WorldWideScience

Sample records for cadmium induced oxidative

  1. Oxidative stress and DNA damages induced by cadmium accumulation

    Institute of Scientific and Technical Information of China (English)

    LIN Ai-jun; ZHANG Xu-hong; CHEN Mei-mei; CAO Qing

    2007-01-01

    Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.

  2. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: Role of glutathione in the resistance to cadmium

    International Nuclear Information System (INIS)

    Cadmium affects the cellular homeostasis and generates damage via complex mechanisms involving interactions with other metals and oxidative stress induction. In this work we used a human keratinocyte cell line (HaCaT) as a model to study the oxidative damage induced by cadmium to cellular macromolecules, its effect on the antioxidant systems and the role of glutathione in cell protection toward cadmium toxicity. The cells were incubated for 24 and 48 h with cadmium (3, 15, 50 and 100 μM). High doses of cadmium were required to induce a cytotoxicity: 100 μM lead to 30% mortality after 24 h and 50% after 48 h. The oxidation of lipids and proteins and the DNA damage, respectively, assessed by thiobarbituric acid reactants determination, thiol group measurement and comet assay, were observed for 50-100 μM cadmium. The cytotoxic effects were strongly correlated to the cellular cadmium content. The glutathione peroxidase and the catalase activities were decreased, while the glutathione reductase activity and the glutathione concentration were increased after cadmium treatment. The superoxide dismutases activities were unchanged. A depletion in glutathione prior to cadmium exposure increased the cytotoxic effects and provoked DNA damage. Our results suggested that the hydroxyl radical could be the major compound involved in the oxidative stress generated by cadmium and that glutathione could play a major role in the protection of HaCaT cells from cytotoxicity but mostly from DNA damage induced by cadmium

  3. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  4. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    International Nuclear Information System (INIS)

    Highlights: ► Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. ► Cd can result in oxidative stress in the frog testes. ► Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. ► Cd can cause apoptosis in the testes of male R. limnocharis. ► Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose–effect relationship. Moreover, the same dosages of Cd2+ solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5–7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a scientific basis accounting for the global population decline in amphibian species.

  5. Cadmium-induced oxidative stress in potato tuber

    Directory of Open Access Journals (Sweden)

    Andrzej Stroiński

    2014-02-01

    Full Text Available Short-term treatment of tuber discs of potato (Solanum tuberosum L. with cadmium chloride elevated the concentration of active oxygen species (.O-2, H202 and activated the antioxidative system. Two cultivars, Bintje and Bzura, susceptible and tolerant, respectively, to cadmium were examined. In more tolerant, control tissues the activity of ascorbic acid peroxidase (AAP and catalase (CAT was higher than in the sensitive ones. During first hours of stress, the inhibition of superoxide dismutase (SOD, CAT and AAP was observed and it comes from inactivation of enzymes by cadmium ions. A subsequent activity increase of the enzymes aroused earlier in tolerant tissues. It seems therefore, that tolerant tissues possess a more efficient antioxidative system.

  6. Cadmium induced oxidative stress in kidney epithelia cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    2007-01-01

    Cadmium (Cd) is an important industrial and environmental pollutant. In humans exposed to Cd via oral and/or pulmonary routes, the kidney is by far the primary organ affected adversely by Cd. It have been estimated that 7% of the human population may develop renal dysfunction from Cd exposure. To...... diacetate (DCFH-DA) for measurement of intracellular ROS production in living cells. The assay is based on the fact that DCFH-DA, a non polar and non fluorescent compound can diffuse through the cell membrane and be deacetylated by cytosolic esterases to yield polar, non-fluorescent DCFH. DCFH is trapped...

  7. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China); Jia Xiuying, E-mail: hznujiaxiuying@126.com [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. Black-Right-Pointing-Pointer Cd can result in oxidative stress in the frog testes. Black-Right-Pointing-Pointer Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. Black-Right-Pointing-Pointer Cd can cause apoptosis in the testes of male R. limnocharis. Black-Right-Pointing-Pointer Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose-effect relationship. Moreover, the same dosages of Cd{sup 2+} solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5-7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a

  8. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats.

    Science.gov (United States)

    Renugadevi, J; Prabu, S Milton

    2009-02-01

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. Naringenin is a naturally occurring plant bioflavonoid found in citrus fruits, which has been reported to have a wide range of pharmacological properties. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of cadmium toxicity. Since kidney is the critical target organ of chronic Cd toxicity, we carried out this study to investigate the effects of naringenin on Cd-induced toxicity in the kidney of rats. In experimental rats, oral administration of cadmium chloride (5mg/(kgday)) for 4 weeks significantly induced the renal damage which was evident from the increased levels of serum urea, uric acid, creatinine with a significant (pCadmium also significantly decreased the levels of urea, uric acid and creatinine in urine. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant (pcadmium-treated rats. Co-administration of naringenin (25 and 50mg/(kgday)) along with Cd resulted in a reversal of Cd-induced biochemical changes in kidney accompanied by a significant decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system. The histopathological studies in the kidney of rats also showed that naringenin (50mg/(kgday)) markedly reduced the toxicity of Cd and preserved the normal histological architecture of the renal tissue. The present study suggest that the nephroprotective potential of naringenin in Cd toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in Cd-induced renal damage. PMID:19063931

  9. Reversal of Cadmium-induced Oxidative Stress in Chicken by Herbal Adaptogens Withania Somnifera and Ocimum Sanctum

    OpenAIRE

    K Bharavi; Reddy, A. Gopala; G S Rao; Reddy, A. Rajasekhara; Rao, S. V. Rama

    2010-01-01

    The present study was carried out to evaluate the herbal adaptogens Withania somnifera and Ocimum sanctum on cadmium-induced oxidative toxicity in broiler chicken. Cadmium administration at the rate of 100 ppm orally along with feed up to 28 days produced peroxidative damage, as indicated by increase in TBARS, reduction in glutathione (GSH) concentration in liver and kidney, and increase in catalase (CAT) and superoxide dismutase (SOD) of erythrocytes. Herbal adaptogens Withania somnifera roo...

  10. Increased Oxidative DNA Damage in Placenta Contributes to Cadmium-Induced Preeclamptic Conditions in Rat.

    Science.gov (United States)

    Zhang, Xiaojie; Xu, Zhangye; Lin, Feng; Wang, Fan; Ye, Duyun; Huang, Yinping

    2016-03-01

    To explore the possible mechanisms of cadmium (Cd)-induced preeclamptic conditions in rats. In the present study, we introduced the in vivo model of preeclampsia by giving intraperitoneal injections of cadmium chloride (CdCl2) to pregnant rats from gestational day (GD) 4 to 19. Maternal body weights were recorded on GD 0, 14, and 20, while their systolic blood pressures (SBPs) monitored on GD 3, 11, and 18. On GD 20, rats were sacrificed and the specimens were collected. The morphological changes of placenta and kidney tissues of pregnant rats were examined by hematoxylin and eosin staining assay. Blood Cd level was detected by inductively coupled plasma mass spectrometry. Total antioxidant capacity (TAC) was evaluated using FRAP method and total nitrite (NOx) was detected with Griess reagent. Antioxidative factors and DNA damage/repair biomarkers were measured by real-time qPCR, western blot or immunohistochemistry study. The current results showed that CdCl2-treated pregnant rats developed preeclampsia (PE)-like manifestations, such as hypertension, albuminuria, with decreased TAC and increased blood Cd level, and pro-oxidative/antioxidative or DNA damage/repair biomarkers. Our study demonstrated that increased oxidative DNA damage in placenta could contribute to Cd-induced preeclamptic conditions in rat. PMID:26194818

  11. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice

    International Nuclear Information System (INIS)

    The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50 mg/kg b.w., p.o.), resveratrol (20 mg/kg b.w., p.o.) or melatonin (12 mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7 mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p < 0.001), decreased GSH content (to 65%, p < 0.001) and inhibited catalase (to 68%, p < 0.001) and GPx activity (to 60%, p < 0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p < 0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden

  12. Restorative Effects of Zinc and Selenium on Cadmium-induced Kidney Oxidative Damage in Rats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To investigate whether cadmium-induced oxidative stress in the kidney is influenced by zinc and selenium. Methods Five groups of rats were maintained: (A) Cd (CdCl2,400 μg@kg-1 day-1 intraperitoneal injection); (B) Cd+Zn (ZnC12, 20mg kg-1.day-1 hypodermic injection); (C) Cd+Se (Na2SeO3, 350 μg.kg-1.day-1 via a stomach tube); (D) Cd+Zn+Se; (E)treated with physiological saline as a sham-handled control. The rats were given treatmenl for a period of 4 weeks. The activities of superoxide dismutase (SOD), glutathione peroxidase (GH-Px), catalase (CAT), and the level of malondialdehyde (MDA) in the kidney tissue were measured to assess the oxidative stress. Urinary lactate dehydrogenase (LDH) activity was used as an indicator of tubular cell damage caused by lipid peroxidation. Results In group C and D, activities of SOD (110.5 ± 5.2, 126.8 ± 7.0; P < 0.05) and GSH-Px (85.7 ± 4.9,94.6 ± 7.3; P < 0.05) were higher than those in group A(84.7 ± 3.3; 56.9 ± 3.8); and in group B, only the activity of GSH-Px (80.0 + 4.3, P < 0.01) increased in comparison with that in group A (56.9 ± 3.8). Significant increase of MDA (P < 0.05) was seen in group B (31.1 ± 4.7) and C (35.0 + 4.1) when compared with control values (17.2 ± 1.8). No difference was found in the level of MDA between group D (18.9 ± 2.6) and control. The activity of LDH in urine of control group (0.06 ± 0.02) was lower than that of group A (0.46 ± 0.19, P<0.05), B (0.10± 0.05, P<0.05) and C (0.14 ± 0.07, P<0.05), and there was no significant change between control (0.06 + 0.02) and group D (0.08 ± 0.02). Conclusion Zinc or selenium could partially alleviate the oxidative stress induced by cadmium in kidney, but administration cadmium in combination with zinc and selenium efficiently protects kidney from cadmiuminduced oxidative damage.

  13. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P +K+-ATPase, Mg2+-ATPase and Ca2+-ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  14. Oxidative Stress and Cell Apoptosis in Caprine Liver Induced by Molybdenum and Cadmium in Combination.

    Science.gov (United States)

    Yang, Fan; Zhang, Caiying; Zhuang, Yu; Gu, Xiaolong; Xiao, Qingyang; Guo, Xiaoquan; Hu, Guoliang; Cao, Huabin

    2016-09-01

    To investigate the effects of co-exposure to molybdenum (Mo) and cadmium (Cd) on oxidative stress and cell apoptosis in caprine livers, 36 Boer goats were randomly divided into four groups with nine goats in each group. Three groups were randomly assigned with one of three oral treatments of CdCl2 (0.5 mg Cd kg(-1)·BW) and [(NH4)6Mo7O24·4H2O] (15 mg Mo kg(-1)·BW, 30 mg Mo kg(-1)·BW, 45 mg Mo kg(-1)·BW), while the control group received deionized water. Liver tissues on days 0, 25, and 50 were subjected to determine antioxidant activity indexes and the messenger RNA (mRNA) expression levels of ceruloplasmin (CP), cysteinyl aspartate-specific proteinase-3 (caspase-3), second mitochondria-derived activator of caspases (Smac), and cytochrome-C (Cyt-C) genes. The results showed that significant reductions were observed in total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD) activities (P < 0.05), while activities or contents of malondialdehyde (MDA), nitric oxide (NO), and nitric oxide synthase (NOS) were increased (P < 0.05). The mRNA expression levels of CP, caspase-3, Smac, and Cyt-C genes were upregulated (P < 0.05). In addition, histopathological lesions showed different degrees of vacuolar degeneration and edematous and mitochondrial swelling. The results suggest that co-exposure to Mo and Cd could induce oxidative stress and cell apoptosis possibly associated with mitochondrial intrinsic pathway in goat liver and show possible synergistic effects between the two elements. PMID:26883837

  15. Cardioprotective and Antioxidant Influence of Aqueous Extracts from Sesamum indicum Seeds on Oxidative Stress Induced by Cadmium in Wistar Rats

    Science.gov (United States)

    Oyinloye, Babatunji Emmanuel; Ajiboye, Basiru Olaitan; Ojo, Oluwafemi Adeleke; Nwozo, Sarah Onyenibe; Kappo, Abidemi Paul

    2016-01-01

    Background: Oxidative stress has been implicated in the pathogenesis of several acute and chronic diseases of the heart as a result of indiscriminate exposure to cardiotoxic heavy metals. The study reported here was designed to evaluate the possible ameliorative effect of aqueous extracts from Sesamum indicum (SI) seeds on oxidative stress induced by cadmium (Cd) in Wistar rats. Materials and Methods: Daily administration of Cd (200 mg/L Cd as CdCl2) in the animals’ main drinking water for 21 days led to oxidative stress. Thereafter, the ameliorative effects were assessed by measuring biochemical parameters such as extent of lipid peroxidation (LPO), lipid profile, and enzymatic and nonenzymatic antioxidants, as well as serum aminotransferase activities. Results: Treatment with SI extract elicited notable reduction in serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels as well as concomitant increase in high-density lipoprotein cholesterol. SI extract also reversed the elevations witnessed in serum aminotransferase activities, LPO level, and ameliorated enzymatic and nonenzymatic antioxidant status in the heart of Cd-exposed rats. Conclusion: Thus, SI appears to be an attractive candidate with potential for the novel treatment of cardiotoxicity and management of oxidative stress arising from Cd exposure. SUMMARY Cadmium (200 mg/L) exposure in drinking water caused pronounced oxidative stress and cardiac tissue damage in animal modelAqueous extract of Sesamum indicum (SI) seeds at a dose of 200 or 400 mg/kg body weight exhibited a significant reversal effect in all biochemical parameters measured such as extent of lipid peroxidation, lipid profile, and enzymatic and nonenzymatic antioxidants, as well as serum aminotransferase activitiesAqueous extract of SI seeds possess antioxidant and cardioprotective potential in a dose-dependent manner, thus conferring protection against oxidative stress induced by cadmium. Abbreviation used

  16. OXIDATIVE STRESS IN SHEEP INDUCED BY CADMIUM CHLORIDE TOXICITY, WITH THERAPEUTIC EFFECTS OF ALPHA LIPOIC ACID

    OpenAIRE

    Hussien Ali NAJI; Mohammad Mushgil ZENAD

    2015-01-01

    Cadmium (Cd) is a heavy toxic metal, with harmful effects on animals and public health. Recently the risk of cadmium toxicity is substantially regarded; the environmental pollution is increased due to multi- uses of this element in various industries. This study was performed to clarify the effects of acute cadmium toxicity in sheep with trail of using alpha lipoic acid as an antioxidant therapeutic substance. Fifteen male lambs aged from 5-to-7 months were divided equally in to three groups,...

  17. Analysis of metal profile in soybean after cadmium-induced oxidative damage

    Institute of Scientific and Technical Information of China (English)

    Emiliano Felici; Cesar Almeida; Martin Fernndez Baldo; Luis D Martnez; Fanny Zirulnik; Mara R Gomez

    2014-01-01

    Objective: To analyze the effect of cadmium (Cd) on soybean seedlings growth and the relationship with the distribution and concentration of macro-microelements. Methods: The ions concentrations were determined by ICP-MS. The extraction efficiency and digestion time were optimized. Also, oxidative stress parameters were determined and related with metal content. Results:The accumulated amount of dry matter in roots and leaves was lower in the Cd-treated group. Regression analysis showed that the exposure to Cd affected the accumulated amount of dry matter as well as the content of mineral elements in the analysis samples. In Cd treated plants, electrical conductivity increased respect to the controls, indicating that ionic permeability became altered. A strong inhibition of the chlorophylls (chl) biosynthesis in the Cd-treated group was also demonstrated by a decrease of chla and chlb concentration. This result was related with the observed significant decrease in the Mg uptake at the roots and leaves level. Conclusions: The stress caused by Cd exposure, evidenced by significantly high hydrogen peroxide levels in roots and leaves after 24 h and the content of specific macro-microelements is a factor that affects the accumulation of dry matter, electrical conductivity and chlorophylls concentration.

  18. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    International Nuclear Information System (INIS)

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 ± 4 cm and weight of 86 ± 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl2.H2O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl2.H2O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and taurine have potential to reduce

  19. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Puneet, E-mail: puneetbiochem@gmail.com [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Prasad, Y. [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Patra, A.K. [West Bengal University of Animal and Fishery Sciences, Kolkata-700037 (India); Ranjan, R.; Swarup, D.; Patra, R.C. [Division of Medicine, Indian Veterinary Research Institute, Izatnagar-243122 (India); Pal, Satya [Env. Eng. Lab., Deptt. of Civil Engineering, I.I.T., Roorkee-247667 (India)

    2009-09-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 {+-} 4 cm and weight of 86 {+-} 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl{sub 2}.H{sub 2}O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl{sub 2}.H{sub 2}O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and

  20. Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings

    Institute of Scientific and Technical Information of China (English)

    Long Zhang; Zhen Chen; Cheng Zhu

    2012-01-01

    The effect of calcium chloride (CaCl2) on rice seedling growth under cadmium chloride (CdCl2) stress,as well as the possible role of endogenous nitric oxide (NO) in this process,was studied.The growth of rice seedlings was seriously inhibited by CdCl2,and the inhibition was significantly mitigated by CaCl2.However,hemoglobin (Hb) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline1-oxyl-3-oxide (cPTIO) weakened the promotion effect of CaCl2.The resuhs of NO fluorescence localization suggest that growth accelerated by CaCl2 might be associated with elevated NO levels.The content of Cd,protein thiols (PBT),and nonprotein thiols (NPT) in cell walls,cell organelles,and soluble fractions,respectively,of rice seedlings decreased considerably in the presence of CaCl2,whereas the content of pectin,hemicellulose 1 (HC1),and hemicellulose 2 (HC2) increased significantly.Elimination of endogenous NO in Cd+Ca treatment could promote the transportation of Cd2+ to cell organelles and soluble fractions and increase the content of NPT and PBT in leaves.In addition,transportation of Cd2+ to cell organelles and soluble fractions was retarded in roots,the content of NPT increased,and the content of PBT decreased.With elimination of endogenous NO in Cd+Ca treatment,the content of pectin,HC 1,and HC2 decreased significantly.Thus,Ca may alleviate Cd toxicity via endogenous NO with variation in the levels of NPT,PBT,and matrix polysaccharides.

  1. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment. Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.

  2. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    International Nuclear Information System (INIS)

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  3. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  4. Ameliorative effects of Rosmarinus officinalis leaf extract and Vitamin C on cadmium-induced oxidative stress in Nile tilapia Oreochromis niloticus.

    Science.gov (United States)

    Al-Anazi, Marim Saleh; Virk, Promy; Elobeid, Mai; Siddiqui, Muzammil Iqbal

    2015-11-01

    The present studywas undertaken to assess the bioaccumulation potential of cadmium in liver, kidney, gills and muscles of freshwater fish, Nile tilapia Oreochromis niloticus and the changes in oxidative stress indices in liver and kidney with or without simultaneous treatment with waterborne vitamin C and rosemary leaf extract. Adult tilapia were divided into seven groups. Six groups were exposed to sublethal concentrations of Cd, three groups to 5 ppm, while other three to 10 ppm. Two groups from each of the Cd exposed groups were treated with Vitamin C (5ppm) and rosemary leaf extract (2.5 ppm) for a period of 21 days. Cadmium concentration in liver, kidneys and gills was significantly higher in the cadmium exposed groups being invariably high in the groups exposed to 10 ppm CdCl2.H2O.Treatment with Vitamin C and rosemary leaf extract significantly reduced cadmium concentration in comparison to non-treated Cd exposed groups. Treatment with Vitamin C and rosemary leaf extract significantly reduced oxidative stress in Cd exposed fish as evidenced from lower concentration of lipid peroxides and reduced activity of catalase and higher activity of superoxide dismutase in liver and kidney as compared to control fish. Reduction in Cd induced oxidative stress and bioaccumulation was comparable between the two antioxidant treatments, Vitamin C and rosemary leaf extract. The key findings suggest that both the antioxidants used showed ameliorative potential to reduce tissue accumulation of Cd and associated oxidative stress in fresh water fish, Nile tilapia. PMID:26688980

  5. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  6. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    International Nuclear Information System (INIS)

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H2O2) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 μM significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H2O2 and superoxide anion (O2·-), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN3 as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 μM NAC decreased the contents of TBARS and production of H2O2 and O2·-, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  7. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaopeng; Xia Yan; Hu Wei [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Zhang Hongxiao, E-mail: hxzhang@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China)

    2010-08-15

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 {mu}M significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H{sub 2}O{sub 2} and superoxide anion (O{sub 2}{center_dot}{sup -}), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 {mu}M NAC decreased the contents of TBARS and production of H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -}, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  8. The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice.

    Science.gov (United States)

    Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav

    2006-01-01

    Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. PMID:16345010

  9. OXIDATIVE STRESS IN SHEEP INDUCED BY CADMIUM CHLORIDE TOXICITY, WITH THERAPEUTIC EFFECTS OF ALPHA LIPOIC ACID

    Directory of Open Access Journals (Sweden)

    Hussien Ali NAJI

    2015-09-01

    Full Text Available Cadmium (Cd is a heavy toxic metal, with harmful effects on animals and public health. Recently the risk of cadmium toxicity is substantially regarded; the environmental pollution is increased due to multi- uses of this element in various industries. This study was performed to clarify the effects of acute cadmium toxicity in sheep with trail of using alpha lipoic acid as an antioxidant therapeutic substance. Fifteen male lambs aged from 5-to-7 months were divided equally in to three groups, they were supplied with ordinary diet and provided with water ad-lib, the first group 1 was administered a single dose of CdCl2 3 mg/kg.bw subcutaneously (S/C, the second group 2 was injected with the same dose of CdCl2 and by the same route, and then simultaneously administered an alpha lipoic acid 50 mg/kg.bw intramuscularly, the later drug was repeated after 12 hours via the same route. The third group 3 was left as control and given normal saline (S/C. All animals were daily monitored and the clinical signs were recorded. The signs of cadmium toxicity appeared 18 hours post CdCl2 administration in the group 1; the signs were gradually increased in severity and multiple systems were involved included: digestive disturbances, cardiovascular and neurological dysfunctions, and locomotors abnormalities. Significant elevations in the body temperature, respiratory and heart rates were observed, deaths of 2 lambs were recorded 96 hours post CdCl2 injection. The group 2 showed mild clinical signs, and no death was occurred, moreover insignificant variations between clinical parameters in both groups 2 and 3 were recorded. Serum biochemical analysis revealed significant (P<0.05 increased of malondialdehyde (5.41 ± 0.282 μmol/L and glutathione (10.68 ± 0.38 μmol/L concentrations and marked elevation of serum catalase activity (103.85 ± 3.93 u/L was also observed in group I, whereas the last three parameters showed no significant differences between groups 2

  10. Protective role of cabbage extract versus cadmium-induced oxidative renal and thyroid hormones dysfunctions in rats

    International Nuclear Information System (INIS)

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd damage. Cabbage is economically an important cole crop grown and consumed worldwide. It belongs the Cruciferous vegetables (Brassica), which have been reported to have a wide range of pharmacological properties. Since kidney is the critical target organ of chronic Cd damage, we carried out this study to investigate the effects of cabbage extract (C.E.) on Cd-induced dysfunction in the kidney of rats. The thyroid hormones values were also determined. Male Wistar rats were provided with cadmium chloride (100 mg/ L water) as the only drinking fluid and/or cabbage extract (C.E.) (5 ml/ kg body weight /day) for 4 weeks. Oral administration of Cd significantly induced the renal damage which was evident from the significantly (p < 0.05) increased levels of serum urea, uric acid and creatinine with a significant (p < 0.05) decrease in creatinine clearance. It also significantly declined the levels of urea, uric acid and creatinine in urine. Intoxication of Cd to rats reduced serum triiodothyronine (T3) and thyroxine (T4) concentrations. Reduced glutathione (GSH), and enzymatic antioxidants (superoxide dismutase (SOD) and catalase (CAT) were also significantly (p < 0.05) depressed with a concomitant marked enhancement in lipid peroxidation marker (thiobarbituric acid reactive substances, TBARS). Co-administration of C.E. along with Cd resulted in a reversal of the Cd-induced biochemical variables in kidney accompanied by a significant reduction in lipid peroxidation and a higher levels of renal antioxidant defense system. However, incorporation of C.E. to rats whether applied alone or in combination with Cd did not reveal any change in the thyroid hormones levels, which reflect significant drop in

  11. Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato

    OpenAIRE

    Ahammed, Golam Jalal; Choudhary, Sikander Pal; Chen, Shuangchen; Xia, Xiaojian; Shi, Kai; Zhou, Yanhong; Yu, Jingquan

    2012-01-01

    Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applie...

  12. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    Science.gov (United States)

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress. PMID:26762936

  13. Thymoquinone Ameliorates Cadmium-Induced Nephrotoxicity, Apoptosis, and Oxidative Stress in Rats is Based on its Anti-Apoptotic and Anti-Oxidant Properties.

    Science.gov (United States)

    Erboga, Mustafa; Kanter, Mehmet; Aktas, Cevat; Sener, Umit; Fidanol Erboga, Zeynep; Bozdemir Donmez, Yeliz; Gurel, Ahmet

    2016-03-01

    Cadmium (Cd), an environmental and industrial pollutant, generates free radicals responsible for oxidative stress. Cd can also lead to various renal toxic damage such as the proximal tubules and glomerulus dysfunction. Thymoquinone (TQ) is the main constituent of the essential oil obtained from black seeds (Nigella sativa) and has various pharmacological effects. The aim of the present study was to examine the nephroprotective, anti-oxidant, and anti-apoptotic effect of the TQ against Cd-induced nephrotoxicity. A total of 24 male Wistar albino rats were divided into three groups: control, Cd-treated, and Cd-treated with TQ; each group contain eight animals. The Cd-treated group was injected subcutaneously with CdCl2 dissolved in saline in the amount of 2 ml/kg/day for 30 days, resulting in a dosage of 1 mg/kg Cd. The rats in TQ-treated groups were given TQ (50 mg/kg body weight) once a day orally together with first Cd injection during the study period. The histopathological studies in the kidney of rats also showed that TQ markedly reduced the toxicity of Cd and preserved the normal histological architecture of the renal tissue. Immunohistochemical analysis revealed that TQ significantly decreased the Cd-induced over expression of nuclear factor-κB in renal tissue. Furthermore, TQ treatment resulted in decreased the number of apoptotic cells. TQ significantly suppressed lipid peroxidation, compensated deficits in the anti-oxidant defenses (reduced superoxide dismutase, glutathione peroxidase and catalase activities) in renal tissue resulted from Cd administration. These findings suggest that the nephroprotective potential of TQ in Cd toxicity might be due to its anti-oxidant and anti-apoptotic properties, which could be useful for achieving optimum effects in Cd-induced nephrotoxicity. PMID:26226832

  14. Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling.

    Science.gov (United States)

    Bashir, Nazima; Manoharan, Vaihundam; Miltonprabu, Selvaraj

    2016-06-01

    The present study has been designed and carried out to explore the role of grape seed proanthocyanidins (GSP) in the pancreas of cadmium (Cd)-induced cellular oxidative stress-mediated toxicity in rats. Four groups of healthy rats were given oral doses of Cd (5-mg/kg BW) and to identify the possible mechanism of action of GSP 100-mg/kg BW was selected and was given 90 min before Cd intoxication. The causative molecular and cellular mechanism of Cd was determined using various biochemical assays, histology, western blotting and ELISA. Cd intoxication revealed increased levels of proinflammatory cytokines (TNF-α, IL1β and IFN-γ), reduced levels of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2 and GLUT-4) along with the enhanced levels of signaling molecules of apoptosis (cleaved Caspase-12/9/8/3) in the pancreas of Cd-intoxicated rats. Results suggested that the treatment with GSP reduced blood glucose level, increased plasma insulin and mitigated oxidative stress-related markers. GSP protects pancreatic tissue by attenuated inflammatory responses and inhibited apoptosis. This uniqueness and absence of any detectable adverse effect of GSP proposes the possibility of using it as an effective protector in the oxidative stress-mediated pancreatic dysfunction in rats. PMID:27142746

  15. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Franzellitti, Silvia [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); Fabbri, Elena [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna (Italy); Kaloyianni, Martha, E-mail: kaloyian@bio.auth.gr [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-01-15

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na{sup +}/H{sup +} exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca{sup 2+}-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and

  16. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    International Nuclear Information System (INIS)

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na+/H+ exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca2+-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and cyclic adenosine-3

  17. Comparison of cadmium-induced oxidative stress in Brassica juncea in soil and hydroponic cultures

    OpenAIRE

    Armas, Teresa; Pinto, Ana Paula; de Varennes, Amarilis; Mourato, Manuel Pedro; Martins, Luisa Louro; Gonçalves, Maria de Lurdes Simões; Mota, Ana Maria

    2014-01-01

    Abstract Aims The objective of this study was to investigate the response of Brassica juncea in the presence of Cd, in hydroponic and soil experiments, and to conclude about common and divergent trends in both cultures. Methods We studied the effect of Cd on growth, oxidative damage and antioxidant responses in roots and shoots of B. juncea grown in soil and hydroponic cultures, using typical time-scales for each one. Major ROS-scavenging enzymes such as catalase, ascorbate peroxidase a...

  18. Lanthanum rather than cadmium induces oxidative stress and metabolite changes in Hypericum perforatum

    International Nuclear Information System (INIS)

    Highlights: • Impact of La, Cd and Cd + La on the metabolism of Hypericum perforatum was compared. • La stimulated ROS and suppressed growth and basic antioxidants more than Cd. • Impact of Cd + La was not synergistic including the sod gene expression. • La depleted hypericin and hyp-1 gene expression but amount of hyperforin increased. • La reduced flavonols and procyanidins mainly in the roots and affected anatomy - Abstract: Physiology, oxidative stress and production of metabolites in Hypericum perforatum exposed to moderate Cd and/or La concentration (10 μM) were studied. La evoked increase in reactive oxygen species, malondialdehyde and proline but suppressed growth, tissue water content, glutathione, ascorbic acid and affected mineral nutrient contents more than Cd while the impact of Cd + La was not synergistic. Similar trend was observed at the level of superoxide dismutase gene expression. Shoot Cd amount increased in Cd + La while only root La increased in the same treatment. Extensive quantification of secondary metabolites revealed that La affected phenolic acids more pronouncedly than Cd in shoots and roots. Flavonols were suppressed by La that could contribute to the appearance of oxidative damage. Procyanidins increased in response to La in the shoots but decreased in the roots. Metabolic responses in Cd + La treatment resembled those of La treatment (almost identically in the roots). Phenylalanine ammonia-lyase activity was mainly suppressed by La. The presence of La also depleted amount of hypericin and expression of its putative gene (hyp-1) showed similar trend but accumulation of hyperforin increased under Cd or La excess. Clear differences in the stem and root anatomy in response to Cd or La were also found. Overall, H. perforatum is La-sensitive species and rather Cd ameliorated negative impact of La

  19. Lanthanum rather than cadmium induces oxidative stress and metabolite changes in Hypericum perforatum

    Energy Technology Data Exchange (ETDEWEB)

    Babula, Petr [Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic); Klejdus, Bořivoj [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic); CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic); Kovacik, Jozef, E-mail: jozkovacik@yahoo.com [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic); CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic); Hedbavny, Josef; Hlavna, Marián [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic)

    2015-04-09

    Highlights: • Impact of La, Cd and Cd + La on the metabolism of Hypericum perforatum was compared. • La stimulated ROS and suppressed growth and basic antioxidants more than Cd. • Impact of Cd + La was not synergistic including the sod gene expression. • La depleted hypericin and hyp-1 gene expression but amount of hyperforin increased. • La reduced flavonols and procyanidins mainly in the roots and affected anatomy - Abstract: Physiology, oxidative stress and production of metabolites in Hypericum perforatum exposed to moderate Cd and/or La concentration (10 μM) were studied. La evoked increase in reactive oxygen species, malondialdehyde and proline but suppressed growth, tissue water content, glutathione, ascorbic acid and affected mineral nutrient contents more than Cd while the impact of Cd + La was not synergistic. Similar trend was observed at the level of superoxide dismutase gene expression. Shoot Cd amount increased in Cd + La while only root La increased in the same treatment. Extensive quantification of secondary metabolites revealed that La affected phenolic acids more pronouncedly than Cd in shoots and roots. Flavonols were suppressed by La that could contribute to the appearance of oxidative damage. Procyanidins increased in response to La in the shoots but decreased in the roots. Metabolic responses in Cd + La treatment resembled those of La treatment (almost identically in the roots). Phenylalanine ammonia-lyase activity was mainly suppressed by La. The presence of La also depleted amount of hypericin and expression of its putative gene (hyp-1) showed similar trend but accumulation of hyperforin increased under Cd or La excess. Clear differences in the stem and root anatomy in response to Cd or La were also found. Overall, H. perforatum is La-sensitive species and rather Cd ameliorated negative impact of La.

  20. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    Science.gov (United States)

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants. PMID:23741796

  1. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H2DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  2. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  3. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration

    Directory of Open Access Journals (Sweden)

    R. C. Patra

    2011-01-01

    Full Text Available Oxidative stress has been implicated to play a role, at least in part, in pathogenesis of many disease conditions and toxicities in animals. Overproduction of reactive oxygen species and free radicals beyond the cells intrinsic capacity to neutralize following xenobiotics exposure leads to a state of oxidative stress and resultant damages of lipids, protein, and DNA. Lead and cadmium are the common environmental heavy metal pollutants and have widespread distribution. Both natural and anthropogenic sources including mining, smelting, and other industrial processes are responsible for human and animal exposure. These pollutants, many a times, are copollutants leading to concurrent exposure to living beings and resultant synergistic deleterious health effects. Several mechanisms have been explained for the damaging effects on the body system. Of late, oxidative stress has been implicated in the pathogenesis of the lead- and cadmium-induced pathotoxicity. Several ameliorative measures to counteract the oxidative damage to the body system aftermath or during exposure to these toxicants have been assessed with the use of antioxidants. The present review focuses on mechanism of lead- and cadmium-induced oxidate damages and the ameliorative measures to counteract the oxidative damage and pathotoxicity with the use of supplemented antioxidants for their beneficial effects.

  4. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    International Nuclear Information System (INIS)

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  5. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzóska, Malgorzata M., E-mail: Malgorzata.Brzoska@umb.edu.pl; Rogalska, Joanna

    2013-10-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  6. Soluble Moringa oleifera leaf extract reduces intracellular cadmium accumulation and oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kerdsomboon, Kittikhun; Tatip, Supinda; Kosasih, Sattawat; Auesukaree, Choowong

    2016-05-01

    Moringa oleifera leaves are a well-known source of antioxidants and traditionally used for medicinal applications. In the present study, the protective action of soluble M. oleifera leaf extract (MOLE) against cadmium toxicity was investigated in the model eukaryote Saccharomyces cerevisiae. The results showed that this extract exhibited a protective effect against oxidative stress induced by cadmium and H2O2 through the reduction of intracellular reactive oxygen species. Interestingly, not only the co-exposure of soluble MOLE with cadmium but also pretreatment of this extract prior to cadmium exposure significantly reduced the cadmium uptake through an inhibition of Fet4p, a low-affinity iron(II) transporter. In addition, the supplementation of soluble MOLE significantly reduced intracellular iron accumulation in a Fet4p-independent manner. Our findings suggest the potential use of soluble extract from M. oleifera leaves as a dietary supplement for protection against cadmium accumulation and oxidative stress. PMID:26675819

  7. Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish.

    Science.gov (United States)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Li, Wei-Ye

    2016-08-01

    Based on the same toxic level of 0.6% LC50 for 96-h and the severe situation of water pollution, we compared effects of chronic Zn (180μgL(-1)) and Cd exposures (30μgL(-1)) on growth, survival, histology, ultrastructure, and oxidative stress in the liver of zebrafish for 5 weeks. Growth performance and survival rate remained relatively constant under Zn stress, but was reduced under Cd exposure. Cd exposure also induced severe pyknotic nuclei, evident ultrastructure damage, and considerable lipid inclusions in the hepatocytes. However, these phenomena were not pronounced under Zn exposure. The negative effects caused by Cd may be explained by an increase in hepatic oxidative damage, as reflected by the enhanced levels of lipid peroxidation (LPO) and protein carbonylation (PC). The reduced activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and catalase (CAT) may result in the enhanced hepatic oxidative damage, though the mRNA and protein levels of both genes increased and remained unchanged respectively. On the contrary, Zn up-regulated the levels of mRNA, protein and activity of Cu/Zn-SOD, which may contribute to the decreased LPO levels. Nonetheless, the sharply up-regulated mRNA levels of CAT did not induce an increase in the protein and activity levels of CAT under Zn stress. Furthermore, transcription factor NF-E2-related factor 2 (Nrf2) expression parelleled with its target genes, suggesting that Nrf2 is required for the protracted induction of antioxidant genes. In conclusion, our data demonstrated that essential and non-essential metals induced some differences in oxidative damage in fish. The differences were not caused by the transcriptional level of related genes but depended on post-transcriptional modifications. PMID:27323295

  8. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet

    International Nuclear Information System (INIS)

    Cd exposure has been associated to an augmented risk for cardiovascular disease. We investigated the effects of 15 and 100 ppm of Cd on redox status as well as histological changes in the rat heart and the putative protective effect of a soy-based diet. Male Wistar rats were separated into 6 groups and treated during 60 days as follows: groups (1), (2) and (3) were fed a casein-based diet; groups (4), (5) and (6), a soy-based diet; (1) and (4) were given tap water; (2) and (5) tap water containing 15 ppm of Cd2+; and (3) and (6) tap water containing 100 ppm of Cd2+. Serum lipid peroxides increased and PON-1 activity decreased in group (3). Lipoperoxidation also increased in the heart of all intoxicated groups; however protein oxidation only augmented in (3) and reduced glutathione levels diminished in (2) and (3). Catalase activity increased in groups (3) and (6) while superoxide dismutase activity increased only in (6). Glutathione peroxidase activity decreased in groups (3) and (6). Nrf2 expression was higher in groups (3) and (6), and MTI expression augmented in (3). Histological examination of the heart tissue showed the development of hypertrophic and fusion of cardiomyocytes along with foci of myocardial fiber necrosis. The transmission electron microscopy analysis showed profound ultra-structural damages. No protection against tissue degeneration was observed in animals fed the soy-based diet. Our findings indicate that even though the intake of a soy-based diet is capable of ameliorating Cd induced oxidative stress, it failed in preventing cardiac damage. -- Highlights: ► Cd intoxication produces extracellular and ultrastructural damage in the myocardium. ► The intake of a soy-based diet ameliorated Cd-induced oxidative stress. ► Cd-induced myocardial damage wasn't prevented by the intake of a soy-based diet. ► Cd-induced myocardial degeneration may not be caused by oxidative stress generation. ► Histology evaluation is needed to establish the

  9. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet

    Energy Technology Data Exchange (ETDEWEB)

    Ferramola, Mariana L.; Pérez Díaz, Matías F.F. [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina); Honoré, Stella M.; Sánchez, Sara S. [Department of Development Biology, INSIBIO, National University of Tucumán, CONICET-UNT, Tucumán (Argentina); Antón, Rosa I. [Department of Chemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, INQUISAL, CONICET, San Luis (Argentina); Anzulovich, Ana C. [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina); Giménez, María S., E-mail: mgimenez@unsl.edu.ar [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina)

    2012-12-15

    Cd exposure has been associated to an augmented risk for cardiovascular disease. We investigated the effects of 15 and 100 ppm of Cd on redox status as well as histological changes in the rat heart and the putative protective effect of a soy-based diet. Male Wistar rats were separated into 6 groups and treated during 60 days as follows: groups (1), (2) and (3) were fed a casein-based diet; groups (4), (5) and (6), a soy-based diet; (1) and (4) were given tap water; (2) and (5) tap water containing 15 ppm of Cd{sup 2+}; and (3) and (6) tap water containing 100 ppm of Cd{sup 2+}. Serum lipid peroxides increased and PON-1 activity decreased in group (3). Lipoperoxidation also increased in the heart of all intoxicated groups; however protein oxidation only augmented in (3) and reduced glutathione levels diminished in (2) and (3). Catalase activity increased in groups (3) and (6) while superoxide dismutase activity increased only in (6). Glutathione peroxidase activity decreased in groups (3) and (6). Nrf2 expression was higher in groups (3) and (6), and MTI expression augmented in (3). Histological examination of the heart tissue showed the development of hypertrophic and fusion of cardiomyocytes along with foci of myocardial fiber necrosis. The transmission electron microscopy analysis showed profound ultra-structural damages. No protection against tissue degeneration was observed in animals fed the soy-based diet. Our findings indicate that even though the intake of a soy-based diet is capable of ameliorating Cd induced oxidative stress, it failed in preventing cardiac damage. -- Highlights: ► Cd intoxication produces extracellular and ultrastructural damage in the myocardium. ► The intake of a soy-based diet ameliorated Cd-induced oxidative stress. ► Cd-induced myocardial damage wasn't prevented by the intake of a soy-based diet. ► Cd-induced myocardial degeneration may not be caused by oxidative stress generation. ► Histology evaluation is needed to

  10. Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings.

    Science.gov (United States)

    Li, Song; Chen, Junren; Islam, Ejazul; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Yan, Wenbo; Peng, Danli; Liu, Dan

    2016-06-01

    Moso bamboo (Phyllostachys pubescens (Pradelle) Mazel ex J.Houz.) is recognized as a potential phytoremediation plant due to its huge biomass and high tolerance to environmental stresses. The objectives of this study were to investigate mechanism related to cadmium (Cd) tolerance and to evaluate Cd accumulation capacity of moso bamboo. The results of the pot experiment showed that Cd accumulation by bamboo increased with increasing the Cd levels in soil and the values in stem ranged from 28.51 to 132.13 mg kg(-1). Meanwhile chlorophyll in leaves and total biomass showed a decreasing trend. The bioaccumulation factors (BAF) for roots and stem in all the treatments were more than 1.0 and the translocation factor (TF) ranged from 0.70 to 1.06. In hydroponics experiment, the concentrations of malondialdehyde (MDA) in the leaves were significantly increased in Cd treated plants as compared with control. The activities of superoxide dismutase (SOD) and peroxidase (POD) were enhanced at initial stage and then decreased consistently with the increase of Cd addition. The proline concentrations were also increased due to the presence of Cd, particularly at 25 μM Cd treatment. According to TEM-EDX analysis, the cytoplasm was the main site for accumulation of Cd in moso bamboo. On the basis of overall results, it is suggested that moso bamboo could be successfully used for the remediation of low Cd (no more than 5 mg kg(-1)) contaminated soils. PMID:27015570

  11. Amorphous tin-cadmium oxide films and the production thereof

    Science.gov (United States)

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  12. Protective Effect of Cleistocalyx nervosum var. paniala Fruit Extract against Oxidative Renal Damage Caused by Cadmium

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2016-01-01

    Full Text Available Cadmium nephrotoxicity is a serious environmental health problem as it will eventually end up with end stage renal disease. The pathobiochemical mechanism of this toxic heavy metal is related to oxidative stress. This study investigated whether Cleistocalyx nervosum var. paniala fruit extract (CNFE could protect the kidney against oxidative injury caused by cadmium. Initial analysis of the extract revealed antioxidant abilities and high levels of polyphenols, particularly catechin. Its potential renal benefits was further explored in rats treated with vehicle, CNFE, cadmium (2 mg/kg, and cadmium plus CNFE (0.5, 1, 2 g/kg for four weeks. Oxidative renal injury was developed after cadmium exposure as evidenced by blood urea nitrogen and creatinine retention, glomerular filtration reduction, renal structural damage, together with increased nitric oxide and malondialdehyde, but decreased antioxidant thiols, superoxide dismutase, and catalase in renal tissues. Cadmium-induced nephrotoxicity was diminished in rats supplemented with CNFE, particularly at the doses of 1 and 2 g/kg. It is concluded that CNFE is able to protect against the progression of cadmium nephrotoxicity, mostly via its antioxidant power. The results also point towards a promising role for this naturally-occurring antioxidant to combat other human disorders elicited by disruption of redox homeostasis.

  13. Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity.

    Science.gov (United States)

    Fouad, Amr A; Qureshi, Habib A; Yacoubi, Mohamed T; Al-Melhim, Walid N

    2009-11-01

    The hepatoprotective effect of carnosine was investigated against cadmium-induced acute liver injury in mice. Hepatotoxicity was induced by a single i.p. injection of cadmium chloride (6.5mg/kg). Carnosine treatment (10mg/kg/day, i.p.) was applied for three consecutive days, starting one day before cadmium administration. Carnosine significantly decreased the cadmium-induced elevations in serum aminotransferases. Carnosine suppressed lipid peroxidation and restored the deficits in the antioxidant defense mechanisms (reduced glutathione level, and catalase and superoxide dismutase activities) in liver tissue resulted from cadmium administration. Also, the reductions in hepatic nitric oxide and zinc ion levels, and the increases in hepatic cadmium ion concentration, and myeloperoxidase and caspase-3 activities following cadmium exposure were significantly attenuated by carnosine treatment. In addition, carnosine markedly ameliorated cadmium-induced liver tissue damage as evidenced by light and electron microscopic examinations. It was concluded that carnosine can be considered a potential candidate to protect the liver against the deleterious effect of acute cadmium intoxication. PMID:19748544

  14. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper, lead and cadmium.

    Science.gov (United States)

    Lin, Haiying; Sun, Tao; Zhou, Yi; Zhang, Xiaomei

    2016-08-15

    To investigate the potential influences of anthropogenic pollutants, we evaluated the responses of the intertidal seagrass Zostera japonica to three heavy metals: copper (Cu), lead (Pb), and cadmium (Cd). Z. japonica was exposed to various concentrations of Cu, Pb, and Cd (0, 0.5, 5, 50μM) over seven days. The effects were then analyzed using the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and lipid peroxidation measured using malondialdehyde (MDA) as proxy. Metal accumulation in the above-ground tissues and phenotypic changes were also investigated. Our results revealed that heavy metal concentration increased in seagrass exposed to high levels of metals. Z. japonica has great potential for metal accumulation and a suitable candidate for the decontamination of moderately Cu contaminated bodies of water and can also potentially enhanced efforts of environmental decontamination, either through phytoextraction abilities or by functioning as an indicator for monitoring programs that use SOD, CAT, GPX, POD and MDA as biomarkers. PMID:27287861

  15. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    Science.gov (United States)

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats. PMID:25022246

  16. Transcriptional and biochemical markers in transplanted Perca flavescens to characterize cadmium- and copper-induced oxidative stress in the field

    International Nuclear Information System (INIS)

    Highlights: • Four-weeks exposure is sufficient to increase kidney metal levels in wild perch. • Cd and Cu affected indicators of retinoid metabolism and oxidative stress in fish. • Multi-level biological approaches are needed when assessing fish metal toxicology. • Changes at molecular level do not always mean changes at the functional level. • Wild juvenile perch may partly adjust to metal contamination by plastic responses. - Abstract: Despite recent progress achieved in elucidating the mechanisms underlying local adaptation to pollution, little is known about the evolutionary change that may be occurring at the molecular level. The goal of this study was to examine patterns of gene transcription and biochemical responses induced by metal accumulation in clean yellow perch (Perca flavescens) and metal depuration in contaminated fish in a mining and smelting region of Canada. Fish were collected from a reference lake (lake Opasatica) and a Cd, Cu and Zn contaminated lake (lake Dufault) located in the Rouyn-Noranda region (Qc, Canada) and caged for one or four weeks in their own lake or transplanted in the other lake. Free-ranging fish from the same lakes were also collected. Kidney Cd and Cu concentrations in clean fish caged in the contaminated lake increased with the time of exposure, but metal depuration did not occur in contaminated fish caged in the clean lake. After 4 weeks, the major retinoid metabolites analysed, the percentage of free dehydroretinol (dROH) and the retinol dehydrogenase-2 (rdh-2) transcription level in liver decreased in clean fish transplanted into the metal-contaminated lake, suggesting that metal exposure negatively impacted retinoid metabolism. However, we observed an increase in almost all of the retinoid parameters analysed in fish from the metal-impacted lake caged in the same lake, which we interpret as an adaptation response to higher ambient metal concentration. In support of this hypothesis, liver transcription levels

  17. Transcriptional and biochemical markers in transplanted Perca flavescens to characterize cadmium- and copper-induced oxidative stress in the field

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9 (Canada); Bernatchez, Louis [Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Campbell, Peter G.C.; Couture, Patrice [Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9 (Canada)

    2015-05-15

    Highlights: • Four-weeks exposure is sufficient to increase kidney metal levels in wild perch. • Cd and Cu affected indicators of retinoid metabolism and oxidative stress in fish. • Multi-level biological approaches are needed when assessing fish metal toxicology. • Changes at molecular level do not always mean changes at the functional level. • Wild juvenile perch may partly adjust to metal contamination by plastic responses. - Abstract: Despite recent progress achieved in elucidating the mechanisms underlying local adaptation to pollution, little is known about the evolutionary change that may be occurring at the molecular level. The goal of this study was to examine patterns of gene transcription and biochemical responses induced by metal accumulation in clean yellow perch (Perca flavescens) and metal depuration in contaminated fish in a mining and smelting region of Canada. Fish were collected from a reference lake (lake Opasatica) and a Cd, Cu and Zn contaminated lake (lake Dufault) located in the Rouyn-Noranda region (Qc, Canada) and caged for one or four weeks in their own lake or transplanted in the other lake. Free-ranging fish from the same lakes were also collected. Kidney Cd and Cu concentrations in clean fish caged in the contaminated lake increased with the time of exposure, but metal depuration did not occur in contaminated fish caged in the clean lake. After 4 weeks, the major retinoid metabolites analysed, the percentage of free dehydroretinol (dROH) and the retinol dehydrogenase-2 (rdh-2) transcription level in liver decreased in clean fish transplanted into the metal-contaminated lake, suggesting that metal exposure negatively impacted retinoid metabolism. However, we observed an increase in almost all of the retinoid parameters analysed in fish from the metal-impacted lake caged in the same lake, which we interpret as an adaptation response to higher ambient metal concentration. In support of this hypothesis, liver transcription levels

  18. Zinc and cadmium oxidation by cyclopentadienylmolybdenum(tungsten) tricarbonyl chlorides

    International Nuclear Information System (INIS)

    Influence of the nature of organic solvent on reaction rate and yield of zinc and cadmium interaction products with Cp(CO)3 MCl complexes (Cp - cyclopentadiene; M = Mo, W) at temperatures of 283-303 K was studied. Kinetic parameters of zinc and cadmium oxidation by molybdenum complex in the presence of N,N-dimethylformamide were ascertained. Thermodynamic parameters of the oxidant and ligand adsorption on metal surface were determined. It is shown that the use of the complexes studied as metal oxidants permits preparing compounds featuring molybdenum and tunsten bond with zinc and cadmium

  19. A Study of Growth of Cadmium Oxide Nano structure

    International Nuclear Information System (INIS)

    Cadmium oxide nano structure were synthesized by solid-vapor deposition without catalyst. Cadmium Oxide powder was heated to 1320 K in a tube furnace, and the resultant vapor was carried to the silicon substrate zone by an argon flow. Field electron scanning electron microscopy revealed that the product was dendrite-like petals of Cadmium Oxide nano structure. The grown nano structure had random orientations and a grain size of 30 nm. Photoluminescence spectroscopy was conducted to investigate the optical properties of the nano structures. The red-shift direct band gap energy of Cadmium Oxide nano structure was at 548 nm (2.26 eV), whereas that of CdO bulk was at 491 nm (2.5 eV). (author)

  20. Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium

    International Nuclear Information System (INIS)

    Discovered in late 1817, cadmium is currently one of the most important occupational and environmental pollutants. It is associated with renal, neurological, skeletal and other toxic effects, including reproductive toxicity, genotoxicity, and carcinogenicity. There is still much to find out about its mechanisms of action, bio markers of critical effects, and ways to reduce health risks. At present, there is no clinically efficient agent to treat cadmium poisoning due to predominantly intracellular location of cadmium ions. This article gives a brief review of cadmium-induced oxidative stress and its interactions with essential elements zinc and magnesium as relevant mechanisms of cadmium toxicity. It draws on available literature data and our own results, which indicate that dietary supplementation of either essential element has beneficial effect under condition of cadmium exposure. We have also tackled the reasons why magnesium addition prevails over zinc and discussed the protective role of magnesium during cadmium exposure. These findings could help to solve the problem of prophylaxis and therapy of increased cadmium body burden. (authors)

  1. European Union Summary Risk Assessment Report - Cadmium Metal and Cadmium Oxide

    OpenAIRE

    2008-01-01

    This report provides a summary, with conclusions, of the risk assessment report of the substances cadmium metal and cadmium oxide that has been prepared by Belgium in the context of Council Regulation (EEC) No. 793/93 on the evaluation and control of existing substances. For detailed information on the risk assessment principles and procedures followed, the underlying data and the literature references, the reader is referred to the comprehensive Final Risk Assessment Report (Final RAR) t...

