WorldWideScience

Sample records for cadmium copper zinc

  1. SURVIVAL AND GROWTH OF 'TANYTARSUS DISSIMILIS' (CHIRONOMIDAE) EXPOSED TO COPPER, CADMIUM, ZINC, AND LEAD

    Science.gov (United States)

    Tanytarsus dissimilis (Johannsen) was exposed to four heavy metals. Static exposure began during embryogenesis and continued through hatching and larval development to the 2nd or 3rd instar. The LC50 concentrations for cadmium, copper, and zinc were 3.8, 16.3, and 36.8 micrograms...

  2. Chemical bonds of lead, zinc, cadmium and copper in soils of the northern Eifel

    International Nuclear Information System (INIS)

    Heavy metal distributions and chemical bands were investigated in selected soils in the norhtern Eifel. Apart from the chemical status of the soils and their basis metals, concentrations and bonding pattern of lead, zinc, cadmium and copper were determined by means of a sequential extraction process. The results provide a detailed picture of heavy metal pollution in this region. (orig.). 46 figs., 52 tabs

  3. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-10-15

    Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5-50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola. PMID:23959253

  4. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  5. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola

  6. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  7. Use of Azolla to assess toxicity and accumulation of metals from artificial and natural sediments containing cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Powell, G.M. [S.M. Stoller Corp., Boulder, CO (United States); Nimmo, D.W.R.; Flickinger, S.A.; Brinkman, S.F.

    1998-12-31

    The aquatic macrophyte Azolla mexicana was studied to determine if it could indicate toxicity and bioavailability of cadmium, copper, and zinc in sediments. Plants were exposed to metal-fortified artificial sediment and to natural sediment contaminated with tailings from a Superfund site near Deer Lodge, Montana. Dry weights (mass) of biomass were used to determine effects of the metal concentrations and tissue metals were measured to determine metal uptake from the sediments. Plants exposed to artificial sediments fortified with cadmium and copper showed the greatest reduction in dry mass while zinc showed the least. And, plants exposed to copper singly in artificial sediments lost both zinc and cadmium for their tissues. Plants exposed to metal-contaminated natural sediment developed necrotic and chlorotic tissue within 24 hours in 75% and 100% dilutions but significant effects (P < 0.0001) using dry mass were found as low as 3.13%.

  8. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV

    OpenAIRE

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice...

  9. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants.

    Science.gov (United States)

    Pinto, A P; Mota, A M; de Varennes, A; Pinto, F C

    2004-06-29

    This article describes an experiment, carried out under controlled environment conditions, to investigate the effects of a fulvic acid fraction of soil organic matter on growth, cadmium (Cd) uptake and redistribution by sorghum. In addition the uptake of copper (Cu), zinc (Zn) and iron (Fe) was also determined. Sorghum was grown in nutrient solutions with 0, 0.1, 1 and 10 mg Cd dm(-3), in the absence and presence of organic matter (32 mg C dm(-3)), for various periods up to 20 days. A decrease in sorghum biomass due to Cd toxicity was observed at 10 mg Cd dm(-3), but for concentrations of 0.1 and 1 mg Cd dm(-3) the biomass was increased compared with control, without visual toxicity symptoms. The presence of organic matter (OM) further increased biomass production. Cadmium was mainly retained in sorghum roots, as usually found in tolerant plants, but Cd accumulation in sorghum was greater than in other Gramineae, or even more tolerant plants such as lettuce. The presence of OM decreased the bioavailability of Cd that was partially retained in solution by the OM ligands. However, OM promoted the translocation of Cd to shoots, an effect that may pose a risk to public health because plant-animal transfer of Cd could be enhanced. The presence of OM decreased the uptake of Cu, Zn and Fe. The presence (vs. absence) of 0.1 mg Cd dm(-3) enhanced the uptake of Fe, both in the absence and presence of OM. PMID:15142779

  10. Temporal and spatial distribution of dissolved copper,lead,zinc and cadmium in the Changjiang Estuary and its adjacent waters

    Institute of Scientific and Technical Information of China (English)

    WANG Changyou; WANG Xiulin; WANG Baodong; ZHANG Chuansong; SHI Xiaoyong; ZHU Chenjian

    2008-01-01

    Heavy metal concentrations were measured in the Changjiang Estuary and its adjacent waters.Results from a systematic survey in April 2002 to March 2003 indicate that the ranges of the concentrations of dissolved copper,lead,zinc and cadmium in the study waters are 1.01~6.86,0.10~0.39,3.17~9.12 and 0.011~0.049 μg/dm3,respectively.Similar to zinc,the behavior of dissolved copper Was essentially conservative,but high seatter has been observed for high salinity samples,which can be attribu-ted to the decomposition or mineralization of organic matter by bacteria.Dissolved lead may have active behavior with an addition at high salinity.Overall concentrations of dissolved cadmium increase with salinity.The mean values of these dissolved metals cal-culated for the surface waters were highcr than those for the middle and bottom ones.External inputs of dissolved heavy metals to the surface waters were the likely explanation for these higher values.The maximum seasonal average values of dissolved copper and zinc were flound in summer,reflecting higher amounts of riverine input in this season.In contrast,the maximum seasonal av-erage values of dissolved lead and copper were found in winter and the lowest ones in summer,respectively,which might be asso-ciated with a combination of low concentration with heterogeneous scavenging.Concentrations of these dissolved metals found for the Changjiang Estuary fall in the range observed for the other estuaries but are noticeably higher than those from uncontaminated rivers,except for cadmium.Compared with observations for the Changjiang Estuary in the last two deeades.it is clear that the Changjiang estuarine waters has been contaminated with copper,lead,zinc and cadmium during China's industuialization,but concentrations of them have decreased in the last few years.

  11. Preparation and thermal decomposition of copper(II), zinc(II) and cadmium(II) chelates with 8-hydroxyquinoline

    OpenAIRE

    Marisa S. Crespi; Clóvis A. Ribeiro; Valentina C. M. Greenhalf; Henrique E. Zorel Jr.

    1999-01-01

    When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II) chelates. Anhydrous copper(II) complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II) and cadmium(II) hydrated complexes are isomorphous and they present different cel...

  12. Determination of dissociation constants of chloride complex acids of bivalent cobalt, zinc, copper and cadmium in TBP from extraction data

    Energy Technology Data Exchange (ETDEWEB)

    Prokuev, V.A.; Belousov, E.A. (Leningradskij Tekhnologicheskij Inst. (USSR); Petrozavodskij Gosudarstvennyj Univ. (USSR))

    1980-12-01

    The calculated method of determining constants of dissociation complex acids of a number of metals (cobalt, copper, zinc and cadmium) in TBP on the basis of known values of element distribution coefficients and degrees of formation of extractive complexes in aqeuous solutions of hydrochloric acid at 25 deg C is suggested. The results of calculations are presented in a table. For H/sub 2/CdCl/sub 4/ the dissociation constant is (10sup(3)Ksub(D)=1.3).

  13. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, Agnes Y. [Sanexen Environmental Services Inc., 1471 Lionel-Boulet Boulevard, Varennes, Quebec J3X 1P7 (Canada)]. E-mail: arenoux@sanexen.com; Rocheleau, Sylvie [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Sarrazin, Manon [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Sunahara, Geoffrey I. [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada)]. E-mail: geoffrey.sunahara@cnrc-nrc.gc.ca; Blais, Jean-Francois [Institut national de la recherche scientifique (INRS-ETE), Centre Eau, Terre et Environnement, 490 rue de la Couronne street, Quebec, Quebec G1K 9A9 (Canada)]. E-mail: blaisjf@ete.inrs.ca

    2007-01-15

    The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction. The toxicity observed after exposure of two plant species, barley (Hordeum vulgare) and ryegrass (Lolium perenne), and a terrestrial invertebrate, Eisenia andrei, to sludge-soil mixtures, disappeared after treatment, although the adverse effects were minor before treatment. The sludge treatment also significantly decreased the bioaccumulation of cadmium, copper, and zinc in the exposed species. For cadmium, maximum tissue concentrations of 0.45 {+-} 0.08 mg/kg in barley, 0.79 {+-} 0.27 mg/kg in ryegrass, and 21.82 {+-} 1.85 mg/kg in earthworm exposed to sludge before treatment decreased after treatment to values similar to those observed with negative controls. - Assessment of a sewage sludge treatment on metal bioavailability as measured by metal speciation, toxicity and bioaccumulation.

  14. Lead, cadmium, zinc, copper and nickel distributions in vegetables and soils of an intensely cultivated area and levels of copper, lead and zinc in the growers

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Czuba, M.; Cunningham, L.

    1974-01-01

    A study has been made of an intensively cultivated horticultural area, in production for less than 40 years since the drainage of the marsh from which it was formed. The muck soil varies in depth from 6 to 30 feet. Heavy applications of fertilizer and pesticides maintain high productivity. Crops include onions, carrots, potatoes, lettuce, celery, cabbage, cauliflower, parsnip and beet. Distribution of the trace heavy metals lead, cadmium, nickel, copper and zinc in the soils, crops and people was studied. The effect of cultivation practices on metal accumulation was determined by comparisons with undrained parts of the marsh. Marked soil profile effects were seen for all metals, especially for Cu. Crop levels revealed that Cu was relatively tightly held in the organic soil compared with the other metals, the order being Cu, Ni, Pb, Zn and Cd. Cadmium and Pb occurred at highest levels in the foliage of salad and leaf crops. Blood metal levels and concentrations in hair of the growers and the workers in packing stations were compared. Significant differenecs occurred for both Pb and Cu. Differences also occurred between males, females and in different age groups. 10 references, 5 figures, 12 tables.

  15. Phytoavailability of Copper, Zinc and Cadmium in Sewage Sludge-Amended Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; GUO Xue-Yan; XU Xing-Hua; ZUO Yu-Bao; WEI Dong-Pu; MA Yi-Bing

    2012-01-01

    The toxicity of trace elements (TEs),such as copper (Cu),zinc (Zn),and cadmium (Cd),often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China.In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS.The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts,respectively.The results from the field experiment showed that the contents of total Zn,Cu,and Cd in the soils increased linearly with SS application rates.With increasing SS application rates,the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau,while there was no significant change of Cd content in the maize grains.The bioconcentration factors of the metals in the grains of wheat and maize were found to be in the order of Zn > Cu > Cd,but for the straw the order was Cd > Cu > Zn.It was also found that wheat grains could accumulate more metals compared with maize grains.The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.

  16. Evaluation of cadmium, copper, zinc, and iron concentrations and tissue distributions in the benthic crab, Dorippe granulata (De Haan, 1841) from Tolo Harbour, Hong Kong.

    Science.gov (United States)

    Depledge, M H; Forbes, T L; Forbes, V E

    1993-01-01

    The distributions of copper, zinc, iron, and cadmium among the tissues of Dorippe granulata were determined. The highest copper concentrations were found in the haemolymph (c. 53 microg ml(-1)) while the highest iron concentrations occurred in the gills (c. 720 microg g(-1) dry weight) and the highest zinc concentrations in the exoskeleton (c. 200 microg g(-1) dry weight). By comparison, concentrations of the non-essential metal, cadmium, were low in all tissues (mean = 10 microg g(-1) dry weight). The highest value was recorded from the midgut gland of a female crab (18.5 microg Cd g(-1) dry weight). Concentrations of copper, zinc, and iron were positively correlated with tissue-hydration levels. Such a relationship was not found for cadmium. The findings are discussed with regard to trace-metal levels found in temperate and tropical brachyurans from clean and polluted localities. PMID:15091832

  17. Preparation and thermal decomposition of copper(II, zinc(II and cadmium(II chelates with 8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Crespi Marisa S.

    1999-01-01

    Full Text Available When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II chelates. Anhydrous copper(II complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II and cadmium(II hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.

  18. Determination of traces of copper, lead, cadmium and zinc in flour and bread samples by ASV method

    International Nuclear Information System (INIS)

    Dry mineralization in quartz furnace was applied for decomposition of organic matrix of flour and bread baked from this samples. The combustion of samples (200-300 mg) was carried out at 550 C during 2-2.5 hours with the addition of 100-200 μl hydrogen peroxide. The residue was dissolved in dilute nitric acid. The determination of heavy metal ions was performed by differential pulse anodic stripping voltametry (DPASV), using HMDE for zinc and copper and FME for lead and cadmium. (author). 12 refs, 2 tabs

  19. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long-Lian, E-mail: Longlian57@163.com [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Lu, Ling [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Pan, Ya-Juan; Ding, Chun-Guang [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Xu, Da-Yong [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Huang, Chuan-Feng; Pan, Xing-Fu [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  20. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    International Nuclear Information System (INIS)

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established

  1. A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments

    International Nuclear Information System (INIS)

    To reconstruct the profiles of heavy metal levels in the South Ocean ecosystem of Antarctica, the concentrations of lead (Pb), copper (Cu), arsenic (As), cadmium (Cd), and zinc (Zn) in seal hairs and lake sediments spanning the past 1500 years from Fildes Peninsula of King George Island and in weathering lake sediments from Nelson Island of West Antarctica were determined. The lead contents in the seal hairs and the weathering sediments show a sharp increase since the late 1800s, very likely due to anthropogenic contamination from modern industries. After the 1980s, the Pb content in seal hairs dropped by one-third, apparently due to the reduced usage of leaded gasoline in the Southern Hemisphere. Copper arises mainly from the weathering process, and its level may be substantially affected by climatic conditions. The concentrations of Cd, As, and Zn do not show any clear temporal trends

  2. A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xuebin [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008 (China); Liu Xiaodong [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); Sun Liguang [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China) and CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: slg@ustc.edu.cn; Zhu Renbin [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xie Zhouqing [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang Yuhong [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); National Institutes of Health, Bethesda, MD 20892 (United States)

    2006-12-01

    To reconstruct the profiles of heavy metal levels in the South Ocean ecosystem of Antarctica, the concentrations of lead (Pb), copper (Cu), arsenic (As), cadmium (Cd), and zinc (Zn) in seal hairs and lake sediments spanning the past 1500 years from Fildes Peninsula of King George Island and in weathering lake sediments from Nelson Island of West Antarctica were determined. The lead contents in the seal hairs and the weathering sediments show a sharp increase since the late 1800s, very likely due to anthropogenic contamination from modern industries. After the 1980s, the Pb content in seal hairs dropped by one-third, apparently due to the reduced usage of leaded gasoline in the Southern Hemisphere. Copper arises mainly from the weathering process, and its level may be substantially affected by climatic conditions. The concentrations of Cd, As, and Zn do not show any clear temporal trends.

  3. Evaluation of Lead, Cadmium, Zinc and Copper Levels in Blood, Hair and Teeth of Children

    International Nuclear Information System (INIS)

    There is a general agreement that children are a population that suffered increased risk of lead (Pb) and cadmium (Cd) exposure with adverse health effects. The aim of this study is to evaluate the environmental exposure to Pb and Cd in children living in Cairo since birth and their effects on other essential elements such as zinc (Zn) and copper (Cu). The relationships between these indicators for exposure and children characteristics such as sex, weight, height, blood pressure and smoking habits of parents were also estimated. Forty children (23 males and 17 females) aged 5-7 years had been included in this study. Levels of elements in the samples were determined using atomic absorption spectroscopy. The levels of Pb in blood (Pb-B), hair (Pb-H) and teeth (Pb-T) were 18.17 ± 5.35 fig/dl, 6.29 ± 2.07 fig/g and 8.07± 1.98 fig/g, respectively. Significant differences were observed between boys and girls as regards Pb-H (P<0.001)and Pb-T(P<0.05). The Cd levels were 0.603 ±0.08 μg/dl in blood (Cd-B), 0.933 ± 0.18 fig/g in hair (Cd-H) and 4.825± 0.57 μg/g in teeth (Cd-T). Boys showed higher significant increases in Cd-B than girls (P < 0.001). Concerning Zn, the levels were 57.43± 6.86 μg/dl,148.18± 11.76μg/g and 100.32± 20.28 μg/dl in blood (Zn-B), hair (Zn-H) and teeth(Zn-T),correspondingly Girls displayed significant higher levels of Zn-H than boys (P < 0.05). Regarding Cu in blood (Cu-B), in hair (Cu-H) and in teeth (Cu-T), they were 113.42± 9.89 μg/dl, 17.9±4.18 μg/g and 10.6± 3.04 μg/g, respectively. Girls showed significant higher levels of Cu-H than boys (P < 0.05). The passive smoking children exhibited significant increased levels of Pb, Cd and Cu in blood, hair and teeth when compared to the non-exposed children. On the other hand, passive smoking leads to decrease in Zn concentrations in the three studied samples. The proper mechanism of Zn affection was explained by interactions with Cd, Pb and Cu. Correlation between Pb and Cd with

  4. Changes in selenium, zinc, copper and cadmium contents in human milk during the time when selenium has been supplemented to fertilizers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kantola, M. [Dept. of Chemistry, Univ. of Kuopio, Kuopio (Finland); Vartiainen, T. [Div. of Environmental Health, National Public Health Inst., Kuopio (Finland); Univ. of Kuopio, Dept. of Environmental Sciences, Kuopio (Finland)

    2001-07-01

    Sodium selenate has been supplemented to all agricultural fertilizers used in Finland since 1984. We followed the changes in selenium, cadmium, zinc and copper content in Finnish human milk between the years 1987 and 1993-1995. A total of 257 milk samples was collected, four weeks after delivery, in two areas: In Helsinki, an urban area, and in Kuopio, a rural area, where elevated copper concentrations have been found in the bedrock. Direct atomic absorption spectrophotometric methods without digestion were used for the analyses. The dependence of trace element content on study time, living area, smoking habits, fish eating frequency, and parity of mothers was studied by analysis of covariance. Inter-element correlations and correlations with mother's age and fat content in milk were studied by partial correlation. Significant increases were observed in mean selenium (16.4 {mu}g/l and 18.9 {mu}g/l, p < 0.001) and in fat contents (3.4% and 4.0%, p < 0.001), whereas significant decreases were seen in mean zinc (3.00 mg/l and 1.47 mg/l, p < 0.001), copper (0.52 mg/l and 0.43 mg/l, p < 0.001) and cadmium contents (0.095 {mu}g/l and 0.062 {mu}g/l, p < 0.01). In 1987, zinc had a positive correlation with copper and fat. Copper correlated inversely with the mothers' age. In 1993-1995, selenium correlated positively with copper, and zinc correlated inversely with mothers' age. Mothers living area had an effect on copper content in milk. Our results confirm that selenium supplementation to fertilizers in Finland has increased the selenium level in human maternal milk and most likely it also has an effect on the zinc and copper concentrations in maternal milk. (orig.)

  5. Contents of cadmium, copper, zinc, and lead in organs of Rhizophora mangle in Sevilla River mouth - Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    In order to determine the contents of cadmium, copper, zinc, and lead in leaves, stalks, and root of Rhizophora mangle, samples from three parcels located in the river Sevilla mouth - Cienaga Grande de Santa Marta, were taken in October 2003. Measures of metals concentrations were made through the Inductively Coupled Plasma Atomic Emission Spectrometry technique (ICP-AES). The results indicated that lead concentration in R. mangle organs was below method detection limit ≤38 g/g) except the absorbent root (16.3 g/g); and significant differences exist in the contents of cadmium, copper, zinc, and lead into R. mangle organs, following this concentration order: absorbent roots ≥ stalk ≥ young leaves ≥adult leaves ≥ aerial roots

  6. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-01

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. PMID:26388376

  7. Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1[OA

    Science.gov (United States)

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.; Götz, Birgit; Küpper, Hendrik

    2009-01-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 μm Cu2+ remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the “sun reaction” type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  8. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    Science.gov (United States)

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  9. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    International Nuclear Information System (INIS)

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed

  10. Synthesis, characterization and thermal studies of nickel (II), copper (II), zinc (II) and cadmium (II) complexes with some mixed ligands

    International Nuclear Information System (INIS)

    Dichloro-(DCA) and trichloroacetate(TCA) -cyclic ligand morpholine (Morph)/thiomorpholine (Tmorph)/methylmorpholine (Mmorph)/dimethyl-piperazine (DMP) complexes of nickel (II), copper (II), zinc (II) and cadmium (II) with the compositions [Ni(tmorph)2(DCA)2], [Ni(tmorph)2 (TCA)2].2H2O, [Cu(DMP)2 (TCA)2],[ML2X2].nH2O where M=ZnII or CdII, L=Morph, DMP or tmorph and X=DCA or TCA and n=O except in case of [Cd (Morph)2 (TCA)2] where n=1 have been synthesised. Some intermediate complexes have been isolated by temperature arrest technique (pyrolysis) and characterised. Configurational and conformational changes have been studied by elemental analyses, IR and electronic spectra, magnetic moment data (in the case of Ni(II) and Cu(II) complexes) and thermal analysis. Ea*, ΔH, and ΔS for the decomposition reaction of these complexes are evaluated and the stability of the complexes with respect to activation energy has also been compared. The linear correlation has been found between Ea* and ΔS for the decomposition of the complexes. (author)

  11. The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio holthius

    Energy Technology Data Exchange (ETDEWEB)

    Keteles, K.A.; Fleeger, J.W. [Louisiana State Univ., Dept. of Biological Sciences, Baton Rouge, LA (United States)

    2001-07-01

    Depuration through ecdysis by grass shrimp, Palaemonetes pugio, was examined by exposure to a sublethal mixture of copper, zinc and cadmium for 72 h, followed by placement in uncontaminated water to molt. Percent eliminated with the exuviae varied for each metal; of the total intermolt body burden, 11% Cu, 18% Zn and 26% Cd was associated with the exuviae. Cu concentrations of intermolt exoskeletons were significantly higher than of the exuviae of post-ecdysis shrimp suggesting that Cu contained in the exoskeleton was reabsorbed before molting. Exuvial Cd concentration was not significantly different than the concentration of the intermolt exoskeleton, suggesting that most Cd in the exoskeleton was depurated with the exuviae. Although Zn whole-body burdens were lower after a molt, Zn losses were most likely due to excretion because exuvial concentrations were significantly lower than in the intermolt exoskeleton. Cu, Cd and Zn concentrations in exuvaie shed in metal-enriched water were significantly higher due to adsorption than exuvaie produced in uncontaminated water. (Author)

  12. Cadmium and zinc

    International Nuclear Information System (INIS)

    Cadmium and zinc are naturally occurring trace metals that are often considered together because of their close geochemical association and similarities in chemical reactivity. The loss of two electrons from an atom of Cd or Zn imparts to each an electron configuration with completely filled d orbitals; this results in a highly stable 2/sup +/ oxidation state. But Cd and Zn differ greatly in their significance to biological systems. Whereas Zn is an essential nutrient for plants, animals, and humans, Cd is best known for its toxicity to plants and as a causative agent of several disease syndromes in animals and humans

  13. Sensitivity of mottled sculpins (Cottus bairdi) and rainbow trout (Onchorhynchus mykiss) to acute and chronic toxicity of cadmium, copper, and zinc

    Science.gov (United States)

    Besser, J.M.; Mebane, C.A.; Mount, D.R.; Ivey, C.D.; Kunz, J.L.; Greer, I.E.; May, T.W.; Ingersoll, C.G.

    2007-01-01

    Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 ??g/L for Missouri sculpins and 37 ??g/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 ??g/L (Missouri) and 1.9 ??g/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 ??g/L) than Missouri sculpins (chronic ChV = 219 ??g/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested. ?? 2007 SETAC.

  14. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  15. DETERMINATION OF ZINC, CADMIUM, LEAD, AND COPPER IN WATER BY ANODIC STRIPPING VOLTAMMETRY

    Science.gov (United States)

    The Tennessee Valley Authority developed a method of differential pulse anodic stripping voltammetry for determining total concentrations of cadmium and lead in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and addition of reagent...

  16. Heavy metals zinc, cadmium, and copper stimulate pulmonary sensory neurons via direct activation of TRPA1

    OpenAIRE

    Gu, Qihai; Lin, Ruei-Lung

    2010-01-01

    Airway exposure to zinc dust and zinc-containing ambient particulates can cause symptoms of airway irritation and inflammation, but the underlying molecular and cellular mechanisms are largely unknown. Transient receptor potential A1 (TRPA1) is selectively expressed in a subpopulation of pulmonary C-fiber afferents and has been considered as a major irritant sensor in the lung and airways. Using whole cell patch-clamp recording and Ca2+ imaging, we have demonstrated that application of ZnCl2 ...

  17. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  18. Reactivity of unsymmetrically substituted natural porphyrins with copper (2), zinc (2) and cadmium (2) nitrates in oxygen-containing organic solvents

    International Nuclear Information System (INIS)

    Complex formation of mesoporphyrin, pyroporphyrin and rhodoporphyrin with copper(2), zinc(2) and cadmium(2) nitrates in acetone, 1.4-dioxane and ethyl acetate at a temperature of 295-318 K was studied. The data obtained were used for estimating constant rates, activation energy and entropy of reaction. By transfer from acetone to dioxane and ethylacetate complex formation rate was decreasing by one-two orders independently of metal cation nature. Solventleveling effect on complex formation is attributed to steric properties of solvate shell of salts

  19. Transport and detoxification of cadmium, copper and zinc in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens

    OpenAIRE

    Leitenmaier, Barbara

    2010-01-01

    SummaryIn this thesis, various aspects on heavy metal accumulation by the hyperaccumulator plant Thlaspi caerulescens have been investigated. T. caerulescens belongs to the family of Brassicaceae and hyperaccumulates zinc. Its ecotype Ganges, originating from Southern France, additionally takes up cadmium actively. It is known from previous studies that hyperaccumulators have highly overexpressed metal transporters and that most of them store the metal in the vacuole of large epidermal cells....

  20. Excretion of urinary cadmium, copper, and zinc in cadmium-exposed and nonexposed subjects, with special reference to urinary excretion of beta2-microglobulin and metallothionein.

    Science.gov (United States)

    Nakajima, Maki; Kobayashi, Etsuko; Suwazono, Yasushi; Uetani, Mirei; Oishi, Mitsuhiro; Inaba, Takeya; Kido, Teruhiko; Shaikh, Zahir A; Nogawa, Koji

    2005-01-01

    The objectives of this study were to examine the association between urinary excretion of cadmium (U-Cd), copper (U-Cu), and zinc (U-Zn) and the severity of two different indicators of renal toxicity (urinary excretion of beta2-microglobulin [U-beta2-MG] and metallothionein [U-MT]) in Cd-exposed subjects compared to controls, and to assess the physiologic mechanisms by which the exposure to environmental Cd affects U-Cd, U-Cu, and U-Zn. The target population included 3508 Cd-exposed and 294 nonexposed participants who received a health survey conducted among the population of the Kakehashi River basin. Increases of U-Cd, U-beta2-MG, and U-MT in the Cd-exposed population were observed relative to excretion of these substances in controls. Regression analysis using a general linear model revealed that the correlations between U-Cd or U-Cu, and U-beta2-MG and between U-Cd, U-Cu or U-Zn, and U-MT were statistically significant in both sexes, but the correlation between U-Zn and U-beta2-MG excretion was significant only in men. These results suggest U-Cd and U-Cu is affected by dysfunction in renal tubular absorption (indicated by U-beta2-MG), whereas not only U-Cd and U-Cu but also U-Zn appear to be a function of renal cellular desquamation (indicated by U-MT). PMID:16327056

  1. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal–metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing (μg/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67–83%; Cu, 68–79% and Zn, 60–76

  2. Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures

    Science.gov (United States)

    Calfee, Robin D.; Little, Edward E.; Puglis, Holly J.; Scott, Erinn L.; Brumbaugh, William G.; Mebane, Christopher A.

    2014-01-01

    The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47 µg Cd/L to 2.62 µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46 µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02 µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51 µg Cu/L to 21.9 µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model–normalized EC50 of 209 µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution.

  3. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  4. Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California.

    Science.gov (United States)

    Jara-Marini, M E; Soto-Jiménez, M F; Páez-Osuna, F

    2009-11-01

    Trophic relationships and heavy metal transference in a coastal subtropical lagoon marine food web were investigated through the use of stable isotopes in food sources and biota. A selective extraction scheme was applied to the surface sediments as an indirect way to evaluate the potential of toxicity of metals. Results showed that cadmium, copper, lead and zinc concentrations were within sediment quality guidelines criteria. Concentrations of these metals in organisms varied widely among functional groups and within the same and closely related taxa. delta(13)C values varied significantly among organisms from different functional groups, while the delta(15)N values varied according with their feeding habits. Cd, Cu, Pb, and Zn were not positively transferred (biomagnification factor web. However, a partial positive transference was observed for Cu and Zn involving three trophic levels (from the phytoplankton to crab as secondary consumer). PMID:19818990

  5. Adsorption of copper, cadmium and zinc on suspended sediments in a stream contaminated by acid mine drainage: The effect of seasonal changes in dissolved organic carbon

    International Nuclear Information System (INIS)

    The release of metal-rich, acidic waters from abandoned mining operations is a major problem in Colorado and throughout the Western United States. In Colorado, over 600 km of stream reach are estimated to be affected by such releases (Wentz, 1974). The metals released adversely affect stream biota, including fish. It is therefore important to understand the chemical processes which influence metal transport in these waters. The report details studies of the role of suspended sediments with respect to the transport of several important trace metals in a stream impacted by acid mine drainage. The role of streambed sediments was studied in the same system as part of an earlier project (Acid Mine Drainage: streambed sorption of copper, cadmium and zinc, PB--93-118263)

  6. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  7. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    International Nuclear Information System (INIS)

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report

  8. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  9. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  10. Aluminium, lead, cadmium and mercury levels in human food chain (in Karnataka, India) and their interaction with micronutrients - Copper, iron, zinc and vitamin A

    International Nuclear Information System (INIS)

    Micronutrient elements are indispensable for the survival of life. Nature and food habits govern the uptake, deposition, metabolic involvement and excretion of metals in human body. In this process, certain non-essential metals like Aluminium (Al), Lead (Pb), Cadmium (Cd) and Mercury (Hg) may accumulate in various organs during the life cycle. Essential trace elements like Copper (Cu), Iron (Fe) and Zinc (Zn), play dual role and they have beneficiary action at biologically optimum concentrations, whereas they affect biological function at very low or higher concentration. High concentration of lead (Pb) arising from automobile exhaust, pesticides, solders, water, dairy products; cadmium (Cd) arising from tanneries, nickel-cadmium batteries, stabilizers in plastic, glazed potteries, and mercury (Hg) arising from refineries, batteries, pesticides, amalgams, paints and industrial waste; are found in food. High concentration of Pb, Cd, Hg and Al are also reported in leafy vegetables grown on sewage run-off in urban areas. Main source of Al in our diet is from drinking water and through use of aluminium utensils for cooking of food. There is a growing concern regarding the human health in developed and developing countries with respect to neurodegenerative disorders and carcinogenic potential caused by heavy metals when their levels exceed the Provisional Tolerable Weekly Intake (PTWI). The PTWI levels (mg/kg body weight) are 7 for Al, 0.025 for Pb, 0.007 for Cd and 0.005 for Hg. Dietary exposure of humans to toxic trace elements leads to their accumulation in various tissues and consequently influence functional ability of essential elements. Studies show that Al, Pb and Cd alter or impair the optimal biological and physiological functions of Fe, Ca, Zn and Cu

  11. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants. PMID:27306449

  12. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    Science.gov (United States)

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. PMID:24632122

  13. Cadmium zinc telluride spectral modeling

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT) detectors are the highest resolution room temperature gamma-ray detectors available for isotopic analysis. As with germanium detectors, accurate isotopic analysis using spectra requires peak deconvolution. The CZT peak shapes are asymmetric, with a long low energy tail. The asymmetry is a result of the physics of the electron/hole transport in the semiconductor. An accurate model of the physics of the electron/hole transport through an electric field will allow the parameterization of the peak shapes as a function of energy. In turn this leads to the ability to perform accurate spectral deconvolution and therefore accurate isotopic analysis. The model and the peak-shape parameterization as a function of energy will be presented

  14. Preparation and characterization of nano-nickel graphite and evaluation of its catalytic properties by immobilization of cadmium, copper and zinc

    International Nuclear Information System (INIS)

    Nano-materials are more effective than conventional catalysts for two reasons. First, their extremely small size (typically 10-80 nanometers) yields a tremendous surface area-to-volume ratio. Also, when materials are fabricated on the nanoscale, they achieve properties not found within their macroscopic counterparts. Graphite carbon of 100-mesh size was used for the preparation of nickel catalyst. Graphite was given acid treatments and dried. Nickel solution was added under an inert atmosphere, heated at 200 degree C and dried under vacuum at 100 degree C overnight. Characterization of the catalyst is described supported by SEM micrographs, XRD and FTIR. The size of nano nickel crystalline was found to be around 9 nm. Cadmium, Copper and Zinc are pollutants if present in the environment above the threshold. Their adsorption on catalyst can be used for the evaluation of catalytic activity of catalyst and also for removal purposes. Adsorption behavior of cadmium, copper and zinc on the nickel catalysts was studied, Effect of pH, shaking time and loading capacity were evaluated. The data was tested for Langmuir, Freundlich and Dubinin- Radushkevich adsorption isotherms. The monolayer sorption capacity and adsorption constant related to the Langmuir isotherm for Cd(II) are (0.61+-0.8)x105 mol g-1 and (8.88+-4.82)x104 L mol-1, for Cu(II) are (65+-2)x10-5 mol g-1 and (12.3+-0.6)x104 L. mol-1, for Zn(II) are (0.4079+-0.01)x10-5 mol g-1 and (11.79+-0.5)x104 L.mol-1.The Freundlich constant l/n and Cm for Cd(II) are 0.0311+-0.016 and 0.0966+-0.018 mmol g-1, for Cu(II) are 0.32+-0.2 and 0.12 +-0.02 mmol g/sup -1/ for Zn(II) are 0.028+-0.002 mmolg/sup -1/ and 0.22+-0.01 respectively. The mean free energy of Cd(II) adsorption on the catalyst is 144.84+-0.20 Kj mol/sup -1/, for Cu(II) is 14.7+-0.3 kJ mol/sup -1/ and for Zn(II) is 18026 Kj mol/sup -1/ which indicates chemical sorption. The effect of temperature was studied and thermodynamic parameters delta H, delta S and delta G

  15. Levels of lead, cadmium, copper, iron, and zinc in deciduous teeth of children living in Irbid, Jordan by ICP-OES: some factors affecting their concentrations.

