aloe vera against radiation and cadmium induced biochemical changes in the jejunum of Swiss albino mice

    International Nuclear Information System (INIS)

    Purohit, R.K.; Bhartiya, K.M.; Agarwal, Manisha; Swami, Rajesh; Chakrawarti, Aruna; Meena, Dharmpal

    2007-01-01

    Full text: The extensive use of atomic energy now a days in various branches of natural economy, science and technology, radio diagnosis, radiotherapy, industries, agriculture, nuclear research etc. has made radiation injury an urgent problem attracting the attention not only of specialists in a variety of clinical disciplines but also of a vast army of theoretical scientists. Metals like cadmium have always been intrinsic components of earth crust with the continuing trends towards and increasing human activities involving man may become exposed to concentration of toxic metals presenting a potential threat for survival. The severity of the damage can be modulated by treating the animals with antioxidants. In view of the potential for practical application, a variety of compounds are being tested for their radio protective activities. Among these, Aloe vera hold a great promise. Aloe vera juice was obtained from Millennium Agro Company, Goregaon (W) Mumbai. It is a herbal drug and known to contain well over 100 separate ingredients or constituents between those found in the leaf and mucilaginous gel inside the leaf. In light of the above, the present study was aimed to evaluate the protective effect of Aloe vera against radiation and cadmium induced biochemical changes in the jejunum Swiss albino mice. For this purpose, healthy adult male Swiss albino mice were divided into seven groups. Group I included sham-irradiated normal mice. Group II was administered CdCl 2 at the dose of 20ppm, while Group III was exposed to 5.0 Gy of gamma radiation. Animals of Group IV were treated with both CdCl 2 and 5.0 Gy of gamma rays. The animals of Group V and VI were treated with CdCl 2 + Aloe vera and 5.0Gy + Aloe vera respectively, whereas Group VII was treated with CdCl 2 +5.0Gy+ Aloe vera. In the groups V, VI and VII the Aloe vera was given seven days prior to the treatment of CdCl 2 or gamma rays. Three animals from all the experimental groups were sacrificed by cervical

  15. Ameliorative Effect of Grape Seed Proanthocyanidin Extract on Cadmium-Induced Meiosis Inhibition During Oogenesis in Chicken Embryos.

    Science.gov (United States)

    Hou, Fuyin; Xiao, Min; Li, Jian; Cook, Devin W; Zeng, Weidong; Zhang, Caiqiao; Mi, Yuling

    2016-04-01

    Cadmium (Cd) is an environmental endocrine disruptor that has toxic effects on the female reproductive system. Here the ameliorative effect of grape seed proanthocyanidin extract (GSPE) on Cd-induced meiosis inhibition during oogenesis was explored. As compared with controls, chicken embryos exposed to Cd (3 µg/egg) displayed a changed oocyte morphology, decreased number of meiotic germ cells, and decreased expression of the meiotic marker protein γH2AX. Real time RT-PCR also revealed a significant down-regulation in the mRNA expressions of various meiosis-specific markers (Stra8, Spo11, Scp3, and Dmc1) together with those of Raldh2, a retinoic acid (RA) synthetase, and of the receptors (RARα and RARβ). In addition, exposure to Cd increased the production of H2 O2 and malondialdehyde in the ovaries and caused a corresponding reduction in glutathione and superoxide dismutase. Simultaneous supplementation of GSPE (150 µg/egg) markedly alleviated the aforementioned Cd-induced embryotoxic effects by upregulating meiosis-related proteins and gene expressions and restoring the antioxidative level. Collectively, the findings provided novel insights into the underlying mechanism of Cd-induced meiosis inhibition and indicated that GSPE might potentially ameliorate related reproductive disorders. © 2016 Wiley Periodicals, Inc.

  16. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress.

    Science.gov (United States)

    Poliandri, Ariel H B; Machiavelli, Leticia I; Quinteros, Alnilan F; Cabilla, Jimena P; Duvilanski, Beatriz H

    2006-02-15

    Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.

  18. Secreted and Transmembrane Wnt Inhibitors and Activators

    Science.gov (United States)

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-01-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand–receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  19. Cadmium induced changes in subcellular glutathione contents within glandular trichomes of Cucurbita pepo L.

    Science.gov (United States)

    Kolb, Dagmar; Müller, Maria; Zellnig, Günther; Zechmann, Bernd

    2010-07-01

    Plants cope with cadmium (Cd) stress by complexation with phytochelatins (Pc), metallothioneins and glutathione and sequestration within vacuoles. Especially glutathione was found to play a major role in Cd detoxification as Cd shows a high binding affinity towards thiols and as glutathione is a precursor for Pc synthesis. In the present study, we have used an immunohistochemical approach combined with computer-supported transmission electron microscopy in order to measure changes in the subcellular distribution of glutathione during Cd-stress in mesophyll cells and cells of different glandular trichomes (long and short stalked) of Cucurbita pepo L. subsp. pepo var. styriaca GREB: . Even though no ultrastructural alterations were observed in leaf and glandular trichome cells after the treatment of plants with 50 microM cadmium chloride (CdCl(2)) for 48 h, all cells showed a large decrease in glutathione contents. The strongest decrease was found in nuclei and the cytosol (up to 76%) in glandular trichomes which are considered as a major side of Cd accumulation in leaves. The ratio of glutathione between the cytosol and nuclei and the other cell compartments was strongly decreased only in glandular trichomes (more than 50%) indicating that glutathione in these two cell compartments is especially important for the detoxification of Cd in glandular trichomes. Additionally, these data indicate that large amounts of Cd are withdrawn from nuclei during Cd exposure. The present study gives a detailed insight into the compartment-specific importance of glutathione during Cd exposure in mesophyll cells and glandular trichomes of C. pepo L. plants.

  20. Strain difference of cadmium-induced testicular toxicity in inbred Wistar-Imamichi and Fischer 344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hideaki; Narumi, Rika [Kumamoto University, Faculty of Education, Kumamoto (Japan); Nagano, Masaaki; Yasutake, Akira [National Institute for Minamata Disease, Biochemistry Section, Kumamoto (Japan); Waalkes, Michael P. [National Cancer Institute at the National Institute of Environmental Health Sciences, Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, Research Triangle Park, NC (United States); Imamura, Yorishige [Kumamoto University, Graduate School of Pharmaceutical Sciences, Kumamoto (Japan)

    2009-07-15

    Previously, we reported that Wistar-Imamichi (WI) rats are highly resistant to cadmium (Cd)-induced lethality and hepatotoxicity compared to Fischer 344 (F344) rats. Since the testes are one of the most sensitive organs to acute Cd toxicity, we examined possible strain-related differences in Cd-induced testicular toxicity between inbred WI and F344 rats. Rats were treated with a single dose of 0.5, 1.0 or 2.0 mg Cd/kg, as CdCl{sub 2}, sc and killed 24 h later. Cd at doses of 1.0 and 2.0 mg/kg induced severe testicular hemorrhage, as assessed by pathological and testis hemoglobin content, in F344 rats, but not WI rats. After Cd treatment (2.0 mg/kg), the testicular Cd content was significantly lower in WI rats than in the F344 rats, indicating a toxiokinetic mechanism for the observed strain difference. Thus, the remarkable resistance to Cd-induced testicular toxicity in WI rats is associated, at least in part, with lower testicular accumulation of Cd. When zinc (Zn; 10 mg/kg, sc) was administered in combination with Cd (2.0 mg/kg) to F344 rats, the Cd-induced increase in testicular hemoglobin content, indicative of hemorrhage, was significantly reduced. Similarly, the testicular Cd content was significantly decreased with Zn co-treatment compared to Cd treatment alone. Thus, it can be concluded that the testicular Cd accumulation partly competes with Zn transport systems and that these systems may play an important role in the strain-related differences in Cd-induced testicular toxicity between WI and F344 rats. (orig.)

  1. Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells.

    Science.gov (United States)

    Wang, Hong; Zhai, Nianhui; Chen, Ying; Xu, Haibin; Huang, Kehe

    2017-07-01

    Calcium, as a ubiquitous second messenger, governs a large array of cellular processes and is necessary for cell survival. More recently, it was observed that the cytosolic Ca 2+ concentration ([Ca 2+ ] c ) elevation could induce apoptosis in primary cultured rat proximal tubular (rPT) cells exposed to cadmium (Cd), but the concrete mechanism is still unclear. This study was designed to investigate the signal pathway involved in [Ca 2+ ] c elevation-mediated apoptosis. The results confirmed the elevation of [Ca 2+ ] c by confocal microscopy and enhancement of the apoptosis by Hoechst 33258 staining and flow cytometer when rPT cells were exposed to Cd for 12h. Then we demonstrated that Cd enhanced the protein levels of active calpain-1 and caspase-3 in rPT cells. Pretreatment with a cytosolic Ca 2+ chelator, 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), markedly blocked the up-regulation of active calpain-1 and caspase-3 and inhibited the apoptosis induced by Cd. Further, rPT cells were pretreated with a cell-permeable selective calpain-1 inhibitor, 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) and caspase-3 inhibitor, N-Acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), respectively. PD150606 significantly attenuated the up-regulation of active caspase-3 and the apoptosis induced by Cd. As expected, inhibition of active caspase-3 by Ac-DEVD-CHO decreased the apoptosis induced by Cd. Taken together, it could be concluded that [Ca 2+ ] c elevation did act as a pro-apoptotic signal in Cd-induced cytotoxicity of rPT cells, triggered calpain-1 and caspase-3 activation in turn, and induced apoptosis of rPT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses

    Directory of Open Access Journals (Sweden)

    H. N. Shiyntum

    2015-09-01

    Full Text Available Cadmiumclassified as a major carcinogen is considered a poisonous and unwanted heavy metal to a lot of tissues in many organisms. Of many publications already available, the general consensus is that the cadmium attenuating element is metallothionein (MT through its interchangeable mechanism with Zn triggered by the presence of Cd, providing binding sites for Cd ions. MT was first discovered in the kidney cortex of the horse; it represents a low molecular weight protein, rich in cysteine residues which effectively bind with metals. Its functions consist in detoxification of heavy metals like mercury, arsenic, cadmium, homeostasis of essential metals including copper and zinc, anti-oxidation against reactive oxygen species, protection against DNA damage, oxidative stress, cell survival, angiogenesis, apoptosis, and increase of proliferation. In this work, we sought to highlight the protective function of MT in the brain and serum of rats by means of detoxification under induced effects of controlled Cd doses. We have done this by exposing Wistar rats to Cd at different doses in drinking water at different time intervals. In two independent experiments, 58 rats were subjected to 0.1 or 1.0 µg Cd2+/kg of body weight for 15 or 36 days under different conditions. The obtained data indicates the different functioning systems for the brain and the blood for MT metabolism under Cd effect. Our results indicate significant loss of metallothionein level in the brain and important increases in the amount of MT in serum proving that even minimal ingestion of toxic Cd is enough to trigger the release of MT protein in blood.

  3. Effect of black cumin (Nigella sativa) on cadmium-induced oxidative stress in the blood of rats.

    Science.gov (United States)

    Kanter, Mehmet; Coskun, Omer; Gurel, Ahmet

    2005-12-01

    The protective effect of black cumin (Nigella sativa = NS) on cadmium-induced oxidative stress was studied in rats. The rats were randomly divided into three experimental groups: A (conrol), B (Cd treated), and C (Cd + NS treated), each containing 10 animals. The Cd-treated and Cd + NS-treated groups were injected subcutaneously daily with CdCl2 dissolved in isotonic NaCl in the amount of 2 mL/kg for 30 d, resulting in a dosage of 0.49 mg Cd/kg/d. The control group was injected with only isotonic NaCl (2 mL/kg/d) throughout the experiment (for 30 d). Three days prior to induction of CdCl2, the Cd + NS-treated group received a daily intraperitoneal injection of 0.2 mL/kg NS until the end of the study. Cd treatment increased significantly the malondialdehyde levels in plasma and erythrocyte (p<0.01 and p<0.05, respectively) and also increased significantly the antioxidant levels (superoxide dismutase, glutathione peroxidase, and catalase) (p<0.05) compared to the control group. Cd + NS treatment decreased significantly the elevated malondialdehyde levels in plasma and erythrocyte (p<0.01 and p<0.05, respectively) and also reduced significantly the enhanced antioxidant levels (p<0.05). Cd treatment increased significantly the activity of iron levels (p<0.05) in the plasma compared to the control group. Cd + NS treatment decreased the activity of iron levels (p<0.05) in the plasma compared to the Cd-treated group. In the control group with no treatment, histology of erythrocytes was normal. In the Cd-treated group, there were remarkable membrane destruction and hemolytic changes in erythrocytes. In the Cd + NS-treated group, these changes were less than in the Cd-treated group. Our results show that N. sativa exerts a protective effect against cadmium toxicity.

  4. Inflammation Intensity-dependent Expression of Osteoinductive Wnt Proteins is Critical for Ectopic New Bone Formation in Ankylosing Spondylitis.