  2. Cadmium-induced fetal toxicity in the rat

    International Nuclear Information System (INIS)

    Cadmium, a heavy metal environment contaminant, induces fetal death and placental necrosis in the Wistar rat. This study investigated fetal, maternal, and placental responses to cadmium intoxication. Subcutaneous injection of CdCl2 to dams on day 18 of pregnancy produced a high incidence of fetal death (75%) and placental necrosis. Death in the fetus was produced despite limited fetal accumulations of cadmium. Distribution studies using 109Cd-labeled CdCl2 demonstrated that less than 0.1% of the injected dose was associated with the fetus. To determine if fetuses were sensitive to these low levels of cadmium, direct injections of CdCl2 into fetuses were performed in utero. Direct injections produced fetal accumulations 8-fold greater than those following maternal injections. The 8-fold greater fetal accumulations following direct injection were associated with only a 12% fetal mortality compared to the 75% mortality following maternal injections. The data indicated that the fetal toxicity of cadmium following maternal injections was not the result of direct effects of cadmium on the fetus. In conclusion, cadmium-induced fetal death was not the result of direct effects of cadmium on the fetus but may have been induced by placental cellular injury resulting from high accumulations of cadmium in the placenta. A vascular response to placental injury, leading to decreased utero-placental bood flow and cadmium-induced alterations in trophoblastic function, resulted in fetal death

  3. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    Directory of Open Access Journals (Sweden)

    Upa Kukongviriyapan

    2014-03-01

    Full Text Available Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L in drinking water for eight weeks. Curcumin (50 or 100 mg/kg was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.

  4. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  5. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  6. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  7. Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure

    International Nuclear Information System (INIS)

    The mechanisms of plant defence against cadmium toxicity have been studied by short-term exposure of Lemna minor L. (common duckweed) to concentrations of CdCl2 ranging from 0 to 500 μM. High accumulation of cadmium was observed (12,320 ± 2155 μg g-1 at 500 μM CdCl2), which caused a gradual decrease of plant growth, increased lipid peroxidation, and weakened the entire antioxidative defence. Total glutathione concentration decreased significantly; however, the concentration of oxidized glutathione remained stable. The responses of four antioxidant enzymes showed that catalase was the most inhibited after CdCl2 exposure, ascorbate peroxidase and guaiacol peroxidase moderately, and glutathione reductase least. The total antioxidative potential revealed an induced antioxidative network at 0.1 μM CdCl2 (137 ± 13.2% of the control) and its reduction to only 47.4 ± 4.0% of the control at higher cadmium concentrations. The possible application of the examined biomarkers in ecotoxicological research is discussed. - The increase of total antioxidative potential at low cadmium concentration is one of the mechanisms that helps duckweed to cope with cadmium-induced oxidative stress

  8. Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Razinger, Jaka [Department for Environmental Technologies and Biomonitoring, Institute of Physical Biology, Veliko Mlacevo 59, SI-1290 Grosuplje (Slovenia)], E-mail: jaka@ifb.si; Dermastia, Marina [National Institute of Biology, Vecna pot 111, p.p. 141, SI-1001 Ljubljana (Slovenia); Biotechnical Faculty, Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Koce, Jasna Dolenc [Biotechnical Faculty, Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Zrimec, Alexis [Department for Environmental Technologies and Biomonitoring, Institute of Physical Biology, Veliko Mlacevo 59, SI-1290 Grosuplje (Slovenia)

    2008-06-15

    The mechanisms of plant defence against cadmium toxicity have been studied by short-term exposure of Lemna minor L. (common duckweed) to concentrations of CdCl{sub 2} ranging from 0 to 500 {mu}M. High accumulation of cadmium was observed (12,320 {+-} 2155 {mu}g g{sup -1} at 500 {mu}M CdCl{sub 2}), which caused a gradual decrease of plant growth, increased lipid peroxidation, and weakened the entire antioxidative defence. Total glutathione concentration decreased significantly; however, the concentration of oxidized glutathione remained stable. The responses of four antioxidant enzymes showed that catalase was the most inhibited after CdCl{sub 2} exposure, ascorbate peroxidase and guaiacol peroxidase moderately, and glutathione reductase least. The total antioxidative potential revealed an induced antioxidative network at 0.1 {mu}M CdCl{sub 2} (137 {+-} 13.2% of the control) and its reduction to only 47.4 {+-} 4.0% of the control at higher cadmium concentrations. The possible application of the examined biomarkers in ecotoxicological research is discussed. - The increase of total antioxidative potential at low cadmium concentration is one of the mechanisms that helps duckweed to cope with cadmium-induced oxidative stress.

  9. Effects of Cadmium on BMP Induced Bone Formation

    Institute of Scientific and Technical Information of China (English)

    陈秋生; 徐顺清

    2003-01-01

    To demonstrate the direct effects of cadmium on activities of bone morphogenetic protein (BMP), a complex containing BMP and cadmium chloride (CdCl2) was implanted beneath the abdominal skin of young male Wistar rats. The activity of BMP was studied by observing the histological changes, and measuring the activity of alkaline phosphatase (ALP) and acid phosphatase (ACP) and calcium content of the implants at different time points. Our results showed that during bone formation induced by BMP, cadmium inhibited the activities of osteoblasts and osteoclasts, and slowed the deposition of calcium. It is concluded that cadmium can directly affect biological activities of BMP directly.

  10. Role of oxidative stress in cadmium toxicity and carcinogenesis

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-κB, AP-1 and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.

  11. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Migliaccio, Oriana; Castellano, Immacolata [Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Romano, Giovanna [Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Palumbo, Anna, E-mail: anna.palumbo@szn.it [Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy)

    2014-11-15

    Highlights: • NO is produced in sea urchin embryos in response to cadmium and manganese. • Cadmium and manganese affect the expression of specific genes. • NO levels regulate directly or indirectly the expression of some metal-induced genes. • NO is proposed as a sensor of different stress agents in sea urchin embryos. - Abstract: Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by L-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos.

  12. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

    International Nuclear Information System (INIS)

    Highlights: • NO is produced in sea urchin embryos in response to cadmium and manganese. • Cadmium and manganese affect the expression of specific genes. • NO levels regulate directly or indirectly the expression of some metal-induced genes. • NO is proposed as a sensor of different stress agents in sea urchin embryos. - Abstract: Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by L-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos

  13. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the

  14. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    International Nuclear Information System (INIS)

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  15. Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair.

    Science.gov (United States)

    Schwerdtle, Tanja; Ebert, Franziska; Thuy, Christina; Richter, Constanze; Mullenders, Leon H F; Hartwig, Andrea

    2010-02-15

    Water-soluble and particulate cadmium compounds are carcinogenic to humans. While direct interactions with DNA are unlikely to account for carcinogenicity, induction of oxidative DNA damage and interference with DNA repair processes might be more relevant underlying modes of action (recently summarized, for example, in Joseph , P. (2009) Tox. Appl. Pharmacol. 238 , 271 - 279). The present study aimed to compare genotoxic effects of particulate CdO and soluble CdCl(2) in cultured human cells (A549, VH10hTert). Both cadmium compounds increased the baseline level of oxidative DNA damage. Even more pronounced, both cadmium compounds inhibited the nucleotide excision repair (NER) of BPDE-induced bulky DNA adducts and UVC-induced photolesions in a dose-dependent manner at noncytotoxic concentrations. Thereby, the uptake of cadmium in the nuclei strongly correlated with the repair inhibition of bulky DNA adducts, indicating that independent of the cadmium compound applied Cd(2+) is the common species responsible for the observed repair inhibition. Regarding the underlying molecular mechanisms in human cells, CdCl(2) (as shown before by Meplan, C., Mann, K. and Hainaut, P. (1999) J. Biol. Chem. 274 , 31663 - 31670 ) and CdO altered the conformation of the zinc binding domain of the tumor suppressor protein p53. In further studies applying only CdCl(2), cadmium decreased the total nuclear protein level of XPC, which is believed to be the principle initiator of global genome NER. This led to diminished association of XPC to sites of local UVC damage, resulting in decreased recruitment of further NER proteins. Additionally, CdCl(2) strongly disturbed the disassembly of XPC and XPA. In summary, our data indicate a general nucleotide excision repair inhibition by cadmium compounds, which is most likely caused by a diminished assembly and disassembly of the NER machinery. These data reveal new insights into the mechanisms involved in cadmium carcinogenesis and provide further

  16. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration

    OpenAIRE

    R. C. Patra; Amiya K. Rautray; D. Swarup

    2011-01-01

    Oxidative stress has been implicated to play a role, at least in part, in pathogenesis of many disease conditions and toxicities in animals. Overproduction of reactive oxygen species and free radicals beyond the cells intrinsic capacity to neutralize following xenobiotics exposure leads to a state of oxidative stress and resultant damages of lipids, protein, and DNA. Lead and cadmium are the common environmental heavy metal pollutants and have widespread distribution. Both natural and anthrop...

  17. Oral exposure of mice to cadmium (II), chromium (VI) and their mixture induce oxidative- and endoplasmic reticulum-stress mediated apoptosis in the livers.

    Science.gov (United States)

    Jin, Yuanxiang; Zhang, Songbin; Tao, Runhua; Huang, Jie; He, Xingzhi; Qu, Lanya; Fu, Zhengwei

    2016-06-01

    Health concerns regarding the environmental heavy metals in wildlife and humans have increased in recent years. We evaluated the effects of exposure of mice to low doses of cadmium (Cd), chromium (Cr) and their mixtures on oxidative- and ER-stress. Male adult mice were orally exposed to Cd (0.5 and 2 mg kg(-1) ), Cr (1 and 4 mg kg(-1) ) and binary Cd+Cr mixtures (0.25 + 05 and 1 + 2 mg kg(-1) ) daily for 36 days. We observed that the bioaccumulation of Cd and Cr in the liver in a dose-dependent manner, and the Cd and Cr contents in the 2 mg kg(-1) Cd and 4 mg kg(-1) Cr treated groups reached 2.43 and 3.46 µg g(-1) liver weight. In addition, treatments with 2 mg kg(-1) Cd, 4 mg kg(-1) Cr or their mixture (1 + 2 mg kg(-1) ) significantly decreased body and liver weights, increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and activities of catalase (CAT) and glutathione peroxidase (GPX) in the liver. Moreover, Cd and Cr exposures also elevated the transcription of the oxidative- and endoplasmic reticulum (ER)-stress related genes including Cat, Gpx, heme oxygenase 1 (Ho-1), regulated protein 78 (Grp78), activating transcription factor 6 (Atf6) and proaoptotic CCAAT/-enhancer-binding protein homologous protein (Chop) in a dose dependent manner in the liver. And hepatic cytochrome c levels increased in all Cd, Cr or their mixture treated groups. Furthermore, the transcriptional status and the activities of Caspase 9 and Caspase 3 were increased significantly in the liver when exposed to high doses of Cd, Cr or their mixture. These results suggested that a long period exposure of mice to Cd or Cr has the potential to elicit oxidative- and ER-stress mediated apoptosis in their livers. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 693-705, 2016. PMID:25409916

  18. Protective role of ceftriaxone plus sulbactam with VRP1034 on oxidative stress, hematological and enzymatic parameters in cadmium toxicity induced rat model.

    Science.gov (United States)

    Dwivedi, Vivek Kumar; Bhatanagar, Anuj; Chaudhary, Manu

    2012-12-01

    We investigated the protective role of ceftriaxone plus sulbactam with VRP1034 (Elores) on hematological, lipid peroxidation, antioxidant enzymatic activities and Cd levels in the blood and tissues of cadmium exposed rats. Twenty-four male rats were divided into three groups of eight rats each. The control group received distilled water whereas group II received CdCl2 (1.5 mg/4 ml/body weight) through gastric gavage for 21 days. Group III received CdCl2 and was treated with ceftriaxone plus sulbactam with VRP1034 for 21 days. The hematological, biochemical, lipid peroxidation levels and enzymatic parameters were measured in plasma and tissues (brain, liver and kidney) of all groups. The Cd, Zn and Fe levels were measured in blood and tissues of all groups. Our findings showed significantly decreased cadmium (pceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. Delta aminolevulinate dehydratase (δ-ALAD) activity was significantly (pceftriaxone plus sulbactam with VRP1034 treated group as compared with cadmium exposed group. The levels of hepatic and renal parameters were significantly (pceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. These findings indicate that ceftriaxone plus sulbactam with VRP1034 acts as a potent free radical scavenger and exhibits metal chelating properties that reduce free radical mediated tissue injury and prevent dysfunction of hepatic and renal organs during metal intoxication. PMID:23554563

  19. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    Energy Technology Data Exchange (ETDEWEB)

    Mehinto, Alvine C., E-mail: alvinam@sccwrp.org [Southern California Coastal Water Research Project, Costa Mesa, CA 92626 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Prucha, Melinda S. [Department of Human Genetics, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Colli-Dula, Reyna C.; Kroll, Kevin J.; Lavelle, Candice M.; Barber, David S. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Vulpe, Christopher D. [Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720 (United States); Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States)

    2014-07-01

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  20. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    International Nuclear Information System (INIS)

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  1. Effect of Physalis peruviana L. on cadmium-induced testicular toxicity in rats.

    Science.gov (United States)

    Othman, Mohamed S; Nada, Ahmed; Zaki, Hassan S; Abdel Moneim, Ahmed E

    2014-06-01

    Cadmium (Cd) stimulates the production of reactive oxygen species and causes tissue damage. We investigated here the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced testes toxicity in rats. Twenty-eight Wistar albino rats were used. They were divided into four groups (n=7). Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg body weight (bwt) of cadmium chloride for 5 days. Group 3 was orally treated with 200 mg/kg bwt of methanolic extract of physalis (MEPh). Group 4 was pretreated with MEPh before cadmium for 5 days. Changes in body and testes weights were determined. Oxidative stress markers, antioxidant enzymes, and testosterone level were measured. Histopathological changes of testes were examined, and the immunohistochemical staining for the proapoptotic (caspase-3) protein was performed. The injection of cadmium caused a significant decrease in body weight, while a significant increase in testes weight and testes weight index was observed. Pretreatment with MEPh was associated with significant reduction in the toxic effects of Cd as shown by reduced testicular levels of malondialdehyde, nitric oxide, and caspase-3 expression and increased glutathione content, and the activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and testosterone were also increased. Testicular histopathology showed that Cd produced an extensive germ cell apoptosis, and the pretreatment of MEPh in Cd-treated rats significantly reduced Cd-induced testicular damage. On the basis of the above results, it can be hypothesized that P. peruviana L. has a protective effect against cadmium-induced testicular oxidative stress and apoptosis in the rat. PMID:24728876

  2. Cellular mechanisms of cadmium-induced toxicity: a review.

    Science.gov (United States)

    Rani, Anju; Kumar, Anuj; Lal, Ankita; Pant, Manu

    2014-08-01

    Cadmium is a widespread toxic pollutant of occupational and environmental concern because of its diverse toxic effects: extremely protracted biological half-life (approximately 20-30 years in humans), low rate of excretion from the body and storage predominantly in soft tissues (primarily, liver and kidneys). It is an extremely toxic element of continuing concern because environmental levels have risen steadily due to continued worldwide anthropogenic mobilization. Cadmium is absorbed in significant quantities from cigarette smoke, food, water and air contamination and is known to have numerous undesirable effects in both humans and animals. Cadmium has a diversity of toxic effects including nephrotoxicity, carcinogenicity, teratogenicity and endocrine and reproductive toxicities. At the cellular level, cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Most important seems to be cadmium interaction with DNA repair mechanism, generation of reactive oxygen species and induction of apoptosis. In this article, we have reviewed recent developments and findings on cadmium toxicology. PMID:24117228

  3. Study of oxide films on the surface of cadmium telluride

    International Nuclear Information System (INIS)

    Study of oxide films on surfaces of CdTe monocrystals is continued by methods of ellipsometry and by absorption in IR-spectral range. Index values of refruction of oxide films, produced by cadmium telluride oxidation in hydrogen peroxide solutions, in oxigen flow at 673 K and by anode oxidation, as a rule, differ essentially in dependence on method of production, that gives evidence of differences in these films composition. Oxide films, produced in oxygen flow, as opposed to films, produced by two other methods, have intensive absorption, characteristic for tellurite group. Film thickness, produced by oxidation in hydrogen peroxide and in oxygen flow, varies within rather wide limits with observance of externally similar conditions of production. By contrast to it, thickness of anode films is regulated reliably by anode potential

  4. Cadmium induces apoptosis in pancreatic β-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation.

    Directory of Open Access Journals (Sweden)

    Kai-Chih Chang

    Full Text Available Cadmium (Cd, one of well-known highly toxic environmental and industrial pollutants, causes a number of adverse health effects and diseases in humans. The growing epidemiological studies have suggested a possible link between Cd exposure and diabetes mellitus (DM. However, the toxicological effects and underlying mechanisms of Cd-induced pancreatic β-cell injury are still unknown. In this study, we found that Cd significantly decreased cell viability, and increased sub-G1 hypodiploid cells and annexin V-Cy3 binding in pancreatic β-cell-derived RIN-m5F cells. Cd also increased intracellular reactive oxygen species (ROS generation and malondialdehyde (MDA production and induced mitochondrial dysfunction (the loss of mitochondrial membrane potential (MMP and the increase of cytosolic cytochrome c release, the decreased Bcl-2 expression, increased p53 expression, poly (ADP-ribose polymerase (PARP cleavage, and caspase cascades, which accompanied with intracellular Cd accumulation. Pretreatment with the antioxidant N-acetylcysteine (NAC effectively reversed these Cd-induced events. Furthermore, exposure to Cd induced the phosphorylations of c-jun N-terminal kinases (JNK, extracellular signal-regulated kinases (ERK1/2, and p38-mitogen-activated protein kinase (MAPK, which was prevented by NAC. Additionally, the specific JNK inhibitor SP600125 or JNK-specific small interference RNA (si-RNA transfection suppressed Cd-induced β-cell apoptosis and related signals, but not ERK1/2 and p38-MAPK inhibitors (PD98059 and SB203580 did not. However, the JNK inhibitor or JNK-specific si-RNA did not suppress ROS generation in Cd-treated cells. These results indicate that Cd induces pancreatic β-cell death via an oxidative stress downstream-mediated JNK activation-triggered mitochondria-regulated apoptotic pathway.

  5. Cadmium exposure induces hematuria in Korean adults

    International Nuclear Information System (INIS)

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; Ptrend=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk

  6. Cadmium exposure induces hematuria in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Seok [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Kim, Myounghee, E-mail: dkkim73@gmail.com [Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do 461-713 (Korea, Republic of); Lee, Su Mi [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jung Pyo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Sejoong [Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 463-707 (Korea, Republic of); Joo, Kwon Wook [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lim, Chun Soo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Yon Su; Kim, Dong Ki [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  7. FrnE, a Cadmium-Inducible Protein in Deinococcus radiodurans, Is Characterized as a Disulfide Isomerase Chaperone In Vitro and for Its Role in Oxidative Stress Tolerance In Vivo

    OpenAIRE

    Khairnar, Nivedita P.; Joe, Min-Ho; Misra, H. S.; Lim, Sang-Yong; Kim, Dong-Ho

    2013-01-01

    Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ∼15- and ∼3-fold, respectively. These cells also showed nearly 6 times less resistance to gamma radiation at 12 kGy and ∼2...

  8. Investigation of adsorption interaction of cadmium oxide with antimony (3) in alkaline solutions

    International Nuclear Information System (INIS)

    Adsorption processes on cadmium oxide in pure antimonite alkaline (KOH) solutions and in the presence of organic additions (sodium salt of carboxymethylcellulose, straw oil) have been studied. It is shown, that in the systems being studied, the chemosorptional interaction, leading to a sharp change in the adsorbent surface state is observed. It is established that the formation of a surface high-disperse cadmium oxide-antimony com ound on the cadmium oxide results in practically complete suppression of the cadmium oxide hydration process in aqueous solutions

  9. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    International Nuclear Information System (INIS)

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3–5 μM for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40–50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1–10 μM restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 μM. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  10. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Todd, E-mail: toddhsu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Kuan-Ming; Tsai, Huei-Ting; Sung, Shih-Tsung; Ho, Tsung-Nan [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-01-15

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3-5 {mu}M for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40-50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1-10 {mu}M restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 {mu}M. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  11. Protective role of ceftriaxone plus sulbactam with VRP1034 on oxidative stress, hematological and enzymatic parameters in cadmium toxicity induced rat model

    OpenAIRE

    Dwivedi, Vivek Kumar; Bhatanagar, Anuj; Chaudhary, Manu

    2012-01-01

    We investigated the protective role of ceftriaxone plus sulbactam with VRP1034 (Elores) on hematological, lipid peroxidation, antioxidant enzymatic activities and Cd levels in the blood and tissues of cadmium exposed rats. Twenty-four male rats were divided into three groups of eight rats each. The control group received distilled water whereas group II received CdCl2 (1.5 mg/4 ml/body weight) through gastric gavage for 21 days. Group III received CdCl2 and was treated with ceftriaxone plus s...

  12. Sealed Silver-oxide Cadmium Batteries for Space Flight, 1960 - 1977

    Science.gov (United States)

    Hennigan, Thomas J.

    1978-01-01

    A technical summary of design, development, and test activities with Silver-Oxide Cadmium Batteries at the Goddard Space Flight Center since 1960 is given. The flight experience of over 15 missions has demonstrated the sealed Silver-Oxide Cadmium Battery to be a viable energy storage device for missions requiring ultra-clean magnetic environment.

  13. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.

    Science.gov (United States)

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Diab, Marwa M S; Othman, Mohamed S; Aref, Ahmed M; Abdel Moneim, Ahmed E

    2014-12-01

    This study aimed to investigate the potential protective role of Physalis peruviana L. (family Solanaceae) against cadmium-induced hepatorenal toxicity in Wistar rats. Herein, cadmium chloride (CdCl2) (6.5 mg/kg bwt/day) was intraperitoneally injected for 5 days, and methanolic extract of physalis (MEPh) was pre-administered to a group of Cd-treated rats by an oral administration at a daily dose of 200 mg/kg bwt for 5 days. The findings revealed that CdCl2 injection induced significant decreases in kidney weight and kidney index. Cadmium intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of uric acid, urea and creatinine were increased in the serum. The pre-administration of MEPh alleviated hepatorenal toxicity in Cd-treated rats. Physalis was noted to play a good hepatorenal protective role, reducing lipid peroxidation, nitric oxide, and enhancing enzymatic activities and non-enzymatic antioxidant molecule, glutathione, in hepatic and renal tissues of Cd-treated rats. Moreover, physalis treatment was able to reverse the histopathological changes in liver and kidney tissues and also increased the expression of Bcl-2 protein in liver and kidney of rats. Overall, the results showed that MEPh can induce antioxidant and anti-apoptotic effects and also exerts beneficial effects for the treatment of Cd-induced hepatorenal toxicity. PMID:25265456

  14. A Review of Molecular Events of Cadmium-Induced Carcinogenesis

    OpenAIRE

    Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Lately, Cd and Cd containing compounds have been classified as known human carcinogens and epidemiological data show causal associations with prostate, breast and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently become of grea...

  15. Cadmium-induced Cancers in Animals and in Humans

    OpenAIRE

    Huff, James; Lunn, Ruth M.; Waalkes, Michael P.; Tomatis, Lorenzo; Infante, Peter F.

    2007-01-01

    Discovered in the early 1800s, the use of cadmium and various cadmium salts started to become industrially important near the close of the 19th century, rapidly thereafter began to flourish, yet has diminished more recently. Most cadmium used in the United States is a byproduct from the smelting of zinc, lead, or copper ores, and is used to manufacture batteries. Carcinogenic activity of cadmium was discovered first in animals and only subsequently in humans. Cadmium and cadmium compounds hav...

  16. FrnE, a cadmium-inducible protein in Deinococcus radiodurans, is characterized as a disulfide isomerase chaperone in vitro and for its role in oxidative stress tolerance in vivo.

    Science.gov (United States)

    Khairnar, Nivedita P; Joe, Min-Ho; Misra, H S; Lim, Sang-Yong; Kim, Dong-Ho

    2013-06-01

    Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ~15- and ~3-fold, respectively. These cells also showed nearly 6 times less resistance to gamma radiation at 12 kGy and ~2-fold-higher sensitivity to 40 mM hydrogen peroxide than the wild type. In trans expression of drFrnE increased cytotoxicity of dithiothreitol (DTT) in the dsbA mutant of Escherichia coli. Recombinant drFrnE showed disulfide isomerase activity and could maintain insulin in its reduced form in the presence of DTT. While an equimolar ratio of wild-type protein could protect malate dehydrogenase completely from thermal denaturation at 42 °C, the C22S mutant of drFrnE provided reduced protection to malate dehydrogenase from thermal inactivation. These results suggested that drFrnE is a protein disulfide isomerase in vitro and has a role in oxidative stress tolerance of D. radiodurans possibly by protecting the damaged cellular proteins from inactivation. PMID:23603741

  17. Radiation and cadmium induced histological alteration in the mice liver

    International Nuclear Information System (INIS)

    radiation and cadmium induced changes at histological level. Alterations in the histological changes were found dose dependent. More pronounced histopathological changes were registered after the combined exposure of cadmium chloride and gamma rays. (author)

  18. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: Evidence from transcript expression to physiology

    International Nuclear Information System (INIS)

    Standard ecotoxicity tests are performed at species’ specific standard temperatures, but temperature is known to affect chemical toxicity. A temperature increase has been shown to increase cadmium toxicity in several aquatic species but information in fish is scarce. Based on literature we hypothesize that with increasing temperature, cadmium accumulation and oxidative stress increase, resulting in increased toxicity. In this study zebrafish acclimated to 12, 18, 26 (standard temperature) or 34 °C for one month, were exposed to 5 μM cadmium for 4 or 28 days at the respective acclimation temperature. Cadmium toxicity (mortality) increased with increasing temperature. PCA showed that the high mortality at 34 °C was closely correlated to an increasing tissue cadmium accumulation with increasing temperature, but not to liver oxidative damage under the form of protein carbonyl content or lipid peroxidation (measured as malondialdehyde levels) or liver antioxidative potential. Instead, acclimation to 12 °C induced the highest oxidative damage to liver proteins and lipids, and transcript levels of glucose-6P-dehydrogenase, 6P-gluconate-dehydrogenase and glutathione peroxidase were particularly good markers of cold-induced oxidative stress. At this low temperature there was no interaction with cadmium exposure and there was no sign of cadmium sensitivity. Contrastingly, the combined effect of high temperature and cadmium exposure on mortality proved synergistic. Therefore we conclude that interactions between temperature and cadmium toxicity increased with increasing temperature and that this probably played part in increasing cadmium sensitivity. Increased cadmium compartmentalization and protein carbonyl content in liver of zebrafish acclimated to the standard temperature of 26 °C probably played part in increased sensitivity towards the same cadmium body burden compared to lower temperatures. On the one hand we recognize and this study even confirms the

  19. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S;

    2002-01-01

    the skeleton nor to the cadmium concentrations. Furthermore, the degree of mineralisation of the skeleton was not correlated with the cadmium concentration, age or sex. It can therefore be concluded that despite high levels of cadmium, none of the ringed seals showed any signs of cadmium......-induced nephropathy or osteodystrophy. This might be explained by the composition of the ringed seals diet, which contains high levels of vitamin D, calcium, phosphorus, zinc, selenium and protein. These elements are all likely to counteract cadmium-induced damage. It is speculated that ringed seal are not...

  20. Cadmium accumulation and subcellular distribution in relation to cadmium chloride induced cytotoxicity in vitro

    International Nuclear Information System (INIS)

    A bovine kidney cell culture system was used to assess what relationship cadmium (Cd) uptake and subcellular distribution had to cadmium chloride induced cytotoxicity. Twenty-four hour incubation with 0.1-10 μM Cd elicited 0-90% cytotoxicity. Fifty percent cytotoxicity was estimated to result from 0.8 μM Cd. A concentration-related Cd accumulation paralleled the cytotoxicity profile. The time-course for Cd accumulation was linear for the first 6 h of exposure and plateaued by 18 h post-exposure. When the degree of cytotoxicity was compared with the cellular Cd burden at 24 h post-treatment a least-squares linear regression analysis (r=0.93) indicated a direct relationship. Subcellular distribution studies indicated greater than 90% Cd recovery from the soluble supernatant (105,000 g) at all levels of cytotoxicity studied. Metallothionein sequestered less than 25% of the cellular Cd. As a result of the correlation of the degree of cytotoxicity with the cellular Cd burden and the independence of subcellular distribution from cytotoxicity, a cumulative mechanism of toxicity for Cd in MDBK cells was suggested. (author)

  1. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, M.P.; Wilson, M.J.; Poirier, L.A.

    1985-11-01

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure.

  2. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    International Nuclear Information System (INIS)

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure

  3. Defects and properties of cadmium oxide based transparent conductors

    Science.gov (United States)

    Yu, Kin Man; Detert, D. M.; Chen, Guibin; Zhu, Wei; Liu, Chaoping; Grankowska, S.; Hsu, L.; Dubon, O. D.; Walukiewicz, Wladek

    2016-05-01

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 1021 cm-3 and electron mobility higher than 120 cm2/V s can be achieved. Thermal annealing of doped CdO films in N2 ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ˜1 eV and that the mobility of sputtered deposited CdO is limited by a background acceptor concentration of ˜5-6 × 1020/cm3. The calculations offer an insight into understanding of the effects of defects on electrical properties of undoped and doped CdO and offer a potential to use similar methods to analyze doping and defect properties of other semiconductor materials.

  4. Oxidative stress biomarkers of the polychaete Nereis diversicolor exposed to cadmium and petroleum hydrocarbons.

    Science.gov (United States)

    Sun, Fu-hong; Zhou, Qi-xing

    2008-05-01

    Changes in the activity of antioxidant enzymes including superoxide dismutase (SOD) and peroxidase (POD) and in the content of soluble protein (SP) in Nereis diversicolor exposed to cadmium (Cd) and petroleum hydrocarbons (PHCs) were investigated under a laboratory condition. The results indicated that SOD activity in N. diversicolor exposed to Cd and PHCs significantly (Pdiversicolor could also sensitively reflect oxidative stress induced by Cd and PHCs. Concentration combination of Cd and PHCs had significant (Pdiversicolor at single or joint exposure of Cd and PHCs. Exposure time also resulted in significant differences in POD activity (Pdiversicolor which was simultaneously exposed to Cd and PHCs, as called time-dependent effects. Compared with day 0, SOD activity in non-exposed N. diversicolor increased, possibly due to the effects of temperature. Therefore, the effects of pollutants with emphasis on abiotic parameters on the antioxidant defense system should be considered in future studies. PMID:17673290

  5. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    OpenAIRE

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. eleg...

  6. Protective effects of Korean red ginseng extract on cadmium-induced hepatic toxicity in rats

    OpenAIRE

    Park, Sook Jahr; Lee, Jong Rok; Jo, Mi Jeong; Park, Sang Mi; Ku, Sae Kwang; Kim, Sang Chan

    2013-01-01

    Korean red ginseng is known to regulate the immune system and help the body struggle infection and disease. Cadmium is widely distributed in the environment due to its use in industry. Exposure to cadmium is problematic causing organ dysfunction. This study was conducted to evaluate the protective effect of Korean red ginseng extract (RGE) against cadmium-induced hepatotoxicity in rats. In experiments, animals were orally administrated with RGE (25, 50 mg/kg) for 7 d and then intravenously in...

  7. Uranium and cadmium provoke different oxidative stress responses in Lemna minor L.

    Science.gov (United States)

    Horemans, N; Van Hees, M; Van Hoeck, A; Saenen, E; De Meutter, T; Nauts, R; Blust, R; Vandenhove, H

    2015-01-01

    Common duckweed (Lemna minor L.) is ideally suited to test the impact of metals on freshwater vascular plants. Literature on cadmium (Cd) and uranium (U) oxidative responses in L. minor are sparse or, for U, non-existent. It was hypothesised that both metals impose concentration-dependent oxidative stress and growth retardation on L. minor. Using a standardised 7-day growth inhibition test, the adverse impact of these metals on L. minor growth was confirmed, with EC50 values for Cd and U of 24.1 ± 2.8 and 29.5 ± 1.9 μm, respectively, and EC10 values of 1.5 ± 0.2 and 6.5 ± 0.9 μm, respectively. The metal-induced oxidative stress response was compared through assessing the activity of different antioxidative enzymes [catalase, glutathione reductase, superoxide dismutase (SOD), ascorbate peroxidase (APOD), guaiacol peroxidase (GPOD) and syringaldizyne peroxidase (SPOD)]. Significant changes in almost all antioxidative enzymes indicated their importance in counteracting the U- and Cd-imposed oxidative burden. However, some striking differences were also observed. For activity of APODs and SODs, a biphasic but opposite response at low Cd compared to U concentrations was found. In addition, Cd (0.5-20 μm) strongly enhanced plant GPOD activity, whereas U inhibited it. Finally, in contrast to Cd, U up to 10 μm increased the level of chlorophyll a and b and carotenoids. In conclusion, although U and Cd induce similar growth arrest in L. minor, the U-induced oxidative stress responses, studied here for the first time, differ greatly from those of Cd. PMID:25073449

  8. Sulfur dioxide effect on cadmium and zinc oxide interaction with chlorine

    International Nuclear Information System (INIS)

    Comparison of electrophysical properties of cadmium and zinc oxides with kinetic regularities of their interaction with Cl2 and SO2 was conducted. It is shown that SO2 presence in gas phase leads to retardation of chlorination of both oxides. In the case of CdO the effect of SO2 is manifested more clearly

  9. Mitigation by Aloe Vera of cadmium chloride and radiation induced biochemical changes in the brain of Swiss albino mice

    International Nuclear Information System (INIS)

    Whole body exposure to ionizing radiation provokes oxidative damage, organ dysfunction and metabolic disturbance. Herbal drugs offer an alternative to the synthetic radioprotective compounds which are either non-toxic or less toxic. Aloe vera rich in polyphenolic compound is known to possess antioxidant properties. In the context, the present study, effect of Aloe vera against radiation and cadmium induced changes in the brain of Swiss albino mice. For the purpose, six to eight weeks old male Swiss albino mice were selected and divided into seven groups:- Group I (Sham-irradiated), Group II (treated with cadmium chloride 20 ppm), Group III (Irradiated with 7.0 Gy gamma rays), Group IV (Both irradiated and treated with cadmium chloride solution), Group V (Cadmium and Aloe vera treated), Group VI (radiation and Aloe vera treated), Group VII (radiation, and cadmium chloride and Aloe vera treated). The animals were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. The brain (cerebral cortex) was taken out and quantitatively analyzed for different biochemical parameters such as total proteins, glycogen, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA. The value of cholesterol, glycogen, RNA, acid phosphatase activity, and alkaline phosphatase activity increased up to day-14 in non drug-treated groups and day-7 in Aloe vera treated groups and thereafter decreased up to day-28. The value of total proteins and DNA decreased up to day-14 in non drug-treated groups and day-7 in the drug treated groups then increased in all groups. In only cadmium chloride (Without and with drug) treated animals (Groups II and V) the value of cholesterol decreased during early intervals (days-14 and 7 respectively) and increased thereafter. Severe changes were observed after combined exposure to radiation and cadmium chloride showing synergistic effect. Aloe vera reduced the severity of damage and made the

  10. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    International Nuclear Information System (INIS)

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd2+-associated cytoskeletal reorganization. Low concentrations of Cd2+ (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd2+-dependent effect, as only Cd2+ concentrations above 2 μM were sufficient to increase ROS. However, low [Cd2+] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd2+ exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd2+ concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations. • Glutathionylation requires glutathione synthesis but is

  11. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    Energy Technology Data Exchange (ETDEWEB)

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M., E-mail: doug.templeton@utoronto.ca

    2013-10-15

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd{sup 2+}-associated cytoskeletal reorganization. Low concentrations of Cd{sup 2+} (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd{sup 2+}-dependent effect, as only Cd{sup 2+} concentrations above 2 μM were sufficient to increase ROS. However, low [Cd{sup 2+}] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd{sup 2+} exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd{sup 2+} concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations.

  12. Studies of 3He Induced Nuclear Reactions on Cadmium

    International Nuclear Information System (INIS)

    Excitation functions of 3He induced nuclear reactions on natural cadmium were measured using the standard stacked foil technique and high resolution gamma ray spectroscopy. The experimental cross sections for the nuclear reactions natCd(3He,xnp )117m,g,116m115m,114m,113m,111,110m,g,109,108,107 In were measured from their threshold energy up to 27 MeV. The integral yields for some medically important products were determined. Theoretical calculations using the nuclear codes ALICE- IPPE, TAL YS, and EMPIRE-3 were used to describe the formation of these products. Theoretical and experimental results were compared with each other. K

  13. A Review of Molecular Events of Cadmium-Induced Carcinogenesis

    Science.gov (United States)

    Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Lately, Cd and Cd containing compounds have been classified as known human carcinogens and epidemiological data show causal associations with prostate, breast and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently become of great interest due to the development of malignancies in Cd-induced tumorigenesis in animal. Briefly, various in vitro studies demonstrate that Cd can act as a mitogen, stimulate cell proliferation, inhibit apoptosis and DNA repair, and induce carcinogenesis in several mammalian tissues and organs. Thus, the various mechanisms involved in chronic Cd exposure and malignant transformations warrant further investigation. In this review, we will focus on recent evidence of various leading general and tissue specific molecular mechanisms that follow chronic exposure to Cd in prostate, breast and lung transformed malignancies. In addition, this review considers less defined mechanisms such as epigenetic modification and autophagy, which are thought to play a role in the development of Cd-induced malignant transformation. PMID:25272057

  14. Strain differences of cadmium-induced toxicity in rats: Insight from spleen and lung immune responses.

    Science.gov (United States)

    Demenesku, Jelena; Popov Aleksandrov, Aleksandra; Mirkov, Ivana; Ninkov, Marina; Zolotarevski, Lidija; Kataranovski, Dragan; Brceski, Ilija; Kataranovski, Milena

    2016-08-10

    The impact of genetic background on effects of acute i.p. cadmium administration (0.5mg/kg and 1mg/kg) on basic immune activity of spleen and lungs was examined in two rat strains, Albino Oxford (AO) and Dark Agouti (DA), known to react differently to chemicals. More pronounced inhibition of Concanavalin A (ConA)-induced and Interleukin (IL)-2 stimulated spleen cell proliferation as well as higher levels of nitric oxide (known to decrease cell's proliferative ability) in DA rats at 1mg/kg, along with greater inhibition of ConA-induced Interferon (IFN-γ)-production by total and mononuclear (MNC) spleen cells and IL-17 production by spleen MNC in DA vs. AO rats at this dose show greater susceptibility of this strain to Cd effects on spleen cells response. More pronounced infiltration of neutrophils/CD11b(+) cells to lungs of DA rats treated with 1mg/kg of Cd and decreased IL-17 lung cell responses noted solely in DA rats speaks in favor of their higher susceptibility to this metal. However, lack of strain disparity in lung cells IFN-γ responses show that there are regional differences as well. Novel data from this study depict complexity of the influence of genetic background on the effects of cadmium on host immune reactivity. PMID:27234498

  15. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism

    International Nuclear Information System (INIS)

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases

  16. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    International Nuclear Information System (INIS)

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11–17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 μg/L, and breast-milk Cd 0.13 μg/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  17. Cadmium-induced aggregation of iron regulatory protein-1

    International Nuclear Information System (INIS)

    Iron regulatory protein-1 (IRP-1) is central to regulation of iron homeostasis, and has been shown to be sensitive to Cd2+ in vitro. Although Cd2+ induces disulfide-bond formation in many proteins, the critical cysteine residues for iron binding in IRP-1 were shown not to be involved in Cd-induced IRP-1 aggregation in vitro. Here we show that Cd2+ causes polymerization and aggregation of IRP-1 in vitro and in vivo, and decreases in a dose-dependent manner both its RNA-binding and aconitase enzymatic activities, as well as its cytosolic expression. We have used two-dimensional electrophoresis to demonstrate thiol-dependent self-association of purified recombinant IRP-1 treated with Cd2+, as well as self-association in Cd2+-exposed mesangial cells. Circular dichroism spectra confirm significant conformational changes in the purified protein upon Cd2+ exposure. Following Cd2+ treatment, there is increased translocation of inactive IRP-1 to the actin cytoskeletal fraction, and this translocation is diminished by both antioxidant (BHA) treatment and inhibition of CaMK-II. These changes differ from those elicited by manipulation of iron levels. Cadmium-induced translocation of proteins to cellular compartments, and particularly to the cytoskeleton, is becoming a recognized event in Cd2+ toxicity. Polymer-dependent translocation of IRP-1 in Cd2+-exposed cells may underlie effects of Cd2+ on iron homeostasis

  18. Radiation and cadmium induced biochemical alterations in mouse kidney

    International Nuclear Information System (INIS)

    In the present investigation radiation and cadmium induced biochemical changes in the kidney of Swiss albino mice have been studied. Materials and Methods: For this purpose, adult male Swiss albino mice (6-8 weeks old) were divided into four groups. Group I (sham-irradiated), Group II (treated with CdCl2 solution 20 ppm), Group III (irradiated with 1.25, 2.5 and 5.0 Gy gamma rays), Group IV (both irradiated with 1.25, 2.5 and 5.0 Gy gamma rays and treated with CdCl2 solution). The animals were autopsied after 1, 2, 4, 7, 14 and 28 days of treatment. The kidney was taken out and different biochemical parameters, such as total proteins, glycogen, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA were estimated. Results: In irradiated animals, the values of total proteins, glycogen, acid phosphatase, alkaline phosphatase activity and RNA increased continuously up to day-7 and decreased thereafter up to day-28. The changes were dose dependent. In CdCl2 treated animals, the values of glycogen and total proteins decreased during the early intervals and increased thereafter whereas the values of acid and alkaline phosphatase activity and RNA increased during early Intervals and decreased thereafter, The values of cholesterol and DNA showed decrease in all the experimental groups (except group I) up to day-7 and increase thereafter up to day-28. After combined treatment also, the parameters followed the same pattern of increase and decrease, but the changes were more pronounced indicating their synergistic effect. The biochemical parameters showed highly significant values (P<0.001) as compared to normal ones. Conclusion: These results indicate that combined treatment of cadmium and gamma radiations causes synergistic or additive effect

  19. Concentration of cadmium hydroxy complexes near the cadmium electrode in KOH solutions of different concentration as a function of the anodic oxidation rate of the electrode

    International Nuclear Information System (INIS)

    Concentration of cadmium hydroxy complexes by anodic oxidation of cadmium electrode are determined through the rotating disk electrode method. The effect of the anodic process rate and the electrolyte solution concentration on the concentration values and supersaturation rates are established. The effective constants of the intermediate products transformation rates and the current constituents conditioned by the anodic process with participation of soluble products are experimentally determined

  20. Cadmium carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, Michael P

    2003-12-10

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis.

  1. Cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis

  2. Comparison of antibacterial activities of cadmium oxide nanoparticles against Pseudomonas Aeruginosa and Staphylococcus Aureus bacteria

    Directory of Open Access Journals (Sweden)

    Bahareh Salehi

    2015-01-01

    Conclusion: This study showed that antibacterial effects of cadmium oxide nanoparticles on positive gram bacteria are stronger than negative gram bacteria and antibacterial effects of cdo nanoparticles against both bacteria, but Staphylococcus aureus bacteria were more sensitive to nanoparticles as compared to Pseudomonas aeruginosa.

  3. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals

    Science.gov (United States)

    Cadmium enrichment (relative to Fe and Zn) in paddy rice grain occurs during the pre-harvest drainage of flooded soil, which causes oxidative dissolution of sulfide minerals present in reduced soil. We investigated this process over a range of environmentally realistic Cdcontain...

  4. Enhancement of tolerance of Ganoderma lucidum to cadmium by nitric oxide.

    Science.gov (United States)

    Guo, Shanshan; Yao, Yuan; Zuo, Lei; Shi, Wenjin; Gao, Ni; Xu, Heng

    2016-01-01

    Nitric oxide (NO) is considered as a signaling molecule involved in regulation of diverse physiological processes and stress responses in animals and plants. However, whether NO regulates fungal, particularly edible fungi, response to heavy metal stresses, is unknown. This study investigated the effect of nitric oxide on biological responses of mycelia of Ganoderma lucidum to cadmium (Cd) toxicity. Exposure of Ganoderma lucidum to Cd (400 µM) triggered production of H2O2 and O2(-) in the mycelia and further induced lipid peroxidation as well as sharply decrease of fresh biomass. However, such an effect can be reversed by exogenous supply of NO. Mycelia treated with 100 µM SNP accumulated less H2O2, O2(-), thiobarbituric acid reactive substances (TBARS), and fresh biomass of this treatment was improved. Treatment with SNP significantly increased activities of antioxidant enzyme (peroxidase and catalase) to resist Cd stress. Meanwhile, NO-mediated alleviation of Cd toxicity was closely related to the accumulated proline as well as reduced Cd accumulation. These results suggested that NO plays a crucial role in preventing the mycelia of Ganoderma lucidum from Cd toxicity. PMID:26411634

  5. Impairment induced by chronic occupational cadmium exposure during brazing process

    International Nuclear Information System (INIS)

    Cadmium (CD) is considered a metal of the 20th century to which all inhabitants of develop societies are exposed. Long-term occupational and environmental exposure to CD often results in renal dysfunction as the kidney is considered the critical target organ. The aim of this work was to evalutate both resporatory and renal manifestations induced by occupational exposure to CD compounds during brazing process, and suggesting a protocol for prevention and control for CD- induced health effects. This study was conducted on 20 males occupationally exposed workers. They are divided into two groups: Group-1 included (10) exposed smokers and group-2 included (10) exposed non-smokers. Results of both groups were compared with those of 10 healthy age and sex matched non-smokers. All subjects were subjected to detailed history taking and laboratory investigations including blood and urinary CD, liver profile (SGOT, SGPT and alkline phosphates), kindey function tests (blood urea, creatinine and urinary beta2- microglobulin). The level of Cd in the atmosphere of the work plase air was also assessed to detect the degree of exposure as it was about 6 times greater than thesave level (1 mu /m3).(1) This study demonstrated elevation levels of blood CD, urea, creatinine and urinary CD and beta2 -microglobulin for both exposed worker groups than the controls. In additions no appreciable were noted for liver function tests, although the levels fell within normal range

  6. Induced Positron Annihiliation Investigation of Cadmium Zinc Telluride Crystal Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Akers

    2005-06-01

    Cadmium-Zinc-Telluride (CZT) crystals are used in semiconductor radiation detectors for the detection of x-ray and gamma radiation. However, production of detector grade crystals is difficult as small variations in compositional uniformity and primarily the zinc content can significantly affect the ability of the CZT crystal to function as a radiation detector. Currently there are no known nondestructive methods that can be used to identify detector grade crystals. The current test method is to fabricate and test the detector to determine if the crystal is sufficiently uniform and of the correct composition to be considered a detector grade crystal. Consequently, nondestructive detection methods are needed to identify detector grade crystals prior to the fabrication process. The purpose of this feasibility study was to perform a preliminary assessment of the ability of several new, nondestructive technologies based on Induced Positron Annihilation (IPA) to determine if detector grade CZT crystals can be identified. Results of measurements performed on specimens from Fisk University and EV Products, Inc. indicate that both the near surface Distributed Source Positron Annihilation (up to 3 mm penetration) and the volumetric Photon Induced Positron Annihilation methods may be suitable for determining CZT crystal quality. Further work on CZT crystals with a broader range of compositions and detector characteristics is needed to provide a well defined, calibrated, method for assessing CZT crystal quality.

  7. Cadmium induces neuronal cell death through reactive oxygen species activated by GADD153

    Directory of Open Access Journals (Sweden)

    Kim Seungwoo

    2013-01-01

    Full Text Available Abstract Background Cadmium(Cd, a heavy metal, which has a potent harmful effects, is a highly stress-inducible material that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER (so-called ER stress. The mechanism Cd induced cell death of neuroblastoma cells complex, involving cellular signaling pathways as yet incompletely defined but, in part, involving the generation of reactive oxygen species (ROS. Several studies have correlated GADD153 expression with cell death, but a mechanistic link between GADD153 and apoptosis has never been demonstrated. Results SH-SY5Y cells were treated Cd led to increase in intracellular ROS levels. ROS generation is not consistent with intracellular [Ca2+]. The exposure of neuroblastoma cells to Cd led to increase in intracellular GADD153 and Bak levels in a doses and time dependent manner. The induction of these genes by Cd was attenuated by NAC. Cd-induced apoptosis is decreased in GADD153 knockdown cells compared with normal cells. The effect of GADD153 on the binding of C/EBP to the Bak promoters were analyzed ChIP assay. Basal constitutive GADD153 recruitment to the –3,398/–3,380 region of the Bak promoter is observed in SH-SY5Y cells. Conclusions The exposure of SH-SY5Y cells to Cd led to increase in intracellular ROS levels in a doses and time dependent manner. The generation of ROS result in the induction of GADD153 is causative of cadmium-induced apoptosis. GADD153 regulates Bak expression by its binding to promoter region (between −3,398 and −3,380. Therefore, we conclude that GADD153 sensitizes cells to ROS through mechanisms that involve up-regulation of BAK and enhanced oxidant injury.