    Science.gov (United States)

    Alomary, A; Al-Momani, I F; Obeidat, S M; Massadeh, A M

    2013-04-01

    The aim of this study was to measure the concentrations of lead (Pb), cadmium (Cd), copper (Cu), iron (Fe), and zinc (Zn) in deciduous teeth from children living in Jordan and to investigate the affecting factors. Deciduous teeth samples (n = 320, without fillings) were collected from 5- to 12-year-old children and analyzed for Pb, Cd, Cu, Fe, and Zn using inductively coupled plasma-optical emission spectrometry. A questionnaire was used to gather information on each child, such as sex, age, tooth type (incisors, canines, and molars), tooth position within the mouth (upper or lower jaw), caries status, presence of amalgam fillings inside the mouth, type of drinking water (tap water, home purified water, and plant purified water), and zone of residence (close to or far from heavy traffic roads). The mean concentrations of Pb, Cd, Cu, Fe, and Zn were 30.26, 0.55, 6.23, 34.72, and 128.21 μg/g, respectively. Our results indicate that there is a clear relation between the concentrations of the metals analyzed in this study and tooth type, tooth position within the mouth, caries status, presence of amalgam fillings inside the mouth, and type of drinking water. No significant differences in the concentrations of the five metals analyzed were observed due to sex. Our results also show that no significant difference among Pb, Cd, Cu, Fe, and Zn concentrations and age among the ages of 5-6, 7-8, 9-10, and 11-12, except for Pb, which decreases at age 11-12. PMID:22851195

  16. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  17. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions. PMID:25556031

  18. CADMIUM, COPPER, LEAD AND ZINC CONCENTRATIONS IN LOW QUALITY WINES AND ALCOHOL CONTAINING DRINKS FROM ITALY, BULGARIA AND POLAND

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-02-01

    Full Text Available We studied Cu, Cd, Pb and Zn concentrations in low quality wines produced in Bulgaria and Italy and in alcohol containing multi-fruit drinks produced in Poland. All the metals were present in tested products. Cadmium was not detected in Italian and Polish products. In one of the Bulgarian wines cadmium was detected in concentration of 0.004 mg•l-1. Italian wines were not contaminated with Pb. Its concentration was the highest in Polish drinks (0.88±0.52 mg•l-1. The largest and statistically significant differences occurred between Cu and Zn contents. Both metals had the highest concetrations in Italian wines (Cu - 0.13±0.05 mg•l-1; Zn - 0.83±0.56 mg•l-1, and the lowest in Polish products (Cu - 0.04±0.001 mg•l-1; Zn -0.18±0.16 mg•l-1.

  19. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry

    International Nuclear Information System (INIS)

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L-1, 0.3 mL, 0.15% (w/v), 50 deg. C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 μg L-1, respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples.

  20. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Luiz, E-mail: edsonqmc@hotmail.com [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil); Santos Roldan, Paulo dos [Universidade Federal de Alagoas, Campus A.C. Simoes, Av. Lourival Melo Mota, Tabuleiro do Martins, CEP: 57072-970 AL (Brazil); Gine, Maria Fernanda [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)

    2009-11-15

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L{sup -1}, 0.3 mL, 0.15% (w/v), 50 deg. C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 {mu}g L{sup -1}, respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples.

  1. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Pat E. [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Levesque, Christine [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Chénier, Marc; Gardner, H. David [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Jones-Otazo, Heather [Regions and Programs Branch, Health Canada, 180 Queen Street West, Toronto, ON, Canada M5V 3L7 (Canada); Petrovic, Sanya [Contaminated Sites Division, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave West, Ottawa, ON, Canada K1A 0K9 (Canada)

    2013-01-15

    The Canadian House Dust Study was designed to obtain nationally representative urban house dust metal concentrations (μg g{sup −1}) and metal loadings (μg m{sup −2}) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Consistent sampling of active dust of known age and provenance (area sampled) also permitted the calculation of indoor loading rates (mg m{sup −2} day{sup −1} for dust and μg m{sup −2} day{sup −1} for metals) for the winter season (from 2007 to 2010) when houses are most tightly sealed. Geomean/median indoor dust loading rates in homes located more than 2 km away from industry of any kind (9.6/9.1 mg m{sup −2} day{sup −1}; n = 580) were significantly lower (p < .001) than geomean (median) dust loading rates in homes located within 2 km of industry (13.5/13.4 mg m{sup −2} day{sup −1}; n = 421). Proximity to industry was characterized by higher indoor metal loading rates (p < .003), but no difference in dust metal concentrations (.29 ≥ p ≤ .97). Comparisons of non-smokers' and smokers' homes in non-industrial zones showed higher metal loading rates (.005 ≥ p ≤ .038) in smokers' homes, but no difference in dust metal concentrations (.15 ≥ p ≤ .97). Relationships between house age and dust metal concentrations were significant for Pb, Cd and Zn (p < .001) but not for the other four metals (.14 ≥ p ≤ .87). All seven metals, however, displayed a significant increase in metal loading rates with house age (p < .001) due to the influence of higher dust loading rates in older homes (p < .001). Relationships between three measures of metals in house dust – concentration, load, and loading rate – in the context of house age, smoking behavior and urban setting consistently show that concentration data is a useful indicator of the presence of metal sources in the home, whereas dust mass is the overriding influence on metal loadings and loading rates

  2. Zinc, cadmium, and copper mobility and accumulation in reeds (Phragmites australis) in urban sediments from two stormwater infiltration basins

    Science.gov (United States)

    Bedell, J.-P.; Saulais, S.; Delolme, C.

    2012-04-01

    organic matter and metals than "Minerve". For example, Zn contents are equal to 400 mg/kgDW in "Grézieu" whereas it is equal to 80 mg/kgDW in "Minerve". In the most contaminated basin "Grézieu", metals mobility is mainly controlled by their association with carbonates and organic matter. Thus, copper associated with organic matter may represent almost 70% of the total copper content. In the "Minerve" sediment, the metals are distributed on the different sediment components, with very stable associations on the different mineral phases. The reed accumulates more metal in the context of the most contaminated basin (Grézieu), but without any differences in bioconcentration factors. The high metal contents in "Grézieu" sediments limited also the growth of reed. Moreover, for "Grézieu" sediment, characteristics evolve with the seasons. Thus, texture decreases from June to December in parallel with an increase in organic matter and metals in the sediment deposit.

  3. Uptake of cadmium, zinc, lead, and copper by earthworms near a zinc-smelting complex: influence of soil pH and organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.; Edelman, T.; van Beersum, I.; Jans, T.

    1983-04-01

    Soil samples were taken from 31 sites near Eindhoven, The Netherlands, mainly along transects of 1 to 15 km from the nearest zinc smelter. Earthworms (Lumbricus rubellus) were taken from the upper 20 cm soil layer and analyzed from accumulation of Cd, Zn, Pb and Cu by atomic absorption spectrophotometry. Cd, Zn, and Pb appeared to be more strongly accumulated by L. rubellus when present in soil with a low pH value. Cu was the only exception in this regard; its uptake by L. rubellus was not significantly influenced by soil pH. The organic matter content of the soil played a significant role only in the worm uptake of Pb. Soil Pb content, soil pH, and soil organic matter content together accounted for almost 70% of the variance in worm Pb content. The results indicate that L. rubellus accumulates Pb more strongly in soil with a low pH and low organic matter content than in soil with higher values of these parameters. The demonstrated influence of pH and organic matter content on element concentration in earthworms emphasizes the importance of soil factors in governing the entrance of toxic metal elements into the food web. (JMT)

  4. The flotation as separation method of trace amounts of cadmium, copper, zinc, and manganese by means of bromopyrogallol red and o-phemanthroline. Examination of compounds obtained in the floatation process

    International Nuclear Information System (INIS)

    The high degree of concentration obtained during flotation and application of atomic absorption as a method of final determination, being characterized by low determination limits (Cd 0.2 ng/ml; Zn 0.5 ng/ml; Mn 1 ng/ml; Cu 1 ng/ml) have enabled analysis of real containing 10-4-10-6% of trace metals. Various tests were carried out to investigate the composition and structure of the metal-bromopyrogallol red (BPGR)-phenanthroline (fen) systems formed in the aqueous phase. It may be also assumed that cadmium and zinc cations, coordinated by phenanthroline form ion-pairs with the anions of Bromopyrogallol Red whereas copper and manganese form ternary complexes which have two kinds of ligands in the coordination sphere of the cation. (author)

  5. Study on the Uptake of Copper, Cadmium and Zinc by Three Plants around the Gold Mining Area%黄金矿区周围三种植物对土壤中铜、镉和锌的吸收

    Institute of Scientific and Technical Information of China (English)

    李庚飞

    2012-01-01

    测定并分析了陕西省潼关县某黄金生产区及附近不同地区生长的三种植物远志(Polygala tenuifolia Willd.)、灰灰菜(Chenopodium album L)、千金子[ Leptochloa chinensis(L)Nees]体内的Cu、Cd和Zn含量,为确定富集植物修复土壤重金属提供依据.结果表明:三种植物中,千金子对Zn和Cu的富集能力均最高,千金子对Zn的富集系数为11.79,转移系数为0.87;对Cu的富集系数和转移系数分别为5.32和0.90.灰灰菜和远志对Zn的富集能力也较强;三种植物对Cd的富集能力均较弱.%The content of heavy metals in three kinds of plants [ Polygala tenuifolia Willd. ,Chenopodium album L. and Leptochloa chinensis ( L. ) Nees ] grown in the heavy metal polluted soil near the gold mine in Tongguan county, Shanxi, China, were investigated to provide the basis for the heavy metal removal of hyperaccumulators. The results were as follows -. Among three kinds of plants in different places, the concentration of zinc and copper in Leptochloa chinensis (L. )Nees. was the strongest. Its concentration factor and transfer factor to zinc was 11. 79 and 0. 87,respectively. And its concentration factor and transfer factor to copper was 5. 32 and 0. 90, respectively. Chenopodium album L. and Polygala tenuifolia Willd. had a strong concentration capacity to zinc. The three kinds of plants had a weak concentration capacity to cadmium.

  6. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust.

    Science.gov (United States)

    Ogunbileje, J O; Sadagoparamanujam, V-M; Anetor, J I; Farombi, E O; Akinosun, O M; Okorodudu, A O

    2013-03-01

    This study was aimed at investigating the relative abundance of heavy metals in cement dust from different cement dust factories in order to predict their possible roles in the severity of cement dust toxicity. The concentrations of total mercury (Hg), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), manganese (Mn), lead (Pb), iron (Fe) and chromium (VI) (Cr (VI)) levels in cement dust and clinker samples from Nigeria and cement dust sample from the United States of America (USA) were determined using graphite furnace atomic absorption (GFAAS), while Zn and Ca were measured by flame atomic absorption spectrophotometry (FAAS), and Cr (VI) by colorimetric method. Total Cu, Ni and Mn were significantly higher in cement dust sample from USA (pcement dust compared with Nigeria cement dust or clinker (pcement dust and clinker (pMercury was more in both Nigeria cement dust and clinker (pcement dust contain mixture of metals that are known human carcinogens and also have been implicated in other debilitating health conditions. Additionally, it revealed that metal content concentrations are factory dependent. This study appears to indicate the need for additional human studies relating the toxicity of these metals and their health impacts on cement factory workers. PMID:23261125

  7. Urinary excretion of cadmium and zinc among persons from Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.G.; Kjellstrom, T.; Linnman, L.; Pershagen, G.

    1978-06-01

    Cadmium and zinc concentrations in the urine of 132 Swedes, including 50 pairs of identical twins, were measured. Atomic absorption spectrophotometry procedures were developed for the analysis. Cadmium concentration increased with age and was higher among smokers than among nonsmokers. Estimated 24-hr excretion of cadmium among nonsmokers increased from about 0.25 to 0.40 ..mu..g in persons from 20 to 70 years old. The 24-hr cadmium excretions among nonsmokers in different age-groups fitted better to total kidney burden than to daily cadmium intake from food. Zinc excretion, on the other hand, decreased after the age of 20.

  8. An experimental study of the retention of zinc, zinc-cadmium mixture and zinc-65 in the presence of cadmium in Anguilla anguilla (L.)

    International Nuclear Information System (INIS)

    Zinc uptake was studied in eels in fresh water, using stable zinc, a zinc-cadmium mixture, and zinc 65 in the presence of small amounts of cadmium. The zinc content in the eel began to increase after 45 days only, and reached approximately 85 ppm after 76 days in water initially containing 5ppm of zinc. At the conclusion of the experiment (76 days), the body organs could be classified in decreasing order in zinc content (in ppm): kidneys (152), skeleton (133), skin (129), muscles (89), head (80), gills (78), digestive tract (77), liver (63) spleen-heart-air bladder (32), and mucus (15). A comparison of experimental results obtained with the zinc-cadmium mixture and cadmium alone showed that zinc decreased the cadmium content of all organs except the gills. The presence of cadmium in water did not inhibit zinc uptake. As cadmium content in water increased, then zinc content in the digestive tract and the kidneys decreased and in all cases remained lower than when zinc alone was present. In the presence of cadmium the percentage of zinc in the kidneys was always lower than the value obtained for zinc alone, and that of the digestive tract did not increase. Contamination of eels treated with 18 and 50ppb of cadmium for 29 days, then contaminated by zinc-65 (5μCi/l) while maintaining the same low cadmium content, showed no significant difference in zinc 65 uptake in the two groups. The same applied to the body organs, and particularly the digestive tract and kidneys, where the highest activity levels were observed. By weight, muscles represented approximately 30% of the total contamination after 45 days

  9. Zinc and cadmium oxidation by cyclopentadienylmolybdenum(tungsten) tricarbonyl chlorides

    International Nuclear Information System (INIS)

    Influence of the nature of organic solvent on reaction rate and yield of zinc and cadmium interaction products with Cp(CO)3 MCl complexes (Cp - cyclopentadiene; M = Mo, W) at temperatures of 283-303 K was studied. Kinetic parameters of zinc and cadmium oxidation by molybdenum complex in the presence of N,N-dimethylformamide were ascertained. Thermodynamic parameters of the oxidant and ligand adsorption on metal surface were determined. It is shown that the use of the complexes studied as metal oxidants permits preparing compounds featuring molybdenum and tunsten bond with zinc and cadmium

  10. Copper-cadmium interaction in mice: effects of copper status on retention and distribution of cadmium after cadmium exposure

    International Nuclear Information System (INIS)

    The role of increased dietary copper in altering the accumulation of cadmium and other metals in tissues, was investigated. Female Swiss-Webster mice were pretreated with cadmium or copper in drinking water for three weeks prior to cadmium exposure for an additional nine weeks, with sub groups from each dose level receiving Cu additions to the Cd supplemented water. In Cd pretreated animals, a significant decrease was observed in Cd concentrations in liver and kidney when Cu was added to Cd in drinking water. Cadmium levels in soluble protein fractions of liver of animals administered 5 ppm Cd were approximately three fold greater than that for the same Cd dose when Cu was added. The same was the case for the metallothionein-like protein fraction (MTP) of the liver cytosol. In copper pretreated animals similar trends were noted in that brain, spleen, liver (but not kidney) Cd levels were decreased in animals receiving Cu additions to the Cd dose. Increased binding of Cd to the MTP fraction was observed after both in vivo and in vitro exposure of intestinal mucosal cells to cadmium

  11. Cadmium and zinc relationships in kidney cortex, liver, and pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.G.; Piscator, M.; Linnman, L.

    1977-06-01

    Zinc and cadmium have been determined in kidney cortex, liver, and pancreas from 292 subjects autopsied in Stockholm, Sweden. In the liver and pancreas zinc was found to have a normal frequency distribution, average 45.3 ..mu..g/g and 26.9 ..mu..g/g wet wt, respectively. The concentrations of zinc in these two organs were constant regardless of age at death. Zinc was shown to accumulate with age in the kidney cortex in a way similar to cadmium, and had a log-normal distribution. The calculation of the regression line between individual cadmium concentrations below 60 ..mu..g/g and zinc concentrations gave a slope constant of 0.61 (Y/sub Zn/ = 0.61 X/sub Cd/ + 24.4), which corresponds to a nearly equimolar increase of zinc. The concentrations of ''physiological zinc,'' i.e., total zinc minus the zinc related to cadmium, were normally distributed (anti x = 24.6 ..mu..g Zn/g) and did not change with age. Furthermore, data on dry weight/wet weight ratios and ash weight/dry weight ratios in relation to age are presented.

  12. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri

    OpenAIRE

    Küpper, Hendrik; Lombi, Enzo; Zhao, Fang Jie; McGrath, Steve P.

    2000-01-01

    The in vivo substitution of magnesium, the central atom of chlorophyll, by heavy metals (mercury, copper, cadmium, nickel, zinc, lead) leads to a breakdown in photosynthesis and is an important damage mechanism in heavy metal-stressed plants. In this study, a number of methods are presented for the efficient in situ detection of this substitution (i.e. in whole plants or in chloroplasts). While macroscopic observations point to the formation of heavy metal chlorophylls at higher concentration...

  13. Cadmium and zinc reversibly arrest development of Artemia larvae

    Energy Technology Data Exchange (ETDEWEB)

    Bagshaw, J.C.; Rafiee, P.; Matthews, C.O.; MacRae, T.H.

    1986-08-01

    Despite the widespread distribution of heavy metals such as cadmium and zinc in the environment and their well-known cytotoxicity and embryotoxicity in mammals, comparatively little is known about their effect on aquatic organisms, particularly invertebrates. Post-gastrula and early larval development of the brine shrimp, Artemia, present some useful advantages for studies of developmental aspects of environmental toxicology. Dormant encysted gastrulae, erroneously called brine shrimp eggs, can be obtained commercially and raised in the laboratory under completely defined conditions. Following a period of post-gastrula development within the cyst, pre-nauplius larvae emerge through a crack in the cyst shell. A few hours later, free-swimming nauplius larvae hatch. Cadmium is acutely toxic to both adults and nauplius larvae of Artemia, but the reported LC50s are as high as 10 mM, depending on larval age. In this paper the authors show that pre-nauplius larvae prior to hatching are much more sensitive to cadmium than are hatched nauplius larvae. At 0.1 ..mu..m, cadmium retards development and hatching of larvae; higher concentrations block hatching almost completely and thus are lethal. However, the larvae arrested at the emergence stage survive for 24 hours or more before succumbing to the effects of cadmium, and during this period the potentially lethal effect is reversible if the larvae are placed in cadmium-free medium. The effects of zinc parallel those of cadmium, although zinc is somewhat less toxic than cadmium at equal concentrations.

  14. State and prospects of using extraction and sorption in the production of zinc and cadmium

    International Nuclear Information System (INIS)

    As applicable to the hydrometallurgy of zinc and cadmium, some extractive agents and sorbent are considered, as well as the appropriate extraction and sorption equipment, which may be used in separate modifications of the following branches of industry: rare-earth metal production, purification of solutions from copper, cadmium, nickel, cobalt, antimony, and arsenic, purification of sulphuric acid and industrial gases, as well as of washing and drainage waters. It is noted that for an extensive inculcation of the processes of extraction and sorption into the hydrometallurgy of zinc and cadmium it is necessary to organize and expand the production of inexpensive, high-selectivity ionites to extract small amounts of indium, gallium, germanium, nickel, copper, and cobalt from highly-concentrated solutions of zinc sulphate and also to extract these and other elements (such as mercury, arsenic, antimony, chlorine, and selenium) from solutions of sulphuric acid and sulphatic drainage waters. It is also necessary that the industry turns out high-efficiency extraction and sorption apparatus. The development of methods of automatic control over the industrial processes and the production of suitable instruments for control and measurement and automatic equipment are required as well

  15. Adsorption mechanism of copper and cadmium onto defatted waste biomass.

    Science.gov (United States)

    Ogata, Fumihiko; Tominaga, Hisato; Yabutani, Hitoshi; Kawasaki, Naohito

    2011-01-01

    In this study, the amount of copper or cadmium adsorbed using waste biomass (i.e., coffee grounds (CG) and rice bran (RB)) was investigated. The amount of crude protein in defatted CG (D-CG) or RB (D-RB) was greater than that in CG or RB, respectively. The amount of copper or cadmium adsorbed using CG was greater than that using RB. Additionally, the amount of copper or cadmium adsorbed was not affected by the presence of fat in CG. Adsorption data was fitted to the Freundlich equation, and the correlation coefficients were in the range of 0.794-0.991. The main adsorption mechanism was thought to be monolayer adsorption onto the surface of the waste biomass. The adsorption rate data was fitted to the pseudo-second-order model, and the correlation coefficient average was in the range of 0.891-0.945. This result showed that the rate-limiting step may be chemisorption. Moreover, the amount of copper or cadmium desorbed from CG or RB using 0.01 mol/L or 1.00 mol/L HNO(3) was investigated. Desorption with 0.01 mol/L HNO(3) resulted in the recovery of 86-97% of the copper and cadmium, indicating that copper or cadmium that was adsorbed using waste biomass was recoverable. PMID:21701100

  16. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  17. in situ immobilization of Cadmium and zinc in contaminated soils

    NARCIS (Netherlands)

    Osté, L.A.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.It is generally assumed that a decrease in metal c

  18. Toxicity of cadmium and zinc to encystment and in vitro excystment of Parorchis acanthus (Digenea: Philophthalmidae)

    OpenAIRE

    Morley, N.J.; Crane, M.; Lewis, J W

    2001-01-01

    The toxicity of cadmium, zinc and cadmium}zinc mixtures at concentrations ranging from 1000 to 50000 lg}l were investigated against cercariae and metacercariae of Parorchis acanthus obtained from the dog whelk Nucella lapillus. Cercarial encystment at concentrations of 25000 lg}l or higher was signi®cantly impaired by all test metals; however, at lower concentrations only zinc demonstrated toxicity. Mixtures of cadmium and zinc had a synergistic effect compared with single metal toxicity but ...

  19. Copper and zinc concentrations in serum of healthy Greek adults

    International Nuclear Information System (INIS)

    Serum copper and zinc concentrations of 506 (414 males and 92 females) apparently healthy Greek blood donors aged 18-60 years old were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 115.46 ± 23.56 μg/dl and 77.11 ± 17.67 μg/dl, respectively. The mean value for copper and zinc in females was higher than in males, although the difference for zinc was smaller than the one observed for copper. When the subjects were divided into various age groups there appeared to be some increase in copper concentration as a function of age, whereas zinc concentration did not change. There were no significant variations in serum copper and zinc concentrations due to place of residence, occupation and socioeconomic status. This study is the first one evaluating the serum status of copper and zinc in healthy Greeks and it has shown that they are at the highest concentration range for copper and the lowest for zinc compared to literature data on copper and zinc levels for various countries

  20. Copper and zinc concentrations in serum of healthy Greek adults

    Energy Technology Data Exchange (ETDEWEB)

    Kouremenou-Dona, Eleni [A' Hospital of IKA, Athens (Greece); Dona, Artemis [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)]. E-mail: artedona@med.uoa.gr; Papoutsis, John [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece); Spiliopoulou, Chara [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)

    2006-04-15

    Serum copper and zinc concentrations of 506 (414 males and 92 females) apparently healthy Greek blood donors aged 18-60 years old were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 115.46 {+-} 23.56 {mu}g/dl and 77.11 {+-} 17.67 {mu}g/dl, respectively. The mean value for copper and zinc in females was higher than in males, although the difference for zinc was smaller than the one observed for copper. When the subjects were divided into various age groups there appeared to be some increase in copper concentration as a function of age, whereas zinc concentration did not change. There were no significant variations in serum copper and zinc concentrations due to place of residence, occupation and socioeconomic status. This study is the first one evaluating the serum status of copper and zinc in healthy Greeks and it has shown that they are at the highest concentration range for copper and the lowest for zinc compared to literature data on copper and zinc levels for various countries.

  1. Copper and zinc concentrations in serum of healthy Greek adults.

    Science.gov (United States)

    Kouremenou-Dona, Eleni; Dona, Artemis; Papoutsis, John; Spiliopoulou, Chara

    2006-04-15

    Serum copper and zinc concentrations of 506 (414 males and 92 females) apparently healthy Greek blood donors aged 18-60 years old were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 115.46+/-23.56 microg/dl and 77.11+/-17.67 microg/dl, respectively. The mean value for copper and zinc in females was higher than in males, although the difference for zinc was smaller than the one observed for copper. When the subjects were divided into various age groups there appeared to be some increase in copper concentration as a function of age, whereas zinc concentration did not change. There were no significant variations in serum copper and zinc concentrations due to place of residence, occupation and socioeconomic status. This study is the first one evaluating the serum status of copper and zinc in healthy Greeks and it has shown that they are at the highest concentration range for copper and the lowest for zinc compared to literature data on copper and zinc levels for various countries. PMID:15955548

  2. Does copper reduce cadmium uptake by different rice genotypes?

    Institute of Scientific and Technical Information of China (English)

    CUI Yujing; ZHANG Xuhong; ZHU Yongguan

    2008-01-01

    A hydroponics experiment was conducted to investigate the effect of copper (Cu) on cadmium (Cd),calcium (Ca),iron (Fe),and zinc (Zn) uptake by several rice genotypes.The experiment was carried out as a 2×2×4 factorial with four rice genotypes and two levels of Cu and Cd in nutrient solution.Plants were grown in a growth chamber with controlled environment.The results showed a significant difference between the biomass of different rice genotypes (P<0.001).The Cd and Cu concentration in the solution had no significant effect on the biomass.The addition of Cu significantly decreased Cd uptake by shoots and roots of rice (P<0.001).The Cd concentration did not significantly influence Ca uptake by plants,whereas the Cu concentration did (P=0.034).There was a significant influence of Cd on Fe uptake by shoots and roots (P<0.001,P=0.003,respectively).Zn uptake decreased significantly as the addition of Cd and Cu increased in shoots.We concluded that Cu had significant influence on Cd uptake.The possible mechanisms were discussed.

  3. Cadmium accumulation by Axonopus compressus (Sw.) P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil

    OpenAIRE

    Paitip Thiravetyan; Vibol Sao; Woranan Nakbanpote

    2007-01-01

    This research investigated the phyto-remediation potentials of Cyperus rotundas Linn (Nutgrass) and Axonopus compressus (Sw.) P. Beauv (Carpetgrass) for cadmium removal from cadmium solution andcadmium-zinc contaminated soil. Plants growth in the solution showed that cadmium decreased the relative growth rate of both grasses. However, the amount of cadmium accumulated in shoot and root was increasedwith the increase in cadmium concentration and exposure time. Growth in fertile soil mixed with...

  4. The Cadmium Zinc Telluride Imager on AstroSat

    CERN Document Server

    Bhalerao, V; Vibhute, A; Pawar, P; Rao, A R; Hingar, M K; Khanna, Rakesh; Kutty, A P K; Malkar, J P; Patil, M H; Arora, Y K; Sinha, S; Priya, P; Samuel, Essy; Sreekumar, S; Vinod, P; Mithun, N P S; Vadawale, S V; Vagshette, N; Navalgund, K H; Sarma, K S; Pandiyan, R; Seetha, S; Subbarao, K

    2016-01-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZT's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to > 200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17' over a 4.6 deg x 4.6 deg (FWHM) field of view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarisation above ~100 keV, with exciting possibilities for polarisation studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  5. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    Science.gov (United States)

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals. PMID:25051614

  6. In vitro complexes of copper and zinc with chlorophyll

    OpenAIRE

    JELENA PETROVIC; GORAN NIKOLIC; DEJAN MARKOVIC

    2006-01-01

    Complexes of copper and zinc with chlorophyll, the major photosynthesis pigment, were studied by Vis, FTIR and fluorescence spectroscopy. Two types of complexes were recognized. While copper replaces the central magnesium atom of chlorophyll to form a “central” Cu–Chl complex, this was not proposed in the case of zinc. Instead, the zinc-mediated formation of a 6-membered chelate cycle fused at the periphery of the chlorophyll structure is proposed. The latter event could be ascribed to allome...

  7. in situ immobilization of Cadmium and zinc in contaminated soils

    OpenAIRE

    Osté, L. A.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.It is generally assumed that a decrease in metal concentration in the soil solution reduces metal leaching, and metal uptake by and toxicity to plants and soil organisms. In situ immobilization is a soil remediation technique that aims at reducing the metal conc...

  8. Zinc-Nickel Codeposition in Sulfate Solution Combined Effect of Cadmium and Boric Acid

    Directory of Open Access Journals (Sweden)

    Y. Addi

    2011-01-01

    Full Text Available The combined effect of cadmium and boric acid on the electrodeposition of zinc-nickel from a sulfate has been investigated. The presence of cadmium ion decreases zinc in the deposit. In solution, cadmium inhibits the zinc ion deposition and suppresses it when deposition potential value is more negative than −1.2 V. Low concentration of CdSO4 reduces the anomalous nature of Zn-Ni deposit. Boric acid decreases current density and shifts potential discharge of nickel and hydrogen to more negative potential. The combination of boric acid and cadmium increases the percentage of nickel in the deposit. Boric acid and cadmium.

  9. Analysis of Serum Zinc and Copper Concentrations in Hair Loss

    OpenAIRE

    Kil, Min Seong; Kim, Chul Woo; Kim, Sang Seok

    2013-01-01

    Background It is well known that some trace elements such as zinc and copper play a significant role in many forms of hair loss. However, the effect of zinc and copper in the pathogenesis of hair loss is still unknown. Objective The purpose of this study is to evaluate the zinc and copper status in each of four types of hair loss. Methods A study was carried out with 30 health controls and 312 patients who were diagnosed with alopecia areata (AA), male pattern hair loss, female pattern hair l...