    Science.gov (United States)

    Li, Xiang; Wang, Jianru; Zhan, Zhongping; Li, Sibei; Zheng, Zhaomin; Wang, Taiping; Zhang, Kuibo; Pan, Hehai; Li, Zemin; Zhang, Nu; Liu, Hui

    2018-02-26

    To investigate the molecular mechanism underlying the inflammation- related ectopic new bone formation in ankylosing spondylitis (AS). Spinal tissues and sera were collected from patients or normal volunteers to detect the expression of Wnt proteins. An in vitro cell culture system mimicking the local inflammatory microenvironment of bone-forming sites was established to study the relationship between inflammation and Wnt expression, the regulatory mechanism of inflammation-induced Wnt expression and the role of Wnt signaling in new bone formation. A modified collagen-induced arthritis (mCIA) and a proteoglycan -induced spondylitis (PGIS) animal model were used to confirm the key findings in vivo. The levels of osteoinductive Wnt proteins were obviously increased in the sera and spinal ligament tissues of patients with AS. Only constitutive low-intensity TNF-α stimulation, but not short-term or high-intensity TNF-α stimulation, induced persistent expression of osteoinductive Wnt proteins and subsequent bone formation through NF-κB (p65) and JNK/AP-1 (c-Jun) signaling pathways. Furthermore, inhibition of either Wnt/β-catenin or Wnt/PKCδ pathway significantly suppressed new bone formation. The increased expression of Wnt proteins was confirmed in both mCIA and PGIS models. A kyphotic and ankylosing phenotype of the spine was observed during long-term observation in mCIA model. Inhibition of either Wnt/β-catenin or Wnt/PKCδ signaling pathway significantly reduced the incidence and severity of this phenotype. Inflammation intensity-dependent expression of osteoinductive Wnt proteins is a key link between inflammation and ectopic new bone formation in AS. Activation of both canonical Wnt/β-catenin and noncanonical Wnt/PKCδ pathways is required for inflammation-induced new bone formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Targeting Wnt Pathways in Disease

    Science.gov (United States)

    Zimmerman, Zachary F.; Moon, Randall T.

    2012-01-01

    Wnt-mediated signal transduction pathways have long been recognized for their roles in regulating embryonic development, and have more recently been linked to cancer, neurologic diseases, inflammatory diseases, and disorders of endocrine function and bone metabolism in adults. Although therapies targeting Wnt signaling are attractive in theory, in practice it has been difficult to obtain specific therapeutics because many components of Wnt signaling pathways are also involved in other cellular processes, thereby reducing the specificity of candidate therapeutics. New technologies, and advances in understanding the mechanisms of Wnt signaling, have improved our understanding of the nuances of Wnt signaling and are leading to promising new strategies to target Wnt signaling pathways. PMID:23001988

  6. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus.

    Science.gov (United States)

    Lee, Jaemeun; Kim, Kyungchan; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-03-08

    Insulin plays diverse roles in the brain. Although insulin produced by pancreatic β-cells that crosses the blood-brain barrier is a major source of brain insulin, recent studies suggest that insulin is also produced locally within the brain. However, the mechanisms underlying the production of brain-derived insulin (BDI) are not yet known. Here, we examined the effect of Wnt3a on BDI production in a hypothalamic cell line and hypothalamic tissue. In N39 hypothalamic cells, Wnt3a treatment significantly increased the expression of the Ins2 gene, which encodes the insulin isoform predominant in the mouse brain, by activating Wnt/β-catenin signaling. The concentration of insulin was higher in culture medium of Wnt3a-treated cells than in that of untreated cells. Interestingly, neurogenic differentiation 1 (NeuroD1), a target of Wnt/β-catenin signaling and one of transcription factors for insulin, was also induced by Wnt3a treatment in a time- and dose-dependent manner. In addition, the treatment of BIO, a GSK3 inhibitor, also increased the expression of Ins2 and NeuroD1. Knockdown of NeuroD1 by lentiviral shRNAs reduced the basal expression of Ins2 and suppressed Wnt3a-induced Ins2 expression. To confirm the Wnt3a-induced increase in Ins2 expression in vivo, Wnt3a was injected into the hypothalamus of mice. Wnt3a increased the expression of NeuroD1 and Ins2 in the hypothalamus in a manner similar to that observed in vitro. Taken together, these results suggest that BDI production is regulated by the Wnt/β-catenin/NeuroD1 pathway in the hypothalamus. Our findings will help to unravel the regulation of BDI production in the hypothalamus.

  7. Aberrant Wnt Signaling in Leukemia

    Directory of Open Access Journals (Sweden)

    Frank J. T. Staal

    2016-08-01

    Full Text Available The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment.

  8. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation*

    Science.gov (United States)

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C.

    2016-01-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  9. Concurrent Transient Activation of Wnt/β-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    International Nuclear Information System (INIS)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-01-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/β-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/β-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/β-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/β-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  10. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  11. Protective role of cabbage extract versus cadmium-induced oxidative renal and thyroid hormones dysfunctions in rats

    International Nuclear Information System (INIS)

    FARAG, M. F. S.; OSMAN, N. N.; DARWISH, M.M.

    2011-01-01

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd damage. Cabbage is economically an important cole crop grown and consumed worldwide. It belongs the Cruciferous vegetables (Brassica), which have been reported to have a wide range of pharmacological properties. Since kidney is the critical target organ of chronic Cd damage, we carried out this study to investigate the effects of cabbage extract (C.E.) on Cd-induced dysfunction in the kidney of rats. The thyroid hormones values were also determined. Male Wistar rats were provided with cadmium chloride (100 mg/ L water) as the only drinking fluid and/or cabbage extract (C.E.) (5 ml/ kg body weight /day) for 4 weeks. Oral administration of Cd significantly induced the renal damage which was evident from the significantly (p < 0.05) increased levels of serum urea, uric acid and creatinine with a significant (p < 0.05) decrease in creatinine clearance. It also significantly declined the levels of urea, uric acid and creatinine in urine. Intoxication of Cd to rats reduced serum triiodothyronine (T3) and thyroxine (T4) concentrations. Reduced glutathione (GSH), and enzymatic antioxidants (superoxide dismutase (SOD) and catalase (CAT) were also significantly (p < 0.05) depressed with a concomitant marked enhancement in lipid peroxidation marker (thiobarbituric acid reactive substances, TBARS). Co-administration of C.E. along with Cd resulted in a reversal of the Cd-induced biochemical variables in kidney accompanied by a significant reduction in lipid peroxidation and a higher levels of renal antioxidant defense system. However, incorporation of C.E. to rats whether applied alone or in combination with Cd did not reveal any change in the thyroid hormones levels, which reflect significant drop in

  12. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  13. Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-04-01

    Full Text Available Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd. The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium but were well expressed in the presence of iron (+Fe/+Cd. Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  14. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    Science.gov (United States)

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Onion and garlic extracts as potential antidotes for cadmium-induced biochemical alterations in prostate glands of rats.

    Science.gov (United States)

    Ola-Mudathir, F K; Suru, S M

    2015-11-01

    Cadmium (Cd) has been implicated in increased prostate gland malignancy risk in both wildlife and humans. This study examines the chemoprotective roles of onion and garlic extracts on Cd-induced biochemical alterations in the prostate glands of rats. Adult male Wistar rats were randomly divided into nine groups: control group received double distilled water; Cd group received Cd alone (1.5 mg/100 g bwt per day); extract-treated groups were pre-treated with varied doses of onion and/or garlic extract (0.5 ml and 1.0 ml/100 g bwt per day) for 1 week and then co-treated with Cd (1.5 mg/100 g bwt per day) for additional 3 weeks. Oxidant/antioxidant status and acid phosphatase (ACPtotal and ACPprostatic ) activity were examined in prostate glands. Cd intoxication caused a marked (P garlic extract significantly minimised these alterations. The onion extract offered a dose-dependent protection. Our findings suggest a chemoprotective capability for onion and garlic extracts against Cd-induced biochemical alteration in the prostate glands. © 2014 Blackwell Verlag GmbH.

  16. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys.

    Science.gov (United States)

    Matović, Vesna; Buha, Aleksandra; Ðukić-Ćosić, Danijela; Bulat, Zorica

    2015-04-01

    Besides being important occupational hazards, lead and cadmium are nowadays metals of great environmental concern. Both metals, without any physiological functions, can induce serious adverse health effects in various organs and tissues. Although Pb and Cd are non-redox metals, one of the important mechanisms underlying their toxicity is oxidative stress induction as a result of the generation of reactive species and/or depletion of the antioxidant defense system. Considering that the co-exposure to both metals is a much more realistic scenario, the effects of these metals on oxidative status when simultaneously present in the organism have become one of the contemporary issues in toxicology. This paper reviews short and long term studies conducted on Pb or Cd-induced oxidative stress in blood, liver and kidneys as the most prominent target organs of the toxicity of these metals and proposes the possible molecular mechanisms of the observed effects. The review is also focused on the results obtained for the effects of the combined treatment with Pb and Cd on oxidative status in target organs and on the mechanisms of their possible interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity.

    Science.gov (United States)

    El-Mansy, A A; Mazroa, S A; Hamed, W S; Yaseen, A H; El-Mohandes, E A

    2016-01-01

    The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.

  18. Manganese-induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis.

    Science.gov (United States)

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    The accumulation of cadmium (Cd) alters different physiological and biochemical attributes that affect plant growth and yield. In our study, we investigated the regulatory role of supplemental manganese (Mn) on hydroponically grown rice (Oryza sativa L. cv. BRRI dhan29) seedlings under Cd-stress conditions. Exposure of 14-d-old seedlings to 0.3mM CdCl 2 for three days caused growth inhibition, chlorosis, nutrient imbalance, and higher Cd accumulation. Higher Cd uptake caused oxidative stress through lipid peroxidation, loss of plasma membrane integrity, and overproduction of reactive oxygen species (ROS) and methylglyoxal (MG). The exogenous application of 0.3mM MnSO 4 to Cd-treated seedlings partly recovered Cd-induced water loss, chlorosis, growth inhibition, and nutrient imbalance by reducing Cd uptake and its further translocation to the upper part of the plant. Supplemental Mn also reduced Cd-induced oxidative damage and lipid peroxidation by improved antioxidant defense and glyoxalase systems through enhancing ROS and MG detoxification, respectively. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. A growing field: The regulation of axonal regeneration by Wnt signaling.

    Science.gov (United States)

    Garcia, Armando L; Udeh, Adanna; Kalahasty, Karthik; Hackam, Abigail S

    2018-01-01

    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone

  20. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Desheng Lu

    Full Text Available BACKGROUND: Aberrant activation of Wnt/beta-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL cells, and that uncontrolled Wnt/beta-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL. METHODOLOGY/PRINCIPAL FINDINGS: The diuretic agent ethacrynic acid (EA was identified as a Wnt inhibitor using a cell-based Wnt reporter assay. In vitro assays further confirmed the inhibitory effect of EA on Wnt/beta-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/beta-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/beta-catenin complex. N-acetyl-L-cysteine (NAC, which can react with the alpha, beta-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug's inhibition of Wnt/beta-catenin activation and its ability to induce apoptosis in CLL cells. CONCLUSIONS/SIGNIFICANCE: Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/beta-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease.

  1. Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera).

    Science.gov (United States)

    Polykretis, P; Delfino, G; Petrocelli, I; Cervo, R; Tanteri, G; Montori, G; Perito, B; Branca, J J V; Morucci, G; Gulisano, M

    2016-11-01

    In the last decades a dramatic loss of Apis mellifera hives has been reported in both Europe and USA. Research in this field is oriented towards identifying a synergy of contributing factors, i.e. pathogens, pesticides, habitat loss and pollution to the weakening of the hive. Cadmium (Cd) is a hazardous anthropogenic pollutant whose effects are proving to be increasingly lethal. Among the multiple damages related to Cd contamination, some studies report that it causes immunosuppression in various animal species. The aim of this paper is to determine whether contamination by Cd, may have a similar effect on the honey bees' immunocompetence. Our results, obtained by immune challenge experiments and confirmed by structural and ultrastructural observations show that such metal causes a reduction in immunocompetence in 3 days Cd exposed bees. As further evidence of honey bee response to Cd treatment, Energy Dispersive X-ray Spectroscopy (X-EDS) has revealed the presence of zinc (Zn) in peculiar electron-dense granules in fat body cells. Zn is a characteristic component of metallothioneins (MTs), which are usually synthesized as anti-oxidant and scavenger tools against Cd contamination. Our findings suggest that honey bee colonies may have a weakened immune system in Cd polluted areas, resulting in a decreased ability in dealing with pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Histopathological changes in the head kidney induced by cadmium in a neotropical fish Colossoma macropomum

    Directory of Open Access Journals (Sweden)

    R. Salazar-Lugo

    2013-12-01

    Full Text Available We evaluated the effect of cadmium (Cd on the structure and function of the head kidney in the freshwater fish Colossoma macropomum (C. macropomum. Juveniles were exposed to 0.1 mg/L CdCl2 for 31 days. Blood samples were examined using hematological tests and head kidney histology was determined by light microscopy. The concentration of Cd in the head and trunk kidneys was measured using an atomic absorption spectrophotometer. Cd produced histopathological changes in the head kidney, the most evident of these being: the thickening of the vein wall, an increase in the number of basophils/mast cells close to blood vessels and a severe depletion of hematopoietic precursors especially the granulopoietic series. In the blood, a decrease in the total leucocytes and hemoglobin concentration was observed. Cd-exposed fish showed higher Cd concentrations in the trunk kidney than the head kidney. In conclusion, exposure to Cd affected precursor hematopoietic cells in C. macropomum.