  8. Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys

    International Nuclear Information System (INIS)

    Oxidative stress is believed to participate in the early processes of cadmium (Cd)-induced proximal tubular kidney damage. Mice were chronically exposed up to 23 weeks to low Cd concentrations (10 and 100 mg CdCl2/l) via the drinking water. Pro- and antioxidant gene expression levels, glutathione, ascorbate and lipid peroxidation levels were measured. Our study provided evidence for an early and a late stress response in the kidney. Metallothioneins were upregulated from 1 week of exposure on and they stayed important during the whole exposure period. After 8 weeks the expression of Bcl2 (anti-apoptotic), Prdx2 and cytosolic superoxide dismutase (Sod1) was reduced in the group exposed to 100 mg CdCl2/l, which might indicate a response to Cd-stress. However glutathione, ascorbate and lipid peroxidation levels did not significantly change, and the overall redox balance remained stable. Stable Sod2 transcriptional levels suggested that an increased formation of superoxide anions, which can arise upon Cd-induced mitochondrial free radical generation, was not appearing. A second defence activation was observed after 23 weeks: i.e. an increase of catalase (Cat), glutathione peroxidase 4 (Gpx4) and heme oxygenase 1 (Hmox1), together with NADPH oxidase 4 (Nox4), of which the role has not been studied yet in Cd nephrotoxicity. These findings were in contrast with previous studies, where Cd-induced oxidative stress was detrimental when high Cd concentrations were applied. In conclusion our study provided evidence that a chronic exposure to low Cd concentrations triggered a biphasic defence activation in the kidney that might lead to adaptation and survival

  9. Effect of Nitric Oxide on Alleviating Cadmium Toxicity in Rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiu-feng; CHEN Lin; Muhammad IA Rehmani; WANG Qiang-sheng; WANG Shao-hua; HOU Peng-fu; LI Gang-hua; DING Yan-feng

    2013-01-01

    Nitric oxide (NO) is a gaseous signaling molecule in plants that plays a key role in mediating a wide range of physiological processes and responses to biotic and abiotic stresses. The present study was conducted to investigate the effects of the exogenous application of sodium nitroprusside (SNP), an NO donor, on cadmium (Cd)-induced oxidative stress and Cd uptake in rice plants. Rice plants were exposed to Cd stress (0.2 mmol L-1 CdCl2) and different concentrations of SNP (0.05, 0.1, 0.2, and 0.4 mmol L-1). A SNP concentration of 0.1 mmol L-1 (SNP10) significantly reduced the Cd-induced decrease in shoot and root dry weights and leaf chlorophyll concentrations. The addition of NO also reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2) and ascorbic acid (ASA) concentrations. However, the reduction in glutathione (GSH) concentration was inhibited by NO treatment. Moreover, NO prevented the Cd-induced increase in antioxidative enzyme activity. The amount of Cd accumulation in rice plants was also influenced by the addition of NO. The NO supplied by the SNP enhanced the Cd tolerance of the rice by increasing the Cd uptake by the roots and decreasing the Cd accumulation by the shoots. However, the application of potassium ferrocyanide (Cd+Fe) or sodium nitrate and nitrite (Cd+N) (without NO release), did not exhibit the effects of the SNP. Furthermore, the effects of the SNP were reversed by the addition of hemoglobin (an NO scavenger). Our results suggested that exogenous NO was involved in the resistance of rice to Cd-toxicity.

  10. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis.

    Science.gov (United States)

    Chen, Jinglou; Du, Lifen; Li, Jingjing; Song, Hongping

    2016-10-01

    Cadmium (Cd) pollution is a serious environmental problem. Kidney is a main target organ of Cd toxicity. This study was undertaken to investigate the potential protective effects of epigallocatechin-3-gallate (EGCG) against chronic renal injury and fibrosis induced by CdCl2. Rat model was induced by exposing to 250 mg/L CdCl2 through drinking water. The renal function was evaluated by detecting the levels of blood urea nitrogen (BUN) and serum creatinine (SCR). The oxidative stress was measured by detecting the levels of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione/oxidized glutathione (GSH/GSSG) and renal enzymatic antioxidant status. Additionally, the renal levels of transforming growth factor-β1 (TGF-β1), Smad3, phosphorylation-Smad3 (pp-Smad3), α-smooth muscle actin (α-SMA), vimentin and E-cadherin were measured by western blot assay. Renal levels of microRNA-21 (miR-21), miR-29a/b/c and miR-192 were measured by quantitative RT-PCR. It was found that EGCG ameliorated the CdCl2-induced renal injury, inhibited the level of oxidative stress, normalized renal enzymatic antioxidant status and E-cadherin level, as well as attenuated the over generation of TGF-β1, pp-Smad3, vimentin and α-SMA. EGCG also decreased the production of miR-21 and miR-192, and enhanced the levels of miR-29a/b/c. These results showed that EGCG could attenuate Cd induced chronic renal injury. PMID:27474435

  11. A comparative investigation of DNA strand breaks, sister chromatid exchanges and K-ras gene mutations induced by cadmium salts in cultured human cells

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a toxic heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. Several studies have shown that cadmium produces DNA strand breaks, DNA-protein cross-links, oxidative DNA damage, chromosomal aberrations, dysregulation of gene expression resulting in enhanced proliferation, depressed apoptosis and/or altered DNA repair. This study was undertaken to investigate the ability of cadmium chloride (CdCl2) and cadmium sulphate (CdSO4) to induce point mutations in codon 12 of the K-ras protooncogene assessed by polymerase chain reaction-single strand conformation polymorphisms (PCR-SSCP) and RFLP-enriched PCR methods. Also their genotoxic effects were analyzed by the comet assay and sister chromatid exchanges test. The human lung fibroblast cell line MRC-5 was used for the experiments. Sister chromatid exchanges assay (SCEs) frequencies were significantly increased in cells exposed to cadmium salts in relation to controls (p < 0.001). Despite the slow increment observed in the three comet parameters considered when cells were treated with cadmium chloride, significant differences between groups were only found in the variable comet moment (CM) (p < 0.005). On the other hand, when cells were exposed to cadmium sulphate, the Kruskal-Wallis test showed highly significant differences between groups for migration, tail moment and comet moment parameters (p < 0.001). Nevertheless, a null or weak point mutation induction in K-ras protooncogene was detected using polymerase chain reaction-low ionic strength-single strand conformation polymorphisms (PCR-LIS-SSCP) and RFLP-enriched PCR methods when cells were treated with cadmium salts. Thus, inorganic cadmium produces genotoxicity in human lung fibroblast MRC-5 cells, in the absence of significant point mutation of the K-ras gene

  12. Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells

    International Nuclear Information System (INIS)

    Cadmium is a toxic heavy metal which is environmentally and occupationally relevant. The mechanisms underlying cadmium-induced autophagy are not yet completely understood. The present study shows that cadmium induces autophagy, as demonstrated by the increase of LC3-II formation and the GFP-LC3 puncta cells. The induction of autophagosomes was directly visualized by electron microscopy in cadmium-exposed skin epidermal cells. Blockage of LKB1 or AMPK by siRNA transfection suppressed cadmium-induced autophagy. Cadmium-induced autophagy was inhibited in dominant-negative AMPK-transfected cells, whereas it was accelerated in cells transfected with the constitutively active form of AMPK. mTOR signaling, a negative regulator of autophagy, was downregulated in cadmium-exposed cells. In addition, cadmium generated reactive oxygen species (ROS) at relatively low levels, and caused poly(ADP-ribose) polymerase-1 (PARP) activation and ATP depletion. Inhibition of PARP by pharmacological inhibitors or its siRNA transfection suppressed ATP reduction and autophagy in cadmium-exposed cells. Furthermore, cadmium-induced autophagy signaling was attenuated by either exogenous addition of catalase and superoxide dismutase, or by overexpression of these enzymes. Consequently, these results suggest that cadmium-mediated ROS generation causes PARP activation and energy depletion, and eventually induces autophagy through the activation of LKB1-AMPK signaling and the down-regulation of mTOR in skin epidermal cells. - Highlights: → Cadmium, a toxic heavy metal, induces autophagic cell death through ROS-dependent activation of the LKB1-AMPK signaling. → Cadmium generates intracellular ROS at low levels and this leads to severe DNA damage and PARP activation, resulting in ATP depletion, which are the upstream events of LKB1-AMPK-mediated autophagy. → This novel finding may contribute to further understanding of cadmium-mediated diseases.

  13. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled 'reaction cell' experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake. - Research Highlights: → Cd:Fe and Cd:Zn ratios increase in paddy soil solution during oxidation. → Cd:Fe and Cd:Zn ratios increase because Fe and Zn concentrations decrease. → Cd concentrations do not change during oxidation. → Cd:Fe and Cd:Zn ratios in solution decrease when Zn is added to soil. → Metal sulfide precipitation lowers Cd:Fe and Cd:Zn ratios in soil solution.

  14. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions

    Energy Technology Data Exchange (ETDEWEB)

    Livera, Jennifer de, E-mail: Jennifer.deLivera@adelaide.edu.au [Soil Science, School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA (Australia); McLaughlin, Mike J. [Soil Science, School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA (Australia); CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); Hettiarachchi, Ganga M. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); Department of Agronomy, Kansas state University, Manhattan, KS (United States); Kirby, Jason K. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); CSIRO Land and Water, Environmental Biogeochemistry Program, Water for a Healthy Country Flagship, Adelaide, SA (Australia); Beak, Douglas G. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia)

    2011-03-15

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled 'reaction cell' experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake. - Research Highlights: {yields} Cd:Fe and Cd:Zn ratios increase in paddy soil solution during oxidation. {yields} Cd:Fe and Cd:Zn ratios increase because Fe and Zn concentrations decrease. {yields} Cd concentrations do not change during oxidation. {yields} Cd:Fe and Cd:Zn ratios in solution decrease when Zn is added to soil. {yields} Metal sulfide precipitation lowers Cd:Fe and Cd:Zn ratios in soil solution.

  15. Shellac-coated iron oxide nanoparticles for removal of cadmium(II) ions from aqueous solution.

    Science.gov (United States)

    Gong, Jilai; Chen, Long; Zeng, Guangming; Long, Fei; Deng, Jiuhua; Niu, Qiuya; He, Xun

    2012-01-01

    This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer, a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups, on the surface of iron oxide magnetic nanoparticles. Transmission Electron Microscopy (TEM) imaging showed shellac-coated magnetic nanoparticle (SCMN) adsorbents had a core-shell structure with a core of 20 nm and shell of 5 nm. Fourier Transform Infrared Spectroscopic analysis suggested the occurrence of reaction between carboxyl groups on the SCMN adsorbent surface and cadmium ions in aqueous solution. Kinetic data were well described by pseudo second-order model and adsorption isotherms were fitted with both Langmuir and Freundlich models with maximum adsorption capacity of 18.80 mg/g. SCMN adsorbents provided a favorable adsorption capacity under high salinity conditions, and cadmium could easily be desorbed using mild organic acid solutions at low concentration. PMID:23513435

  16. Sex-related differences in cadmium-induced alteration of drug action in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, R.C.; Pence, D.H.; Prosser, T.D.; Miya, T.S.

    1976-01-01

    Three days after pretreatment of rats of both sexes with cadmium (2 mg/kg, i.p.), the duration of hypnosis induced by hexobarbital (75 mg/kg, i.p.) was potentiated in males but not females. Likewise, similar treatment with cadmium leads to significant inhibition of the metabolism of hexobarbital by hepatic microsomal enzymes obtained from male but not female animals. These data suggest that there is a sex-related difference in the ability of cadmium to alter drug action in rats.

  17. Cadmium Induced Changes in Metabolic Function of Mitochondrial Isolated from Potato Tissue (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Chagra Ali

    2009-01-01

    Full Text Available Problem statement: Cadmium is highly toxic at low concentrations, but the mechanism of its toxicity is still not understood particularly at the cellular and subcellular level. Approach: In this study we examined the effects of cadmium on the oxidophosphorylation properties of mitochondria isolated from potatoes. Results: Cadmium strongly disturbed the respiratory metabolism of mitochondria isolated especially in the transfer of electrons by cyanide pathway. Meanwhile, cadmium altered the composition of lipid fatty acids polar while inhibiting catalase activity, a key enzyme in the detoxification (antioxidant process. In addition, cadmium caused an increase in mitochondrial volume associated with strong inhibition of ATPase activity, which could be explained by a transport of the potassium ion stimulation at the origin of the massive influx of H+ by antiport through the K+/H+ leading to a decoupling (cut of mitochondrial oxidative phosphorylation. The swelling of mitochondria was accompanied by the rupture of the mitochondrial outer membrane and thus the release of Cytochrome C, which appears to be the initial phase of apoptosis. Conclusion: Following this study, it appeared that cadmium generates in potato the isolated mitochondria a concentration-dependent oxidative stress.

  18. Therapeutic effects of Cassia angustifolia in a cadmium induced hepatotoxicity assay conducted in male albino rats

    OpenAIRE

    Haidry, Muhammad Tahir; Malik, Arif

    2016-01-01

    The present study aims to investigate the therapeutic effects of Senna plant (Cassia angustifolia L.) in a cadmium induced hepatotoxicity assay by evaluating the activity of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total protein (TP) in the albino rats’ serum. A total of 30 white albino rats were taken and divided into three groups; each group comprising ten rats. The group A was taken as a control group; group B was given cadmium chloride conce...

  19. Drug-induced acute tubulointerstitial nephritis: a case with elevated urinary cadmium.

    Science.gov (United States)

    Subat-Dezulović, Mirna; Slavić, Irena; Rozmanić, Vojko; Persić, Mladen; Medjimurec, Branka; Sćukanec-Spoljar, Mira

    2002-05-01

    Acute tubulointerstitial nephritis (ATIN) has many different causes, but is most frequently caused by drugs. We report a 13-year-old vegetarian girl with drug-induced ATIN, confirmed by renal biopsy, and simultaneous occurrence of elevated urinary cadmium. Four weeks prior to admission she had been treated with antibiotics and acetaminophen for respiratory infection, and remaining febrile, was treated with different "home-made" herbal mixtures. She presented with acute non-oliguric renal failure, tubular dysfunction, and sterile pyuria, but without skin rash or edema. Laboratory data showed a raised erythrocyte sedimentation rate, normal white blood count with eosinophilia, and a serum creatinine of 245 micromol/l. Urinalysis was remarkable for glycosuria, tubular proteinuria, and elevated beta(2)-microglobulin and N-acetyl-beta-D-glucosaminidase excretion. Immunoserological tests characteristic of acute glomerulonephritis and systemic diseases were negative. She was treated with steroids and her renal function improved. Follow-up analyses disclosed normal urinary cadmium and enzyme excretion within 6 months. Heavy metal analysis of herbal preparations that she had taken confirmed the presence of cadmium, but within approved concentrations. In conclusion, elevated urinary cadmium in the case of drug-induced ATIN may be assumed to be an accidental finding. However, consumption of different herbs containing cadmium and cadmium-induced nephro-toxicity could be the reason for such serious renal damage. PMID:12042900

  20. Critical review of animal carcinogenesis by cadmium and its inorganic compounds

    International Nuclear Information System (INIS)

    Animal carcinogenic biassays relative to 6 inorganic cadmium substances (cadmium metal, cadmium oxide, cadmium sulfide, cadmium sulfate, cadmium chloride and cadmium acetate) are reviewed (speciation). Critical evaluation of literature data on carcinogenicity has been performed by making reference to E.C. guidelines of good laboratory practice. There are few data on routes relevant for human risk assessment: experiments on inhalation demonstrate lung carcinogenicity of cadmium oxide, cadmium sulfide, cadmium sulfate and cadmium chloride in rats but not in mice nor in hamsters; no carcinogenic effects of cadmium compounds are observed following oral administration. For routes of less or no relevance for human risk assessment, some results are clearly positive: subcutaneous injection induces cancers in situ (various cadmium compounds), testicular tumours (cadmium sulfate and cadmium chloride) and prostatic tumours (cadmium chloride) but such effects are not observed using relevant malignancies in rats. With respect to other no relevant routes (intraperitoneal, intrarenal...) tumours are incidentally produced in situ, but not in remote organs. Numerous studies fail to demonstrate cadmium carcinogenicity, but methodologically acceptable negative ones are very limited in number. Accordingly strain dependent effects and dose effect relationship could not be thoroughly assessed

  1. Tunisian radish (Raphanus sativus) extract prevents cadmium-induced immunotoxic and biochemical alterations in rats.

    Science.gov (United States)

    ben Salah-Abbès, Jalila; Abbès, Samir; Zohra, Haous; Oueslati, Ridha

    2015-01-01

    Cadmium (Cd), a known carcinogen and potent immunotoxicant in humans and animals, is dispersed throughout the environment as a result of pollution from a variety of sources. Tunisian radish (Raphanus sativus) extract (TRE) is a known anti-oxidant and free radical scavenger that has been shown to help alleviate immune system disorders, including some induced by environmental toxicants. The present study was undertaken to investigate potential protective effects of TRE against Cd-induced immunotoxicities (and general toxicities) in situ. Cadmium chloride (at 2.5 mg CdCl2/kg BW) and TRE (5, 10, or 15 mg/kg BW) were given (alone or in combination [actually, in sequence of Cd and then TRE]) to rats daily by oral gavage for 2 weeks. Results indicated that treatment with CdCl2 alone resulted in significant decreases in plasma levels of total protein, triglycerides, creatine kinase, creatinine, IgG and IgA, T-lymphocyte sub-types (CD4(+), CD3(+), CD56(+), and CD8(+)), and in thymic and hepatic indices (relative weights). In contrast, CdCl2 treatment caused significant increases in serum LDH, AST, and ALT, in the formation/release of pro-inflammatory cytokines (IL-1 and TNFα), and in the relative weights of host spleen and kidneys. Rats treated with TRE alone had no discernable changes compared to the controls with regard to all test parameters. Combined treatment of CdCl2 and TRE-at any dose-resulted in a significant improvement of all test parameters compared to those seen with Cd alone. These results illustrated (and provided further support for a continuing belief in) the beneficial effects of TRE in reducing the harmful outcomes of commonly encountered toxicants (like Cd) on the immune system and on overall host health status. PMID:24524755

  2. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    OpenAIRE

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo; Lee, Jeong-Chae; Shi, Xianglin

    2012-01-01

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium ind...

  3. Sputtered cadmium oxide as a surface pretreatment for graphite solid lubricant films

    Science.gov (United States)

    Fusaro, R. L.

    1986-01-01

    Sputtered films of cadmium oxide were applied to sand blasted AISI 440C HT stainless steel disks as a surface pretreatment for the application of rubbed graphite films. Mixtures of cadmium oxide and graphite were applied to the nonpretreated sandblasted metal and evaluated. The results were compared to graphite films applied to other commercially available surface pretreatments. It is found that sputtered CdO pretreated surfaces increase the endurance lives of the graphite films and decrease the counterface steady state wear rate of the pins almost an order of magnitude compared to commercially available pretreatments. The CdO additions in general improved the tribological properties of graphite. The greatest benefit occurred when it was applied to the substrate rather than mixing it with the graphite and that sputtered films of CdO perform much better than rubbed CdO films.

  4. Sputtered cadmium oxide as a surface pretreatment for graphite solid-lubricant films

    Science.gov (United States)

    Fusaro, Robert L.

    1987-01-01

    Sputtered films of cadmium oxide were applied to sand blasted AISI 440C HT stainless steel disks as a surface pretreatment for the application of rubbed graphite films. Mixtures of cadmium oxide and graphite were applied to the nonpretreated sandblasted metal and evaluated. The results were compared to graphite films applied to other commercially available surface pretreatments. It is found that sputtered CdO pretreated surfaces increase the endurance lives of the graphite films and decrease the counterface steady state wear rate of the pins almost an order of magnitude compared to commercially available pretreatments. The CdO additions in general improved the tribological properties of graphite. The greatest benefit occurred when it was applied to the substrate rather than mixing it with the graphite and that sputtered films of CdO perform much better than rubbed CdO films.

  5. Rapid Inactivation of Chloroplastic Ascorbate Peroxidase is Responsible for Oxidative Modification to Rubisco in Tomato (Lycopersicon esculentum) under Cadmium Stress

    Institute of Scientific and Technical Information of China (English)

    Kai-Lang Liu; Lin Shen; Jia-Qi Wang; Ji-Ping Sheng

    2008-01-01

    To investigate the sensitive site of antioxidant systems in chloroplast under cadmium stress and its consequence on reactive oxygen species production and action, the sub-organellar localization of chloroplast superoxide dismutases (SOD,EC 1.15.1.1) and ascorbic peroxidase (APX, EC 1.11.1.11) isoenzymes and changes of enzymes activities under cadmium stress were investigated in tomato seedlings. Two APX isoforms, one thylakoid-bound and one stromal, were detected. Cd at 50 μM induced a moderate increase of SOD activities but a rapid inactivation of both APX isoenzymes. APX inactivation was mainly related to the decrease of ascorbate concentration, as supported by in vitro treatment of exogenous ascorbate and APX kinetic properties under Cd stress. H2O2 accumulation in chloroplast, as a consequence of APX inactivation,was associated with a 60% loss of Rubisco (EC 4.1.1.39) activity, which could be partially accounted for by a 10% loss of Rubisco content. Protein oxidation assay found that the Rubisco large subunit was the most prominent carbonylated protein; the level of carbonylated Rubisco large subunit increased fivefold after Cd exposure. Thiol groups in the Rubisco large subunit were oxidized, as indicated by non-reducing electrophoresis. Treating crude extract with H2O2 resulted in a similar pattern of protein oxidation and thiols oxidation with that observed in Cd-treated plants. Our study indicates that APXs in the chloroplast is a highly sensitive site of antioxidant systems under Cd stress, and the inactivation of APX could be mainly responsible for oxidative modification to Rubisco and subsequent decrease in its activity.

  6. Comparison of antibacterial activities of cadmium oxide nanoparticles against Pseudomonas Aeruginosa and Staphylococcus Aureus bacteria

    OpenAIRE

    Bahareh Salehi; Esmaeil Mortaz; Payam Tabarsi

    2015-01-01

    Background: Inorganic antibacterial factors have bacterial resistance and high thermal stability. Inorganic nanomaterials which have new structures with biological, chemical and physical properties have been made since their applications due to their nano size. In this study, the antibacterial effect of cadmium oxide nanoparticles on Staphylococcus aureus and Pseudomonas aeruginosa bacteria was investigated. Materials and Methods: The different concentrations (10 μg/ml, 15 μg/ml and 20 μg...

  7. Investigation of antibacterial effect of Cadmium Oxide nanoparticles on Staphylococcus Aureus bacteria

    OpenAIRE

    Salehi, Bahareh; Mehrabian, Sedigheh; Ahmadi, Mehdi

    2014-01-01

    Background Inorganic antibacterial factors provide high bacterial resistance and thermal stability. Inorganic nanomaterial consists of modern formulation, biological, chemical, and physical properties produced on the basis of their function and influenced by their nano scales, the reason for which they have become very popular. The antibacterial effect of Cadmium Oxide Nanoparticles on Staphylococcus Aureus has been studied for the first time in this research because of their resistance to an...

  8. Is oxidative stress related to cadmium accumulation in the Mollusc Crassostrea angulata?

    International Nuclear Information System (INIS)

    Highlights: • The cadmium accumulation in C. angulata tended toward a stationary state. • Metallothionein-like protein (MTLP) is clearly induced by Cd accumulation. • The MTLP detoxification mechanism is affected at high Cd concentrations. • Cadmium toxicity causes GSH levels to decrease and inhibits antioxidant enzymes. - Abstract: The kinetics of cadmium (Cd) accumulation in the gills and digestive gland of Crassotrea angulata at three concentrations of cadmium (0.088 μM, 0.44 μM and 2.22 μM) was monitored for 28 days. The relationship between accumulation and toxicity was studied using metallothionein-like protein (MTLP) concentration and reduced glutathione levels (GSH) as biochemical endpoints. The activity of enzymes which form part of the antioxidant defense system, in particular glutathione reductase (GR), total glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), as enzymatic endpoints, was also assessed. A first order kinetic model demonstrated that the accumulation process does not take place linearly, as the Cd concentration in gills and digestive gland tended toward a stationary state. Metallothionein-like protein is clearly induced by Cd accumulation; however, at high Cd concentrations the detoxification mechanism of this protein is affected. High Cd concentrations (2.22 μM) lead to a decrease in GSH levels, and also inhibit antioxidant enzyme activities, demonstrating the adverse effect of this metal on the antioxidant balance system

  9. Is oxidative stress related to cadmium accumulation in the Mollusc Crassostrea angulata?

    Energy Technology Data Exchange (ETDEWEB)

    Macías-Mayorga, Dayanara, E-mail: dayanara.macias@uleam.edu.ec [Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain); Departamento Central De Investigación (DCI), Universidad Laica Eloy Alfaro de Manabí, Vía San Mateo, Manta (Ecuador); Laiz, Irene [Departamento de Física Aplicada, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain); Moreno-Garrido, Ignacio; Blasco, Julián [Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain)

    2015-04-15

    Highlights: • The cadmium accumulation in C. angulata tended toward a stationary state. • Metallothionein-like protein (MTLP) is clearly induced by Cd accumulation. • The MTLP detoxification mechanism is affected at high Cd concentrations. • Cadmium toxicity causes GSH levels to decrease and inhibits antioxidant enzymes. - Abstract: The kinetics of cadmium (Cd) accumulation in the gills and digestive gland of Crassotrea angulata at three concentrations of cadmium (0.088 μM, 0.44 μM and 2.22 μM) was monitored for 28 days. The relationship between accumulation and toxicity was studied using metallothionein-like protein (MTLP) concentration and reduced glutathione levels (GSH) as biochemical endpoints. The activity of enzymes which form part of the antioxidant defense system, in particular glutathione reductase (GR), total glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), as enzymatic endpoints, was also assessed. A first order kinetic model demonstrated that the accumulation process does not take place linearly, as the Cd concentration in gills and digestive gland tended toward a stationary state. Metallothionein-like protein is clearly induced by Cd accumulation; however, at high Cd concentrations the detoxification mechanism of this protein is affected. High Cd concentrations (2.22 μM) lead to a decrease in GSH levels, and also inhibit antioxidant enzyme activities, demonstrating the adverse effect of this metal on the antioxidant balance system.

  10. Effects of Exposure to Lead and Cadmium on the Oxidative Damage of Livers in Laying Hens

    Institute of Scientific and Technical Information of China (English)

    Chen; Dawei; Pu; Junhua; Tang; Xiujun; Lu; Junxian; Liu; Yinyin; Jia; Xiaoxu; Ge; Qinglian; Gao; Yushi

    2014-01-01

    [Objective] To detect the effects of exposure to lead and cadmium on the oxidative damage of livers in laying hens. [Methods] One hundred and twenty 40-week-old Hyline brown hens were randomly divided into four groups. 100 mg / L Pb and / or 50 mg / L Cd was added into the drinking water for eight weeks. [Results] Compared with control group,AST and ALT activities in Pb group enhanced; but there were no significant differences. AST and ALT activities in Cd group and( Pb + Cd) group significantly or extremely significantly increased( P < 0. 05 or P < 0. 01). SOD activity,GSH- Px activity and GSH content in( Pb + Cd) group,Cd group and Pb group were significantly or extremely significantly lower than those in control group( P <0. 05 or P <0. 01). Among them,( Pb + Cd) group showed the greatest reduction( P <0. 01). MDA contents in the three groups were significantly higher than that of control group; and( Pb +Cd) group was significantly higher than Pb group and Cd group. Cu,Fe and Zn contents in three groups were higher than those in control group in different degrees( P <0. 05 or P <0. 01). Se contents in Cd group and( Pb + Cd) group were significantly lower than that in control group( P <0. 01). Residue contents in livers in Pb group and Cd group were significantly greater than that in control group; while residue content in( Pb + Cd) group was significantly higher than those in Pb group and Cd group. Ultrastructure showed that there were symptoms of mitochondrial swelling and fractured cristae in liver cells of laying hens after the exposure to Cd and Pb. In( Pb + Cd) group,these symptoms were even greater. [Conclusion] Oxidative damage and disturbance of trace element metabolism were one of the mechanisms for hepatotocity in laying hens induced by Pb and Cd,and synergistic effect lied in the coadministration.

  11. Assessment of radio modulatory potential of emblica against radiation and cadmium induced biochemical changes in kidney of Swiss albino mice

    International Nuclear Information System (INIS)

    Ionizing radiation Induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. It has been known since ancient times that Cadmium is virtually toxic to every organ of body including renal system. Radioprotectors are compounds that are designed to reduce the damage in normal tissue caused by radiation and cadmium. Emblica officinalis extract has been shown to possess high antioxidative, anticancer, lipid lowering, antisclerotic, hepatoprotective and anti-HIV potential. It is highly nutritious and important dietary source of vitamin. Emblica contains a polyphenols, especially tannins and other phenolic compounds. Considering antioxidant properties of Emblica, the aim of this study was to access the efficacy of Emblica in reducing radiation and cadmium induced changes in mouse kidney. For this purpose four male mice were randomly assigned into six treatment groups. The mice in the treatment groups II to VII treated respectively with cadmium chloride, radiation (7.0 Gy) combined treatment and drug treated groups. All biochemical parameters of the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphatase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups. Thereafter value declined up to day-28 without reaching to normal. Whereas the value of cholesterol and DNA showed a decreasing trend up to day-14 in non drug treated groups and day-7 in Emblica treated groups. The biochemical findings indicated the drug treated section of the kidney showed slightly/no degenerative changes. The treated groups demonstrating the ability of Emblica to inhibit oxidative stress thus preventing renal injury. (author)

  12. Arabidopsis HY1 Confers Cadmium Toleranceby Decreasing Nitric Oxide Production andImproving Iron Homeostasis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Up-regulation of the gene that encodes intracellular heme oxygenase 1 (HO1) benefits plants under cad-mium (Cd2+) stress; however, the molecular mechanisms remain unclear. Here, we elucidate the role of Arabidopsis HY1(AtHO1) in Cd2+ tolerance by using genetic and molecular approaches. Analysis of two HY1 null mutants, three HY1 over-expression lines, HO double or triple mutants, as well as phyA and phyB mutants revealed the specific hypersensitivityof by1 to Cd2+ stress. Supplementation with two enzymatic by-products of HY1, carbon monoxide (CO) and iron (Fe,especially), rescued the Cd2+-induced inhibition of primary root (PR) elongation in hy1-100. The mutation of HY1, whichexhibited lower glutathione content than Col-0 in root tissues, was able to induce nitric oxide (NO) overproduction,Cd2+ accumulation, and severe Fe deficiency in root tissues. However, the contrasting responses appeared in 35S:HY1-4.Additionally, reduced levels of Ferric Reduction Oxidase 2 (FRO2) and Iron-Regulated Transporter 1 (IRT1) transcripts,and increased levels of Heavy Metal ATPase 2/4 (HMA2/4) transcripts bolster the notion that HY1 up-regulation amelio-rates Fe deficiency, and might increase Cd2+ exclusion. Taken together, these results showed that HY1 plays a commonlink in Cd2+ tolerance by decreasing NO production and improving Fe homeostasis in Arabidopsis root tissues.

  13. Purification of cadmium by selective volatilization in vacuum in presence of oxide phase on its melt

    Indian Academy of Sciences (India)

    N R Munirathnam; K Srinivasa Rao; T L Prakash

    2012-04-01

    Purification of cadmium in the presence of a thin (∼0.001 mm) oxide layer on the surface of the molten metal was carried out using a simple system designed and fabricated locally. The analytical results revealed that the distillation through oxide layer gave better separation for Co, Ni, Cu, Zn, Ag, Sn, Hg and Tl, when compared to the distillation without oxide layer. This was attributed due to the impurity metal oxide phases formation on the surface of the molten metal. The influence of oxygen flow time on the distillation rate of cadmium was established. There was no excess oxygen (O) retained in the distillate after two consecutive vacuum distillations through oxide route. The experiments were conducted at the level of nearly 1.5 kg a batch to study the impurities behaviour due to upscaling. The detailed chemical analysis of 58 impurity elements in Cd in presence and absence of oxide layer was carried out by glow discharge mass spectrometry (GDMS).

  14. Divergence to apoptosis from ROS induced cell cycle arrest: Effect of cadmium

    International Nuclear Information System (INIS)

    Recently, the role of cadmium (Cd) in immunosupression has gained importance. Nevertheless, the signaling pathways underlying cadmium-induced immune cell death remains largely unclear. In accordance to our previous in vivo report, and to evaluate the further details of the mechanism, we have investigated the effects of cadmium (CdCl2, H2O) on cell cycle regulation and apoptosis in splenocytes in vitro. Our results have revealed that reactive oxygen species (ROS) and p21 are involved in cell cycle arrest in a p53 independent manner but late hour apoptotic response was accompanied by the p53 up-regulation, loss of mitochondrial transmembrane potential (MTP), down-regulation of Bcl-xl, activation of caspase-3 and release of cytochrome c (Cyt c). However, pifithrin alfa (PFT-α), an inhibitor of p53, fails to rescue the cells from the cadmium-induced cell cycle arrest but prevents Bcl-xl down-regulation and loss of Δψm, which indicates that there is an involvement of p53 in apoptosis. In contrast, treatment with N-acetyl cysteine (NAC) can prevent cell cycle arrest and p21 up-regulation at early hours. Although it is clear that, NAC has no effect on apoptosis, p53 expression and MPT changes at late stage events. Taken together, we have demonstrated that cadmium promotes ROS generation, which potently initiates the cell cycle arrest at early hours and finally induces p53-dependent apoptosis at later part of the event.

  15. Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants

    International Nuclear Information System (INIS)

    Cadmium (Cd2+) is an ubiquitous toxic metal that is involved in a variety of pathological conditions. Several reports indicate that Cd2+ alters normal pituitary hormone secretion; however, little is known about the mechanisms that induce this misregulation. This paper reports the effect of Cd2+ on anterior pituitary cell viability and its relation to prolactin secretion. Cd2+ concentrations above 10 μM were found to be cytotoxic for pituitary cells. Morphological studies as well as DNA ladder fragmentation and caspase activation showed that Cd2+-treated cells undergo apoptosis. Even though several hours were needed to detect Cd2+-induced cytotoxicity, the effect of the metal became irreversible very quickly, requiring only 3 h of treatment. Prolactin release (measured at 48 h) was inhibited when the cells were exposed to Cd2+ for 1 h, before any change in cell viability was observed. The antioxidants N-acetyl-cysteine and Trolox (a hydrosoluble derivative of vitamin E), but not ascorbic acid, reversed both Cd2+-mediated cytotoxicity and the inhibition of prolactin release, supporting the involvement of oxidative stress in the mechanism of Cd2+ action. In summary, the present work demonstrates that Cd2+ is cytotoxic for anterior pituitary cells, that this effect is due to an induction of apoptosis, and that it can be reversed by antioxidants

  16. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  17. Aloe Vera Extract Effect on Sperm Quality and Testicular Tissue of Rats Induced by Cadmium Chloride

    Directory of Open Access Journals (Sweden)

    F Farhangdoost

    2014-04-01

    Full Text Available Background & aim: A lot of physical and chemical factors cause infertility disorders. Cadmium is a chemical agent which damages the cell structure of the reproductive system. For reducing the effects of various factors, new traditional methods have been used. The aim of this study was to investigate the effects of Aloe vera extract on testicular tissue of rats induced by cadmium chloride. Methods: In this experimental study, 40 male Wistar rats (180-200 gr were randomly divided into four groups. Groups 1 and 2 received Cadmium chloride (1/5 mg / kg/ IP. Mice induced by cadmium chloride were treated with Aloe vera. Control and normal rats were treated with 400 mg/kg of Aloe vera extracts. After 25 days, these rats were weighed and then anesthetized using ether. Blood samples were collected from each individual to assess the level of testosterone and then the animals were debriefed. The testes were removed and transferred to 10% formalin solution. After tissue processing, 5 micron sections were prepared and stained with heamatoxillin-eosin and investigated by light microscope. Data were analyzed by one-way ANOVA test. Results: Mean seminiferous tubular diameter, number of spermatogonia, Leydig and Sertoli cell of cadmium control group compared to the healthy control group showed a significant decrease (p<0.05. The mean sperm count and sperm motility in extract cadmium group and healthy control group was close to normal and displayed a significant difference (p< 0.05. Conclusion: Hydroalcoholic extract of Aloe vera increases the number of spermatogonia, Leydig and Sertoli testicular tissue of mice contaminated with cadmium chloride

  18. Effect of cadmium on genetic toxicity and protection of cortex acanthopanasia radicis against genetic damage induced by cadmium

    International Nuclear Information System (INIS)

    Objective and Methods: The test of sperm aberration and micronucleus of bone marrow cells in mice were used to detect the mutagenicity of cadmium and anti-mutagenicity of Cortex Acanthopanasia Radicis (CAR) on germ cell and somatic cell. Kunming mice were divided randomly into four groups: normal saline control group (NS): MMC control group (MMC 1.0 mg/kg); Cd-mutate group (1/5 LD50), 17.6 mg/kg); CAR anti-mutate group (CAR 1,2,4 g/kg + Cd). Ridit test and x2 were used to evaluate the statistical significance of the date. Results: The experiment demonstrated that Chinese medicine CAR can significantly decrease sperm aberration and micronuclei frequencies induced by Cd (P<0.01). Conclusion: As an anti-mutagen CAR has practical value in occupational protection against genetic damage induced by Cd

  19. Mixed-chelate therapy of intratracheally deposited cadmium oxide

    International Nuclear Information System (INIS)

    Mixed-chelate treatment with EDTA and salicylic acid was no more effective in accelerating the removal of intratracheally instilled 109CdO, or in protecting against CdO-induced mortality, than was EDTA given alone

  20. Regulation of expression of an auxin-induced soybean sequence by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Uhrhammer, N.; Guilfoyle, T.J.

    1988-05-05

    An auxin-regulated soybean sequence has been characterized and shown to be induced by the heavy metals cadmium, silver, and copper. Cadmium induces the accumulation of two size classes of mRNA: a 1-kilobase (kb) RNA class, which is the same size as the RNA class induced by auxin, silver, and copper, and a 1.4-kb RNA class. DNA sequences analysis of cDNA clones and a soybean genomic fragment has shown the presence of an intron in this gene. A restriction fragment probe isolated from the intron segment hybridizes specifically to the 1.4-kb mRNA. The transcription rate of this sequences is rapidly increased following exposure of soybean primary leaves to cadmium, as assayed by nuclear run-off transcription experiments. These results suggest that cadmium not only induces the transcription of a specific soybean sequences, but interferes with the processing of the precursor mRNA, resulting in the accumulation of the 1.4-kb mRNA precursor species.

  1. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Ramaraj Thirugnanasampandan; Rajarajeswaran Jayakumar

    2011-01-01

    Objective: To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods: The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results: Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions: The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.

  2. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    OpenAIRE

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S.

    2014-01-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet’s role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet sco...

  3. Low Doses of Cadmium Chloride and Methallothionein-1-Bound Cadmium Display Different Accumulation Kinetics and Induce Different Genes in Cells of the Human Nephron

    Directory of Open Access Journals (Sweden)

    Dana Cucu

    2011-08-01

    Full Text Available Background/Aims: The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+ by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2. Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1. Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1 in renal cells on the expression of genes relevant to nephrotoxic processes. Methods: Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results: Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1 and heme-oxygenase-1 (HO-1 as well as the pro-apoptotic Bcl-2-associated X protein (Bax were upregulated by CdCl2 and not by Cd7MT1. Conclusion: In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity.

  4. Metallothionein-like proteins induced by cadmium stress in the scallop Mizuhopecten yessoensis

    Science.gov (United States)

    Zhukovskaya, Avianna F.; Belcheva, Nina N.; Slobodskova, Valentina S.; Chelomin, Viktor P.

    2012-09-01

    Organisms have evolved a cellular response called stress protein response that increases their tolerance in adverse environmental conditions. Well known stress proteins that bind essential and toxic metals are metallothionein (MT). The scallop Mizuhopecten yessoensis is the most interesting organism because it is able to accumulate toxic cadmium in its digestive gland. However, in the tissue of the digestive gland of Mizuhopecten yessoensis MT (metallothioneins) have not been found. Eastern scallops, Mizuhopecten yessoensis, were collected from two locations — one clean and one polluted site. The concentrations of cadmium (Cd), copper (Cu) and zinc (Zn) were measured in the digestive gland. There was a significant increase in Cd concentrations in this studied tissue. We found that in the presence of cadmium Mizuhopecten yessoensis can induce high molecular proteins. The results of experiments have shown that Cd-binding ligands have a number of properties similar to MT: acetone and temperature stability; the ability to bind some metals, including Cd, Cu and Zn. Protein chromatography (FPLC, Superosa 12) from the digestive gland of scallop M. yessoensis has shown that cadmium is associated with high molecular weight Cd-binding proteins (72 kDa and 43 kDa). The major cadmium-binding protein 72 kDa is glycoprotein. In experiments we have demonstrated that Cd-binding proteins can be induced when there is cadmium exposure. The results of this study strongly suggest that the far eastern scallop Mizuhopecten yessoensis has a unique and well-developed system for the detoxification of heavy metals and it allows for biochemical systems to be maintained in a relatively stable manner in the presence of heavy metals.

  5. Oxidative Response and Antioxidative Mechanism in Germinating Soybean Seeds Exposed to Cadmium

    OpenAIRE

    Shiyong Yang; Jianchun Xie; Quanfa Li

    2012-01-01

    Seeds of soybean (Glycine max L.) exposed to 50 mg/L (Cd50), 100 mg/L (Cd100) and 200 mg/L (Cd200) cadmium solution for 24, 48, 72 and 96 h were examined with reference to Cd accumulation, oxidative stress and antioxidative responses. Soybean seeds accumulated Cd in an exposure time-and dosage-dependent manner. FRAP (ferric reducing ability of plasma) concentration, GSH/hGSH content, and GST activity showed a pronounced exposure time-dependent respons...

  6. Some bioactive potentials of two biflavanols isolated from Garcinia kola on cadmium-induced alterations of raw U937 cells and U937-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    Tebekeme Okoko; Diepreye Ere

    2013-01-01

    Objective: To investigate the abilities of two flavonoids - Garcinia biflavanol-1 (GB-1) and Garcinia biflavanol-2 (GB-2) from Garcinia kola (G. kola) in reducing cadmium-induced effects on raw U937 cells and U937-derived macrophages. Methods: Macrophage U937 cells were incubated with cadmium followed by treatment with the flavonoids and cell viability assessed via trypan blue staining. In the other experiment, the U937 cells were transformed to the macrophage form and treated with cadmium in order to activate them. The cells were later incubated with the flavonoids and finally the supernatant of each cell culture was analysed for the secretion of nitric oxide, catalyse activity, and the release of tumour necrosis factor-alpha, interleukin-1 and interleukin-2 as indices of macrophage activation. Quercetin (a flavonol) was used as the reference flavonoid in all experiments. Results: It revealed that the flavonoids significantly increased the viability of the cells and also reduced the cadmium-induced activation of the macrophage cells in a concentration-dependent manner. The flavanols GB-1 and GB-2 possessed higher activities than quercetin in all cases (P<0.05). Garcinia biflavanol-2 possessed a higher bioactivity than GB-1 significantly (P<0.05). Conclusions: In addition to corroborating the several reported importance of G. kola as a potential neutraceutical and pharmacological condiment, the study also clearly indicates the role hydroxylation especially at the 3´- position of polyphenols could play in enhancing bioactivities of flavonoids.

  7. Role of L-carnitine in Ameliorating the Cadmium Chloride and/or Irradiation-Induced Testicular Toxicity

    International Nuclear Information System (INIS)

    The role of oxidative stress in chronic administration of CdCl2 and/or irradiation toxicity and its prevention by pretreatment with L-carnitine was investigated. Adult male rats were administered with CdCl2 (3 mg/kg S.C. three times a week for three weeks) and /or irradiated at (2 Gy) dose level of gamma radiation. CdCl2 administration and/or irradiation induced cellular damage was indicated by significant decrease in lactate dehydrogenase isoenzyme (LDH-X), glutathione level (GSH) and glutathione peroxidase enzyme activity (GSH-PX) as well as significant increase in malonaldehyde (MDA) in testicular tissues. Administration of L-carnitine (200 mg/kg I.P.) 1 hr before CdCl2 and/or irradiation, ameliorated the decrease in LDH-X, GSH and GSH-PX and the increase in MDA induced by CdCl2 and/or irradiation indicating the prophylactic action of L-carnitine on CdCl2 and /or irradiation toxicity. Various studies have indicated that cadmium is a potent heavy metal carcinogen in experimental animals (Poirier et al., 1983 and Waalkes et al..,1988) and is possibly carcinogenic in human populations exposed either occupationally or environmentally (Bako et al., 1982). Target sites for cadmium carcinogenesis in rodents have been shown to include testes after parenteral exposure (Poirier et al., 1983 and Waalkes et al., 1988) and lung after chronic inhalation (Takenaka et al., 1983)

  8. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs Due to Oxidative Stress in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2015-09-01

    Full Text Available With the applications of quantum dots (QDs expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12. CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2 deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes.

  9. Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus.

    Science.gov (United States)

    Amara, Salem; Douki, Thierry; Garrel, Catherine; Favier, Alain; Ben Rhouma, Khémais; Sakly, Mohsen; Abdelmelek, Hafedh

    2011-03-01

    The present study was undertaken to determine the effect of co-exposure to static magnetic field (SMF) and cadmium (Cd) on the antioxidant enzymes activity and DNA integrity in rat brain. Sub-chronic exposure to CdCl (CdCl(2), 40 mg/L, per os) for 30 days resulted in a significant reduction in antioxidant enzyme activity such as the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) in frontal cortex and hippocampus. Total GSH were decreased in the frontal cortex of the Cd-exposed group. Cd exposure induced an increase in malondialdehyde (MDA) concentration in the frontal cortex and hippocampus. Moreover, the same exposure increased 8-oxo-7,8-dihydro-2-desoxyguanosine (8-oxodGuo) level in rat brain. Interestingly, the combined effect of SMF (128 mT, 1 hour/day for 30 consecutive days) and CdCl (40 mg/L, per os) decreased the SOD activity and glutathione level in frontal cortex as compared with the Cd group. Moreover, the association between SMF and Cd increased MDA concentration in frontal cortex as compared with Cd-exposed rats. DNA analysis revealed that SMF exposure failed to alter 8-oxodGuo concentration in Cd-exposed rats. Our data showed that Cd exposure altered the antioxidant enzymes activity and induced oxidative DNA lesions in rat brain. The combined effect of SMF and Cd increased oxidative damage in rat brain as compared with Cd-exposed rats. PMID:20837562

  10. Boron-doped cadmium oxide composite structures and their electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, B.J., E-mail: bjlokhande@yahoo.com [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Ambare, R.C. [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Mane, R.S. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India); Bharadwaj, S.R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-01

    Graphical abstract: Conducting nano-fibrous 3% boron doped cadmium oxide thin films were prepared by SILAR and its super capacitive properties were studied. - Highlights: • Samples are of nanofibrous nature. • All samples shows pseudocapacitive behavior. • 3% B doped CdO shows good specific capacitance. • 3% B doped CdO shows maximum 74.93% efficiency at 14 mA/cm{sup 2}. • 3% B doped CdO shows 0.8 Ω internal resistance. - Abstract: Boron-doped and undoped cadmium oxide composite nanostructures in thin film form were prepared onto stainless steel substrates by a successive ionic layer adsorption and reaction method using aqueous solutions of cadmium nitrate, boric acid and 1% H{sub 2}O{sub 2}. As-deposited films were annealed at 623 K for 1 h. The X-ray diffraction study shows crystalline behavior for both doped and undoped films with a porous topography and nano-wires type architecture, as observed in SEM image. Wettability test confirms the hydrophilic surface with 58° contact angle value. Estimated band gap energy is around 1.9 eV. Electrochemical behavior of the deposited films is attempted in 1 M KOH electrolyte using cyclic voltammetry (CV), electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Maximum values of the specific capacitance, specific energy and specific power obtained for 3% B doped CdO film at 2 mV/s scan rate are 20.05 F/g, 1.22 Wh/kg and 3.25 kW/kg, respectively.

  11. Divergence to apoptosis from ROS induced cell cycle arrest: Effect of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Soumya; Kundu, Subhadip; Sengupta, Suman [Department of Environmental Science, University of Kalyani, West Bengal 741235 (India); Department of Zoology, University of Calcutta, Calcutta-700019, West Bengal (India); Bhattacharyya, Arindam, E-mail: arindam19@yahoo.com [Department of Environmental Science, University of Kalyani, West Bengal 741235 (India); Department of Zoology, University of Calcutta, Calcutta-700019, West Bengal (India)

    2009-04-26

    Recently, the role of cadmium (Cd) in immunosupression has gained importance. Nevertheless, the signaling pathways underlying cadmium-induced immune cell death remains largely unclear. In accordance to our previous in vivo report, and to evaluate the further details of the mechanism, we have investigated the effects of cadmium (CdCl{sub 2}, H{sub 2}O) on cell cycle regulation and apoptosis in splenocytes in vitro. Our results have revealed that reactive oxygen species (ROS) and p21 are involved in cell cycle arrest in a p53 independent manner but late hour apoptotic response was accompanied by the p53 up-regulation, loss of mitochondrial transmembrane potential (MTP), down-regulation of Bcl-xl, activation of caspase-3 and release of cytochrome c (Cyt c). However, pifithrin alfa (PFT-{alpha}), an inhibitor of p53, fails to rescue the cells from the cadmium-induced cell cycle arrest but prevents Bcl-xl down-regulation and loss of {Delta}{psi}{sub m}, which indicates that there is an involvement of p53 in apoptosis. In contrast, treatment with N-acetyl cysteine (NAC) can prevent cell cycle arrest and p21 up-regulation at early hours. Although it is clear that, NAC has no effect on apoptosis, p53 expression and MPT changes at late stage events. Taken together, we have demonstrated that cadmium promotes ROS generation, which potently initiates the cell cycle arrest at early hours and finally induces p53-dependent apoptosis at later part of the event.

  12. Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis.