  10. Non-hydrothermal synthesis of copper-, zinc- and copper-zinc hydrosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Yurieva, T.M.; Kustova, G.N.; Minyukova, T.P.; Demeshkina, M.P.; Plyasova, L.M.; Krieger, T.A.; Zaikovskii, V.I. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Poels, E.K.; Bliek, A. [Amsterdam Univ. (Netherlands)

    2001-06-01

    Cu/SiO{sub 2}, Zn/SiO{sub 2} and Cu-Zn/SiO{sub 2} samples have been prepared by the homogeneous deposition-precipitation method. The samples were analyzed by thermal analysis, X-ray diffraction and infrared spectroscopy after various heat treatments and compared with data obtained for several minerals. It has been shown that interaction between the components occurs through formation of hydrosilicates. Copper-silica system at a Cu:Si ratio {<=} 1, gives rise to a hydrosilicate stable up to a calcination temperature of 930 K resembling the mineral Chrisocolla; at higher ratios a hydroxonitrate (gerhardite type) is also formed. Zinc-silica interaction produces two hydrosilicates such as a well crystallized Hemimorphite at Zn:Si = 2 and highly dispersed Zincsilite at Zn:Si {<=} 0.75, both stable up to 1073 K. The Zincsilite structure consists of three layered sheets (an octahedral layer sandwiched by two tetrahedral ones) like the Stevensite mineral group. For the copper-zinc-silica system no copper hydrosilicate is formed. Copper merely enters the Zincsilite structure independenly of the applied (Cu + Zn):Si ratio. (orig.)

  11. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-09-01

    Full Text Available In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV, anodic stripping voltammetry(ASV and electrochemical quartz crystal microbalance(EQCM. The obtained results were compared with electrochemical impedance spectroscopy(EIS measurements. CV, EQCM and EIS results suggest that the UPD of cadmium starts below potential −0.4 V vs Ag/AgCl. Additionally the stripping analysis indicates the formation of cadmium monolayer with different density of deposited atoms depending on the applied potential. The transition from UPD to bulk deposition occurs below potential −0,7 V.

  12. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  13. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  14. Determination of traces of cadmium in zinc by flameless atomic absorption spectrophotometry after extraction

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, A.; Willmann, K.H.; Simon, F.J.

    1985-01-01

    The suitability of dithizone, diethyldithiocarbamate and tetramethylendithiocarbamate as chelating agents for the extraction-photometric cadmium determination by flameless atomic absorption spectrophotometry in the presence of zinc was investigated. It has been found that the extraction of the dithizone chelate by carbon tetrachloride permits an uninfluenced determination of cadmium in the presence of a zinc excess up to 10/sup 5/. Therefore the use of flameless atomic absorption spectrophotometry raises the selectivity as compared to photometry, because photometry only permits a 1000-fold excess of zinc. With this method 2x10/sup -4/% of cadmium in zinc can be determined without further corrections of matrix effects.

  15. Jiangxi Copper Marching into Lead-zinc Industry

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On November 13,Jiangxi Copper officially signed transfer agreement on the share rights of lead-zinc mines with Jiangxi Provincial Geol- ogy & Mineral Resources Bureau,marking the beginning of full-strategic cooperation between the two parties for the common exploitation of lead-zinc industry in the province. The Jiangxi Province is rich in lead-zinc re- sources,but most of them are in scattered lay-

  16. Levels of lead, cadmium and zinc in vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Haegglund, J.; Jorhem, L.

    1976-01-01

    The concentrations of lead, cadmium and zinc have been determined in 455 samples of fresh fruit, vegetables and mushrooms by dry ashing and atomic absorption spectrophotometry. The lead content in all samples was in the range < 0.001-0.288 mg/kg, the mean being 0.02 mg/kg. Leaf vegetables (lettuce and spinach) showed higher values, mean 0.04 mg/kg. The mean values of the cadmium content in fruit, green vegetables, potatoes and root vegetables were 0.003, 0.013, 0.016 and 0.038 mg/kg respectively. The zinc contents were in the ppm range. The ratio Zn/Cd was also determined in some samples. All values concern edible parts and are calculated on wet weight basis. The fruit and vegetables were estimated to constitute about 2 percent and 8 percent respectively of the provisional tolerable weekly intake of these metals recommended by an FAO/WHO Expert Committee.

  17. Cadmium and zinc capture capacity by bacteria, microalgae and yeast

    Directory of Open Access Journals (Sweden)

    María Elena Carballo

    2012-09-01

    Full Text Available The elimination of toxic heavy metals present in wa-tery solutions has been performed with the employ-ment of biosorbent materials coming from microbial sources, considering the capacities they have for the metallic ions uptake. Microbial sivings to deter-mine metal uptake level is the base in order to find appropriate biosorbents for its application in this process, aspect that has been the principal objective in the present work. The cadmium and zinc uptake capacity was evaluated in different microorganisms such as Gram positive and Gram negative bacterias, phototrophic bacteria, microalgae and yeasts. The capture levels of both metals were variable among the strains, which indicate different uptake capaci-ties of cadmium and zinc. The best biosorbents from 64 analyzed microorganisms were: isolated bacteria CB-M4 y A-6, Pseudomonas mendocina, Anabaena sp. PCC 7120, Anabaena variabilisATCC 29413, Chloroglocopsis fritschii, Chaetoceros ceratospho-rus, Tetraselmis suesica,isolated microalgae CM3, CM5, CM6 y CMV and the strains 10 and 12 of the yeast Saccharomyces cerevisiae.

  18. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    Science.gov (United States)

    Bolotnikov, Aleskey E.; James, Ralph B.

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  19. Metagenomic analysis of cadmium and copper resistance genes in activated sludge of a tannery wastewater treatment plant.

    Science.gov (United States)

    Jia, Shuyu; Wang, Zhu; Zhang, Xu-Xiang; Liu, Bo; Li, Weixin; Cheng, Shupei

    2013-04-01

    In order to comprehensively characterize the copper and cadmium resistance in activated sludge of a tannery wastewater treatment plant, a resistance protein database of the two heavy metals was manually created by retrieving annotated sequences and related information from the public databases and published literatures. The metagenomic DNA was extracted from the activated sludge for Illumina high-throughput sequencing, and the obtained 11,973,394 clean reads (1.61 Gb) were compared against the established databases using BLAST tool. Annotations of the BLAST hits showed that 222 reads (0.019 per thousand) and 197 reads (0.016 per thousand) were identified as copper and cadmium resistance genes, respectively. Among the identified cadmium resistance genes, czcA encoding cobalt-zinc-cadmium resistance protein had the highest abundance (83 reads, 0.0069 per thousand), which was further confirmed by annotation of the open reading frames predicted with the assembly contigs. Among the copper resistance genes, copA (66 reads, 0.0055 per thousand) was most abundant, followed by copK and cusR. Alignment against the Clusters of Orthologous Groups (COG) database also suggested that 87.26% of the matched reads were grouped in COG0474 (cation transport ATPase). This study may be practically helpful for exploring various functional genes in the environment using high-throughput sequencing and bioinformatics methods. PMID:24620608

  20. Cadmium accumulation by Axonopus compressus (Sw. P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil

    Directory of Open Access Journals (Sweden)

    Paitip Thiravetyan

    2007-05-01

    Full Text Available This research investigated the phyto-remediation potentials of Cyperus rotundas Linn (Nutgrass and Axonopus compressus (Sw. P. Beauv (Carpetgrass for cadmium removal from cadmium solution andcadmium-zinc contaminated soil. Plants growth in the solution showed that cadmium decreased the relative growth rate of both grasses. However, the amount of cadmium accumulated in shoot and root was increasedwith the increase in cadmium concentration and exposure time. Growth in fertile soil mixed with Cd-contaminated zinc silicate residue (65% Si, 19% Ca, 2% Zn, 1% Mg and 0.03% Cd at the ratio of 50:50 (w/wfor 30 days showed that C. rotundas Linn accumulated cadmium in root and shoot to 2,178 and 1,144 mg kg-1 dry weight, respectively. A. compressus (Sw. P. Beauv accumulated cadmium in root and shoot to 1,965and 669 mg kg-1 dry weight, respectively. Scanning electron microscope connected to energy-dispersive X-ray spectroscopy suggested that the mechanism of cadmium accumulation by both grasses involved thecadmium precipitation in the stable form of cadmium silicate, which indicated that C. rotundas Linn and A. compressus (Sw. P. Beauv could be grown to prevent soil erosion and to remediate cadmium-contaminatedsoil.

  1. Complexes of zinc, cadmium and mercury with some schiff bases

    International Nuclear Information System (INIS)

    Two type of complexes with different stoichiometries were isolated for zinc (II), cadmium(II) and mercury (II). These complexes having the general formulate [M (H2L)] X2 and [M(L)] (where H2L and L represent the neutral and dibasic from of the ligand derived from the condensation of benzoin with o-phenylene diamine and X2 CI- or NO3-) were prepared by the reaction of the mentioned metal salts with the ligand in both neutral and alkaline solutions. Characterization of the complexes was carried out by analytical, spectral and physical studies. In type I complexes, the ligand coordinates through both azomethine nitrogen and alcohlic oxygen atoms acting as neutral tetradentate. For type II complexes, the coordination occurs through both azomethine nitrogen and deprotonated alcoholic oxygen atoms, for which the ligand acts as dibasic tetradentate. In all complexes, the metal ions are tetracoordinated with the most probable tetrahedral geometry (author). 17 refs.; 1 fig., 3 tabs

  2. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  3. Evaluation of liquid structure for potassium, zinc and cadmium

    International Nuclear Information System (INIS)

    The main aim of this work is to give a theoretical interpretation for the 'anomalous' liquid structure factors of Zinc and Cadmium near freezing and for their variation with temperature, as contrasted with the 'normal' behaviour of a liquid metal such as Potassium. Using an ab initio Generalised Nonlocal Model Pseudopotential and with two alternative exchange-correlation functions for electronic screening, we construct interionic pair potentials for the above metals. These are then used for liquid structure calculations within two alternative integral-equation schemes of considerable refinement, namely the modified hypernetted chain approach of Y. Rosenfeld and N.W. Ashcroft (Phys. Rev. A 20, 1208 (1979)) and the hybridization of the hypernetted chain and the soft-core mean spherical approximations as proposed by G. Zerah and J.P. Hansen (J. Chem. Phys. 84, 2336 (1986)). The comparison between the theoretical results for the temperature dependence of the liquid structure factor of Potassium and very recent neutron diffraction data gives us confidence on the high reliability of the pseudopotential in the present integral-equation schemes. The same approach is then extended to investigate the liquid structure factors for Zinc and Cadmium near their freezing temperature and at a few temperatures above freezing. We find that the asymmetric shape of the main peak in the structure factor of these elements near freezing can be understood in terms of the role of the medium and long-range interaction parts in the pair potential. Our results also shed some light on the subtle changes of the liquid structure of these divalent metals with temperature, and specifically on the thermal influence in restoring the skewed shape of the main peak back to a normal symmetric shape at much higher temperatures. (author). 67 refs, 15 figs, 5 tabs

  4. Sorption Kinetics for the Removal of Cadmium and Zinc onto Palm Kernel Shell Based Activated Carbon

    Directory of Open Access Journals (Sweden)

    Muhammad Muhammad

    2010-12-01

    Full Text Available The kinetics and mechanism of cadmium and zinc adsorption on palm kernel shell based activated carbons (PKSAC have been studied. A series of batch laboratory studies were conducted in order to investigate the suitability of palm kernel shell based activated carbon (PKSAC for the removal of cadmium (cadmium ions and zinc (zinc ions from their aqueous solutions. All batch experiments were carried out at pH 7.0 and a constant temperature of 30+-1°C using an incubator shaker that operated at 150 rpm. The kinetics investigated includes the pseudo first order, the pseudo-second order and the intraparticle diffusion models. The pseudo-second order model correlate excellently the experimental data, suggesting that chemisorption processes could be the rate-limiting step. Keywords: adsorption, cadmium, kinetics, palm kernel shell, zinc

  5. Deprotonative metallation of ferrocenes using mixed lithium-zinc and lithium-cadmium combinations.

    OpenAIRE

    Dayaker, Gandrath; Sreeshailam, Aare; Chevallier, Floris; Roisnel, Thierry; Radha Krishna, Palakodety; Mongin, Florence

    2010-01-01

    A mixed lithium-cadmium amide and a combination of lithium and zinc amides were reacted with a range of ferrocenes; deprotonative mono- or dimetallation in general occurred chemoselectively at room temperature, as evidenced by subsequent quenching with iodine.

  6. Kinetics of Reductive Acid Leaching of Cadmium-Bearing Zinc Ferrite Mixture Using Hydrazine Sulfate

    Science.gov (United States)

    Zhang, Chun; Zhang, Jianqiang; Min, Xiaobo; Wang, Mi; Zhou, Bosheng; Shen, Chen

    2015-09-01

    The reductive acid leaching kinetics of synthetic cadmium-bearing zinc ferrite was investigated, and the influence of reaction temperature, sulfuric acid and hydrazine sulfate were studied. The results illustrated that an increase in the reaction temperature, initial sulfuric acid and hydrazine sulfate significantly enhanced the extraction efficiencies of cadmium, zinc and iron. The leaching kinetics were controlled by a surface chemical reaction based on a shrinking core model. The empirical equation applied was found to fit well with the kinetics analysis; the leaching processes of cadmium, zinc and iron were similar and the activation energies were 79.9 kJ/mol, 77.9 kJ/mol and 79.7 kJ/mol, respectively. The apparent orders of cadmium-bearing zinc ferrite dissolution with respect to sulfuric acid concentration were 0.83, 0.83 and 0.84 for Cd, Zn and Fe, respectively.

  7. Zinc, cadmium, mercury and selenium in polar bears (Ursus maritimus) from Central East Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R. [Greenland Environmental Research Institute, Copenhagen (Denmark); Born, E.W. [Greenland Fisheries Research Institute, Copenhagen (Denmark); Agger, C.T. [National Environmental Research Institute, Roskilde (Denmark); Nielsen, C.O. [Ravnsnaesvej, Birkerod (Denmark)

    1995-02-01

    Muscle, liver, and kidney tissues from 38 polar bears (Ursus maritimus) caught in the Scoresby Sound area, Central East Greenland, were analysed for zinc, cadmium, mercury and selenium. In general, cadmium concentrations were low in muscle, liver and kidney tissue. This finding can be explained by low cadmium levels in the blubber of ringed seals. The concentration of mercury in muscle tissue was low, whereas concentrations in liver and kidney tissue were relatively high. Mercury and cadmium were positively correlated with age in liver and kidney. Zinc was positively correlated with in kidney, and selenium was correlated with age in liver. Contrary to other marine mammals, polar bears had higher mercury levels in the kidneys than in the liver. In all three tissues polar bears had significantly lower cadmium levels than ringed seals from the same area. Mercury levels were significantly lower in the muscle tissue of polar bears than in ringed seals, where-as levels in the liver and kidney were significantly higher. The previous geographic trend for cadmium and mercury found in Canadian polar bears could be extended to cover East Greenland as well. Hence cadmium levels were higher in Greenland than in Canada, while the opposite was the case for mercury. Greenland polar bears had higher mercury and cadmium contents in livers and kidneys than polar bears from Svalbard. The mercury levels in muscle and liver tissue from polar bears from East Greenland were twice as high as found in bears from western Alaska, but half the levels found in northern Alaska. Cadmium and zinc were partially correlated in kidney tissue, and this was found for mercury and selenium as well. Cadmium and zinc showed molar ratios close to unity with the highest concentrations occurring in kidney tissue, while the levels of zinc exceeded cadmium in muscle and liver tissue by up to several decades. Mercury and selenium showed molar ratios close to unity in liver and kidneys. 56 refs., 5 figs., 6 tabs.

  8. Skeletal concentrations of lead, cadmium, zinc, and silver in ancient North American Pecos Indians.

    OpenAIRE

    Ericson, J E; Smith, D R; Flegal, A R

    1991-01-01

    Bone samples of 14 prehistoric North American Pecos Indians from circa 1400 A.D. were analyzed for lead, cadmium, zinc, and silver by graphite furnace atomic absorption spectrometry to establish the baseline levels of these elements in an ancient North American population. Measurements of outer and inner bone fractions indicate the former were contaminated postmortem for lead, zinc, and cadmium. The contamination-adjusted average (mean +/- SD) level of lead (expressed as the ratio of atomic l...

  9. Induced Positron Annihiliation Investigation of Cadmium Zinc Telluride Crystal Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Akers

    2005-06-01

    Cadmium-Zinc-Telluride (CZT) crystals are used in semiconductor radiation detectors for the detection of x-ray and gamma radiation. However, production of detector grade crystals is difficult as small variations in compositional uniformity and primarily the zinc content can significantly affect the ability of the CZT crystal to function as a radiation detector. Currently there are no known nondestructive methods that can be used to identify detector grade crystals. The current test method is to fabricate and test the detector to determine if the crystal is sufficiently uniform and of the correct composition to be considered a detector grade crystal. Consequently, nondestructive detection methods are needed to identify detector grade crystals prior to the fabrication process. The purpose of this feasibility study was to perform a preliminary assessment of the ability of several new, nondestructive technologies based on Induced Positron Annihilation (IPA) to determine if detector grade CZT crystals can be identified. Results of measurements performed on specimens from Fisk University and EV Products, Inc. indicate that both the near surface Distributed Source Positron Annihilation (up to 3 mm penetration) and the volumetric Photon Induced Positron Annihilation methods may be suitable for determining CZT crystal quality. Further work on CZT crystals with a broader range of compositions and detector characteristics is needed to provide a well defined, calibrated, method for assessing CZT crystal quality.

  10. Changes in copper and zinc status and response to dietary copper deficiency in metallothionein-overexpressing transgenic mouse heart

    OpenAIRE

    Kang, Y. James; Jiang, Youchun; Saari, Jack T.

    2007-01-01

    Previous studies have shown that cardiac-specific overexpression of metallothionein (MT) inhibits progression of dietary copper restriction-induced cardiac hypertrophy. Because copper and zinc are critically involved in myocardial response to dietary copper restriction, the present study was undertaken to understand the effect of MT on the status of copper and zinc in the heart and the subsequent response to dietary copper restriction. Dams of cardiac-specific MT-transgenic (MT-TG) mouse pups...

  11. Study on Extracting Low Concentration Cadmium from Zinc Hydrometallurgy System by Liquid Membrane Crystallizing Technique

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The extraction of low concentration cadmium from a system containing high concentration zinc was studied and got CdS product directly. A new liquid membrane system taking DIPSA, TIBPS as carriers, (NH4)2S as precipitating agent was reported. Precipitating Cd2+ in the internal aq. phase that is used to treat sulfuric acid leaching solution of zinc oxide in zinc hydrometallurgy has gotten satisfied results of extracting cadmium from high concentration zinc. After one-stage of batch process under the optimum liquid membrane conditions, 98.6% transferring rate and 98.1% extracting rate of cadmium was obtained with only less than 1.0% transferring rate of zinc, and the feed solution can be purified very well.

  12. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Sheng, E-mail: Lin.Yu-Sheng@epa.gov [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC (United States); Ho, Wen-Chao [Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (China); Caffrey, James L. [Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX (United States); Sonawane, Babasaheb [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC (United States)

    2014-10-15

    Background: Despite animal evidence suggests that zinc modulates cadmium nephrotoxicity, limited human data are available. Objective: To test the hypothesis that low serum zinc concentrations may increase the risk of cadmium-mediated renal dysfunction in humans. Methods: Data from 1545 subjects aged 20 or older in the National Health and Nutrition Examination Survey (NHANES), 2011–2012 were analyzed. Renal function was defined as impaired when estimated glomerular filtration rate (eGFR) fell below 60 ml/min/1.73 m{sup 2} and/or the urinary albumin-to-creatinine ratio surpassed 2.5 in men and 3.5 mg/mmol in women. Results: Within the study cohort, 117 subjects had reduced eGFR and 214 had elevated urinary albumin. After adjusting for potential confounders, subjects with elevated blood cadmium (>0.53 μg/L) were more likely to have a reduced eGFR (odds ratio [OR]=2.21, 95% confidence interval [CI]: 1.09–4.50) and a higher urinary albumin (OR=2.04, 95% CI: 1.13–3.69) than their low cadmium (<0.18 μg/L) peers. In addition, for any given cadmium exposure, low serum zinc is associated with elevated risk of reduced eGFR (OR=3.38, 95% CI: 1.39–8.28). A similar increase in the odds ratio was observed between declining serum zinc and albuminuria but failed to reach statistical significance. Those with lower serum zinc/blood cadmium ratios were likewise at a greater risk of renal dysfunction (p<0.01). Conclusions: This study results suggest that low serum zinc concentrations are associated with an increased risk of cadmium nephrotoxicity. Elevated cadmium exposure is global public health issue and the assessment of zinc nutritional status may be an important covariate in determining its effective renal toxicity. - Highlights: • Blood cadmium was associated with increased risk of nephrotoxicity. • Low serum zinc may exacerbate risk of cadmium-mediated renal dysfunction. • Both zinc deficiency and elevated cadmium exposure are global public health issues.

  13. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity

    International Nuclear Information System (INIS)

    Background: Despite animal evidence suggests that zinc modulates cadmium nephrotoxicity, limited human data are available. Objective: To test the hypothesis that low serum zinc concentrations may increase the risk of cadmium-mediated renal dysfunction in humans. Methods: Data from 1545 subjects aged 20 or older in the National Health and Nutrition Examination Survey (NHANES), 2011–2012 were analyzed. Renal function was defined as impaired when estimated glomerular filtration rate (eGFR) fell below 60 ml/min/1.73 m2 and/or the urinary albumin-to-creatinine ratio surpassed 2.5 in men and 3.5 mg/mmol in women. Results: Within the study cohort, 117 subjects had reduced eGFR and 214 had elevated urinary albumin. After adjusting for potential confounders, subjects with elevated blood cadmium (>0.53 μg/L) were more likely to have a reduced eGFR (odds ratio [OR]=2.21, 95% confidence interval [CI]: 1.09–4.50) and a higher urinary albumin (OR=2.04, 95% CI: 1.13–3.69) than their low cadmium (<0.18 μg/L) peers. In addition, for any given cadmium exposure, low serum zinc is associated with elevated risk of reduced eGFR (OR=3.38, 95% CI: 1.39–8.28). A similar increase in the odds ratio was observed between declining serum zinc and albuminuria but failed to reach statistical significance. Those with lower serum zinc/blood cadmium ratios were likewise at a greater risk of renal dysfunction (p<0.01). Conclusions: This study results suggest that low serum zinc concentrations are associated with an increased risk of cadmium nephrotoxicity. Elevated cadmium exposure is global public health issue and the assessment of zinc nutritional status may be an important covariate in determining its effective renal toxicity. - Highlights: • Blood cadmium was associated with increased risk of nephrotoxicity. • Low serum zinc may exacerbate risk of cadmium-mediated renal dysfunction. • Both zinc deficiency and elevated cadmium exposure are global public health issues.

  14. Cadmium-induced Cancers in Animals and in Humans

    OpenAIRE

    Huff, James; Lunn, Ruth M.; Waalkes, Michael P.; Tomatis, Lorenzo; Infante, Peter F.

    2007-01-01

    Discovered in the early 1800s, the use of cadmium and various cadmium salts started to become industrially important near the close of the 19th century, rapidly thereafter began to flourish, yet has diminished more recently. Most cadmium used in the United States is a byproduct from the smelting of zinc, lead, or copper ores, and is used to manufacture batteries. Carcinogenic activity of cadmium was discovered first in animals and only subsequently in humans. Cadmium and cadmium compounds hav...

  15. Combined copper/zinc attachment to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  16. 锌铟冶炼过程中镉砷的流向及在废渣中的分布%Flow Direction and Distribution in Waste Residue of Cadmium and Arsenic in Zinc and Indium Smelting Process

    Institute of Scientific and Technical Information of China (English)

    韦岩松; 吕雪丽; 王振峰; 高军

    2014-01-01

    研究了锌铟冶炼过程中镉和砷的流向及在废渣中的分布规律和富集机制。结果表明:在锌、铟冶炼过程中,镉的主要流向为氧粉→中性浸出液→一段铜镉渣→二段铜镉渣→净化渣,砷的主要流向为氧粉→中性浸出渣→酸性浸出液→铟萃取液→反萃取液→中和渣;镉主要集中在一段铜镉渣和二段铜镉渣中,砷则更多集中于中和渣中。锌、铟冶炼过程中,一段铜镉渣和中和渣应重点监测。%The flow direction ,distribution and enrichment mechanism in waste residue of cadmium and arsenic in zinc and indium smelting process were studied .The results showed that in the process of zinc and indium smelting ,the main flow direction of cadmium is oxide flue dust →neutral leaching liquid→first stage copper and cadmium residue→second stage copper and cadmium residue→purification slag . T he main flow direction of the arsenic is oxide flue dust →neutral leaching residue→acid leaching liquid→ indium extraction liquid → back-extraction solution → neutralize residue .Cadmium is mainly concentrated in first stage copper-cadmium residue ,second stage copper-cadmium residue ,arsenic is more enriched in neutralize residue .For all kinds of waste residue in zinc and indium smelting process , the first stage copper-cadmium residue and neutralize residue should be monitored .

  17. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively. PMID:25191877

  18. A combined marginal deficiency of copper and zinc does not exacerbate oxidant stress asssociated with copper or zinc deficiency

    Science.gov (United States)

    Both copper deficiency (Cu-def) and zinc deficiency (Zn-def) result in oxidative stress. Thus, an experiment was conducted to determine whether a marginal Zn-def amplified oxidative stress responses to a marginal Cu-def, or vice versa. Weanling male Sprague-Dawley rats were assigned to groups of 10 ...

  19. Effect of dietary zinc deficiency on the accumulation of cadmium and metallothionein in selected tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, M.P.

    1986-01-01

    The effect of continuous dietary zinc deficiency on the metabolism of the toxic heavy metal cadmium has not been widely studied. This investigation was designed to assess the effects of subadequate dietary zinc intake on the accumulation of dietary cadmium and on metallothionein (MT) and zinc concentrations in target organs of cadmium toxicity. Adult male Wistar rats (180-200 g) were allowed, ad libitum, diets either adequate (60 ppm) or deficient (7 ppm) in zinc for a total of 9 wk. The zinc-deficient diet resulted in an approximately 40% reduction in plasma zinc (assessed at 3, 6, and 9 wk) in the absence of overt signs of zinc deficiency (i.e., reduced weight gain, alopecia, etc.). Separate groups of rats were also maintained on zinc-defined diets for a total of 9 wk, but cadmium was added to the diet (0, 12.5, 25, 50, 100, and 200 ppm) a the end of wk 3 and maintained at that level throughout the remaining 6 wk of the study, when the rats were killed. The feeding of the zinc-deficient diet markedly enhanced the accumulation of cadmium in the liver, kidney, and testes. Hepatic, renal, and testicular zinc concentrations were not affected by suboptimal zinc intake alone. However, marked reductions in renal and testicular zinc concentrations were caused by zinc deficiency in concert with cadmium exposure. MT levels, when related to tissue cadmium concentrations, were elevated to a significantly lesser extent in the kidneys of zinc-deficient animals. These results indicate that marginal zinc deficiency markedly increases cadmium accumulation in various organs and reduces zinc content and MT induction in some organs.

  20. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) and EG ampersand G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems

  1. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lavietes, A.D.; McQuaid, J.H. [Lawrence Livermore National Lab., CA (United States); Paulus, T.J. [EG& G ORTEC, Oak Ridge, TN (United States)

    1995-09-08

    Lawrence Livermore National Laboratory (LLNL) and EG&G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems.

  2. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    International Nuclear Information System (INIS)

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs

  3. Mineralogical Study of a Biologically-Based Treatment System That Removes Arsenic, Zinc and Copper from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Maryam Khoshnoodi

    2013-12-01

    Full Text Available Mineralogical characterization by X-ray diffraction (XRD and a high throughput automated quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN was conducted on samples from a sulphate-reducing biochemical reactor (BCR treating high concentrations of metals (As, Zn, Cu in smelter waste landfill seepage. The samples were also subjected to energy dispersive X-ray (EDX analysis of specific particles. The bulk analysis results revealed that the samples consisted mainly of silicate and carbonate minerals. More detailed phase analysis indicated four different classes: zinc-arsenic sulphosalts/sulphates, zinc-arsenic oxides, zinc phosphates and zinc-lead sulphosalts/sulphates. This suggests that sulphates and sulphides are the predominant types of Zn and As minerals formed in the BCR. Sphalerite (ZnS was a common mineral observed in many of the samples. In addition, X-ray point analysis showed evidence of As and Zn coating around feldspar and amphibole particles. The presence of arsenic-zinc-iron, with or without cadmium particles, indicated arsenopyrite minerals. Copper-iron-sulphide particles suggested chalcopyrite (CuFeS2 and tennantite (Cu,Fe12As4S13. Microbial communities found in each sample were correlated with metal content to describe taxonomic groups associated with high-metal samples. The research results highlight mineral grains that were present or formed at the site that might be the predominant forms of immobilized arsenic, zinc and copper.

  4. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  5. Inhibition of iron and copper uptake by iron, copper and zinc

    OpenAIRE

    MIGUEL ARREDONDO; RONNY MARTÍNEZ; Núñez, Marco T.; MANUEL RUZ; MANUEL OLIVARES

    2006-01-01

    Interactions of micronutrients can affect absorption and bioavailability of other nutrients by a number of mechanisms. In aqueous solutions, and at higher uptake levels, competition between elements with similar chemical characteristics and uptake process can take place. The consequences of these interactions may depend on the relative concentrations of the nutrients. In this work, we measure the effects of increasing concentrations of iron, zinc, and copper on iron and copper uptake in Caco-...

  6. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.

    Science.gov (United States)

    Regmi, Pusker; Garcia Moscoso, Jose Luis; Kumar, Sandeep; Cao, Xiaoyan; Mao, Jingdong; Schafran, Gary

    2012-10-30

    Biochar produced from switchgrass via hydrothermal carbonization (HTC) was used as a sorbent for the removal of copper and cadmium from aqueous solution. The cold activation process using KOH at room temperature was developed to enhance the porous structure and sorption properties of the HTC biochar. The sorption efficiency of HTC biochar and alkali activated HTC biochar (HTCB) for removing copper and cadmium from aqueous solution were compared with commercially available powdered activated carbon (PAC). The present batch adsorption study describes the effects of solution pH, biochar dose, and contact time on copper and cadmium removal efficiency from single metal ion aqueous solutions. The activated HTCB exhibited a higher adsorption potential for copper and cadmium than HTC biochar and PAC. Experiments conducted with an initial metal concentration of 40 mg/L at pH 5.0 and contact time of 24 h resulted in close to 100% copper and cadmium removal by activated HTCB at 2 g/L, far greater than what was observed for HTC biochar (16% and 5.6%) and PAC (4% and 7.7%). The adsorption capacities of activated HTCB for cadmium removal were 34 mg/g (0.313 mmol/g) and copper removal was 31 mg/g (0.503 mmol/g). PMID:22687632

  7. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.

    1991-01-01

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C.The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities can result in conversion efficiencies over 15 percent.

  8. Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium

    International Nuclear Information System (INIS)

    Discovered in late 1817, cadmium is currently one of the most important occupational and environmental pollutants. It is associated with renal, neurological, skeletal and other toxic effects, including reproductive toxicity, genotoxicity, and carcinogenicity. There is still much to find out about its mechanisms of action, bio markers of critical effects, and ways to reduce health risks. At present, there is no clinically efficient agent to treat cadmium poisoning due to predominantly intracellular location of cadmium ions. This article gives a brief review of cadmium-induced oxidative stress and its interactions with essential elements zinc and magnesium as relevant mechanisms of cadmium toxicity. It draws on available literature data and our own results, which indicate that dietary supplementation of either essential element has beneficial effect under condition of cadmium exposure. We have also tackled the reasons why magnesium addition prevails over zinc and discussed the protective role of magnesium during cadmium exposure. These findings could help to solve the problem of prophylaxis and therapy of increased cadmium body burden. (authors)

  9. Texture and Grain-size Effects on Cyclic Plasticity in Copper and Copper-Zinc

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø; Pedersen, O.B.

    A study of plastic strain controlled fatigue of copper and copper-zinc shows that polycrystalline Cu-30%Zn does not display true cyclic saturation and that texture has a major effect on the cyclic stress-strain (CSS) behaviour, whereas grain size has a minor effect. The self-consistent Sachs...... estimate of the CSS curve for polycrystalline Cu-30%Zn lies within 20% of the experimental curve for plastic strain amplitudes up to about 5 × 10−3, as compared with 1 × 10−3 for copper. The increased range of validity of the Sachs model is correlated with slip planarity....