  3. Hydrothermal syntheses and anion-induced structural transformation of three Cadmium phosphonates

    Science.gov (United States)

    Hu, Han; Zhai, Fupeng; Liu, Xiaofeng; Ling, Yun; Chen, Zhenxia; Zhou, Yaming

    2018-05-01

    Three cadmium phosphonate coordinated polymers, namely as [Cd5(ptz)3(SO4)2(5H2O)]·6H2O (Cdptz-1), [Cd3(ptz)2(Cl)2(4H2O)]·2H2O (Cdptz-2) and [Cd4(ptz)2(SO4)(Cl)(OH)H2O]·H2O (Cdptz-3) have been hydrothermally synthesized using 4-(1,2,4-triazol-4-yl)phenylphosphonic acid (H2ptz) as ligand. Single crystal X-ray analyses revealed Cdptz-2 as layered structure and Cdptz-1,3 as pillar-layered structures with Cl- or SO42- as bridging anions. Due to the weak bonding between metal and anions, Cdptz-1 and 2 can reversibly convert into each other by simple immersing in the corresponding solution at room temperature. While the transformations between Cdptz-1,2 and Cdptz-3 can only happen under hydrothermal condition. The causes for the transformation involve the metal-ligand bond breaking/formation, replacement of anions and enhancement/decrement of the network dimensionality.

  4. Dietary phosphorus exacerbates bone loss induced by cadmium in ovariectomized rats.

    Science.gov (United States)

    Bakhshalian, Neema; Johnson, Sarah A; Hooshmand, Shirin; Feresin, Rafaela G; Elam, Marcus L; Soung, Do Y; Payton, Mark E; Arjmandi, Bahram H

    2014-12-01

    Postmenopausal bone loss can be exacerbated by environmental contaminants, including the heavy metal cadmium (Cd). We hypothesized that incorporating phosphorus (P) into the diet would lead to the chelation of Cd into P, preventing its absorption and subsequent bone loss. To test this hypothesis, we used ovariectomized rats as a model of postmenopausal osteoporosis to examine the deleterious effects of Cd on bone with and without added P. Fifty 3-month-old ovariectomized Sprague-Dawley rats were assigned to five treatment groups (n = 10 per group) for 3 months as follows: (1) control; (2) 50 ppm Cd; (3) 50 ppm Cd plus 1.2% P; (4) 200 ppm Cd; and (5) 200 ppm Cd plus 1.2% P. Cd plus P caused a significant loss of whole body (P = 0.0001 and P properties, 50 ppm Cd plus 1.2% P caused an increase in trabecular separation, whereas 200 ppm Cd plus 1.2% P caused a decrease in bone volume-to-total volume ratio, a decrease in trabecular number, and an increase in trabecular separation and structural model index. Our findings indicate that Cd exposure, along with high intake of P, may be a public health hazard with respect to bone health.

  5. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. © 2015 SETAC.

  6. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures.

    Science.gov (United States)

    Lopes Júnior, Cícero Alves; Barbosa, Herbert de Sousa; Moretto Galazzi, Rodrigo; Ferreira Koolen, Hector Henrique; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2015-09-01

    The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characterized using nESI-LC-MS/MS. The protein content decreases by approximately 41% in plants treated with 700mg Cd compared with control plants. By comparing all groups of plants evaluated in this study (Control vs. Cd-lower, Control vs. Cd-higher and Cd-lower vs. Cd-higher), 39 proteins are found differential and 18 accurately identified; the control vs. Cd-higher treatment is that presenting the most differential proteins. From identified proteins, those involved in energy and disease/defense (including stress), are the ribulose bisphosphate carboxylase large chain, transketolase, and heat shock proteins are the most differential abundant proteins. Thus, at the present study, photosynthesis is the main process affected by Cd in sunflowers, although these plants are highly tolerant to Cd. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Induction of Canonical Wnt Signaling by the Alarmins S100A8/A9 in Murine Knee Joints: Implications for Osteoarthritis

    NARCIS (Netherlands)

    Bosch, M.H.J. van den; Blom, A.B.; Schelbergen, R.F.P.; Vogl, T.; Roth, J.P.; Sloetjes, A.W.; Berg, W.B. van den; Kraan, P.M. van der; Lent, P.L. van

    2016-01-01

    OBJECTIVE: Both alarmins S100A8/A9 and canonical Wnt signaling have been found to play active roles in the development of experimental osteoarthritis (OA). However, what activates canonical Wnt signaling remains unknown. This study was undertaken to investigate whether S100A8 induces canonical Wnt

  8. Unraveling the Wnt secretion pathway

    NARCIS (Netherlands)

    Harterink, M.

    2011-01-01

    The Wnt family of signaling proteins has essential functions in development and adult tissue homeostasis throughout the animal kingdom. Although signaling cascades triggered by Wnt proteins have been extensively studied, much remains to be learned about how Wnts are produced and secreted and how

  9. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.K.; Sun, Yuqiang; Dawood, M. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Hayat, Y. [Institute of Bioinformatics, Zhejiang University, Hangzhou 310029 (China); Variath, M.T.; Wu Yuxiang [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Raziuddin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Plant Breeding and Genetics Department, NWFP Agricultural University Peshawar, Peshawar (Pakistan); Mishkat, Ullah [Zoological Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad 44000 (Pakistan); Salahuddin [District Agriculture Extension Offices, Bannu Road, Dera Ismail Khan (NWFP) (Pakistan); Najeeb, Ullah [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Zhu, Shuijin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)], E-mail: shjzhu@zju.edu.cn

    2009-01-15

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 {mu}M) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 {mu}M) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic

  10. Cadmium Induced Changes of Proline in Two Ecotypes of Thlaspi Caerulescens

    Directory of Open Access Journals (Sweden)

    Zemanová V.

    2013-04-01

    Full Text Available A Thlaspi caerulescens (J. & C. PRESL was used to study the effect of cadmium on the content of free amino acids and ability accumulation of Cd in ecotypes of this plant species. In pot experiment two ecotypes T. caerulescens were used: Ganges ecotype from France and Mežica ecotype from Slovenia. The plants were grown in soil (chernozem – Suchdol spiked with NPK and three different concentration of Cd: 30, 60 and 90 mg/kg. The content of Cd was measured in the above-ground biomass and roots using ICP-OES. Accumulation of Cd was higher in the Mežica ecotype in contrast to the low Cd-accumulating the Ganges ecotype. Analyses of free amino acids contents were measured by GC-MS method. The content of free amino acids in above-ground biomass of the Mežica ecotype declined progressively with increasing concentrations of Cd. Opposite trend was observed in roots of this ecotype. The increase of free amino acids contents in above-ground biomass and roots of the Ganges ecotype were detected. The results of specific amino acids free proline showed increased content in plant biomass with increasing Cd contamination of soil. A statistically significant increase was observed between control plants (0 mg/kg Cd and variant Cd3 (90 mg/kg Cd for both ecotypes. The statistically significant decrease of free proline was observed in the Mežica ecotype roots. Opposite trend was observed in roots of Ganges ecotype - increasing trend of free proline content. These results indicate a correlation between content of Cd and content of free proline in different parts of the plant. We can speculate that the mechanism of Cd hyperaccumulation and metabolism of free proline are not identical in ecotypes of this species.

  11. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants

    Directory of Open Access Journals (Sweden)

    Christophe Loix

    2017-10-01

    Full Text Available Cadmium (Cd pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.

  12. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    International Nuclear Information System (INIS)

    Daud, M.K.; Sun, Yuqiang; Dawood, M.; Hayat, Y.; Variath, M.T.; Wu Yuxiang; Raziuddin; Mishkat, Ullah; Salahuddin; Najeeb, Ullah; Zhu, Shuijin

    2009-01-01

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 μM) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 μM) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic binding

  13. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea.

    Science.gov (United States)

    Lux, Alexander; Vaculík, Marek; Martinka, Michal; Lisková, Desana; Kulkarni, Manoj G; Stirk, Wendy A; Van Staden, Johannes

    2011-02-01

    Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L(-1) in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.

  14. Cadmium-induced formation of multinucleated osteoclast-like cells in vitro

    International Nuclear Information System (INIS)

    Konz, R.P.; Choi, T.T.; Seed, T.M.

    1990-01-01

    Mononuclear, progenitor-enriched bone marrow cells fuse into multinucleated osteoclast-like (MN-OS) cells during 10 to 20 days of culture. As cadmium (Cd) exposure has been linked to increased bone resorption, we asked if Cd would increase (1) MN-OS cell formation and (2) 45 Ca release from bone, when marrow cells were cultured in the presence of 45 Ca-prelabeled dog femur slices. Results show that, on day 21, the percentage of MN-OS cells (≥3 nuclei/cell) was 1.4 ± 0.1% (mean ± SE, n=4) for control cultures (medium + bone slice + cells), 3.6 ± 0.1% for cultures with 10 nM parathyroid hormone (PTH) added, and 7.1 ± 1.5% with 10 nM Cd added. Starting on day 10, we found MN-OS cells with centrally located nuclei, a clear zone, and ruffled borders typical of activated osteoclasts; these activated cells appeared almost exclusively in the +Cd and +PTH cultures. During 21 days, 256 ± 9 CPM 45 Ca was released per well from the bone slices in cultures with cells, compared to 209 ± 11 CPM 45 Ca was released in cultures without cells (mean ± SE, n=16). However, neither Cd nor PTH significantly increased the cell-mediated release of 45 Ca. Thus, both Cd and PTH at 10 nM stimulated the formation of MN-OS cells; however, another factor may have been required to cause MN-OS cells of resorb bone

  15. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52MeV.

    Science.gov (United States)

    Ditrói, F; Takács, S; Haba, H; Komori, Y; Aikawa, M

    2016-12-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope 117m Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets 117m Sn, 113 Sn, 110 Sn, 117m,g In, 116m In, 115m In, 114m In, 113m In, 111 In, 110m,g In, 109m In, 108m,g In, 115g Cd and 111m Cd were identified and their excitation functions were derived. The results were compared with the data of the previous measurements from the literature and with the results of the theoretical nuclear reaction model code calculations TALYS 1.8 (TENDL-2015) and EMPIRE 3.2 (Malta). From the cross section curves thick target yields were calculated and compared with the available literature data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cadmium Alternatives

    Science.gov (United States)

    2012-08-01

    carcinogenic, leachable Trivalent and non- chrome passivates generally struggle with conductivity Major Differences in Trivalent vs. Hexavalent Passivates...for Change Cadmium passivated with hexavalent chromium has been in use for many decades Cadmium is toxic, and is classified as a priority...Executive Orders 13514 & 13423 DoD initiatives – Young memo (April 2009) DFAR restricting use of hexavalent chromium Allows the use of hexavalent

  17. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    International Nuclear Information System (INIS)

    Snow, Grace E; Kasper, Allison C; Busch, Alexander M; Schwarz, Elisabeth; Ewings, Katherine E; Bee, Thomas; Spinella, Michael J; Dmitrovsky, Ethan; Freemantle, Sarah J

    2009-01-01

    Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833

  18. Inhibition of Wnt/β-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8.

    Directory of Open Access Journals (Sweden)

    Ismaïl Hendaoui

    Full Text Available The Wnt/β-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/β-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs, which have a cysteine-rich domain (CRD structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18 inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/β-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/β-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced β-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth.

  19. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata.

    Science.gov (United States)

    Dai, Ling-Peng; Xiong, Zhi-Ting; Huang, Yu; Li, Min-Jing

    2006-10-01

    This study was designed to examine the effects of cadmium on several color-related parameters (including chlorophyll, carotenoid, and anthocyanin), total phenolics, and phenylalanine ammonia-lyase (PAL) activity in an aquatic fern species Azolla imbricate (A. imbricata). Cd accumulation and effects in the fronds were closely related with Cd concentration in the growth medium. The fronds under 0.5 mg/L Cd treatment turned red on the 3rd day, and this color change also appeared under 0.05 and 0.1 mg/L Cd treatment on the 5th day. Correlated with the color change, the contents of chlorophyll and carotenoid in the fronds significantly decreased in the presence of high Cd concentrations, while the anthocyanin content increased during the experiment. Significant increase in total phenolics content and PAL activity were also detected during Cd treatment. The results suggested that the Cd-induced change in color of fronds might be due to the decrease in chlorophyll and carotenoid and the increase in anthocyanin. Anthocyanin, total phenolics and their biosynthesis-related PAL might play a role in detoxification of Cd in A. imbricata.