    Science.gov (United States)

    Son, Young-Ok; Pratheeshkumar, Poyil; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Zhang, Zhuo; Shi, Xianglin

    2014-10-10

    The cadmium-transformed human lung bronchial epithelial BEAS-2B cells exhibit a property of apoptosis resistance as compared with normal non-transformed BEAS-2B cells. The level of basal reactive oxygen species (ROS) is extremely low in transformed cells in correlation with elevated expressions of both antioxidant enzymes (catalase, SOD1, and SOD2) and antiapoptotic proteins (Bcl-2/Bcl-xL). Moreover, Nrf2 and p62 are highly expressed in these transformed cells. The knockdown of Nrf2 or p62 by siRNA enhances ROS levels and cadmium-induced apoptosis. The binding activities of Nrf2 on the antioxidant response element promoter regions of p62/Bcl-2/Bcl-xL were dramatically increased in the cadmium-exposed transformed cells. Cadmium exposure increased the formation of LC3-II and the frequency of GFP-LC3 punctal cells in non-transformed BEAS-2B cells, whereas these increases are not shown in transformed cells, an indication of autophagy deficiency of transformed cells. Furthermore, the expression levels of Nrf2 and p62 are dramatically increased during chronic long term exposure to cadmium in the BEAS-2B cells as well as antiapoptotic proteins and antioxidant enzymes. These proteins are overexpressed in the tumor tissues derived from xenograft mouse models. Moreover, the colony growth is significantly attenuated in the transformed cells by siRNA transfection specific for Nrf2 or p62. Taken together, this study demonstrates that cadmium-transformed cells have acquired autophagy deficiency, leading to constitutive p62 and Nrf2 overexpression. These overexpressions up-regulate the antioxidant proteins catalase and SOD and the antiapoptotic proteins Bcl-2 and Bcl-xL. The final consequences are decrease in ROS generation, apoptotic resistance, and increased cell survival, proliferation, and tumorigenesis. PMID:25157103

  13. Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum.

    Science.gov (United States)

    Zhu, Xiao Fang; Zheng, Cheng; Hu, Yi Ting; Jiang, Tao; Liu, Yu; Dong, Ning Yu; Yang, Jian Li; Zheng, Shao Jian

    2011-07-01

    The mechanisms of heavy metal resistance in plants can be classified into internal tolerance and exclusion mechanisms, but exclusion of heavy metals with the help of organic acids secretion has not been well documented. Here we demonstrated the contribution of oxalate secretion to cadmium (Cd) exclusion and resistance in tomato. Different Cd resistance between two tomato cultivars was evaluated by relative root elongation (RRE) and Cd accumulation. Cultivar 'Micro-Tom' showed better growth and lower Cd content in roots than 'Hezuo903' at different Cd concentrations not only in short-term hydroponic experiment but also in long-term hydroponic and soil experiments, indicating that the genotypic difference in Cd resistance is related to the exclusion of Cd from roots. 'Micro-Tom' had greater ability to secrete oxalate, suggesting that oxalate secretion might contribute to Cd resistance. Cd-induced secretion of oxalate was localized to root apex at which the majority of Cd accumulated. Phenylglyoxal, an anion-channel inhibitor, effectively blocked Cd-induced oxalate secretion and aggravated Cd toxicity while exogenous oxalate supply ameliorated Cd toxicity efficiently. These results indicated that the oxalate secreted from the root apex helps to exclude Cd from entering tomato roots, thus contributes to Cd resistance in the Cd-resistant tomato cultivar. PMID:21388421

  14. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens.

    Science.gov (United States)

    Küpper, Hendrik; Parameswaran, Aravind; Leitenmaier, Barbara; Trtílek, Martin; Setlík, Ivan

    2007-01-01

    Acclimation of hyperaccumulators to heavy metal-induced stress is crucial for phytoremediation and was investigated using the hyperaccumulator Thlaspi caerulescens and the nonaccumulators T. fendleri and T. ochroleucum. Spatially and spectrally resolved kinetics of in vivo absorbance and fluorescence were measured with a novel fluorescence kinetic microscope. At the beginning of growth on cadmium (Cd), all species suffered from toxicity, but T. caerulescens subsequently recovered completely. During stress, a few mesophyll cells in T. caerulescens became more inhibited and accumulated more Cd than the majority; this heterogeneity disappeared during acclimation. Chlorophyll fluorescence parameters related to photochemistry were more strongly affected by Cd stress than nonphotochemical parameters, and only photochemistry showed acclimation. Cd acclimation in T. caerulescens shows that part of its Cd tolerance is inducible and involves transient physiological heterogeneity as an emergency defence mechanism. Differential effects of Cd stress on photochemical vs nonphotochemical parameters indicate that Cd inhibits the photosynthetic light reactions more than the Calvin-Benson cycle. Differential spectral distribution of Cd effects on photochemical vs nonphotochemical quenching shows that Cd inhibits at least two different targets in/around photosystem II (PSII). Spectrally homogeneous maximal PSII efficiency (F(v)/F(m)) suggests that in healthy T. caerulescens all chlorophylls fluorescing at room temperature are PSII-associated. PMID:17688582

  15. Ameliorating potential of Ashwagandha on cadmium chloride induced changes in weights of visceral organs

    Directory of Open Access Journals (Sweden)

    M.K.

    Full Text Available The present study was carried out to evaluate the protective effect of Ashwagandha on Cadmium chloride induced changes in weights of visceral organs of male rats. Thirty male Wistar rats were divided equally into three groups. Group I was fed on balanced diet of rat pellets for a period of sixty days. The rats in group II were given freshly prepared cadmium chloride solution in the deionised drinking water @200 ppm daily for 60 days. The rats in Group III were fed on Ashwagandha plant powder thoroughly mixed in rat feed at the concentration of 0.5g/Kg (w/w corresponding to 500 ppm level. Simultaneously the rats were given cadmium-chloride @200 ppm in deionised drinking water throughout the experimental period. It is concluded that oral administration of Ashwagandha (Withania somnifera plant powder for 60 days significantly improved the weights of testes, accessory sex organs, liver and kidney in male rats. Simultaneous medication of Ashwagandha (500 ppm in feed reduced the severity of cadmium chloride toxicity in male Wistar rats. [Veterinary World 2008; 1(11.000: 343-345

  16. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium

    NARCIS (Netherlands)

    Bejarano-Jimenez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Oritz-Ledon, C.A.; Chazaro-Ruiz, L.F.

    2014-01-01

    Super absorbent polymers of acrylic acid-graphene oxide (PAA-GO) were synthesized with different percentage of chemical neutralization (0, 10, and 20%) of the acrylic acid monomer before its polymerization. The influence of their swelling and adsorption/desorption capacity of cadmium ions in aqueous

  17. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  18. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q10 values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying the

  19. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis

    International Nuclear Information System (INIS)

    The bioavailability of heavy metals strongly depends on their speciation in the environment. The effect of different chemical speciations of cadmium ions (i.e. adsorbed on different oxide minerals) on its bioavailability to wetland plant Phragmites australis was studied. Goethite, magnetite, gibbsite, alumina, and manganese oxide were chosen as representatives of metal (hydr)oxides commonly present in sediment. The cultivar system with Hoagland solution as nutrition supply, and single metal oxide with adsorbed Cd as contaminant was applied to study Cd accumulation by P. australis. The bioaccumulation degree in root after the 45-day treatment followed the order: Al(OH)3 > Al2O3 > Fe3O4 > MnO2 > FeOOH. The concentration of Cd in stem and leaf followed a similar order although it was considerably lower than that in root. Low-molecular-weight organic acids (LMWOAs), acetic acid, malic acid and citric acid were used to evaluate the desorbability of Cd from different oxides, which can be indicative of Cd-oxide bonding strength and Cd bioavailability. Desorption of Cd by acetic acid and malic acid followed the order: Al(OH)3 > Fe3O4 > Al2O3 > FeOOH > MnO2, while by citric acid: Al(OH)3 ≥ Al2O3 > Fe3O4 > FeOOH > MnO2. This was consistent with the Cd accumulation degree in the plant. Cd adsorbed on Al(OH)3 was the most easily desorbable species and most bioavailable to P. australis among the oxide minerals, whereas MnO2 adsorbed Cd was least desorbable by LMWOAs hence constituted the least bioavailable Cd species adsorbed on the oxide minerals.

  20. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    International Nuclear Information System (INIS)

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity

  1. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S., E-mail: rozekl@umich.edu

    2014-05-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity.

  2. Cadmium-Induced Toxicity and the Hepatoprotective Potentials of Aqueous Extract of Jessiaea Nervosa Leaf

    Directory of Open Access Journals (Sweden)

    Ama Udu Ibiam

    2013-08-01

    Full Text Available Purpose: Hepatoprotective potentials of Jussiaea nervosa leaf extract against Cadmium-induced hepatotoxicity were investigated. Methods: Forty albino rats were randomly assigned into groups A-G with 4 rats in each of the groups A-F. Group A served as control and were given feed only while rats in groups B-F were orally exposed to varying concentrations of cadmium for six weeks. Effects of cadmium were most significant at 12 mg/Kg body weight (BW, and this dose was used for subsequent test involving oral administration of Jussiaea nervosa leaf extracts. In this segment, group G (n= 16 was sub-divided into four: G1-G4, with each sub-group containing four rats. Rats in sub-group G1 were given cadmium and feed only and served as positive control. Rats in sub-groups G2, G3, and G4 were given cadmium and 20, 50 and 100g/kg BW of Jussiaea nervosa extract, respectively, for six weeks. Blood and liver were analysed using standard laboratory techniques and methods. Results: Liver function parameters (ALT, AST, ALP, bilirubin were significantly (p<0.05 elevated in exposed rats in comparison to the controls, except for total protein and albumin, which were significantly decreased. Histopathological assessment reveals renal pathology in exposed rats in sharp contrast with the controls. Jussiaea nervosa extract however lowered the values of liver function parameters with 100mg/Kg BW dose producing the highest ameliorative effects. Similarly, the serum albumin and total protein significantly (p<0.05 improved with normal liver architecture. Conclusion: The results show the hepatoprotective potentials of Jussiaea nervosa extract against Cd toxicity.

  3. Prevention of radiation and cadmium induced haematological alternations in the Swiss albino mice by Aloe Vera

    International Nuclear Information System (INIS)

    The development of effective radio protectors and radio recovery drugs is of great importance in view of their potential application during both planned (i.e., radiotherapy) and unplanned radiation exposure (i.e., in the nuclear industry and natural background radiation). The combined effect of radiation and cadmium further increases the causation of damages to organs and tissues. Aloe vera has enjoyed a reputation as a healer for millennia, based primarily on anecdotal evidence. For the last 40 years concerted efforts by the scientific research community has brought Aloe vera out of the realm of folk medicine, providing it solid medical and scientific foundation. Haematopoietic organs are among the most radiosensitive cells in the living organisms. Therefore, present study was carried out to study the modulatory influence of Aloe vera against radiation and cadmium induced hematological changes in the Swiss albino mice. For the study, six to eight weeks old male Swiss albino mice were procured and kept in polypropylene cages.The animals were exposed 3.5 Gy and 7.0 Gy of gamma radiation with or without cadmium chloride treatment. The Aloe vera was administered seven days prior to irradiation or cadmium chloride treatment. Five animals from each group were autopsied by cervical dislocation at each post treatment interval of 1, 2, 4, 7, 14 and 28 days. Blood was collected in heparinized tubes to estimate various haematological parameters viz. RBC, WBC, PCV, Haemoglobin and MCV. Radiation exposure resulted in a significant decline in RBC, WBC, PCV, Haemoglobin and MCV up to day-14 in peripheral blood, thereafter it increased up to day-28 without reaching to normal. After combined treatment of radiation and cadmium chloride the more severe changes were noticed showing synergistic or additive effect. An early and fast recovery was seen in Aloe vera pretreatment groups. Thus, it may be concluded from above observation that Aloe vera has the potential of combating the

  4. Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: An experimental and first-principles study

    KAUST Repository

    Bououdina, Mohamed

    2015-03-26

    We obtain a single cadmium oxide phase from powder synthesized by a thermal decomposition method of cadmium acetate dehydrate. The yielded powder is annealed in air, vacuum, and H2 gas in order to create point defects. Magnetization-field curves reveal the appearance of diamagnetic behavior with a ferromagnetic component for all the powders. Powder annealing under vacuum and H2 atmosphere leads to a saturation magnetization 1.15 memu g-1 and 1.2 memu g-1 respectively with an increase by 45% and 16% compared to the one annealed in air. We show that annealing in vacuum produces mainly oxygen vacancies while annealing in H2 gas creates mainly Cd vacancy leading to room temperature ferromagnetic (RTFM) component together with known diamagnetic properties. Ab initio calculations performed on the CdO nanoparticles show that the magnetism is governed by polarized hybrid states of the Cd d and O p orbitals together with the vacancy. © The Royal Society of Chemistry 2015.

  5. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    International Nuclear Information System (INIS)

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  6. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Martinez-Guitarte, J.L. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Morcillo, G. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain)]. E-mail: gmorcillo@ccia.uned.es

    2007-02-01

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  7. The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure

    OpenAIRE

    Lazarova, Nevena; Krumova, Ekaterina; Stefanova, Tsvetanka; Georgieva, Nelly; Angelova, Maria

    2014-01-01

    Despite the intensive research in the past decade on the microbial bioaccumulation of heavy metals, the significance of redox state for oxidative stress induction is not completely clarified. In the present study, we examined the effect of redox-active (copper and chromium) and redox-inactive (cadmium) metals on the changes in levels of oxidative stress biomarkers and antioxidant enzyme defence in Trichosporon cutaneum R57 cells. This filamentous yeast strain showed significant tolerance and ...

  8. On systems of vaporous polonium dioxide-zinc, cadmium and barium oxides

    International Nuclear Information System (INIS)

    Using the thermal method of the direct synthesis in oxygen medium and radiometrically it has been established that vaporous polonium dioxide does not interact with zinc and cadmium oxides during their heating up to 1050 deg C. Using the method of the direct synthesis in oxygen medium and radiotensimetric method it is shown that barium oxides at 900 and 950 deg C absorb polonium dioxide to the mole ratio of polonium dioxide-barium oxide (0.71-0.77)+-0.15 and (1.04-1.25)+-0.25 respectively with the formation of Ba4Po3O10 and BaPoO3. During heating in oxygen medium up to 1000 deg C these compounds separate polonium dioxide to the mole ratio of polonium dioxide-barium oxide 0.54+-0.11 with the formation of Ba2PoO4. Temperature dependences of vapour pressure of polonium dioxide in the process of dissociation of the compounds prepared are determined and the heats of the processes are calculated

  9. Influence of cadmium on ketamine-induced anesthesia and brain microsomal Na[sup +], K[sup +]-ATPase in mice

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.; Sangiah, S. (Oklahoma State Univ., Stillwater, OK (United States))

    1994-10-01

    Cadmium is a rare metallic element, present in almost all types of food. Shellfish, wheat and rice accumulate very high amounts. Occupational and environmental pollutants are the main sources of cadmium exposure. Cadmium has a very long biologic half-life. Exposure to Cadmium causes anemia, hypertension, hepatic, renal, pulmonary and cardiovascular disorders as well as being a possible mutagen, teratogen and carcinogen. Acute cadmium treatment increased the hexobarbital sleeping time and inhibited hepatic microsomal drug metabolism due to a decrease in cytochrome P[sub 450] content. Cadmium potentiated ethanol-induced sleep in a dose-dependent manner. Cadmium has been shown to inhibit brain microsomal Na[sup +], K[sup +]-ATPase activity in vitro and in vivo. Cadmium and ethanol additively inhibited brain Na[sup +], K[sup +]-ATPase. This might be a direct interaction between cadmium and ethanol in the central nervous system. Ketamine is an intravenous anesthetic agent. It acts on central nervous system and produces [open quotes]dissociative anaesthesia.[close quotes] Ketamine provides adequate surgical anesthesia and is used alone in humans and/or combination with xylazine, an [alpha][sub 2]-adrenergic agonist in animals. It produces CNS depression, analgesia, amnesia, immobility and a feeling of dissociation from the environment. Ketamine is a non-competitive antagonist of the NMDA subset of the glutamate receptor. This perhaps results in an increase in neuronal activity leading to disorganization of normal neurotransmission and produces dissociative anesthetic state. Because it is different from most other anesthetics, ketamine may be expected to have a unique effect on brain biochemical parameters and enzymes. The purpose of this study was to examine the interactions between cadmium and ketamine on the central nervous system and ATPase, in an attempt to further understand the mechanism of action. 12 refs., 3 figs.

  10. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium.

    Science.gov (United States)

    Krumschnabel, Gerhard; Ebner, Hannes L; Hess, Michael W; Villunger, Andreas

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  11. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    International Nuclear Information System (INIS)

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  12. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  13. On the sensitivity to partial pressure of oxygen of the mobility in cadmium oxide

    Science.gov (United States)

    Grado-Caffaro, M. A.; Grado-Caffaro, M.

    2015-11-01

    The partial pressure of oxygen during the deposition process of cadmium oxide is a crucial quantity whose influence on the electrical and optical properties of this material is really very significant (consider, for example, the experimental technique known as activated reactive evaporation). In fact, this paper is a theoretical formulation to evaluate the sensitivity changes of the aforementioned pressure of the electron drift-mobility and velocity in CdO. Indeed, as we will see later, given that the electron relaxation time depends upon the oxygen partial pressure, then the electron drift-mobility, mean free path and velocity also depend on this pressure. Relevant calculations involving the above physical quantities are carried out.

  14. Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sadeghian, Batuol [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Kokhdan, Syamak Nasiri, E-mail: syamak.nasiri@yahoo.com [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Pebdani, Arezou Amiri [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sahraei, Reza; Daneshfar, Ali; Mihandoost, Asma [Department of Chemistry, University of Ilam, P.O. Box: 65315-516, Ilam (Iran, Islamic Republic of)

    2013-05-01

    In this research, cadmium oxide nanowires loaded on activated carbon (CdO-NW-AC) has been synthesized by a simple procedure and characterized by different techniques such as XRD, SEM and UV–vis spectrometry. This new adsorbent has been efficiently utilized for the removal of the Direct Yellow 12 (DY-12) from wastewater. To obtain maximum DY-12 removal efficiency, the influences of variables such as pH, DY-12 concentration, amount of CdO-NW-AC, contact time, and temperature have been examined and optimized in a batch method. Following the variable optimization, the experimental equilibrium data (at different concentration of DY-12) was fitted to conventional isotherm models such as Langmuir, Freundlich and Tempkin. The applicability of each method is based on the R{sup 2} and error analysis for each model. It was found that the experimental equilibrium data well fitted to the Langmuir isotherm model. The dependency of removal process to time and the experimental data follow second order kinetic model with involvement of intraparticle diffusion model. The negative value of Gibbs's free energy and positive value of adsorption enthalpy show the spontaneous and endothermic nature of adsorption process. - Graphical abstract: Typical FE-SEM image of the CdO nanowires. Highlights: ► Cadmium oxide nanowires loaded on activated carbon was utilized as an adsorbent. ► It was used for the removal of Direct Yellow 12 from aqueous solutions. ► The adsorption of Direct Yellow 12 on this adsorbent is endothermic in nature. ► The adsorption equilibrium data was well described by the Langmuir isotherm model.

  15. Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D

    International Nuclear Information System (INIS)

    Cadmium is a widespread environmental pollutant, which is associated with increased risk of osteoporosis. It has been proposed that cadmium's toxic effect on bone is exerted via impaired activation of vitamin D, secondary to the kidney effects. To test this, we assessed the association of cadmium-induced bone and kidney effects with serum 1,25-dihydroxyvitamin D (1,25(OH)2D); measured by enzyme immunoassay. For the assessment, we selected 85 postmenopausal women, based on low (0.14-0.39 μg/L) or high (0.66-2.1 μg/L) urinary cadmium, within a cross-sectional population-based women's health survey in Southern Sweden. We also measured 25-hydroxy vitamin D, cadmium in blood, bone mineral density and several markers of bone remodeling and kidney effects. Although there were clear differences in both kidney and bone effect markers between women with low and high cadmium exposure, the 1,25(OH)2D concentrations were not significantly different (median, 111 pmol/L (5-95th percentile, 67-170 pmol/L) in low- and 125 pmol/L (66-200 pmol/L) in high-cadmium groups; p=0.08). Also, there was no association between 1,25(OH)2D and markers of bone or kidney effects. It is concluded that the low levels of cadmium exposure present in the studied women, although high enough to be associated with lower bone mineral density and increased bone resorption, were not associated with lower serum concentrations of 1,25(OH)2D. Hence, decreased circulating levels of 1,25(OH)2D are unlikely to be the proposed link between cadmium-induced effects on kidney and bone

  16. Long-lasting oxidative pulmonary insult in rat after intratracheal instillation of silica nanoparticles doped with cadmium

    International Nuclear Information System (INIS)

    Silica/cadmium containing nanomaterials are now produced on industrial scale due to their potential for a variety of technological applications. Nevertheless, information on toxicity, exposure and health impact of these nanomaterials is still limited. In this study, in vivo effects of silica nanoparticles (SiNPs) doped with Cd (SiNPs-Cd, 1 mg/rat), soluble CdCl2 (400 μg/rat), or SiNPs (600 μg/rat) have been investigated by evaluating F2-isoprostanes (F2-IsoPs), superoxide dismutase (SOD1), inducible nitric oxide synthase (iNOS) and cyclooxygenase type 2 (COX-2) enzymes, as markers of oxidative stress, 24 h, 7 and 30 days after intra-tracheal (i.t.) instillation to rats. Free and esterified F2-IsoPs were evaluated in lung and plasma samples by GC/NICI-MS/MS analysis, and SOD1, iNOS and COX-2 expression in pulmonary tissue by immunocytochemistry. Thirty days after exposure, pulmonary total F2-IsoPs were increased by 56% and 43% in CdCl2 and SiNPs-Cd groups, respectively, compared to controls (32.8 ± 7.8 ng/g). Parallel elevation of free F2-IsoPs was observed in plasma samples (by 113% and 95% in CdCl2 and SiNPs-Cd groups, respectively), compared to controls (28 ± 8 pg/ml). These effects were already detectable at day 7 and lasted until day 30 post-exposure. Pulmonary SOD1-, iNOS-, and COX-2-immunoreactivity was significantly enhanced in a time-dependent manner (7 days 2 and SiNPs-Cd treatments. SiNPs did not influence any of the evaluated endpoints. The results indicate the capacity of engineered SiNPs-Cd to cause long-lasting oxidative tissue injury following pulmonary exposure in rat.

  17. Effects of cadmium on hypoxia-induced expression of hemoglobin and erythropoietin in larval sheepshead minnow, Cyprinodon variegatus

    Energy Technology Data Exchange (ETDEWEB)

    Dangre, A.J.; Manning, S. [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States); Brouwer, M., E-mail: marius.brouwer@usm.edu [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States)

    2010-08-15

    Hypoxia and toxic metals are two common stressors found in the estuarine environment. To date little information is available on the combined effects of these stressors on early larval development in fish. We investigated the effect of cadmium and hypoxia exposure alone as well in combination on larval Cyprinodon variegatus. The LC{sub 10} for cadmium was determined to be 0.3 ppm in a 96 h acute exposure. This concentration was used in all studies. Cadmium in larvae increased significantly with exposure time (1, 3, 5 and 7 days post-hatch). The increase was proportional to body weight and not affected by hypoxia. Cadmium responsive genes were identified by suppression subtractive hybridization (SSH) in Cyprinodonvariegatus larvae after exposure to cadmium for 1, 3, 5 and 7 days. We obtained over 700 sequences from the cadmium cDNA library. Blast search of ESTs suggested that cadmium modulates multiple physiological processes. Pertinent to this study, cadmium was found to down-regulate both embryonic {alpha} and {beta} globin, which are expressed in erythrocytes generated during the first, or primitive, wave of erythropoiesis in teleosts. Hemoglobin (Hb) and erythropoietin (Epo) (the hormone that promotes red blood cell production) are known hypoxia-inducible genes. To explore the possibility that cadmium might offset the hypoxia-induced expression of Hb and Epo, we investigated the expression of both genes following hypoxia, cadmium and combined exposures for 1, 3, 5 and 7 days post-hatch. Since Epo had not yet been identified in C. variegatus we first successfully cloned a partial coding sequence of the C. variegatus hormone. Subsequent studies revealed that expression levels of Hb and Epo remained unchanged in the normoxic controls during the time course of the study. Hypoxia increased Epo expression relative to normoxic controls, on days 3, 5 and 7, while cadmium in hypoxia inhibited the increase. Only the changes on days 5 and 7 were statistically significant

  18. Effects of cadmium on hypoxia-induced expression of hemoglobin and erythropoietin in larval sheepshead minnow, Cyprinodon variegatus

    International Nuclear Information System (INIS)

    Hypoxia and toxic metals are two common stressors found in the estuarine environment. To date little information is available on the combined effects of these stressors on early larval development in fish. We investigated the effect of cadmium and hypoxia exposure alone as well in combination on larval Cyprinodon variegatus. The LC10 for cadmium was determined to be 0.3 ppm in a 96 h acute exposure. This concentration was used in all studies. Cadmium in larvae increased significantly with exposure time (1, 3, 5 and 7 days post-hatch). The increase was proportional to body weight and not affected by hypoxia. Cadmium responsive genes were identified by suppression subtractive hybridization (SSH) in Cyprinodonvariegatus larvae after exposure to cadmium for 1, 3, 5 and 7 days. We obtained over 700 sequences from the cadmium cDNA library. Blast search of ESTs suggested that cadmium modulates multiple physiological processes. Pertinent to this study, cadmium was found to down-regulate both embryonic α and β globin, which are expressed in erythrocytes generated during the first, or primitive, wave of erythropoiesis in teleosts. Hemoglobin (Hb) and erythropoietin (Epo) (the hormone that promotes red blood cell production) are known hypoxia-inducible genes. To explore the possibility that cadmium might offset the hypoxia-induced expression of Hb and Epo, we investigated the expression of both genes following hypoxia, cadmium and combined exposures for 1, 3, 5 and 7 days post-hatch. Since Epo had not yet been identified in C. variegatus we first successfully cloned a partial coding sequence of the C. variegatus hormone. Subsequent studies revealed that expression levels of Hb and Epo remained unchanged in the normoxic controls during the time course of the study. Hypoxia increased Epo expression relative to normoxic controls, on days 3, 5 and 7, while cadmium in hypoxia inhibited the increase. Only the changes on days 5 and 7 were statistically significant. Hypoxia also

  19. Quantitative analysis of cadmium(II) and copper(II) by chemical stripping chronopotentiometry using dissolved oxygen as an oxidant

    International Nuclear Information System (INIS)

    Chemical stripping chronopotentiometry was applied to determine cadmium(II) and copper(II) by using oxygen as an oxidant. The calibration curve for cadmium(II) was linear within a range of (10-6--10-4) mol dm-3, while the calibration curve for copper(II) was distorted, since copper(II) ion in the sample solution also worked as an oxidant. The calibration curve for cadmium(II) in the presence of constant concentration of copper(II) ion was linear within the range of (10-5--2 x 10-4) mol dm-3. In order to determine copper(II) in the presence of cadmium(II), it was necessary to electrodeposit only copper by reducing at -0.5 V vs. SCE. The instrumentation used in this work was composed of only a simple voltage supply circuit, a stirrer, a y-t recorder and a pH-meter used as a high-impedance potentiometer. (author)

  20. Hepatotoxicity of Cadmium and Roles of Mitigating Agents

    Directory of Open Access Journals (Sweden)

    Elias Adikwu

    2013-12-01

    Full Text Available There are increasing reports on cadmium associated hepatotoxicity, due to these reports this study reviewed relevant literature on cadmium associated hepatotoxicity with emphasis on doses, route of administration, salt forms (cadmium compounds and the roles of mitigating agents. Reports have shown that continuous exposure of the liver to cadmium has led to hepatotoxicity. Humans are generally exposed to cadmium by two main routes, inhalation and ingestion. In this study, evaluation of relevant literature showed that irrespective of route of administration and salt forms cadmium hepatotoxicity is dose and time dependent. Cadmium associated hepatotoxicity manifested through impaired functions of hepatic biomarkers (transaminases, enzymatic and non enzymatic antioxidants. Histopathological damage to liver architecture manifested as swelling of hepatocytes, focal necrosis, hepatocytes degeneration, dilatation of ribosomes, damage of membrane-bounded lysosomes, nuclear pyknosis and cytoplasm vacuolization. Deterioration of mitochondrial cristae, deposition of collagen fibrils, hypertrophy of kuffer cells, congestion in central veins and sinusoids, infiltration of mixed inflammatory cells and peripheral hemorrhage also occurred. Hepatotoxic effect of cadmium was mitigated by Vitamin C, Vitamin E, Manganese (11 Chloride, N-acetylcysteine and Selenium. Extracts of plant origin including Solanum tuberosum, Calycopteris floribunda Hibiscus sabdariffa mitigated cadmium induced hepatotoxicity. Chemical substances of animal origin including honey and camel milk were reported to have ameliorated cadmium induced hepatotoxicity. One of the mechanisms of cadmium induced hepatotoxicity is reported to be associated with the up regulation of reactive oxygen species (oxidative stress which caused oxidative damage to lipid contents of membranes and direct liver injury. Conclusion cadmium is dose and time dependently hepatotoxic irrespective of route of administration

  1. Modulatory influence of Aloe vera against radiation and cadmium induced hepatic lesions in Swiss albino mice

    International Nuclear Information System (INIS)

    The major objectives in radiobiology has been the development of agents that can mitigate the damage produced by ionizing radiation to normal tissues and thus reduces the side effects caused by radiation and improvement of cancer radiotherapy. The various agents have drawn attention of researchers as they provide wider acceptability and least side effects. The current study was aimed to investigate the protective effect of Aloe vera against radiation and cadmium induced changes in the liver of Swiss albino mice. For the study healthy male Swiss albino mice (6 to 8 weeks old) were selected from an inbred colony and kept in polypropylene cages. They were provided with standard mice feed and tap water ad libitum. The animals were exposed to 3.0 and 6.0 Gy of gamma radiation with or without cadmium chloride treatment. The animals of experimental groups were administered Aloe vera juice seven days prior to irradiation or cadmium chloride treatment. The animals of each group were autopsied at each post treatment interval of 1, 2, 4, 7, 14 and 28 days of treatment. The various biochemical parameters estimated were total proteins, glycogen, cholesterol, acid and alkaline phosphatase activities, DNA and RNA. After routine procedure, histopathological changes were also observed. The changes in various biochemical parameters were observed in the form of increase of decrease in values. The histopathological changes observed on day-1 after exposure to 3.0 Gy were distortion of hepatic architecture, intracellular oedema, narrower sinusoids, cytoplasmic degranulation, vacuolation and pycnotic nuclei. The changes were more marked on day-4 and continued up to day-14. But on day-28 the sign of recovery was observed. After exposure to a higher dose (6.0 Gy) similar changes were noticed but they were more pronounced and there was late manifestation of recovery. In the combined treatment of radiation and cadmium chloride synergistic effects were observed. The liver of Aloe vera treated

  2. Magnesium oxide-impregnated tuff soil-derived ceramic: a novel cadmium(II) adsorbing media

    Science.gov (United States)

    Salim, Md; Bhakta, Jatindra N.; Maneesh, Namburath; Munekage, Yukihiro; Motomura, Kevin

    2015-07-01

    The contamination of cadmium (Cd) in the aquatic environment is one of the serious environmental and human health's risks. The present study attempted to develop the potential magnesium oxide (MgO)-impregnated tuff soil-derived ceramic (MITDC)-based novel adsorbent media for adsorbing higher rate of cadmium [Cd(II)] from water phase. A potential MITDC adsorbent media was developed using volcanic raw tuff soil and its Cd(II) adsorption capacity from water phase was evaluated comparing with the raw tuff soil. A series of studies were carried out in an agitated batch method at 20 ± 2 °C to characterize the adsorption capacity of MITDC under different conditions of factors, such as contact time (0-360 min), initial pH (3-11) of solution, dose of MITDC (2, 5, 7.5 and 10 g/L), and initial concentration of Cd(II) (5, 10, 20, 30, and 40 mg/L), influencing the adsorption mechanism. MITDC exhibited the equilibrium state of maximum Cd(II) adsorption at the contact time 120 min and pH 4.7 (removed 98.2 % Cd) when initial Cd(II) concentration was 10 mg/L in the present study. The dose of 7.5 g MITDC/L showed maximum removal of Cd(II) from water. Experimental data were described by the Freundlich and the Langmuir isotherms and equilibrium data fitted well with the Langmuir model (R 2 = 0.996). The Cd(II) adsorption capacity of MITDC was 31.25 mg/g. The high Cd(II) adsorption capacity indicated that novel MITDC could be used as a potential ceramic adsorbent media to remove high rate of Cd(II) from aqueous phase.

  3. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. PMID:26998941

  4. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    International Nuclear Information System (INIS)

    Highlights: • Cd2+ induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd2+. • DsRNA-suppression of LvCdc42 and MAPKs during Cd2+ stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd2+ stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd2+. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses

  5. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ting; Wang, Wei-Na, E-mail: weina63@aliyun.com; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-06-15

    Highlights: • Cd{sup 2+} induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd{sup 2+}. • DsRNA-suppression of LvCdc42 and MAPKs during Cd{sup 2+} stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd{sup 2+} stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd{sup 2+}. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses.

  6. Laser-induced grating spectroscopy of cadmium telluride

    Science.gov (United States)

    Petrovic, Mark S.; Suchocki, Andrzej; Powell, Richard C.; Cantwell, Gene; Aldridge, Jeff

    1989-08-01

    Laser-induced transient gratings produced by two-photon absorption of picosecond pulses at 1.064 μm were used to examine the room-temperature nonlinear optical responses of CdTe crystals with different types of conductivity. Pulse-probe degenerate four-wave mixing measurements of grating dynamics on subnanosecond time scales were used to measure the ambipolar diffusion coefficient (Da) of charge carriers in the crystals. The value of Da =3.0 cm2 s-1 which was obtained is in very good agreement with theoretical estimates. A long-lived contribution to the signal consistent with a trapped charge photorefractive effect was observed at large grating spacings for n-type conductivity, and is tentatively attributed to a larger trap density in this sample. Measurements of the relative scattering efficiencies of successive diffracted orders in the Raman-Nath regime allowed for calculation of the laser-induced change in the index of refraction, due to the creation of free carriers. The value of Δn=4×10-4 which was obtained is in good agreement with theoretical estimates.

  7. Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage

    OpenAIRE

    B Rajendar; Bharavi, K.; G.S.Rao; Kishore, P.V.S; Ravi Kumar, P.; C.S.V Satish Kumar; T Pankaj Patel

    2011-01-01

    Aim : The aim of the present study was to investigate whether Tribulus terrestris Linn (TT) could protect the cadmium (Cd)-induced testicular tissue peroxidation in rats and to explore the underlying mechanism of the same. Materials and Methods : In vitro and in vivo studies were conducted to know the protective effect of ethanolic extract of TT (eTT) in Cd toxicity. In in vitro studies, total antioxidant and ferrous metal ion chelating activity of TT was studied. In vivo studies were conduct...

  8. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis.

    Science.gov (United States)

    Kesseler, A; Brand, M D

    1994-11-01

    The aim of this study was to identify the significant sites of action of cadmium on oxidative phosphorylation in potato tuber mitocondria. We simplified the system to three convenient subsystems linked via the production or consumption of a common intermediate, namely protonmotive force. The three subsystems were substrate oxidation, which produces protonmotive force, and the proton leak reactions and the phosphorylation reactions, which consume protonmotive force. By measuring the effect of cadmium on the kinetic response of each subsystem to protonmotive force (top-down elasticity analysis), we found that cadmium stimulated proton leak reactions and strongly inhibited substrate oxidation, but had no measurable effect on the phosphorylation reactions. Cadmium therefore decreases the amount of ATP produced/oxygen consumed (the effective P/O ratio) not by inhibiting the phosphorylation reactions directly, but by inhibiting the production of protonmotive force and by diverting proton flux from phosphorylation reactions to the proton leak reactions. PMID:7957227

  9. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  10. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    International Nuclear Information System (INIS)

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  11. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress

    Directory of Open Access Journals (Sweden)

    Liming eYang

    2016-02-01

    Full Text Available The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM. A better understanding of the PM proteome in response to environmental stress might provide new insights for improving stress-tolerant crops. Nitric oxide (NO is reported to be involved in the plant response to cadmium (Cd stress. To further investigate how NO modulates protein changes in the plasma membrane during Cd stress, a quantitative proteomics approach based on isobaric tags for relative and absolute quantification (iTRAQ was used to identify differentially regulated proteins from the rice plasma membrane after Cd or Cd and NO treatment. Sixty-six differentially expressed proteins were identified, of which, many function as transporters, ATPases, kinases, metabolic enzymes, phosphatases and phospholipases. Among these, the abundance of phospholipase D (PLD was altered substantially after the treatment of both Cd and Cd and NO. Transient expression of the PLD fused with green fluorescent peptide (GFP in rice protoplasts showed that the Cd and NO treatment promoted the accumulation of PLD in the plasma membrane. Addition of NO also enhanced Cd-induced PLD activity and the accumulation of phosphatidic acid (PA produced through PLD activity. Meanwhile, NO elevated the activities of antioxidant enzymes and caused the accumulation of glutathione both which function to reduce Cd-induced H2O2 accumulation. Taken together, we suggest that NO signaling is associated with the accumulation of antioxidant enzymes, glutathione and PA which increases cadmium tolerance in rice via the antioxidant defense system.

  12. Suppressive effect of magnesium oxide materials on cadmium accumulation in winter wheat grain cultivated in a cadmium-contaminated paddy field under annual rice-wheat rotational cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tetsuro, E-mail: tetsu-k@hino.meisei-u.ac.jp [Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Okazaki, Masanori, E-mail: masaok24@cc.tuat.ac.jp [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motobayashi, Takashi, E-mail: takarice@cc.tuat.ac.jp [Field Science Center for Education and Research, Tokyo University of Agriculture and Technology, 3-7-1 Hommachi, Fuchu, Tokyo 183-0027 (Japan)

    2009-08-30

    The effectiveness of two kinds of magnesium oxide (MgO) materials, commercial MgO (2250 kg ha{sup -1}) and a material derived from MgO and magnesium silicate minerals named 'MgO-SH-A' (2250 and 4500 kg ha{sup -1}1), in suppression of uptake and accumulation of cadmium (Cd) into grain of winter wheat (Triticum aestivum L. cv. Ayahikari) was examined in a Cd-contaminated alluvial paddy field under annual rice-wheat rotational system. The MgO materials were mixed into the plough-layer soil only once prior to the preceding rice cultivation. Cadmium concentration in wheat grain produced from the non-amendment control exceeded the maximum limit of Cd in wheat grain adopted by FAO/WHO (0.2 mg kg{sup -1}). All of the treatments with the MgO materials significantly lowered plant available Cd fraction in the plough-layer soil. However, only the treatment with the commercial MgO at 2250 kg ha{sup -1} produced wheat grain whose Cd concentration was not only significantly lower than that from the control but also less than 0.2 mg kg{sup -1}. It is suggested that the significant suppressive effect of the commercial MgO on Cd accumulation in wheat grain would be mainly attributed to its high soil neutralizing capacity as compared to that of MgO-SH-A.

  13. Suppressive effect of magnesium oxide materials on cadmium accumulation in winter wheat grain cultivated in a cadmium-contaminated paddy field under annual rice-wheat rotational cultivation

    International Nuclear Information System (INIS)

    The effectiveness of two kinds of magnesium oxide (MgO) materials, commercial MgO (2250 kg ha-1) and a material derived from MgO and magnesium silicate minerals named 'MgO-SH-A' (2250 and 4500 kg ha-11), in suppression of uptake and accumulation of cadmium (Cd) into grain of winter wheat (Triticum aestivum L. cv. Ayahikari) was examined in a Cd-contaminated alluvial paddy field under annual rice-wheat rotational system. The MgO materials were mixed into the plough-layer soil only once prior to the preceding rice cultivation. Cadmium concentration in wheat grain produced from the non-amendment control exceeded the maximum limit of Cd in wheat grain adopted by FAO/WHO (0.2 mg kg-1). All of the treatments with the MgO materials significantly lowered plant available Cd fraction in the plough-layer soil. However, only the treatment with the commercial MgO at 2250 kg ha-1 produced wheat grain whose Cd concentration was not only significantly lower than that from the control but also less than 0.2 mg kg-1. It is suggested that the significant suppressive effect of the commercial MgO on Cd accumulation in wheat grain would be mainly attributed to its high soil neutralizing capacity as compared to that of MgO-SH-A.

  14. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Jiang, Tao [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Lei, Gui Jie [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Cd reduces endogenous GA levels in Arabidopsis. Black-Right-Pointing-Pointer GA exogenous applied decreases Cd accumulation in plant. Black-Right-Pointing-Pointer GA suppresses the Cd-induced accumulation of NO. Black-Right-Pointing-Pointer Decreased NO level downregulates the expression of IRT1. Black-Right-Pointing-Pointer Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 {mu}M for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd{sup 2+}, GA at 5 {mu}M improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd{sup 2+} increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd{sup 2+} absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd{sup 2+} uptake related gene-IRT1 in Arabidopsis.

  15. Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers

    International Nuclear Information System (INIS)

    Some recent research suggests that environmental exposure to cadmium, even at low levels, may increase the risk of osteoporosis, and that the bone demineralization is not just a secondary effect of renal dysfunction induced by high doses of cadmium as previously reported. To investigate the effect of exposure to cadmium at a level insufficient to induce kidney damage on bone mineral density (BMD) and bone metabolism, we conducted health examinations on 1380 female farmers from five districts in Japan who consumed rice contaminated by low-to-moderate levels of cadmium. We collected peripheral blood and urine samples and medical and nutritional information, and measured forearm BMD. Analysis of the data for subjects grouped by urinary cadmium level and age-related menstrual status suggested that cadmium accelerates both the increase of urinary calcium excretion around the time of menopause and the subsequent decrease in bone density after menopause. However, multivariate analyses showed no significant contribution of cadmium to bone density or urinary calcium excretion, indicating that the results mentioned above were confounded by other factors. These results indicate that environmental exposure to cadmium at levels insufficient to induce renal dysfunction does not increase the risk of osteoporosis, strongly supporting the established explanation for bone injury induced by cadmium as a secondary effect

  16. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    Science.gov (United States)

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages. PMID:27302865

  17. One-pot synthesis of reduced graphene oxide-cadmium sulfide nanocomposite and its photocatalytic hydrogen production.

    Science.gov (United States)

    Zeng, Peng; Zhang, Qinggang; Peng, Tianyou; Zhang, Xiaohu

    2011-12-28

    Reduced graphene oxide (RGO)-cadmium sulfide (CdS) nanocomposites were successfully prepared by a one-pot solvothermal process without pretreatment of graphene oxide (GO) and a precipitation process, in which GO needs to be pre-reduced by hydrazine. The as-obtained RGO-CdS nanocomposites were used as photocatalysts for hydrogen production under visible light irradiation, and it was found that the product derived from the one-pot solvothermal process showed much better photoactivity than that from the precipitation method. PMID:22068902

  18. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    Directory of Open Access Journals (Sweden)

    Jana Dumkova

    2016-06-01

    Full Text Available The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.

  19. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs.

    Science.gov (United States)

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-01-01

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level. PMID:27271611

  20. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films

    International Nuclear Information System (INIS)

    Highly conducting transparent cadmium oxide thin films were prepared by the conventional spray pyrolysis technique. The pH of the spray solution is varied by adding ammonia/hydrochloric acid. The effect of pH on the morphology, crystallinity and optoelectronic properties of these films is studied. The structural analysis showed all the films in the cubic phase. For the films with pH < 7 (acidic condition), the preferred orientation is along the (111) direction and for those with pH >7 (alkaline condition), the preferred orientation is along the (200) direction. A lowest resistivity of 9.9 × 10−4 Ω·cm (with carrier concentration = 5.1 × 1020 cm−3, mobility = 12.4 cm2/(V·s)) is observed for pH ≈ 12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70%. Thus, the electrical conductivity of CdO films could be easily tuned by simply varying the pH of the spray solution without compromising the optical transparency. (paper)

  1. Oxidative Response and Antioxidative Mechanism in Germinating Soybean Seeds Exposed to Cadmium

    Directory of Open Access Journals (Sweden)

    Shiyong Yang

    2012-08-01

    Full Text Available Seeds of soybean (Glycine max L. exposed to 50 mg/L (Cd50, 100 mg/L (Cd100 and 200 mg/L (Cd200 cadmium solution for 24, 48, 72 and 96 h were examined with reference to Cd accumulation, oxidative stress and antioxidative responses. Soybean seeds accumulated Cd in an exposure time-and dosage-dependent manner. FRAP (ferric reducing ability of plasma concentration, GSH/hGSH content, and GST activity showed a pronounced exposure time-dependent response. Cd100 enhanced FRAP concentration in germinating soybean seeds as compared to Cd50 treatment after 24 h exposure. Cd200 however increased statistically GST activities after 72 and 96 h exposure. Under all Cd dosages, GSH/hGSH concentrations were depressed with increasing exposure time. Reduction of GSH/hGSH content and concomitant increase of GST activity suggested a possible participation of GSH into GSH-Cd conjugates synthesis. MDA content is a potential biomarker for monitoring Cd phytotoxicity because it responds significantly to treatment dosage, exposure time and dosage ´ exposure time interaction. Increase of proline content may be a response to acute heavy metal toxicity in soybean seeds.

  2. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    Science.gov (United States)

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-01-01

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level. PMID:27271611

  3. Protective efficacy of Emblica officinalis Linn. against radiation and cadmium induced biochemical alterations in the liver of Swiss albino mice

    International Nuclear Information System (INIS)

    All organisms living on earth are being perpetually exposed to some amount of radiation originating from a variety of sources. Radiation causes deleterious effects in all forms of life due to increasing utilization and production of modern technology, a simultaneous exposure of organisms to heavy metals is also unavoidable. These heavy metals become toxic when present in large quantities, with increasing the industrial revolution and industrial waste, the emission of cadmium has increased into the environment. Thus concomitant exposure to cadmium chloride and ionizing radiation might produce deleterious effect upon biological system. The total environmental burden of toxicants may have greater effect as against their individual impact as expected by their nature. So interaction between radiation and other toxicants represents a field of great potential importance. In the recent years, immense interest has been developed in the field of chemoprotection against radiation and heavy metals induced changes. In view of the potential for practical application, a variety of compounds are being tested for their radioprotective activities. Among these, Emblica holds a great promise. In light of the above, the present study was aimed to evaluate the protective effect of Emblica against radiation and cadmium induced biochemical alterations in the liver of Swiss albino mice. The animals were exposed to 6.0 Gy of gamma rays with or without cadmium chloride treatment. The Emblica was administered seven days prior to irradiation or cadmium chloride treatment

  4. Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings

    Czech Academy of Sciences Publication Activity Database

    Najmanová, J.; Neumannová, E.; Leonhardt, T.; Zítka, O.; Kižek, R.; Macek, Tomáš; Macková, M.; Kotrba, P.

    2012-01-01

    Roč. 36, č. 1 (2012), s. 536-542. ISSN 0926-6690 R&D Projects: GA MŠk 1M06030 Grant ostatní: GA ČR(CZ) GA522/07/0692 Institutional research plan: CEZ:AV0Z40550506 Keywords : flax * cadmium * heavy metal tolerance * phytochelatins * phytoremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.468, year: 2012

  5. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus

    International Nuclear Information System (INIS)

    Highlights: •The effect of Cd2+ on Clathrina clathrus microtubule network was studied. •Cd2+ exposure increases acetylated and detyrosinated α-tubulin levels. •Microtubules enriched in acetylated/detyrosinated α-tubulin were resistant to cold. •Clathrina clathrus exposed to Cd2+ showed cytoplasmic microtubules with an enhanced stability. -- Abstract: As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl2, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24 h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd2+-treated cells indicates that divalent Cd ions

  6. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus

    Energy Technology Data Exchange (ETDEWEB)

    Ledda, F.D., E-mail: f.ledda@hotmail.it [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy); Ramoino, P. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Ravera, S. [Dipartimento di Farmacia (DIFAR), Viale Cembrano 4, I-16147 Genova (Italy); Perino, E. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Bianchini, P. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Diaspro, A. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Dipartimento di Fisica (DIFI), Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Gallus, L.; Pronzato, R. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Manconi, R. [Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy)

    2013-09-15

    Highlights: •The effect of Cd{sup 2+} on Clathrina clathrus microtubule network was studied. •Cd{sup 2+} exposure increases acetylated and detyrosinated α-tubulin levels. •Microtubules enriched in acetylated/detyrosinated α-tubulin were resistant to cold. •Clathrina clathrus exposed to Cd{sup 2+} showed cytoplasmic microtubules with an enhanced stability. -- Abstract: As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl{sub 2}, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24 h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd{sup 2+}-treated cells

  7. Arsenic- and cadmium-induced toxicogenomic response in mouse embryos undergoing neurulation

    International Nuclear Information System (INIS)

    Arsenic (As) and cadmium (Cd) are well-characterized teratogens in animal models inducing embryotoxicity and neural tube defects (NTDs) when exposed during neurulation. Toxicological research is needed to resolve the specific biological processes and associated molecular pathways underlying metal-induced toxicity during this timeframe in gestational development. In this study, we investigated the dose-dependent effects of As and Cd on gene expression in C57BL/6J mouse embryos exposed in utero during neurulation (GD8) to identify significantly altered genes and corresponding biological processes associated with embryotoxicity. We quantitatively examined the toxicogenomic dose-response relationship at the gene level. Our results suggest that As and Cd induce dose-dependent gene expression alterations representing shared (cell cycle, response to UV, glutathione metabolism, RNA processing) and unique (alcohol/sugar metabolism) biological processes, which serve as robust indicators of metal-induced developmental toxicity and indicate underlying embryotoxic effects. Our observations also correlate well with previously identified impacts of As and Cd on specific genes associated with metal-induced toxicity (Cdkn1a, Mt1). In summary, we have identified in a quantitative manner As and Cd induced dose-dependent effects on gene expression in mouse embryos during a peak window of sensitivity to embryotoxicity and NTDs in the sensitive C57BL/6J strain.