  10. Atmospheric Deposition of Copper and Zinc in Maramures County (Romania)

    OpenAIRE

    Buteana Claudia; Berinde Zoita M.; Mihali Cristina; Michnea Angela M.; Gavra Anamaria; Simionescu Mirela

    2014-01-01

    The need to reduce pollution to levels that minimize adverse effects on human health involve the monitoring of air quality, including dry depositions and their metal content. The analysis of these parameters aims to investigate the air quality in Maramures County (with nonferrous mining activities) and in the Romanian - Ukraine transboundary area. The paper presents the experimental results obtained for dry atmospheric deposition of copper and zinc using flame atomic absorption spectrometry (...

  11. Neutron activation analysis of copper, zinc and manganese in plants

    International Nuclear Information System (INIS)

    A fast method for simultaneous quantitative determination of microscopic quantities of copper, zinc and manganese in plant tissue through neutron activation analysis is suggested. The measurements are carried out after removal of the 24Na and 42K interference. Optimum conditions for detention of the microscopic quantities of Cu, Zn and Mn by the chelating resin Chelex-100 using the batch procedure are determined. (author)

  12. Regional Distribution of Copper, Zinc and Iron in Brain of Wistar Rat Model for Non-Wilsonian Brain Copper Toxicosis.

    Science.gov (United States)

    Pal, Amit; Prasad, Rajendra

    2016-03-01

    In previous studies, we have reported first in vivo evidence of copper deposition in the choroid plexus, cognitive impairments, astrocytes swelling (Alzheimer type II cells) and astrogliosis (increase in number of astrocytes), and degenerated neurons coupled with significant increase in the hippocampus copper and zinc content in copper-intoxicated Wistar rats. Nonetheless, hippocampus iron levels were not affected by chronic copper-intoxication. Notwithstanding information on distribution of copper, zinc and iron status in different regions of brain due to chronic copper exposure remains fragmentary. In continuation with our previous study, the aim of this study was to investigate the effects of intraperitoneally injected copper lactate (0.15 mg Cu/100 g body weight) daily for 90 days on copper, zinc and iron levels in different regions of the brain using atomic absorption spectrophotometry. Copper-intoxicated group showed significantly increased cortex, cerebellum and striatum copper content (76, 46.8 and 80.7 % increase, respectively) compared to control group. However, non-significant changes were observed for the zinc and iron content in cortex, cerebellum and striatum due to chronic copper exposure. In conclusion, the current study demonstrates that chronic copper toxicity causes differential copper buildup in cortex, cerebellum and striatum region of central nervous system of male Wistar rats; signifying the critical requirement to discretely evaluate the effect of copper neurotoxicity in different brain regions, and ensuing neuropathological and cognitive dysfunctions. PMID:26855494

  13. Adsorptive bubble separation of zinc and cadmium cations in presence of ferric and aluminum hydroxides.

    Science.gov (United States)

    Jurkiewicz, Kazimierz

    2005-06-15

    The adsorptive bubble separation of zinc and cadmium cations from solution in the presence of ferric and aluminum hydroxides was carried out by means of Tween 80 (nonionic surfactant), and sodium laurate and stearate (anionic surfactants). The mechanism of metal removal is different depending on the nature of the surfactant used. The removal of zinc cations by adsorbing colloid flotation is higher than that of cadmium cations. It increases with increases in the amount of hydroxide precipitate and the concentration of Tween 80. The removal of zinc cations by ion flotation is lower than that of cadmium cations. It does not change with increases in the hydroxide amount. It increases, however, with increased sodium laurate or stearate concentration. Both separation methods turned out to be helpful for studying both the solution's structure and the interactions at the solution-solid interface. PMID:15897071

  14. Anode oxidation of cadmium in acid and that of zinc in neutral sulfate solutions

    International Nuclear Information System (INIS)

    By the method of anode polarization curves on rotary disc electrode there have been studied kinetics and mechanism of zinc and cadmium dissolution in 0.1-2.0 N sulfate solutions. There have been determined exchange currents of the first and second stages of ionization and transfer coefficients. Cadmium anode dissolution takes place in sequent single-electron stages with diffusion stage of reaction being superimposed

  15. Study of polarographic behaviour of indium, cadmium, lead and zinc in solutions saturated by tridecylamine

    International Nuclear Information System (INIS)

    The effect of tridecylamine (TDA) on the process of reduction of indium, cadmium, lead, and zinc at a mercury drop electrode has been investigated. It is established that TDA does not interfere with polarographic determination of indium in solutions of hydrochloric acid with a concentration exceeding 5 M, while determination of cadmium and lead can be carried out against the background of hydrochloric acid over a wide concentration range

  16. Characterization of a cadmium-zinc complex in lettuce leaves.

    Science.gov (United States)

    McKenna, I M; Chaney, R L

    1995-04-01

    Vegetable food contributes a higher amount of daily cadmium (Cd) intake in humans than food of animal origin. The bioavailability of plant Cd depends on the content of plant zinc (Zn). The mechanism by which increased plant Zn lowers the intestinal absorption of plant Cd could be mediated by changes in the chemical speciation of Cd or Zn in plant edible tissues, including Zn-induced phytochelatin synthesis. To test this hypothesis we investigated the chemical speciation of Cd and Zn in leaf extracts of lettuce grown under 10 microM of Cd accompanied by 0.32 or 31.6 microM Zn in nutrient solution. Gel filtration chromatography of the low- or high-Zn leaf extracts yielded a major low molecular weight Cd-Zn complex that eluted at similar elution volume. Compared to low-Zn leaf extracts, high-Zn leaf extracts contained a higher proportion of Zn incorporated into high molecular weight components, and higher content of the amino acids Cys, Gly, Gly, and Asp in the low molecular weight Cd-Zn complex. The peptides isolated by high performance liquid chromatography (HPLC) of the Cd-Zn complex from the low- or high-Zn leaf extracts did not have an amino acid composition identical to phytochelatins. We concluded that 1. Sequestration of Cd or Zn via phytochelatin does not occur in leaves of lettuce containing levels of those metals representatives of Zn-Cd or Cd-only contaminated crops; and 2. Higher Cys, Glu, Gly, and Asp content in high-Zn than low-Zn leaves could lower Cd absorption in animals fed high-Zn crop diets, by enhancing metallothionein synthesis or changing Cd or Zn speciation in the animal gut. PMID:7626369

  17. Cadmium zinc telluride detector for low photon energy applications

    Science.gov (United States)

    Shin, Kyung-Wook; Wang, Kai; Reznic, Alla; Karim, Karim S.

    2010-04-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a polycrystalline radiation detector that has been investigated over the years for a variety of applications including Constellation X-ray space mission [1] and direct-conversion medical imaging such as digital mammography [2]. Due to its high conversion gain and low electron-hole pair creation energy (~4.43 eV) [3], it has found use in high end, photon counting medical imaging applications including positron emission tomography (PET), computed tomography (CT) and single photon emission computed tomography (SPECT). However, its potential in low photon energy applications has not been fully explored. In this work, we explore the capacity of the CZT material to count low photon energies (6 keV - 20 keV). These energies are of direct relevance to applications in gamma ray breast brachytheraphy and mammography, X-ray protein crystallography, X-ray mammography and mammography tomosynthesis. We also present a design that integrates the CZT direct conversion detector with an inhouse fabricated amorphous silicon (a-Si:H) thin film transistor (TFT) passive pixel sensor (PPS) array. A CZT photoconductor (2 cm x 2 cm size, 5-mm-thick) prepared by the traveling heat method (THM) from RedlenTM is characterized. The current-voltage characteristics reveal a resistivity of 3.3 x 1011 Ω•cm and a steady state dark current in the range of nA. Photocurrent transients under different biases and illumination pulses are studied to investigate photogeneration and the charge trapping process. It is found that charge trapping plays a more significant role in transient behavior at low biases and low frequency.

  18. Speciation and distribution of copper and zinc in MCM-41

    International Nuclear Information System (INIS)

    Speciation and distribution of copper and zinc in the channels of the surface modified MCM-41 (MCM-41-SH) (pore opening = 2.6 nm) has been studied by X-ray absorption near edge structural (XANES) and X-ray absorption fine structural (EXAFS) spectroscopies in the present work. By least-square fitted XANES spectroscopy, mainly CuO and ZnO are observed in the channels of MCM-41-SH after calcination at 298-1173 K. Interestingly, a small amount of Cu-Zn alloys is also found in the MCM-41-SH at the calcination temperature of 573 K. At T > 573 K, nanosize CuO and Zn2SiO4 are the copper and zinc compounds in the MCM-41-SH. Due to aggregation of nanosize CuO at 1173 K, the bond distance of Cu-O is increased to 1.97 A with the coordination number (CN) of 3.3. A decrease of the Zn-O bond distance (1.94 A) at 1173 K is also observed. This work is also an example of the usefulness of the XANES and EXAFS spectroscopies for revealing the chemical structure of copper and zinc and possible reaction paths in the channels of MCM-41-SH during calcination at elevated temperatures

  19. Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China

    International Nuclear Information System (INIS)

    Cadmium (Cd) and Lead (Pb) are environmental pollutants. Environmental samples and bovine tissues were collected from the areas around a lead-zinc smelter in Guizhou, China for Cd, Pb, zinc (Zn) and copper (Cu) analysis. Cd in soil (10 mg/kg) and feed (6.6 mg/kg) from the polluted areas was 10 times higher than the Chinese Standards, resulting in higher Cd in bovine kidney (38 mg/kg) and liver (2.5 mg/kg). Pb in feed (132 mg/kg) from the polluted area was much higher than unpolluted areas, causing higher Pb levels in bovine tissues. Environmental Zn was elevated, but bovine tissue Zn was normal. Cu in bovine liver decreased with increased Cd and Pb. Metals in drinking water and in bovine muscle were within the Standard range. Thus, in the areas of this lead-zinc smelter, the environment has been contaminated with Cd and Pb, which has been transferred to cattle through the food chain. - Cd and Pb from lead-zinc smelters contaminate the environment and accumulate in bovine tissues.

  20. Simultaneous isolation and concentration of zinc and cadmium from natural water

    International Nuclear Information System (INIS)

    An ion-exchange procedure for quantitative and simultaneous pre-concentration of zinc and cadmium from tracer solutions has been achieved at various pH values (between pH 4.0 and 9.7 using ammonia buffer and Chelex-100 resin). The retention of 65Zn and sup(115m)Cd on the resins was measured. The Zn and Cd content of the resin was analyzed by neutron activation and γ-ray spectroscopy. This procedure was then utilized to determine concentrations of zinc and cadmium in stream water and precipitation of the New Hampshire Sucker Brook Watershed. (author)

  1. Sorption of lead, cadmium and zinc from air sediments applying natural wool fiber

    Directory of Open Access Journals (Sweden)

    Babincev Ljiljana M.

    2013-01-01

    Full Text Available The aim of this study is to investigate the possibilities of removing lead, cadmium, and zinc from air by sorption natural wool fibers (NWF, thus evaluating possible application of the wool materials in direct protection of air from the influence of heavy metals. Metal detection was done (before and after the sorption process by potentiometric stripping analysis. Sorption experiments were done in two ways: by immersing NWF in model solutions (prepared by the working standard solutions and deionized water, and by immersing NWF in solutions of sediments from the air. The influence of mass sorbent, sorption time, pH, and temperature on the sorption of lead, cadmium, and zinc were experimentally examined. Effectiveness of lead, cadmium, and zinc sorption by applying natural wool fibers is shown as the sorption capacity (a ratio between metal concentration before and after sorption and sorbent mass. Sorbent of 0.1 g NWF mass in neutral environment collects: after 10 min 23,9% of lead, 19,0% of cadmium, and 21,3% of zinc; whereas after 30 min 71.5% of lead, 69.6% of cadmium, and 69.4% of zinc. NWF of the same mass in acidic environment shows lower sorption capabilities, for pH 4.5 the effective sorption is: 68.6% of lead, 66.8% of cadmium, and 66.6% of zinc; whereas for pH 2.1 NWF sorption is 54.6% of lead, 53.2% of cadmium, and 52.9% of zinc. Optimal pH range for application of this sorption during the experiment material is 4.5-7.0. The sorption was made in solutions with pH 2.1 due to potentiometric stripping analysis application conditions. Temperature significantly impacts the tested material sorption characteristics. When temperature slightly increases, regardless of the inflicted damage, NWF keeps its functionality. When temperature is higher than 60°C, the sorbent effectiveness is reduced. The NWF sorption capacity is lowest at 100°C: for lead 11.63 μg g−1, for cadmium 8.18 μg g−1, and for zinc 9.41 μg g−1. Results of the

  2. Altered Levels of Serum Zinc and Cadmium in Patients with Chronic Vesiculobullous Hand and Feet Dermatitis

    Science.gov (United States)

    Suvirya, Swastika; Thakur, Alpna; Pandey, S. S.; Tripathi, S. K.; Dwivedi, Durgesh Kumar

    2016-01-01

    Micronutrients serve many important functions in our body and altered levels of heavy and trace metals are associated with cutaneous and systemic disorders. Vesicular palmoplantar eczema is an entity whose etiopathogenesis is a mystery. In this prospective case-noncase study blood levels of Zinc and Cadmium in 37 patients of chronic vesiculobullous hand dermatitis were estimated and compared with 40 noncases with similar age and gender distributions. Low serum Zinc levels were found in patients as compared to noncases. The mean difference of serum Zinc between the case and noncase groups was 27.26; the mean value of serum Zinc between the two groups was statistically significant (p < 0.0001). However, elevated Cadmium levels were detected in only 5 patients and in none of the noncases. The mean concentration of serum Cadmium was 2.32 ± 0.38 μg/dL, with a range of 1.90–2.80 μg/dL for the five cases in whom Cadmium was detected. Various toxic and trace metals can interact by influencing each other's absorption, retention, distribution, and bioavailability in the body. The clinical significance of this finding lies in the possible beneficial role of Zinc supplementation in the therapy of chronic vesiculobullous hand dermatitis.

  3. study on the Response of wheat to lead, cadmium and zinc

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The effect of lead, cadmium and zinc on thetranscriptions and structures of 5 DNA fragments was studied by RNAslot blot hybridization and the analyze of Restriction FragmentLength Polymorphism (RFLP). The seeds of three wheat strains(Yunmai29, 1257, 5118) which had grown in contaminated area, HuizeLead-zinc mine, Yunnan Province of China for a long time and theuncontaminated area were taken as the experimental materials. Noobvious change of DNA structure was detected, but there were manydifferences in the DNA transcription levels. These results impliedthat lead, cadmium and zinc might inhibit DNA transcription and hadmuch more effect on gene expression than structure in wheat, wheatmight acclimate to metal pollution after having grown in pollutionarea for a long time and the interference of these metal ions ingene expression might be one of main mechanisms of metal toxicityand plant adaptation. The results also showed the microevolution ofwheat in Lead-zinc mine.

  4. Cigarette smoking, cadmium exposure, and zinc intake on obstructive lung disorder

    Directory of Open Access Journals (Sweden)

    Dowling Nicole

    2010-05-01

    Full Text Available Abstract Background and objective This study examined whether zinc intake was associated with lower risk of smoking-induced obstructive lung disorder through interplay with cadmium, one of major toxicants in cigarette smoke. Methods Data were obtained from a sample of 6,726 subjects aged 40+ from the Third National Health and Nutrition Examination Survey. The forced expiratory volume in 1 second (FEV1 and forced vital capacity (FVC were measured using spirometry. Gender-, ethnicity-, and age-specific equations were used to calculate the lower limit of normal (LLN to define obstructive lung disorder as: observed FEV1/FVC ratio and FEV1 below respective LLN. Zinc intake was assessed by questionnaire. Logistic regression analysis was applied to investigate the associations of interest. Results The analyses showed that an increased prevalence of obstructive lung disorder was observed among individuals with low zinc intake regardless of smoking status. The adjusted odds of lung disorder are approximately 1.9 times greater for subjects in the lowest zinc-intake tertile than those in the highest tertile (odds ratio = 1.89, 95% confidence interval = 1.22-2.93. The effect of smoking on lung function decreased considerably after adjusting for urinary cadmium. Protective association between the zinc-to-cadmium ratio (log-transformed and respiratory risk suggests that zinc may play a role in smoking-associated lung disorder by modifying the influence of cadmium. Conclusions While zinc intake is associated with lower risk of obstructive lung disorder, the role of smoking cession and/or prevention are likely to be more important given their far greater effect on respiratory risk. Future research is warranted to explore the mechanisms by which zinc could modify smoking-associated lung disease.

  5. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. (University of South Florida, Tampa, FL (United States))

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  6. Sulfur dioxide effect on cadmium and zinc oxide interaction with chlorine

    International Nuclear Information System (INIS)

    Comparison of electrophysical properties of cadmium and zinc oxides with kinetic regularities of their interaction with Cl2 and SO2 was conducted. It is shown that SO2 presence in gas phase leads to retardation of chlorination of both oxides. In the case of CdO the effect of SO2 is manifested more clearly

  7. Ion exchange method for calcium isolation from solutions of zinc, cadmium, and cobalt salts

    International Nuclear Information System (INIS)

    A method for isolating impurity amounts of calcium from zinc, cadmium and cobalt salts has been suggested. The method consists in dissolution of the above-mentioned metal salts in ammonia solution, selective sorption of calcium impurities from solutions prepared on carboxylic cationite with subsequent calcium desorption by mineral acid solution. 4 refs.; 2 figs

  8. The spectrographic determination of minor and trace elements in copper, lead, and zinc concentrates

    International Nuclear Information System (INIS)

    This report deals with the development of a method for the determination, by an emission-spectrographic technique, of magnesium, manganese, aluminium, silver, calcium, chromium, cobalt, titanium, antimony, cadmium, molybdenum, zirconium, nickel, boron, vanadium, arsenic, beryllium, tin, germanium, and bismuth in copper, lead, and zinc sulphide concentrates. The method involves the preparation of complex standards in which the volatile elements arsenic, antimony, cadmium, tin, and bismuth are incorporated as sulphide compounds at temperatures of 800 degrees Celsius in evacuated silica tubes together with a synthetic sulphide matrix. These standards are then mixed with the other minor and trace elements to form composite standards. The conditions for excitation with a direct-current arc, and the analytical lines for the elements and internal standards, are given. The procedure is rapid and convenient, and involves the minimum of sample preparation. The accuracy is about 10 per cent, and the method has a coefficient of variation for the various elements of between 2 and 13 per cent

  9. Effect of abietic acid addition on anodic dissolution of zinc- cadmium- and thallium amalgams in sodium sulfate solution

    International Nuclear Information System (INIS)

    The method of inversion voltametry with a stationary mercury drop electrode has been applied to investigate the effect of abietic acid (AA) on anodic oxidation of cadmium, zinc, thallium from their amalgams as well as from mixed cadmium-thallium and zinc-thallium amalgams against the background of 0.5 M sodium sulfate at 298 K. Constants of peak of analgam anodic oxidation in the background solution and with additions of different AA concentrations are calculated. It is established that AA has the inhibiting effect on the processes of oxidation of cadmium- and zinc amalgams and does not produce the inhibiting effect on the oxidation of thallium amalgam

  10. Lead, cadmium and zinc in hair samples: relationship with dietary habits and urban environment.

    Science.gov (United States)

    Gonzalez-Reimers, E; Martín-González, C; Galindo-Martín, L; Aleman-Valls, M R; Velasco-Vázquez, J; Arnay-de-la-Rosa, M; Pérez-Hernández, O; Luis, R Hernández

    2014-03-01

    This study was performed in order to analyze the relationships between hair zinc, lead, and cadmium with the kind of diet consumed (by recall of the diet consumed the previous 14 days), living area (urban or rural), tobacco smoking, and body mass index (BMI) among 419 individuals of the Canary Archipelago. Median values and interquartile range were 43 μg/g (18.50-132.50) for zinc, 4.09 μg/g (2.19-8.38) for lead, and 0.128 μg/g (0.05-0.30) for cadmium. We observed that hair zinc was markedly elevated among those consuming fish more frequently and, to a lesser amount, among those who consumed meat frequently, among those living in urban areas, and among those with BMI over 25 kg/m(2), keeping a significant relationship with BMI. Hair lead was also higher among fish consumers, showed a trend to higher values among inhabitants of urban areas, and was lower among obese individuals. Hair cadmium was higher among those who consumed less vegetables and fruits. By multivariate analysis, introducing the variables meat, fish, and vegetable consumption, urban/rural; sex; age; and BMI values, we observed that fish consumption (beta = 0.15) was the only variable independently associated to higher zinc levels; fish consumption (beta = 0.15) and meat consumption (beta = 0.17) were related to high cadmium levels, whereas meat consumption was significantly associated to higher hair lead levels (beta = 0.15). Therefore, we conclude that hair zinc, cadmium, and lead seem to depend more heavily on dietary habits than on tobacco consumption or living in rural or urban areas. PMID:24464602

  11. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  12. Isomorphous mixability of calcium, copper and zinc metavanadates

    International Nuclear Information System (INIS)

    Solubility boundaries for metavanadates of calcium, copper and zinc in their binary systems are determined by roentgenophase analysis. Availability of polymorphous transformations and affiliation to various structural types (Ca(VAO3)2, Zn(VO3)2) or crystal structures (Ca(VO3)2) of initial compounds prevents formation of continuous solid solutions between one another and leads to homogeneity area discontinuity in Ca(VO3)2-Zn(VO3)2 and Cu(VO3)2 systems and insignificant (2-4 mol.%) solubility in Ca(VO3)2-Cu(VO3)2 system

  13. Production of zinc and copper borates in united process cycle

    International Nuclear Information System (INIS)

    Ecological technology permitting production of Zn3·B10O18·14H2O, 2ZnO·3B2O3·7H2O, 3CuO·2B2O3·nH2O·mNa2SO4 at a time in the single technological cycle was developed. Products was obtained during reaction of proper sulfates with borax in the presence of boric acid and sodium hydroxide. Mother liquor comprising saturated boric acid solution was used for the following preparation of zinc and copper borates

  14. Uptake of Cadmium and Zinc from Synthetic Effluent by Water Hyacinth (Eichhornia crassipes

    Directory of Open Access Journals (Sweden)

    Hafidzatul Husna Mohamad

    2010-01-01

    Full Text Available In this study was conducted on aquatic plant; water hyacinth (Eichchornia crassipes which has been successfully utilized for the removal of cadmium (Cd and zinc (Zn from aqueous solutions. The overall metal uptake by the plant was dependent upon the concentration of the metal and the duration of exposure. In general, the metal content in plants increased with the increase in metal concentrations in solution and the metal accumulation in roots was always significantly higher than that in shoots for both metals in water hyacinth. Water hyacinth treated with 4 mg/L of cadmium accumulated the highest concentration metal in shoots (148 μg/g and roots (2006 μg/g and water hyacinth treated with solution containing 40 mg/L zinc accumulated the highest zinc concentration in shoots (1899 μg/g and roots (9646 μg/g.

  15. The role of microRNAs in copper and cadmium homeostasis

    International Nuclear Information System (INIS)

    Essential heavy metals (e.g., copper) and non-essential metals (e.g., cadmium) are both toxic to plants at high concentrations. Recently, microRNAs (miRNAs) have emerged as important modulators of plants adaptive response to heavy metal stress. Plant miRNAs negatively regulate target mRNAs by post-transcriptional cleavage. miR398 regulates copper homeostasis via down-regulating the expression of Cu,Zn-superoxide dismutase (CSD), a scavenger of superoxide radicals. miR393 and miR171 play an important role in cadmium stress mediation. This review focuses on the recent advance in the involvement of miRNAs in copper and cadmium stress regulatory networks in plants.

  16. Phyto extraction Of Cadmium And Zinc From Contaminated Soils

    International Nuclear Information System (INIS)

    A trial was made to study the use of different plant species to extract heavy metals out of contaminated soils. Four Kg of each air-dried surface soil sample (0-20 cm) were packed in plastic containers in three replicates. Five plant species tested in this study namely, Panikum (Panicum antidotal) and napier grass (Bennisetum purpureum), squash (Cucurbita pepo), cotton (Gossypium hirsutum), sunflower (Helianthus annuus); were grown on two different polluted soil types (Mostorud Clayey soil, irrigated with contaminated water for more than 30 years and El-Gabal EL-Asfar sandyloam soil, subjected to sewage effluent irrigation for more than 50 years) in a complete randomized block experimental design to study the mobility and fate of selected heavy metals and evaluate the efficiency of the tested plant species to extract Cadmium and Zinc out of polluted soils. Data indicated that sunflower and cotton shoots accumulated the highest Cd content among the five tested plant species, Shoot concentrations of Cd were as high as 9.6 mg/kg dry matter of sunflower, followed by panikum and napier grass, cotton then squash with a range of Cd between 9.6 to 1.6 mg/kg dry matter in case of the alluvium soil. However in the sandy soil, sunflower Cd -shoots were > penakium> napier grass > cotton> Squash with a lower order of magnitude which could be explained by the lower Cd -content in sandy soil compared to the alluvial soil .Calculation of recovery percentage based on Cd and Zn removed from the soil after cultivation ranged between 5.9 to 27.4 % and 16.1 to 49.1% of total initial Cd and Zn, Respectively. However, The percentage of Cd and Zn -removed by plant shoots from the initial total varied between 27.6 to 37.5% and 25.3 and 36.8 % of the removed Cd and Zn, Respectively, whereas the lowest values were observed in case of squash for Cd and Zn. As expected plant roots exhibited higher Cd and Zn accumulation than in shoots by 2-3 folds. Sunflower roots showed the highest Cd

  17. Extraction of copper and zinc-humic acid with an ionic liquid

    Science.gov (United States)

    Huang, H.-L.; Tseng, Ru-Ling

    2009-04-01

    Extraction of copper and zinc in the contaminated soil with a room temperature ionic liquid (RTIL) has been studied by X-ray absorption near edge structural (XANES) and X-ray absorption fine structural (EXAFS) spectroscopies in the present work. By the least-square fitted XANES spectra, the major copper and zinc species in the contaminated soil are adsorbed copper- and adsorbed zinc-humic acid (HA). In a short contact, 80% of copper and zinc in the contaminated soil was extracted into the RTIL. The fitted EXAFS spectra show that Cu-HA and Zn-HA in the RTIL possessed the Cu-O and ZnO (1st shell) bond distances of 1.96 and 1.82 Å, respectively. The possible reaction path involved in extraction of copper and zinc in the contaminated soil into the RTIL has also been pointed out. Keywords: RTIL; XANES; EXAFS

  18. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats.

    OpenAIRE

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also reduced biliary copper excretion through inhibition of intestinal copper absorption. When rats were fed on diets with moderately elevated iron and/or zinc concentrations, only copper concentrations in plasma we...

  19. Canadian soil quality criteria for lead, copper, arsenic, cadmium and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Gaudet, C.; Milne, D.; Teed, S.; Lin, J.; Raju, G.S.; Ouellet, S. [Environment Canada, Hull, Quebec (Canada)

    1995-12-31

    National soil quality criteria for the protection of ecological receptors, including livestock and wildlife, are currently under development in Canada. Based on an evaluation of direct soil contact and soil and food ingestion pathways for sensitive species, soil quality criteria for lead, copper, arsenic, cadmium and mercury for three land use categories have been derived. The draft values, in mg/kg soil, for agricultural, residential/parkland, commercial/industrial land uses are: mercury, 4, 4, 30; copper, 62, 62, 100; cadmium, 10, 10, 27; lead, 70, 250, 400; arsenic, 17, 17, 26. Critical data requirements in developing soil quality criteria are also reviewed.

  20. Serum Copper and Zinc Levels Among Iranian Colorectal Cancer Patients.

    Science.gov (United States)

    Khoshdel, Zahra; Naghibalhossaini, Fakhraddin; Abdollahi, Kourosh; Shojaei, Shahla; Moradi, Mostafa; Malekzadeh, Mahyar

    2016-04-01

    Alterations of trace element concentrations adversely affect biological processes and could promote carcinogenesis. Only a few studies have investigated the degree of changes in copper and zinc levels in colorectal cancer (CRC). The aim of the present study was to compare the serum copper (Cu) and zinc (Zn) concentrations in patients with CRC from Iran with those of healthy subjects. Cu and Zn concentrations in the serum of 119 cancer patients and 128 healthy individuals were measured by atomic absorption spectrometry. We found a significant decrease in the total mean serum Cu and Zn concentrations in CRC patients as compared with the control group (137.5 ± 122.38 vs. 160.68 ± 45.12 μg/dl and 81.04 ± 52.05 vs. 141.64 ± 51.75, respectively). However, the serum Cu/Zn ratio in the patient group was significantly higher than that measured in the control group (p = 0.00). There was no significant difference in the mean values of serum Cu and Zn concentrations between young (Iranian patients. PMID:26329996

  1. Mechanical Activation-Assisted Reductive Leaching of Cadmium from Zinc Neutral Leaching Residue Using Sulfur Dioxide

    Science.gov (United States)

    Zhang, Chun; Min, Xiaobo; Chai, Liyuan; Zhang, Jianqiang; Wang, Mi

    2015-12-01

    In this work, zinc neutral leaching residue was mechanically activated by ball-milling. The subsequent leaching behavior and kinetics of cadmium extraction in a mixed SO2-H2SO4 system were studied. Changes in the crystalline phase, lattice distortion, particle size and morphology, which were induced by mechanical activation, were also investigated. The activated samples showed different physicochemical characteristics, and cadmium extraction was found to be easier than for the un-activated samples. Under the same conditions, mechanical activation contributed to higher cadmium leaching. The cadmium extraction kinetics at 75-95°C was found to fit the shrinking core model. The raw neutral leaching residue, and the samples activated for 60 min and 120 min had a calculated activation energy of 65.02 kJ/mol, 59.45 kJ/mol and 53.46 kJ/mol, respectively. The leaching residue was characterized by ICP, XRD and SEM analysis. According to XRD analysis, the main phases in the residue were lead sulfate (PbSO4), zinc sulfide (ZnS) and cadmium sulfide (CdS).

  2. Some effects of copper and cadmium on Enteromorpha intestinalis (L. ) link

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, L.M.

    1987-01-01

    This thesis describes some effects of copper and cadmium on Enteromorpha intestinalis (L.) Link, a common estuarine and coastal intertidal alga, with particular reference to its use as a bioaccumulator of heavy metals. Exposure to copper and cadmium resulted in loss of color and intracellular disorganization, but not in a predictive manner. Copper also inhibited reproduction, the growth of adult plants,the development of zoospores and sometimes resulted in a loss of biomass. A protocol for the testing of Vital stains was developed and Neutral Red was determined to be a suitable stain to assess cell death in those adult populations investigated but was found unsuitable for work with germlings. Exposure to copper resulted in a greater degree of cell death in otherwise healthy thalli.

  3. Zinc and cadmium accumulation among and within populations of the pseudometalophytic species Arrhenatherum elatius: Implications for phytoextraction

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate, under standard conditions, the bioaccumulation of zinc and cadmium in Arrhenatherum elatius, a perennial grass with a high biomass production. Nine populations of three different origins were tested: three metallicolous populations (mpop); three non-metallicolous populations (nmpop) and three populations developing on soils moderately metal polluted (medpop). We have found that bioaccumulation differs among these populations, with nmpop accumulating significantly more zinc (p -1 of zinc and 52 mg kg-1 of cadmium in A. elatius shoots from mpop, whereas in nmpop, the concentration reached on average 524 mg kg-1 zinc and 83 mg kg-1 cadmium. In the same way, medpop accumulated as much zinc but more cadmium than nmpop. Moreover, the standard deviation of medpop was larger than the one for mpop and nmpop. Indeed, some A. elatius samples from medpop presented a high metal content whereas, others presented low concentrations in their shoots (ranging from 60 to 210 mg kg-1 cadmium). Hence, these medpop exhibited a large variability among and within populations in accumulating zinc and cadmium in their shoots. Based on these results, the possibility of selecting A. elatius plants with the best accumulating capacity from medpop was proposed. We concluded that if the accumulation capacity is genetically controlled in A. elatius, this species fulfils this necessary condition for efficiently increasing species bioaccumulation by crossbreeding A. elatius plants with the higher accumulation capacity

  4. Copper, lead and zinc concentrations of human breast milk as affected by maternal dietary practices

    Energy Technology Data Exchange (ETDEWEB)

    Umoren, J.; Kies, C.