  20. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    International Nuclear Information System (INIS)

    Thompson, Jennifer; Doi, Takashi; Power, Eoin; Balasubramanian, Ishwarya; Puri, Prem; Bannigan, John

    2010-01-01

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment. Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.

  1. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-11-15

    Highlights: • Cd induced oxidative stress and immunotoxicity by the generation of ROS. • The toxic effects depended on exposure time and different tissues. • Nrf2 and NF-κB mediated antioxidant and inflammatory responses. • Gene changed at transcriptional, translational, post-translational levels. - Abstract: Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1 mg L{sup −1} Cd for 24 h and 96 h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24 h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained

  2. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-01-01

    Highlights: • Cd induced oxidative stress and immunotoxicity by the generation of ROS. • The toxic effects depended on exposure time and different tissues. • Nrf2 and NF-κB mediated antioxidant and inflammatory responses. • Gene changed at transcriptional, translational, post-translational levels. - Abstract: Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1 mg L"−"1 Cd for 24 h and 96 h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24 h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained

  3. Selective modulation of Wnt ligands and their receptors in adipose tissue by chronic hyperadiponectinemia.

    Directory of Open Access Journals (Sweden)

    Nobuhiko Wada

    Full Text Available BACKGROUND: Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue. MATERIALS AND METHODS: We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells. RESULTS: The Wnt5b, Wnt6, Frizzled 6 (Fzd6, and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6 were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII and phosphorylated Jun N-terminal kinase (p-JNK were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin. CONCLUSION: Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors

  4. Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanjun Kim

    2015-01-01

    Full Text Available Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor or negatively (IWR-1-endo, Axin stabilizer control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.

  5. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  6. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families.

    Science.gov (United States)

    Voloshanenko, Oksana; Gmach, Philipp; Winter, Jan; Kranz, Dominique; Boutros, Michael

    2017-11-01

    Signaling pathway modules are often encoded by several closely related paralogous genes that can have redundant roles and are therefore difficult to analyze by loss-of-function analysis. A typical example is the Wnt signaling pathway, which in mammals is mediated by 19 Wnt ligands that can bind to 10 Frizzled (FZD) receptors. Although significant progress in understanding Wnt-FZD receptor interactions has been made in recent years, tools to generate systematic interaction maps have been largely lacking. Here we generated cell lines with multiplex mutant alleles of FZD1 , FZD2 , and FZD7 and demonstrate that these cells are unresponsive to canonical Wnt ligands. Subsequently, we performed genetic rescue experiments with combinations of FZDs and canonical Wnts to create a functional ligand-receptor interaction map. These experiments showed that whereas several Wnt ligands, such as Wnt3a, induce signaling through a broad spectrum of FZD receptors, others, such as Wnt8a, act through a restricted set of FZD genes. Together, our results map functional interactions of FZDs and 10 Wnt ligands and demonstrate how multiplex targeting by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 can be used to systematically elucidate the functions of multigene families.-Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. © The Author(s).

  7. Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium-induced changes in Padina tetrastromatica (Hauck)

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, L.; PrabhaDevi; DivyaShridhar, M.P.; Naik, C.G.

    and stored in a vacuum desiccator in airtight containers until further analysis. Analysis for metal concentration Known weight (500 mg dry weight) of both control and cadmium treated dried algal powder was digested in Tefl on bombs in nitric acid...

  8. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD

    Science.gov (United States)

    Baarsma, Hoeke A.; John-Schuster, Gerrit; Heinzelmann, Katharina; Dagouassat, Maylis; Boczkowski, Jorge; Brusselle, Guy G.; Smits, Ron; Yildirim, Ali Ö.

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT–β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-β, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of β-catenin–driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal–epithelial cross talk in COPD pathogenesis, which is amenable to therapy. PMID:27979969

  9. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  10. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio).

    Science.gov (United States)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-11-01

    Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1mgL -1 Cd for 24h and 96h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained stable at 24 and 96h in the brain. Taken together, we demonstrated Cd-induced oxidative stress and immunotoxicity in fish, possibly through transcriptional regulation of Nrf2 and NF-κB and gene modifications at transcriptional, translational, post-translational levels, which would greatly extend our understanding on the Cd

  11. Modulation of cadmium-induced phytotoxicity in Cabomba caroliniana by urea involves photosynthetic metabolism and antioxidant status.

    Science.gov (United States)

    Huang, Wenmin; Shao, Hui; Zhou, Sining; Zhou, Qin; Li, Wei; Xing, Wei

    2017-10-01

    Urea is a widespread organic pollutant, which can be a nitrogen source, playing different roles in the growth of submerged macrophytes depending on concentrations, while high cadmium (Cd) concentrations are often toxic to macrophytes. In order to evaluate the combined effect of urea and Cd on a submerged macrophyte, Cabomba caroliniana, the morphological and physiological responses of C. caroliniana in the presence of urea and Cd were studied. The results showed that high concentrations of urea (400mgL -1 ) and Cd (500µmolL -1 ) had negative effects on C. caroliniana. There were strong visible symptoms of toxicity after 4 days of exposure under Cd-alone, 400mgL -1 urea, and Cd+400mgL -1 urea treatments. In addition, 400mgL -1 urea and Cd had adverse effects on C. caroliniana's pigment system. Significant losses in chlorophyll fluorescence and photosynthetic rates, as well as Rubisco activity were also observed under Cd-alone, 400mgL -1 urea, and Cd+400mgL -1 urea treatments. 400mgL -1 urea markedly enhanced Cd toxicity in C. caroliniana, reflected by a sharp decrease in photosynthetic activity and more visible toxicity symptoms. The results of thiobarbituric acid reactive substances (TBARS) pointed to extreme oxidative stress in C. caroliniana induced under Cd or 400mgL -1 urea exposure. Exogenous ascorbate (AsA) protected C. caroliniana from adverse damage in 400mgL -1 urea, which further corroborated the oxidative stress claim under 400mgL -1 urea. However, results also demonstrated that lower urea concentration (10mgL -1 ) alleviated Cd-induced phytotoxicity by stimulating chlorophyll synthesis and photosynthetic activity, as well as activating the activity of catalase (CAT) and glutathione-S-transferase (GST), which may explain the alleviating effect of urea on C. caroliniana under Cd stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation

    OpenAIRE

    Hardy, Katharine M.; Garriock, Robert J.; Yatskievych, Tatiana A.; D'Agostino, Susan L.; Antin, Parker B.; Krieg, Paul A.

    2008-01-01

    Knowledge of the molecular mechanisms regulating cell ingression, epithelial-mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediat...

  13. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  14. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    International Nuclear Information System (INIS)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-01-01

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation

  15. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C.

    Science.gov (United States)

    Whang, Young Mi; Jo, Ukhyun; Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong

    2013-01-01

    Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis.

  16. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C.

    Directory of Open Access Journals (Sweden)

    Young Mi Whang

    Full Text Available Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE cells (NHBE, BEAS-2B, 1799, 1198 and 1170I at different malignant stages established by exposure to cigarette smoke condensate (CSC. Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis.

  17. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-kB, and AP-1 pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Khoi, Pham Ngoc; Ung, Trong Thuan; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2015-01-01

    Highlights: • Cadmium induces MMP-9 expression through NADPH oxidase-derived ROS. • Cadmium induces MMP-9 through EGFR-mediated Akt, Erk1/2 and JNK1/2 signaling pathways. • Akt, MAPKs (Erk1/2 and JNK1/2) functioned as upstream signals of NF-kB and AP-1 respectively, in cadmium-induced MMP-9 in endothelial cells. • ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression in ECV304 cells. - Abstract: Cadmium (Cd), a widespread cumulative pollutant, is a known human carcinogen, associated with inflammation and tumors. Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in tumor metastasis; however, the mechanisms underlying the MMP-9 expression induced by Cd remain obscure in human endothelial cells. Here, Cd elevated MMP-9 expression in dose- and time-dependent manners in human endothelial cells. Cd increased ROS production and the ROS-producing NADPH oxidase. Cd translocates p47 phox , a key subunit of NADPH oxidase, to the cell membrane. Cd also activated the phosphorylation of EGFR, Akt, Erk1/2, and JNK1/2 in addition to promoting NF-kB and AP-1 binding activities. Specific inhibitor and mutagenesis studies showed that EGFR, Akt, Erk1/2, JNK1/2 and transcription factors NF-κB and AP-1 were related to Cd-induced MMP-9 expression in endothelial cells. Akt, Erk1/2, and JNK1/2 functioned as upstream signals in the activation of NF-κB and AP-1, respectively. In addition, N-acetyl-L-cystein (NAC), diphenyleneiodonium chloride (DPI) and apocynin (APO) inhibited the Cd-induced activation of EGFR, Akt, Erk1/2, JNK1/2, and p38 MAPK, indicating that ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression. At present, it states that Cd displayed marked invasiveness in ECV304 cells, which was partially abrogated by MMP-9 neutralizing antibodies. These results demonstrated that Cd induces MMP-9 expression via ROS-dependent EGFR- > Erk1/2, JNK1/2- > AP-1 and EGFR- > Akt- > NF-κB signaling pathways and, in turn

  18. Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores

    Directory of Open Access Journals (Sweden)

    Julin Bettina

    2011-12-01

    Full Text Available Abstract Background Cadmium is a widespread environmental pollutant with adverse effects on kidneys and bone, but with insufficiently elucidated public health consequences such as risk of end-stage renal diseases, fractures and cancer. Urinary cadmium is considered a valid biomarker of lifetime kidney accumulation from overall cadmium exposure and thus used in the assessment of cadmium-induced health effects. We aimed to assess the relationship between dietary cadmium intake assessed by analyses of duplicate food portions and cadmium concentrations in urine and blood, taking the toxicokinetics of cadmium into consideration. Methods In a sample of 57 non-smoking Swedish women aged 20-50 years, we assessed Pearson's correlation coefficients between: 1 Dietary intake of cadmium assessed by analyses of cadmium in duplicate food portions collected during four consecutive days and cadmium concentrations in urine, 2 Partial correlations between the duplicate food portions and urinary and blood cadmium concentrations, respectively, and 3 Model-predicted urinary cadmium concentration predicted from the dietary intake using a one-compartment toxicokinetic model (with individual data on age, weight and gastrointestinal cadmium absorption and urinary cadmium concentration. Results The mean concentration of cadmium in urine was 0.18 (+/- s.d.0.12 μg/g creatinine and the model-predicted urinary cadmium concentration was 0.19 (+/- s.d.0.15 μg/g creatinine. The partial Pearson correlations between analyzed dietary cadmium intake and urinary cadmium or blood concentrations were r = 0.43 and 0.42, respectively. The correlation between diet and urinary cadmium increased to r = 0.54 when using a one-compartment model with individual gastrointestinal cadmium absorption coefficients based on the women's iron status. Conclusions Our results indicate that measured dietary cadmium intake can reasonably well predict biomarkers of both long-term kidney accumulation

  19. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  20. Efficient Purification and Optimization of Wnt3a, a Novel Therapeutic for Tissue Regeneration

    Science.gov (United States)

    Madhav, D.; Helms, J.; Dhamdhere, G.

    2012-12-01

    Wnt is a secreted protein that is present naturally in the body. When an organism is injured the amount of Wnt in the affected area increases. This protein acts as an activator of adult stem cells and signals them to begin differentiating and proliferating. This stem cell response augments the ongoing efforts of injured cells to heal faster by becoming the cells that were damaged by the injury. Adult stem cells play a great role in the healing of wounds, but as organisms age the amount of stem cells in their body decreases. This decrease, in effect, slows the healing of injuries because no stem cells are present to help the regenerative efforts of the body. The Wnt protein induces these stem cells not only to differentiate and proliferate, but also to self-replicate. The ability of Wnt to induce adult stem cells to self -replicate gives us an option to use the protein as a potential tissue regenerative drug. Post-translational Wnt has a lipid modification that makes the protein insoluble in water. To overcome this we fuse the protein with a liposome. A liposome is a lipid sphere with an aqueous center and a phospholipid membrane. The Wnt protein does not lose its function when joined with a liposome. Using this knowledge we can develop a viable means to inject the Wnt protein directly into organisms. The big problem now is to make enough purified Wnt to manufacture on a large scale.

  1. Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Fatur, Tanja; Lah, Tamara T.; Filipic, Metka

    2003-01-01

    The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl 2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl 2 , the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl 2 the MMS-induced DNA strand breaks accumulated during the first 2 h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl 2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair

  2. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    International Nuclear Information System (INIS)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-01-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  3. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  4. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    Science.gov (United States)

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress.