  8. Cadmium induces the expression of specific stress proteins in sea urchin embryos

    International Nuclear Information System (INIS)

    Marine organisms are highly sensitive to many environmental stresses, and consequently, the analysis of their bio-molecular responses to different stress agents is very important for the understanding of putative repair mechanisms. Sea urchin embryos represent a simple though significant model system to test how specific stress can simultaneously affect development and protein expression. Here, we used Paracentrotus lividus sea urchin embryos to study the effects of time-dependent continuous exposure to subacute/sublethal cadmium concentrations. We found that, between 15 and 24 h of exposure, the synthesis of a specific set of stress proteins (90, 72-70, 56, 28, and 25 kDa) was induced, with an increase in the rate of synthesis of 72-70 kDa (hsps), 56 kDa (hsp), and 25 kDa, which was dependent on the lengths of treatment. Recovery experiments in which cadmium was removed showed that while stress proteins continued to be synthesized, embryo development was resumed only after short lengths of exposure

  9. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    Science.gov (United States)

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  10. Effect of Sodium Chloride and Cadmium on the Growth, Oxidative Stress and Antioxidant Enzyme Activities of Zygosaccharomyces rouxii

    Institute of Scientific and Technical Information of China (English)

    LI Chunsheng; XU Ying; JIANG Wei; LV Xin; DONG Xiaoyan

    2014-01-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly under-stood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6%NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory ef-fect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  11. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Campbell, Peter G.C. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada)

    2014-09-15

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  12. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    International Nuclear Information System (INIS)

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  13. Anode oxidation of cadmium in acid and that of zinc in neutral sulfate solutions

    International Nuclear Information System (INIS)

    By the method of anode polarization curves on rotary disc electrode there have been studied kinetics and mechanism of zinc and cadmium dissolution in 0.1-2.0 N sulfate solutions. There have been determined exchange currents of the first and second stages of ionization and transfer coefficients. Cadmium anode dissolution takes place in sequent single-electron stages with diffusion stage of reaction being superimposed

  14. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    Science.gov (United States)

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist. PMID:26675874

  15. Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiying [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Newman, Donna R. [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Bonner, James C. [Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Sannes, Philip L., E-mail: philip_sannes@ncsu.edu [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States)

    2012-11-15

    Environmental exposure to cadmium is known to cause damage to alveolar epithelial cells of the lung, impair their capacity to repair, and result in permanent structural alterations. Cell surface heparan sulfate proteoglycans (HSPGs) can modulate cell responses to injury through their interactions with soluble effector molecules. These interactions are often sulfate specific, and the removal of sulfate groups from HS side chains could be expected to influence cellular injury, such as that caused by exposure to cadmium. The goal of this study was to define the role 6-O-sulfate plays in cellular responses to cadmium exposure in two pulmonary epithelial cancer cell lines (H292 and A549) and in normal human primary alveolar type II (hAT2) cells. Sulfate levels were modified by transduced transient over-expression of 6-O-endosulfatase (HSulf-1), a membrane-bound enzyme which specifically removes 6-O-sulfate groups from HSPG side chains. Results showed that cadmium decreased cell viability and activated apoptosis pathways at low concentrations in hAT2 cells but not in the cancer cells. HSulf-1 over-expression, on the contrary, decreased cell viability and activated apoptosis pathways in H292 and A549 cells but not in hAT2 cells. When combined with cadmium, HSulf-1 over-expression further decreased cell viability and exacerbated the activation of apoptosis pathways in the transformed cells but did not add to the toxicity in hAT2 cells. The finding that HSulf-1 sensitizes these cancer cells and intensifies the injury induced by cadmium suggests that 6-O-sulfate groups on HSPGs may play important roles in protection against certain environmental toxicants, such as heavy metals. -- Highlights: ► Primary human lung alveolar type 2 (hAT2) cells and H292 and A549 cells were used. ► Cadmium induced apoptosis in hAT2 cells but not in H292 or A549 cells. ► HSulf-1exacerbates apoptosis induced by cadmium in H292 and A549 but not hAT2 cells.

  16. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes

    International Nuclear Information System (INIS)

    Our aim was to investigate rhizosphere effects on the chemical behavior of Cd. This was done in a glasshouse experiment, where two rice cultivars (Zhenong54 and Sixizhan) were grown in soil spiked with cadmium (Cd) at two levels, 3.9±0.5 and 8.3±0.5 mg kg-1 soil, placed in a rhizobox until ripening stage. Chemical forms of cadmium near the root surface were then assessed using a sequential extraction procedure (SEP). There were significant differences in Cd species, especially exchangeable Cd (EXC-Cd) between the two rice cultivars as affected by rice roots. The lowest EXC-Cd with Zhenong54 appeared in the near-rhizosphere area with little difference between tillering stage and ripening stage while Sixizhan had its lowest EXC-Cd concentration in the root compartment. Both cultivars had slight changes in the Fe/Mn oxide-bound fraction of Cd (FMO-Cd) at the grain ripening stage while the control treatments without plants had a significant increase in FMO-Cd at the same time, indicating a transformation from a less bioavailable form (FMO-Cd) to more bioavailable forms (EXC-Cd). Soil microbial biomass in the vicinity of the root surface had opposite trends to some extent with EXC-Cd, partly because of the root-induced changes to bioavailable Cd. Unlike Zhenong54, Sixizhan had a higher Cd concentration in the root, but only a small proportion of Cd translocated from the root to grain. - Research highlights: →We investigated genotypic effects on Cd speciation in the rhizosphere of rice. →Zhenong54 (ZN) and Sixizhan (SX) were grown in rhizobox to show root-induced changes. →Lowest exchangeable-Cd of ZN was in near-rhizosphere while SX in root compartment. →Soil microbial biomass had opposite trends with exchangeable-Cd in both cultivars. →Unlike ZN, SX had higher Cd content in roots, but lower Cd content in shoots.

  17. Iodine-oxygen and cadmium-induced stress corrosion cracking of Zr-4 cladding tube

    International Nuclear Information System (INIS)

    On the basis of iodine-induced stress corrosion cracking (SCC) experiments the authors did before, iodine-oxygen and cadmium-induced SCC was studied on Zr-4 cladding tube. Specimens used in experiments are cladding tubes of a reactor fuel element made by Institute of Nonferrous Metal of China. The tube which has a length of 145 mm and an outside diameter of 15.3 mm and an inside diameter of 14.9 mm was annealed at 620 K for two hours, and then it had a fine, stress-relieved microstructure. Two end-caps were welded on the cladding tube. There was a hole of 0.8 mm diameter in a protruding melting-welding platform on one end-cap of the specimen. Before welding the end-caps, a glass ampoule filled with a certain amount of oxygen and a piece of Zr-4 material which can dash the glass ampoule were put into the cladding tube. After plug-hole welding in high pressure argon, the cladding tube was shaken in order to make the piece of Zr-4 material dash the ampoule and the oxygen fill up the space inside the cladding tube. A certain amount of iodine was charged into the cladding tube from the hole before the plug-hole welding. The plug-hole welding in high pressure argon was performed on a specially prepared equipment within 0.1-0.5 second. At a certain temperature, the pressure of argon determines the mechanical load (stress). The SCC experiments were controlled within +-3 degree C by a thermocouple welded on the specimen. The cracking of the specimen or the leak of gas was sensitively supervised and timed by vacuum alarm system. Under various conditions of stress, the experiments for 28 specimens of iodine-oxygen agent and 5 specimens of cadmium agent were undertaken

  18. Dose-response relationship of cadmium or radiation-induced embryotoxicity in mouse whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Kiyohito; Kawamata, Akitoshi; Matsuoka, Masato; Wakisaka, Takashi; Fujiki, Yoshishige (Asahi University School of Dentistry, Gifu (Japan))

    1988-12-01

    Mouse embryos of B6C3F/sub 1/ strain were exposed in vitro to 1.2 to 2.2 {mu}M cadmium chloride (Cd) or to 100 to 320 R x-rays, and the effects of the exposure on development were examined after 39 h of culture. Development of embryos was assessed from lethality, formation of the neural tube defect, diameter and protein of yolk sac, crown-rump and head lengths, embryonic protein, and number of somites. Incidence of the neural tube defect increased from 3.4 to 100% by 1.2 to 2.0 {mu}M Cd, while embryo deaths increased from 13.8 to 93.3% by 2.0 to 2.2 {mu}M Cd. Embryonic protein was significantly reduced at the teratogenic range, but the number of somites was only affected by 1.6 to 2.0 {mu}M Cd. X-irradiation at 100 to 320 R induced the neural tube defect in 2.9 to 72.7% of the embryos. An embryolethal effect was observed only at the 320 R dose. Crown-rump and head lengths and embryonic protein were significantly affected at the teratogenic range, but the diameter and protein of yolk sac and number of somites were hardly affected. Cadmium- or radiation-induced response data of both teratogenicity and endpoints indicating inhibition of embryonic development were acceptably fitted to a linear log-probit regression. These regressions suggest that as an estimation of interference in development of embryos, embryonic protein and head length are sensitive endpoints while the number of somites is an insensitive criterion. (author).

  19. Isolation and characterization of three cadmium-inducible promoters from Oryza sativa.

    Science.gov (United States)

    Qiu, Chun-Hong; Li, Hao; Li, Juan; Qin, Rui-Ying; Xu, Rong-Fang; Yang, Ya-Chun; Ma, Hui; Song, Feng-Shun; Li, Li; Wei, Peng-Cheng; Yang, Jian-Bo

    2015-12-20

    Cadmium (Cd) is an important soil pollutant. Developing genetically engineered crops might be a feasible strategy for Cd decontamination and damage prevention. Both genes and promoters are critical for the effective construction of genetically modified plants. Although many functional genes for Cd tolerance and accumulation have been identified, few reports have focused on plant Cd-inducible promoters. Here, we identified three Cd-inducible genes in the rice genome: two tau class glutathione S-transferase (GSTU) genes, OsGSTU5 and OsGSTU37, and an HSP20/alpha crystallin family protein gene, OsHSP18.6. The promoter sequences were isolated and tested in transgenic rice lines using a GUSplus reporter gene. All of the promoters exhibited low background expression under normal conditions and could be strongly induced by Cd stress. Although their strength was comparable to that of the constitutive OsACTIN promoter under Cd stress, their time-dependent expression patterns under both short- and long-term Cd exposure were markedly different. The responses of the three promoters to other heavy metals were also examined. Furthermore, heavy metal-responsive cis elements in the promoters were computationally analyzed, and regions determining the Cd stress response were analyzed using a series of truncations. Our results indicate that the three Cd-inducible rice promoters described herein could potentially be used in applications aimed at improving heavy metal tolerance in crops or for the bio-monitoring of environmental contamination. PMID:26435218

  20. Lead and Cadmium Adsorption onto Iron Oxides and Manganese Oxides in the Natural Surface Coatings Collected on Natural Substances in the Songhua River of China

    Institute of Scientific and Technical Information of China (English)

    DONG De-ming; ZHAO Xing-min; HUA Xiu-yi; ZHANG Jing-jing; WU Shi-ming

    2007-01-01

    Natural surface coatings collected from natural substances(NSCsNS) were employed to study the roles of the main chemical components (iron oxides, manganese oxides, and other components) in controlling the adsorption of lead(Pb) and cadmium(Cd) in aquatic environments. The selective chemical extraction followed by the adsorption of Pb and Cd experiments and statistical analysis, were used to investigate the adsorption property of each component.Hydroxylamine hydrochloride was used to remove manganese oxides selectively, and sodium dithionite was used to extract iron oxides and manganese oxides. The result indicated that iron oxides and manganese oxides played an important role in the adsorption of Pb and Cd on NSCsNS, and the relative contribution was about two-thirds. The contribution of manganese oxides was the greatest, with a lesser role indicated for other components. The adsorption ability of manganese oxides for Pb and Cd was greater than that of iron oxides or other components for Pb and Cd. The Pb adsorption observed in each component was greater than Cd adsorption.

  1. Inducible nitric oxide synthase and inflammation.

    Science.gov (United States)

    Salvemini, D; Marino, M H

    1998-01-01

    Nitric oxide (NO), derived from L-arginine (L-Arg) by the enzyme nitric oxide synthase (NOS), is involved in acute and chronic inflammatory events. In view of the complexity associated with the inflammatory response, the dissection of possible mechanisms by which NO modulates this response will be profitable in designing novel and more efficacious NOS inhibitors. In this review we describe the consequences associated with the induction of inducible nitric oxide synthase (iNOS) and its therapeutic implications. PMID:15991919

  2. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  3. Recent Research Progress in Molecular Mechanisms of Cadmium Induced Carcinogenesis%镉致癌的分子机制研究进展

    Institute of Scientific and Technical Information of China (English)

    吴婧; 董欣敏; 郑燕芳; 张积仁

    2015-01-01

    镉是一种无处不在的重金属环境污染物,广泛用于工业环境中。普通人主要通过摄食、吸烟及饮水等方式摄入镉。1993年国际肿瘤研究机构(IARC)就已将镉及其化合物列为第1类人致癌物,镉的致癌性被广泛研究,大量研究发现镉会提高肺癌、前列腺癌、乳腺癌、消化道肿瘤等肿瘤的患病风险。但至目前为止,镉的致癌分子机制尚不清楚。大量研究认为镉通过以下几方面致癌:氧化应激、抑制DNA损伤修复、DNA异常甲基化、抑制细胞凋亡、影响细胞周期调控、致多种基因异常表达、雌激素样效应、促进肿瘤干细胞生长、慢性炎症刺激。%Cadmium (Cd) is a ubiquitous environmental heavy metal pollutant which causes increasing worldwide concern. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smok-ing, and drinking water. Cadmium has been classified as a human carcinogen by the international agency for re-search on cancer (IARC). In 1993, its carcinogenicity has been long established;most evidence is available for ele-vated risk for lung cancer, prostate cancer, breast cancer, gastroenteric cancer and so on. But the underlying mecha-nisms of cadmium carcinogenesis are still not clear. Many studies have been demonstrated that Cd induces cancer by multiple mechanisms:induction of oxidative stress, inhibition of DNA damage repair as well as apoptosis, aber-rant methylation and gene expression, resulting in cell cycle arrest, as a metalloestrogen, promotion of cancer stem cell growth and induction of cancer via chronic inflammation. This review summarizes the recent advances in the carcinogenic mechanism of cadmium on the molecular medicine level.

  4. Ameliorating effect of black tea extract on cadmium chloride-induced alteration of serum lipid profile and liver histopathology in rats.

    Science.gov (United States)

    Mantur, Venkappa S; Somannavarib, Manjunath S; Yendigeri, Saeed; Das, Kusal K; Goudar, Shivaprasad S

    2014-01-01

    Cadmium is one among the most environmental pollutants that affects many organs like kidney, liver and testis. The present study was aimed to assess the simultaneous effects of black tea extracts (BTE) on cadmium chloride induced alterations in lipid profile and liver histology. Adult rats were divided into four groups (n=6/group), group I (normal saline), group II (CdCl2, 1.0 mg/kg, b.wt; i.p), group III (black tea extract, 2.5 gm tea leaf/dl of water that is 2.5% of aqueous BTE) and group IV (cadmium chloride + BTE). Cadmium chloride intoxicated rats showed significant increase in serum total cholesterol, triglycerides, and low density lipoprotein-cholesterol and there is a significant decrease in the serum high density lipoprotein-cholesterol. In the liver, cadmium chloride showed changes in normal architecture, swollen hepatocytes, kupffer cells hyperplasia, dilation and congestion of central vein. Oral administration of black tea extracts with cadmium chloride significantly improves lipid profile and liver architecture as compared to the cadmium chloride group. The results indicate that BTE is beneficial in preventing cadmium-induced lipid alterations and hepatocellular damage. PMID:25509961

  5. Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and enphysema in rats

    International Nuclear Information System (INIS)

    This study describes induction of pulmonary inflammation, production of matrix metalloprotease of type 2 (MMP-2) and type 9 (MMP-9), and emphysema in cadmium (Cd)-exposed rats. Sprague-Dawley rats were randomly distributed into two groups: one placebo-exposed group undergoing saline (NaCl 0.9%) inhalation (n = 30) and one Cd-exposed group undergoing cadmium (CdCl2 0.1%) inhalation (n = 30). The animals of the placebo- and Cd-exposed groups were divided in five subgroups (n = 6). Subgroups underwent either a single exposure of 1 h or repeated exposures three times weekly for 1 h during 3 weeks (3W), 5 weeks (5W), 5 weeks followed by 2 weeks without exposure (5W + 2) or 5 weeks followed by 4 weeks without exposure (5W + 4). Each animal underwent determination of enhanced pause (Penh) as index of airflow limitation prior to the first exposure as well as before sacrifice. The animals were sacrificed the day after their last exposure. The left lung was fixed for histomorphometric analysis (determination of median interwall distance (MIWD)), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. BALF was analyzed cytologically, and MMP-2 and MMP-9 levels were determined by gelatine zymography. Twelve rats previously instilled with pancreatic elastase were used as positive emphysema controls and underwent the same investigations. Cd-exposure induced a significant increase of BALF macrophages, neutrophils and MMP-9 up to 5W + 4, whereas MMP-2 gelatinolytic activity returned to baseline levels within 5W. MIWD was significantly increased in all repeatedly Cd-exposed groups and elastase-treated rats. Penh was increased in Cd-exposed rats after a single exposure and after 3W. MMP gelatinolytic activity was significantly correlated with macrophages, neutrophils and Penh. In repeatedly exposed rats, MIWD was positively and significantly correlated with MMP gelatinolytic activity, suggesting that increased MMP-2 and MMP-9 production favours the development

  6. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  7. Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways.

    Science.gov (United States)

    Brama, M; Politi, L; Santini, P; Migliaccio, S; Scandurra, R

    2012-02-01

    Cadmium is a widespread environmental pollutant which induces severe toxic alterations, including osteomalacia and osteoporosis, likely by estrogen receptor-dependent mechanisms. Indeed, cadmium has been described to act as an endocrine disruptor and its toxicity is exerted both in vivo and in vitro through induction of apoptosis and/or necrosis by not fully clarified intracellular mechanism(s) of action. Aim of the present study was to further investigate the molecular mechanism by which cadmium might alter homeostasis of estrogen target cells, such as osteoblast homeostasis, inducing cell apoptosis and/or necrosis. Human osteoblastic cells (hFOB 1.19) in culture were used as an in vitro model to characterize the intracellular mechanisms induced by this heavy metal. Cells were incubated in the presence/ absence of 10-50 μM cadmium chloride at different times and DNA fragmentation and activation of procaspases- 8 and -3 were induced upon CdCl(2) treatment triggering apoptotic and necrotic pathways. Addition of caspase-8 and -3 inhibitors (Z-IETD-FMK and Z-DQMD-FMK) partially blocked these effects. No activation of procaspase-9 was observed. To determine the role of mitogen-activated protein kinases (MAPK) in these events, we investigated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated protein kinase (ERK1/2) phosphorylation which were activated by 10 μM CdCl(2). Chemical inhibitors of JNK, p38, and ERK1/2, SP600125, SB202190, and PD98059, significantly reduced the phosphorylation of the kinases and blunted apoptosis. In contrast, caspase inhibitors did not reduce the cadmium-induced MAPK phosphorylation, suggesting an independent activation of these pathways. In conclusion, at least 2 pathways appear activated by cadmium in osteoblasts: a direct induction of caspase-8 followed by activation of caspase-3 and an indirect induction by phosphorylation of ERK1/2, p38, and JNK MAPK triggering activation of caspase-8 and -3. PMID:21697648

  8. Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects

    International Nuclear Information System (INIS)

    DNA microarrays offer great potential in revealing insight into mechanistic toxicity of contaminants. The aim of the present study was (i) to gain insight in concentration- and time-dependent cadmium-induced molecular responses by using a customized Daphnia magna microarray, and (ii) to compare the gene expression profiles with effects at higher levels of biological organization (e.g. total energy budget and growth). Daphnids were exposed to three cadmium concentrations (nominal value of 10, 50, 100 μg/l) for two time intervals (48 and 96 h). In general, dynamic expression patterns were obtained with a clear increase of gene expression changes at higher concentrations and longer exposure duration. Microarray analysis revealed cadmium affected molecular pathways associated with processes such as digestion, oxygen transport, cuticula metabolism and embryo development. These effects were compared with higher-level effects (energy budgets and growth). For instance, next to reduced energy budgets due to a decline in lipid, carbohydrate and protein content, we found an up-regulated expression of genes related to digestive processes (e.g. α-esterase, cellulase, α-amylase). Furthermore, cadmium affected the expression of genes coding for proteins involved in molecular pathways associated with immune response, stress response, cell adhesion, visual perception and signal transduction in the present study

  9. Protective role of Liv.52 against radiation and cadmium induce haematological changes in the Swiss albino mice

    International Nuclear Information System (INIS)

    In the present investigation, the protective efficacy of Liv.52 against radiation and cadmium induced haematological changes in Swiss albino mice has been studied. For the purpose, the animals were exposed to 3.0 and 6.0 Gy gamma rays with or without cadmium chloride treatment. The Liv.52 was administered at the dose of 0.01 ml/animal/day seven days prior to radiation, cadmium or combined treatment. The various haematological changes viz. RBC, WBC, Hb, PCV, MCR, MCHC, TLC, SGPT and SGOT were observed in the form of increase or decrease. The values of RBC, WBC, Hb, PCV and MCV were found to decrease in all the groups as compared to normal group. The values of MCR and MCHC increased in all the groups as compared to normal group after 1, 2, 4, 7, 14 and 28 days of post-treatment intervals. The values of SGOT and SGPT elevated up to day-14 in the non drug treated groups and day 7 in the Liv.52 treated groups, thereafter a fall in the value was seen up to day-28. After combined treatment of radiation and cadmium the changes were more severe and there was late manifestation of recovery showing synergistic or additive effect. In the Liv.52 treated animals the changes were less severe and early recovery was also observed showing protection provided by the drug. (author)

  10. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang, E-mail: xudex@126.com

    2012-03-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl{sub 2} (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl{sub 2}. In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl{sub 2}. Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER

  11. Influence of Isoflavones on Cadmium-induced Adverse Effects in Vascular Endothelial Cells (ECV 304)

    Institute of Scientific and Technical Information of China (English)

    JUE CHEN; TAI-YI JIN

    2005-01-01

    Objective To study the possible intervention of isoflavones in cytotoxicity induced by cadmium in vascular endothelial cells. Methods An ECV 304 cell line derived from human umbilical vein endothelial cells was adopted. Genistein / daidzein was added prior to or simultaneously with CdCl2, cell viability was determined by MTT assay, and metallothionein mRNA expression was monitored by RT-PCR method. Results Cell viability was higher in isoflavone and CdCl2 co-treated groups than that in CdCl2 treated group, with CdCl2 concentration at 10, 20, 40, and 80 μmol/L, respectively. However this increase was not observed in the group treated with CdCl2 at a concentration of 60 μmol/L. Isoflavones (10-10 mol/L to 10-5 mol/L) were added 24 h before cells were challenged with 80 μmol/L CdCl2 for 24 h or simultaneously with 80 μmol/L CdCl2. Genistein increased cell viability only at 10-5 mol/L, while daidzein caused a dose-dependent increase from 10-10 mol/L to 10-5 mol/L in co-treatment with CdCl2. In pre-treatment, genistein (10-7 to 10-5 mol/L) increased cell viability whereas only 10-5 mol/L of daidzein exerted protection. Apparent protection could be found when the cells were pre-treated with 10-5 mol/L isoflavones for over 12 h, whereas 24 h incubation was required in such a co-treatment, with the exception of daidzein that had a significant protection in only 3 h. Isoflavones (10-6 mol/L) incubated for 3 h to 24 h, increased MT IIA and MT IF mRNA expression, but the induction could not last for more than 24 h. Co-treatment with isoflavones could induce an additional induction of MT IIA mRNA expression in cells exposed to cadmium. However, the additional induction of MT IIA and MT IF mRNA was not seen when pre-treatment was carried out with isoflavones, with the exception of an increase in MT IIA mRNA expression in the daidzein pre-treated group. Conclusion Genistein/daidzein could reverse the cytotoxicity of cadmium either in pre-treatment or in co-treatment. The

  12. Toxicity assessment of simulated urban runoff containing polycyclic musks and cadmium in Carassius auratus using oxidative stress biomarkers

    International Nuclear Information System (INIS)

    The objective of this study was to assess potential toxic effects of simulated urban runoff on Carassius auratus using oxidative stress biomarkers. The activity of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and the content of malondialdehyde (MDA) in the liver of C. auratus were analyzed after a 7-, 14- and 21-day exposure to simulated urban runoff containing galaxolide (HHCB) and cadmium (Cd). The results showed that the activity of antioxidant enzymes and the content of MDA increased significantly exposed to the simulated urban runoff containing HHCB alone or mixture of HHCB and Cd. The activity of the investigated enzymes and the content of MDA then returned to the blank level over a longer period of exposure. The oxidative stress could be obviously caused in the liver of C. auratus under the experimental conditions. This could provide useful information for toxic risk assessment of urban runoff. - Highlights: ► We assessed potential toxicity of urban runoff containing HHCB and Cd. ► Exposure of simulated urban runoff can caused oxidative stress in C. auratus liver. ► SOD and CAT are more sensitive than POD and more suitable for indicating the toxicity of urban runoff. ► The present study using oxidative stress biomarkers could provide useful information for toxic risk assessment of urban runoff. - Simulated urban runoff containing HHCB and Cd could cause oxidative stress on the liver of Carassius auratus, which could provide useful information for toxic risk assessment of urban runoff.

  13. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.

    Science.gov (United States)

    Schützendübel, Andres; Polle, Andrea

    2002-05-01

    The aim of this review is to assess the mode of action and role of antioxidants as protection from heavy metal stress in roots, mycorrhizal fungi and mycorrhizae. Based on their chemical and physical properties three different molecular mechanisms of heavy metal toxicity can be distinguished: (a) production of reactive oxygen species by autoxidation and Fenton reaction; this reaction is typical for transition metals such as iron or copper, (b) blocking of essential functional groups in biomolecules, this reaction has mainly been reported for non-redox-reactive heavy metals such as cadmium and mercury, (c) displacement of essential metal ions from biomolecules; the latter reaction occurs with different kinds of heavy metals. Transition metals cause oxidative injury in plant tissue, but a literature survey did not provide evidence that this stress could be alleviated by increased levels of antioxidative systems. The reason may be that transition metals initiate hydroxyl radical production, which can not be controlled by antioxidants. Exposure of plants to non-redox reactive metals also resulted in oxidative stress as indicated by lipid peroxidation, H(2)O(2) accumulation, and an oxidative burst. Cadmium and some other metals caused a transient depletion of GSH and an inhibition of antioxidative enzymes, especially of glutathione reductase. Assessment of antioxidative capacities by metabolic modelling suggested that the reported diminution of antioxidants was sufficient to cause H(2)O(2) accumulation. The depletion of GSH is apparently a critical step in cadmium sensitivity since plants with improved capacities for GSH synthesis displayed higher Cd tolerance. Available data suggest that cadmium, when not detoxified rapidly enough, may trigger, via the disturbance of the redox control of the cell, a sequence of reactions leading to growth inhibition, stimulation of secondary metabolism, lignification, and finally cell death. This view is in contrast to the idea that

  14. Ethanol-induced oxidative stress: basic knowledge

    OpenAIRE

    Comporti, Mario; Signorini, Cinzia; Leoncini, Silvia; Gardi, Concetta; Ciccoli, Lucia; Giardini, Anna; Vecchio, Daniela; Arezzini, Beatrice

    2009-01-01

    After a general introduction, the main pathways of ethanol metabolism (alcohol dehydrogenase, catalase, coupling of catalase with NADPH oxidase and microsomal ethanol-oxidizing system) are shortly reviewed. The cytochrome P450 isoform (CYP2E1) specifically involved in ethanol oxidation is discussed. The acetaldehyde metabolism and the shift of the NAD/NADH ratio in the cellular environment (reductive stress) are stressed. The toxic effects of acetaldehyde are mentioned. The ethanol-induced ox...

  15. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    International Nuclear Information System (INIS)

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed. • Neonatal lead

  16. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  17. Midkine secretion protects Hep3B cells from cadmium induced cellular damage

    Institute of Scientific and Technical Information of China (English)

    Nuray Yazihan; Haluk Ataoglu; Ethem Akcil; Burcu Yener; Bulent Salman; Cengiz Aydin

    2008-01-01

    AIM:To evaluate role of midkine secretion during Cadmium (Cd) exposure in the human hepatocyte cell line Hep3B cells.METHODS: Different dosages of Cd (0.5-1-5-10 μg/mL) were applied to Hep3B cells and their effects to apoptosis, lactate dehydrogenase (LDH) leakage and midkine secretion were evaluated as time dependent manner. Same experiments were repeated with exogenously applied midkine (250-5000 pg/mL) and/or 5μg/mL Cd.RESULTS: Cd exposure induced prominent apoptosis and LDH leakage beginning from lower dosages at the 48th h. Cd induced midkine secretion with higher dosages (P < 0.001), (control, Cd 0.5-1-5-10μg/mL respectively: 1123±73, 1157±63, 1242±90, 1886± 175, 1712±166 pg/mL). Exogenous 500-5000 pg/mL midkine application during 5 μg/mL Cd toxicity prevented caspase-3 activation (control, Cd toxicity, 250, 500, 1000, 2500, 5000 pg/mL midkine+ Cd toxicity, respectively:374±64, 1786±156, 1545±179, 1203±113, 974±116, 646±56, 556±63 cfu) LDH leakage and cell death in Hep3B cells (P < 0.001).CONCLUSION: Our results showed that midkine secretion from Hep3B cells during Cd exposure protects liver cells from Cd induced cellular damage. Midkine has anti-apoptotic and cytoprotective role during Cd toxicity. Further studies are needed to explain the mechanism of midkine secretion and cytoprotective role of midkine during Cd exposure. Midkine may be a promising theurapatic agent in different toxic hepatic diseases.

  18. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a nonessential metal that is dispersed throughout the environment. It is an endocrine-disrupting element which mimics estrogen, binds to estrogen receptor alpha (ERα), and promotes cell proliferation in breast cancer cells. We have previously published that Cd promotes activation of the extracellular regulated kinases, erk-1 and -2 in both ER-positive and ER-negative human breast cancer cells, suggesting that this estrogen-like effect of Cd is not associated with the ER. Here, we have investigated whether the newly appreciated transmembrane estrogen receptor, G-protein coupled receptor 30 (GPR30), may be involved in Cd-induced cell proliferation. Towards this end, we compared the effects of Cd in ER-negative human SKBR3 breast cancer cells in which endogenous GPR30 signaling was selectively inhibited using a GPR30 interfering mutant. We found that Cd concentrations from 50 to 500 nM induced a proliferative response in control vector-transfected SKBR3 cells but not in SKBR3 cells stably expressing interfering mutant. Similarly, intracellular cAMP levels increased about 2.4-fold in the vector transfectants but not in cells in which GPR30 was inactivated within 2.5 min after treatment with 500 nM Cd. Furthermore, Cd treatment rapidly activated (within 2.5 min) raf-1, mitogen-activated protein kinase kinase, mek-1, extracellular signal regulated kinases, erk-1/2, ribosomal S6 kinase, rsk, and E-26 like protein kinase, elk, about 4-fold in vector transfectants. In contrast, the activation of these signaling molecules in SKBR3 cells expressing the GPR30 mutant was only about 1.4-fold. These results demonstrate that Cd-induced breast cancer cell proliferation occurs through GPR30-mediated activation in a manner that is similar to that achieved by estrogen in these cells.

  19. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    Science.gov (United States)

    Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  20. Effects of liver damage induced by polychlorinated biphenyls (PCB) on cadmium metabolism in mice

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCB) were added to the diets of mice at different concentrations. Mice fed these diets were given a sc or oral doses of 109Cd. The uptake and excretion of Cd was followed by whole-body counting. The gastrointestinal absorption of Cd after an oral dose of 109Cd was less in animals fed on 66 ppm PCB diet, compared with a control group, and the body elimination of Cd was faster. In the liver, the amount of Cd was reduced by dietary PCB exposure, after both oral and sc administration of 109Cd, and the data suggest a faster transport of Cd from liver to kidneys in PCB-exposed animals than in controls. The mobilized liver Cd was not quantitatively recovered in the kidneys, thus increased urinary excretion due to PCB exposure may have taken place. Histological examination of the livers revealed a dose-dependent induction of liver changes characterized by centrilobular enlargement of liver cells and centrilobular focal necroses. In four of eight livers from animals fed 200 ppm PCB for 32 weeks there were five liver cell tumors with cytological signs of malignancy. In the control group and in groups fed lower doses of PCB (10-100 ppm) no such tumors were found among 28 animals. The results support observations made with agents inducing acute liver damage, that liver damage increases the rate of redistribution of cadmium from the liver to the kidney

  1. Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Sato, Masao [Department of Biomolecular Sciences, Institute of Biomedical Sciences, Fukushima Medical College, Fukushima (Japan); Konno, Nobuhiro [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Fukushima, Masaaki [Department of Public Health, Fukushima Medical College, Fukushima (Japan)

    1996-11-01

    Cadmium (Cd), a highly toxic heavy metal, is distributed widely in the general environment of today. The characteristic clinical manifestations of chronic Cd intoxication include renal proximal tubular dysfunction, general osteomalacia with severe pains, and anemia. We have recently reported that the serum level of erythropoietin (EPO) remained low despite the severe anemia in patients with Itai-itai disease, the most severe form of chronic Cd intoxication. In order to prove that the anemia observed in chronic Cd intoxication arises from low production of EPO in the kidneys following the renal injury, we administered Cd to rats for a long period and performed the analysis of EPO mRNA inducibility in the kidneys. The rats administered Cd for 6 and 9 months showed anemia with low levels of plasma EPO as well as biochemical and histological renal tubular damage, and also hypoinduction of EPO mRNA in the kidneys. The results indicate that chronic Cd intoxication causes anemia by disturbing the EPO-production capacity of renal cells. (orig.). With 4 figs., 4 tabs.

  2. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos

    International Nuclear Information System (INIS)

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ∼4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. (paper)

  3. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats

    Directory of Open Access Journals (Sweden)

    Samarghandian Saeed

    2015-09-01

    Full Text Available Cadmium (Cd is an environmental toxic metal implicated in lipid abnormalities. The present study was designed to elucidate the possible association between chronic exposure to Cd concentration and alterations in plasma lipid, lipoprotein, and oxidative stress indices in rats. Sixteen male rats were assigned to 2 groups of 8 rats each (test and control. The Cd-exposed group obtained drinking water containing cadmium chloride (CdCl2 in the concentration of 2.0 mg Cd/L in drinking water for 3 months. At the end of the experimental period, blood samples were obtained to determine the changes of serum triglycerides (TG, total cholesterol (TC, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C, reduced glutathione (GSH, malondialdehyde (MDA and also serum Cd contents. The results of the present study indicated that Cd administration significantly increased the serum levels of TG, TC, LDL-C, MDA and Cd with reduction in the HDL-C and GSH levels. In conclusion, evidence is presented that chronic exposure to low Cd concentration can adversely affect the lipid and lipoprotein profile via lipid peroxidation.

  4. Protective efficacy of Aloe vera against radiation and cadmium induced haematological changes in the Swiss Albino mice

    International Nuclear Information System (INIS)

    The aim of the present study was to evaluate the protective effect of Aloe vera against radiation and cadmium induced haematological changes in the Swiss albino mice; 6-8 weeks old animals from each of the experimental groups were sacrificed by cervical dislocation at each post treatment intervals of 1,2,4,7,14 and 28 day. After sacrificing the animals, the blood was collected by cardiac puncture in heparinized tubes for various haematological studies. The values of RBC, WBC, Haemoglobin and PCV were found to decrease up to day-14 in non drug treated groups (II,III and IV), thereafter they increased on day-28. Whereas the values decreased upto day-7 in Aloe vera treated groups (V,VI,VlI) thereafter increased tip to day-28. On the other hand, the value of MCV increased upto day- 14 in non-drug treated groups (II, III, IV) and tip to day-7 in drug treated groups (V, VI, VII), thereafter it decreased tip to day-28. After combined treatment of radiation and cadmium chloride synergistic effects were observed. The Aloe vera treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was noticed in Aloe vera pretreated animals. Thus, it appears that Aloe vera is potent enough to check cadmium and radiation induced haematological changes in the Swiss albino mice. (author)

  5. An improvement od used primary cell graphite rod electrode for analyzing boron and cadmium in thorium oxide using emission spectrograph method

    International Nuclear Information System (INIS)

    Analysis of boron and cadmium in synthetic thorium oxide fuel using emission spectrograph method was carried out. Used primary cell graphite rod electrodes (UPCGREs) receiving (chemical and physical) treatment and standard electrodes (Spex) were used as an electrode in the emission spectrograph method. The graphite rod electrodes of used primary cells comprised 50 graphite rod electrodes soaked in water for 2 weeks, 50 graphite rod electrodes soaked in 0.1 N nitric acid for 1 week (chemical treatment), and 50 graphite rod electrodes heated in an oven at 300 °C for 2 hours (physical treatment). Pure thorium oxide was obtained synthetically through thorium nitrate solution extraction using organic solution TBP-kerosene, followed by stripping, drying and calcination. Standards were made from a mixture of synthetic thorium oxide, CdO and H3BO3, and distillation carrier. 100 mg of standards was introduced into the hole of the chemically and physically treated sample-carrying electrodes as well as the standard electrodes (Spex). The operating condition was established using a current of 10 A, an excitation time of 25 seconds, and a gap of 4 mm between electrodes. It was found that when the chemically treated UPCGREs were used as an electrode, the relationship between the concentration and the intensity of boron and cadmium was not in order. Meanwhile, when the physically treated UPCGREs were used as an electrode, the relationship between the concentration and the intensity of boron and cadmium in thorium oxide was linear, therefore it could be used as a calibration curve. It was discovered that the calibration curve of the standard electrodes (Spex) was more sensitive than the calibration curve of the physically treated UPCGREs. However, the calibration curve for boron and cadmium of the standard electrodes (Spex) contained higher background. Therefore, for thorium oxide having low concentrations of boron and cadmium, the use of the physically treated UPCGREs was more

  6. Amelioration Effect of Zinc and Iron Supplementation on Selected Oxidative Stress Enzymes in Liver and Kidney of Cadmium-Treated Male Albino Rat

    OpenAIRE

    Jamakala, Obaiah; Rani, Usha A.

    2015-01-01

    Cadmium (Cd) is a highly toxic, nonessential heavy metal with many industrial uses that can contribute to a well-defined spectrum of diseases in animals as well as in humans. The present study examines the effect of zinc (Zn) and iron (Fe) supplementation on oxidative stress enzymes in Cd-treated rats. Wistar strain male albino rats were treated with cadmium chloride (CdCl2) at a dose of 1/10th LD50/48 h, that is, 22.5 mg/kg body weight for 7, 15, and 30 days (d) time intervals. The 15d Cd-tr...

  7. Cadmium Induced Cell Apoptosis, DNA Damage, Decreased DNA Repair Capacity, and Genomic Instability during Malignant Transformation of Human Bronchial Epithelial Cells

    OpenAIRE

    Zhou, Zhiheng; Wang, Caixia; Liu, Haibai; Huang, Qinhai; Wang, Min; Lei, Yixiong

    2013-01-01

    Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mechanisms of DNA damage in cadmium-induced malignant transformation of human bronchial epithelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in DNA repair genes in several kinds of cells. These cells consisted of untreated control cells, cells...

  8. Immunohistochemical study of cell proliferation, Bcl-2, p53, and caspase-3 expression on preneoplastic changes induced by cadmium and zinc chloride in the ventral rat prostate.

    OpenAIRE

    Arriazu, Riánsares; José M Pozuelo; Henriques-Gil, Nuno; Perucho, Teresa; Martín, Rocío; Rodríguez, Rosario; Santamaría, Luis

    2006-01-01

    KEYWORDS CLASSIFICATION: Animals;Apoptosis;biosynthesis;Biology;chemically induced;Cadmium;Cadmium Chloride;Carcinogens;Caspase 3;Caspases;Cell Proliferation;Chlorides;Immunohistochemistry;metabolism;Male;mechanisms of carcinogenesis;pathology;pharmacology;Precancerous Conditions;Proliferating Cell Nuclear Antigen;Prostate;Prostatic Intraepithelial Neoplasia;Prostatic Neoplasms;Proteins;Proto-Oncogene Proteins;Proto-Oncogene Proteins c-bcl-2;Rats;Rats,Sprague-Dawley;Research;Spain;toxicity;Ti...

  9. Immunological, hematological and biochemical changes induced by short term exposure to cadmium in catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    Mohamed El-Said El-Boshy

    2014-03-01

    Full Text Available Objective: To investigate the hematological, biochemical and immunological changes in catfish (Clarias gariepinus (C. gariepinus experimental exposed to cadmium. Methods: C. gariepinus were exposed to different concentrations of cadmium (Cd (0, 2, 5, and 10 mg/L for 3 weeks. Blood samples were collected for assessing some hematological, biochemical and immunological studies at the end of experiment. Results: The results showed marked normocytic normochromic anemia, leukocytosis, neutrophilia and lymphopenia in 5, 10 mg/L in cadmium exposed fish. Also the blood level activities of ALT and AST significantly increased, as well as glucose, creatinine, urea, potassium and uric acid. Meanwhile total protein, albumin and sodium were significantly decreased at 5, 10 mg/L of cadmium exposed fish. The immunological parameters in cadmium exposed experimental dose groups decreased serum bactericidal activity, lysozyme, neutrophils adhesion test as well as decreased resistance to Aeromonas hydrophilla with increasing exposure dose seemed to correspond with suppressive of non-specific immune functions. Conclusions: The treatment of C. gariepinus with cadmium under the same conditions had immunosuppressive and decrease diseases resistance in a dose-dependent effect

  10. Optical modeling and electrical properties of cadmium oxide nanofilms: Developing a meta–heuristic calculation process model

    Energy Technology Data Exchange (ETDEWEB)

    Abdolahzadeh Ziabari, Ali, E-mail: ali.abd.ziabari@gmail.com [Nano Research Lab, Lahijan Branch, Islamic Azad University, P.O. Box 1616, Lahijan (Iran, Islamic Republic of); Refahi Sheikhani, A. H. [Department of Applied Mathematics, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of); Nezafat, Reza Vatani [Department of Civil Engineering, Faculty of Technology, University of Guilan, Rasht (Iran, Islamic Republic of); Haghighidoust, Kasra Monsef [Department of Mechanical Engineering, Faculty of Technology, University of Guilan, Rasht (Iran, Islamic Republic of)

    2015-04-07

    Cadmium oxide thin films were deposited onto glass substrates by sol–gel dip-coating method and annealed in air. The normal incidence transmittance of the films was measured by a spectrophotometer. D.C electrical parameters such as carrier concentration and mobility were analyzed by Hall Effect measurements. A combination of Forouhi–Bloomer and standard Drude model was used to simulate the optical constants and thicknesses of the films from transmittance data. The transmittance spectra of the films in the visible domain of wavelengths were successfully fitted by using the result of a hybrid particle swarm optimization method and genetic algorithm. The simulated transmittance is in good accordance with the measured spectrum in the whole measurement wavelength range. The electrical parameters obtained from the optical simulation are well consistent with those measured electrically by Hall Effect measurements.

  11. Synthesis, crystal growth and characterization of a chiral compound (triphenylphosphine oxide cadmium iodide): A new semiorganic nonlinear optical material

    International Nuclear Information System (INIS)

    Synthesis of semiorganic material, triphenylphosphine oxide cadmium iodide (TPPOCdI), is reported for the first time. Employing the temperature reduction method, a crystal of size 16x7x6 mm3 was grown from dimethyl sulfoxide (DMSO) solution. Three dimensional crystal structure of the grown crystal was determined by single crystal X-ray diffraction study. The complex crystallizes in the chiral orthorhombic space group P212121. FTIR study was carried out in order to confirm the presence of the functional groups. UV-vis-NIR spectral studies show that the crystal is transparent in the wavelength range of 290-1100 nm. The microhardness test was carried out, and the load hardness was measured. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. Second harmonic generation efficiency of the powdered TPPOCdI, tested using Nd: YAG laser, is ∼0.65 times that of potassium dihydrogen orthophosphate.

  12. Dependence of electrical and optical properties of sol-gel prepared undoped cadmium oxide thin films on annealing temperature

    International Nuclear Information System (INIS)

    The effect of the annealing temperature (T a) on the optical, electrical and structural properties of the undoped cadmium oxide (CdO) thin films obtained by the sol-gel method, using a simple precursor solution, was studied. All the CdO films annealed in the range from 200 to 450 deg. C are polycrystalline with (111) preferential orientation and present high optical transmission > 85% for wavelengths above 500 nm. The resistivity decreases as T a increases until it reaches a value of 6 x 10-4 Ω cm for T a 350 deg. C. For higher temperatures the resistivity experiences a slight increase. Images obtained by atomic force microscopy show an evident incremental change of the aggregate size (clusters of grains) as T a increases. The grain size also increases when T a increases as observed in data calculated from X-ray measurements

  13. Effect of pH of spray solution on the electrical properties of cadmium oxide thin films

    International Nuclear Information System (INIS)

    Highly conducting transparent cadmium oxide thin films were prepared by conventional spray pyrolysis technique on glass at 375 °C substrate temperature. The pH of the spray solution was varied by adding ammonia/hydrochloric acid in the spray solution. The XRD pattern showed cubic phase. A lowest resistivity of 9.9 × 10−4 Ω cm (with carrier concentration (n) = 5.1 × 1020 cm−3, mobility (µ)=12.4 cm2/Vs) is observed for pH ∼12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70 %. Thus, without any doping, the electrical conductivity of CdO films could be easily tuned by simply varying the pH of spray solution without compromising the transparency and keeping the other deposition parameters fixed

  14. Effect of pH of spray solution on the electrical properties of cadmium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hodlur, R. M.; Gunnagol, Raghu M.; Rabinal, M. K., E-mail: mkrabinal@yahoo.com [Department of Physics, Karnatak University, Dharwad - 580 003, Karnataka (India)

    2015-06-24

    Highly conducting transparent cadmium oxide thin films were prepared by conventional spray pyrolysis technique on glass at 375 °C substrate temperature. The pH of the spray solution was varied by adding ammonia/hydrochloric acid in the spray solution. The XRD pattern showed cubic phase. A lowest resistivity of 9.9 × 10{sup −4} Ω cm (with carrier concentration (n) = 5.1 × 10{sup 20} cm{sup −3}, mobility (µ)=12.4 cm{sup 2}/Vs) is observed for pH ∼12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70 %. Thus, without any doping, the electrical conductivity of CdO films could be easily tuned by simply varying the pH of spray solution without compromising the transparency and keeping the other deposition parameters fixed.

  15. Myoglobin-induced oxidative damage

    DEFF Research Database (Denmark)

    Irwin, J A; Ostdal, H; Davies, Michael Jonathan

    1999-01-01

    Reaction of equine Fe(III) myoglobin with H2O2 gives rise to an Fe(IV)-oxo species at the heme center and protein (globin)-derived radicals. Studies have shown that there are two (or more) sites for the protein-derived radical: at tyrosine (Tyr-103) or tryptophan (Trp-14). The latter radical reac...... that protein-to-protein damage transfer and protein chain-oxidation may occur readily in biological systems.......Reaction of equine Fe(III) myoglobin with H2O2 gives rise to an Fe(IV)-oxo species at the heme center and protein (globin)-derived radicals. Studies have shown that there are two (or more) sites for the protein-derived radical: at tyrosine (Tyr-103) or tryptophan (Trp-14). The latter radical reacts...... times, possibly via secondary reactions. We have investigated, by EPR spectroscopy, the reactivity of the Trp-14 peroxyl radical with amino acids, peptides, proteins, and antioxidants, with the aim of determining whether this species can damage other targets, i.e., whether intermolecular protein-to-protein...

  16. Radiation induced oxidative degradation of polymers

    International Nuclear Information System (INIS)

    The γ-ray induced oxidation of polyethylene and ethylene-propylene copolymer films has been studied to obtain technological information on reducing the period in the radiation resistance testing of polymer materials. The polymers were irradiated under pressurized oxygen atmosphere (0.21 of the order of 10 atm) at high dose rate (0.5 of the order of 1 Mrad/h) in order to accelerate the oxidative degradation. The depth of oxidation region in the film was estimated by the gel fraction measurement. The depth was well agreed with the oxygen penetration region, which was calculated using the observed diffusion coefficient and solubility constant of oxygen in the film and specific rate of the oxygen consumption during irradiation. It was found that the depth of oxidation region was proportional to the square root of [oxygen pressure/ dose rate] and that the testing period could be reduced by higher dose rate irradiation at higher oxygen pressure. (author)

  17. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S;

    2002-01-01

    The Greenland marine food chains contain high levels of cadmium, mercury and selenium. Concentrations of cadmium in the kidney of ringed seals (Phoca hispida) from the municipalities of Qaanaaq and Upernavik (Northwest Greenland) are among the highest recorded in the Arctic. The purpose of the st...

  18. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    Directory of Open Access Journals (Sweden)

    Frank Henkler

    2010-04-01

    Full Text Available In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-kB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel.

  19. Interplay between mass-impurity and vacancy phonon scattering effects on the thermal conductivity of doped cadmium oxide

    International Nuclear Information System (INIS)

    Understanding the impact and complex interaction of thermal carrier scattering centers in functional oxide systems is critical to their progress and application. In this work, we study the interplay among electron and phonon thermal transport, mass-impurity scattering, and phonon-vacancy interactions on the thermal conductivity of cadmium oxide. We use time domain thermoreflectance to measure the thermal conductivity of a set of CdO thin films doped with Dy up to the saturation limit. Using measurements at room temperature and 80 K, our results suggest that the enhancement in thermal conductivity at low Dy concentrations is dominated by an increase in the electron mobility due to a decrease in oxygen vacancy concentration. Furthermore, we find that at intermediate doping concentrations, the subsequent decrease in thermal conductivity can be ascribed to a large reduction in phononic thermal transport due to both point defect and cation-vacancy scattering. With these results, we gain insight into the complex dynamics driving phonon scattering and resulting thermal transport in functional oxides

  20. Interplay between mass-impurity and vacancy phonon scattering effects on the thermal conductivity of doped cadmium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, Brian F. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sachet, Edward; Maria, Jon-Paul [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-01-11

    Understanding the impact and complex interaction of thermal carrier scattering centers in functional oxide systems is critical to their progress and application. In this work, we study the interplay among electron and phonon thermal transport, mass-impurity scattering, and phonon-vacancy interactions on the thermal conductivity of cadmium oxide. We use time domain thermoreflectance to measure the thermal conductivity of a set of CdO thin films doped with Dy up to the saturation limit. Using measurements at room temperature and 80 K, our results suggest that the enhancement in thermal conductivity at low Dy concentrations is dominated by an increase in the electron mobility due to a decrease in oxygen vacancy concentration. Furthermore, we find that at intermediate doping concentrations, the subsequent decrease in thermal conductivity can be ascribed to a large reduction in phononic thermal transport due to both point defect and cation-vacancy scattering. With these results, we gain insight into the complex dynamics driving phonon scattering and resulting thermal transport in functional oxides.

  1. Induced effects of advanced oxidation processes

    Science.gov (United States)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  2. Varying Dietary Levels of Molybdenum Inducing Cell Apoptosis of Spleen Under Cadmium Stress in Caprine.