    1986-03-01

    Maternal dietary practices have been found to affect the concentrations of some nutrients in human breast milk. Lead toxicity is a concern in young children. Lead, copper and zinc are thought to compete for intestinal absorption sites. The objective of the current project was to compare copper, lead and zinc contents of breast milk from practicing lacto-vegetarian and omnivore, lactating women at approximately four months post-partum. Analyses were done by atomic absorption spectrophotometry using a carbon rod attachment. Copper concentrations were higher in milk samples from lacto-ovo-vegetarians. Milk samples from the omnivores had the highest lead and zinc concentrations. Lead and copper concentrations in milk were negatively correlated. The higher zinc concentrations in the milk of the omnivore women may have been related to better utilization of zinc from meat than from plant food sources.

  5. Effect of infant cereals on zinc and copper absorption during weaning

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.G.; Keen, C.L.; Loennerdal, B.

    1987-10-01

    Zinc and copper absorption from five infant cereal products mixed with water, human milk, or cow's milk was measured using an in vivo absorption model (rat pup) involving gastric intubation of extrinsically radiolabeled diets. Whole-body copper 64 uptake, nine hours after intubation, ranged from 14% to 31% of the dose given for the different cereal combinations. The resultant bioavailability of copper from human milk-cereal combinations (23% to 26%) was significantly lower than that from human milk alone (38%). Whole-body zinc 65 uptake, nine hours after intubation, ranged from 13% to 54% of the dose given for the different cereal combinations. These values were significantly lower than the whole-body zinc 65 uptake from milk alone (61%). Zinc availability was lower (13% to 25%) from dry cereal combinations that contained phytic acid (oatmeal and high-protein varieties) compared with the ready-to-serve cereal-fruit combinations (24% to 54%). The highest zinc uptake (37% to 54%) was from rice-fruit combinations that do not contain phytic acid. We estimated the amounts of zinc and copper that would be absorbed from these cereal products and speculated on the potential impact of these foods on the weaning infant's zinc and copper nutriture. Depending on the feeding practices employed during the weaning period, it is apparent that infant cereals may compromise utilization of zinc and copper from milk diets during weaning.

  6. Effect of infant cereals on zinc and copper absorption during weaning

    International Nuclear Information System (INIS)

    Zinc and copper absorption from five infant cereal products mixed with water, human milk, or cow's milk was measured using an in vivo absorption model (rat pup) involving gastric intubation of extrinsically radiolabeled diets. Whole-body copper 64 uptake, nine hours after intubation, ranged from 14% to 31% of the dose given for the different cereal combinations. The resultant bioavailability of copper from human milk-cereal combinations (23% to 26%) was significantly lower than that from human milk alone (38%). Whole-body zinc 65 uptake, nine hours after intubation, ranged from 13% to 54% of the dose given for the different cereal combinations. These values were significantly lower than the whole-body zinc 65 uptake from milk alone (61%). Zinc availability was lower (13% to 25%) from dry cereal combinations that contained phytic acid (oatmeal and high-protein varieties) compared with the ready-to-serve cereal-fruit combinations (24% to 54%). The highest zinc uptake (37% to 54%) was from rice-fruit combinations that do not contain phytic acid. We estimated the amounts of zinc and copper that would be absorbed from these cereal products and speculated on the potential impact of these foods on the weaning infant's zinc and copper nutriture. Depending on the feeding practices employed during the weaning period, it is apparent that infant cereals may compromise utilization of zinc and copper from milk diets during weaning

  7. Cadmium, Lead, Copper and Zinc in Breast Milk in Poland

    OpenAIRE

    Winiarska-Mieczan, Anna

    2013-01-01

    Mother's milk is the fundamental food for infants. It contains proteins, fat, carbohydrates and essential metals which are necessary to ensure correct functioning of the organism. Unfortunately, breast milk is a potential source of toxic metals, which are dangerous for a baby. In Poland, previous research concerning the content of metals in breast milk was very scarce or its results were unavailable. The present study aimed at assessing the content of Cd, Pb, Cu and Zn in human breast milk, a...

  8. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    Science.gov (United States)

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways. PMID:23700242

  9. Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria.

    Science.gov (United States)

    Yusuf, A A; Arowolo, T A; Bamgbose, O

    2003-03-01

    The levels of cadmium, copper and nickel in five different edible vegetables, Talinum triangulare, Celosia trigyna, Corchorus olitorus, Venomia amygydalina and Telfaria accidentalis, and the soils in which they were grown, from three industrial and three residential areas of Lagos City, Nigeria, were determined using atomic absorption spectrophotometry. The results obtained for these three heavy metals from the industrial areas were higher than those of the residential areas as a result of pollution. Industrial area results for vegetables ranged between 1.13 and 1.67 microg/g for cadmium; 25.08 and 56.84 microg/g for copper and 1.33 and 2.06 microg/g for nickel. There were statistically significant differences (P<0.05) between the levels of copper and nickel in all the vegetables studied from industrial and residential areas, while there was no statistically significant difference for cadmium. The results also show that Corchorus olitorus (bush okra) has the ability to accumulate more copper and nickel than the other vegetable studied but has the least ability to accumulate cadmium. PMID:12504169

  10. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  11. Determination of Cadmium, Lead and Zinc in Vegetables in Jaipur (India).

    Science.gov (United States)

    Kumar, Ashok; Verma, P S

    2014-01-01

    An atomic absorption spectroscopic method was used for the determination of Lead, Cadmium and Zinc in vegetables grown in and around Jaipur food stuffs irrigated with industrial waste water. Vegetable samples were collected after maturity, and analyzed, such as spinach (Spinacia oleracea), ladyfinger (Abelmoschus esulentus), pepper mint (Menthe pipereta), brinjal (Solanum melongena), coriander (Coriandrum sativum), cauliflower (Brassica oleracea), onion (Allium cepa), radish (Raphanus sativus), pointedgourd (Trichosanthes dioica), bottlegourd (Lagenaria siceraria), chilies (Capsicum annum), ribbedgourd (Luffa acutangula) and pumpkin (Curcurbites pepo). The concentration of Lead ranged between 1.40-71.06 ppm, Cadmium 0.61-34.48 ppm and Zinc 0.39-187.26 ppm in vegetable samples. The results reveal that urban consumers are at greater risk of purchasing fresh vegetables with high levels of heavy metal, beyond the permissible limits, as defined by the Indian Prevention of Food Adulteration Act, 1954 and WHO. PMID:26445755

  12. Reaction between zinc and cadmium ions and iodate ions in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.A.; Dezhina, G.S.; Shmyd' ko, I.I.; Shmyd' ko, L.I. (Sibirskij Tekhnologicheskij Inst., Krasnoyarsk (USSR))

    1983-01-01

    The composition is determined by solubility of zinc and cadmium iodates in lithium perchlorate-iodate solutions at 25 deg and constant ion forces, being equal to 0.5; 1.0; 2.0 and 3.0, and constants of formation of zinc and cadmium iodate complexes are calculated. Constants of complexing at infinite dilution are determined; for ZnIO/sub 3//sup +/ and CdIO/sub 3//sup +/ they are equal to 1.49+-0.01 and 1.87+-0.02 respectively, as well as values of solubility products Zn(IOsub(3))sub(2)(pKsub(ssub(0))sup(0)=5.63+-0.07) and Cd(IOsub(3))sub(2)(pKsub(ssub(0))sup(0)=7.43+-0.03).

  13. On reaction between zinc and cadmium ions and iodate ions in aqueous solutions

    International Nuclear Information System (INIS)

    The composition is determined by solubility of zinc and cadmium iodates in lithium perchlorate-iodate solutions at 25 deg and constant ion forces, being equal to 0.5; 1.0; 2.0 and 3.0, and constants of formation of zinc and cadmium iodate complexes are calculated. Constants of complexing at infinite dilution are determined; for ZnIO3+ and CdIO3+ they are equal to 1.49+-0.01 and 1.87+-0.02 respectively, as well as values of solubility products Zn(IOsub(3))sub(2)(pKsub(ssub(0))sup(0)=5.63+-0.07) and Cd(IOsub(3))sub(2)(pKsub(ssub(0))sup(0)=7.43+-0.03)

  14. Zinc and cadmium. 4; Transition metal chemistry review 1984. Pt. C

    Energy Technology Data Exchange (ETDEWEB)

    Dakternieks, D. (Deakin University, Geelong (Australia). Department of Chemical and Analitical Sciences)

    1990-02-01

    This review of the inorganic and coordination chemistry of zinc and cadmium covers material which appeared in volumes 102 and 103 of Chemical Abstracts. Zinc and cadmium are treated together and, as was the case last year, much of the reported chemistry is routine and has not been reported in detail. Rigorous classification of ligands continues to be a difficulty for compounds containing several different potential donor atoms and the reader may need to refer to more than one section. Although the scopeof this review does not encompass bio-inorganic in general, some more interesting aspects of application of {sup 113}Cd probes for biological systems have veen included this year. (author). 164 refs.; 9 schemes.

  15. Diffusion-based separation methods: dry distillation of zinc, cadmium and mercury isotopes from irradiated targets

    International Nuclear Information System (INIS)

    Diffusion-based separation methods allow the extraction of produced radionuclides with a low loss of target material, which is of special importance when enriched target material is used. We present a simple, non-destructive and rapid method to separate radioactive isotopes of IIB group elements (zinc, cadmium and mercury) from IB group metal targets irradiated with protons. Irradiated target foils were heated to a temperature 20oC below the melting point of the target material. During these conditions at least 90% of the desired radioactivity was evaporated with negligible loss of target material. Separation time was 15 min for mercury, 60 min for cadmium and 120 min for zinc. (author)

  16. Zinc, cadmium and lead resistance mechanisms in bacteria and their contribution to biosensing

    OpenAIRE

    Hynninen, Anu

    2010-01-01

    In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but ...

  17. Chemical forms of mercury, cadmium and zinc in natural aqueous media

    International Nuclear Information System (INIS)

    Literary material on chemical forms of mercury, cadmium and zinc in natural aqueous media (in water, suspended and colloid particles, bottom sediments, biota), their toxicology and biotransformations as well as ways and reasons for absorption and removal through the interfaces of the above phases, is generalized and critically analyzed. It is shown that chemical forms of these and other trace metals are the basis for the understanding of their geochemical cycles and at anthropogenic effects on the ecological equilibrium in natural media

  18. Evaluation of Fully 3-D Emission Mammotomography With a Compact Cadmium Zinc Telluride Detector

    OpenAIRE

    Brzymialkiewicz, Caryl N.; Martin P. Tornai; McKinley, Randolph L.; Bowsher, James E.

    2005-01-01

    A compact, dedicated cadmium zinc telluride (CZT) gamma camera coupled with a fully three-dimensional (3-D) acquisition system may serve as a secondary diagnostic tool for volumetric molecular imaging of breast cancers, particularly in cases when mammographic findings are inconclusive. The developed emission mammotomography system comprises a medium field-of-view, quantized CZT detector and 3-D positioning gantry. The intrinsic energy resolution, sensitivity and spatial resolution of the dete...

  19. Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens

    OpenAIRE

    Seosamh Ó Lochlainn; Helen C Bowen; Fray, Rupert G.; Hammond, John P.; King, Graham J.; White, Philip J.; Graham, Neil S; Martin R Broadley

    2011-01-01

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones ...

  20. Use of tridecylamine for extraction-chromatographic separation of indium, cadmium, zinc, iron and lead

    International Nuclear Information System (INIS)

    Extraction and the chromatographic behaviour of indium, cadmium, zinc, lead, and iron (3) in the system tridecylamine TDA)-toluene-HCl are studied. These data are used to determine the Me:TDA ratio in the ion associates extracted. A scheme of extraction-chromatographic concentration of indium against the background of macrocomponents and a scheme of separation of mixtures of the elements investigated are proposed

  1. Toxicity of cadmium and zinc mixtures to the decaudized cercarial life span of Diplostomum spathaceum

    OpenAIRE

    Morley, Neil; Crane, M.; Lewis, J W

    2005-01-01

    The effects of cadmium and zinc mixtures at concentrations ranging from 0.1 to 10,000mg l21 on the life-span of decaudized cercarial bodies (cercariae that have shed their tails) of Diplostomum spathaceum (Trematoda: Diplostomatidae) was investigated. Cercariae were exposed to metal mixtures of equal and unequal concentrations, and a low-dose pre-treatment followed by a high-dose exposure mixtures. Metal mixtures demonstrated variable effects on decaudized cercariae either by increasing or re...

  2. Toxic effects of cadmium and zinc on the transmission of Echinoparyphium recurvatum cercariae

    OpenAIRE

    Morley, Neil; Crane, M.; Lewis, J W

    2002-01-01

    The toxicity of cadmium, zinc and Cd/Zn mixtures to the transmission of Echinoparyphium recurvatum (Digenea: Echinostomatidae) cercariae into the snail second intermediate hosts was investigated at concentrations ranging from 100mg l21 to 10 000mg l21 in both soft and hard water. A differential response in the infectivity of metal-exposed cercariae into Lymnaea peregra and Physa fontinalis was demonstrated which was dependent on the snail species being infected. Exposure of L. peregra, P. ...

  3. On the active volume of cadmium zinc telluride gamma-ray spectrometers

    International Nuclear Information System (INIS)

    In this paper the authors develop quantitative models to predict the active volume of cadmium zinc telluride (CZT) detectors operated as gamma-ray pulse height spectrometers. Three cases are considered: a conventional planar detector, a unipolar device, and a detector in which electronic signal processing has been applied to correct for charge trapping effects. The find that existing detectors are very limited in their maximum attainable active volume, but unipolar devices with charge correction show promise for producing large active volume devices

  4. Uptake of Cadmium and Zinc from Synthetic Effluent by Water Hyacinth (Eichhornia crassipes)

    OpenAIRE

    Hafidzatul Husna Mohamad

    2010-01-01

    In this study was conducted on aquatic plant; water hyacinth (Eichchornia crassipes) which has been successfully utilized for the removal of cadmium (Cd) and zinc (Zn) from aqueous solutions. The overall metal uptake by the plant was dependent upon the concentration of the metal and the duration of exposure. In general, the metal content in plants increased with the increase in metal concentrations in solution and the metal accumulation in roots was always significantly higher than that in sh...

  5. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  6. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures

    International Nuclear Information System (INIS)

    To better understand chemical modes of action, emphasis has been given to stress responses at lower levels of biological organization. Cholinesterases and antioxidant defenses are among the most used biomarkers due to their crucial role in the neurocholinergic transmission and in cell homeostasis preventing DNA damage, enzymatic inactivation and lipid peroxidation. The main goal of this study was to investigate the effects of zinc and cadmium on survival and reproduction of E. albidus and to assess metals oxidative stress potential and neurotoxic effects at concentrations that affected reproduction. Both metals affected the enchytraeids' survival and reproduction and induced significant changes in the antioxidant defenses as well as increased lipid peroxidation, indicating oxidative damage. This study demonstrates that determining effects at different levels of biological organization can give better information on the physiological responses of enchytraeids in metal contamination events and further unravel the mechanistic processes dealing with metal stress. - Highlights: → Zinc and cadmium influence the survival and reproduction of Enchytraeus albidus. → Oxidative stress and membrane damage occur at reproduction effect concentrations. → Glutathione seems to be important in the antioxidant defense against metals. → Time intervals (2, 4, 8 days) allowed following the evolution of oxidative events. - Zinc and cadmium cause oxidative stress and membrane damage in Enchytraeus albidus at reproduction effect concentrations.

  7. Generation of mt:egfp transgenic zebrafish biosensor for the detection of aquatic zinc and cadmium.

    Science.gov (United States)

    Liu, Lili; Yan, Yanchun; Wang, Jian; Wu, Wei; Xu, Lei

    2016-08-01

    Zebrafish embryo toxicity testing has become a popular method for detecting environmental pollutions. However, the present research showed that zebrafish embryos exhibited no visible paramorphia, malformation, or mortality when exposed to heavy metals in a range above environmental standard limits, indicating that zebrafish embryos are an imprecise model for monitoring environmental heavy metals concentrations above regulatory limits. Aiming to obtain a biosensor for aquatic heavy metals, a metal-sensitive vector including zebrafish metallothionein (MT) promoter and enhanced green fluorescent protein (EGFP) was reconstructed and microinjected into 1-cell stage zebrafish embryos. The authors obtained an mt:egfp transgenic zebrafish line sensitive to aquatic zinc and cadmium. A quantitative experiment showed that zinc and cadmium treatment significantly induced the expression of EGFP in a dose- and time-dependent manner. In particular, EGFP messenger RNA levels increased remarkably when exposed to heavy metals above the standard limits. The results suggest that the transgenic zebrafish is a highly sensitive biosensor for detecting environmental levels of zinc and cadmium. Environ Toxicol Chem 2016;35:2066-2073. © 2016 SETAC. PMID:26752424

  8. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Sara C., E-mail: sara.novais@ua.pt [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Gomes, Susana I.L. [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Gravato, Carlos [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Ecotoxicologia e Ecologia, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Guilhermino, Lucia [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Ecotoxicologia e Ecologia, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); ICBAS-Instituto de Ciencias Biomedicas Abel Salazar, Departamento de Estudos de Populacoes, Laboratorio de Ecotoxicologia, Universidade do Porto, Porto (Portugal); De Coen, Wim [University of Antwerp, Department of Biology - E.B.T., Groenenborgerlaan 171 - U.7., B-2020 Antwerp (Belgium); Soares, Amadeu M.V.M.; Amorim, Monica J.B. [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2011-07-15

    To better understand chemical modes of action, emphasis has been given to stress responses at lower levels of biological organization. Cholinesterases and antioxidant defenses are among the most used biomarkers due to their crucial role in the neurocholinergic transmission and in cell homeostasis preventing DNA damage, enzymatic inactivation and lipid peroxidation. The main goal of this study was to investigate the effects of zinc and cadmium on survival and reproduction of E. albidus and to assess metals oxidative stress potential and neurotoxic effects at concentrations that affected reproduction. Both metals affected the enchytraeids' survival and reproduction and induced significant changes in the antioxidant defenses as well as increased lipid peroxidation, indicating oxidative damage. This study demonstrates that determining effects at different levels of biological organization can give better information on the physiological responses of enchytraeids in metal contamination events and further unravel the mechanistic processes dealing with metal stress. - Highlights: > Zinc and cadmium influence the survival and reproduction of Enchytraeus albidus. > Oxidative stress and membrane damage occur at reproduction effect concentrations. > Glutathione seems to be important in the antioxidant defense against metals. > Time intervals (2, 4, 8 days) allowed following the evolution of oxidative events. - Zinc and cadmium cause oxidative stress and membrane damage in Enchytraeus albidus at reproduction effect concentrations.

  9. Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils.

    Science.gov (United States)

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The integrated potential of oilcake manure (OM), elemental sulphur (S(0)), Glomus fasciculatum and Pseudomonas putida by growing Helianthus annuus L for phytoremediation of cadmium and zinc contaminated soils was investigated under pot experiment. The integrated treatment (2.5 g kg(-1) OM, 0.8 g kg(-1) S(0) and co-inoculation with G. fasciculatum and P. putida promoted the dry biomass of the plant. The treatment was feasible for enhanced cadmium accumulation up to 6.56 and 5.25 mg kg(-1) and zinc accumulation up to 45.46 and 32.56 mg kg(-1) in root and shoot, respectively, which caused maximum remediation efficiency (0.73 percent and 0.25 percent) and bioaccumulation factor (2.39 and 0.83) for Cd and Zn, respectively showing feasible uptake (in mg kg(-1) dry biomass) of Cd (5.55) and Zn (35.51) at the contaminated site. Thus, authors conclude to integrate oilcake manure, S(0) and microbial co-inoculation for enhanced clean-up of cadmium and zinc-contaminated soils. PMID:25450919

  10. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  11. Phytomass of beans and grain production as affected by zinc, copper and cadmium doses and bentonite application Fitomassa e produção do feijão afetadas pelas doses de zinco, cobre e cádmio e aplicação de bentonita

    Directory of Open Access Journals (Sweden)

    Gilvanise A. Tito

    2011-07-01

    Full Text Available The objective of this study was to determine the effect of zinc, copper and cadmium on phytomass and grain production and to evaluate indirectly the adsorbent effect of bentonite clay by determining the accumulation of these heavy metals in bean plants. The study consisted of three separate experiments (one for each cation with the application of three doses of bentonite (0, 30 and 60 t ha-1 in pots containing separately 50 mg of Zn; Cu and Cd kg-1 of soil, with three replicates. Thus, each experiment consisted of 9 experimental units. In each one, a bean plant was cultivated and after 65 days, samples of leaves, stems, roots and grains were collected. Afterwards, the samples were dried, weighed, grinded and the concentrations of Zn, Cu and Cd were determined. The phytomass of leaves of the plant growing on the soil with Zn, the Zn concentration in the whole plant and the Cd concentration in the leaves, stem and grains were significantly influenced by the bentonite application. Zn and Cd concentration in leaves, stem and grains decreased with the application of bentonite, indicating a positive effect of the clay application to the soil on the adsorption of these metals, decreasing the availability for plants. Zn was the most accumulated element in the plant, followed by Cd and Cu. The Zn, Cu and Cd accumulation in the plant obeyed the following sequence: stem > leaves > grains > roots; roots > stem > grains > leaves; roots > stem > leaves > grains, respectively.Objetivou-se, com este trabalho, estudar o efeito do cobre, zinco e cádmio em fitomassa e produção de grãos e avaliar indiretamente o efeito adsorvente da argila bentonita, determinando o acúmulo de metais pesados em plantas de feijão. O estudo consistiu de três experimentos separados (um para cada cátion, com a aplicação de três doses de bentonita (0, 30 e 60 t ha-1 em vasos contendo, separadamente, 50 mg de Zn, 50 mg de Cu e 50 mg de Cd kg-1 de solo, com três repeti

  12. Toxic effects on copper and zinc on germination and seedling growth of some trees

    International Nuclear Information System (INIS)

    A significant (p<0.05) reduction in seed germination due to copper toxicity at 800 ppm was observed in A. lebbeck and L. leucocephala. A significant (p<0.05) effect on root length in A. lebbeck was observed at 500 ppm of copper treatment as compared to similar concentration of zinc treatment. Higher concentration of zinc element also decreased the seedling dry weight at 1100 ppm treatment in A. lebbeck and L. leucocephala. Shoot length of L. leucocephala was more affected by copper treatment at 110 ppm was compared to same concentration of zinc. The lower doze of copper at 200 ppm was found effective in decreasing the seedling growth of L. leucocephala and A. lebbeck. Seedling growth rather than seed germination appears to be the sensitive stage for both tree species when treated with copper and zinc as compared to control. L. leucocephala was highly affected to copper and zinc toxicity, while A. lebbeck was less affected. According to tolerance test it was found that tolerance against zinc was higher as compared to copper. (author)

  13. Atmospheric Deposition of Copper and Zinc in Maramures County (Romania

    Directory of Open Access Journals (Sweden)

    Buteana Claudia

    2014-12-01

    Full Text Available The need to reduce pollution to levels that minimize adverse effects on human health involve the monitoring of air quality, including dry depositions and their metal content. The analysis of these parameters aims to investigate the air quality in Maramures County (with nonferrous mining activities and in the Romanian - Ukraine transboundary area. The paper presents the experimental results obtained for dry atmospheric deposition of copper and zinc using flame atomic absorption spectrometry (FAAS. The samples were collected from four location/cities of Maramures County (Baia Mare, Sighetu Marmatiei, Viseu de Sus and Borsa during May-October 2014. The highest average values of copper concentration in the dry depositions were found in Baia Mare (199.88 μg/g, that is the most important industrial centre in Maramures County, followed by Borsa (111.49 μg/g, that used to be a nonferrous mining centre. In Viseu de Sus and Sighetu Marmatiei the average concentrations of copper in the dry depositions were lower: 75.63 μg/g and 64.26 μg/g, respectively. Zn average concentrations in dry depositions were 6.4-12 times higher than Cu concentrations. In Viseu de Sus and Borsa relative high values of Pearson correlation coefficients between the logarithm of Cu and Zn content in the dry deposition were found (0.702 and 0.737, respectively estimating that both pollutants in the ambient air have the same sources, probably the re-suspension of the dust from the tailing ponds. This study is implemented within the frame of ENPI Cross-border Cooperation Programme Hungary-Slovakia-Romania-Ukraine 2007-2013, in the project Clean Air Management in the Romania-Ukraine Transboundary Area - (CLAMROUA, financed by the European Union

  14. Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA

    Institute of Scientific and Technical Information of China (English)

    LAN Zhuo-yue; HU Yue-hua; LIU Jian-she; WANG Jun

    2005-01-01

    The solvent extraction of copper and zinc from the bioleaching solutions of low-grade sulfide ores with LIX984 and D2EHPA was investigated. The influences of extractant content, aqueous pH value, phase ratio and equilibration time on metals extraction were studied. The results show that LIX984 has a higher selectivity for copper than for iron, zinc and other metals, and has the copper extraction rate above 97%,while the zinc and iron extraction rate is less than 1.6% respectively. Zinc extraction is carried out following the copper extraction from the raffinate. The zinc extraction with di(2-ethylhexyl) phosphoric acid(D2EHPA) is low due to its poor cation exchange. A sodium salt of D2EHPA is used and the zinc extraction rate is enhanced to above 98%. Though iron (Ⅲ) is strongly extracted before the extraction of zinc by D2EHPA, it is difficult to strip iron from the organic phase by sulfuric acid. The zinc stripping rate is above 99% with 100 g/L sulfuric acid, while that of iron is 0.16%. Hence, the separation of zinc from iron can be achieved by the selective stripping.

  15. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    OpenAIRE

    Siladitya Bandyopadhyay; Kunal Ghosh; Chandrika Varadachari

    2014-01-01

    The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction ki...

  16. Crystallographic, optical and electrical properties of low zinc content cadmium zinc sulphide composite thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Graphical abstract: The DC conductivity of the screen-printed Cd0.9Zn0.1S films was measured in vacuum by a two probe technique. The plot of ln σDC against 1000/T for Cd0.9Zn0.1S film is a straight line indicating that conduction in the film is through thermally activated process. Highlights: ► The method of preparing films of low zinc content i.e. Cd0.9Zn0.1S alloy by screen printing method is cost effective and reasonably accurate. ► The structural, optical and electrical studies of these films indicate that the films are quite suitable for photovoltaic device fabrication. ► The prepared films of Cd0.9Zn0.1S alloy are found to be polycrystalline in nature and have hexagonal (wurtzite) structure. ► The absorption coefficient of these films is high and is suitable for efficient absorption in the visible region of solar spectrum. ► It has been observed that the conduction in Cd0.9Zn0.1S films is through thermally activated process. - Abstract: In this paper a screen-printing method has been employed for the deposition of low zinc content cadmium zinc sulphide (Cd0.9Zn0.1S) composite thin films on ultra clean glass substrate. Cadmium sulphide, zinc sulphide and cadmium chloride have been used as the basic source material. With these basic source materials, the optimum conditions for preparing good quality screen-printed films have been found. X-ray diffraction studies revealed that the films are polycrystalline in nature, single phase exhibiting wurtzite (hexagonal) structure with strong preferential orientation of grains along the (1 0 1) direction. SEM/EDAX analysis confirms the formation of ternary compound. The optical band gap (Eg) of the films has been studied by using reflection spectra in wavelength range 350–600 nm. The DC conductivity of the films has been measured in vacuum by a two probe technique.

  17. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus)

    OpenAIRE

    Dočekalová, H.; Škarpa, P.; Dočekal, B. (Bohumil)

    2015-01-01

    The aim of this study was to assess cadmium and copper uptake by radish (Raphanus sativus) and to test the capability of the Diffusive gradient in thin films (DGT) technique to predict bioaccessibility of the metals for this plant. Radish plants were grown in pots filled with uncontaminated control and artificially contaminated soils differing in cadmium and copper contents. Metal concentrations in plants were compared with free ion metal concentrations in soil solution, and concentratio...

  18. Comparative investigation of sample preparation techniques for atomic-absorption determination of copper, nickel, cadmium in wood flour

    International Nuclear Information System (INIS)

    Comparative study of two methods of sample preparation (acid decomposition and dry calculation) for atomic-absorption content of copper, nickel and cadmium in wood flour, has been conducted. It is shown that for a certain content of copper and nickel (from 6 to 40 μg/g) it is recommended that the method of dry calcination is used, for cadmium determination (its content being 1-2 μg/g) both methods are applicable

  19. Coronary heart disease and the zinc-to-copper ratio in human aorta and drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kinard, J.T.; Moses, H.A.; Stackhouse, C.; Fludd, R.; Thompson, R.

    1986-01-01

    Trace levels of zinc and copper have been determined in the aorta from individuals with known histories of coronary heart disease (experimental group) and from individuals without a history of heart disease (control group) or any condition with an alleged or known association with trace zinc and copper. Subjects for the experimental and control groups were matched in terms of age, sex, and race. The zinc-to-copper ratio in the aorta for the experimental group was found to be significantly higher than the zinc-to-copper ratio in the control group at the 90% level of confidence. The results suggest that an imbalance in the zinc-to-copper ratio is a risk factor in coronary artery disease. Data for trace elements in major water sources for different geographical areas of the US from 1962-1967 were compiled and correlations with mortality rates for heart diseases from 1969-1971 were made. The results revealed that there was an extremely high correlation between the zinc-to-copper ratio in water and mortality rates of non-white females with coronary heart disease.

  20. Synthetic, spectral and solution studies on imidazolate-bridged copper(II)-copper(II) and copper(II)-zinc(II) complexes

    Indian Academy of Sciences (India)

    Subodh Kumar; R N Patel; P V Khadikar; K B Pandeya

    2001-02-01

    Synthesis, spectral and solution studies on 2-ethyl imidazolate-bridged (2-EtIm) homo-binuclear copper(II)-copper(II) and hetero-binuclear copper(II)-zinc(II) homologue are described. Magnetic moment values of homo-binuclear complexes indicate that the imidazolate group can mediate antiferromagnetic interactions. Optical spectra of hetero-binuclear complex at varying H values suggest that the imidazolate-bridged complex is stable over the H-range 7 15-10 0.

  1. Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils

    DEFF Research Database (Denmark)

    Holm, P.E.; Christensen, T.H.

    1998-01-01

    Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu ...... water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils.......Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu g...... Cd L(-1) and 9 to 3600 mu g Zn L(-1), which were dominated by free metal ions as measured by an ion exchange-resin method. Annual leaching outflows were estimated from soil water concentrations to be 0.5-17 g Cd ha(-1) y(-1) and 9-3600 g Zn ha(-1) y(-1) per 100 mm of net percolation, corresponding to...

  2. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues.

    Science.gov (United States)

    Safarzadeh, Mohammad Sadegh; Moradkhani, Davood; Ojaghi-Ilkhchi, Mehdi

    2009-04-30

    Cd-Ni filtercakes are produced continuously at the third purification step in the electrolytic production of zinc in the National Iranian Lead and Zinc Company (NILZ) in northwestern Iran. In this research, the dissolution kinetics of cadmium from Cd-Ni residues produced in NILZ plant has been investigated. Hence, the effects of temperature, sulfuric acid concentration, particle size and stirring speed on the kinetics of cadmium dissolution in sulfuric acid were studied. The dissolution kinetics at 25-55 degrees C and tshrinking core model, with inter-diffusion of cadmium and sulfate ions through the porous region of alloying layer (Cd(5)Ni, Cd(2)Ni(1.9) and Cd(10)Cu(3)) as the rate determining step. This finding is in accordance with the apparent activation energy (E(a)) of 13.363 kJ/mol and a linear relationship between the rate constant and the reciprocal of squared particle size. Arrhenius constant was calculated as 6.3942 min(-1). The order of reaction with respect to sulfuric acid concentration, solid/liquid ratio and particle size were also achieved. The rate of reaction at first 5 min based on diffusion-controlled process can be expressed by a semi-empirical equation as:It was determined that the dissolution rate increased with increasing sulfuric acid concentration and decreasing particle size. PMID:18755541

  3. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.