  5. Vitamin C modulates cadmium-induced hepatic antioxidants' gene transcripts and toxicopathic changes in Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    El-Sayed, Yasser S; El-Gazzar, Ahmed M; El-Nahas, Abeer F; Ashry, Khaled M

    2016-01-01

    Cadmium (Cd) is one of the naturally occurring heavy metals having adverse effects, while vitamin C (L-ascorbic acid) is an essential micronutrient for fish, which can attenuate tissue damage owing to its chain-breaking antioxidant and free radical scavenger properties. The adult Nile tilapia fish were exposed to Cd at 5 mg/l with and without vitamin C (500 mg/kg diet) for 45 days in addition to negative and positive controls fed with the basal diet and basal diet supplemented with vitamin C, respectively. Hepatic relative mRNA expression of genes involved in antioxidant function, metallothionein (MT), glutathione S-transferase (GST-α1), and glutathione peroxidase (GPx1), was assessed using real-time reverse transcription polymerase chain reaction (RT-PCR). Hepatic architecture was also histopathologically examined. Tilapia exposed to Cd exhibited upregulated antioxidants' gene transcript levels, GST-⍺1, GPx1, and MT by 6.10-, 4.60-, and 4.29-fold, respectively. Histopathologically, Cd caused severe hepatic changes of multifocal hepatocellular and pancreatic acinar necrosis, and lytic hepatocytes infiltrated with eosinophilic granular cells. Co-treatment of Cd-exposed fish with vitamin C overexpressed antioxidant enzyme-related genes, GST-⍺1 (16.26-fold) and GPx1 (18.68-fold), and maintained the expression of MT gene close to control (1.07-fold), averting the toxicopathic lesions induced by Cd. These results suggested that vitamin C has the potential to protect Nile tilapia from Cd hepatotoxicity via sustaining hepatic antioxidants' genes transcripts and normal histoarchitecture.

  6. Effects of Arctium lappa on Cadmium-Induced Damage to the Testis and Epididymis of Adult Wistar Rats.

    Science.gov (United States)

    Predes, Fabricia de Souza; Diamante, M A S; Foglio, M A; Dolder, H

    2016-10-01

    The protective role of Arctium lappa (AL) on the testes of rats acutely exposed to cadmium (Cd) was tested. The rats were randomly divided into a control group (C-group) and three major experimental groups, which were further subdivided into minor groups (n = 6) according to the experimental period (7 or 56 days). The C-group was subdivided into C-7 and C-56 [receiving a single saline solution, intraperitoneal (i.p.), on the first day]; the AL-group, AL-7, and AL-56, received AL extract (300 mg/kg/daily); the Cd group, Cd-7 and Cd-56, received a single i.p. dose of CdCl2 (1.2 mg/kg body weight (BW)) on the first day; the CdAL group, CdAL-7 and CdAL-56, received the same Cd dose, followed by AL extract. Water or AL extract was administered daily by gavage. After either 7 or 56 days, the testis and accessory glands were removed after whole-body perfusion. Exposure to Cd and CdAL decreased the weight of the testis and epididymis, the gonadosomatic index, seminiferous tubular (ST) diameter, and ST volumetric proportion, and increased the volumetric proportion of interstitium after 56 days. In the epididymis caput, the tubular volumetric proportion decreased along with an increase of interstitial volumetric proportion and epithelium height after 56 days. The alterations observed were less severe only after 7 days. A progressive testicular damage resulted mainly in tubules lined only by Sertoli cells. The sperm number and cell debris decreased in the epididymis. We demonstrated that the testicular damage induced by single acute i.p. exposure to Cd occurred despite the daily oral intake of AL extract.

  7. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities

    Science.gov (United States)

    Richter, Patricia; Faroon, Obaid; Pappas, R. Steven

    2017-01-01

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs. PMID:28961214

  8. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities.

    Science.gov (United States)

    Richter, Patricia; Faroon, Obaid; Pappas, R Steven

    2017-09-29

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs.

  9. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver

    International Nuclear Information System (INIS)

    Casalino, Elisabetta; Sblano, Cesare; Calzaretti, Giovanna; Landriscina, Clemente

    2006-01-01

    Acute cadmium intoxication affects glutathione S-transferase (GST) in rat liver. It has been found that 24 h after i.p. cadmium administration to rats, at a dose of 2.5 mg CdCl 2 kg -1 body weight, the activity of this enzyme in liver cytosol increased by 40%. A less stimulatory effect persisted till 48 h and thereafter the enzyme activity normalized. Since, GST isoenzymes belong to different classes in mammalian tissues, we used quantitative immunoassays to verify which family of GST isoenzymes is influenced by this intoxication. Only alpha-class glutathione S-transferase (α-GST) proteins were detected in rat liver cytosol and their level increased by about 25%, 24 h after cadmium treatment. No pi-GST isoforms were found in liver cytosol from either normal or cadmium-treated rats. Co-administration of actinomycin D with cadmium normalized both the protein level and the activity of α-GST, suggesting that some effect occurs on enzyme transcription of these isoenzymes by this metal. On the other hand, it seems unlikely that the stimulatory effect is due to the high level of peroxides caused by lipid peroxidation, since Vitamin E administration strongly reduced the TBARS level, but did not cause any GST activity decrease

  10. Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s

    International Nuclear Information System (INIS)

    Geraci, Fabiana; Pinsino, Annalisa; Turturici, Guiseppina; Savona, Rosalia; Giudice, Giovanni; Sconzo, Gabriella

    2004-01-01

    Treatment with heavy metals, such as nickel, lead or cadmium, elicits different cellular stress responses according to the metal used and the length of treatment. In Paracentrotus lividus embryos the inducible forms of HSP70 (HSP70/72) are different in molecular mass from the constitutively expressed HSP75, and they can be used as markers of cellular stress. Even a short treatment with each metal induces the synthesis of HSP70/72 which remain stable for at least 20 h and differ little in their isoelectric points. Continuous treatment from fertilization with nickel or lead produces late irregular pluteus embryos, with peak HSP70/72 synthesis at blastula followed by the arrest of synthesis by pluteus. On the contrary, the same treatment with cadmium induces continuous HSP70/72 synthesis and produces irregular gastrula embryos which then degenerate. Moreover, a long treatment induces over control embryos a slight increase in the amount of constitutive HSP75 during development while lead treatment depresses constitutive HSP75 at early stages and doubles its quantity at late stages

  11. The Effects of Agaricus blazei Murill Polysaccharides on Cadmium-Induced Apoptosis and the TLR4 Signaling Pathway of Peripheral Blood Lymphocytes in Chicken.

    Science.gov (United States)

    Liu, Wenjing; Ge, Ming; Hu, Xuequan; Lv, Ai; Ma, Dexing; Huang, Xiaodan; Zhang, Ruili

    2017-11-01

    In this study, we investigated the effects of Agaricus blazei Murill polysaccharides (ABP) on cadmium (Cd)-induced apoptosis and the TLR4 signaling pathway of chicken peripheral blood lymphocytes (PBLs). Seven-day-old healthy chickens were randomly divided into four groups, and each group contained 20 males. The cadmium-supplemented diet group (Cd group) was fed daily with full feed that contained 140 mg cadmium chloride (CdCl 2 )/kg and 0.2 mL saline. The A. blazei Murill polysaccharide diet group (ABP group) was fed daily with full feed with 0.2 mL ABP solution (30 mg/mL) by oral gavage. The cadmium-supplemented plus A. blazei Murill polysaccharide diet group (Cd + ABP group) was fed daily with full feed containing 140 mg CdCl 2 /kg and 0.2 mL ABP solution (30 mg/mL) by gavage. The control group was fed daily with full feed with 0.2 mL saline per day. We measured the apoptosis rate and messenger RNA (mRNA) levels of apoptosis genes (caspase-3, Bax, and Bcl-2), the mRNA levels of TLR4 and TLR4 signaling pathway-related factors (MyD88, TRIF, NF-κB, and IRF3), the TLR4 protein expression, and the concentrations of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in chicken PBLs. The results showed that the PBL apoptosis rate was significantly increased, the mRNA levels of caspase-3 and Bax were significantly increased, while that of Bcl-2 was significantly reduced. The Bax/Bcl-2 ratio was significantly increased in the Cd group at 20, 40, and 60 days after treatment compared with that in the control group. After treatment with ABP, the above changes were clearly suppressed. At the same time, ABP reduced the concentrations of IL-1β, IL-6, and TNF-α induced by Cd. We also found that ABP inhibited the TLR4 mRNA level and protein expression and inhibited the mRNA levels of MyD88, TRIF, NF-κB, and IRF3. The results demonstrated that Cd could induce apoptosis, activate the TLR4 signaling pathway, and induce the expression of inflammatory cytokines in

  12. The Ewing sarcoma secretome and its response to activation of Wnt/beta-catenin signaling.

    Science.gov (United States)

    Hawkins, Allegra G; Basrur, Venkatesha; da Veiga Leprevost, Felipe; Pedersen, Elisabeth; Sperring, Colin; Nesvizhskii, Alexey I; Lawlor, Elizabeth R

    2018-01-31

    Tumor: tumor microenvironment (TME) interactions are critical for tumor progression and the composition and structure of the local extracellular matrix (ECM) are key determinants of tumor metastasis. We recently reported that activation of Wnt/beta-catenin signaling in Ewing sarcoma cells induces widespread transcriptional changes that are associated with acquisition of a metastatic tumor phenotype. Significantly, ECM protein-encoding genes were found to be enriched among Wnt/beta-catenin induced transcripts, leading us to hypothesize that activation of canonical Wnt signaling might induce changes in the Ewing sarcoma secretome. To address this hypothesis, conditioned media from Ewing sarcoma cell lines cultured in the presence or absence of Wnt3a was collected for proteomic analysis. Label-free mass spectrometry was used to identify and quantify differentially secreted proteins. We then used in silico databases to identify only proteins annotated as secreted. Comparison of the secretomes of two Ewing sarcoma cell lines revealed numerous shared proteins, as well as a degree of heterogeneity, in both basal and Wnt-stimulated conditions. Gene set enrichment analysis of secreted proteins revealed that Wnt stimulation reproducibly resulted in increased secretion of proteins involved in ECM organization, ECM receptor interactions, and collagen formation. In particular, Wnt-stimulated Ewing sarcoma cells upregulated secretion of structural collagens, as well as matricellular proteins, such as the metastasis-associated protein, tenascin C (TNC). Interrogation of published databases confirmed reproducible correlations between Wnt/beta-catenin activation and TNC and COL1A1 expression in patient tumors. In summary, this first study of the Ewing sarcoma secretome reveals that Wnt/beta-catenin activated tumor cells upregulate secretion of ECM proteins. Such Wnt/beta-catenin mediated changes are likely to impact on tumor: TME interactions that contribute to metastatic

  13. Proton induced nuclear reactions on cadmium up 17 MeV

    International Nuclear Information System (INIS)

    Al-Abyad, M.

    2012-01-01

    The cross-sections of proton induced reactions on nat Cd targets was studied in the energy range from threshold up to 17 MeV, using a stacked-foil irradiation technique and classical gamma-spectroscopy. We measured the formation cross-sections of the radioisotopes 109g,110m,110,111g,113m,114m,115m,116m In The obtained excitation functions were compared with the earlier published data and the theoretical model calculations by the codes ALICE-IPPE, EMPIRE and TALYS .

  14. Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis.

    Science.gov (United States)

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C

    2016-12-09

    The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The Protective Roles of Zinc and Magnesium in Cadmium-Induced Renal Toxicity in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Nasim Babaknejad

    2014-12-01

    Full Text Available Background: Cadmium (Cd is a heavy metal that has widespread use. It enters the food chain in different ways, including soil and water. Cadmium can cause dysfunction of different body organs. Zinc (Zn and magnesium (Mg supplementation can have protective effects against cadmium toxicity due to their antagonistic and antioxidants properties. This study examines the influence of supplemental Zn and Mg on Cd renal toxicity. Methods: Young male Wistar rats were divided into six groups of five. The Cd group received 1 mg Cd/kg and the control group received 0.5 mg/kg normal saline (i.p.. The other four groups were administered 1 mg/kg Cd+0.5 mg/kg Zn, 1 mg/kg Cd+1.5 mg/kg Zn, 1 mg/kg Cd+ 0.5 mg/kg Mg, and 1 mg/kg Cd+ 1.5 mg/kg Mg (i.p. for 21 days. Then, serum sodium, potassium, urea, creatinine, and protein levels were measured. Results: The results indicated that creatinine and protein levels decreased while urea, sodium, and potassium levels increased as a result of Cd exposure. Co-administered Cd and Zn and Mg decreased urea and increased sodium serum level in comparison to the cadmium group. Treatment by Mg, contrary to co-administered Cd and Zn, reduced serum protein level compared to the cadmium group. Compared to the cadmium treated group, Zn and Mg treatment enhanced serum creatinine level and reduced serum potassium level. Conclusion: The findings seem to suggest that zinc and magnesium compounds, due to their antagonistic and antioxidant activities, can protect Cd renal toxic effects in a dose-dependent manner.