    Science.gov (United States)

    Xiao, Qingyang; Zhang, Caiying; Gu, Xiaolong; Zhuang, Yu; Luo, Junrong; Liu, Ping; Guo, Xiaoquan; Hu, Guoliang; Cao, Huabin

    2016-07-01

    The present experiment aims at evaluating chronic toxic effects of the combination of cadmium (Cd) and molybdenum (Mo) according to residual element contents, apoptosis gene expression, and ultrastructure and histopathology changes of caprine spleen. In total, 36 Boer goats were randomly divided into four groups with the equal number in each group. The control group was orally administered with deionized water while the experimental groups I, II, and III were administered with the equal quantity of CdCl2 (1 mg kg(-1) BW) and (NH4)6·Mo7O24·4H2O including 15, 30, and 45 mg·Mo kg(-1) BW, respectively. Three individuals from each group were treated with euthanasia on days 0, 25, and 50. The data showed that the content of splenic residual Mo and Cd increased (P < 0.05) in the experimental groups on days 25 and 50, while no significant difference was observed in the content of Cu. The apoptosis-related gene expression levels including Bcl-2, Bax, Caspase-3, Smac, and ceruloplasmin (CP) were also determined. Results showed that significant reductions were observed in Bcl-2 and CP expressions (P < 0.01), while Caspase-3 gene was up-regulated (P < 0.05). However, no significant difference was observed in Smac and Bax expressions. Furthermore, on day 50, spleen tissues were presented to observe ultrastructural changes in lesions by means of transmission electron microscopy, with fragmentized nucleus, vesiculation of cytoplasm, mitochondria hyperplasia, and increasing lysosomes included. In addition, histopathology results corroborated the toxicity by showing cell hemorrhage, thickening central arteries, and enhanced capsule thickness. To sum up, our study revealed that the combination of Cd and Mo could induce remarkable damage to the spleen of goats by promoting cell apoptosis in the mitochondrial pathway and affecting the deposition of Mo and Cd. PMID:26585322

  3. Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage

    Directory of Open Access Journals (Sweden)

    B Rajendar

    2011-01-01

    Full Text Available Aim : The aim of the present study was to investigate whether Tribulus terrestris Linn (TT could protect the cadmium (Cd-induced testicular tissue peroxidation in rats and to explore the underlying mechanism of the same. Materials and Methods : In vitro and in vivo studies were conducted to know the protective effect of ethanolic extract of TT (eTT in Cd toxicity. In in vitro studies, total antioxidant and ferrous metal ion chelating activity of TT was studied. In vivo studies were conducted in rats. A total of 40 Wistar strain adult male rats were divided into four groups. Group 1 served as control, while group 2 to 4 received CdCl 2 (3 mg/kg b. wt. s/c once a week. In addition to Cd, group 3 and 4 rats also received eTT (5 mg/kg b.wt. daily as oral gavage and α-tocopherol (75 mg/kg daily by oral gavage, respectively. At the end of 6th week, all the rats were sacrificed and the separated testes were weighted and processed for estimation of tissue peroxidation markers, antioxidant markers, functional markers, and Cd concentration. The testes were also subjected to histopathological screening. Results : In in vitro studies, the percentage of metal ion chelating activity of 50 μg/ml of eTT and α-tocopherol were 2.76 and 9.39, respectively, and the antioxidant capacity of eTT was equivalent to 0.063 μg of α-tocopherol/μg of eTT. In in vivo studies, administration of Cd significantly reduced the absolute and relative testicular weight, antioxidant markers such as superoxide dismutase and glutathione, and functional markers such as LDH and ALP, along with significant increase in peroxidation markers such as malondialdehyde and protein carbonyls in testicular tissue. Testes of Cd only-treated group showed histological insults like necrotic changes in seminiferous tubules and interstitium, shrunken tubules with desquamated basal lamina, vacuolization and destruction of sertoli cells, and degenerating Leydig cells. This group also had higher Cd

  4. Cadmium Bio sorption by Some Bacterial Isolates and Their Mutants Induced by gamma Radiation

    International Nuclear Information System (INIS)

    Cadmium bio sorption by bacterial cells is recognized as a potential alternative to existing recovery technologies. Bacterial strains under investigation were isolated from air surrounding gamma industrial facility Co 60 source of the NCRRT, Cairo. The effect of different concentrations of cadmium on the growth was determined for the spore forming bacteria B.coagulans, B.megaterium, B.pumilus, B.pantothenticus, and also for Staphylo coccus aureus, the reference standard strain used in these study for comparison was B.subtilis MERK 10646. The results indicated that, B.pantothenticus was the most tolerant isolate, and it can resist up to 400 ppm. Cadmium capacity for B.subtilis parent strain was increased through the influence of different doses of gamma radiation, selected mutant of B.subtilis show enhanced level of cadmium accumulation. The effect of environmental parameters as ph, temperature and also the effect of biomass factor on cadmium uptake by B.pantothenticus and B.subtilis (m) was traced

  5. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yu [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Bian, Zhao-Yong, E-mail: bian@bnu.edu.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Zhang, Jun-Xiao; Ding, Ai-Zhong [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Liu, Shao-Lei [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); Wang, Hui, E-mail: wanghui@bjfu.edu.cn [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China)

    2015-02-28

    Highlights: • The role of oxygen-containing function groups of graphene oxide on the Cd(II) sorption was investigated. • The changes of carbon and oxygen state during the interaction of Cd(II) and graphene oxide were monitored using XPS. • The coordination effect of the oxygen function groups of graphene oxide should be in favor to the Cd(II) removal. • The properties of simple component and plain structure of graphene oxide greatly exclude the interference of other factors. - Abstract: The adsorption process of graphene oxide (GO) with oxygen-containing functional groups towards cadmium ions was investigated. GO synthesized from graphite by using the modified Hummers method was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The oxygen-containing groups on the surfaces of GO played an important role in Cd(II) ion adsorption onto GO. The results of batch experiments indicated that maximal adsorption, which was found to be 23.9 mg/g, could be achieved over the broad pH range of 6.0–7.0. Adsorption isotherms were better fitted by Freundlich model than by Langmuir model and kinetic studies suggested that adsorption was controlled by chemical adsorption. According to FT-IR and XPS analyses of before and after Cd(II) adsorption on GO, electrostatic attraction and cation exchange between Cd(II) and O-containing functional groups on GO were the dominant mechanisms responsible for Cd(II) sorption.

  6. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal

    International Nuclear Information System (INIS)

    Highlights: • The role of oxygen-containing function groups of graphene oxide on the Cd(II) sorption was investigated. • The changes of carbon and oxygen state during the interaction of Cd(II) and graphene oxide were monitored using XPS. • The coordination effect of the oxygen function groups of graphene oxide should be in favor to the Cd(II) removal. • The properties of simple component and plain structure of graphene oxide greatly exclude the interference of other factors. - Abstract: The adsorption process of graphene oxide (GO) with oxygen-containing functional groups towards cadmium ions was investigated. GO synthesized from graphite by using the modified Hummers method was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The oxygen-containing groups on the surfaces of GO played an important role in Cd(II) ion adsorption onto GO. The results of batch experiments indicated that maximal adsorption, which was found to be 23.9 mg/g, could be achieved over the broad pH range of 6.0–7.0. Adsorption isotherms were better fitted by Freundlich model than by Langmuir model and kinetic studies suggested that adsorption was controlled by chemical adsorption. According to FT-IR and XPS analyses of before and after Cd(II) adsorption on GO, electrostatic attraction and cation exchange between Cd(II) and O-containing functional groups on GO were the dominant mechanisms responsible for Cd(II) sorption

  7. Prevention of cadmium bioaccumulation by herbal adaptogens

    OpenAIRE

    K Bharavi; A. Gopala Reddy; G S Rao; Ravi Kumar, P.; D Srinivas Kumar; P Prabhu Prasadini

    2011-01-01

    Objectives : To evaluate the effect of various herbal adaptogens such as shade-dried powders of Withania somnifera, Ocimum sanctum, Asperagus recemosus, Andrographis paniculata, Asphaltum panjabinum (Shilajith), Gymnema sylvestre, Spirulina platensis, and Panex ginseng on cadmium (Cd)-induced oxidative stress and its accumulation in broiler chicken. Materials and Methods : A total of 80 male broiler chicks of day old age were randomly assigned to 10 equal groups. Group 1 birds were fed wi...

  8. Inhibition of benzopyrene-diol-epoxide (BPDE)-induced bax and caspase-9 by cadmium: Role of mitogen activated protein kinase

    International Nuclear Information System (INIS)

    Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other polynuclear aromatic hydrocarbons (PAHs). The mechanism underlying this synergism is not clearly understood. Present study demonstrates that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in human leukemic HL-60 cells and others, and cadmium at non-cytotoxic concentration inhibits BPDE-induced apoptosis. We observed that BPDE treatment also activates all three MAP kinases e.g. ERK1/2, p38 and JNK in HL-60 cells, and inhibition of BPDE-induced apoptosis by cadmium is associated with down-regulation of pro-apoptotic bax induction/caspase-9 activation and up-regulation of ERK phosphorylation, whereas p38 MAP kinase and c-Jun phosphorylation (indicative of JNK activation) remain unaffected. Inhibition of ERKs by prior treatment of cells with 10 μM U0126 relieves cadmium-mediated inhibition of apoptosis/bax induction/caspase-9 activation. Our results suggest that cadmium inhibits BPDE-induced apoptosis by modulating apoptotic signaling through up-regulation of ERK, which is known to promote cell survival

  9. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish.

    Science.gov (United States)

    Chen, Minjie; Yin, Junfa; Liang, Yong; Yuan, Shaopeng; Wang, Fengbang; Song, Maoyong; Wang, Hailin

    2016-05-01

    Graphene oxide (GO) has been extensively explored as a promising nanomaterial for applications in biology because of its unique properties. Therefore, systematic investigation of GO toxicity is essential to determine its fate in the environment and potential adverse effects. In this study, acute toxicity, oxidative stress and immunotoxicity of GO were investigated in zebrafish. No obvious acute toxicity was observed when zebrafish were exposed to 1, 5, 10 or 50mg/L GO for 14 days. However, a number of cellular alterations were detected by histological analysis of the liver and intestine, including vacuolation, loose arrangement of cells, histolysis and disintegration of cell boundaries. As evidence for oxidative stress, malondialdehyde levels and superoxide dismutase and catalase activities were increased and glutathione content was decreased in the liver after treatment with GO. GO treatment induced an immune response in zebrafish, as demonstrated by increased expression of tumor necrosis factor α, interleukin-1 β, and interleukin-6 in the spleen. Our findings demonstrated that GO administration in an aquatic system can cause oxidative stress and immune toxicity in adult zebrafish. To our knowledge, this is the first report of immune toxicity of GO in zebrafish. PMID:26921726

  10. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    Science.gov (United States)

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  11. Facile Access to Graphene Oxide from Ferro-Induced Oxidation.

    Science.gov (United States)

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers' method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials. PMID:26818784

  12. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium.

    OpenAIRE

    Lebrun, M; AUDURIER, A.; Cossart, P

    1994-01-01

    pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences...

  13. Protective effect of probiotic bacteria against cadmium-induced genotoxicity in rat hepatocytes in vivo and in vitro

    OpenAIRE

    Đurašević Siniša F.; Jama Adel M.; Mitić-Ćulafić Dragana; Kolarević S.; Knežević-Vukčević Jelena

    2012-01-01

    The protective effect of probiotic bacteria against cadmium (Cd)-induced genotoxicity was studied in rat hepatocytes in vivo and in vitro. Male Wistar rats, Rattus norvegicus, were treated for five weeks with (i) CdCl2 (70 ppm in the drinking water), (ii) a mixture of lyophilized probiotic bacteria Lactobacillus rhamnosus, L. acidophilus and Bifido-bacterium longum (5×108 cfu/g of food), or (iii) CdCl2 and probiotic bacteria. In addition, single cells obtained from the untreated rat liv...

  14. Investigation of the influence of cadmium processing on zinc gallium oxide:manganese thin films for photoluminescent and thin film electroluminescent applications

    Science.gov (United States)

    Flynn, Michael John

    concentration left by the sublimed material, which aided the incorporation and activation of the manganese. The cadmium in the sputtering targets also impacted the crystal structure of the films. Films from cadmium free targets exhibited a strong (111) x-ray diffraction peak, while those from cadmium processed targets more closely resembled the powder structure. The optimum thin film electroluminescent performance was obtained for films sputtered from targets processed with between 5% and 15% cadmium substituted for zinc. This was the result of improved diffusion during the anneals, due to the sublimation of cadmium oxide and the resulting large vacancy concentration. The best performance was obtained for films annealed at between 875°C and 900°C for 6--12 hours. These films exhibited both the maximum luminance (55 cd/m2 at 60 Hz) and the lowest transferred charge (˜20 muC/cm2). This combined for a peak efficiency of 0.5 lm/W at 60 Hz). Beyond 12 hours at 900°C or temperatures higher than this, EL performance degraded due to the decomposition of the thin film. It was concluded that the luminescent performance of this material is strongly influenced by the loss of cadmium during processing. The enhanced diffusion afforded by the cadmium sublimation results in improved EL performance at annealing temperature lower that that of pure zinc gallate.

  15. Observation of silicon-mediated alleviation of cadmium stress in maize (Zea mays L.) seedlings via LED-induced chlorophyll fluorescence

    Science.gov (United States)

    Gouveia-Neto, Artur S.; Silva, Elias A.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2013-02-01

    LED-induced chlorophyll fluorescence analysis is exploited to observe, and monitor the time evolution of silicon-induced alleviation of toxicity in maize (Zea mays L.) seedlings in cadmium contaminated soil. Red, and far-red emissions were examined as a function of cadmium-silicon concentrations, during the 20 days period of the seedlings growing process under stress. The chlorophyll fluorescence spectral analysis provided detection, and evaluation of the damage imposed by the metal stress in the early stages of the plant growing process. The technique also provided the time evolution evaluation of the silicon-induced tolerance enhancement of maize plants to cadmium, which is not viable using conventional in vitro spectral analysis techniques

  16. Adaptive response to and its time effect on radiation-induced chromosome aberrations in mouse embryonic cells pre-exposed to cadmium chloride

    International Nuclear Information System (INIS)

    Objective: To observe if cadmium chloride could induce cross adaptive response to and its time effect on cytogenetic damage of mouse embryonic cells caused by ionizing radiation. Methods: The mice were pre-treated with iv injection of cadmium chloride solution on gestation d 9, then they were exposed to 1.5 cGy 60Co γ-rays at different time intervals. Chromosome preparation was made on gestation d 10. Results: 0.25-2 mg Cd/kg body weight could induce resistance to cytogenetic damage of embryonic cells of mice caused by ionizing radiation and the adaptive response appeared 4 h after pre-exposure, at 8h reached the peak, but 12 to 24 h later synergism appeared. Conclusion: Cadmium chloride could induce cross adaptive response to 60Co γ-rays which had relations with time interval of ionizing radiation

  17. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets: preparation, characterization, and optical properties

    International Nuclear Information System (INIS)

    A facile approach for the preparation of a novel hybrid material containing graphene and an inorganic semiconducting material, cadmium sulfide quantum dots (CdS QDs), is demonstrated for the first time. First, amino-functionalized CdS QDs were prepared by modifications of the kinetic trapping method. Then, pristine graphite was oxidized and exfoliated to obtain graphene oxide nanosheets (GONS), which were then acylated with thionyl chloride to introduce acyl chloride groups on their surface. Subsequently, immobilization of the CdS QDs on the GONS surface was achieved through an amidation reaction between the amino groups located on the CdS QDs surface and the acyl chloride groups bound to the GONS surface. Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H-NMR), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and energy dispersive x-ray (EDX) spectroscopy were employed to investigate the changes in the surface functionalities, while high resolution transmission electron microscopy (HR-TEM) and field emission scanning electronic microscopy (FE-SEM) were used to study the morphologies and distribution of the CdS QDs on the GONS surface. Thermogravimetric analysis (TGA) was employed to characterize the weight loss of the samples on heating. Photoluminescence (PL) measurements were used to study the optical properties of the prepared CdS QDs and the CdS-graphene hybrid material.

  18. Single pot synthesis of pyridine-N-oxide based polymeric complexes of cadmium and manganese: Crystal structure and luminescence property

    Science.gov (United States)

    Mondal, Sandip; Guha, Averi; Suresh, Eringathodi; Jana, Atish Dipankar; Banerjee, Arpita

    2012-12-01

    Two new polymeric complexes of cadmium(II) and manganese(II) with Pyridine-N-oxide (pyo) mediated by thiocyanate and dicyanamide (dca) anions have been synthesized and characterized by X-ray single crystal structure analysis. The structural analyses reveal that complexes [Cd(pyo)2(SCN)2]n (1) and [Mn(pyo)2(dca)2]n (2) [where, pyo = pyridine-N-oxide; dca = dicyanamide] are 2D coordination polymers. In complex 1 hexa-coordinated Cd(II) centers posses distorted octahedral coordination environments. Each Cd(II) is coordinated by four SCN- in end to end fashion forming a zigzag chain and two pyo monodentate ligands bridge two adjacent Cd(II) centers leading to a two-dimensional sheet structure. In complex 2 hexa-coordinated Mn(II) centers posses octahedral coordination environments. The coordination polymer constitute a 2D polymeric sheet and has a (4, 4) grid network architecture Successive stacking of coordination polymeric sheets are enforced by inter layer OH⋯O and OH⋯N hydrogen bonding. The luminescence properties of these two polynuclear complexes in solid state were studied and complex 1 exhibits higher luminescence intensity than 2.

  19. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  20. 镉真空蒸馏的热力学模型与过程%Thermodynamic Model and Experiment of Vacuum Distillation of Cadmium

    Institute of Scientific and Technical Information of China (English)

    王林军; 郭燕明; 桑文斌; 史伟民; 顾永明; 钱永彪; 闵嘉华; 吴汶海; 居建华; 夏义本

    2001-01-01

    In this paper, a novel approach for highly efficient purification of cadmium by vacuum distillation was reported. During the cadmium vacuum distillation, a small quantity of cadmium oxide film, produced under lower vacuum, was intentionally induced into the evaporator, and the presence of cadmium oxide changed the behavior of impurities. Meantime, a thermodynamic model of the process, which described the phase composition in the evaporator and condenser during evaporation of cadmium, was established. The model was used to classify the impurities according to their behavior in the purification process. On the base of the model, the purification of cadmium by one-stage and two-stage distillation and the validity of the model were also discussed.

  1. 镉真空蒸馏的热力学模型与过程%Thermodynamic Model and Experiment of Vacuum Distillation of Cadmium

    Institute of Scientific and Technical Information of China (English)

    王林军; 郭燕明; 桑文斌; 史伟民; 顾永明; 钱永彪; 闵嘉华; 吴汶海; 居建华; 夏义本

    2000-01-01

    In this paper, a novel approach for highly efficient purification of cadmium by vacuum distillation was reported. During the cadmium vacuum distillation, a small quantity of cadmium oxide film, produced under lower vacuum, was intentionally induced into the evaporator, and the presence of cadmium oxide changed the behavior of impurities. Meantime, a thermodynamic model of the process, which described the phase composition in the evaporator and condenser during evaporation of cadmium, was established. The model was used to classify the impurities according to their behavior in the purification process. On the base of the model, the purification of cadmium by one-stage and two-stage distillation and the validity of the model were also discussed.

  2. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    International Nuclear Information System (INIS)

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the α-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  3. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Nejdet [University of Atatuerk, Faculty of Veterinary Medicine, Department of Histology and Embryology, 25700 Erzurum (Turkey); Karadeniz, Ali, E-mail: karadenizali@gmail.com [University of Atatuerk, Faculty of Veterinary Medicine, Department of Physiology, 25700 Erzurum (Turkey); Kalkan, Yildiray; Keles, Osman N.; Unal, Buenyami [University of Atatuerk, Faculty of Medicine, Department of Histology and Embryology, 25240 Erzurum (Turkey)

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the {alpha}-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  4. Gender Differences in Acute Cadmium-Induced Systemic Inflammation in Rats

    Institute of Scientific and Technical Information of China (English)

    MILENA KATARANOVSKI; SRDJA JANKOVI(C); DRAGAN KATARANOVSKI; JELENA (S)TOSI(C); DESA BOGOJEVI(C)

    2009-01-01

    Objective To examine the presence of gender differences in pro-inflammatory potential of cadmium in rats by comparing systemic inflammatory response to acute cadmium intoxication in animals of the two sexes. Methods Basic aspects of this response were evaluated, including plasma levels of inflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) and of major rat acute phase protein alpha 2-macroglobulin (alpha2-M), as soluble indicators of inflammation, and the number and activity of peripheral blood leukocytes, as cellular indicators of inflammation. Results Differential increases of IL-6 and alpha 2-M (higher in males than in females) in peripheral blood cell counts and types (leukocytosis and shift in the ratio of granulocytes to lymphocytes more pronounced in males vs females) and in levels of neutrophil priming (higher in males vs females) were noted. Conclusion The data document a more intense inflammatory response to cadmium administration in males. The sex differences in inflammatory effects of cadmium might be taken into consideration in studying the toxicity of this heavy metal.

  5. Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae.

    Science.gov (United States)

    Ma, Ning; Li, Chunsheng; Dong, Xiaoyan; Wang, Dongfeng; Xu, Ying

    2015-08-01

    Application of growing microorganisms for cadmium removal is restricted by high cadmium toxicity. The effects of sodium chloride (NaCl) preincubation on the cadmium tolerance and removal ability of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation improved the biomass of P. kudriavzevii under cadmium stress, while no obvious effect was observed in S. cerevisiae. The improved activities of peroxidase (POD) and catalase (CAT) after NaCl preincubation might be an important reason for the decrease of the reactive oxygen species (ROS) accumulation, cell death, and oxidative damage of proteins and lipids induced by cadmium, contributing to the improvement of the yeast growth. The cadmium bioaccumulation capacity of P. kudriavzevii decreased significantly after NaCl preincubation, which played an important role in mitigating the cadmium toxicity to the yeast. The cadmium removal rate of P. kudriavzevii was obviously higher than S. cerevisiae and was significantly enhanced after NaCl preincubation. The results suggested that NaCl preincubation improved the cadmium tolerance and removal ability of P. kudriavzevii. PMID:25721585

  6. Amelioration of cadmium-induced changes in biochemical parameters of the muscle of Common Carp (Cyprinus carpio by Vitamin C and Chitosan

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2015-12-01

    Full Text Available The aim of this study was to investigate the effects of administering antioxidants, including vitamin C and chitosan on oxidative stress markers in muscle as edible tissues of Cyprinus carpio exposed to cadmium chloride. In this experiment, by exposing to 0.2 mg/L cadmium chloride for 21 days, fish were fed a normal diet, diet containing chitosan (1000 mg/kg diet, vitamin C (1000 mg/kg diet or both vitamin C and chitosan. Oxidative stress markers, including the activity of catalase, total antioxidant and malondialdehyde (MDA as well as biochemical parameters, including the activity of aspartate aminotransferase (AST, alanine aminotransferase (ALT, creatine phosphokinase (CPK, lactate dehydrogenase (LDH, and acetylcholinesterase (AChE were measured. Fish exposure to cadmium chloride significantly increased AST, LDH, CPK, catalase, and MDA activity, while it significantly decreased AST and AChE activity, and levels of total antioxidant in muscle cells. Administration of chitosan or vitamin C alone or in combination with each other to fish exposed to cadmium chloride was effective in regulating ALT, CPK, and catalase activity. Although administration of vitamin C and chitosan caused a significant decrease in MDA, AST and LDH, these enzymes were still significantly higher than those in the control group. Administration of vitamin C and chitosan had no significant effects on the activity of AChE and levels of total antioxidant. Although, chitosan alone could not prevent oxidative stress damages in muscle tissues of cadmium-treated fish, administration of vitamin C combined with chitosan may increase the efficiency of antioxidant defense system and improve the detoxification system in the muscles of fish exposed to cadmium chloride.

  7. Preventive action of Aloe vera against radiation and cadmium induced haematological changes in Swiss albino mice

    International Nuclear Information System (INIS)

    Haematopoietic organs are markedly sensitive to ionizing radiation due to its proliferate activity. The changes found in the circulating blood are primarily due to damage in the radio sensitive haematopoeitic organs. A very small dose of radiation to a blood forming organ causes an arrest of haematopoiesis with changes in peripheral blood count. Certain trace elements are essential for normal growth and development of organisms but their concentration beyond threshold may produce damage to blood forming organs and tissues thus affecting the peripheral blood. Aloe vera has been claimed to contain several important therapeutic properties including anti cancer effects. Various studies showed the prevention of radiation induced suppression of immunity by Aloe vera components. Having these unique properties, Aloe vera could be used in clinical field as a protector against radiation and heavy metal toxicity in human beings. For the study, six to eight weeks old Swiss albino mice were procured and kept in polypropylene cages. The animals were fed with standard mice feed and water was provided to them ad libitum. Cadmium chloride was administered orally to the animals in drinking water at the dose rate of 20 ppm. The animals were exposed to sub lethal doses of 2.0 Gy and 4.0 Gy of gamma radiation from cobalt60 source. The Aloe vera was given seven days prior to irradiation and continued up to last autopsy day in experimental animals. Five animals from each group were autopsied by cervical dislocation at each post treatment interval of 1,2,4,7,14 and 28 days. The differential leucocytes count was estimated by preparing smear of the blood. The value of lymphocyte decreased up to day-14 in non drug treated groups thereafter it increased up to day-28 whereas the count decreased up to day-7 in drug treated groups and showed an increasing trend at day-14 which continues up to day-28. The value of monocyte and granulocyte percentage increased up to day-7 in drug treated groups

  8. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  9. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    International Nuclear Information System (INIS)

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival

  10. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense

    International Nuclear Information System (INIS)

    The effects of cadmium on biomass production and growth parameters of drunken horse grass (Achnatherum inebrians) over an 8-week period were determined in a controlled-environment experiment. Changes were determined for relative water content, anti-oxidative enzymes (i.e., catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)) and for H2O2 content, as well as levels of proline, malondialdehyde (MDA), and chlorophylls 'a' and 'b' present within leaves infected with Neotyphodium gansuense vs. non-infected controls. Observations began 4 weeks after addition of CdCl2 (0, 50, 100 and 200 μM) to the nutrient solution. Under high concentrations (100 and 200 μM) of CdCl2, endophyte-infected plants produced more biomass and had higher values for plant height and tiller number compared to non-infected controls, but there was no significant difference (P > 0.05) under 0 and 50 μM CdCl2. Anti-oxidative enzyme activities, H2O2 concentration, and chlorophylls 'a' and 'b' levels increased, but proline and malondialdehyde content declined in the infected plants vs. non-infected plants under high (100 and 200 μM) concentrations of CdCl2. There was no significant difference (P > 0.05) under 0 and 50 μM CdCl2. Endophyte infection was concluded to be of benefit to the growth and anti-oxidative mechanisms within A. inebrians under high concentrations exposures to CdCl2.

  11. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xingxu [Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730000, Gansu (China); Li Chunjie, E-mail: chunjie@lzu.edu.cn [Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730000, Gansu (China); Nan Zhibiao [Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730000, Gansu (China)

    2010-03-15

    The effects of cadmium on biomass production and growth parameters of drunken horse grass (Achnatherum inebrians) over an 8-week period were determined in a controlled-environment experiment. Changes were determined for relative water content, anti-oxidative enzymes (i.e., catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)) and for H{sub 2}O{sub 2} content, as well as levels of proline, malondialdehyde (MDA), and chlorophylls 'a' and 'b' present within leaves infected with Neotyphodium gansuense vs. non-infected controls. Observations began 4 weeks after addition of CdCl{sub 2} (0, 50, 100 and 200 {mu}M) to the nutrient solution. Under high concentrations (100 and 200 {mu}M) of CdCl{sub 2}, endophyte-infected plants produced more biomass and had higher values for plant height and tiller number compared to non-infected controls, but there was no significant difference (P > 0.05) under 0 and 50 {mu}M CdCl{sub 2}. Anti-oxidative enzyme activities, H{sub 2}O{sub 2} concentration, and chlorophylls 'a' and 'b' levels increased, but proline and malondialdehyde content declined in the infected plants vs. non-infected plants under high (100 and 200 {mu}M) concentrations of CdCl{sub 2}. There was no significant difference (P > 0.05) under 0 and 50 {mu}M CdCl{sub 2}. Endophyte infection was concluded to be of benefit to the growth and anti-oxidative mechanisms within A. inebrians under high concentrations exposures to CdCl{sub 2}.

  12. Protective role of Liv.52 against radiation and cadmium induced haematological changes in the Swiss albino mice

    International Nuclear Information System (INIS)

    This study aim to evaluate protective role of Liv.52 against radiation and cadmium induced haematological changes in the Swiss Albino Mice. The animals were exposed with 3.0 and 6.0 Gy of gamma rays with or without Cadmium Chloride treatment. In the drug treated groups. The liv-52 was given seven days prior to irradiation or Cadmium Chloride treatment The animals from the entire experimental group were sacrificed by cervical dislocation at post treatment intervals of 1, 2, 4, 7, 14 and 28 days. The value of red blood cells (RBC), white blood cell (WBC), Haemoglobin (Hb), packed cell volume (PCV), mean cell volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), different leucocytes counts (DLC), SGOT and SGPT were estimated. The values of RBC, WBC, Hb and PCV were found to decrease in all the groups as compared to normal group, but the decrease in these values was lesser in Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). The values of MCV were also found to decrease but the difference from normal value was significant at previous intervals and it was significant on later intervals. The values of MCH increased in all the groups as compared with normal group after 1, 2, 4, 7, 14 and 28 days of post-treatment intervals. The increase in the values of MCH was lesser in Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). Besides this values of MCHC increased in all the groups at various intervals but the values were lower in the Liv.52 treated groups (V to VII) as compared to non-drug treated groups (II to IV). The difference from the normal was non-significant in all the groups. The values of lymphocytes declined up to day-14 in non-drug treated groups and day-7 in the Liv.52 treated groups. Similarly the values of monocytes and granulocytes percentage increased up to day-14 in the non-drug treated animals and day-7 in the drug treated animals thereafter; a

  13. Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress.

    Science.gov (United States)

    Wang, Dafei; Liu, Yunguo; Tan, Xiaofei; Liu, Hongyu; Zeng, Guangming; Hu, Xinjiang; Jian, Hao; Gu, Yanling

    2015-03-01

    Cadmium (Cd)-induced growth inhibition is one of the primary factors limiting phytoremediation effect of Boehmeria nivea (L.) Gaud in contaminated soil. Sodium nitroprusside (SNP), a donor of nitric oxide (NO), has been evidenced to alleviate Cd toxicity in many plants. However, as an important mechanism of NO in orchestrating cellular functions, S-nitrosylation is still poorly understood in its relation with Cd tolerance of plants. In this study, higher exogenous NO levels were found to coincide with higher S-nitrosylation level expressed as content of S-nitrosothiols (SNO). The addition of low concentration (100 μM) SNP increased the SNO content, and it simultaneously induced an alleviating effect against Cd toxicity by enhancing the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) and reduced the accumulation of H2O2 as compared with Cd alone. Application of S-nitrosoglutathione reductase (GSNOR) inhibitors dodecanoic acid (DA) in 100 μM SNP group brought in an extra elevation in S-nitrosylation level and further reinforced the effect of SNP. While the additions of 400 μM SNP and 400 μM SNP + 50 μM DA further elevated the S-nitrosylation level, it markedly weakened the alleviating effect against Cd toxicity as compared with the addition of 100 μM SNP. This phenomenon could be owing to excess consumption of glutathione (GSH) to form SNO under high S-nitrosylation level. Therefore, the present study indicates that S-nitrosylation is involved in the ameliorating effect of SNP against Cd toxicity. This involvement exhibited a concentration-dependent property. PMID:25242592

  14. Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.K. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000 (Pakistan); Variath, M.T.; Ali, Shafaqat; Najeeb, U. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Jamil, Muhammad [Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000 (Pakistan); Hayat, Y. [Institute of Bioinformatics, Zhejiang University, Hangzhou 310029 (China); Dawood, M. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Khan, Muhammad Imran [Department of Environmental Engineering, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Zaffar, M. [Department of Soil Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Cheema, Sardar Alam [Department of Environmental Engineering, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Tong, X.H. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Zhu Shuijin, E-mail: shjzhu@zju.edu.cn [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)

    2009-09-15

    The present study describes cadmium-induced alterations in the leaves as well as at the whole plant level in two transgenic cotton cultivars (BR001 and GK30) and their wild relative (Coker 312) using both ultramorphological and physiological indices. With elevated levels of Cd (i.e. 10, 100, 1000 {mu}M), the mean lengths of root, stem and leaf and leaf width as well as their fresh and dry biomasses linearly decreased over their respective controls. Moreover, root, stem and leaf water absorption capacities progressively stimulated, which were high in leaves followed by roots and stems. BR001 accumulated more cadmium followed by GK30 and Coker 312. Root and shoot cadmium uptakes were significantly and directly correlated with each other as well as with leaf, stem and root water absorption capacities. The ultrastructural modifications in leaf mesophyll cells were triggered with increase in Cd stress regime. They were more obvious in BR001 followed by GK30 and Coker 312. Changes in morphology of chloroplast, increase in number and size of starch grains as well as increase in number of plastoglobuli were the noticed qualitative effects of Cd on photosynthetic organ. Cd in the form of electron dense granules could be seen inside the vacuoles and attached to the cell walls in all these cultivars. From the present experiment, it can be well established that both apoplastic and symplastic bindings are involved in Cd detoxification in these cultivars. Absence of tonoplast invagination reveals that Cd toxic levels did not cause water stress in any cultivars. Additionally, these cultivars possess differential capabilities towards Cd accumulation and its sequestration.

  15. Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network.

    Science.gov (United States)

    Chen, Sujuan; Gu, Chenjian; Xu, Chong; Zhang, Jinfei; Xu, Yijiao; Ren, Qian; Guo, Min; Huang, Shile; Chen, Long

    2014-01-01

    Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant-derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd-induced neurotoxicity. Here, we show that celastrol protected against Cd-induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd-induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase-3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd-induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over-expression of dominant negative c-Jun potentiated celastrol protection against Cd-induced cell death. Furthermore, pre-treatment with celastrol prevented Cd down-regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3'-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over-expression of wild-type PTEN enhanced celastrol inhibition of Cd-activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders. Celastrol, a plant-derived triterpene, has shown neuroprotective effects. However, little is known regarding the effect of celastrol on cadmium (Cd) neurotoxicity. This study underscores that celastrol prevents Cd-induced neuronal apoptosis via inhibiting activation of JNK (c-Jun N-terminal kinase) and Akt/mTOR network. Celastrol suppresses Cd-activated Akt/mTOR pathway by elevating PTEN (phosphatase and tensin homolog). The

  16. Electron beam-induced formation of crystalline nanoparticle chains from amorphous cadmium hydroxide nanofibers.

    Science.gov (United States)

    Stoychev, Georgi V; Okhrimenko, Denis V; Appelhans, Dietmar; Voit, Brigitte

    2016-01-01

    Quantum dots (QDs) and especially quantum dot arrays have been attracting tremendous attention due to their potential applications in various high-tech devices, including QD lasers, solar cells, single photon emitters, QD memories, etc. Here, a dendrimer-based approach for the controlled synthesis of ultra-thin amorphous cadmium hydroxide nanofibers was developed. The fragmentation of the obtained nanofibers in crystalline nanoparticle chains under the irradiation with electron beam was observed in both ambient and cryo-conditions. Based on the experimental results, a model for the formation of amorphous nanofibers, as well as their transformation in crystalline nanoparticle chains is proposed. We foresee that these properties of the nanofibers, combined with the possibility to convert cadmium hydroxide into CdX (X=O, S, Se, Te), could result in a new method for the preparation of 2D and 3D QDs-arrays with numerous potential applications in high performance devices. PMID:26397918

  17. Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation.

    Science.gov (United States)

    Kumar, Sumeet; Ojha, Animesh K; Walkenfort, Bernd

    2016-06-01

    Cadmium oxide (CdO) nanoparticles (NPs), reduced graphene oxide (rGO) and rGO-CdO nanocomposites have been synthesized using one step hydrothermal method. The structural and optical properties of CdO NPs, rGO, and rGO-CdO nanocomposites were investigated by X-ray diffraction (XRD), energy dispersive X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (RS), ultraviolet-visible spectroscopy (UV-Vis.) and photoluminescence (PL) spectroscopy techniques. The rGO has a sharp 2D peak compared to GO. The sharp nature of 2D band may be due to the larger contribution from single layer sheet. The photocatalytic activity of the synthesized samples has been investigated under UV irradiation. The results of photocatalytic measurements revealed that ~80% of MB dye is degraded by adding the rGO-CdO nanocomposites as photocatalysts into the dye solution. The decrease in the intensity of emission peaks indicates that the photogenerated charge carriers have been transferred from CdO NPs to rGO sheets, which causes to increase the density of O2(-) and OH radicals in the dye solution. The CdO nanoparticles gown on the rGO sheets showed enhanced ferromagnetism (FM) at room temperature, which may be attributed to the short range magnetic interaction of magnetic moments of CdO NPs and spin units present on the rGO sheets. PMID:27045279

  18. Long-distance transport, vacuolar sequestration and transcriptional responses induced by cadmium and arsenic

    OpenAIRE

    Mendoza-Cózatl, David G.; Jobe, Timothy O.; Hauser, Felix; Schroeder, Julian I

    2011-01-01

    Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification o...

  19. Cadmium-induced Functional and Ultrastructural Alterations in Roots of Two Transgenic Cotton Cultivars

    Institute of Scientific and Technical Information of China (English)

    DAUD M K; SUN Yu-qiang; ZHU Shui-jin

    2008-01-01

    @@ The toxic effect of cadmium (Cd) at increasing concentrations has been studied with special attention being given to root morphological and ultrastructural changes in two transgenic cotton cultivars viz.BR001 and GK30 and their wild relative cotton genotype viz.Coker 312.In comparison to their respective controls,low concentration (10 and 100 M) of Cd greatly stimulated seed germination,while it was inhibited by highest concentration of Cd (1000 M) in case of two transgenic cultivars.

  20. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal

    Science.gov (United States)

    Bian, Yu; Bian, Zhao-Yong; Zhang, Jun-Xiao; Ding, Ai-Zhong; Liu, Shao-Lei; Wang, Hui

    2015-02-01

    The adsorption process of graphene oxide (GO) with oxygen-containing functional groups towards cadmium ions was investigated. GO synthesized from graphite by using the modified Hummers method was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The oxygen-containing groups on the surfaces of GO played an important role in Cd(II) ion adsorption onto GO. The results of batch experiments indicated that maximal adsorption, which was found to be 23.9 mg/g, could be achieved over the broad pH range of 6.0-7.0. Adsorption isotherms were better fitted by Freundlich model than by Langmuir model and kinetic studies suggested that adsorption was controlled by chemical adsorption. According to FT-IR and XPS analyses of before and after Cd(II) adsorption on GO, electrostatic attraction and cation exchange between Cd(II) and O-containing functional groups on GO were the dominant mechanisms responsible for Cd(II) sorption.

  1. Optical and electrical characterization of fluorine doped cadmium oxide thin films prepared by the sol-gel method

    International Nuclear Information System (INIS)

    Highly transparent and conducting fluorine (F) doped cadmium oxide (CdO) thin films were deposited on glass slides by the sol-gel method. The films were doped by the addition of ammonium fluoride to the precursor solution whose optimum concentration was determined. The films were fired in an open atmosphere at 350 deg. C and after that, exposed to annealing treatments in different atmospheres (N2, N2/H2 mixture and Ar) at the same temperature. The films were characterized by ultraviolet-visible spectroscopy, X-ray diffraction and scanning electron microscopy. The resistivity was determined by the four probes method and current-voltage measurements in accordance with the standard Van der Pauw configuration. The CdO:F thin films obtained, showed high polycrystalline quality and high transmission in the visible region (≥ 90%), shifting towards the blue region of the absorption edge as the fluorine concentration in the precursor solution was increased from 0 to 30 at.%. The lowest resistivity values were reached for the samples with F content higher or equal to 5% and annealed in either N2 or a 96/4 N2/H2 gas mixture. Our resistivity value reached in the CdO:F layers was 4.5 x 10-4 Ω cm (20 Ω/square)

  2. Metallothionein 1 Isoform Gene Expression Induced by Cadmium in Human Peripheral Blood Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the gene expression of metallothionein 1 (MT-1) isoforms in human peripheral blood lymphocytes (HPBLs). Methods The expression of mRNA representing the seven active MT-1 genes was determined in HPBLs by quantitative RT-PCR before and after exposure to cadmium. Results Basal expressions of MT-1X, and MT-1A in HPBLs were similar to expression of housekeeping gene. In contrast, the basal gene expressions of MT-1H, 1F, 1E, and 1G were a little transcripts in human HPBLs. No signal was detected for MT-1B. There was a sex difference (P<0.05). in basal gene expression of MT-1E. The levels of gene expression of MT-1A, 1E, 1F, 1G, 1H, and 1X increased, but the level of MT-1B did not increase after exposure to cadmium. Conclusions Gene expressions of MT-1G, MT-1H, MT-1F, and MT-1X in HPBLs can be used as a potential biomarker of cadmium exposure.

  3. Mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Cadmium (Cd), a heavy metal of considerable occupational and environmental concern, has been classified as a human carcinogen by the International Agency for Research on Cancer (IARC). The carcinogenic potential of Cd as well as the mechanisms underlying carcinogenesis following exposure to Cd has been studied using in vitro cell culture and in vivo animal models. Exposure of cells to Cd results in their transformation. Administration of Cd in animals results in tumors of multiple organs/tissues. Also, a causal relationship has been noticed between exposure to Cd and the incidence of lung cancer in human. It has been demonstrated that Cd induces cancer by multiple mechanisms and the most important among them are aberrant gene expression, inhibition of DNA damage repair, induction of oxidative stress, and inhibition of apoptosis. The available evidence indicates that, perhaps, oxidative stress plays a central role in Cd carcinogenesis because of its involvement in Cd-induced aberrant gene expression, inhibition of DNA damage repair, and apoptosis.

  4. Cytotoxic and Oxidative Stress Caused by Cadmium and Lead on Human Skin Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Ali Beman Zaree Mahmodabady

    2006-01-01

    Full Text Available Introduction: Heavy metals are important occupational andenvironmental pollutants that cause damage to various organs.Although there is no effective therapy for such a poisoning,metallothionein has been shown to play a key role in thedetoxification of cadmium (Cd. Evidence in the literature suggeststhat superoxide dismutase, glutathione peroxidase, and catalaseconstitute important defense mechanisms against oxygen toxicity inthe cells. The aim of this study was to investigate the effect ofcadmium chloride and Pb-acetate on antioxidant enzymes in thehuman skin fibroblast cells (HF2FF.Material and Methods: The human skin fibroblast (HF2FF cellswere incubated in serum-free medium containing 20 μM CdCl2 for18 hr three times a week. The same exposure to an equimolar doseof Pb-acetate was performed. After each exposure and after threetimes exposure the cells were collected and cell viability, thecontents of superoxide dismutase (SOD, catalase, glutathioneperoxidase (GSH-Px, GSH and malondialdehyde (MDA weremeasured.Results: Cd caused cytotoxicity and inhibition of glutathioneperoxidase (GSH-Px and SOD activity, as well as depletion of thereduced form of glutathione (GSH in the cell. The level of lipidperoxidation (LP was increased, but catalase activity was notsignificantly altered. These defects were increased with repeatedexposures. The same exposure to an equimolar dose of Pb-acetateevoked only inhibition of GSH-Px and SOD. The values of GSH,catalase and LP activity remained unchanged.Conclusion: The inhibition of GSH-Px and SOD may be consideredas an important biomarker of the toxic effect of metals.

  5. Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig

    International Nuclear Information System (INIS)

    This is the first report of a heavy metal displaying a hormetic-like biphasic response for early developmental success, while at the same time displaying stage-specific toxicity at a later developmental stage. - Hormesis is an adaptive response, commonly characterized by a biphasic dose-response that can be either directly induced, or the result of compensatory biological processes following an initial disruption in homeostasis [Calabrese and Baldwin, Hum. Exp. Toxicol., 21 (2002), 91]. Low and environmentally relevant levels of dietary cadmium significantly enhanced the pupation rate of blowfly larvae, while higher doses inhibited pupation success. However, dietary cadmium at all exposure levels adversely affected the emergence of the adult fly from the pupal case. Such findings represent the first report of a heavy metal displaying a hormetic-like biphasic response for pupation success, while at the same time displaying stage-specific toxicity at a later developmental period. These conclusions are based on substantial experimentation of over 1750 blowflies, in seven replicate experiments, involving 10 concentrations per experiment. These findings indicate the need to assess the impact of environmental stressors over a broad range of potential exposures as well as throughout the entire life cycle

  6. Melamine Induces Oxidative Stress in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Dai

    Full Text Available Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPX were analyzed, and the concentration of malondialdehyde (MDA were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  7. Usefulness of microporous hydrophobic polypropylene membranes after plasma-induced graft polymerization of acrylic acid for high-power nickel-cadmium batteries

    International Nuclear Information System (INIS)

    Commercial microporous polypropylene (PP) membranes were modified by plasma-induced graft polymerization of acrylic acid (AAc) under UV irradiation. Under optimized conditions obtained membranes are hydrophilic and may be serviceable as separator in nickel-cadmium cell. Electrolytic resistance of modified membranes is evaluated and compared with that of commercial separators: conventional cellophane separation and hydrophilic polypropylene separation (Celgard 3501). This paper reports the maximum power test data for nickel-cadmium cells equipped with different separators. Cells with modified PP membrane show very good high-rate performance

  8. Potentiated interaction between ineffective doses of budesonide and formoterol to control the inhaled cadmium-induced up-regulation of metalloproteinases and acute pulmonary inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Wenhui Zhang

    Full Text Available The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9 activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases.

  9. In vitro evaluation of cell death induced by cadmium, lead and their binary mixtures on erythrocytes of Common buzzard (Buteo buteo).

    Science.gov (United States)

    Hernández-García, A; Romero, D; Gómez-Ramírez, P; María-Mojica, P; Martínez-López, E; García-Fernández, A J

    2014-03-01

    Cadmium and lead are persistent and ubiquitous metals that can cause several deleterious effects in living beings. Apoptosis and necrosis are two types of cell death that can be found after in vivo and in vitro exposure to these metals. In this study, isolated red blood cells from living captive Common buzzard (Buteo buteo) were exposed in vitro to different concentrations of lead, cadmium, and the mixture lead-cadmium in a proportion of 1:10 (similar to that found in previous field studies). Data obtained from dose-response curves were used to evaluate the interactive effects of metal mixtures on cell viability. In general, except for the exposure to NOEC, additivity was the most frequently observed response. As described in human, after in vitro exposure, lead was highly accumulated in buzzard erythrocytes, while cadmium accumulation was scarce. Finally, the type of cell death (apoptosis or necrosis) induced by the exposure to different concentrations of these heavy metals and their mixtures was evaluated in the red blood cells. Apoptosis was found to be the main type of cell death observed after cadmium and/or lead exposure. However, this exposure caused an increase in lysis or necrosis, especially if red blood cells were exposed to high doses. PMID:24287112

  10. Comparison of Antagonism of Grape Juice and Resveratrol to Oxidative Damage Induced by Cadmium in Mice%葡萄汁与白黎芦醇对镉染毒小鼠抗氧化损伤作用的比较

    Institute of Scientific and Technical Information of China (English)

    庞雅琴; 周敏; 庞广福; 郑子敏; 韦健全

    2011-01-01

    Objective To compare the effects of grape juice and resveratrol on antioxidation and promoting cadmium(Cd) excretion in mice exposed to Cd and the mechanism. Methods Thirty-two 5 weeks old Kunming mice were randomly divided into 4 groups, namely normal group (treated with dd H2O), CdCl2 (50 mg/L) group, grape juice ( containing resveratrol 65 pμg/ml) plus CdC12 group, resveratrol (65 μg/ml) plus CdCl2 treated group, 8 mice in each group. The mice were treated with CdCl2 through drinking water, and treated with the grape juice and resveratrol through gavage with 0.02 ml/g, once a day for 4 consecutive weeks.In the end of treatment, the Cd levels in liver and kidney,the activity of alanine aminotranferase (ALT) and the content of ureanitrogen(BUN) in serum were measured, and the activities of superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px), the content of malony diadehyde (MDA) in serum,liver and kidney were measured respectively. Results Compared with the CdCl2 treated group, the Cd levels in liver and kidney ,the serum level of ALT and BUN, the contents of MDA in serum, liver and kidney in grape juice plus CdCl2 treated group and resveratrol plus CdCl2 group decreased while the activities of SOD and GSH-Px in serum, liver and kidney increased significantly(P<0.01 ). Compared with resveratrol plus CdC12 treated group, the Cd levels in liver and kidney,the serum level of ALT and BUN,the contents of MDA in serum,liver and kidney in grape juice plus CdCl2 group decreased while the activities of SOD and GSH-Px in serum, kidney and the activities of SOD in liver increased significantly (P< 0.01 ). Conclusion Grape juice has protective effect on the damage of liver and kidney of mice induced by Cd and has stronger effect of promote Cd excretion compared with resveratrol.%目的 比较葡萄汁与单体白黎芦醇对镉染毒小鼠的抗氧化损伤作用和促排镉作用及其作用机制.方法 将32只5周龄清洁级昆明小鼠随机分为4组,

  11. Exciting imperfection. Real-structure effects in magnesium-, cadmium-, and zinc-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Schleife, Andre

    2010-07-01

    We employ recent ab-initio methods and theoretical spectroscopy techniques that rely on heavy numerical calculations to describe electronic excitations in non-ideal crystals of three group-II oxides. We study the ideal equilibrium polymorphs of these oxides, for gaining a thorough understanding as well as the necessary confidence in our approaches to generalize and apply them to the electronic excitations in imperfect crystals. As such imperfections we take the influence of strain, the alloying of the different oxides, an intrinsic point defect, and free electrons in the lowest conduction band into account. We employ the DFT results as input in order to compute quasiparticle electronic structures, which are in good agreement with experimental findings. According to Hedin's equations for interacting electrons, the electron-hole interaction is taken into account by solving a Bethe-Salpeter equation for the polarization function. Thereafter the equilibrium polymorphs of ideal bulk MgO, ZnO, and CdO and investigates the structure of their valence and conduction bands are described. We present densities of states and effective masses, as well as natural band discontinuities. Furthermore, our description of the dielectric function, which takes excitonic effects into account, enables us to derive the electron-energy loss function. The influence of uniaxial and biaxial strain on the ordering of the valence bands in ZnO is investigated. In addition, we explore the electronic band structure of the non-equilibrium wurtzite structures of MgO and CdO. We predict valence-band splittings and band gaps as they might occur at interfaces of Mgo or CdO with ZnO substrates. Thereafter we study pseudobinary alloys by means of a cluster expansion method. Due to the different crystal structures of the respective oxides, i.e. rocksalt and wurtzite, the description of their heterostructural combination has to be achieved. The electronic and optical properties of the group-II oxide

  12. Exciting imperfection. Real-structure effects in magnesium-, cadmium-, and zinc-oxide

    International Nuclear Information System (INIS)

    We employ recent ab-initio methods and theoretical spectroscopy techniques that rely on heavy numerical calculations to describe electronic excitations in non-ideal crystals of three group-II oxides. We study the ideal equilibrium polymorphs of these oxides, for gaining a thorough understanding as well as the necessary confidence in our approaches to generalize and apply them to the electronic excitations in imperfect crystals. As such imperfections we take the influence of strain, the alloying of the different oxides, an intrinsic point defect, and free electrons in the lowest conduction band into account. We employ the DFT results as input in order to compute quasiparticle electronic structures, which are in good agreement with experimental findings. According to Hedin's equations for interacting electrons, the electron-hole interaction is taken into account by solving a Bethe-Salpeter equation for the polarization function. Thereafter the equilibrium polymorphs of ideal bulk MgO, ZnO, and CdO and investigates the structure of their valence and conduction bands are described. We present densities of states and effective masses, as well as natural band discontinuities. Furthermore, our description of the dielectric function, which takes excitonic effects into account, enables us to derive the electron-energy loss function. The influence of uniaxial and biaxial strain on the ordering of the valence bands in ZnO is investigated. In addition, we explore the electronic band structure of the non-equilibrium wurtzite structures of MgO and CdO. We predict valence-band splittings and band gaps as they might occur at interfaces of Mgo or CdO with ZnO substrates. Thereafter we study pseudobinary alloys by means of a cluster expansion method. Due to the different crystal structures of the respective oxides, i.e. rocksalt and wurtzite, the description of their heterostructural combination has to be achieved. The electronic and optical properties of the group-II oxide alloys

  13. Histopathological changes in the head kidney induced by cadmium in a neotropical fish Colossoma macropomum

    OpenAIRE

    R. Salazar-Lugo; Vargas, A.(Benemérita Universidad Autónoma de Puebla, Puebla, Mexico); Rojas, L.; Lemus, M.

    2013-01-01

    We evaluated the effect of cadmium (Cd) on the structure and function of the head kidney in the freshwater fish Colossoma macropomum (C. macropomum). Juveniles were exposed to 0.1 mg/L CdCl2 for 31 days. Blood samples were examined using hematological tests and head kidney histology was determined by light microscopy. The concentration of Cd in the head and trunk kidneys was measured using an atomic absorption spectrophotometer. Cd produced histopathological changes in the head kidney, the mo...