    Science.gov (United States)

    Long, Xin-Xian; Zhang, Yu-Gang; Jun, Dai; Zhou, Qixing

    2009-04-01

    A field survey was conducted to study the characteristics of zinc, cadmium, and lead accumulation and rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance growing natively on an old lead/zinc mining site. We found significant hyperaccumulation of zinc and cadmium in field samples of S. alfredii, with maximal shoot concentrations of 9.10-19.61 g kg(-1) zinc and 0.12-1.23 g kg(-1) cadmium, shoot/root ratios ranging from 1.75 to 3.19 (average 2.54) for zinc, 3.36 to 4.43 (average 3.85) for cadmium, shoot bioaccumulation factors of zinc and cadmium being 1.46-4.84 and 7.35-17.41, respectively. While most of lead was retained in roots, thus indicating exclusion as a tolerance strategy for lead. Compared to the non-rhizosphere soil, organic matter and total nitrogen and phosphorus content, CEC and water extractable zinc, cadmium, and lead concentration were significantly higher, but pH was smaller in rhizosphere soil. The rhizosphere soil of S. alfredii harbored a wide variety of microorganism. In general, significantly higher numbers of culturable bacteria, actinomycetes, and fungi were found in the rhizosphere compared to bulk soil, confirming the stimulatory effect of the S. alfredii rhizosphere on microbial growth and proliferation. Analyses of BIOLOG data also showed that the growth of S. alfredii resulted in observable changes in BIOLOG metabolic profiles, utilization ability of different carbon substrates of microbial communities in the rhizosphere soil were also higher than the non-rhizosphere, confirming a functional effect of the rhizosphere of S. alfredii on bacterial population. PMID:19183820

  4. Copper electrodeposition from cuprous chloride solutions containing lead, zinc or iron ions

    Institute of Scientific and Technical Information of China (English)

    M. Tchoumou; M. Roynette Ehics

    2005-01-01

    Cuprous chloride hydrochloric acid solutions were electrolysed in a two compartments cell without agitation for copper extraction. It is found that the current density affects the colour and the size of copper deposits. During electrodeposition of copper from cuprous solution in the presence of various concentrations of lead, zinc or iron ions at different current densities, it is observed that lead is codeposited with copper by increasing current density.In all experiments, the current efficiency for the copper deposition reaction fluctuates between 88.50% and 95.50%.

  5. Phosphinochalcogenoic amido complexes of Zinc and cadmium as novel single-source precursors for the deposition of group II- VI semiconductors

    International Nuclear Information System (INIS)

    The paper reports the use of phosphinochalcogenoic amido complexes of zinc and cadmium as single-source precursors for the deposition of group II-VI semiconductor films.Observed thermal and decomposition characteristics are discussed. Phosphinochalcogenoic complexes of zinc and cadmium were found to decompose to ME. 17refs., 2figs

  6. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  7. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus

    International Nuclear Information System (INIS)

    This paper determines the effect of immobilized brown alga Fucus vesiculosus in the biosorption of heavy metals with alginate xerogels. Immobilization increased the kinetic uptakes and intraparticle diffusion rates of the three metals. The Langmuir maximum biosorption capacity increased twofold for cadmium, 10 times for lead, and decreased by half for copper. According to this model, the affinity of the metals for the biomass was as follows: Cu > Pb > Cd without alga and Pb > Cu > Cd with alga. FITR confirmed that carboxyl groups were the main groups involved in the metal uptake. Calcium in the gels was displaced by heavy metals from solution according to the 'egg-box' model. The restructured gel matrix became more uniform and organized as shown by scanning electron microscopy (SEM) characterization. F. vesiculosus immobilized in alginate xerogels constitutes an excellent biosorbent for cadmium, lead and copper, sometimes surpassing the biosorption performance of alginate alone and even the free alga

  8. Zinc and copper status in childbearing age Tunisian women: Relation to age, residential area, socioeconomic situation and physiologic characteristics.

    Science.gov (United States)

    El Ati-Hellal, Myriam; Doggui, Radhouene; Hedhili, Abderrazek; Traissac, Pierre; El Ati, Jalila

    2016-04-01

    Plasma zinc and copper status of 1689 non pregnant Tunisian women, aged 20-49 years old, was determined by flame atomic absorption spectrometry. A multiple regression was run to predict plasma trace element concentrations from age, BMI, marital status, menopause, education level, professional activity, economic level and area of living. The mean zinc and copper values were similar to those measured among comparable populations in earlier studies. However, a high prevalence of low plasma zinc and copper concentrations was observed assuming that women at childbearing age are at high risk of zinc and copper deficiencies and specific intervention may be considered. In univariate analysis, the mean values of plasma zinc and copper were associated with sitting areas and professional activity. For only plasma copper levels, there was an increase with BMI and parity, and a decrease with increasing schooling level and economic score. After adjustment for all variables, profession and parity showed a significant relationship between plasma levels copper. PMID:26859607

  9. Localization and toxic effects of cadmium, copper, and uranium in Azolla

    Energy Technology Data Exchange (ETDEWEB)

    Sela, M.; Tel-Or, E.; Fritz, E.; Huttermann, A.

    1988-09-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients.

  10. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae

    OpenAIRE

    Abbas H. Sulaymon; Mohammed, Ahmed A.; Al-Musawi, Tariq J.

    2012-01-01

    The present study aims to evaluate the competitive biosorption of lead, cadmium, copper, and arsenic ions by using native algae. A series of experiments were carried out in a batch reactor to obtain equilibrium data for adsorption of single, binary, ternary, and quaternary metal solutions. The biosorption of these metals is based on ion exchange mechanism accompanied by the release of light metals such as calcium, magnesium, and sodium. Experimental parameters such as pH, initial metal concen...

  11. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  12. Role of copper, zinc, and selenium in uterine cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sarita, P.; Naga Raju, G.J. [Department of Physics, Institute of Technology, GITAM University, Visakhapatnam (India); Bhuloka Reddy, S. [Swami Jnanananda Laboratories for Nuclear Research, Andhra Universily, Visakahpatnam (India)

    2013-07-01

    Full text: The objective of this study was to evaluate the levels of trace elements in blood sera of uterine cervix cancer patients, analyze their alteration with respect to healthy controls, ascertain the role played by them in the initiation, promotion and inhibition of cancer, and identify the best predictors amongst these for disease occurrence and progression. Moreover, the variation of trace elemental content in the sera of cervix cancer patients with the clinical stage of disease and with therapy was also studied. Particle induced X-ray emission (PIXE), a well established method for elemental analysis, was used in this work to identify and quantify trace elements in the blood sera of uterine cervix cancer subjects and healthy control subjects. The PIXE measurements were carried out using 2.5 MeV collimated proton beam from the 3 MV Tandem Pelletron Accelerator at lon Beam Laboratory, Institute of Physics, Bhubaneswar, India. Among all the trace elements identified in this work, statistically significant alterations in serum levels of copper, zinc, and selenium were observed among the various studied groups. The observed alterations are discussed with respect to the possible mechanisms by which these elements might influence the carcinogenic process. (author)

  13. Radiation induced structural changes in alpha-copper-zinc alloys

    International Nuclear Information System (INIS)

    During irradiation of alpha-copper-zinc alloys with high energy electrons and protons a decrease of the electrical resistivity due to an increase of the degree of short range order is observed through radiation enhanced diffusion followed by an increase of the electrical resistivity through the formation of radiation induced interstitial clusters. The initial formation rate of interstitial clusters increases about linearly with the displacement rate for electron and proton irradiation. The largest initial formation rate is found between 60 and 1300C becoming negligibly small above 1580C and decreases drastically below 600C. The dynamic steady state interstitial cluster concentration increases with decreasing irradiation temperature in the investigated temperature range between 158 and 400C. Above 1580C the formation rate of interstitial clusters is negligibly small. Thus the transition temperature for radiation induced interstitial cluster formation is 1580C, depending mainly on the migration activation energy of vacancies. The radiation induced interstitial clusters are precipitates in those alloys in which the diffusion rate of the undersized component atoms via an interstitialcy diffusion mechanism is larger than that of the other atoms

  14. Solar thermal extraction of copper and zinc from sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Guesdon, C.; Sturzenegger, M.

    2002-03-01

    A novel approach for extracting metals from metal sulfides is proposed. Key feature is the use of concentrated solar radiation to directly convert metal sulfides into the metal and sulfur. Such processes have the potential to produce metals with virtually zero emission of SO{sub 2} and CO{sub 2}. The feasibility of such a solar thermal extraction has been evaluated for zinc sulfide (Zn S) and copper(I)sulfide Cu{sub 2}S. Thermodynamic calculations suggest that for both processes heat recovery from the hot product is required to implement a viable process. Decomposition experiments have indicated that the high reactivity of Zn and S is not compatible with the energy requirement of heat recovery and that quenching will likely be needed to collect Zn. As an alternative, the addition of a mixture of O{sub 2} and steam (chemical quenching) is discussed. The extraction of Cu from Cu{sub 2}S appears less critical: Experiments under N{sub 2} revealed the formation of metallic Cu already at 1323 K. Natural separation of gaseous S from liquid Cu successfully prevents recombination of the two products and at least partial heat recovery can be envisaged. (author)

  15. Leaching of copper and zinc from spent antifouling paint particles

    International Nuclear Information System (INIS)

    Leaching of Cu and Zn from a composite of spent antifouling paint particles, containing about 300 mg g-1 and 110 mg g-1 of the respective metals, was studied in batch experiments. For a given set of simulated environmental conditions, release of Cu was independent of paint particle concentration due to attainment of pseudo-saturation, but Zn was less constrained by solubility effects and release increased with increasing particle concentration. Leaching of Cu increased but Zn decreased with increasing salinity, consistent with mechanisms governing the dissolution of Cu2O in the presence of chloride and Zn acrylates in the presence of seawater cations. Because of complex reaction kinetics and the presence of calcium carbonate in the paint matrix, metal leaching appeared to be greater at 4 deg. C than 19 deg. C under many conditions. These findings have important environmental and biological implications regarding the deliberate or inadvertent disposal of antifouling paint residues. - Copper and zinc are readily leached from particles of spent antifouling paint under a range of environmental conditions

  16. Role of copper, zinc, and selenium in uterine cervical cancer

    International Nuclear Information System (INIS)

    Full text: The objective of this study was to evaluate the levels of trace elements in blood sera of uterine cervix cancer patients, analyze their alteration with respect to healthy controls, ascertain the role played by them in the initiation, promotion and inhibition of cancer, and identify the best predictors amongst these for disease occurrence and progression. Moreover, the variation of trace elemental content in the sera of cervix cancer patients with the clinical stage of disease and with therapy was also studied. Particle induced X-ray emission (PIXE), a well established method for elemental analysis, was used in this work to identify and quantify trace elements in the blood sera of uterine cervix cancer subjects and healthy control subjects. The PIXE measurements were carried out using 2.5 MeV collimated proton beam from the 3 MV Tandem Pelletron Accelerator at lon Beam Laboratory, Institute of Physics, Bhubaneswar, India. Among all the trace elements identified in this work, statistically significant alterations in serum levels of copper, zinc, and selenium were observed among the various studied groups. The observed alterations are discussed with respect to the possible mechanisms by which these elements might influence the carcinogenic process. (author)

  17. Evaluation of Toxic Effects and Bioaccumulation of Cadmium and Copper in Spring Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Jūratė Žaltauskaitė

    2013-07-01

    Full Text Available This paper deals with the analysis of toxic effects of cadmium and copper on the growth of spring barley (Hordeum vulgare L. cultivated in hydroponics. The seedlings of barley were treated with four different concentrations of cadmium and copper, ranging from 0.1 to 10 mg L-1. The aim of the study was to assess toxic effects of cadmium (Cd and copper (Cu on the growth of spring barley, and to determine metal accumulation in above-ground and underground parts of the plant. The impact of Cu and Cd on photosynthetic pigments (chlorophyll a, b, the content of malondialdehyde (MDA, and the essential micronutrients (Mn, Fe were examined. Metal treatment reduced the growth of roots (by 60%, shoots (Cd – 48 %, Cu – 57% and dry weight (Cd – 47 %, Cu – 52% of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. Regression analysis revealed that there was significant negative relationship between MDA content and biomass of barley treated with Cu (r=-0.99, p=0.01. The examined heavy metals were accumulated mainly in the roots and bioconcentration of Cu there was higher than that of Cd, indicating that roots tended to accumulate higher amounts of Cu than Cd. Though translocation of Cd from roots to above-ground tissues was higher, higher levels of Cd were observed in leaves.DOI: http://dx.doi.org/10.5755/j01.erem.64.2.1951

  18. Follow up of Treatment of Cadmium and Copper Toxicity in Clarias Gariepinus Using Laser Techniques

    Science.gov (United States)

    Zaghloul, Khalid H.; Ali, Maha F.; El-Bary, Manal G. Abd; Abd El-Harith, Mohamed

    2010-04-01

    Two purified diets were formulated and fed to seven groups of the Nile catfish; Clarias gariepinus for 12 weeks. The formulated diets contained 50 or 500 mg/kg diet of an ascorbic acid equivalent, supplied by L-ascorbyl-2-monophosphate (Mg salt). Laser induced breakdown spectroscopy (LIDS) technique has been used to characterize the bioaccumulation of cadmium, copper and iron in some selected organs (Gills, liver, kidney and muscles) and disturbance in the distribution of sodium, calcium and magnesium in gills and muscles of fish fed the minimum requirement of vitamin C (50 mg/kg diet) and exposed to cadmium (0.165 mg/l) and copper (0.35 mg/l) individually or in combination. Heavy metals bioaccumulation affect histological structure of gills, liver and kidney and consequently, fish exhibited the lowest growth rate and meat quality with a progressive fall in RBCs count, Hb content and haematocrite value. These effects were concomitant with significant increase in the WBCs count, serum glucose, total protein, AST, ALT, creatinine and uric acid. On the contrary, serum total lipids and liver glycogen revealed a significant decrease. However, fish fed 500 mg vitamin C/kg diet and exposed to the same concentrations of cadmium and copper either individually or in mixture showed an improvement in the growth rate and meat quality and a tendency to exhibit close to the control values for most of the other studied physiological, biochemical and histopathological investigations.

  19. Toxicity of cadmium and zinc to cercarial tail loss in Diplostomum spathaceum (Trematoda: Diplostomidae)

    OpenAIRE

    Morley, Neil; Crane, M.; Lewis, J W

    2003-01-01

    The effect of cadmium and zinc at concentrations ranging from 0±1 to 10000 lg}l on tail loss in cercariae of Diplostomum spathaceum was investigated at 3 temperatures (12, 20 and 25 °C) and 3 levels of water hardness (distilled water, soft water and hard water). Increasing tail loss over time was found to be linked with a parallel decrease in cercarial survival in controls. Exposure to the heavy metals induced, especially at high concentrations, a change in the relationship between cercarial ...

  20. Structural and Substructural Properties of the Zinc and Cadmium Chalcogenides Thin Films (a Review

    Directory of Open Access Journals (Sweden)

    C.J. Panchal

    2011-01-01

    Full Text Available In this paper, the structural properties of the zinc and cadmium chalcogenide thin films are considered. The influence of the structural defects such as grain boundaries, dislocations, native point defects, etc., on the optical and electrical properties of the thin films was studied. The methods of the II-VI thin films deposition are described. The influence on the sub-structural properties (phase compositions, texture, grain size, stacking faults concentration, micro deformation levels, and coherent domain size of the thin films grown by the close-spaced vacuum evaporation method was analyzed. The growth conditions of the thin films with optimized parameters have been determined.

  1. Large-volume high-resolution cadmium zinc telluride radiation detectors: recent developments

    Science.gov (United States)

    Chen, H.; Awadalla, S. A.; Iniewski, K.; Lu, P. H.; Harris, F.; Mackenzie, J.; Hasanen, T.; Chen, W.; Redden, R.; Bindley, G.; Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Luke, P.; Amman, M.; Lee, J. S.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; James, R. B.

    2007-09-01

    The excellent room temperature spectral performance of cadmium zinc telluride detectors grown via the Traveling Heater Method (THM) makes this approach suitable for the mass deployment of radiation detectors for applications in homeland security and medical imaging. This paper reports our progress in fabricating thicker and larger area detectors from THM grown CZT. We discuss the performance of such 20x20x10 mm 3, and 10x10x10 mm 3 monolithic pixellated detectors and virtual Frisch-Grid 4x4x12 mm3 devices, and describe the various physical properties of the materials.

  2. Thermodynamics of Zinc and Cadmium Ions Removal from Waste Solutions Using Zeolite A

    International Nuclear Information System (INIS)

    Ion exchange experiments between synthetic zeolite A and aqueous solutions of zinc and cadmium ions were conducted at constant total-ion concentrations of 0.1 N and at different temperatures in the range from 25 0C to 60 0C. Thermodynamic equilibrium constants, calculated from the corresponding Kiellands plots, were used for the calculation of the appropriate values of standard free energy( delta G0), standard enthalpy (delta H0), and standard entropy (delta S0). The obtained data indicated that zeolite A exhibits higher affinity for Zn+2 and Cd+2 ions from solution than host Na+ ions

  3. Serum zinc and copper concentrations in maternal and umbilical cord blood. Relation to course and outcome of pregnancy

    DEFF Research Database (Denmark)

    Bro, S; Berendtsen, H; Nørgaard, J; Høst, A; Jørgensen, P J

    1988-01-01

    serum zinc and copper concentrations in maternal and umbilical cord blood from 500 Danish mothers at delivery, looking for an association between serum zinc and copper levels and various maternal and foetal complications. Preterm infants (n = 30) had significantly lower serum copper concentrations than...... reference infants (n = 346) (p = 0.01), whereas there was no difference in serum zinc concentrations. Mothers of preterm infants (n = 34) did not differ in serum zinc or copper concentrations from reference mothers (n = 220). Small for date infants (n = 37) and mothers of small for date infants (n = 47) had...

  4. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil

    International Nuclear Information System (INIS)

    The effect of increasing application of zinc (Zn) and cadmium (Cd) on shoot dry weight and shoot concentrations of Zn and Cd was studied in bread and durum wheat cultivars. Plants were grown in severely Zn-deficient calcareous soil treated with increasing Zn (0 and 10 mg kg-1 soil) and Cd (0, 10 and 25 mg kg-1 soil) and harvested after 35 and 65 days of growth under greenhouse conditions. Growing plants without Zn fertilization caused severe depression in shoot growth, especially in durum wheat and at high Cd treatment. Cadmium treatments resulted in rapid development of necrotic patches on the base and sheath parts of the oldest leaves of both wheat cultivars, but symptoms were more severe in durum wheat and under Zn deficiency. Decreases in shoot dry weight from increasing Cd application were more severe in Zn-deficient plants. Severity of Cd toxicity symptoms in durum and bread wheat at different Zn treatments did not show any relation to the Cd concentrations in shoot. Increasing Cd application to Zn-deficient plants tended to decrease Zn concentrations in Zn-deficient plants, whereas in plants with adequate Zn, concentrations of Zn were either not affected or increased by Cd. The results show that durum wheat was more sensitive to both Zn deficiency and Cd toxicity as compared to bread wheat. Cadmium toxicity in the shoot was alleviated by Zn treatment, but this was not accompanied by a corresponding decrease in shoot concentrations of Cd. Our results are compatible with the hypothesis that Zn protects plants from Cd toxicity by improving plant defense against Cd-induced oxidative stress and by competing with Cd for binding to critical cell constituents such as enzymes and membrane protein and lipids

  5. Coaccumulation of cadmium and zinc in tissues of sentinel mallards (Anas platyrhynchos) using a former dredge-disposal impoundment.

    Science.gov (United States)

    Levengood, J M; Skowron, L M

    2007-08-01

    Six- to eight-month-old female farm-raised mallards (Anas platyrhynchos) were used to examine the accumulation of and association among cadmium (Cd), zinc (Zn), and copper (Cu) from an impoundment constructed to contain sediments dredged from a lake contaminated by a zinc smelter. Cd was not detectable in the livers t of farm-raised mallards (day 0), although sentinel mallards accumulated hepatic Cd in the first 7 days after release. By day 14, mean concentrations of Cd in kidneys (= 2.82 mg/kg wet weight) had increased 3.4-fold. The mean pancreatic Cd concentration increased 59% between days 7 and 14. Renal Zn increased nominally, whereas pancreatic Zn increased 63% in sentinel ducks after release. Hepatic Zn increased significantly in the first week of release. Renal and pancreatic Cu concentrations did not change significantly, whereas concentrations of Cu in livers of ducks increased 50% in the 7 days after release before decreasing by nearly the same degree. Concentrations of Cd and Zn were correlated in livers of sentinel mallards on days 7 and 14. Cd and Cu were not correlated in the tissues of any cohort. Cu and Zn were correlated in the livers of farm-raised mallards, in the pancreases of sentinel mallards at day 7, and in the kidneys of the ducks in all three treatments. The relationship between Cd and Zn in tissues of ducks in our study was complicated by simultaneous exposure to increased and heterogeneous concentrations of Cd and Zn, both of which can induce metallothionein and compete for this and other ligands. PMID:17549551

  6. Maternal serum copper and zinc levels and premature rupture of the foetal membranes

    International Nuclear Information System (INIS)

    Objective: To examine the correlation of zinc and copper serum concentration level, body mass index, age and parity with premature rupture of the membranes. Methods: The cross-sectional study was conducted between 2009 and 2010 at the fertility ward of Amiralmomenin Hospital of Semnan University of Medical Sciences, Iran. It comprised 100 full-term pregnant women with and without premature rupture of the membranes and 50 non-pregnant women as controls. The diagnosis of rupture of membranes was made on the basis of gross leakage of fluid within the vagina and a positive nitrazin test. A sample of 5mL blood was collected. The levels of zinc and copper were determined by an enzyme-linked immunosorbent assay method. Mean values among the three equal groups were compared using standard analysis of variance. Statistical significance was set at p<0.05. Results: Pregnant women with (p<0.027) and without (p<0.019) premature rupture of the membranes had significantly lower serum zinc concentration than non-pregnant women. Inversely, the maternal serum copper concentration level was higher in both groups of pregnant women than in the controls (p<0.001). However, the results suggest that the decreased plasma zinc concentration and increased copper concentration in pregnant women were not the cause of premature rupture of the membranes at term. Conclusion: Zinc and copper concentration levels in maternal serum had no effect on premature rupture of the membranes. (author)

  7. Changes in serum copper and zinc levels in peripartum healthy and subclinically hypocalcemic dairy cows.

    Science.gov (United States)

    Wang, Jianguo; Zhu, Xiaoyan; Wang, Zhe; Li, Xiaobing; Zhao, Baoyu; Liu, Guowen

    2014-06-01

    The objective of this study was to determine the levels of serum copper and zinc in subclinically hypocalcemic peripartum dairy cows in comparison to healthy animals. Blood samples were taken from 219 multiparous Holstein cows near parturition (from 4 weeks prepartum to 4 weeks postpartum) and 51 cows with subclinical hypocalcemia. The results showed that the serum copper concentration increased gradually at 1 week prepartum and remained high for the first 4 weeks postpartum in the healthy periparturient dairy cows. The serum zinc concentration reached a nadir at 1 week postpartum and subsequently increased gradually to baseline. The serum zinc concentration was significantly decreased (Pcows with subclinical hypocalcemia compared with healthy cows. There was no significant difference in the serum copper concentration between cows with subclinical hypocalcemia and healthy cows. These data demonstrate that the concentrations of copper and zinc in serum change dramatically during the peripartum period in dairy cows, which is a tremendous challenge for the body and for the maintenance of dairy cow health. The present study further suggests that a decreased serum zinc concentration could be a cause of decreased productive performance and increased susceptibility to other diseases due to immunosuppression in dairy cows with subclinical hypocalcemia. Additionally, this decreased zinc concentration may be involved in the pathogenesis of subclinical hypocalcemia. PMID:24859816

  8. Iron, copper and zinc isotopic fractionation up mammal trophic chains

    Science.gov (United States)

    Jaouen, Klervia; Pons, Marie-Laure; Balter, Vincent

    2013-07-01

    There is a growing body of evidence that some non-traditional elements exhibit stable isotope compositions that are distinct in botanical and animal products, providing potential new tracers for diet reconstructions. Here, we present data for iron (Fe), copper (Cu) and zinc (Zn) stable isotope compositions in plants and bones of herbivores and carnivores. The samples come from trophic chains located in the Western Cape area and in the Kruger National Park in South Africa. The Fe, Cu and Zn isotope systematics are similar in both parks. However, local Cu, and possibly Zn, isotopic values of soils influence that of plants and of higher trophic levels. Between plants and bones of herbivores, the Zn isotope compositions are 66Zn-enriched by about 0.8‰ whereas no significant trophic enrichment is observed for Fe and Cu. Between bones of herbivores and bones of carnivores, the Fe isotope compositions are 56Fe-depleted by about 0.6‰, the Cu isotope compositions are 65Cu-enriched by about 1.0‰, and the Zn isotope compositions are slightly 66Zn-depleted by about 0.2‰. The isotopic distributions of the metals in the body partly explain the observed trophic isotopic systematics. However, it is also necessary to invoke differential intestinal metal absorption between herbivores and carnivores to account for the observed results. Further studies are necessary to fully understand how the Fe, Cu and Zn isotope values are regulated within the ecosystem's trophic levels, but the data already suggests significant potential as new paleodietary and paleoecological proxies.

  9. Release behavior of copper and zinc from sandy soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-kui; XIA Yi-ping

    2005-01-01

    The concentrations and chemical forms of copper(Gu) and zinc(Zn) in surface soils directly influence the movement of Gu and Zn. In this study, thirteen sandy soil samples with a wide range of total Cu and Zn concentrations were collected for evaluating the relationships between Cu and Zn release and extraction time, ratio of soil to water, pH and electrolyte types. The results indicated that Cu released in batch extraction that represents long-term leaching was mainly from exchangeable, and carbonate bound Cu fractions, and Zn released in the batch extraction was mainly from its carbonate bound fraction. However, the Cu and Zn leached from the soils using the column leaching that represents short-term leaching were mainly from their exchangeable fractions. Soil column leaching at different pH values indicated that the amounts of leached Zn and Cu were greatly affected by pH. The Cu and Zn release experiments with varying extraction times and ratio of soil to water suggest that long-term water-logging in the soils after rain may increase contact time of the soils with water and the release of Cu and Zn to water from the soils, and total amounts of Cu or Zn released from the soils increase, but the Cu or Zn concentration in the surface runoff decrease with increasing rainfall intensity. The increased Ca concentration in soil solution increased stability of organic matter-mineral complexes and might decrease the dissolution of organic matter, and thus decreased the release of Cu-binding component of organic matter. However, high concentration of Na in the soil solution increased the dispersion of the organic matter-mineral complexes and increased dissolution of organic matter and the release of Cu from the soils.

  10. Life cycle environmental impacts from CZTS (copper zinc tin sulfide) and Zn3P2 (zinc phosphide) thin film PV (photovoltaic) cells

    International Nuclear Information System (INIS)

    While solar PV (photovoltaic) cells are promising for clean energy production, their mass deployment is hindered by production costs, material availability, and toxicity. Two materials that can overcome these challenges and replace today's CdTe (cadmium telluride) and CIGS (copper indium gallium diselenide) based PV cells are Zn3P2 (zinc phosphide) and CZTS (copper zinc tin sulfide). A cradle to gate life cycle assessment was conducted to understand the environmental impacts from these technologies. The impacts from Zn3P2 and CdTe were similar and lower than the impacts from CZTS and CIGS. While CdTe has the toxic Cd element, the ecotoxicity impact from material acquisition and processing was higher for Zn and P than for CdTe. In CIGS, the ecotoxicity impact came mainly from Ga and would be significantly reduced if CZTS were to replace CIGS in the commercial market. For all four thin films studied, the contribution of raw materials to total impact was much lower than the impact coming from electricity consumption during the manufacturing stage. Therefore, to reduce environmental impact, future PV technology development should focus more on the process improvement. The manufacturing stages that contributed most to the impact were the absorber layer for CIGS and CZTS and the substrate cleaning for CdTe and Zn3P2. - Highlights: • Four impact categories were evaluated for CZTS, Zn3P2, and current PV technologies. • The analysis was cradle-to-gate and performed with GaBi 6.0 and Ecoinvent 2.2. • The impacts of Zn3P2 are similar to CdTe and lower than that of CIGS and CZTS. • Materials in the absorber layer did not usually have a large contribution. • Electricity use was a major contributor to the overall impact

  11. Changes in Serum Zinc, Copper and Ceruloplasmin Levels of Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Rats are whole body irradiated with different Gamma radiation doses. Zinc and Copper, two important trace elements in the biological processes and Ceruloplasmin, a protein which carries more than 95% of serum Cu and has important roles in many vital processes are followed up in the irradiated rat sera. This work aimed to determine the changes in the serum levels of the three parameters (Zinc, Copper and Ceruloplasmin) through eight weeks follow up period (1st, 2nd, 3rd, 4th, 6th, and 8th week) post whole body gamma irradiation with three sub-lethal doses (2, 3.5 and 5 Gy) of rats. All the experimental animals did not receive any medical treatment. Zinc and Copper were measured using discrete nebulization flame atomic absorption spectrometry. Ceruloplasmin was measured using a colorimetric method. The statistical analyses of the results show that the Zinc levels of the irradiated groups decreased significantly post irradiation and then were recovered at the 6th week post irradiation. The Copper levels of the irradiated groups increased significantly and then were recovered at 6th week post irradiation. The levels of Ceruloplasmin in the same groups increased significantly throughout the whole follow up period. The conclusion is that, Zinc, Copper and Ceruloplasmin levels changed significantly in the irradiated groups compared to the control group with a maximum effect noted in the groups irradiated with the higher doses and that the lower dose irradiated groups recover earlier than the higher ones. Also the correlation between Copper and Zinc is reversible at different doses and that between Copper and Ceruloplasmin is direct

  12. Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; FAN Ting; ZENG Guang-ming; LI Xin; TONG Qing; YE Fei; ZHOU Ming; XU Wei-hua; HUANG Yu-e

    2006-01-01

    The potential of living Aspergillus niger to remove cadmium and zinc from aqueous solution was investigated. Effects of pH, initial concentration, contact time, temperature and agitation rate on the biosorption of Cd(Ⅱ) and Zn(Ⅱ) ions were studied. The optimum adsorption pH value for Cd(Ⅱ) and Zn(Ⅱ) were 4.0 and 6.0. The best temperature and agitation rate were in the range of 25-30 ℃ and 120 r/min for all metal ions. Under the optimal conditions, the maximum uptake capacities of Cd(Ⅱ) and Zn( Ⅱ ) ions are 15.50 mg/g and 23.70 mg/g at initial concentrations of 75 mg/L and 150 mg/L, respectively. Biosorption equilibrium is established within 24 h for cadmium and zinc ions. The adsorption data provide an excellent fit to Langmuir isotherm model. The results of the kinetic studies show that the rate of adsorption follows the pseudo-second order kinetics.

  13. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.;

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions....../precipitates of these crystals indicate that the THM is suitable for the mass production of CZT radiation detectors that can be used in a variety of applications. Our result also proves that with careful material selection using IR and high-quality fabrication processes, the theoretical energy resolution limit can be achieved....

  14. Spectrometry of X-ray beams using Cadmium and Zinc Teluride detector

    International Nuclear Information System (INIS)

    Determination of X-ray spectra to be utilized for medical diagnostics is a complementary process to the development of procedures to be applied to the quality control of radiodiagnostics X-ray equipment. Until some years ago, that was only possible using Germanium or Silicon detectors. Both have an excellent resolution in this energy range, but present also some restrictions as there are high costs and the necessity of operating them at temperature of liquid Nitrogen, which is not always available at the measurement's place. Room temperature detectors like Cadmium Telluride and Mercury Iodine don't have these restrictions. They, however, have a lower resolution and incomplete collection of the charges produced by their interaction with radiation. With technological advance of crystal growth in general and new techniques like cooling the crystal with a Peltier cell and rise time discrimination circuits, today Cadmium Telluride detectors show a resolution very close to that from Germanium detectors. This work relates to the routine use of Cadmium and Zinc Telluride detectors for measuring X-ray spectra in loco of diagnostic X-ray units. It characterizes the properties of a commercially available detector and offers a model for stripping the measured pulse height distribution. It was also developed a collimator to allow the direct measurement of the beam. The model developed and the constructed set-up were applied to two X-ray tubes and the achieved spectra compared with some spectra available from the literature. (author)

  15. Mechanisms of Transport of Copper, Cadmium and Chromium in Soils

    OpenAIRE

    Biggar, J. W.; Tanji, K. K.; D. R. Nielsen; Miller, R.J.