  16. Resveratrol ameliorates chronic unpredictable mild stress-induced depression-like behavior: involvement of the HPA axis, inflammatory markers, BDNF, and Wnt/β-catenin pathway in rats

    Directory of Open Access Journals (Sweden)

    Yang X

    2017-10-01

    Full Text Available Xin-Hua Yang,1 Su-Qi Song,2 Yun Xu3 1Department of Pharmacy, Hefei Eighth People’s Hospital, Hefei, 2Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 3Faculty of Pharmacy, Anhui Medical University, Hefei, China Abstract: Classic antidepressant drugs are modestly effective across the population and most are associated with intolerable side effects. Recently, numerous lines of evidence suggest that resveratrol (RES, a natural polyphenol, possesses beneficial therapeutic activity for depression. The aim of the present study was to explore whether RES exhibits an antidepressant-like effect in a depression model and to explore the possible mechanism. A depression model was established via chronic unpredictable mild stress (CUMS, after which the model rats in the RES and fluoxetine groups received a daily injection of RES or fluoxetine, respectively. The sucrose preference test, open field test, and forced swimming test were used to explore the antidepressant-like effects of RES. The activity of the hypothalamic–pituitary–adrenal (HPA axis was evaluated by detecting the plasma corticosterone concentration and hypothalamic mRNA expression of corticotrophin-releasing hormone. The plasma interleukin-6 (IL-6, C-reactive protein (CRP, and tumor necrosis factor-α (TNF-α concentrations were measured by enzyme-linked immunosorbent assay. Hippocampal protein expression of brain-derived neurotrophic factor (BDNF and the Wnt/β-catenin pathway were analyzed by western blot. The results showed that RES relieved depression-like behavior of CUMS rats, as indicated by the increased sucrose preference and the decreased immobile time. Rats that received RES treatment exhibited reduced plasma corticosterone levels and corticotrophin-releasing hormone mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by RES. Moreover, after RES treatment, the rats exhibited increased

  17. Effect of low potassium concentration on cadmium induced epileptiform activity of leech retzius neurons

    Directory of Open Access Journals (Sweden)

    Milićević Nebojša

    2016-01-01

    Full Text Available Epilepsies have a large significance and require detailed investigation of cellular mechanisms that lead to this disorder. Environmental, especially industrial, toxins are having increasingly more prominent role in these investigations. The aim of our research was to investigate the significance of Cd2+ in generation of epileptiform electrical activity of neurons, and the role of Na+/K+ pump in mechanisms that lead to cessation of this activity. Experiments were performed on Retzius nerve cells of the leech Haemopis sanguisuga. Intracellularly placed microelectrodes were used to measure membrane potential changes upon administration of Cd2+ (100 µmol/l, and the same concentration of Cd2+ in low K+ (1 mmol/l solution. In our experiments Cd2+ led to generation of rhythmic repetitive oscillatory activity. This activity closely resembles paroxysmal depolarizing shifts (PDS which represent the cellular basis of epilepsy. Cd2+ induced epileptiform activity had the following characteristics: frequency of 3.9±0.8 PDS/minute, PDS duration of 4.0±0.3 s, and PDS amplitude of 8.1±0.7 mV. Cd2+ induces effects similar to those of Ni2+ and Co2+, but in 30 times smaller concentration. Application of Cd2+ in low K+ solution led to a significant reduction of PDS frequency (by 2.34±0.55 PDS/minute, p<0.05, Student's t-test, highly significant increase in PDS duration (by 2.84±0.23 s, p<0.01, Student's t-test and highly significant reduction in PDS amplitude (by 1.91±0.33 mV, p=0.01, Student's t-test. Our results show that Cd2+ is a potent initiator of epileptiform activity, and that Na+/K+ pump significantly affects this activity and has a potentially important role in mechanisms that lead to its cessation.

  18. Agaricus blazei Murill Polysaccharides Protect Against Cadmium-Induced Oxidative Stress and Inflammatory Damage in Chicken Spleens.

    Science.gov (United States)

    Xie, Wanqiu; Lv, Ai; Li, Ruyue; Tang, Zequn; Ma, Dexing; Huang, Xiaodan; Zhang, Ruili; Ge, Ming

    2018-07-01

    Agaricus blazei Murill polysaccharide (ABP) has exhibited antioxidant and immunoregulatory activity. The aim of this study was to investigate the effect of ABP on cadmium (Cd)-induced antioxidant functions and inflammatory damage in chicken spleens. In this study, groups of 7-day-old chickens were fed with normal saline (0.2 mL single/day), CdCl 2 (140 mg/kg/day), ABP (30 mg/mL, 0.2 mL single/day), and Cd + ABP (140 mg/kg/day + 0.2 mL ABP). Spleens were separated on the 20th, 40th, and 60th day for each group. The Cd contents, expression of melanoma-associated differentiation gene 5 (MDA5) and its downstream signaling molecules (interferon promoter-stimulating factor 1 (IPS-1), transcription factors interferon regulatory factor 3 (IRF3), and nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB)), the content of cytokines (interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and beta interferon (IFN-β)), protein levels of heat shock proteins (HSPs), levels of malondialdehyde (MDA), activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and histopathological changes of spleens were detected on the 20th, 40th, and 60th day. The results showed that ABP significantly reduced the accumulation of Cd in the chicken spleens and reduced the expression of MDA5, IPS-1, IRF-3, and NF-κB; their downstream inflammatory cytokines, IL-1β, IL-6, TNF-α, and IFN-β; and the protein levels of HSPs (HSP60, HSP70, and HSP90) in spleens. The activities of antioxidant enzymes (SOD and GSH-Px) significantly increased, and the level of MDA decreased in the ABP + Cd group. The results indicate that ABP has a protective effect on Cd-induced damage in chicken spleens.

  19. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism

    OpenAIRE

    Cawthorn, William P.; Bree, Adam J.; Yao, Yao; Du, Baowen; Hemati, Nahid; Martinez-Santibañez, Gabriel; MacDougald, Ormond A.

    2011-01-01

    Wnt10b is an established regulator of mesenchymal stem cell (MSC) fate that inhibits adipogenesis and stimulates osteoblastogenesis, thereby impacting bone mass in vivo. However, downstream mechanisms through which Wnt10b exerts these effects are poorly understood. Moreover, whether other endogenous Wnt ligands also modulate MSC fate remains to be fully addressed. In this study, we identify Wnt6 and Wnt10a as additional Wnt family members that, like Wnt10b, are downregulated during developmen...

  20. Wnt-β-Catenin Signaling Promotes the Maturation of Mast Cells

    Directory of Open Access Journals (Sweden)

    Tomoko Yamaguchi

    2016-01-01

    Full Text Available Mast cells play an important role in the pathogenesis of allergic diseases. Immature mast cells migrate into peripheral tissues from the bone marrow and undergo complete maturation. Interestingly, mast cells have characteristics similar to hematopoietic stem cells (HSCs, such as self-renewal and c-kit expression. In HSCs, Wnt signaling is involved in their maintenance and differentiation. On the other hand, the relation between Wnt signaling and mast cell differentiation is poorly understood. To study whether Wnt signals play a role in the maturation of mast cells, we studied the effect of Wnt proteins on mast cell maturation of bone marrow-derived mast cells (BMMCs. The expression levels of CD81 protein and histidine decarboxylase mRNA and activity of mast cell-specific protease were all elevated in BMMCs treated with Wnt5a. In addition, Wnt5a induced the expression of Axin2 and TCF mRNA in BMMCs. These results showed that Wnt5a could promote the maturation of mast cells via the canonical Wnt signaling pathway and provide important insights into the molecular mechanisms underlying the differentiation of mast cells.

  1. Alterations in Lipid Mediated Signaling and Wnt/β-Catenin Signaling in DMH Induced Colon Cancer on Supplementation of Fish Oil

    Directory of Open Access Journals (Sweden)

    Shevali Kansal

    2014-01-01

    Full Text Available Ceramide mediates inhibition of cyclooxygenase-2 (COX-2 which catalyzes formation of prostaglandin further activating peroxisome proliferator-activated receptorγ (PPARγ and Wnt/β-catenin pathway; and hence plays a critical role in cancer. Therefore, in current study, ceramide, COX-2, 15-deoxy prostaglandin J2(15-deoxy PGJ2, PPARγ, and β-catenin were estimated to evaluate the effect of fish oil on lipid mediated and Wnt/β-catenin signaling in colon carcinoma. Male Wistar rats in Group I received purified diet while Groups II and III received modified diet supplemented with FO : CO(1 : 1 and FO : CO(2.5 : 1, respectively. These were further subdivided into controls receiving ethylenediaminetetraacetic acid and treated groups receiving dimethylhydrazine dihydrochloride (DMH/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and those sacrificed after 16 weeks constituted postinitiation phase. Decreased ceramide and increased PPARγ were observed in postinitiation phase only. On receiving FO+CO(1 : 1+DMH and FO+CO(2.5 : 1+DMH in both phases, ceramide was augmented whereas COX-2, 15-deoxy PGJ2, and nuclear translocation of β-catenin were reduced with respect to cancerous animals. Decrease was more significant in postinitiation phase with FO+CO(2.5 : 1+DMH. Treatment with oils increased PPARγ in initiation phase but decreased it in postinitiation phase. Hence, fish oil altered lipid mediated signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.

  2. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    International Nuclear Information System (INIS)

    Koutsogiannaki, Sophia; Franzellitti, Silvia; Fabbri, Elena; Kaloyianni, Martha

    2014-01-01

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na + /H + exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca 2+ -dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and cyclic adenosine

  3. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Franzellitti, Silvia [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); Fabbri, Elena [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna (Italy); Kaloyianni, Martha, E-mail: kaloyian@bio.auth.gr [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-01-15

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na{sup +}/H{sup +} exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca{sup 2+}-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and

  4. Mesd Is a Universal Inhibitor of Wnt Co-receptor LRP5/6 and Blocks Wnt/β-catenin Signaling in Cancer Cells†

    Science.gov (United States)

    Lu, Wenyan; Liu, Chia-Chen; Thottassery, Jaideep V.; Bu, Guojun; Li, Yonghe

    2010-01-01

    Mesd is a specialized chaperone for the low-density lipoprotein receptor-related protein-5 (LRP5) and LRP6. In our previous studies, we found that Mesd binds to mature LRP6 on the cell surface and blocks the binding of Wnt antagonist Dickkopf-1(Dkk1) to LRP6. Herein, we demonstrated that Mesd also binds to LRP5 with a high affinity, and is a universal inhibitor of LRP5/6 ligands. Mesd not only blocks Wnt antagonists Dkk1 and Sclerostin binding to LRP5/6, but also inhibits Wnt3A and Rspondin1-induced Wnt/β-catenin signaling in LRP5/6 expressing cells. We also found that Mesd, Dkk1 and Sclerostin compete with one another for binding to LRP5 and LRP6 at the cell surface. More importantly, we demonstrated that Mesd is able to suppress LRP6 phosphorylation and Wnt/β-catenin signaling in prostate cancer PC-3 cells, and inhibits PC-3 cell proliferation. Our results indicate that recombinant Mesd protein is a useful tool for studying Wnt/β-catenin signaling on the cell surface, and has a potential therapeutic role in Wnt-dependent cancers. PMID:20446724

  5. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    International Nuclear Information System (INIS)

    Kawamoto, E.M.; Gleichmann, M.; Yshii, L.M.; Sá Lima, L. de; Mattson, M.P.; Scavone, C.

    2011-01-01

    Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ 25-35 ; 50 µM). Cells (1 × 10 6 cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases

  6. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma - chemical vapor generation coupled with atomic fluorescence spectrometry

    Science.gov (United States)

    Liu, Xing; Zhu, Zhenli; Bao, Zhengyu; Zheng, Hongtao; Hu, Shenghong

    2018-03-01

    Cadmium contamination in rice has become an increasing concern in many countries including China. A simple, cost-effective, and highly sensitive method was developed for the determination of trace cadmium in rice samples based on a new high-efficient liquid spray dielectric barrier discharge induced plasma (LSDBD) vapor generation coupled with atomic fluorescence spectrometry (AFS). The analytical procedure involves the efficient formation of Cd volatile species by LSDBD plasma induced chemical processes without the use of any reducing reagents (Na/KBH4 in conventional hydride generation). The effects of the addition of organic substances, different discharge parameters such as discharge voltage and discharge gap, as well as the foreign ion interferences were investigated. Under optimized conditions, a detection limit of 0.01 μg L- 1 and a precision of 0.8% (RSD, n = 5, 1 μg L- 1 Cd) was readily achieved. The calibration curve was linear in the range between 0.1 and 10 μg L- 1, with a correlation coefficient of R2 = 0.9995. Compared with the conventional acid-BH4- vapor generation, the proposed method not only eliminates the use of unstable and expensive reagents, but also offers high tolerance for coexisting ions, which is well suited to the direct analysis of environmental samples. The validation of the proposed method was demonstrated by the analysis of Cd in reference material of rice (GBW080684). It was also successfully applied to the determination of trace cadmium in locally collected 11 rice samples, and the obtained Cd concentrations are ranged from 7.2 to 517.7 μg kg- 1.