  14. Characterization of the cadmium complex of peptide 49-61: a putative nucleation center for cadmium-induced folding in rabbit liver metallothionein IIA.

    Science.gov (United States)

    Muñoz, A; Laib, F; Petering, D H; Shaw, C F

    1999-08-01

    The synthetic peptide fragment containing residues 49-61 of rabbit liver metallothionein II (MT-II) (Ac-Ile-Cys-Lys-Gly-Ala-Ser-Asp-Lys-Cys-Ser-Cys-Cys-Ala-COOH), which includes the only sequential four cysteines bound to the same metal ion in Cd7MT, forms a stable, monomeric Cd-peptide complex with 1:1 stoichiometry (Cd:peptide) via Cd-thiolate interactions. This represents the first synthesis of a single metal-binding site of MT independent of the domains. The 111Cd NMR chemical shift at 716 ppm indicates that the 111Cd2+ in the metal site is terminally coordinated to four side-chain thiolates of the cysteine residues. The pH of half dissociation for this Cd-peptide derivative, approximately 3.3, demonstrates an affinity similar to that for Cd7MT. Molecular mechanics calculations show that the thermodynamically most stable folding for this isolated Cd2+ center has the same counterclockwise chirality (lambda or S) observed in the native holo-protein. These properties are consistent with its proposed role as a nucleation center for cadmium-induced protein folding. However, the kinetic reactivity of the CdS4 structure toward 5,5'-dithiobis(5-nitrobenzoate) (DTNB) and EDTA is greatly increased compared to the complete cluster (a-domain or holo-protein). The rate law for the reaction with DTNB is rate = (k(uf) + k(1,f) + k(2,f) [DTNB])[peptide], where k(uf) = 0.15 s(-1), k(1,f)= 2.59x10(-3) s(-1), and k(2,f) = 0.88 M(-1) s(-1). The ultrafast step (uf), observable only by stopped-flow measurement, is unprecedented for mammalian (M7MT) and crustacean (M6MT) holo-proteins or the isolated domains. The accommodation of other metal ions by the peptide indicates a rich coordination chemistry, including stoichiometries of M-peptide for Hg2+, Cd2+, and Zn2+, M2-peptide for Hg2+ and Au+, and (Et3PAu)2-peptide. PMID:10555583

  15. Protective efficacy of Emblica officinalis Linn. against radiation and cadmium induced biochemical alterations in the brain of Swiss albino mice

    International Nuclear Information System (INIS)

    One of the major problems faced in the modern world today is that of pollution caused due to radioactive material and emission of gamma radiation from various sources either in terms of background radiation sources, accidental leak from nuclear reactors or intentional convert attack by terrorists to achieve the malefic goals. In view of such perceived risks and threats associated with plausible radiological and nuclear incidents. It is pertained to develop potential drugs for the mitigation of deleterious effects of ionizing radiation and heavy metals. In recent years, immense interest has been developed in the field of chemoprotection against radiation and heavy metal induced changes. In light of above the present study was aimed to evaluate the protective efficacy of Emblica officinalis against Radiation and cadmium induced biochemical alteration in the Brain of Swiss Albino mice. The animals were exposed to 3.0 Gy of gamma rays with or without cadmium chloride treatment. The Emblica extract was administered seven days prior to irradiation or cadmium chloride treatment. The animals from all the experimental groups were sacrificed by cervical dislocation at each post-treatment interval of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals, mid brains (cerebral hemisphere) were taken out and kept at -20 deg C for different biochemical parameters. It was The values of total proteins, cholesterol and DNA decreased up to day-14 in non drug treated groups and day-7 in the Emblica treated groups thereafter it increased on day-28, whereas the value of glycogen, Acid phosphatase activity, Alkaline phosphatase activity and RNA increased up to day-14 in non drug treated groups and day-7 in drug treated groups, thereafter it decreased on day-28 in all the groups. In the combined treatment groups the biochemical changes were more prominent showing synergistic or additive effect. In the Emblica pretreated animals the changes were less severe and an early and fast

  16. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells

    International Nuclear Information System (INIS)

    Cadmium acetate (CdAc) induced apoptosis in primary alveolar type 2 cells and Clara cells from rat lung. Phosphorylation of the MAPKs ERK1/2, p38 and JNK was markedly increased in both cell types 15 min to 2 h after start of exposure to 10 μM CdAc. The phosphorylation of all the MAPKs remained elevated or was progressively increased up to 12 h. The p38 inhibitor SB202190 reduced the Cd-induced apoptosis, whereas the ERK and JNK inhibitors, PD98059 and JNKI1, respectively, did not have any significant effect. The activity of total PKC and the isoforms PKCα and PKCδ seemed initially to be high in type 2 cells and Clara cells. Exposure to 10 μM CdAc did not further increase the total PKC activity or phosphorylation levels of the specific isoforms. However, the PKC inhibitors, GF109203X and rottlerin partially reduced the Cd-induced apoptosis. Furthermore, exposure to GF109203X reduced the phosphorylation of p38 in Clara cells. In conclusion, the MAPK p38 seemed to be involved in the Cd-induced apoptosis in Clara cells and type 2 cells. The activity of PKC isoforms is suggested to have a permissive role in the apoptotic process, located upstream of p38 phosphorylation

  17. Heavy metal induced oxidative stress & its possible reversal by chelation therapy.

    Science.gov (United States)

    Flora, S J S; Mittal, Megha; Mehta, Ashish

    2008-10-01

    Exposure to heavy metals is a common phenomenon due to their environmental pervasiveness. Metal intoxication particularly neurotoxicity, genotoxicity, or carcinogenicity is widely known. This review summarizes our current understanding about the mechanism by which metalloids or heavy metals (particularly arsenic, lead, cadmium and mercury) induce their toxic effects. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. The toxic manifestations of these metals are caused primarily due to imbalance between pro-oxidant and antioxidant homeostasis which is termed as oxidative stress. Besides these metals have high affinity for thiol groups containing enzymes and proteins, which are responsible for normal cellular defense mechanism. Long term exposure to these metals could lead to apoptosis. Signaling components affected by metals include growth factor receptors, G-proteins, MAP kinases and transcription factors. Chelation therapy with chelating agents like calcium disodium ethylenediamine tetra acetic acid (CaNa(2)EDTA), British Anti Lewisite (BAL), sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), meso 2,3-dimercaptosuccinic acid (DMSA) etc., is considered to be the best known treatment against metal poisoning. Despite many years of research we are still far away from effective treatment against toxicity caused due to exposure to heavy metals/metalloids. The treatment with these chelating agents is compromised with number of serious side-effects. Studies show that supplementation of antioxidants along-with a chelating agent prove to be a better treatment regimen than monotherapy with chelating agents. This review attempts a comprehensive account of recent developments in the research on heavy metal poisoning particularly the role of oxidative stress/free radicals in the toxic manifestation, an update about the recent strategies for the treatment with chelating agents and a

  18. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Vineet Jeena; Robinson, Ross S.

    2009-01-01

    The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding α-hydroxyketones.

  19. Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Hashem, Abeer; Abd Allah, E F; Alqarawi, A A; Egamberdieva, Dilfuza

    2016-01-01

    Cassia italica Mill is an important medicinal plant within the family Fabaceae. Pot experiment was conducted to evaluate cadmium stress induced changes in physiological and biochemical attributes in C. italica with and without arbuscular mycorrhizal fungi (AMF). Cadmium stressed plant showed reduced chlorophyll pigment and protein content while AMF inoculation enhanced the chlorophyll and protein content considerably. AMF also ameliorated the cadmium stress induced reduction in total chlorophyll and protein contents by 19.30% and 38.29%, respectively. Cadmium stress enhanced lipid peroxidation while AMF inoculation reduced lipid peroxidation considerably. Increase in proline and phenol content was observed due to cadmium stress and AMF inoculation caused a further increase in proline and phenol content ensuring better growth under stressed conditions. AMF alone also enhanced proline and phenol content. Activity of antioxidant enzymes enhanced under cadmium treatment and AMF inoculation further enhanced their activity thereby strengthening the antioxidant system. Enhanced activities of antioxidants and increased accumulation of osmolytes help plants to avoid damaging impact of oxidative damage. The research has shown that AMF inoculation mitigated the negative impact of stress by reducing the lipid peroxidation and enhancing the antioxidant activity. The present study strongly supports employing AMF as the biological mean for enhancing the cadmium stress tolerance of C. italica. PMID:26858537

  20. Preparation of Crumpled Graphite Oxide from Recycled Graphite Using Plasma Electrolysis and Its Application for Adsorption of Cadmium in Aqueous Environment

    Science.gov (United States)

    Hong, Phan Ngoc; Tuoi, Tran Thi; Ngan, Nguyen Thi Kim; Trang, Bui Thi; Minh, Phan Ngoc; Lam, Tran Dai; Hanh, Nguyen Thi; Van Thanh, Dang

    2016-05-01

    Household battery waste is considered hazardous and needs to be collected, managed, and recycled appropriately. In this study, using a plasma electrolysis method, we recycled graphite electrodes of exhausted dry batteries to prepare crumpled graphite oxide (CGO). Scanning electron microscopy revealed that the CGO possessed spherical morphology with average dimensions of 0.5 μm to 5 μm. The as-prepared CGO was then applied to absorb cadmium in aqueous environment. The results showed that CGO appears to be a promising adsorbent for removal of toxic waste from polluted water.

  1. Protective role of aloe vera against radiation and cadmium induced biochemical changes in the jejunum of Swiss albino mice

    International Nuclear Information System (INIS)

    Full text: The extensive use of atomic energy now a days in various branches of natural economy, science and technology, radio diagnosis, radiotherapy, industries, agriculture, nuclear research etc. has made radiation injury an urgent problem attracting the attention not only of specialists in a variety of clinical disciplines but also of a vast army of theoretical scientists. Metals like cadmium have always been intrinsic components of earth crust with the continuing trends towards and increasing human activities involving man may become exposed to concentration of toxic metals presenting a potential threat for survival. The severity of the damage can be modulated by treating the animals with antioxidants. In view of the potential for practical application, a variety of compounds are being tested for their radio protective activities. Among these, Aloe vera hold a great promise. Aloe vera juice was obtained from Millennium Agro Company, Goregaon (W) Mumbai. It is a herbal drug and known to contain well over 100 separate ingredients or constituents between those found in the leaf and mucilaginous gel inside the leaf. In light of the above, the present study was aimed to evaluate the protective effect of Aloe vera against radiation and cadmium induced biochemical changes in the jejunum Swiss albino mice. For this purpose, healthy adult male Swiss albino mice were divided into seven groups. Group I included sham-irradiated normal mice. Group II was administered CdCl2 at the dose of 20ppm, while Group III was exposed to 5.0 Gy of gamma radiation. Animals of Group IV were treated with both CdCl2 and 5.0 Gy of gamma rays. The animals of Group V and VI were treated with CdCl2 + Aloe vera and 5.0Gy + Aloe vera respectively, whereas Group VII was treated with CdCl2 +5.0Gy+ Aloe vera. In the groups V, VI and VII the Aloe vera was given seven days prior to the treatment of CdCl2 or gamma rays. Three animals from all the experimental groups were sacrificed by cervical

  2. Amelioration of Cadmium-Induced Nephropathy using Polyphenol-rich Extract of Vernonia amygdalina (Del. Leaves in Rat Model

    Directory of Open Access Journals (Sweden)

    Christian E. Imafidon

    2015-11-01

    Full Text Available AIM: To determine the effects of polyphenol-rich extract of the leaves of Vernonia amygdalina (PEVA in rats with Cd-induced nephropathy. MATERIALS AND METHODS: Sixty five male Wistar rats were divided into five groups as follows; Group 1 received distilled water throughout the period of study. Group 2 received 5 mg/kg body weight of cadmium (Cd, in the form of CdSO4, for five consecutive days via intraperitoneal route. Groups 3, 4 and 5 were pretreated with Cd as group 2 and thereafter received oral treatment of PEVA for 4 weeks at 100 mg/kg, 200 mg/kg and 400 mg/kg body weight, respectively. RESULTS: Exposure to Cd toxicity significantly induced deleterious alterations in plasma and urine levels of creatinine, urea and glucose as well as creatinine and urea clearance (p < 0.05 in the rat model. There was a significant disturbance in the antioxidant system as revealed by the levels of thiobarbituric acid reactive substance (TBARS and reduced glutathione (GSH (p < 0.05 in the kidney tissue of the rats. With marked improvements in renal histoarchitecture, PEVA treatment showed a duration and non dose-dependent ameliorative potential. CONCLUSION: PEVA treatment reversed the compromise of renal function that was induced by Cd toxicity in rat model.

  3. Strain difference of cadmium-induced testicular toxicity in inbred Wistar-Imamichi and Fischer 344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hideaki; Narumi, Rika [Kumamoto University, Faculty of Education, Kumamoto (Japan); Nagano, Masaaki; Yasutake, Akira [National Institute for Minamata Disease, Biochemistry Section, Kumamoto (Japan); Waalkes, Michael P. [National Cancer Institute at the National Institute of Environmental Health Sciences, Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, Research Triangle Park, NC (United States); Imamura, Yorishige [Kumamoto University, Graduate School of Pharmaceutical Sciences, Kumamoto (Japan)

    2009-07-15

    Previously, we reported that Wistar-Imamichi (WI) rats are highly resistant to cadmium (Cd)-induced lethality and hepatotoxicity compared to Fischer 344 (F344) rats. Since the testes are one of the most sensitive organs to acute Cd toxicity, we examined possible strain-related differences in Cd-induced testicular toxicity between inbred WI and F344 rats. Rats were treated with a single dose of 0.5, 1.0 or 2.0 mg Cd/kg, as CdCl{sub 2}, sc and killed 24 h later. Cd at doses of 1.0 and 2.0 mg/kg induced severe testicular hemorrhage, as assessed by pathological and testis hemoglobin content, in F344 rats, but not WI rats. After Cd treatment (2.0 mg/kg), the testicular Cd content was significantly lower in WI rats than in the F344 rats, indicating a toxiokinetic mechanism for the observed strain difference. Thus, the remarkable resistance to Cd-induced testicular toxicity in WI rats is associated, at least in part, with lower testicular accumulation of Cd. When zinc (Zn; 10 mg/kg, sc) was administered in combination with Cd (2.0 mg/kg) to F344 rats, the Cd-induced increase in testicular hemoglobin content, indicative of hemorrhage, was significantly reduced. Similarly, the testicular Cd content was significantly decreased with Zn co-treatment compared to Cd treatment alone. Thus, it can be concluded that the testicular Cd accumulation partly competes with Zn transport systems and that these systems may play an important role in the strain-related differences in Cd-induced testicular toxicity between WI and F344 rats. (orig.)

  4. Histopathological changes in the head kidney induced by cadmium in a neotropical fish Colossoma macropomum.

    Science.gov (United States)

    Salazar-Lugo, R; Vargas, A; Rojas, L; Lemus, M

    2013-01-01

    We evaluated the effect of cadmium (Cd) on the structure and function of the head kidney in the freshwater fish Colossoma macropomum (C. macropomum). Juveniles were exposed to 0.1 mg/L CdCl2 for 31 days. Blood samples were examined using hematological tests and head kidney histology was determined by light microscopy. The concentration of Cd in the head and trunk kidneys was measured using an atomic absorption spectrophotometer. Cd produced histopathological changes in the head kidney, the most evident of these being: the thickening of the vein wall, an increase in the number of basophils/mast cells close to blood vessels and a severe depletion of hematopoietic precursors especially the granulopoietic series. In the blood, a decrease in the total leucocytes and hemoglobin concentration was observed. Cd-exposed fish showed higher Cd concentrations in the trunk kidney than the head kidney. In conclusion, exposure to Cd affected precursor hematopoietic cells in C. macropomum. PMID:26623329

  5. Ion Beam Induced Charge Collection (IBICC) Studies of Cadmium Zinc Telluride (CZT) Radiation Detectors

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride is an emerging material for room temperature radiation detectors. In order to optimize the performance of these detectors, it is important to determine how the electronic properties of CZT are related to the presence of impurities and defects that are introduced during the crystal growth and detector fabrication. At the Sandia microbeam facility IBICC and Time Resolved IBICC (TRIBICC) were used to image electronic properties of various CZT detectors. Two-dimensional areal maps of charge collection efficiency were deduced from the measurements. In order to determine radiation damage to the detectors, we measured the deterioration of the IBICC signal as the function of dose. A model to explain quantitatively the pattern observed in the charge collection efficiency maps of the damaged detectors has been developed and will be discussed in the paper

  6. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress

    International Nuclear Information System (INIS)

    Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 μM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H2O2, malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 μM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H2O2 and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H2O2 signaling in mediating Cd tolerance was discussed. - Pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance

  7. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets.

    Science.gov (United States)

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; Hu, Xi; Chen, An-wei; Wang, Ya-qin; Guo, Yi-Mming; Li, Ting-ting; Zhou, Lu; Liu, Shao-heng; Zeng, Xiao-xia

    2014-07-15

    Cd(II) has posed severe health risks worldwide. To remove this contaminant from aqueous solution, the sulfanilic acid-grafted magnetic graphene oxide sheets (MGOs/SA) were prepared and characterized. The mutual effects of Cd(II) and aniline adsorption on MGOs/SA were studied. The effects of operating parameters such as pH, ionic strength, contact time and temperature on the Cd(II) enrichment, as well as the adsorption kinetics and isotherm were also investigated. The results demonstrated that MGOs/SA could effectively remove Cd(II) and aniline from the aqueous solution and the two adsorption processes were strongly dependent on solution pH. The Cd(II) adsorption was reduced by the presence of aniline at pH5.4. The presence of Cd(II) diminished the adsorption capacity for aniline at pHadsorption at pH>7.8. The decontamination of Cd(II) by MGOs/SA was influenced by ionic strength. Besides, the adsorption process could be well described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that the intraparticle diffusion was not the only rate-limiting step for the adsorption process. Moreover, the experimental data of isotherm followed the Freundlich isotherm model. PMID:24863786

  8. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    Science.gov (United States)

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  9. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells

    Science.gov (United States)

    Kluz, Thomas; Cohen, Lisa; Shen, Steven S.; Costa, Max

    2016-01-01

    Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress. PMID:27186882

  10. G9a-mediated histone methylation regulates cadmium-induced male fertility damage in pubertal mice.

    Science.gov (United States)

    Li, Min; Liu, Chuan; Yang, Lingling; Zhang, Lei; Chen, Chunhai; He, Mindi; Lu, Yonghui; Feng, Wei; Pi, Huifeng; Zhang, Yanwen; Zhong, Min; Yu, Zhengping; Zhou, Zhou

    2016-06-11

    Increasing evidence suggests that cadmium (Cd) is associated with male fertility damage. However, the effects of histone modification on Cd-induced male fertility damage remain obscure. This study aims to evaluate the roles of histone methylation mediated by euchromatin histone methyltransferase (EHMT2/G9a) in regulating Cd-induced male fertility damage. We exposed 4-week-old male C57BL/6J mice to Cd by intraperitoneal injection at 2mg/kg for 1, 3 and 5days. Our data showed that Cd exposure decreased the numbers of impregnated females and litter sizes, which was concomitant with sperm count reduction, histological changes in the cauda epididymal ducts and seminiferous epithelium, and testicular cell apoptosis as evaluated by terminal dUTP nick-end labeling (TUNEL) assay and immunoblotting with increased levels of cleaved caspase 3, PARP and Bax and a decreased level of Bcl-2. Cd-induced male fertility damage was accompanied by enhanced G9a activity followed by increased histone H3 lysine 9 monomethylation (H3K9me1) and dimethylation (H3K9me2) in testes. Furthermore, inhibition of G9a by BIX-01294 normalized H3K9me1 and H3K9me2 to basal levels and prevented Cd-induced male fertility damage and testicular cell apoptosis. Our present study revealed that G9a-mediated histone methylation plays a critical role in Cd-induced male fertility damage and testicular cell apoptosis. PMID:27060504

  11. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    International Nuclear Information System (INIS)

    Nuclear energy production or NORM industry released low amounts of radioactive substances together with non-radioactive substances (e.g., heavy metals, organic chemicals) to the environment. As sessile organisms, plants are commonly exposed to a number of adverse conditions and therefore it is interesting to study the stress responses of plants induced by the single stressors as well as in a in a multi-pollution set-up. The aim of this study was to understand and predict fast induced oxidative stress responses in plants exposed to Cd and U or a combination of both stressors. Arabidopsis thaliana plants grown hydroponically for 18 days were exposed to a Cd (5 μM) or 238U (25 μM) or an equi-toxic mixture of Cd and 238U (2.5 μM + 12.5 μM) for 24 h. As expected both metals were taken up into the plants with Cd being more readily transported to the leaves than U. The root-to-shoot ratio was approximately 1,3 for Cd whereas it was above 3500 for U. For both U and Cd the root-to-shoot ratio was not affected under multiple exposure conditions used here. Notwithstanding the limited exposure time, leave and root fresh weight was already decreasing in U-treated plants. For Cd or Cd+U a decreasing but at this point not significant trend was visible. As U concentrations in the leaves were very low the decrease in leaf fresh weight is possibly due to signaling from the roots rather than a direct toxicity of U. The oxidative stress response was investigated by measuring the transcription of selected pro- and anti-oxidative genes, anti-oxidative enzyme capacities and concentration and redox status of major anti-oxidative metabolites. Cd strongly up-regulated lipoxygenase (LOX1) and NADPH-oxidases (RBOHD or C in roots and leaves, respectively) whereas this was not found in the U-treated plants. For the anti-oxidative response related enzymes both Cd and U induced a decrease in Cu/Zn superoxide dismutases (CSD1,2) and a concomitant increase in Fe-SOD (FSD1). However the increase

  12. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Hendrix, S.; Keunen, E.; Cuypers, A. [Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, 3590 Diepenbeek (Belgium)

    2014-07-01

    Nuclear energy production or NORM industry released low amounts of radioactive substances together with non-radioactive substances (e.g., heavy metals, organic chemicals) to the environment. As sessile organisms, plants are commonly exposed to a number of adverse conditions and therefore it is interesting to study the stress responses of plants induced by the single stressors as well as in a in a multi-pollution set-up. The aim of this study was to understand and predict fast induced oxidative stress responses in plants exposed to Cd and U or a combination of both stressors. Arabidopsis thaliana plants grown hydroponically for 18 days were exposed to a Cd (5 μM) or {sup 238}U (25 μM) or an equi-toxic mixture of Cd and {sup 238}U (2.5 μM + 12.5 μM) for 24 h. As expected both metals were taken up into the plants with Cd being more readily transported to the leaves than U. The root-to-shoot ratio was approximately 1,3 for Cd whereas it was above 3500 for U. For both U and Cd the root-to-shoot ratio was not affected under multiple exposure conditions used here. Notwithstanding the limited exposure time, leave and root fresh weight was already decreasing in U-treated plants. For Cd or Cd+U a decreasing but at this point not significant trend was visible. As U concentrations in the leaves were very low the decrease in leaf fresh weight is possibly due to signaling from the roots rather than a direct toxicity of U. The oxidative stress response was investigated by measuring the transcription of selected pro- and anti-oxidative genes, anti-oxidative enzyme capacities and concentration and redox status of major anti-oxidative metabolites. Cd strongly up-regulated lipoxygenase (LOX1) and NADPH-oxidases (RBOHD or C in roots and leaves, respectively) whereas this was not found in the U-treated plants. For the anti-oxidative response related enzymes both Cd and U induced a decrease in Cu/Zn superoxide dismutases (CSD1,2) and a concomitant increase in Fe-SOD (FSD1). However

  13. The importance of the methanol content in the precursor solution, on the physical properties of cadmium oxide thin films prepared by the sol-gel method

    International Nuclear Information System (INIS)

    Research highlights: → This work is important due to the recent interest for obtaining CdO films by simple and economical techniques. The sol-gel technique shows these characteristics. However, CdO films with higher thicknesses could be obtained starting from a high number of coats. In this work, the importance of the methanol content in the precursor solution on the physical properties of cadmium oxide thin films prepared by the sol-gel method was studied. For the first time, higher thicknesses of CdO films were obtained with a lower number of coats, changing the methanol content in the precursor solution. The films show good electrical, optical, structural properties for their use as transparent conductive films in solar cells. - Abstract: Undoped and fluorine doped cadmium oxide films were obtained by the sol-gel technique, starting from a simple precursor solution constituted of: cadmium acetate, methanol, glycerol and triethylamine and only for doped samples, ammonium fluoride as the fluoride source. Due to the methanol content used is higher with respect to the other reagents, variations in this parameter affect the viscosity and gelation time of the precursor solution, giving as result changes in the thickness. The importance of the methanol content in the growing solution on the structural, morphological, optical and electrical properties of the films is reported. Higher thickness was obtained for lower methanol content, in the range 33-46 mol, in the growing solution. Largest growing rate was obtained when the methanol content in the precursor solution was 33 mol. The films showed good characteristics for their use as transparent conductive films in solar cells.

  14. Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-04-01

    Full Text Available Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd. The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium but were well expressed in the presence of iron (+Fe/+Cd. Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  15. Myoglobin-induced lipid oxidation : A review

    DEFF Research Database (Denmark)

    Baron, Caroline; Andersen, H.J.

    2002-01-01

    An overview of myoglobin-initiated lipid oxidation in simple model systems, muscle, and muscle-based foods is presented. The potential role of myoglobin spin and redox states in initiating lipid oxidation is reviewed. Proposed mechanisms for myoglobin- initiated lipid oxidation in muscle tissue (p...

  16. Potential role of punicalagin against oxidative stress induced testicular damage

    Directory of Open Access Journals (Sweden)

    Faiza Rao

    2016-01-01

    Full Text Available Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98% on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  17. Biochemical characterization of N-methyl N' -nitro-N-nitrosoguanidine-induced cadmium resistant mutants of Aspergillus niger

    Indian Academy of Sciences (India)

    Samar Kumar Pal; Tapan Kumar Das

    2005-12-01

    Two cadmium resistant mutants (Cd1 and Cd2) of Aspergillus niger, among the six isolated by mutagenization with N-methyl N′-nitro-N-nitrosoguanidine (MNNG) at pH 6.4 were selected for the study. Analysis of lipid composition of the mutants and the wildtype indicated that total lipid as well as individual lipids of the cadmium resistant mutants were changed as compared with that of the wildtype. The increased activities of metal-lothionein and reduced activities of D-xylose isomerase and L-phenylalanine ammonia lyase in cell free extract of the cadmium resistant mutants suggested that mutants could allow high concentration of cadmium salt as compared with that of the wildtype. The respiratory activity and intracellular as well as extracellular Cd2+ concentration of the mutants reflected the high tolerance of the Cd mutants to cadmium ion.

  18. Cadmium chloride strongly enhances cyclophosphamide-induced chromosome aberrations in mouse bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Pandurangarao, V.L.; Blazina, S.; Bherje, R. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-10-01

    Earlier we reported that a single 5 mg cadmium chloride (CdCl{sub 2})/kg ip dose enhanced chromosome aberrations (ca) with 50 mg/kg cyclophosphamide (CP) in mouse bone marrow cells. In this report groups of 4 mice were injected ip with saline, 0.31, 0.62, 1.25, 2.5 or 5.0 mg/kg CdCl{sub 2}, followed by saline injections at 24 h. Other mice similarly uninjected at 0 h were injected with 50 mg/kg CP at 24 h. All the mice were injected ip with 4 mg colchicine/kg at 44 h. At 48 h the bone marrow cells were processed for chromosome spreads. After dissection, visual examination revealed obvious internal hemorrhaging of the testes at 1.25 CdCl{sub 2} mg/kg and higher doses. This effect was not further increased by CP treatment. The lowest ca enhancing dose of CdCl{sub 2} on CP was 0.625 mg/kg. Our hypothesis is that Cd replaces zinc presents in numerous DNA repair enzymes and proteins resulting in diminished repair. Subsequently, the excess of unrepaired DNA damage is seen as chromatid breaks, deletions, fragments and exchanges.

  19. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures.

    Science.gov (United States)

    Lopes Júnior, Cícero Alves; Barbosa, Herbert de Sousa; Moretto Galazzi, Rodrigo; Ferreira Koolen, Hector Henrique; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2015-09-01

    The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characterized using nESI-LC-MS/MS. The protein content decreases by approximately 41% in plants treated with 700mg Cd compared with control plants. By comparing all groups of plants evaluated in this study (Control vs. Cd-lower, Control vs. Cd-higher and Cd-lower vs. Cd-higher), 39 proteins are found differential and 18 accurately identified; the control vs. Cd-higher treatment is that presenting the most differential proteins. From identified proteins, those involved in energy and disease/defense (including stress), are the ribulose bisphosphate carboxylase large chain, transketolase, and heat shock proteins are the most differential abundant proteins. Thus, at the present study, photosynthesis is the main process affected by Cd in sunflowers, although these plants are highly tolerant to Cd. PMID:26004357

  20. Influence of static magnetic field on cadmium toxicity: study of oxidative stress and DNA damage in pregnant rat tissues.

    Science.gov (United States)

    Chater, Sihem; Douki, Thierry; Favier, Alain; Garrel, Cathrine; Sakly, Mohsen; Abdelmelek, Hafedh

    2008-01-01

    In our environment, we have numerous chances to be exposed to not only static magnetic fields (SMFs) but also many chemicals containing mutagens. Therefore, the aim of this study was to investigate the effects of co-exposure to SMF and cadmium (Cd) on the antioxidant enzymes activity and DNA damage in pregnant rat tissues. Pregnant rats were treated with cadmium (CdCl(2), 3.0 mg/Kg body weight) or exposed to SMF (128 mT/h/day) and treated with cadmium chlorides (3.0 mg/kg, body weight) for 13 consecutive days as from the 6th to 19th day of gestation. Cd treatment increased malondialdehyde (MDA) and 8-oxodGuo levels in kidney of pregnant rats. However, the activity of superoxide dismutase (SOD) and glutathione level were decreased in kidney. Interestingly, the combined effects of SMF and Cd have no effects on activities of antioxidant in both tissues compared to cadmium treated group. However, the association between SMF and Cd decreased plasma MDA concentration. The same treatment failed to alter 8-oxodGuo concentration. Sub-acute Cd treatment altered antioxidant enzymes and DNA in kidney of pregnant rats. The results suggest that a homeostatic defence mechanism was activated when SMF was associated to Cd in pregnant rats. PMID:19037788

  1. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets : preparation, characterization, and optical properties

    NARCIS (Netherlands)

    Pham, Tuan Anh; Choi, Byung Choon; Jeong, Yeon Tae

    2010-01-01

    A facile approach for the preparation of a novel hybrid material containing graphene and an inorganic semiconducting material, cadmium sulfide quantum dots (CdS QDs), is demonstrated for the first time. First, amino-functionalized CdS QDs were prepared by modifications of the kinetic trapping method

  2. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    International Nuclear Information System (INIS)

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells

  3. Changes of porcine growth hormone and pituitary nitrogen monoxide production as a response to cadmium toxicity.

    Science.gov (United States)

    Han, Xin-Yan; Huang, Qi-Chun; Liu, Bo-Jing; Xu, Zi-Rong; Wang, Yi-Zhen

    2007-11-01

    The present study was designed to investigate the effects of various cadmium concentrations on porcine growth hormone (GH) secretion in serum and cultured pituitary cells and to explore the possible mechanisms of cadmium toxicity. In feeding trial, 192 barrows (Duroc x Landrace x Yorkshire), with similar initial body weights, were randomly divided into four different treatment groups with three replicates for each treatment. The diets were supplemented for 83 days with 0, 0.5, 5.0, and 10.0 mg/kg cadmium (as CdCl2). For the cell culture trial, dispersed pituitary cells were incubated with graded doses of cadmium (0, 5, 10, 15, or 20 microM) for 24 h. Pigs treated with 10 mg/kg cadmium had significantly decreased serum GH content. 3-(4,5-dimethyl-2-yl)-2,5-diphenyl tetrazolium bromide assay showed that Cd toxicity was dose-dependent. Cell viability was reduced to 50% at 15 microM concentration. Administration of cadmium significantly reduced GH secretion, whereas cellular NO content and inducible nitric oxide synthase activity increased to a certain extent. These findings suggest that the decrease of GH might be related to NO production and to a change of NO signal pathway caused by cadmium. PMID:17916936

  4. Molecular Cloning, Characterization, and Expression of a Catalase Gene in the Japanese Scallop Mizuhopecten yessoensis Induced in the Presence of Cadmium

    Science.gov (United States)

    Gao, Jialong; Ishizaki, Shoichiro; Nagashima, Yuji

    2016-03-01

    Cadmium (Cd) is known to influence the oxidative status of marine organisms and can induce the formation of reactive oxygen species (ROS). Catalase (CAT) is one of the important enzymes involved in scavenging high levels of ROS. In present study, we cloned CAT cDNA and investigated the response of this enzyme at the transcriptional level in the Japanese scallop Mizuhopecten yessoensis exposed to Cd. The full-length CAT cDNA (MyCAT) of 1,870 nucleotides including a 57 bp 5'-UTR, a coding sequence of 1,500 bp and a 313 bp 3'-UTR were identified from the scallop. The deduced amino acid sequence of MyCAT corresponds to 499 amino acids with predicted molecular weight of 56.48 kDa and contains highly conserved motifs of the proximal heme-binding site RLFSYSTH, proximal active signature FNRERIPERVVHAKGGG and three catalytic amino acid residues His72, Asn145, and Tyr355. Its significant homology to CATs from multiple alignments revealed that MyCAT had a high identity with CATs from other mollusks. CAT mRNA expression analysis revealed that expression level was highest in the digestive gland ( p < 0.01) but weak in muscle. Following exposure to 200 and 400 µg/l of Cd, a high amount of Cd was found to have accumulated in the digestive gland and CAT mRNA expression had significantly increased in this organ among 7-day exposed scallops ( p < 0.001). The result demonstrated that antioxidant enzymes such as CAT play important roles in counteracting Cd stress in M. yessoensis.

  5. Biomonitoring of the adverse effects induced by the chronic exposure to lead and cadmium on kidney function: Usefulness of alpha-glutathione S-transferase

    International Nuclear Information System (INIS)

    A successful prevention of renal diseases induced by occupational exposure to lead (Pb) and/or cadmium (Cd) largely relies on the capability to detect nephrotoxic effects at a stage when they are still reversible or at least not yet compromising renal function. Hence, the aim of this cross-sectional study was to evaluate the usefulness of a set of early biological markers of oxidative stress or nephrotoxicity for the biomonitoring of workers occupationally exposed to Pb and/or Cd in a non-ferrous metal smelter, and gender, age, socioeconomic status, smoking habits, and drug use-matched control individuals. In exposed subjects, mean levels of Pb in blood and urine were also 387.1 ± 99.1 μg Pb/L (1.868 ± 0.478 μmol Pb/L) and 217.7 ± 117.7 μg Pb/g creatinine (1.051 ± 0.568 μmol Pb/g creatinine), and mean levels of Cd in blood and urine were 3.26 ± 2.11 μg Cd/L (0.029 ± 0.019 μmol Cd/L) and 2.51 ± 1.89 μg Cd/g creatinine (0.022 ± 0.017 μmol Cd/g creatinine), suggesting thereby relatively low occupational exposure levels. Statistically significant variations in zinc protoporphyrin, malondialdehyde, retinol binding protein, alpha-glutathione S-transferase, and urinary protein levels were reported between the two groups, and were closely correlated with Pb and/or Cd exposure levels. Variations in αGST levels were closely associated with Pb exposure. Taken together, these results suggest the use of alpha-glutathione S-transferase excretion in urine as a hallmark of early changes in the proximal tubular integrity

  6. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    International Nuclear Information System (INIS)

    Highlights: ► Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. ► Oxidative stress induces complete mitochondrial fragmentation in Δyfh1 cells. ► Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. ► Inhibition of mitochondrial fission in Δyfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron–sulfur cluster assembly. Yeast cells lacking frataxin (Δyfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in Δyfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  7. Cadmium Induced Changes of Proline in Two Ecotypes of Thlaspi Caerulescens

    Directory of Open Access Journals (Sweden)

    Zemanová V.

    2013-04-01

    Full Text Available A Thlaspi caerulescens (J. & C. PRESL was used to study the effect of cadmium on the content of free amino acids and ability accumulation of Cd in ecotypes of this plant species. In pot experiment two ecotypes T. caerulescens were used: Ganges ecotype from France and Mežica ecotype from Slovenia. The plants were grown in soil (chernozem – Suchdol spiked with NPK and three different concentration of Cd: 30, 60 and 90 mg/kg. The content of Cd was measured in the above-ground biomass and roots using ICP-OES. Accumulation of Cd was higher in the Mežica ecotype in contrast to the low Cd-accumulating the Ganges ecotype. Analyses of free amino acids contents were measured by GC-MS method. The content of free amino acids in above-ground biomass of the Mežica ecotype declined progressively with increasing concentrations of Cd. Opposite trend was observed in roots of this ecotype. The increase of free amino acids contents in above-ground biomass and roots of the Ganges ecotype were detected. The results of specific amino acids free proline showed increased content in plant biomass with increasing Cd contamination of soil. A statistically significant increase was observed between control plants (0 mg/kg Cd and variant Cd3 (90 mg/kg Cd for both ecotypes. The statistically significant decrease of free proline was observed in the Mežica ecotype roots. Opposite trend was observed in roots of Ganges ecotype - increasing trend of free proline content. These results indicate a correlation between content of Cd and content of free proline in different parts of the plant. We can speculate that the mechanism of Cd hyperaccumulation and metabolism of free proline are not identical in ecotypes of this species.

  8. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    International Nuclear Information System (INIS)

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 μM) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 μM) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic binding

  9. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.K.; Sun, Yuqiang; Dawood, M. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Hayat, Y. [Institute of Bioinformatics, Zhejiang University, Hangzhou 310029 (China); Variath, M.T.; Wu Yuxiang [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Raziuddin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Plant Breeding and Genetics Department, NWFP Agricultural University Peshawar, Peshawar (Pakistan); Mishkat, Ullah [Zoological Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad 44000 (Pakistan); Salahuddin [District Agriculture Extension Offices, Bannu Road, Dera Ismail Khan (NWFP) (Pakistan); Najeeb, Ullah [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Zhu, Shuijin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)], E-mail: shjzhu@zju.edu.cn

    2009-01-15

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 {mu}M) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 {mu}M) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic

  10. Effects of the rate of anodic oxidation of the cadmium electrode and the type of separator material on the concentration of cadmium hydroxy complexes in the interelectrode space of alkali batteries

    International Nuclear Information System (INIS)

    Concentration of cadmium hydroxy complexes in the interelectrode space of the alkaline battery mock-up behind separator materials during the anodic process on the cadmium electrode have been defined by the chronoamperometry method on the solid microelectrode. It has been found, that the supersaturation of cadmium hydroxy complexes in the interelectrode space has sharply decreased in comparison with separators of the regular structure under using of inorganic separators based on asbestos

  11. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  12. Magnesium Oxide Induced Metabolic Alkalosis in Cattle

    OpenAIRE

    Ogilvie, T. H.; Butler, D G; Gartley, C J; Dohoo, I R

    1983-01-01

    A study was designed to compare the metabolic alkalosis produced in cattle from the use of an antacid (magnesium oxide) and a saline cathartic (magnesium sulphate). Six, mature, normal cattle were treated orally with a magnesium oxide (MgO) product and one week later given a comparable cathartic dose of magnesium sulphate (MgSO4).

  13. Quercitrin protects skin from UVB-induced oxidative damage

    International Nuclear Information System (INIS)

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries

  14. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  15. Insulin Expression in Rats Exposed to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives To investigate the effects of cadmium exposure on insulin expression in rats. Methods Eighteen adult SD assessed. The levels of cadmium and zinc in pancreas, blood and urine glucose, serum insulin and urine NAG (N-acyetyl-β-glucosaminidase) were determined. The gene expressions of metallothionein (MT) and insulin were also measured,and the oral glucose tolerance tests (OGTT) were carried out. Results The contents of cadmium in pancreas in cadmium-treated rats were higher than that in the control group, which was associated with slight increase of zinc in pancreas.not change significantly after cadmium administration, and the UNAG had no change in Cd-treated group. The gene expression the change of the expression of insulin, MT-Ⅰ and MT-Ⅱ genes. Cadmium can influence the biosynthesis of insulin, but does not induce the release of insulin. The dysfunction of pancreas occurs earlier than that of kidney after administration of cadmium.

  16. Structure and properties of YBa2Cu3O7-δ superconductor doped with bulk cadmium oxide

    Directory of Open Access Journals (Sweden)

    A Echresh

    2010-09-01

    Full Text Available In this paper, the Y1-xCdxBa2Cu3O7-δ superconductor with x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 are prepared using the solid state method and the structure, electrical resistance, critical current density and critical temperature of it, have been studied. The results show that these doping do not affect so much on the structure and lattice parameters. The electrical resistance of samples increased with doping. A little amount of doping cadmium improve critical current density such that the sample x=0.1 has a maximum critical current density among the samples. The critical temperature with doping cadmium up to x=0.2 has little fluctuation and its variation can be ignored, but by increasing up to x=0.5 the critical temperature decreases gradually.

  17. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  18. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  19. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.

    Science.gov (United States)

    Dai, Ling-Peng; Dong, Xin-Jiao; Ma, Hai-Hu

    2012-04-01

    Anthocyanins inducibly synthesized by Cd treatment showed high antioxidant activity and might be involved in internal detoxification mechanisms of Azolla imbricata against Cd toxicity. In order to understand anthocyanin biosynthesis mechanism during Cd stress, the cDNAs encoding chalcone synthase (CHS) and dihydroflavonol reductase (DFR), two key enzymes in the anthocyanin synthesis pathway, were isolated from A. imbricata. Deduced amino acid sequences of the cDNAs showed high homology to the sequences from other plants. Expression of AiDFR, and to a lesser extent AiCHS, was significantly induced in Cd treatment plant in comparison with the control. CHS and DFR enzymatic activities showed similar pattern changes with these genes expression during Cd stress. These results strongly indicate that Cd induced anthocyanin accumulation is probably mediated by up-regulation of structural genes including CHS and DFR, which might further increase the activities of enzymes encoded by these structural genes that control the anthocyanin biosynthetic steps. PMID:22225708

  20. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    Science.gov (United States)

    Kumar, Rajesh; Sharma, Ashwani; Parmar, R.; Dahiya, S.; Kishor, N.

    2016-05-01

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy(TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results are quite in accordance with XRD results.

  1. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    International Nuclear Information System (INIS)

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  2. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  3. Hypochlorite-induced oxidation of thiols

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, C L

    2000-01-01

    -molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion......-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative...... for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation...

  4. In vivo study of cadmium-induced chromsomal changes in somatic and germinal tissue of C57BI/6J male mice

    Energy Technology Data Exchange (ETDEWEB)

    Felten, T.L.

    1978-08-01

    The objectives of this study were to determine if cadmium would induce chromosomal aberration, to determine if simultaneous aberration events occurred in somatic and germinal tissue, and to determine an estimated minimum exposure time required for significant chromosomal change. Bone marrow chromosome aberrations, specifically breaks and deletions, were found to increase after acute cadmium exposure both at MTD and normal exposure levels. Subacute exposure also resulted in increased occurrences of breaks, deletions, and despiralization. With longer in vivo exposure to cadmium, bone marrow cells continued to show increased numbers of breaks, as well as a physiological effect, despiralization, and more severe break-related aberrations; rearrangements and pulverization. In spermatocytes of the same animals, gaps, breaks, rearrangements, stickiness, and autosomal univalents were the principle aberrations. Correlation of bone marrow and spermatocyte aberrations indicated that in treated mice significant relationships existed for gaps, breaks, rearrangements, and stickiness in the tissues. An estimate of the minimum exposure time to produce chromosomal damage, based on the acute exposure experiment, would be 6 hours for bone marrow. This was confirmed by the exposure duration experiment. Spermatocytes also had chromosomal damage within 24 hours.

  5. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  6. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver

    International Nuclear Information System (INIS)

    Acute cadmium intoxication affects glutathione S-transferase (GST) in rat liver. It has been found that 24 h after i.p. cadmium administration to rats, at a dose of 2.5 mg CdCl2 kg-1 body weight, the activity of this enzyme in liver cytosol increased by 40%. A less stimulatory effect persisted till 48 h and thereafter the enzyme activity normalized. Since, GST isoenzymes belong to different classes in mammalian tissues, we used quantitative immunoassays to verify which family of GST isoenzymes is influenced by this intoxication. Only alpha-class glutathione S-transferase (α-GST) proteins were detected in rat liver cytosol and their level increased by about 25%, 24 h after cadmium treatment. No pi-GST isoforms were found in liver cytosol from either normal or cadmium-treated rats. Co-administration of actinomycin D with cadmium normalized both the protein level and the activity of α-GST, suggesting that some effect occurs on enzyme transcription of these isoenzymes by this metal. On the other hand, it seems unlikely that the stimulatory effect is due to the high level of peroxides caused by lipid peroxidation, since Vitamin E administration strongly reduced the TBARS level, but did not cause any GST activity decrease

  7. Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium

    International Nuclear Information System (INIS)

    The induction of mutations in mammalian cells exposed to cadmium has been associated with the oxidative stress triggered by the metal. There is increasing evidence that the mutagenic potential of Cd is not restricted to the induction of DNA lesions. Cd has been shown to inactivate several DNA repair enzymes. Here we show that exposure of human cells to sub-lethal concentrations of Cd leads to a time- and concentration-dependent decrease in hOGG1 activity, the major DNA glycosylase activity responsible for the initiation of the base excision repair (BER) of 8-oxoguanine, an abundant and mutagenic form of oxidized guanine. Although there is a slight effect on the level of hOGG1 transcripts, we show that the inhibition of the 8-oxoguanine DNA glycosylase activity is mainly associated with an oxidation of the hOGG1 protein and its disappearance from the soluble fraction of total cell extracts. Confocal microscopy analyses show that in cells exposed to Cd hOGG1-GFP is recruited to discrete structures in the cytoplasm. These structures were identified as stress granules. Removal of Cd from the medium allows the recovery of the DNA glycosylase activity and the presence of hOGG1 in a soluble form. In contrast to hOGG1, we show here that exposure to Cd does not affect the activity of the second enzyme of the pathway, the major AP endonuclease APE1.

  8. The Protective Roles of Zinc and Magnesium in Cadmium-Induced Renal Toxicity in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Nasim Babaknejad

    2014-12-01

    Full Text Available Background: Cadmium (Cd is a heavy metal that has widespread use. It enters the food chain in different ways, including soil and water. Cadmium can cause dysfunction of different body organs. Zinc (Zn and magnesium (Mg supplementation can have protective effects against cadmium toxicity due to their antagonistic and antioxidants properties. This study examines the influence of supplemental Zn and Mg on Cd renal toxicity. Methods: Young male Wistar rats were divided into six groups of five. The Cd group received 1 mg Cd/kg and the control group received 0.5 mg/kg normal saline (i.p.. The other four groups were administered 1 mg/kg Cd+0.5 mg/kg Zn, 1 mg/kg Cd+1.5 mg/kg Zn, 1 mg/kg Cd+ 0.5 mg/kg Mg, and 1 mg/kg Cd+ 1.5 mg/kg Mg (i.p. for 21 days. Then, serum sodium, potassium, urea, creatinine, and protein levels were measured. Results: The results indicated that creatinine and protein levels decreased while urea, sodium, and potassium levels increased as a result of Cd exposure. Co-administered Cd and Zn and Mg decreased urea and increased sodium serum level in comparison to the cadmium group. Treatment by Mg, contrary to co-administered Cd and Zn, reduced serum protein level compared to the cadmium group. Compared to the cadmium treated group, Zn and Mg treatment enhanced serum creatinine level and reduced serum potassium level. Conclusion: The findings seem to suggest that zinc and magnesium compounds, due to their antagonistic and antioxidant activities, can protect Cd renal toxic effects in a dose-dependent manner.

  9. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes

    International Nuclear Information System (INIS)

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H2O2) and superoxide anion (O2·-) in leaves of Phaseolus aureus and Vicia sativa were investigated. Cadmium at 100 μM significantly increased the production of O2·- and H2O2, as well as the activities of plasma membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the symplastic and apoplastic activities of superoxide dismutase and ascorbate peroxidase in the leaves of both species. Apoplastic guaiacol peroxidase activity was significantly induced in the leaves of both species, particularly in P. aureus exposed to 100 μM Cd. Experiments with diphenylene iodonium as an inhibitor of NADPH oxidase and NaN3 as an inhibitor of peroxidase showed that the majority of Cd-induced reactive oxygen species production in the leaves of both species may involve plasma membrane-bound NADPH oxidase and apoplastic peroxidase. Compared to V. sativa, increases in Cd-induced production of O2·- and H2O2 and activities of NADPH oxidase and apoplastic peroxidase were more pronounced in P. aureus. In contrast, V. sativa had higher leaf symplastic superoxide dismutase and ascorbate peroxidase activities than P. aureus. The results indicated that V. sativa was more tolerant to Cd than P. aureus.

  10. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fenqin [Department of Life Science and Engineering, Hexi University, Zhangye 734000 (China); Zhang Hongxiao; Wang Guiping; Xu Langlai [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2009-08-30

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and superoxide anion (O{sub 2}{center_dot}{sup -}) in leaves of Phaseolus aureus and Vicia sativa were investigated. Cadmium at 100 {mu}M significantly increased the production of O{sub 2}{center_dot}{sup -} and H{sub 2}O{sub 2}, as well as the activities of plasma membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the symplastic and apoplastic activities of superoxide dismutase and ascorbate peroxidase in the leaves of both species. Apoplastic guaiacol peroxidase activity was significantly induced in the leaves of both species, particularly in P. aureus exposed to 100 {mu}M Cd. Experiments with diphenylene iodonium as an inhibitor of NADPH oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the majority of Cd-induced reactive oxygen species production in the leaves of both species may involve plasma membrane-bound NADPH oxidase and apoplastic peroxidase. Compared to V. sativa, increases in Cd-induced production of O{sub 2}{center_dot}{sup -} and H{sub 2}O{sub 2} and activities of NADPH oxidase and apoplastic peroxidase were more pronounced in P. aureus. In contrast, V. sativa had higher leaf symplastic superoxide dismutase and ascorbate peroxidase activities than P. aureus. The results indicated that V. sativa was more tolerant to Cd than P. aureus.