    1981-01-01

    The copper in the saturation extract of dried Davis sewage sludge was mainly in a complexed form. A Cu2+ specific ion electrode was used to determine the extent of complexation. Absorption experiments showed that the Kd value of 90 cc g-1. Paper electrophoresis was used to define the complexes according to their mobility in an electric field. Six fractions of positive, negative and neutral charge were isolated. The fraction of Cu in the sludge which was water soluble was found to increase sig...

  16. Competitive Complexation of Copper and Zinc by Sequentially Extracted Humic Substances from Manure Compost

    Institute of Scientific and Technical Information of China (English)

    LIU Shuai; WANG Xu-dong; LU Li-lan; DIAO Shi-rong; ZHANG Jun-feng

    2008-01-01

    Chicken manure with similar content of copper and zinc was chosen to conduct a composting experiment to investigate the changes of organic carbon and humus substance complexed copper (HS-Cu) and zinc (HS-Zn), which were extracted by water (H2O), sodium hydroxide (NaOH), and sodium pyrophate-NaOH mixture (Na4P2O7-NaOH), sequentially. Distributions of copper and zinc in fulvic acids (FA) and humic acids (HA) in the three extracts were studied. During manure composting, the concentrations of copper and zinc increased from about 500 mg kg-' in the raw material to 1100 mg kg-1 in the final products. HS-Cu in H2O, NaOH, and Na4P2O7-NaOH extracts occupied 6.7, 26.7, and 19% averagely of total copper and HS-Zn represented 2.7, 13.7, and 17% averagely of total zinc in compost, respectively. In water extracts, both HA and FA mainly complexed with Cu and the mole ratio of Cu to Zn was 2.8 in HA fractions and was 2.6 in FA fractions, respectively. HA mainly complexed with copper, so that the ratios of HA-Cu to HA-Zn averaged 3.4 in NaOH extracts. FA had a similar potential to complex with copper and zinc, so that the ratio of FA-Cu to FA-Zn was close to 1. In Na4P2O7-NaOH extracts, HA or FA had a similar potential to complex with copper and zinc. The ratio of HS-Cu to HS-Zn was close to 1. With manure composting, Na4P2O7-NaOH extractable HS-Zn increased to a level as high as HS-Cu. This indicated that more and more stable complexes of HS-Zn were formed in the late decomposition period. The competition between copper and zinc to be complexed with humic substance became weaker and weaker with the decomposition process.

  17. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders

    Science.gov (United States)

    Stanić, Vojislav; Dimitrijević, Suzana; Antić-Stanković, Jelena; Mitrić, Miodrag; Jokić, Bojan; Plećaš, Ilija B.; Raičević, Slavica

    2010-08-01

    Antimicrobial materials based on hydroxyapatite are potentially attractive in a wide variety of medical applications. The synthesis of copper and zinc-doped hydroxyapatite was done by neutralization method. This method consists of dissolving CuO or ZnO in solution of H 3PO 4, and the slow addition to suspension of Ca(OH) 2 for obtaining monophasic product. Characterization studies from XRD, SEM, TEM and FTIR spectra showed that particles of all samples are of nano size and they do not contain any discernible crystalline impurity. The quantitative elemental analysis showed that the copper and zinc ions fully incorporated into the hydroxyapatite. The antimicrobial effects of doped hydroxyapatite powders against pathogen bacterial strains Escherichia coli, Staphylococcus aureus and pathogen yeast Candida albicans were tested in solid and liquid media. Quantitative test in liquid media clearly showed that copper and zinc-doped samples had viable cells reduction ability for all tested strains.

  18. Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa

    NARCIS (Netherlands)

    Li, J.; Liu, B.; Cheng, F.; Wang, X.; Aarts, M.G.M.; Wu, J.

    2014-01-01

    Genes underlying environmental adaptability tend to be over-retained in polyploid plant species. Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation, but little is known about the differential expression of

  19. THE STUDY ON THE CHANGES OF ZINC,COPPER,CALCIUM AND MAGNESIUM IN PLASMA AND ERYTHROCYTES DURING CARDIOPULMONARY BYPASS

    Institute of Scientific and Technical Information of China (English)

    耿希刚; 李兆志; 李明; 师桃

    2004-01-01

    Objective To study the changes and their influence factors involved of zinc, copper, calcium and magnesium in plasma and erythrocytes during cardiopulmonary bypass(CPB). Methods Zinc, copper, calcium and magnesium values in plasma and erythrocytes were measured by atomic absorption spectrophotometer during CPB. Results Zinc and copper levels in plasma were significantly elevated above preinduction level before perfusion, but calcium and magnesium levels did not change significantly; zinc, copper and calcium levels in plasma were significantly below preoperation level during CPB, but magnesium level in plasma was significantly increased above preoperation; zinc level in plasma was increased to preoperation level after CPB and began to decrease again at 8 hours after CPB, copper level in plasma was increased to preoperation level at 20 hours after CPB, calcium in plasma was increased significantly from beginning to 8 hours after CPB, magnesium level in plasma was decreased to preoperation level at 8 hours afterCPB. Concentration of zinc , copper, calcium and magnesium in erythrocytes did not change significantly. Conclusion During CPB, the changes of zinc, copper, calcium and magnesium had relation to hemodilution, operative wound, carrier protein, stress and component of priming solution and cardioplegic solution, but no relation to transfer from plasma erythrocytes. The results indicate that it is beneficial to patient's recovery to supplement zinc, copper, calcium and magnesium properly by different ways during cardiac perioperation.

  20. Effects of Different Concentrations of Copper Alone and a Copper + Cadmium Mixture on the Accumulation of Copper in the Gill, Liver, Kidney and Muscle Tissues of Oreochromis niloticus (L.)

    OpenAIRE

    SAĞLAMTİMUR, Baybars; CİCİK, Bedii

    2003-01-01

    Experiments were conducted in two series for 1, 7, 15 and 30 days. In the first series, fish were exposed to 0.1, 0.5, 1.0 and 5.0 ppm of copper and in the second series to 0.1 + 0.05, 0.5 + 0.1, 1.0 + 0.5 and 5.0 + 1.0 ppm of copper and cadmium mixtures. No mortalities were observed during the experimental period. Accumulation of copper in the tissues and organs increased with increasing concentrations of copper and with longer exposure periods. Copper accumulation associated with copper + ...

  1. Quantitative analysis of cadmium(II) and copper(II) by chemical stripping chronopotentiometry using dissolved oxygen as an oxidant

    International Nuclear Information System (INIS)

    Chemical stripping chronopotentiometry was applied to determine cadmium(II) and copper(II) by using oxygen as an oxidant. The calibration curve for cadmium(II) was linear within a range of (10-6--10-4) mol dm-3, while the calibration curve for copper(II) was distorted, since copper(II) ion in the sample solution also worked as an oxidant. The calibration curve for cadmium(II) in the presence of constant concentration of copper(II) ion was linear within the range of (10-5--2 x 10-4) mol dm-3. In order to determine copper(II) in the presence of cadmium(II), it was necessary to electrodeposit only copper by reducing at -0.5 V vs. SCE. The instrumentation used in this work was composed of only a simple voltage supply circuit, a stirrer, a y-t recorder and a pH-meter used as a high-impedance potentiometer. (author)

  2. Zinc, ferritin, magnesium and copper in a group of Egyptian children with attention deficit hyperactivity disorder

    OpenAIRE

    Mahmoud Magdy M; El-Mazary Abdel-Azeem M; Maher Reham M; Saber Manal M

    2011-01-01

    Abstract Background Attention deficit hyperactivity disorder is a behavioral syndrome of childhood characterized by inattention, hyperactivity and impulsivity. There were many etiological theories showed dysfunction of some brain areas that are implicated in inhibition of responses and functions of the brain. Minerals like zinc, ferritin, magnesium and copper may play a role in the pathogenesis and therefore the treatment of this disorder. Objective This study aimed to measure levels of zinc,...

  3. Kinetic investigation of myeloperoxidase upon interaction with copper, cadmium, and lead ions

    International Nuclear Information System (INIS)

    Myeloperoxidase, which is abundantly expressed in neutrophils, catalyzes the formation of a number of reactive oxidant species. However, evidence has emerged that Myeloperoxidase-derived oxidants contribute to tissue damage and initiation and propagation of inflammatory diseases, particularly, cardiovascular diseases. Therefore, studying the regulatory mechanisms of the enzyme activity is of great importance. For clarifying some possible mechanism of the enzyme activity, kinetic investigations of Myeloperoxidase in the presence of Copper, Cadmium, and Lead ions were carried out in vitro. Methods: Myeloperoxidase was partially purified from human white blood cells using ion-exchange and gel-filtration chromatography techniques. Its activity was measured spectrophotometrically by using tetramethyl benzidine as substrate. Results: Purified enzyme had a specific activity of 21.7 U/mg protein with a purity index of about 0.71. Copper inhibited Myeloperoxidase activity progressively up to a concentration of 60 m M at which about 80% of inhibition achieved. The inhibition was non-competitive with respect to tetramethyl benzidine. An inhibitory constant (Ki) of about 19 m M was calculated from the slope of repot. Cadmium and Lead did not show any significant inhibitory effect on the enzyme activity. Conclusion: The results of the present study may indicate that there are some places on the enzyme and enzyme-substrate complex for Copper ions. Binding of Copper ions to these places result in conformational changes of the enzyme and thus, enzyme inhibition. This inhibitory effect of Copper on the enzyme activity might be considered as a regulatory mechanism on Myeloperoxidase activity.

  4. Comparison of Serum Zinc and Copper levels in Children and adolescents with Intractable and Controlled Epilepsy

    OpenAIRE

    Zeynab KHERADMAND; Bahram YARALI; Ahad ZARE; POURPAK, Zahra; Shams, Sedigheh; Mahmoud Reza ASHRAFI

    2014-01-01

    How to Cite This Article: Kheradmand Z, Yarali B, Zare A, Pourpak Z, Shams S, Ashrafi MR. Comparison of Serum Zinc and Copper levels in Children and adolescents with Intractable and Controlled Epilepsy. Iran J Child Neurol. 2014; 8(3):49-54. AbstractObjectiveTrace elements such as zinc and copper have physiological effects on neuronal excitability that may play a role in the etiology of intractable epilepsy. This topic has been rarely discussed in Iranian epileptic patients.This study with th...

  5. Input and leaching potential of copper, zinc, and selenium in agricultural soil from swine slurry

    OpenAIRE

    Comas Baron, Jordi; Dominguez, Carmen; Salas Vazquez, Dora Isela; Parera, Joan; Díez, S; Bayona, Josep Maria

    2014-01-01

    Trace elements, such as copper, zinc, and selenium, used as feed additives were determined in samples of both fresh (N = 14) and anaerobically digested (N = 6) swine slurry collected on medium- to large-size farms in northeast Spain. Considering both fresh and anaerobically digested samples, mean concentrations of zinc (1,500 mg kg(-1) dry mass [dm]) were greater than those of copper (mean 239 mg kg(-1) dm), and the selenium concentrations detected were even lower (mean 139 mu g kg(-1) dm). Z...

  6. Neutron activation analysis of zinc, copper, manganese, and gold in human hair of infants

    International Nuclear Information System (INIS)

    In the hair of 41 normal newborn children the trace elements zinc, copper, manganese, and gold were followed up longitudinally by neutron activation analysis, the samples (whole length of hair)) being taken at the 1st day of life, between the 63th and 109th, the 200th and 240th, the 368th and 478th as well as between the 700th and 881th day of life. The trace element changes in the hair of babies resulted in the remarkable observation that within the first 3 months of life zinc, copper and gold contents show a considerable increase, followed by a decrease. (author)

  7. Liquid-liquid extraction of zinc and cadmium with 1,2-naphthoquinone thiosemicarbazone into methyl isobutyl ketone, and their simultaneous determination by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    Zinc and cadmium are extracted from aqueous solution with 1,2-naphtoquinone thiosemicarbazone for simultaneous determination by atomic-absorption spectrophotometry. This compound reacts with zinc and cadmium in weakly acid medium to produce chelates which are extractable into methyl isobutyl ketone. The atomic absorption is measured at 213.9 and 228.8 nm for zinc and cadmium, respectively. The sensitivity is 0.3 ng per ml of original aqueous solution and several foreign ions are tolerated in 100-fold ratio to Zn or Cd. (Author)

  8. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus).

    Science.gov (United States)

    Dočekalová, Hana; Škarpa, Petr; Dočekal, Bohumil

    2015-03-01

    The aim of this study was to assess cadmium and copper uptake by radish (Raphanus sativus) and to test the capability of the diffusive gradient in thin films (DGT) technique to predict bioaccessibility of the metals for this plant. Radish plants were grown in pots filled with uncontaminated control and artificially contaminated soils differing in cadmium and copper contents. Metal concentrations in plants were compared with free ion metal concentrations in soil solution, and concentrations measured by DGT. Significant correlation was found between metal fluxes to plant and metal fluxes into DGT. Pearson correlation coefficient for cadmium was 0.994 and for copper 0.998. The obtained results showed that DGT offers the possibility of simple test procedure for soils and can be used as a physical surrogate for plant uptake. PMID:25618652

  9. Restorative Effects of Zinc and Selenium on Cadmium-induced Kidney Oxidative Damage in Rats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To investigate whether cadmium-induced oxidative stress in the kidney is influenced by zinc and selenium. Methods Five groups of rats were maintained: (A) Cd (CdCl2,400 μg@kg-1 day-1 intraperitoneal injection); (B) Cd+Zn (ZnC12, 20mg kg-1.day-1 hypodermic injection); (C) Cd+Se (Na2SeO3, 350 μg.kg-1.day-1 via a stomach tube); (D) Cd+Zn+Se; (E)treated with physiological saline as a sham-handled control. The rats were given treatmenl for a period of 4 weeks. The activities of superoxide dismutase (SOD), glutathione peroxidase (GH-Px), catalase (CAT), and the level of malondialdehyde (MDA) in the kidney tissue were measured to assess the oxidative stress. Urinary lactate dehydrogenase (LDH) activity was used as an indicator of tubular cell damage caused by lipid peroxidation. Results In group C and D, activities of SOD (110.5 ± 5.2, 126.8 ± 7.0; P < 0.05) and GSH-Px (85.7 ± 4.9,94.6 ± 7.3; P < 0.05) were higher than those in group A(84.7 ± 3.3; 56.9 ± 3.8); and in group B, only the activity of GSH-Px (80.0 + 4.3, P < 0.01) increased in comparison with that in group A (56.9 ± 3.8). Significant increase of MDA (P < 0.05) was seen in group B (31.1 ± 4.7) and C (35.0 + 4.1) when compared with control values (17.2 ± 1.8). No difference was found in the level of MDA between group D (18.9 ± 2.6) and control. The activity of LDH in urine of control group (0.06 ± 0.02) was lower than that of group A (0.46 ± 0.19, P<0.05), B (0.10± 0.05, P<0.05) and C (0.14 ± 0.07, P<0.05), and there was no significant change between control (0.06 + 0.02) and group D (0.08 ± 0.02). Conclusion Zinc or selenium could partially alleviate the oxidative stress induced by cadmium in kidney, but administration cadmium in combination with zinc and selenium efficiently protects kidney from cadmiuminduced oxidative damage.

  10. Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.

    Science.gov (United States)

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide

    2016-03-01

    The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes. PMID:26858082

  11. Synthesis and crystal structures of coordination compounds of pyridoxine with zinc and cadmium sulfates

    International Nuclear Information System (INIS)

    The pyridoxine complexes with zinc and cadmium sulfates are synthesized. The IR absorption spectra and thermal behavior of the synthesized compounds are described. Crystals of the [M(C8H11O3N)2(H2O)2]SO4 . 3H2O (M = Zn, Cd) compounds are investigated using X-ray diffraction. In the structures of both compounds, the M atoms are coordinated by the oxygen atoms of the deprotonated OH group and the CH2OH group retaining its own hydrogen atom, as well as by two H2O molecules, and have an octahedral coordination. The nitrogen atom of the heterocycle is protonated, so that the heterocycle acquires a pyridinium character. The cationic complexes form layers separated by the anions and crystallization water molecules located in between. The structural units of the crystals are joined together by a complex system of hydrogen bonds.

  12. Ion Beam Induced Charge Collection (IBICC) Studies of Cadmium Zinc Telluride (CZT) Radiation Detectors

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride is an emerging material for room temperature radiation detectors. In order to optimize the performance of these detectors, it is important to determine how the electronic properties of CZT are related to the presence of impurities and defects that are introduced during the crystal growth and detector fabrication. At the Sandia microbeam facility IBICC and Time Resolved IBICC (TRIBICC) were used to image electronic properties of various CZT detectors. Two-dimensional areal maps of charge collection efficiency were deduced from the measurements. In order to determine radiation damage to the detectors, we measured the deterioration of the IBICC signal as the function of dose. A model to explain quantitatively the pattern observed in the charge collection efficiency maps of the damaged detectors has been developed and will be discussed in the paper

  13. Increasing cadmium and zinc levels in wild common eiders breeding along Canada's remote northern coastline

    International Nuclear Information System (INIS)

    The common eider (Somateria mollissima) is an abundant sea duck breeding around the circumpolar Arctic, and is an important component of subsistence and sport harvest in some regions. We determined hepatic cadmium (Cd) and zinc (Zn) concentrations in the livers of breeding females sampled during three time periods including 1992/3, 2001/2 and 2008 at three sites spanning 53.7°N–75.8°N in the eastern Canadian Arctic. At all sites, concentrations of both Cd and Zn increased ∼ 300% over this time period. The reasons for this rapid increase in concentrations are unclear. - Highlights: • Cd and Zn analyzed in common eider (Somateria mollissima) liver tissue in Canadian Arctic from sites spanning 3000 km. • ∼ 300% increase in concentrations observed over ∼ 20 years • Levels of both elements considered high and near levels thought to pose concerns for wildlife health

  14. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. PMID:24675367

  15. Removal of Cadmium and Zinc from Soil using Immobilized Cell of Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Charoon Sarin

    2010-07-01

    Full Text Available Immobilized biosurfactant producing bacteria (Bacillus subtilis TP8 and Pseudomonas fluorescens G7 were assessed for survival in heavy metal contaminated soil and for their ability to remove cadmium and zinc from contaminated soil. P. fluorescens G7 was considered to be a good candidate for bioremediation of heavy metals because of its high minimum inhibitory concentrations (MIC for each heavy metal and because of the obviously increased numbers of cell surviving after incubation in the heavy metal contaminated soil up to 4 weeks. The results of soil remediation showed that approximately 19% of Zn and 16.7% of Cd could be removed by this immobilized biosurfactant producing bacteria after incubation for 2 weeks. The results confirm the potential applicability of the immobilized biosurfactant producing bacteria for heavy metal bioremediation.

  16. Recovery of zinc, cadmium, and lanthanum by biopolymer gel particles of alginic acid

    International Nuclear Information System (INIS)

    Biopolymer gel particles of alginic acid were found to be a useful material for recovering zinc, cadmium, and lanthanum from aqueous solutions. The metals sorbed by the gel particles could be completely eluted by using dilute HCl solution of 0.1 kmol/m3. The distribution ratios of the individual metals between the gel and liquid phases were measured by using a batch method. The equilibrium data were consistent with predictions made assuming that sorption takes place with the ion-exchange reaction between metal ions and alginic acid. The maximum sorption capacity of the gel particles and the distribution equilibrium constants for the metals were determined by comparing the experimental data with the theoretical predictions. The observed effect of temperature on the distribution equilibrium was insignificant in the range from 15 to 35 degrees C. 17 refs., 6 figs., 1 tab

  17. Feasibility of using cadmium-zinc-telluride detectors in electronically collimated SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Radiology; Doty, F.P.; Friesenhahn, S.J.; Butler, J.F. [Aurora Technologies Inc., San Diego, CA (United States)

    1995-08-01

    Replacing cryogenically cooled germanium (Ge) with room-temperature operable cadmium-zinc-telluride (CZT) semiconducting detectors as the first detector of an electronically collimated SPECT system would have certain practical advantages. To determine the feasibility of this approach, the authors have performed a theoretical and experimental study comparing the resolution and detection efficiency of a Ge based system to that of a CZT based system. The results indicate that the detection efficiency of a CZT based system would be a factor of 2.5 lower than a comparable Ge based system at 140keV and the spatial resolution would also be approximately a factor of two worse. However, at higher energies, the difference between CZT and Ge would decrease, and at 662keV, for example, the CZT and the Ge systems could have nearly equal detection efficiency and resolution.

  18. Feasibility of using cadmium-zinc-telluride detectors in electronically collimated SPECT

    International Nuclear Information System (INIS)

    Replacing cryogenically cooled germanium (Ge) with room-temperature operable cadmium-zinc-telluride (CZT) semiconducting detectors as the first detector of an electronically collimated SPECT system would have certain practical advantages. To determine the feasibility of this approach, the authors have performed a theoretical and experimental study comparing the resolution and detection efficiency of a Ge based system to that of a CZT based system. The results indicate that the detection efficiency of a CZT based system would be a factor of 2.5 lower than a comparable Ge based system at 140keV and the spatial resolution would also be approximately a factor of two worse. However, at higher energies, the difference between CZT and Ge would decrease, and at 662keV, for example, the CZT and the Ge systems could have nearly equal detection efficiency and resolution

  19. First experience DaTSCAN imaging using cadmium-zinc-telluride gamma camera SPECT.

    Science.gov (United States)

    Farid, Karim; Queneau, Mathieu; Guernou, Mohamed; Lussato, David; Poullias, Xavier; Petras, Slavomir; Caillat-Vigneron, Nadine; Songy, Bernard

    2012-08-01

    We report our first experience of brain DaTSCAN SPECT imaging using cadmium-zinc-telluride gamma camera (CZT-GC) in 2 cases: a 64-year-old patient suffering from essential tremor and a 73-year-old patient presenting with atypical bilateral extrapyramidal syndrome. In both cases, 2 different acquisitions were performed and compared, using a double-head Anger-GC, followed immediately by a second acquisition on CZT-GC. There were no significant visual differences between images generated by different GC. Our first result suggests that DaTSCAN SPECT is feasible on CZT-GC, allowing both injected dose and acquisition time reductions without compromising image quality. This experience needs to be evaluated in larger series. PMID:22785531

  20. Internal Electric Field Behavior of Cadmium Zinc Telluride Radiation Detectors Under High Carrier Injection

    International Nuclear Information System (INIS)

    The behavior of the internal electric-field of nuclear-radiation detectors substantially affects the detector's performance. We investigated the distribution of the internal field in cadmium zinc telluride (CZT) detectors under high carrier injection. We noted the build-up of a space charge region near the cathode that produces a built-in field opposing the applied field. Its presence entails the collapse of the electric field in the rest of detector, other than the portion near the cathode. Such a space-charge region originates from serious hole-trapping in CZT. The device's operating temperature greatly affects the width of the space-charge region. With increasing temperature from 5 C to 35 C, its width expanded from about 1/6 to 1/2 of the total depth of the detector.

  1. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhiyong [College of Bioengineering, Jimei University, Xiamen, 361021 (China)], E-mail: zhyhuang@jmu.edu.cn; Li Lianping; Huang Gaoling [College of Bioengineering, Jimei University, Xiamen, 361021 (China); Yan Qingpi [College of fisheries, Jimei University, Xiamen, 361021 (China); Shi Bing; Xu Xiaoqin [Xiamen Products Quality Inspection Institute, Xiamen, 361004 (China)

    2009-01-18

    Phytochelatins, with the general structure of ({gamma}-Glu-Cys)n-Gly (n = 2-11), are usually recognized as being strongly induced by metals in microalgae and play an important role in the detoxification of heavy metals in environment. However, there have been few studies on metallothionein (MT) synthesis in Chlorella vulgaris (C. vulgaris) exposed to heavy metals. The present study describes the growth inhibition of C. vulgaris exposed to different concentrations of cadmium and zinc, and the induction of metal-binding MT-like proteins in the cells. The amounts of metal-binding proteins, induced in the alga exposed to different concentrations of Cd and Zn, were analyzed with a size-exclusion HPLC coupled to ICP-MS. After being purified with a gel filtration column (Sephadex G-75, 3.5 cm x 80 cm) and a desalting column (G-25, 1.5 cm x 30 cm), the isoforms and sub-isoforms of Zn-binding protein were characterized by a reverse phase-HPLC coupled to electrospray ionization and a triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). In addition, the ultraviolet spectra of purified Zn-binding proteins were analyzed in media with different pH values. The results showed that the significant inhibitory effects (at p < 0.05) on the cell growth were observed when excessive metals such as 80 {mu}mol l{sup -1} of Cd, and 60 and 80 {mu}mol l{sup -1} of Zn were added. The Cd/Zn-binding proteins induced in C. vulgaris exposed to Cd and Zn were referred to as Cd/Zn-MT-like proteins in which the mean molecular mass of the apo-MT-like was 6152 Da. The induced Cd/Zn-MT-like proteins might be involved in the detoxification of heavy metals, such as cadmium and zinc, by the alga.

  2. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc

    International Nuclear Information System (INIS)

    Phytochelatins, with the general structure of (γ-Glu-Cys)n-Gly (n = 2-11), are usually recognized as being strongly induced by metals in microalgae and play an important role in the detoxification of heavy metals in environment. However, there have been few studies on metallothionein (MT) synthesis in Chlorella vulgaris (C. vulgaris) exposed to heavy metals. The present study describes the growth inhibition of C. vulgaris exposed to different concentrations of cadmium and zinc, and the induction of metal-binding MT-like proteins in the cells. The amounts of metal-binding proteins, induced in the alga exposed to different concentrations of Cd and Zn, were analyzed with a size-exclusion HPLC coupled to ICP-MS. After being purified with a gel filtration column (Sephadex G-75, 3.5 cm x 80 cm) and a desalting column (G-25, 1.5 cm x 30 cm), the isoforms and sub-isoforms of Zn-binding protein were characterized by a reverse phase-HPLC coupled to electrospray ionization and a triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). In addition, the ultraviolet spectra of purified Zn-binding proteins were analyzed in media with different pH values. The results showed that the significant inhibitory effects (at p -1 of Cd, and 60 and 80 μmol l-1 of Zn were added. The Cd/Zn-binding proteins induced in C. vulgaris exposed to Cd and Zn were referred to as Cd/Zn-MT-like proteins in which the mean molecular mass of the apo-MT-like was 6152 Da. The induced Cd/Zn-MT-like proteins might be involved in the detoxification of heavy metals, such as cadmium and zinc, by the alga

  3. Copper-Zinc Superoxide Dismutase: A Unique Biological "Ligand" for Bioinorganic Studies.

    Science.gov (United States)

    Valentine, Joan Selverstone; de Freitas, Duarte Mota

    1985-01-01

    Discusses superoxide dismutase (SOD) research and the properties of copper, zinc (Cu, Zn)-SOD. Emphasizes the controversy concerning the role of Cu,Zn-SOD and other SOD enzymes as protective agents in reactions involving dioxygen metabolism, and the properties of Cu, Zn-SOD that make it an interesting biological ligand for physical studies of…

  4. Investigation of the effects of dietary protein source on copper and zinc bioavailability in rainbow trout

    Science.gov (United States)

    Limited research has examined the effects that dietary protein sources have on copper (Cu) and Zinc (Zn) absorption, interactions and utilization in rainbow trout. Therefore, the objective of the first trial was to determine what effect protein source (plant vs. animal based), Cu source (complex vs....

  5. DETERMINATION OF COPPER AND ZINC IN MINERAL WATERS BY ATOMIC ABSORPTION SPECTROPHOTOMETRY

    Directory of Open Access Journals (Sweden)

    Tatiana Mitina

    2011-12-01

    Full Text Available The content of copper and zinc in mineral waters were determined by atomic spectroscopy with preliminary extraction of metals. Validation of the technique was carried out by the method of standard additions and proved the reliability of analytical data.

  6. Studies on bioremoval of copper and zinc by Desulfovibrio desulfuricans isolated from Chitradurga mine sites, India

    Directory of Open Access Journals (Sweden)

    Chandraprabha M N

    2012-08-01

    Full Text Available Normal 0 false false false Normal 0 false false false This paper reports the study on the feasibility of bioremoval of copper and zinc using sulphate reducing bacteria (Desulfovibrio desulfuricans grown on low cost carbon sources like rice husk, saw dust and manure. Efficient growth of wild strain was achieved with all the low-cost carbon substrates. The inhibition effect of copper and zinc sulphate on the growth of D. desulfuricans cells was established and was found to be concentration dependent. 25 ppm Cu(II and 30 ppm Zn(II ions were able to completely inhibit the growth of cells. Strains tolerant to higher metal ion concentrations were obtained by serial subculturing and used for bioremoval studies. Direct bioremoval of copper and zinc during the growth was achieved for all the strains. Strains grown in presence of rice husk had higher bioremoval efficiency with percent removal of nearly 72% and 86% for 500 ppm of initial copper and zinc concentration respectively.

  7. Day-to-Day Variations in Iron, Zinc and Copper in Breast Milk of Guatemalan Mothers

    NARCIS (Netherlands)

    Dhonukshe-Rutten, R.A.M.; West, C.E.; Schümann, K.; Bulux-Hernandes, J.; Solomons, N.W.

    2005-01-01

    Objective: To assess the within-subject and between-subject coefficients of variation (CV) of iron, zinc and copper concentrations in the milk of Guatemalan mothers. Methods: We performed a cross-sectional study in lactating women who had delivered a healthy infant 1 to 6 months previously in two lo

  8. Functionalization of cross linked chitosan with 2-aminopyridine-3-carboxylic acid for solid phase extraction of cadmium and zinc ions and their determination by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    We have developed a new method for solid phase extraction (SPE) and preconcentration of trace amounts of cadmium and zinc using cross linked chitosan that was functionalized with 2-aminopyridine-3-carboxy acid. Analytical parameters, sample pH, effect of flow rate, sample volume, and concentration of eluent on column SPE were investigated. The effect of matrix ions on the recovery of cadmium and zinc has been investigated and were found not to interfere with preconcentration. Under the optimum experimental conditions, the preconcentration factors for Cd(II) and Zn(II) were found to be 90. The two elements were quantified via atomic absorption spectrometry. The detection limits for cadmium and zinc are 21 and 65 ng L -1, respectively. The method was evaluated by analyzing a certified reference material (NIST 1643e; water) and has been successfully applied to the analysis of cadmium and zinc in environmental water samples. (author)

  9. Kinetic effect of zinc(II) and cadmium(II) ions on configurational inversion of deltaLLL-fac(S)-tris(L-cysteinato-N,S)cobalt(III) complex.

    Science.gov (United States)

    Aizawa, S; Ohishi, Y; Yamada, S; Nakamura, M

    2001-02-01

    It has been confirmed from circular dichroism (CD) spectral changes of aqueous solutions of deltaLLL-fac(S)-[Co(L-cys-N,S)3]3- that the absolute configurational inversion to the ALLL isomer is remarkably accelerated by zinc(II), while it is retarded by cadmium(II). In the diluted solutions of these metal ions containing excess deltaLLL-fac(S)-[Co(L-cys-N,S)3]3-, the observed inversion rate constant linearly depends on the zinc(II) concentration with an intercept, while it is not affected by the cadmium(II) concentration. The kinetic behavior has been explained by difference between zinc(II)- and cadmium(II)-interactions with lone pairs on sulfur donor atoms of fac(S)-[Co(L-cys-N,S)3]3-. It has also been proposed that concentrations of zinc(II) and cadmium(II) can be simultaneously determined by the kinetic measurements. PMID:11990552

  10. The influence of bioavailable copper and zinc concentrations on metallothionein levels, DNA damage and gene expression in the polychaete Nereis (Alitta) virens (M. Sars, 1835)

    OpenAIRE

    Pini, Jennifer; Richir, Jonathan; Watson, Gordon

    2014-01-01

    Nereis (Alitta) virens is an ecologically and commercially important polychaete of intertidal soft sediment and an ideal species to investigate long term effects of metals. Using a spike approach, worms (1-3 g) were incubated for nine months in sediments spiked at environmentally relevant concentrations of copper, zinc and copper & zinc together: low (copper: 70 mg kg-1, zinc: 200 mg kg-1), medium (copper 120 mg kg-1, zinc: 270 mg kg-1) and high (copper 575 mg kg-1, zinc: 1160 mg kg-1) concen...