  7. Enhanced biosorption of mercury(II) and cadmium(II) by cold-induced hydrophobic exobiopolymer secreted from the psychrotroph Pseudomonas fluorescens BM07

    Energy Technology Data Exchange (ETDEWEB)

    Zamil, Sheikh Shawkat; Choi, Mun Hwan; Song, Jung Hyun; Park, Hyunju; Xu, Ju; Yoon, Sung Chul [Gyeongsang National Univ., Jinju (Korea). Nano-Biomaterials Science Lab.; Chi, Ki-Whan [Ulsan Univ. (Korea). Dept. of Chemistry

    2008-09-15

    The cells of psychrotrophic Pseudomonas fluorescens BM07 were found to secrete large amounts of exobiopolymer (EBP) composed of mainly hydrophobic (water insoluble) polypeptide(s) (as contain {proportional_to}50 mol% hydrophobic amino acids, lacking cysteine residue) when grown on fructose containing limited M1 medium at the temperatures as low as 0-10 C but trace amount at high (30 C, optimum growth) temperature. Two types of nonliving BM07 cells (i.e., cells grown at 30 C and 10 C) as well as the freeze-dried EBP were compared for biosorption of mercury (Hg(II)) and cadmium (Cd(II)). The optimum adsorption pH was found 7 for Hg(II) but 6 for Cd(II), irrespective of the type of biomass. Equilibrium adsorption data well fitted the Langmuir adsorption model. The maximum adsorption (Q{sub max}) was 72.3, 97.4, and 286.2 mg Hg(II)/g dry biomass and 18.9, 27.0, and 61.5 mg Cd(II)/g dry biomass for cells grown at 30 C and 10 C and EBP, respectively, indicating major contribution of heavy metal adsorption by cold-induced EBP. Mercury(II) binding induced a significant shift of infrared (IR) amide I and II absorption of EBP whereas cadmium(II) binding showed only a very little shift. These IR shifts demonstrate that mercury(II) and cadmium(II) might have different binding sites in EBP, which was supported by X-ray diffraction and differential scanning calorimetric analysis and sorption results of chemically modified biomasses. This study implies that the psychrotrophs like BM07 strain may play an important role in the bioremediation of heavy metals in the temperate regions especially in the inactive cold season. (orig.)

  8. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    Science.gov (United States)

    Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J

    2017-05-11

    The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction

  9. Prophylactic role of Aloe vera against radiation and cadmium induced histological alterations in the kidney of Swiss albino mice

    International Nuclear Information System (INIS)

    Chakravarti, A.; Prajapat, T.R.; Ojha, S.; Kanwar, Om; Nayak, K.; Ram, Purkha; Bhartiya, K.M.; Gupta, M.L.; Jangir, A.

    2012-01-01

    Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure of radiation. Thus, development of novel and effective approaches using non toxic radioprotectors is of considerable interest for not only in the protection of normal tissue during radio therapy of tumors but also for defence (nuclear wars), nuclear industries, radiation accidents, space flights etc. Adult male Swiss albino mice were exposed to 5.0 Gy gamma radiations in the presence or absence of the Aloe vera. For this purpose 6 to 8 week old male mice were divided into seven groups; group I (sham-irradiated), group II (cadmium chloride), group III (irradiated with 5Gy. Gamma rays), group IV (radiation and cadmium chloride), group V (cadmium chloride and Aloe vera), group VI (radiation and Aloe vera), group VII (radiation, cadmium chloride and Aloe vera). Animals from all the above groups were autopsied at 1, 2, 4, 7, 14 and 28 days post treatment intervals. For histopathological studies kidney was taken out and it's pieces were fixed in Bouins fixative for 24 hours. The tissue was washed in clean water to remove excess of the fixative, dehydrated in graded series of alcohol, cleared in xylene and embedded in paraffin wax. Sections were cut at 5 μm and stained in Harris haematoxyline and alcoholic eosine. In the present experiment histopathological changes were found in the kidney of Swiss albino mice. Severe changes seen in the renal architecture after exposure of 5 Gy of gamma rays were: blurred renal architecture, intracellular oedema, damaged tubules, cytoplasmic degranulation, vacuolation and pycnotic nuclei in the cortical and medullary part. The changes were more marked on day 7, but on day 14 the signs of recovery were observed and on day 28 comparatively better renal architecture was observed. In cadmium chloride treated animals the changes observed were: cytoplasmic degranulation, vacuolation, crenated and pycnotic nuclei. The

  10. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression

    International Nuclear Information System (INIS)

    Timmermans-Sprang, Elpetra P. M.; Gracanin, Ana; Mol, Jan A.

    2015-01-01

    Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the ligand-independent Wnt signaling. Twelve canine mammary tumor cell lines with previously reported differential basal Wnt activity were used. The expression levels of genes related to EGF-signaling were analyzed by cluster analysis. Cell lines with a combined overexpression of EGF-related genes and enhanced basal Wnt activity were treated with PI3K/mTor or cSRC inhibitors or transfected with a construct expressing wild-type PTEN. Subsequently, effects were measured on Wnt activity, cell proliferation, gene expression and protein level. High basal Wnt/LEF1 activity was associated with overexpression of HER2/3, ID1, ID2, RAC1 and HSP90 together with low to absent cMET and PTEN mRNA expression, suggesting a connection between Wnt- and HER-signaling pathways. Inhibition of the HER-regulated PI3K/mTor pathway using the dual PI3K/mTor inhibitor BEZ235 or the mTor inhibitor Everolimus® resulted in reduced cell proliferation. In the cell line with high basal Wnt activity, however, an unexpected further increased Wnt activity was found that could be greatly reduced after inhibition of the HER-regulated cSRC activity. Inhibition of the PI3K/mTor pathway was associated with enhanced expression of β-Catenin, Axin2, MUC1, cMET, EGFR and HER2 and a somewhat increased β-Catenin protein content, whereas cSRC inhibition was associated with slightly enhanced HER3 and SLUG mRNA expression. A high protein expression of HER3 was found only in a cell line with high basal Wnt activity. High basal Wnt activity in some mammary cancer cell lines is associated with overexpression of HER-receptor related genes and HER3 protein, and the absence of PTEN. Inhibition of the PI3K/mTor pathway further stimulated

  11. Interaction of Wnt Signaling with BMP/Smad Signaling during the Transition from Cell Proliferation to Myogenic Differentiation in Mouse Myoblast-Derived Cells

    Directory of Open Access Journals (Sweden)

    Kumiko Terada

    2013-01-01

    Full Text Available Background. Wnt signaling is involved in muscle formation through β-catenin-dependent or -independent pathways, but interactions with other signaling pathways including transforming growth factor β/Smad have not been precisely elucidated. Results. As Wnt4 stimulates myogenic differentiation by antagonizing myostatin (GDF8 activity, we examined the role of Wnt4 signaling during muscle differentiation in the C2C12 myoblast cell line. Among several extrinsic signaling molecules examined in a microarray analysis of C2C12 cells during the transition from cell proliferation to differentiation after mitogen deprivation, bone morphogenetic protein 4 (BMP4 expression was prominently increased. Wnt4 overexpression had similar effects on BMP4 expression. BMP4 was able to inhibit muscle differentiation when added to the culture medium. BMP4 and noggin had no effects on the cellular localization of β-catenin induced by Wnt3a; however, the BMP4-induced phosphorylation of Smad1/5/8 was enhanced by Wnt4, but not by Wnt3a. The BMP antagonist noggin effectively stimulated muscle differentiation through binding to endogenous BMPs, and the effect of noggin was enhanced by the presence of Wnt3a and Wnt4. Conclusion. These results suggest that BMP/Smad pathways are modified through Wnt signaling during the transition from progenitor cell proliferation to myogenic differentiation, although Wnt/β-catenin signaling is not modified with BMP/Smad signaling.

  12. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N

    2012-01-01

    and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  13. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    International Nuclear Information System (INIS)

    Perkins, Timothy N.; Dentener, Mieke A.; Stassen, Frank R.; Rohde, Gernot G.; Mossman, Brooke T.; Wouters, Emiel F.M.; Reynaert, Niki L.

    2016-01-01

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  14. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Timothy N.; Dentener, Mieke A. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Stassen, Frank R. [Department of Medical Microbiology, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Rohde, Gernot G. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Mossman, Brooke T. [Department of Pathology, University of Vermont College of Medicine, Burlington, VT (United States); Wouters, Emiel F.M. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Reynaert, Niki L., E-mail: n.reynaert@maastrichtuniversity.nl [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands)

    2016-06-15

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  15. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  16. Wnt signaling: Ig-norrin the dogma.

    Science.gov (United States)

    Clevers, Hans

    2004-06-08

    Secreted Wnt proteins trigger the intracellular Wnt signaling cascade upon engagement of dedicated Frizzled-Lrp receptor complexes. Unexpectedly, a non-Wnt ligand for this receptor complex has now been discovered. This novel ligand, Norrin, is mutated in the hereditary ocular Norrie syndrome. Copyright 2004 Elsevier Ltd.

  17. Wnt Signaling in Cancer Stem Cell Biology

    NARCIS (Netherlands)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells

  18. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-01-01

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  19. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation

    NARCIS (Netherlands)

    T.C. Luis (Tiago); F. Weerkamp (Floor); B.A. Naber (Brigitta); M.R.M. Baert (Miranda); E.F. de Haas (Edwin); T. Nikolic (Tatjana); S. Heuvelmans (Sjanneke); R.R. de Krijger (Ronald); J.J.M. van Dongen (Jacques); F.J.T. Staal (Frank)

    2009-01-01

    textabstractCanonical Wnt signaling has been implicated in various aspects of hematopoiesis. Its role is controversial due to different outcomes between various inducible Wnt-signaling loss-of-function models and also compared with gain-of-function systems. We therefore studied a mouse deficient for

  20. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    International Nuclear Information System (INIS)

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-01-01

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation

  1. Chemo preventive action of Liv.52 against radiation and cadmium induced histopathological changes in the jejunum of Swiss albino mice

    International Nuclear Information System (INIS)

    Purohit, R.K.; Sunita; Bhati, Sharwan; Isran, Rakesh; Ranga, Deepti; Meena, Dinesh; Pyarelal

    2012-01-01

    The present century has been an ever-increasing use of nuclear technologies in different fields raising the alarming problem of radiation hazards to living beings including man. An increasing body of evidence indicates that human activities are responsible for global climatic changes, which, in turn, may be directly or indirectly increasing human exposure to environmental hazards. On the other hand, all forms of cadmium are poisonous leading cadmium intoxication under appropriate circumstances. The interaction between radiation and other toxicants represents a field of immense potential importance as their total environmental burden may have greater effects than expected from the sum of their individual impact. In the present study six to eight weeks old male Swiss albino mice were exposed to 2.5 and 5.0 Gy of gamma rays with or without cadmium chloride treatment. The animals of experimental groups were administered Liv.52 for seven days prior to radiation or cadmium chloride treatment. After routine procedure of histology the histopathological changes were observed in the jejunum of Swiss albino mice. The changes included loosened sub-mucosa with hydropic degeneration. Lamina propria exhibited hydropic degeneration, abnormal mitotic figures, pyknotic nuclei and cytoplasmic degranulation in crypt cells, loosened tips and shortened villi. Leucocytic infiltration appeared in lamina propria. Few mitotic figures were observed during the early intervals but were not normal and resulted in mitotic death. Recovery started on day-14 in non-drug treated groups and day-7 in Liv.52 treated groups. After irradiation with various doses of gamma rays, histological changes depend upon the dose of radiation delivered. The important radio-lesions were looseness of musculature, hydropic degeneration in sub-mucosa and lamina propria, hyperaemia and haemorrhage in sub-mucosa, pyknotic cells, cytoplasmic degranulation and vacuolation, abnormal mitotic figures. Karyolysis, karyorrhexis

  2. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2015-01-01

    Full Text Available Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4 to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  3. Resveratrol ameliorates chronic unpredictable mild stress-induced depression-like behavior: involvement of the HPA axis, inflammatory markers, BDNF, and Wnt/β-catenin pathway in rats.

    Science.gov (United States)

    Yang, Xin-Hua; Song, Su-Qi; Xu, Yun

    2017-01-01

    Classic antidepressant drugs are modestly effective across the population and most are associated with intolerable side effects. Recently, numerous lines of evidence suggest that resveratrol (RES), a natural polyphenol, possesses beneficial therapeutic activity for depression. The aim of the present study was to explore whether RES exhibits an antidepressant-like effect in a depression model and to explore the possible mechanism. A depression model was established via chronic unpredictable mild stress (CUMS), after which the model rats in the RES and fluoxetine groups received a daily injection of RES or fluoxetine, respectively. The sucrose preference test, open field test, and forced swimming test were used to explore the antidepressant-like effects of RES. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the plasma corticosterone concentration and hypothalamic mRNA expression of corticotrophin-releasing hormone. The plasma interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) concentrations were measured by enzyme-linked immunosorbent assay. Hippocampal protein expression of brain-derived neurotrophic factor (BDNF) and the Wnt/β-catenin pathway were analyzed by western blot. The results showed that RES relieved depression-like behavior of CUMS rats, as indicated by the increased sucrose preference and the decreased immobile time. Rats that received RES treatment exhibited reduced plasma corticosterone levels and corticotrophin-releasing hormone mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by RES. Moreover, after RES treatment, the rats exhibited increased plasma IL-6, CRP, and TNF-α concentrations. Furthermore, RES treatment upregulated the hippocampal protein levels of BDNF and the relative ratio of p-β-catenin/β-catenin while downregulating the relative ratio of p-GSK-3β/GSK-3β. Our findings suggest that RES improved

  4. A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway.

    Science.gov (United States)

    Salašová, Alena; Yokota, Chika; Potěšil, David; Zdráhal, Zbyněk; Bryja, Vítězslav; Arenas, Ernest

    2017-07-11

    Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. Our study shows for the first time that LRRK2 activates the WNT

  5. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell.