  11. OGG1 is essential in oxidative stress induced DNA demethylation.

    Science.gov (United States)

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes. PMID:27251462

  12. Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles

    International Nuclear Information System (INIS)

    The oxidation and photo-induced oxidation of glucose at a copper-dispersed polyaniline film was studied in an alkaline hydroxide solution. It was found that the copper-dispersed polyaniline electrode was capable of oxidizing glucose at potentials between 0.2 and 0.75 V/(Ag vertical bar AgCl), with the rate of oxidation being higher than that observed at a bulk copper electrode. On irradiation of the composite with polychromatic UV light, a further increase in the rate of the glucose oxidation reaction was observed. Formate was identified as the main product of the glucose oxidation reaction under both light and dark conditions using 1H NMR spectrometry. This suggests that illumination does not alter significantly the reaction pathway

  13. Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Sinead T.; Breslin, Carmel B

    2004-10-01

    The oxidation and photo-induced oxidation of glucose at a copper-dispersed polyaniline film was studied in an alkaline hydroxide solution. It was found that the copper-dispersed polyaniline electrode was capable of oxidizing glucose at potentials between 0.2 and 0.75 V/(Ag vertical bar AgCl), with the rate of oxidation being higher than that observed at a bulk copper electrode. On irradiation of the composite with polychromatic UV light, a further increase in the rate of the glucose oxidation reaction was observed. Formate was identified as the main product of the glucose oxidation reaction under both light and dark conditions using {sup 1}H NMR spectrometry. This suggests that illumination does not alter significantly the reaction pathway.

  14. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-01-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC–Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC–Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2. PMID:25900618

  15. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis.

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-07-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC-Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2. PMID:25900618

  16. Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2015-01-01

    Full Text Available To understand the contribution of adipose tissue fatty acid oxidation to whole-body metabolism, we generated mice with an adipose-specific knockout of carnitine palmitoyltransferase 2 (CPT2A−/−, an obligate step in mitochondrial long-chain fatty acid oxidation. CPT2A−/− mice became hypothermic after an acute cold challenge, and CPT2A−/− brown adipose tissue (BAT failed to upregulate thermogenic genes in response to agonist-induced stimulation. The adipose-specific loss of CPT2 resulted in diet-dependent changes in adiposity but did not result in changes in body weight on low- or high-fat diets. Additionally, CPT2A−/− mice had suppressed high-fat diet-induced oxidative stress and inflammation in visceral white adipose tissue (WAT; however, high-fat diet-induced glucose intolerance was not improved. These data show that fatty acid oxidation is required for cold-induced thermogenesis in BAT and high-fat diet-induced oxidative stress and inflammation in WAT.

  17. Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells.

    Science.gov (United States)

    Li, Min; Pi, Huifeng; Yang, Zhiqi; Reiter, Russel J; Xu, Shangcheng; Chen, Xiaowei; Chen, Chunhai; Zhang, Lei; Yang, Min; Li, Yuming; Guo, Pan; Li, Gaoming; Tu, Manyu; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Yu, Zhengping; Zhou, Zhou

    2016-10-01

    Cadmium (Cd), a highly ubiquitous heavy metal, induces neurotoxicity. Melatonin, a major secretory product of the pineal gland, protects against Cd-induced neurotoxicity. However, the mechanism that accounts for this protection remains to be elucidated. Herein, we exposed mouse neuroblastoma cells (Neuro-2a cells) to different concentrations of cadmium chloride (CdCl2 ) (12.5, 25, and 50 μ mol L(-1) ) for 24 hours. We showed that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function, subsequently leading to nerve cell death. In addition, Cd decreases the level of transcription factor EB (TFEB) but induces the nuclear translocation of TFEB, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Moreover, compared to the 50-μ mol L(-1) Cd group, administration of 1 μ mol L(-1) melatonin increased "TFEB-responsive genes" (Pfusion (0.05±0.00 vs 0.21±0.01, Pnuclear translocation (2.81±0.08 vs 3.82±0.05, P<.05). Tfeb siRNA blocked the melatonin-mediated elevation in autophagy-lysosome machinery in Cd-induced neurotoxicity (P<.01). Taken together, these results uncover a potent role for TFEB-mediated autophagy in the pathogenesis of Cd-induced neurotoxicity, suggesting that control of the autophagic pathway by melatonin might provide an important clue for exploring potential targets for novel therapeutics of Cd-induced neurotoxicity. PMID:27396692

  18. Prophylactic role of Aloe vera against radiation and cadmium induced histological alterations in the kidney of Swiss albino mice

    International Nuclear Information System (INIS)

    Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure of radiation. Thus, development of novel and effective approaches using non toxic radioprotectors is of considerable interest for not only in the protection of normal tissue during radio therapy of tumors but also for defence (nuclear wars), nuclear industries, radiation accidents, space flights etc. Adult male Swiss albino mice were exposed to 5.0 Gy gamma radiations in the presence or absence of the Aloe vera. For this purpose 6 to 8 week old male mice were divided into seven groups; group I (sham-irradiated), group II (cadmium chloride), group III (irradiated with 5Gy. Gamma rays), group IV (radiation and cadmium chloride), group V (cadmium chloride and Aloe vera), group VI (radiation and Aloe vera), group VII (radiation, cadmium chloride and Aloe vera). Animals from all the above groups were autopsied at 1, 2, 4, 7, 14 and 28 days post treatment intervals. For histopathological studies kidney was taken out and it's pieces were fixed in Bouins fixative for 24 hours. The tissue was washed in clean water to remove excess of the fixative, dehydrated in graded series of alcohol, cleared in xylene and embedded in paraffin wax. Sections were cut at 5 μm and stained in Harris haematoxyline and alcoholic eosine. In the present experiment histopathological changes were found in the kidney of Swiss albino mice. Severe changes seen in the renal architecture after exposure of 5 Gy of gamma rays were: blurred renal architecture, intracellular oedema, damaged tubules, cytoplasmic degranulation, vacuolation and pycnotic nuclei in the cortical and medullary part. The changes were more marked on day 7, but on day 14 the signs of recovery were observed and on day 28 comparatively better renal architecture was observed. In cadmium chloride treated animals the changes observed were: cytoplasmic degranulation, vacuolation, crenated and pycnotic nuclei. The

  19. Cadmium Toxicity to Ringed Seals (Phoca hispida)

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, R.; Riget, F. F.;

    Cadmium concentrations in kidneys from ringed seals (Phoca hispida) from North West Greenland (Qaanaaq) are high. Concentrations range at level known to induce renal toxic effects (mainly tubulopathy) and demineralisation (osteopenia) of the skeletal system (Fanconi's Syndrome) in humans as well...... the absence of toxic effects of cadmium in ringed seal...

  20. Radiation induced oxidation of liquid alkanes as a polymer model

    International Nuclear Information System (INIS)

    Radiation induced oxidation of liquid n-hexadecane (n-C16H34) and squalane (C30H62) as a polymer model has been investigated by the measurements of the gas evolution and O2 uptake, and analyses of the oxidation products. Low O2 uptake, [G(-O2) ∼ 6.0] in liquid alkanes, indicates that the oxidation reaction does not exhibit chain kinetics, which is a big contrast to the process observed in solid, G(-O2) >> 10. H2 is the main gas product. More than 90% of the consumed O2 are converted into the oxidation products in liquid phase, mainly carboxylic acids, which is also a big contrast to the results of the radiolysis of liquid cyclohexane in the presence of O2 and thermal oxidation of hexadecane at elevated temperatures, where ketones and alcohols are major products at the initial stage. In the presence of aromatic additives, energy and charge transfer to the additives taking place despite the presence of O2 reduce the H2 evolution and the acid formation in parallel. Although hydroaromatic compounds act as an energy and charge scavenger, they are selectively oxidized through the donation of hydrogen in cyclic alkyl part attached to the phenyl ring, leading to large O2 uptake and corresponding ketone formation. From the comparison of the G-values of the O2 uptake, it was found that the oxidation reactions of liquid alkanes reflect well the oxidation of amorphous part in polymers. (author)

  1. Hydroxyl radical induced oxidation of nitrobenzene

    International Nuclear Information System (INIS)

    The hydroxylation of nitrobenzene by radiolytic techniques was examined by high-performance liquid chromatographic techniques. Owing to improvements in the method of analysis it was possible to measure phenol in air-saturated nitrobenzene solutions irradiated to low doses. The initial yields for the consumption of nitrobenzene and the formation of phenol and isomeric nitrophenols in N2O- and air-saturated systems were measured in order to establish the primary reactions of hydroxyl radicals with nitrobenzene. The initial yields for the consumption of nitrobenzene were 3.7 and 2.6 and that for total phenol were 2.3 and 2.4 in N2O- and air-saturated systems, respectively, in samples irradiated at low dose rates (0.8 krad g-1 min-1). Nearly 80 percent of the hydroxynitrocyclohexadienyl radicals disproportionate to produce isomeric nitrophenols and nitrobenzene in N2O-saturated systems without added oxidants upon irradiation at low dose rates. For a given dose the distribution of nitrophenols was dependent upon the dose rate. Observed dose rate dependence of nitrophenol production and dose rate independence of nitrobenzene consumption indicate that reactions other than disporportional and dimerization play a significant role at high dose reates. The examination of the effect of added ferricyanide ion in N2O-saturated systems showed that reliable production measurements of o- and p-nitrophenol cannot be made because of complicating secondary reactions. The initial yield for the production of m-nitrophenol was higher by a factor of greater than 3 in the presence than in the absence of ferricyanide ion. This result indicates that in the cross disproportionation reaction of m- and o- or p-hydroxynitrocyclohexadienyl radicals the meta isomer acts as an oxidizing agent and ortho and para isomers act as reducing agents. (U.S.)

  2. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  3. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  4. Cadmium, lead and silver adsorption in hydrous niobium oxide(V) prepared by precipitation in homogeneous solution method; Adsorcao de chumbo, cadmio e prata em oxido de niobio(V) hidratado preparado pelo metodo da precipitacao em solucao homogenea

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferro, Geronimo V.; Pereira, Paulo Henrique F.; Rodrigues, Liana Alvares; Silva, Maria Lucia Caetano Pinto da, E-mail: fernandes_eng@yahoo.com.b [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Quimica

    2011-07-01

    This paper describes the adsorption of heavy metals ions from aqueous solution by hydrous niobium oxide. Three heavy metals were selected for this study: cadmium, lead and silver. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacity (Q{sub 0}) for Pb{sup 2+}, Ag{sup +} and Cd{sup 2+} was found to be 452.5, 188.68 and 8.85 mg g{sup -1}, respectively. (author)

  5. Microbially Induced Iron Oxidation: What, Where, How

    Energy Technology Data Exchange (ETDEWEB)

    SCHIERMEYER,ELISA M.; PROVENCIO,PAULA P.; NORTHUP,DIANA E.

    2000-08-15

    From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.

  6. Nitric oxide damages neuronal mitochondria and induces apoptosis in neurons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The cytotoxic effect of nitric oxide on primarily cultured rat cerebellar granule cells was studied,and the mechanisms were discussed.The results showed that nitric oxide donor S-nitroso-N-acetyl-penicillamine (SNAP; 500 μmol/L) could induce apoptosis in immature cultures of cerebellar granule cells.Flow cytometry and HPLC analyses revealed that after treatment with SNAP,the mitochondrial transmembrane potential and the cellular ATP content decreased significantly.Nitric oxide scavenger hemoglobin could effectively prevent the neuronal mitochondria from dysfunction and attenuate apoptosis.The results suggested that nitric oxide activated the apoptotic program by inhibiting the activity of mitochondrial respiratory chain and thus decreasing the cellular ATP content.

  7. Prednisolone reduces nitric oxide-induced migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, P; Daugaard, D; Lassen, L H;

    2009-01-01

    BACKGROUND AND PURPOSE: Glyceryl trinitrate (GTN) induces delayed migraine attacks in migraine patients. The purpose of this study was to investigate whether pre-treatment with prednisolon could decrease this effect of GTN. METHODS: In this double-blind, randomized and placebo-controlled, crossover...... study 15 migraineurs with migraine without aura were pre-treated with 150 mg of prednisolone or placebo followed by a 20-min infusion of GTN (0.5 ug/kg/min). One hour after the GTN-infusion, the participants were sent home, but continued to rate headache and possible associated symptoms by filling out a...... headache diary every hour for 12 h. There were two equal primary efficacy end-points: frequency of delayed migraine and intensity of delayed headache. RESULTS: Nine patients experienced a GTN headache fulfilling the diagnostic criteria for migraine without aura on the placebo day compared with four...

  8. Chemo preventive action of Liv.52 against radiation and cadmium induced histopathological changes in the jejunum of Swiss albino mice

    International Nuclear Information System (INIS)

    The present century has been an ever-increasing use of nuclear technologies in different fields raising the alarming problem of radiation hazards to living beings including man. An increasing body of evidence indicates that human activities are responsible for global climatic changes, which, in turn, may be directly or indirectly increasing human exposure to environmental hazards. On the other hand, all forms of cadmium are poisonous leading cadmium intoxication under appropriate circumstances. The interaction between radiation and other toxicants represents a field of immense potential importance as their total environmental burden may have greater effects than expected from the sum of their individual impact. In the present study six to eight weeks old male Swiss albino mice were exposed to 2.5 and 5.0 Gy of gamma rays with or without cadmium chloride treatment. The animals of experimental groups were administered Liv.52 for seven days prior to radiation or cadmium chloride treatment. After routine procedure of histology the histopathological changes were observed in the jejunum of Swiss albino mice. The changes included loosened sub-mucosa with hydropic degeneration. Lamina propria exhibited hydropic degeneration, abnormal mitotic figures, pyknotic nuclei and cytoplasmic degranulation in crypt cells, loosened tips and shortened villi. Leucocytic infiltration appeared in lamina propria. Few mitotic figures were observed during the early intervals but were not normal and resulted in mitotic death. Recovery started on day-14 in non-drug treated groups and day-7 in Liv.52 treated groups. After irradiation with various doses of gamma rays, histological changes depend upon the dose of radiation delivered. The important radio-lesions were looseness of musculature, hydropic degeneration in sub-mucosa and lamina propria, hyperaemia and haemorrhage in sub-mucosa, pyknotic cells, cytoplasmic degranulation and vacuolation, abnormal mitotic figures. Karyolysis, karyorrhexis

  9. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  10. Oxidative stress induces senescence in human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated β-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  11. Femtosecond laser ablation of cadmium tungstate for scintillator arrays

    Science.gov (United States)

    Richards, S.; Baker, M. A.; Wilson, M. D.; Lohstroh, A.; Seller, P.

    2016-08-01

    Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm-2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.

  12. Transient light-induced intracellular oxidation revealed by redox biosensor

    International Nuclear Information System (INIS)

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition

  13. Transient light-induced intracellular oxidation revealed by redox biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kolossov, Vladimir L., E-mail: viadimer@illinois.edu [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Beaudoin, Jessica N. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Hanafin, William P. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); DiLiberto, Stephen J. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Kenis, Paul J.A. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (United States); Rex Gaskins, H. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61801 (United States); Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  14. Protective effect of Emblica against radiation and cadmium induced histopathological changes in the brain of Swiss albino mice

    International Nuclear Information System (INIS)

    In the present study six to eight weeks old male Swiss albino mice were exposed to 2.0 and 4.0 Gy of gamma rays with or without cadmium chloride treatment. The animals of experimental groups were administered Emblica for seven days prior to radiation or cadmium chloride treatment. After routine procedure of histology the histopathological changes were observed in the brain of Swiss albino mice. The histopathological changes observed were pycnotic nuclei and crenated cells with condensation of nuclear material resulting into hyperchromatic cells. Hydrocephaly with enlarged lateral ventricles was also noted. Corpus callosum was seen malformed. Thickened meninges and venous congestion were also noticed. In the irradiated brains cytoarchitectonic layers were reduced in depth and showed some degree of intermixing of cells of various laminae. Hematoma was present between the cortex and medulla with numerous pycnotic and necrotic nuclei. Disarray of the cortical tissue with disorientation of cell processes was also evident. Damage in the cortex was noticed in the form of karyolysis, pycnosis and spongy degeneration of the connective tissue with the thickening of meninges. Dilation of blood vessels was also observed at certain places. Quality of these changes remaining the same, but their magnitude increased with dose. With an increase in the dose, time of the onset of recovery is delayed and the time required for complete recovery is longer. After the combined exposure of gamma rays and cadmium chloride, the histological changes were similar but showed higher magnitude than the individual exposure of gamma rays and cadmium chloride. The brain of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. (author)

  15. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice

    OpenAIRE

    Al-Attar, Atef M.

    2011-01-01

    Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of ...

  16. Cadmium and zinc

    International Nuclear Information System (INIS)

    Cadmium and zinc are naturally occurring trace metals that are often considered together because of their close geochemical association and similarities in chemical reactivity. The loss of two electrons from an atom of Cd or Zn imparts to each an electron configuration with completely filled d orbitals; this results in a highly stable 2/sup +/ oxidation state. But Cd and Zn differ greatly in their significance to biological systems. Whereas Zn is an essential nutrient for plants, animals, and humans, Cd is best known for its toxicity to plants and as a causative agent of several disease syndromes in animals and humans

  17. H₂O Dissociation-Induced Aluminum Oxide Growth on Oxidized Al(111) Surfaces.

    Science.gov (United States)

    Liu, Qianqian; Tong, Xiao; Zhou, Guangwen

    2015-12-01

    The interaction of water vapor with amorphous aluminum oxide films on Al(111) is studied using X-ray photoelectron spectroscopy to elucidate the passivation mechanism of the oxidized Al(111) surfaces. Exposure of the aluminum oxide film to water vapor results in self-limiting Al2O3/Al(OH)3 bilayer film growth via counter-diffusion of both ions, Al outward and OH inward, where a thinner starting aluminum oxide film is more reactive toward H2O dissociation-induced oxide growth because of the thickness-dependent ionic transport in the aluminum oxide film. The aluminum oxide film exhibits reactivity toward H2O dissociation in both low-vapor pressure [p(H2O) = 1 × 10(-6) Torr] and intermediate-vapor pressure [p(H2O) = 5 Torr] regimes. Compared to the oxide film growth by exposure to a p(H2O) of 1 × 10(-6) Torr, the exposure to a p(H2O) of 5 Torr results in the formation of a more open structure of the inner Al(OH)3 layer and a more compact outer Al2O3 layer, demonstrating the vapor-pressure-dependent atomic structure in the passivating layer. PMID:26550986

  18. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    International Nuclear Information System (INIS)

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H2O2 concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution

  19. Expression of apoptotic nuclei by ultrastructural terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling and detection of FasL, caspases and PARP protein molecules in cadmium induced acute alveolar cell injury

    International Nuclear Information System (INIS)

    Cadmium causes cellular damage but the exact mechanism of apoptosis in cadmium induced acute lung injury is not clear. We investigated the sequential expression of apoptotic nuclei and detected related molecules in tissue of cadmium-induced acute lung injury. Forty Sprague-Dawley rats were sacrificed at days 1, 3, 7 and 10 after intra-tracheal cadmium injection (2.5 mg/kg). Light microscopic, ultrastructural terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling (TUNEL), and Western blot analysis for detection of FasL, Bid, cytochrome c, caspase 3 and PARP were carried out. Apoptosis occurred at day 1, and markedly decreased at days 3, 7 and 10 (11.8, 2.8, 0.9, 0.5%, respectively) determined by light microscopy and TUNEL assay. Ultrastructural TUNEL revealed two patterns of nuclear morphology according to the apoptotic stage. One pattern showed chromatin fragmentation and apoptotic nuclear body formation. The other pattern had bleb formation in the chromatin, budding with projection out to the nuclear membranes, fragmentation, segregation of chromatin clumps and apoptotic body formation. Western blot analysis showed prominent expression of FasL at days 1 and 3. Expression of Bid, cytochrome c and caspase 3 were prominent at day 1 compared to days 3, 7 and 10. PARP cleavage was prominent at day 1. In conclusion, intra-tracheal cadmium injection showed active alveolar cell apoptosis at day 1. Ultrastructural TUNEL showed various expressions according to the apoptotic nuclear stage. These studies suggest that cadmium-induced alveolar cell apoptosis is mediated by FasL and caspase-dependent mitochondrial apoptosis pathways

  20. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  1. Synthesis and characterization of inorganic ion exchangers based on mixed oxide tin-titanium to be used in recovery of cadmium and nickel and photoluminescent studies

    International Nuclear Information System (INIS)

    This work presents the synthesis, characterization and adsorption studies of inorganic ion exchangers based on mixed tin-titanium oxide for recovery of cadmium and nickel metals from aqueous effluents, discarded in the environment mainly through Ni-Cd battery. The exchangers were synthesized by sol-gel modified method using a mixture of tin(IV) chloride and titanium(III) chloride and ammonium hydroxide, as precursors reagents. The materials obtained: SnO2/TiO2 and SnO2/TiO2:Eu3+ were characterized by infrared spectroscopy, thermal analysis, scattering electronic microscopy (SEM), X-ray powder diffraction (XRD) (powder method) and electronic spectroscopy (excitation and emission) for the europium doped exchanger. The same materials also were synthesized in polymeric matrix too and can be used in column, because the synthesized materials showed crystals size in nano metric scale. It was determined by the distribution ratios for metals taking as parameters the influence of pH, the concentration of metals (by adsorption isotherms) and the contact time (by adsorption kinetic). The inorganic ion exchanger presented high exchange capacity with adsorption percent above 90 por cent for the studied conditions, quickly kinetic, heterogeneous exchange surfaces, physic adsorption and spontaneous process of exchange. To the doped exchanger spectroscopy properties were studied and also it was calculated the intensity parameters and it was found a satisfactory quantum yield. (author)

  2. Nitric Oxide is Protective Against Mercury Induced Depression

    Directory of Open Access Journals (Sweden)

    Arezo Nahavandi

    2010-08-01

    Full Text Available A B S T R A C T Introduction: Mercury is the second most metal pollutant in the world and has the potential to induce many pathologic conditions, especially in nervous system, such as depression. Here we tried to find out if nitric oxide has any possible role in the pathophysiology of depression induced by this metal. Although the role of nitric oxide has been shown in mood control, here we use specific doses of nitric oxide inducer and/or inhibitors which had no effect on normal rats. Methods: 120 male wistar rats weighting 200-250 gram were divided into two main groups: control and methyl mercury(MM treated. Each main group was divided into four different sub-goups: Saline, L-Arginine, L-Name or 7-nitroindazole (7-NI respectively. The duration of taking MM or saline was daily for 15 days for both. After the 15th injection a forced swimming test was done. This test shows behavioral immobility (BI or latency of attempt to escape (LAE, as a depression indicator. Results: Our study showed that low dose L-arginine is protective against MM induced depression as it could turn behavioral immobility (BI to normal levels in groups taking MM plus L-Arginine, while in group taking just MM, BI was much longer showing the intensity of depression. L-Name and 7-NI did aggravated depression in MM groups but not control ones, on the other hand just in the case of 7-NI the result was significant. Discussion: Our results showed 1 MM could induce depression in rat 2 L-Arginine could improve depression to normal situation in MM group, while in control group has no effec 3 7-NI, a selective nNOS inhibitor can aggravate mental depression in intoxicated rats. These results showed the important role of nNOS in protection against MM induced depression.

  3. Quantitative analysis of radiation-induced DNA deoxyribose oxidation products

    International Nuclear Information System (INIS)

    Deoxyribose oxidation plays an important role in the chemistry and biology of radical-mediated DNA damage beyond the simple interruption of the DNA backbone, including involvement in complex DNA lesions, cross-linking with DNA repair proteins and the formation of endogenous DNA adducts. This is illustrated by our discovery that 3'-phosphoglycolaldehyde residues, arising from 3'-oxidation of deoxyribose in DNA, form glyoxal and the glyoxal adduct of dG. Our research is driven by the lack of information about the spectrum and quantity of deoxyribose lesions in isolated DNA, human cells and tissues. This problem is compounded by the fact that oxidation of each of the five possible positions in deoxyribose can generate several unique damage products, most of which are toxic to cells. To this end, we have developed a sensitive GC/MS method to identify and quantify virtually all deoxyribose oxidation products in isolated DNA and in cells exposed to oxidizing agents under biological conditions. This method was applied to quantify 3'-phosphoglycolaldehyde residues in DNA oxidized by Fe-EDTA, gamma-radiation and alpha-particles with a detection limit of 30 femtomoles/sample corresponding to two phosphoglycolaldehyde molecules in 10?6 nucleotides for a 170 μg DNA sample. A 13C2 - labeled phosphoglycolaldehyde was used as internal standard. The method was verified by analysis of a synthetic, phosphoglycolaldehyde-containing oligonucleotide. It is widely believed that Fe-EDTA and gamma-radiation induce DNA damage by the formation of hydroxyl radicals and therefore we expected to see similar efficiencies in phosphoglycolaldehyde formation. However, the results reveal large differences in the efficiency of phosphoglycolaldehyde formation by these oxidants and suggest weaknesses in models relating DNA structure to chemical reactivity of DNA. An understanding of the relative quantities of various deoxyribose oxidation products will provide important insights into the basic

  4. Cerebrolysin protects against rotenone-induced oxidative stress and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Abdel-Salam OME

    2014-05-01

    Full Text Available Omar ME Abdel-Salam,1 Nadia A Mohammed,2 Eman R Youness,2 Yasser A Khadrawy,3 Enayat A Omara,4 Amany A Sleem51Department of Toxicology and Narcotics, 2Department of Medical Biochemistry, 3Department of Physiology, 4Department of Pathology, 5Department of Pharmacology, National Research Centre, Dokki, Cairo, EgyptAbstract: We investigated the effect of cerebrolysin, a peptide mixture used for promoting memory and recovery from cerebral stroke, on the development of oxidative stress and nigrostriatal cell injury induced by rotenone administration in rats. Rotenone 1.5 mg/kg was given subcutaneously three times weekly either alone or in combination with cerebrolysin at 21.5, 43, or 86 mg/kg. Rats were euthanized 14 days after starting the rotenone injection. Lipid peroxidation (malondialdehyde, reduced glutathione (GSH, nitric oxide (nitrite concentrations, paraoxonase 1 (PON1, and acetylcholinesterase (AChE activities – as well as the monocyte chemoattractant protein-1 (MCP-1 and the antiapoptotic protein Bcl-2 – were measured in the brain. Histopathology, tyrosine hydroxylase, inducible nitric oxide synthase (iNOS, tumor necrosis factor-α (TNF-α, and cleaved caspase-3 immunohistochemistry were also performed. Rotenone caused a significantly elevated oxidative stress and proinflammatory response in the different brain regions. Malondialdehyde and nitric oxide concentrations were significantly increased, while GSH markedly decreased in the cerebral cortex, striatum, hippocampus, and in the rest of the brain. PON1 and AChE activities significantly decreased with respect to the control levels after rotenone application. Striatal Bcl-2 was significantly decreased while MCP-1 increased following rotenone injection. Rotenone caused prominent iNOS, TNF-α, and caspase-3 immunostaining in the striatum and resulted in markedly decreased tyrosine hydroxylase immunoreactivity in the substantia nigra and striatum. Cerebrolysin coadministered with

  5. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Quaroni, Andrea [Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853–6401 (United States); Autore, Giuseppina [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Severino, Lorella [Department of Pathology and Animal Health, Division of Toxicology, School of Veterinary Medicine, University of Naples “Federico II”, Via Delpino 1, 80137 Naples (Italy); Marzocco, Stefania, E-mail: smarzocco@unisa.it [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy)

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  6. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    International Nuclear Information System (INIS)

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination

  7. Magnetism in graphene oxide induced by epoxy groups

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371 (Singapore); Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Zhu, Xi; Su, Haibin [Division of Materials Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Cole, Jacqueline M. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700S Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.

  8. Differential proteomic responses in hepatopancreas and adductor muscles of the green-lipped mussel Perna viridis to stresses induced by cadmium and hydrogen peroxide

    International Nuclear Information System (INIS)

    This study aimed to reveal the proteomic responses in the hepatopancreas and adductor muscle of a common biomonitor, Perna viridis after 14-day exposure to two model chemicals, cadmium (Cd; a toxic metal) and hydrogen peroxide (H2O2; a pro-oxidant), using two-dimensional gel electrophoresis coupled with multivariate statistical analyses. Unique sets of tissue-specific protein expression signatures were revealed corresponding to the two treatment groups. In the hepatopancreas, 15 and 2 spots responded to Cd and H2O2 treatments respectively. 6 and 7 spots were differentially expressed in the adductor muscle for Cd and H2O2 treatments, respectively. 15 differentially expressed spots were successfully identified by MALDI-TOF/TOF MS analysis. These proteins are involved in glycolysis, amino acid metabolism, energy homeostasis, oxidative stress response, redox homeostasis and protein folding, heat-shock response, and muscle contraction modulation. This is the first time, to have demonstrated that Cd exposure not only leads to substantial oxidative stress but also results in endoplasmic reticulum stress in hepatopancreas of the mussel. Such notable stress responses may be attributable to high Cd accumulation in this tissue. Our results suggested that investigations on these stress-associated protein changes could be used as a new and complementary approach in pollution monitoring by this popular biomonitor species.

  9. Nitric oxide synthase is induced in sporulation of Physarum polycephalum

    OpenAIRE

    Golderer, Georg; Werner, Ernst R.; Leitner, Stefan; Gröbner, Peter; Werner-Felmayer, Gabriele

    2001-01-01

    The myxomycete Physarum polycephalum expresses a calcium-independent nitric oxide (NO) synthase (NOS) resembling the inducible NOS isoenzyme in mammals. We have now cloned and sequenced this, the first nonanimal NOS to be identified, showing that it shares < 39% amino acid identity with known NOSs but contains conserved binding motifs for all NOS cofactors. It lacks the sequence insert responsible for calcium dependence in the calcium-dependent NOS isoenzymes. NOS expression was strongly up-r...

  10. Does aspirin-induced oxidative stress cause asthma exacerbation?

    OpenAIRE

    Kacprzak, Dorota; Pawliczak, Rafał

    2015-01-01

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflamm...

  11. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress.

    Science.gov (United States)

    Yu, Xiao-Lin; Li, Ya-Nan; Zhang, He; Su, Ya-Jing; Zhou, Wei-Wei; Zhang, Zi-Ping; Wang, Shao-Wei; Xu, Peng-Xin; Wang, Yu-Jiong; Liu, Rui-Tian

    2015-10-01

    Recent evidence showed that amylin deposition is not only found in the pancreas in type 2 diabetes mellitus (T2DM) patients, but also in other peripheral organs, such as kidneys, heart and brain. Circulating amylin oligomers that cross the blood-brain barrier and accumulate in the brain may be an important contributor to diabetic cerebral injury and neurodegeneration. Moreover, increasing epidemiological studies indicate that there is a significant association between T2DM and Alzheimer's disease (AD). Amylin and β-amyloid (Aβ) may share common pathophysiology and show strikingly similar neurotoxicity profiles in the brain. To explore the potential effects of rutin on AD, we here investigated the effect of rutin on amylin aggregation by thioflavin T dyeing, evaluated the effect of rutin on amylin-induced neurocytotoxicity by the MTT assay, and assessed oxidative stress, as well as the generation of nitric oxide (NO) and pro-inflammatory cytokines in neuronal cells. Our results showed that the flavonoid antioxidant rutin inhibited amylin-induced neurocytotoxicity, decreased the production of reactive oxygen species (ROS), NO, glutathione disulfide (GSSG), malondialdehyde (MDA) and pro-inflammatory cytokines TNF-α and IL-1β, attenuated mitochondrial damage and increased the GSH/GSSG ratio. These protective effects of rutin may have resulted from its ability to inhibit amylin aggregation, enhance the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and reduce inducible nitric oxide synthase (iNOS) activity. These in vitro results indicate that rutin is a promising natural product for protecting neuronal cells from amylin-induced neurotoxicity and oxidative stress, and rutin administration could be a feasible therapeutic strategy for preventing AD development and protecting the aging brain or slowing neurodegenerative processes. PMID:26242245

  12. Quercitrin Protects Skin from UVB-induced Oxidative Damage

    OpenAIRE

    Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; SUN, Lijuan; LU, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated for...

  13. Nitric oxide inhibition sustains vasopressin-induced vasoconstriction.

    OpenAIRE

    Dworkin, M. J.; Carnochan, P.; Allen-Mersh, T G

    1995-01-01

    Hepatic parenchymal vasoconstriction increases cytotoxic drug uptake into hepatic metastases by increasing the tumour to liver blood flow ratio. Prolonged infusion of the vasoconstrictor vasopressin does not result in sustained vasoconstriction, and this may limit the benefit of vasopressin in infusional chemotherapy. We have assessed whether loss of vasopressin-induced vasoconstriction is mediated by nitric oxide. Hepatic and tumour blood flow were continuously monitored, in an animal hepati...

  14. Diaphragmatic Breathing Reduces Exercise-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Daniele Martarelli

    2011-01-01

    Full Text Available Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant; therefore, in this study, we investigated the effects of diaphragmatic breathing on exercise-induced oxidative stress and the putative role of cortisol and melatonin hormones in this stress pathway. We monitored 16 athletes during an exhaustive training session. After the exercise, athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1 h relaxing performing diaphragmatic breathing and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals.

  15. Diaphragmatic breathing reduces exercise-induced oxidative stress.

    Science.gov (United States)

    Martarelli, Daniele; Cocchioni, Mario; Scuri, Stefania; Pompei, Pierluigi

    2011-01-01

    Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant; therefore, in this study, we investigated the effects of diaphragmatic breathing on exercise-induced oxidative stress and the putative role of cortisol and melatonin hormones in this stress pathway. We monitored 16 athletes during an exhaustive training session. After the exercise, athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1 h relaxing performing diaphragmatic breathing and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals. PMID:19875429

  16. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    International Nuclear Information System (INIS)

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F2-isoprostanes (F2-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 μM Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E2 (PGE2). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F2-IsoPs and PGE2 in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  17. Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: Influence of elevated dietary iron

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Raymond W.M. [Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3 (Canada); Andres, Jose A. [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada); Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada)

    2011-03-15

    Recent evidences suggest that dietary cadmium (Cd) uptake likely occurs via the dietary iron (Fe) uptake pathway in freshwater fish, at least in part. The present study investigated the interactive effects of dietary Cd and Fe in juvenile rainbow trout (Oncorhynchus mykiss). Fish were treated for four weeks with four different diets: normal Fe, high Fe, normal Fe plus Cd, and high Fe plus Cd. Physiological parameters, tissue-specific Fe and Cd level, plasma Fe status, and tissue-specific mRNA expression of transferrin, metallothioneins (MT-A and MT-B) and heat shock proteins 70 (HSP70a and HSP70b) were analyzed. Exposure to dietary Cd increased Cd burden in the following order: intestine > kidney > stomach > liver > gill > carcass. Interestingly, high dietary Fe reduced Cd accumulation in the stomach and intestine as well as in the wholebody of fish. Dietary Cd increased hepatic transferrin mRNA expression and total Fe binding capacity in the plasma, indicating the effect of Cd on Fe handling in fish. The mRNA expression of MTs and HSP70s was also increased in various tissues following dietary Cd exposure, however the response profile of different MT and HSP70 genes was not consistent among different tissues. In general, MT-A was more responsive to Cd exposure in the intestine and liver, whereas MT-B was more responsive in the kidney. Similarly, HSP70a expression was more sensitive to Cd exposure than HSP70b, particularly in the intestine. Interestingly, high Fe diet suppressed Cd-induced induction of transferrin, MT and HSP70 genes in various tissues. Overall, our study suggests that elevated dietary Fe can reduce Cd accumulation and ameliorate Cd-induced stress responses in freshwater fish.

  18. Hypochlorite-induced oxidation of proteins in plasma

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1999-01-01

    Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 microM) with dil......Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 micro......M) with diluted fresh human plasma has been shown to generate material that oxidizes 5-thio-2-nitrobenzoic acid; these oxidants are believed to be chloramines formed from the reaction of HOCl with protein amine groups. Chloramines have also been detected with isolated plasma proteins treated with HOCl. In both....... These results are consistent with protein-derived chloramines, and the radicals derived from them, as contributing agents in HOCl-induced plasma protein oxidation....

  19. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described. PMID:26607273

  20. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress induced inflammation

    OpenAIRE

    Jieun Lee; Jessica M. Ellis; Michael J. Wolfgang

    2015-01-01

    To understand the contribution of adipose tissue fatty acid oxidation to whole-body metabolism, we generated mice with an adipose-specific knockout of carnitine palmitoyltransferase 2 (CPT2A−/−), an obligate step in mitochondrial long-chain fatty acid oxidation. CPT2A−/− mice became hypothermic after an acute cold challenge, and CPT2A−/− brown adipose tissue (BAT) failed to upregulate thermogenic genes in response to agonist-induced stimulation. The adipose-specific loss of CPT2 resulted in d...

  1. Curcumin Attenuates Methotrexate-Induced Hepatic Oxidative Damage in Rats

    International Nuclear Information System (INIS)

    In the present study, we have addressed the ability of curcumin to suppress MTX-induced liver damage. Hepatotoxicity was induced by injection of a single dose of MTX (20 mg/kg I.P.). MTX challenge induced liver damage that was well characterized histopathologically and biochemically. MTX increased relative liver/body weight ratio. Histologically, MTX produced fatty changes in hepatocytes and sinusoidal lining cells, mild necrosis and inflammation. Biochemically, the test battery entailed elevated activities of serum ALT and AST. Liver activities of superoxide dismutase (SOD), catalase (CAT) and level of reduced glutathione (GSH), were notably reduced, while lipid peroxidation, expressed as malondialdhyde (MDA) level was significantly increased. Administration of curcumin (100mg/kg, I.P.) once daily for 5 consecutive days after MTX challenge mitigated the injurious effects of MTX and ameliorated all the altered biochemical parameters. These results showed that administration of curcumin decreases MTX-induced liver damage probably via regulation of oxidant/anti-oxidant balance. In conclusion, the present study indicates that curcumin may be of therapeutic benefit against MTX-cytotoxicity.

  2. Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle.

    Science.gov (United States)

    Vandanmagsar, Bolormaa; Warfel, Jaycob D; Wicks, Shawna E; Ghosh, Sujoy; Salbaum, J Michael; Burk, David; Dubuisson, Olga S; Mendoza, Tamra M; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2016-05-24

    Fatty acids are the primary fuel source for skeletal muscle during most of our daily activities, and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1b(m-/-)). Cpt1b(m-/-) mice have increased glucose utilization and are resistant to diet-induced obesity. Here, we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent of the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but it does not contribute to the resistance to diet-induced obesity. PMID:27184848

  3. Effect of Nanosized Tin Oxide Layer on the Efficiency of Photovoltaic Processes in Film Solar Cells Based on Cadmium Telluride

    Directory of Open Access Journals (Sweden)

    G.S. Khrypunov

    2015-03-01

    Full Text Available The influence of the thickness of the nanosized layer on the efficiency of photoelectric processes in solar cells (SC ITO / SnO2 / CdS / CdTe / Cu / Au formed on different substrates was investigated. For device structures formed on the glass substrates, the maximum efficiency of 11.4 % is achieved when thickness of the tin oxide layer is 80 nm. For flexible solar cells formed on a polyimide film, the maximum efficiency of 10.8 % is observed when thickness of the tin oxide layer is 50 nm. This paper discusses the physical mechanisms of the observed differences in efficiency.

  4. Cadmium tungstate ceramics for application as scintillator

    International Nuclear Information System (INIS)

    The aim of the present work is the production of cadmium tungstate scintillator ceramics (CdWO4 - CWO). The route of production employed was the solid state synthesis. Before the calcination, the precursors cadmium oxide and tungsten oxide were homogenized in an agate mortar. Bismuth oxide was used in the production of doped ceramics with 1% in mol of bismuth, in order to improve de efficiency of the scintillators. Since there is a possibility of Cd2+ loss at temperatures above 1000 deg C, ceramics with 1% of cadmium oxide excess were also produced. The crystalline phase was obtained after two calcination, according to X-Ray diffraction results. For the characterization, radioluminescence measurements were performed under β and X-radiation. Images of the surface of the sintered ceramic were registered by Atomic Force Microscopy. The density of ceramics bodies was calculated by the Archimedes' method and compared with the theoretical density (7.99 g/cm3). (author)

  5. Cordycepin prevents oxidative stress-induced inhibition of osteogenesis.

    Science.gov (United States)

    Wang, Feng; Yin, Peipei; Lu, Ye; Zhou, Zubin; Jiang, Chaolai; Liu, Yingjie; Yu, Xiaowei

    2015-11-01

    Oxidative stress is known to be involved in impairment of osteogenesis and age-related osteoporosis. Cordycepin is one of the major bioactive components of Cordyceps militaris that has been shown to exert antioxidant and anti-inflammatory activities. However, there are few reports available regarding the effects of cordycepin on osteogenesis and the underlying mechanism. In this study, we investigated the potential osteoprotective effects of cordycepin and its mechanism systematically using both in vitro model as well as in vivo mouse models. We discovered that hydrogen peroxide (H2O2)-induced inhibition of osteogenesis which was rescued by cordycepin treatment in human bone marrow mesenchymal stem cells (BM-MSCs). Cordycepin exerted its protective effects partially by increasing or decreasing expression of osteogenic and osteoclastogenesis marker genes. Treatment with cordycepin increased Wnt-related genes' expression whereas supplementation of Wnt pathway inhibitor reversed its protective effects. In addition, administration of cordycepin promoted osteogenic differentiation of BM-MSCs by reducing oxidative stress in both ovariectomized and aged animal models. Taken together, these results support the protective effects of cordycepin on oxidative stress induced inhibition of osteogenesis by activation of Wnt pathway. PMID:26462178

  6. Electrotransport-induced unmixing and decomposition of ternary oxides

    Science.gov (United States)

    Chun, Jakyu; Martin, Manfred; Yoo, Han-Ill

    2015-03-01

    A general expectation is that in a uniform oxygen activity atmosphere, cation electrotransport induces a ternary or higher oxide, e.g., AB1+ξO3+δ, to kinetically unmix unless the electrochemical mobilities of, say, A2+and B4+ cations are identically equal, and eventually to decompose into the component oxides AO and BO2 once the extent of unmixing exceeds the stability range of its nonmolecularity ξ. It has, however, earlier been reported [Yoo et al., Appl. Phys. Lett. 92, 252103 (2008)] that even a massive cation electrotransport induces BaTiO3 to neither unmix nor decompose even at a voltage far exceeding the so-called decomposition voltage Ud, a measure of the standard formation free energy of the oxide (| ΔGfo | = nFUd). Here, we report that as expected, NiTiO3 unmixes at any voltage and even decomposes if the voltage applied exceeds seemingly a threshold value larger than Ud. We demonstrate experimentally that the electrochemical mobilities of Ni2+ and Ti4+ should be necessarily unequal for unmixing. Also, we show theoretically that equal cation mobilities appear to be a sufficiency for BaTiO3 only for a thermodynamic reason.

  7. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  8. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures

    International Nuclear Information System (INIS)

    To better understand chemical modes of action, emphasis has been given to stress responses at lower levels of biological organization. Cholinesterases and antioxidant defenses are among the most used biomarkers due to their crucial role in the neurocholinergic transmission and in cell homeostasis preventing DNA damage, enzymatic inactivation and lipid peroxidation. The main goal of this study was to investigate the effects of zinc and cadmium on survival and reproduction of E. albidus and to assess metals oxidative stress potential and neurotoxic effects at concentrations that affected reproduction. Both metals affected the enchytraeids' survival and reproduction and induced significant changes in the antioxidant defenses as well as increased lipid peroxidation, indicating oxidative damage. This study demonstrates that determining effects at different levels of biological organization can give better information on the physiological responses of enchytraeids in metal contamination events and further unravel the mechanistic processes dealing with metal stress. - Highlights: → Zinc and cadmium influence the survival and reproduction of Enchytraeus albidus. → Oxidative stress and membrane damage occur at reproduction effect concentrations. → Glutathione seems to be important in the antioxidant defense against metals. → Time intervals (2, 4, 8 days) allowed following the evolution of oxidative events. - Zinc and cadmium cause oxidative stress and membrane damage in Enchytraeus albidus at reproduction effect concentrations.

  9. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Sara C., E-mail: sara.novais@ua.pt [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Gomes, Susana I.L. [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Gravato, Carlos [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Ecotoxicologia e Ecologia, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Guilhermino, Lucia [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Ecotoxicologia e Ecologia, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); ICBAS-Instituto de Ciencias Biomedicas Abel Salazar, Departamento de Estudos de Populacoes, Laboratorio de Ecotoxicologia, Universidade do Porto, Porto (Portugal); De Coen, Wim [University of Antwerp, Department of Biology - E.B.T., Groenenborgerlaan 171 - U.7., B-2020 Antwerp (Belgium); Soares, Amadeu M.V.M.; Amorim, Monica J.B. [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2011-07-15

    To better understand chemical modes of action, emphasis has been given to stress responses at lower levels of biological organization. Cholinesterases and antioxidant defenses are among the most used biomarkers due to their crucial role in the neurocholinergic transmission and in cell homeostasis preventing DNA damage, enzymatic inactivation and lipid peroxidation. The main goal of this study was to investigate the effects of zinc and cadmium on survival and reproduction of E. albidus and to assess metals oxidative stress potential and neurotoxic effects at concentrations that affected reproduction. Both metals affected the enchytraeids' survival and reproduction and induced significant changes in the antioxidant defenses as well as increased lipid peroxidation, indicating oxidative damage. This study demonstrates that determining effects at different levels of biological organization can give better information on the physiological responses of enchytraeids in metal contamination events and further unravel the mechanistic processes dealing with metal stress. - Highlights: > Zinc and cadmium influence the survival and reproduction of Enchytraeus albidus. > Oxidative stress and membrane damage occur at reproduction effect concentrations. > Glutathione seems to be important in the antioxidant defense against metals. > Time intervals (2, 4, 8 days) allowed following the evolution of oxidative events. - Zinc and cadmium cause oxidative stress and membrane damage in Enchytraeus albidus at reproduction effect concentrations.

  10. Controllably Inducing and Modeling Optical Response from Graphene Oxide

    Science.gov (United States)

    Lombardo, Nicholas; Naumov, Anton

    Graphene, a novel 2-dimensional sp2-hybridized allotrope of Carbon, has unique electrical and mechanical properties. While it is naturally a highly conductive zero band gap semiconductor, graphene does not exhibit optical emission. It has been shown that functionalization with oxygen-containing groups elicits an opening of band gap in graphene. In this work, we aim to induce an optical response in graphene via controlled oxidation, and then explore potential origins of its photoluminescence through mathematical modeling. We employ timed ozone treatment of initially non-fluorescent reduced graphene oxide (RGO) to produce graphene oxide (GO) with specific optical properties. Oxidized material exhibits substantial changes in the absorption spectra and a broad photoluminescence feature, centered at 532 nm, which suggests the appearance of a band gap. We then explore a number of possible mechanisms for the origin of GO photoluminescence via PM3 and ab initio calculations on a functionalized single sheet of graphene. By adjusting modeling parameters to fit experimentally obtained optical transition energies we estimate the size of the sp2 graphitic regions in GO and the arrangement of functional groups that could be responsible for the observed emission.

  11. Methylphenidate treatment induces oxidative stress in young rat brain.

    Science.gov (United States)

    Martins, Márcio R; Reinke, Adalisa; Petronilho, Fabrícia C; Gomes, Karin M; Dal-Pizzol, Felipe; Quevedo, João

    2006-03-17

    Methylphenidate (MPH) is frequently prescribed for the treatment of attention deficit/hyperactivity disorder. Psychostimulants can cause long-lasting neurochemical and behavioral adaptations. Here, we evaluated oxidative damage in the rat brain and the differential age-dependent response to MPH after acute and chronic exposure. We investigated the oxidative damage, assessed by the thiobarbituric acid reactive species (TBARS), and the protein carbonyl assays in cerebellum, prefrontal cortex, hippocampus, striatum, and cerebral cortex of young (25 days old) and adult (60 days old) male Wistar rats after acute and chronic exposure to MPH. Chronic MPH-treated young rats presented a dose-dependent increase in TBARS content and protein carbonyls formation in specific rat brain regions. In the acute exposure, only MPH highest dose increased lipid peroxidation in the hippocampus. No difference in protein carbonylation was observed among groups in all structures analyzed. In adult rats, we did not find oxidative damage in both acute and chronic treatment. Chronic exposure to MPH in induces oxidative damage in young rat brain, differentially from chronic exposure during adulthood. These findings highlight the need for further research to improve understanding of MPH effects on developing nervous system and the potential consequences in adulthood resulting from early-life drug exposure. PMID:16494852

  12. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells

    International Nuclear Information System (INIS)

    There are increasing concerns regarding the relative safety of chlorpyrifos (CPF) to various facets of the environment. Although published works suggest that CPF is relatively safe in adult animals, recent evidence indicates that juveniles, both animals and humans, may be more sensitive to CPF toxicity than adults. In young animals, CPF is neurotoxic and mechanistically interferes with cellular replication and cellular differentiation, which culminates in the alteration of synaptic neurotransmission in neurons. However, the effects of CPF on glial cells are not fully elucidated. Here we report that chlorpyrifos is toxic to oligodendrocyte progenitors. In addition, CPF produced dose-dependent increases in 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) and dihydroethidium (DHE) fluorescence intensities relative to the vehicle control. Moreover, CPF toxicity is associated with nuclear condensation and elevation of caspase 3/7 activity and Heme oxygenase-1 mRNA expression. Pan-caspase inhibitor QVDOPh and cholinergic receptor antagonists' atropine and mecamylamine failed to protect oligodendrocyte progenitors from CPF-induced injury. Finally, glutathione (GSH) depletion enhanced CPF-induced toxicity whereas nitric oxide synthetase inhibitor L-NAME partially protected progenitors and the non-specific antioxidant vitamin E (alpha-tocopherol) completely spared cells from injury. Collectively, this data suggests that CPF induced toxicity is independent of cholinergic stimulation and is most likely caused by the induction of oxidative stress.

  13. INSULIN INDUCES NITRIC OXIDE PRODUCTION IN BOVINEAORTIC ENDOTHELIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To examine the effects of insulin on cell proliferation, nitric oxide (NO) release and nitric oxide synthase (NOS) gene expression in bovine aortic endothelial cells ( BAEC ) . Methods The mi togenesis was assessed by MTT method; the products of NO in the culture media, by Griess reaction; and the levels of NOS mRNA in BAEC , by RT/PCR tech nique. Results BAEC were not responsive to the growth-promoting effects of insulin. Stimulation with insulin resulted a dose-dependent rise of NO in the culture supernatants 2h later, with a maximum at 12~24h and a decline at 24h. This rise was inhibited by an inhibitor of NOS (L-NAME). NOS mRNA increased slightly in BAEC without statistical significance. Conelu sion The study suggested that the insulin-induced NO release might be caused directly by NOS activation.

  14. F2 laser induced oxidation of inorganic material

    International Nuclear Information System (INIS)

    <