    Science.gov (United States)

    Hu, Yudong; Yu, Kaikai; Wang, Gang; Zhang, Depeng; Shi, Chaoji; Ding, Yunhe; Hong, Duo; Zhang, Dan; He, Huiqiong; Sun, Lei; Zheng, Jun-Nian; Sun, Shuyang; Qian, Feng

    2018-04-01

    Gastric cancer is the third common cause of cancer mortality in the world with poor prognosis and high recurrence due to lack of effective medicines. Our studies revealed that lanatoside C, a FDA-approved cardiac glycoside, had an anti-proliferation effect on different human cancer cell lines (MKN-45; SGC-7901; HN4; MCF-7; HepG2) and gastric cell lines MKN-45 and SGC-7901 were the most sensitive cell lines to lanatoside C. MKN-45 cells treated with lanatoside C showed cell cycle arrest at G2/M phase and inhibition of cell migration. Meanwhile, upregulation of cleaved caspase-9 and cleaved PARP and downregulation of Bcl-xl were accompanied with the loss of mitochondrial membrane potential (MMP) and induction of intracellular reactive oxygen species (ROS). Lanatoside C inhibited Wnt/β-catenin signaling with downregulation of c-Myc, while overexpression of c-Myc reversed the anti-tumor effect of lanatoside C, confirming that c-Myc is a key drug target of lanatoside C. Furthermore, we discovered that lanatoside C prompted c-Myc degradation in proteasome-ubiquitin pathway with attenuating the binding of USP28 to c-Myc. These findings indicate that lanatoside C targeted c-Myc ubiquitination to inhibit MKN-45 proliferation and support the potential value of lanatoside C as a chemotherapeutic candidate. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Protective effect of Emblica against radiation and cadmium induced histopathological changes in the brain of Swiss albino mice

    International Nuclear Information System (INIS)

    Joshi, Pankaj Kumar; Purohit, R.K.; Basu, Arindam; Bhartiya, K.M.

    2014-01-01

    In the present study six to eight weeks old male Swiss albino mice were exposed to 2.0 and 4.0 Gy of gamma rays with or without cadmium chloride treatment. The animals of experimental groups were administered Emblica for seven days prior to radiation or cadmium chloride treatment. After routine procedure of histology the histopathological changes were observed in the brain of Swiss albino mice. The histopathological changes observed were pycnotic nuclei and crenated cells with condensation of nuclear material resulting into hyperchromatic cells. Hydrocephaly with enlarged lateral ventricles was also noted. Corpus callosum was seen malformed. Thickened meninges and venous congestion were also noticed. In the irradiated brains cytoarchitectonic layers were reduced in depth and showed some degree of intermixing of cells of various laminae. Hematoma was present between the cortex and medulla with numerous pycnotic and necrotic nuclei. Disarray of the cortical tissue with disorientation of cell processes was also evident. Damage in the cortex was noticed in the form of karyolysis, pycnosis and spongy degeneration of the connective tissue with the thickening of meninges. Dilation of blood vessels was also observed at certain places. Quality of these changes remaining the same, but their magnitude increased with dose. With an increase in the dose, time of the onset of recovery is delayed and the time required for complete recovery is longer. After the combined exposure of gamma rays and cadmium chloride, the histological changes were similar but showed higher magnitude than the individual exposure of gamma rays and cadmium chloride. The brain of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. (author)

  7. Cadmium induces changes in sucrose partitioning, invertase activities, and membrane functionality in roots of Rangpur lime (Citrus limonia L. Osbeck).

    Science.gov (United States)

    Podazza, G; Rosa, M; González, J A; Hilal, M; Prado, F E

    2006-09-01

    Cadmium (Cd) uptake effects on sucrose content, invertase activities, and plasma membrane functionality were investigated in Rangpur lime roots ( CITRUS LIMONIA L. Osbeck). Cadmium accumulation was significant in roots but not in shoots and leaves. Cadmium produced significant reduction in roots DW and increment in WC. Leaves and shoots did not show significant differences on both parameters. Sucrose content was higher in control roots than in Cd-exposed ones. Apoplastic sucrose content was much higher in Cd-exposed roots than in control ones. Cd-exposed roots showed a significant decrease in both cell wall-bound and cytoplasmic (neutral) invertase activities; while the vacuolar isoform did not show any change. Alterations in lipid composition and membrane fluidity of Cd-exposed roots were also observed. In Cd-exposed roots phospholipid and glycolipid contents decreased about 50 %, while sterols content was reduced about 22 %. Proton extrusion was inhibited by Cd. Lipid peroxidation and proton extrusion inhibition were also detected by histochemical analysis. This work's findings demonstrate that Cd affects sucrose partitioning and invertase activities in apoplastic and symplastic regions in Rangpur lime roots as well as the plasma membrane functionality and H (+)-ATPase activity.

  8. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  9. Fresh WNT into the regulation of mitosis.

    Science.gov (United States)

    Stolz, Ailine; Bastians, Holger

    2015-01-01

    Canonical Wnt signaling triggering β-catenin-dependent gene expression contributes to cell cycle progression, in particular at the G1/S transition. Recently, however, it became clear that the cell cycle can also feed back on Wnt signaling at the G2/M transition. This is illustrated by the fact that mitosis-specific cyclin-dependent kinases can phosphorylate the Wnt co-receptor LRP6 to prime the pathway for incoming Wnt signals when cells enter mitosis. In addition, there is accumulating evidence that various Wnt pathway components might exert additional, Wnt-independent functions that are important for proper regulation of mitosis. The importance of Wnt pathways during mitosis was most recently enforced by the discovery of Wnt signaling contributing to the stabilization of proteins other than β-catenin, specifically at G2/M and during mitosis. This Wnt-mediated stabilization of proteins, now referred to as Wnt/STOP, might on one hand contribute to maintaining a critical cell size required for cell division and, on the other hand, for the faithful execution of mitosis itself. In fact, most recently we have shown that Wnt/STOP is required for ensuring proper microtubule dynamics within mitotic spindles, which is pivotal for accurate chromosome segregation and for the maintenance of euploidy.

  10. Canonical Wnt signaling in diabetic retinopathy.

    Science.gov (United States)

    Chen, Qian; Ma, Jian-Xing

    2017-10-01

    Diabetic retinopathy (DR) is a common eye complication of diabetes, and the pathogenic mechanism of DR is still under investigation. The canonical Wnt signaling pathway is an evolutionarily conserved pathway that plays fundamental roles in embryogenesis and adult tissue homeostasis. Wnt signaling regulates expression of multiple genes that control retinal development and eye organogenesis, and dysregulated Wnt signaling plays pathophysiological roles in many ocular diseases, including DR. This review highlights recent progress in studies of Wnt signaling in DR. We discuss Wnt signaling regulation in the retina and dysregulation of Wnt signaling associated with ocular diseases with an emphasis on DR. We also discuss the therapeutic potential of modulating Wnt signaling in DR. Continued studies in this field will advance our current understanding on DR and contribute to the development of new treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Wnt5a Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Marwa S. Asem

    2016-08-01

    Full Text Available Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer.

  12. Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling.

    Science.gov (United States)

    Miyamoto, Kentaro; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Hirakawa, Akihiro; Sakai, Tadahiro; Hiraiwa, Hideki; Hamada, Takashi; Ishiguro, Naoki; Ohno, Kinji

    2017-01-01

    Abnormal activation of the Wnt/β-catenin signaling is implicated in the osteoarthritis (OA) pathology. We searched for a pre-approved drug that suppresses abnormally activated Wnt/β-catenin signaling and has a potency to reduce joint pathology in OA. We introduced the TOPFlash reporter plasmid into HCS-2/8 human chondrosarcoma cells to estimate the Wnt/β-catenin activity in the presence of 10 μM each compound in a panel of pre-approved drugs. We found that fluoxetine, an antidepressant in the class of selective serotonin reuptake inhibitors (SSRI), down-regulated Wnt/β-catenin signaling in human chondrosarcoma cells. Fluoxetine inhibited both Wnt3A- and LiCl-induced loss of proteoglycans in chondrogenically differentiated ATDC5 cells. Fluoxetine increased expression of Sox9 (the chondrogenic master regulator), and decreased expressions of Axin2 (a marker for Wnt/β-catenin signaling) and Mmp13 (matrix metalloproteinase 13). Fluoxetine suppressed a LiCl-induced increase of total β-catenin and a LiCl-induced decrease of phosphorylated β-catenin in a dose-dependent manner. An in vitro protein-binding assay showed that fluoxetine enhanced binding of β-catenin with Axin1, which is a scaffold protein forming the degradation complex for β-catenin. Fluoxetine suppressed LiCl-induced β-catenin accumulation in human OA chondrocytes. Intraarticular injection of fluoxetine in a rat OA model ameliorated OA progression and suppressed β-catenin accumulation.

  13. Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition.

    Science.gov (United States)

    Fumoto, Katsumi; Takigawa-Imamura, Hisako; Sumiyama, Kenta; Kaneiwa, Tomoyuki; Kikuchi, Akira

    2017-01-01

    In lung development, the apically constricted columnar epithelium forms numerous buds during the pseudoglandular stage. Subsequently, these epithelial cells change shape into the flat or cuboidal pneumocytes that form the air sacs during the canalicular and saccular (canalicular-saccular) stages, yet the impact of cell shape on tissue morphogenesis remains unclear. Here, we show that the expression of Wnt components is decreased in the canalicular-saccular stages, and that genetically constitutive activation of Wnt signaling impairs air sac formation by inducing apical constriction in the epithelium as seen in the pseudoglandular stage. Organ culture models also demonstrate that Wnt signaling induces apical constriction through apical actomyosin cytoskeletal organization. Mathematical modeling reveals that apical constriction induces bud formation and that loss of apical constriction is required for the formation of an air sac-like structure. We identify MAP/microtubule affinity-regulating kinase 1 (Mark1) as a downstream molecule of Wnt signaling and show that it is required for apical cytoskeletal organization and bud formation. These results suggest that Wnt signaling is required for bud formation by inducing apical constriction during the pseudoglandular stage, whereas loss of Wnt signaling is necessary for air sac formation in the canalicular-saccular stages. © 2017. Published by The Company of Biologists Ltd.

  14. Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis.

    Science.gov (United States)

    Rankin, Scott A; McCracken, Kyle W; Luedeke, David M; Han, Lu; Wells, James M; Shannon, John M; Zorn, Aaron M

    2018-02-01

    A small number of signaling pathways are used repeatedly during organogenesis, and they can have drastically different effects on the same population of cells depending on the embryonic stage. How cellular competence changes over developmental time is not well understood. Here we used Xenopus, mouse, and human pluripotent stem cells to investigate how the temporal sequence of Wnt, BMP, and retinoic acid (RA) signals regulates endoderm developmental competence and organ induction, focusing on respiratory fate. While Nkx2-1+ lung fate is not induced until late somitogenesis stages, here we show that lung competence is restricted by the gastrula stage as a result of Wnt and BMP-dependent anterior-posterior (A-P) patterning. These early Wnt and BMP signals make posterior endoderm refractory to subsequent RA/Wnt/BMP-dependent lung induction. We further mapped how RA modulates the response to Wnt and BMP in a temporal specific manner. In the gastrula RA promotes posterior identity, however in early somite stages of development RA regulates respiratory versus pharyngeal potential in anterior endoderm and midgut versus hindgut potential in posterior endoderm. Together our data suggest a dynamic and conserved response of vertebrate endoderm during organogenesis, wherein early Wnt/BMP/RA impacts how cells respond to later Wnt/BMP/RA signals, illustrating how reiterative combinatorial signaling can regulate both developmental competence and subsequent fate specification. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function

    Directory of Open Access Journals (Sweden)

    Alvarez Alejandra R

    2009-11-01

    Full Text Available Abstract Background The Wnt signaling pathway regulates several fundamental developmental processes and recently has been shown to be involved in different aspects of synaptic differentiation and plasticity. Some Wnt signaling components are localized at central synapses, and it is thus possible that this pathway could be activated at the synapse. Results We examined the distribution of the Wnt receptor Frizzled-1 in cultured hippocampal neurons and determined that this receptor is located at synaptic contacts co-localizing with presynaptic proteins. Frizzled-1 was found in functional synapses detected with FM1-43 staining and in synaptic terminals from adult rat brain. Interestingly, over