  11. Corrosion of carbon steel, zinc and copper by air pollution in Chongqing

    Institute of Scientific and Technical Information of China (English)

    YE Di; ZHAO Da-wei; CHEN Gang-cai; ZHANG Dong-bao

    2007-01-01

    This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose-response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.

  12. ASSESSMENT OF THE BLACK SEA ECOSYSTEM POLLUTION WITH COPPER AND CADMIUM IN SELECTED BAYS OF SEVASTOPOL REGION

    Directory of Open Access Journals (Sweden)

    Marcin Niemiec

    2015-11-01

    Full Text Available A high level of anthropopressure has been registered in Sevastopol region, connected with its strategic role as the main city in the region, but also due to Russian Black Sea Fleet stationing there for many years. A significant source of the Black Sea contamination in Sevastopol area is the industry located in this city, municipal waste and agriculture. Implementing measures aimed at protection of the Black Sea and the evolution of their results requires monitoring conducted in the regions with various levels of anthropopressure. The work was aimed at the assessment of copper and cadmium content in water and algae in selected bays of the Black Sea in the vicinity of Sevastopol. Samples of water and algae were collected in August 2012 from eight Sevastopol bays (Galubaja, Kozacha, Kamyshova, Kruhla, Strieletska, Pishchana, Pivdenna and Sevastopolska and from the open sea in the vicinity of Fiolent. Algae (Cystoseira barbata and Ulva rigida were collected from the same places. Collected water was preserved on the sampling place and brought to the laboratory where its copper and cadmium concentrations were assessed. Collected algae were rinsed in distilled water, dried, then homogenised and mineralised. Copper and cadmium content were determined in the mineralizates using ASA method with electrothermal atomisation. Cadmium concentration in water ranged from 0.13 to 1.74 µg Cd∙dm-3, and copper from 7.07 to 22.56 µg Cd∙dm-3. Considerable differences in the content of the analysed elements were registered in individual bays. The highest content was assessed in Galubaja and Sevastopolska bays, whereas the lowest one in the water collected in the open sea and in Pivdenna bay. Copper concentrations in the analysed algae fluctuated from 3.375 to 14.96 mg Cu∙kg-1 d.m. No differences were noted in this element content between the algae species. Cadmium content in the algae ranged from 0.133 to 1.133 mg Cd∙kg-1 d.m. Higher accumulation of cadmium

  13. Zinc, ferritin, magnesium and copper in a group of Egyptian children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdy M

    2011-12-01

    Full Text Available Abstract Background Attention deficit hyperactivity disorder is a behavioral syndrome of childhood characterized by inattention, hyperactivity and impulsivity. There were many etiological theories showed dysfunction of some brain areas that are implicated in inhibition of responses and functions of the brain. Minerals like zinc, ferritin, magnesium and copper may play a role in the pathogenesis and therefore the treatment of this disorder. Objective This study aimed to measure levels of zinc, ferritin, magnesium and copper in children with attention deficit hyperactivity disorder and comparing them to normal. Methods This study included 58 children aged 5-15 years with attention deficit hyperactivity disorder attending Minia University Hospital from June 2008 to January 2010. They were classified into three sub-groups: sub-group I included 32 children with in-attentive type, sub-group II included 10 children with hyperactive type and sub-group III included 16 children with combined type according to the DSM-IV criteria of American Psychiatric Association, 2000. The control group included 25 apparently normal healthy children. Results Zinc, ferritin and magnesium levels were significantly lower in children with attention deficit hyperactivity disorder than controls (p value 0.04, 0.03 and 0.02 respectively, while copper levels were not significantly different (p value 0.9. Children with inattentive type had significant lower levels of zinc and ferritin than controls (p value 0.001 and 0.01 respectively with no significant difference between them as regards magnesium and copper levels (p value 0.4 and 0.6 respectively. Children with hyperactive type had significant lower levels of zinc, ferritin and magnesium than controls (p value 0.01, 0.02 and 0.02 respectively with no significant difference between them as regards copper levels (p value 0.9. Children with combined type had significant lower levels of zinc and magnesium than controls (p value 0

  14. A preliminary evaluation of some soil and plant parameters that influence root uptake of arsenic, cadmium, cooper, and zinc

    International Nuclear Information System (INIS)

    In the absence of site-specific data, the concentration of metals in plants is typically estimated by multiplying the total concentration of metal in soil by a metal-specific soil-to-root bioconcentration factor (BCF). However, this approach does not account for various soil properties, such as pH, organic matter content, and cation exchange capacity, that are known to influence root uptake of some metals. For risk assessment purposes, a simple, predictive method for estimating root uptake of metals that is based on site-specific soil and crop data is needed so that the importance of the produce ingestion pathway and subsequent influence on human exposure can be quantitatively assessed. An easy-to-use method is necessary since collecting site-specific data on the concentration of metals in home-grown produce is often time-consuming and costly. Ideally, it should be possible to develop a statistically-reliable relationship between plant and soil metals levels that includes appropriate weighing factors for various soil properties. Multiple linear regression analyses were used to develop simple, predictive models for estimating the concentration of metals in plants via root uptake using site-specific soil data. This paper presents preliminary predictive equations for estimating root uptake of arsenic, cadmium, copper, and zinc in fruiting, root, and all vegetables combined (i.e., fruiting and root crop data were combined). Results show that by using data on additional soil parameters (other than relying solely on the concentration of metals in soil), the concentration of metals in fruiting and root vegetables can be more confidently predicted

  15. A preliminary evaluation of some soil and plant parameters that influence root uptake of arsenic, cadmium, cooper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Hattemer-Frey, H.A.; Krieger, G.R.; Lau, V. [Dames & Moore, Denver, CO (United States)

    1994-12-31

    In the absence of site-specific data, the concentration of metals in plants is typically estimated by multiplying the total concentration of metal in soil by a metal-specific soil-to-root bioconcentration factor (BCF). However, this approach does not account for various soil properties, such as pH, organic matter content, and cation exchange capacity, that are known to influence root uptake of some metals. For risk assessment purposes, a simple, predictive method for estimating root uptake of metals that is based on site-specific soil and crop data is needed so that the importance of the produce ingestion pathway and subsequent influence on human exposure can be quantitatively assessed. An easy-to-use method is necessary since collecting site-specific data on the concentration of metals in home-grown produce is often time-consuming and costly. Ideally, it should be possible to develop a statistically-reliable relationship between plant and soil metals levels that includes appropriate weighing factors for various soil properties. Multiple linear regression analyses were used to develop simple, predictive models for estimating the concentration of metals in plants via root uptake using site-specific soil data. This paper presents preliminary predictive equations for estimating root uptake of arsenic, cadmium, copper, and zinc in fruiting, root, and all vegetables combined (i.e., fruiting and root crop data were combined). Results show that by using data on additional soil parameters (other than relying solely on the concentration of metals in soil), the concentration of metals in fruiting and root vegetables can be more confidently predicted.

  16. Zinc, copper, and selenium tissue levels and their relation to subcutaneous abscess, minor surgery, and wound healing in humans

    DEFF Research Database (Denmark)

    Mirastschijski, Ursula; Martin Moreno, Alicia; Jorgensen, Lars N;

    2013-01-01

    Trace element involvement in wounds left to heal by secondary intention needs clarification. We have previously reported faster healing of wounds following acute surgery compared with elective excision of pilonidal sinus disease. The effect of topical zinc on the closure of the excisional wounds...... was mediocre compared with placebo. In contrast, parenteral zinc, copper, and selenium combined appear effective for wound healing in humans. We have investigated zinc, copper, and selenium with respect to (a) impact of acute versus chronic pilonidal sinus and (b) regional concentrations within...... granulating wounds treated topically with placebo or zinc in 42 (33 males) pilonidal disease patients. Baseline serum and skin concentrations of copper correlated (r S = 0.351, p = 0.033, n = 37), but not of zinc or selenium. Patients with abscesses had elevated serum C-reactive protein (CRP) and copper...

  17. Production of carrier-free radioactive copper from neutron irradiated zinc targets

    International Nuclear Information System (INIS)

    The present study describes the production of carrier-free radioactive copper from natural zinc metal as target material irradiated at ETRR-2 and ETRR+1 research reactors, Egypt. Radioactive copper-64 and 67 were prepared according to the fast neutron reaction 64 Zn (n,p)64 Cu and 67 Zn (n,p)67 Cu. The zinc chloride radiotracer in 8 M HCl acid solutions was loaded onto the anion exchanger resin (Dowex 1 x 8, Cl - ion form, 200-400 mesh, i.d. 0.9 x 10 cm) at flow rate of 0.8 ml/min. Carrier-free radioactive Cu was eluted from the resin by 2.5 M HCl leaving zinc chloride retained on the resin. Quality control investigations including radionuclidic, radiochemical and chemical purity of carrier-free radioactive Cu product has proved its suitability for nuclear medicine use

  18. Serum Levels of Zinc, Copper, Vitamin B12, Folate and Immunoglobulins in Individuals with Giardiasis

    Directory of Open Access Journals (Sweden)

    M Zarebavani

    2012-12-01

    Full Text Available Background: Giardia lamblia is one of the most important intestinal parasites. The aim of this study was to measure serum levels of IgA, IgE, zinc, copper, vitamin B12 and folate in individuals with giardiasis in comparison to normal subjects.Methods: The study was carried out among 49 Giardia positive and 39 age and sex matched healthy volunteers. Examination of stool samples was done by direct wet smear and formol-ether concentration method. Serum samples were obtained for further laboratory examination. IgA levels were measured by Single Radial Immune Diffusion (SRID. IgE levels were measured by ELISA kit. Zinc and copper levels was measured by Ziestchem Diagnostics Kit and colorimetric endpoint-method respectively. Vitamin B12 and folate levels were measured by DRG Diagnostics Kit and Enzyme Immunoassay method respectively. All data were analyzed using SPSS version 17.Results: There was a statistically significant difference in IgA, IgE, copper and zinc levels between positive and negative groups (P<0.05. There was no significant difference between vitamin B12 and folate levels between the two groups. Mean values of Giardia positive and negative groups for IgA were 309.26 and 216.89 mg/dl, IgE 167.34 and 35.49 IU/ml, copper 309.74 and 253.61 µg/dl and zinc 69.41 and 144.75 µg/dl respectively.Conclusion: The results showed levels of IgA may correlate more closely with giardiasis than IgE. Regarding trace elements, giardiasis elevated serum copper levels, while it decreased serum zinc. Finally, there was no significant difference in serum levels of vitamin B12 and folic acid between the two groups.

  19. Association of Zinc, Copper and triglyceride levels with low birth weight deliveries in central Sudan

    International Nuclear Information System (INIS)

    Objective, to investigate the maternal and cord level of zinc, Copper and triglyceride in mothers with low birth weight babies (LBW; < 2500 gm) in comparison to mothers with normal weight babies. Method, a case control study was conducted in Medani Hospital, Sudan pre-tested questionnaires were used to gather maternal socio-demographic and clinical data. Zinc and cooper were measured by atomic absorption spectrophotometer. And triglyceride was measured by colorimetric method. Results, case and controls (50 in each arm) were matched in their basic clinical data. The median ( 25-75 Th inter quartile) of maternal zinc ( 62.9 ( 36.3-96.8) vs. 96.2 (84,6-125.7) μg/dl; p <0.001) and copper (81.6 ( 23.7- 167.5) vs. 139.8 (319.8 (31.9 - 186.2) μg/dl; p=0.04) and triglyceride (172 (100-227) vs. 195 ( 133.7-320.2) mg/dl; p=0.052) levels were significantly lower in cases than in the controls. Likewise, cord zinc ( 87.1 (43.3 -118.1) vs. 92.2 (62.0-114.5) μg/dl; p=0.02) and triglyceride ( 45 ( 31.5-95) vs. 149.5 (97.5- 174.2) mg/dl; p<0.00) levels were significantly lower in cord serum of the case than in controls. Conclusions, in this study maternal and fetal zinc, copper and triglyceride levels were lower in mothers with LBW babies compared to mothers with normal birth weight babies. Supplementation with zinc and copper might be necessary to prevent LBW deliveries in this setting. (Author)

  20. Zinc, cadmium, and lead in water, sediments, and submerged plants of the Derwent Reservoir, northern England

    Energy Technology Data Exchange (ETDEWEB)

    Harding, J.P.C.; Whitton, B.A.

    1978-01-01

    A partial budget is presented of the zinc, cadmium and lead entering the Derwent Reservoir. The mean levels in the water column upstream of the site of inflow are: Zn, 0.216 mg l/sup -1/; Cd, 0.003 mg l/sup -1/; Pb, 0.065 mg l/sup -1/; the levels after passage through the 4.1 km/sup 2/ reservoir fall by: Zn, 70.3 percent; Cd, 98.3 percent; Pb, 89.2 percent. Most of these metals are deposited in sediments, the mean values for which are: Zn, 1035 ..mu..g g/sup -1/; Cd, 13 ..mu..g g/sup -1/; Pb, 827 ..mu..g g/sup -1/. Lead, a higher percentage of which occurs as particulate material, is deposited more rapidly than zinc; this effect is especially obvious when streaming of colder water along the bottom of the reservoir takes place at the time of floods. Macroscopic plants are only occasional in this reservoir, due perhaps in part to heavy metal toxicity. Of the two most common submerged species, Nitella flexilis probably accumulates almost all of its metal content directly from the water, but the data suggest that sediments are a source of some of the heavy metals accumulated by Glyceria fluitans.

  1. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  2. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    OpenAIRE

    R. Y. Raskar; A. G. Gaikwad

    2014-01-01

    The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper...

  3. ANODIC STRIPPING VOLTAMMETRY AT A MERCURY FILM ELECTRODE: BASELINE CONCENTRATIONS OF CADMIUM, LEAD, AND COPPER IN SELECTED NATURAL WATERS

    Science.gov (United States)

    A simple, rapid, and inexpensive anodic stripping voltammetric method with a mercury thin film electrode is reported for the establishment of baseline concentrations of cadmium, lead, and copper in natural waters. The procedure for routine surface preparation of wax-impregnated g...

  4. Influence of Low Molecular Weight Organic Acids on Transport of Cadmium and Copper Ions across Model Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Parisová, Martina; Navrátil, Tomáš; Šestáková, Ivana; Jaklová Dytrtová, Jana; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 1 (2013), s. 27-44. ISSN 1452-3981 R&D Projects: GA AV ČR IAA400400806 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : cadmium * copper * low molecular weight organic acid Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  5. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus)

    Czech Academy of Sciences Publication Activity Database

    Dočekalová, H.; Škarpa, P.; Dočekal, Bohumil

    2015-01-01

    Roč. 134, March (2015), s. 153-157. ISSN 0039-9140 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : radish * cadmium * copper * DGT technique * bioaccesibility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.545, year: 2014

  6. Adsorption of copper, lead and cadmium from aqueous solutions by activated carbon prepared from saffron leaves

    Directory of Open Access Journals (Sweden)

    Shidvash Dowlatshahi

    2014-11-01

    Full Text Available Background: Industrial development has caused the release of various pollutants including heavy metals into the environment. These toxic compounds are extremely dangerous to living beings and the environment due to their non-biodegradability, severe toxicity, carcinogenicity, the ability to be accumulated in nature and the ability to contaminate groundwater and surface water. The aim of the present research was to provide an appropriate and cost-effective adsorbent to remove heavy metals from aqueous solutions. Methods: The activated carbon was produced from the dried. Batch experiments were performed on real and synthetic samples at room temperature. The effect of pH, adsorbent dose, initial concentration, and contact time were studied, and the adsorption isotherms of heavy metals were determined. The removal efficiency was evaluated on real wastewater. Results: The maximum removal efficiency of heavy metals (copper, cadmium and lead by activated carbon adsorbent prepared from saffron leaves was obtained in pH 7. The optimum amount of adsorbent was 0.6 g, and the optimum contact times were 45 min for copper and cadmium ions and 90 min for lead ion, respectively. In these optimum conditions the removal efficiencies were 76.36%, 91.25% and 97.5%, respectively. The removal efficiencies of heavy metals from actual samples (copper industry and the battery industry in the optimum conditions were 82.25%, 69.95% and 91.23%, respectively. The results obtained showed the highest correlation with Langmuir isotherm model. Conclusion: Based on the results obtained, the activated carbon produced from saffron leaves has a good capability in removal of the metal ions from the aqueous solutions. Considering the availability of saffron leaves in Khorasan, its cost-effectiveness, and high uptake capacity, it can be applied as a proper absorbent to remove the heavy metals from industrial wastewater.

  7. Influence of cadmium, zinc, and lead on growth, trap formation, and collagenase activity of nematode-trapping fungi

    International Nuclear Information System (INIS)

    Growth and morphogenesis of seven species of nematode-trapping fungi and the activity of a collagenase produced by Arthrobotrys amerospora were measured in the presence of various concentrations of divalent cadmium, zinc, or lead. In general, growth varied with species and was dependent on the metal present and the concentration at which it was tested. Cadmium was found to exhibit the greatest toxicity followed by zinc and lead, respectively. In most cases, inhibition of growth was directly correlated with a decreased capacity to form traps. However, in a few cases, trap formation was inhibited either more or less than was growth. The activity of the collagenase was less sensitive than was growth or trap formation to heavy-metal inhibition

  8. Kinetics and mechanism of cathodic reduction of zinc- and cadmium complexes in electrolytes containing ethanolamine and ammonia

    International Nuclear Information System (INIS)

    By the methods of plotting stationary total and partial polarograms in galvanic as well as in potentiostatic regimes the processes of cathodic zinc and cadmiun precipitation in ammonia- and ethanolamine (Etm) electrolytes have been studied versus the composition and pH of the solution. It is found that the composition of zinc- or cadmium complexes in ethanolamine-ammonia electrolytes may be presented in the form (Zn(Cd)(NHsub(3))sub(x)(Etm)sub(y)(OH)sub(z))sup(2-z), x+y+z=4; the reduction of complexes, independently of their composition, is preceded by chemical stages of partial splitting-off of ligands (or their replacement). An increase in the pH value results in appearance of insoluble salt precipitates in cadmium plating electrolytes

  9. Concurrent reduction and distillation: an improved technique for the recovery and chemical refinement of the isotopes of cadmium and zinc

    International Nuclear Information System (INIS)

    The Electromagnetic Isotope Separations Program of the Oak Ridge National Laboratory has been involved in the separation, chemical recovery, and refinement of the stable isotopes of cadmium and zinc since 1946. Traditionally, the chemical refinement procedures for these elements consisted of ion exchange separations using anion exchange resins followed by pH-controlled hydrogen sulfide precipitations. The procedures were quite time-consuming and made it difficult to remove trace quantities of sulfur which interferes in subsequent attempts to prepare rolled metal foils. As demands for 113Cd and 68Zn (a precursor for the production of the radiopharmaceutical 67Ga) increased, it became evident that a quicker, more efficient refinement procedure was needed. Details of an improved method, which employs concurrent hydrogen reduction and distillation in the recovery and refinement of isotopically enriched zinc, are described. Modifications of the procedure suitable for the refinement of cadmium isotopes are also described. 3 figures, 1 table

  10. Biomarker of chronic cadmium exposure in a population residing in the vicinity of a zinc producing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bratveit, Magne, E-mail: magne.bratveit@isf.uib.no [Department for Public Health and Primary Health Care, Occupational and Environmental Medicine, University of Bergen, Bergen (Norway); Uni Health, Bergen (Norway); Mageroy, Nils, E-mail: nils.mageroy@isf.uib.no [Uni Health, Bergen (Norway); Gundersen, Hilde, E-mail: hilde.gundersen@isf.uib.no [Department for Public Health and Primary Health Care, Occupational and Environmental Medicine, University of Bergen, Bergen (Norway); Vahter, Marie, E-mail: Marie.Vahter@ki.se [Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Moen, Bente E., E-mail: Bente.Moen@isf.uib.no [Department for Public Health and Primary Health Care, Occupational and Environmental Medicine, University of Bergen, Bergen (Norway)

    2011-09-15

    Measurements of cadmium (Cd) in air, soil and moss have shown elevated concentrations in residential areas close to a zinc smelter in Norway. This study aimed to evaluate whether men and women residing in the area with elevated Cd concentrations in air and soil had increased levels of Cd and microproteins in urine. An invitation to participate was mailed to 200 persons residing close to the zinc smelter and to 200 controls from an area more than 4 km away from the smelter. They were asked to complete a questionnaire, and to deliver a urine sample for analysis of cadmium (CdU), mercury (HgU), lead (PbU) and {alpha}1-microglobulin (ProteinHC). Two hundred and six participants (response rate 52%), between 19 and 88 years of age, were included. Results were analysed by multiple-adjusted linear and logistic regression. CdU was not significantly different between individuals in the two residence areas. Only ten individuals had CdU concentrations exceeding European Food Safety Authority (EFSA) critical value of 1 {mu}g/g creatinine, whereas 35 persons (22% of the women vs. 11% of the men) had CdU concentrations higher than 0.66 {mu}g/g creatinine, which EU suggested to be sufficiently protective for the general population. Smoking was the predominant contributing factor to values of elevated CdU. There was a tendency of higher CdU, although not statistically significant, amongst people regularly consuming fruit, berries and vegetables grown in their own garden near the smelter area. Home address in the polluted area was not a significant determinant. There was a positive correlation between CdU and ProteinHC in urine, but no significant difference was found for ProteinHC between residents from polluted area and controls. In spite of demonstrated industrial emissions of cadmium, the results do not indicate elevated cadmium exposure or kidney damage in the polluted area compared to the control area. - Highlights: {yields} Cadmium in air and soil is elevated in the

  11. Biomarker of chronic cadmium exposure in a population residing in the vicinity of a zinc producing plant

    International Nuclear Information System (INIS)

    Measurements of cadmium (Cd) in air, soil and moss have shown elevated concentrations in residential areas close to a zinc smelter in Norway. This study aimed to evaluate whether men and women residing in the area with elevated Cd concentrations in air and soil had increased levels of Cd and microproteins in urine. An invitation to participate was mailed to 200 persons residing close to the zinc smelter and to 200 controls from an area more than 4 km away from the smelter. They were asked to complete a questionnaire, and to deliver a urine sample for analysis of cadmium (CdU), mercury (HgU), lead (PbU) and α1-microglobulin (ProteinHC). Two hundred and six participants (response rate 52%), between 19 and 88 years of age, were included. Results were analysed by multiple-adjusted linear and logistic regression. CdU was not significantly different between individuals in the two residence areas. Only ten individuals had CdU concentrations exceeding European Food Safety Authority (EFSA) critical value of 1 μg/g creatinine, whereas 35 persons (22% of the women vs. 11% of the men) had CdU concentrations higher than 0.66 μg/g creatinine, which EU suggested to be sufficiently protective for the general population. Smoking was the predominant contributing factor to values of elevated CdU. There was a tendency of higher CdU, although not statistically significant, amongst people regularly consuming fruit, berries and vegetables grown in their own garden near the smelter area. Home address in the polluted area was not a significant determinant. There was a positive correlation between CdU and ProteinHC in urine, but no significant difference was found for ProteinHC between residents from polluted area and controls. In spite of demonstrated industrial emissions of cadmium, the results do not indicate elevated cadmium exposure or kidney damage in the polluted area compared to the control area. - Highlights: → Cadmium in air and soil is elevated in the residential area close

  12. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance*

    OpenAIRE

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-Xi; Gao, Ling-Ling; Yang, Xiao-e

    2012-01-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of th...

  13. Atmospheric Emissions and Depositions of Cadmium, Lead, and Zinc in Europe During the Period 1955-1987

    OpenAIRE

    Olendrzynski, K.; Anderberg, S.; Bartnicki, J.; PACYNA J.; Stigliani, W.M.

    1995-01-01

    This paper presents a preliminary estimate of atmospheric emissions of cadmium, lead and zinc in Europe during the period 1955-1987. The emission data are used as input to the IIASA's atmospheric transport model, TRACE m a c e toxic Air concentrations in Europe), to compute cumulative deposition loads of heavy metals onto European soils during the investigated time period. To the authors' knowledge, this is the first attempt of this kind in the open literature. The computed with the TRACE mod...

  14. Synthesis and spectral-luminescent properties of tridentate o-tosylaminoazomethines and their complexes with zinc and cadmium

    International Nuclear Information System (INIS)

    The earlier non described adducts MLxCH3OH are synthesized through interaction of the 2-(tosyloaminobenzal)-2'-(N-tosylamino)aniline (H2L1) or 2-(tosyloaminobenzal)-2'-hydroxylamine (H2L2) with zinc and cadmium in methanol are described. It is established that dimers of the M2L2 composition, which dissociate in methanol with formation of the adducts, are formed in nonpolar media

  15. The effect of low doses of cadmium and zinc chloride on the Blood-Testis Barrier of Sprague Dawley rats

    OpenAIRE

    Redondo, Andrea; Romero, Raquel; Lorenzo, Ana; Sanz, Noelia; Durán, Esther; Oltra, Beatriz; Pozuelo, José Manuel; Santamaría, Luis; Arriazu, Riánsares

    2012-01-01

    Background: Cadmium chloride is an environmental toxic that affects the male reproductive system. This study was directed 1) to evaluate whether long-term oral exposures to low doses of Cd in rats causes morphological changes, 2) the immunohistochemical TJ and AJ protein expression; and 3) to evidence that zinc exposure can modify Cd effects. Methods: Testis of normal rats and rats that have received Cd or Cd+Zn in drinking water during 12 months did not show any morphological change. Immunoh...

  16. Size-dependent effects of low level cadmium and zinc exposure on the metabolome of the Asian clam, Corbicula fluminea

    Energy Technology Data Exchange (ETDEWEB)

    Spann, Nicole, E-mail: nicole.spann@web.de [Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ (United Kingdom); Aldridge, David C., E-mail: da113@cam.ac.uk [Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ (United Kingdom); Griffin, Julian L., E-mail: jlg40@mole.bio.cam.ac.uk [Sanger Building, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom); Jones, Oliver A.H., E-mail: o.jones@gmail.com [Sanger Building, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom)

    2011-10-15

    Highlights: Small and large Corbicula fluminea were exposed to cadmium and zinc spiked sediment. Metabolomic changes in the freshwater clams were determined by NMR and GC-MS. Metabolic perturbations were related to amino acid and energy related metabolism. Small and large clams were differentiated by their metabolic composition. Size classes showed opposite responses to metal stress. - Abstract: The toxic effects of low level metal contamination in sediments are currently poorly understood. We exposed different sized Asian clams, Corbicula fluminea, to sediment spiked with environmentally relevant concentrations of either zinc, cadmium or a zinc-cadmium mixture for one week. This freshwater bivalve is well suited for sediment toxicity tests as it lives partly buried in the sediment and utilises sediment particles as a food resource. After one week, the whole tissue composition of low molecular weight metabolites was analysed by nuclear magnetic resonance spectroscopy (NMR) and gas chromatography-mass spectrometry (GC-MS). The condition index (ratio of tissue dry weight to volume inside the shell valves) was also measured. Small and large clams were clearly differentiated by their metabolic composition and the two size classes showed opposite responses to the mixture spiked sediment. No effects of zinc alone on the metabolome were found and cadmium only influenced the smaller size class. The main perturbations were seen in amino acid and energy metabolism, with small clams using amino acids as an energy resource and larger clams primarily drawing on their larger storage reserves of carbohydrates. Our study demonstrates that metabolomics is a useful technique to test for low level toxicity which does not manifest in mortality or condition index changes. The differing effects between the two size classes stress that it is important to consider age/size when conducting metabolomic and ecotoxicology assessments, since testing for the effects on only one size class makes

  17. Lead, zinc and cadmium content of earthworms from pasture in the vicinity of an industrial smelting complex. [Lumbricus terrestris; Allolobophora chlorotica; Allolobophora rosea

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.A.; Stringer, A.

    1980-01-01

    Comparison was made of the heavy metal concentrations of lead, zinc and cadmium in earthworms and soil from pasture near a large lead and zinc smelting plant and a control area 9 km away. The concentration of lead in the earthworms was less than that in the soil, whereas zinc and cadmium concentrations were several times the value in the soil. The zinc and cadmium concentration factors for all worm species were significantly lower at the contaminated site than at the control site and both were significantly greater than for lead. There was 7-9 times as much zinc and cadmium in the soil from the smelting site as in that from the control area and 1-6 times as much lead. Corresponding values in the worms were 1-3.5 times as much zinc and cadmium and 1-4 4-0 times as much lead. The zinc:cadmium ratio decreased from 81 in soil to 26 for earthworms (average of aggregation of species) at the control site and from 63 to 18 at the contaminated site. The best overall relationship between metal concentration in earthworms and concentration in soil was y = k.x/sup b/ where y = concentration of metal per gramme of worm, dry weight, and x = concentration of metal per gramme of soil, dry weight. Comparison of regression slopes of the log transformed data showed that uptake was greater for lead than for the other two metals. For each metal the worms are in two species groups. For the Lumbricus terrestris, Allolobophora chlorotica, A. rosea group the rates of uptake for zinc and cadmium were not significantly different. There was no evidence that the earthworm populations near the smelting plant had been reduced by the heavy metal contamination.

  18. Accumulation of Zinc, Cadmium, and Lead in Four Populations of Sedum alfredii Growing on Lead/Zinc Mine Spoils

    Institute of Scientific and Technical Information of China (English)

    Dong-Mei Deng; Jin-Chuan Deng; Jin-Tian Li; Jun Zhang; Min Hu; Zhou Lin; Bin Liao

    2008-01-01

    Sedum alfredii Hance is a newly reported zinc (Zn) and cadmium (Cd) hyperaccumulator native to China. In this study,four populations of S. alfredii were collected from Yejiwei (YJW), Jinchuantang (JCT) and Qiaokou (QK) lead (Pb)/Zn mines located in Hunan Province as well as Quzhou (QZ) Pb/Zn mine located in Zhejiang Province for exploring the intraspecies difference of this plant in metal accumulation. Although they grew in the Pb/Zn spoils with relatively similar levels of Zn,Cd and Pb, remarkable differences among the four populations in tissue heavy metal concentrations were observed. The shoot Zn concentration of QZ population (11 116 mg/kg) was highest and nearly five times higher than that of the JCT population (1930 mg/kg). Furthermore, the shoot Cd concentration observed in the QZ population (1 090 mg/kg) was also highest and 144 times higher than that found in the JCT population (7.5 mg/kg). As for Pb concentrations In the shoot of different populations, a fourfold difference between the highest and the lowest was also found. Such difference on metal accumulation was opulation-specific and may be significantly explained by differences in the soil properties such as pH, organic matter (OM), and electrical conductivity (EC). Taking biomass and metal concentration in plants into consideration, the QZ, YJW and QK populations may have high potential for Zn phytoremediation, the QZ population may have the highest potential in Cd phytoremediation, and the QK population may be the most useful in Pb phytoremediation.

  19. The Protective Roles of Zinc and Magnesium in Cadmium-Induced Renal Toxicity in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Nasim Babaknejad

    2014-12-01

    Full Text Available Background: Cadmium (Cd is a heavy metal that has widespread use. It enters the food chain in different ways, including soil and water. Cadmium can cause dysfunction of different body organs. Zinc (Zn and magnesium (Mg supplementation can have protective effects against cadmium toxicity due to their antagonistic and antioxidants properties. This study examines the influence of supplemental Zn and Mg on Cd renal toxicity. Methods: Young male Wistar rats were divided into six groups of five. The Cd group received 1 mg Cd/kg and the control group received 0.5 mg/kg normal saline (i.p.. The other four groups were administered 1 mg/kg Cd+0.5 mg/kg Zn, 1 mg/kg Cd+1.5 mg/kg Zn, 1 mg/kg Cd+ 0.5 mg/kg Mg, and 1 mg/kg Cd+ 1.5 mg/kg Mg (i.p. for 21 days. Then, serum sodium, potassium, urea, creatinine, and protein levels were measured. Results: The results indicated that creatinine and protein levels decreased while urea, sodium, and potassium levels increased as a result of Cd exposure. Co-administered Cd and Zn and Mg decreased urea and increased sodium serum level in comparison to the cadmium group. Treatment by Mg, contrary to co-administered Cd and Zn, reduced serum protein level compared to the cadmium group. Compared to the cadmium treated group, Zn and Mg treatment enhanced serum creatinine level and reduced serum potassium level. Conclusion: The findings seem to suggest that zinc and magnesium compounds, due to their antagonistic and antioxidant activities, can protect Cd renal toxic effects in a dose-dependent manner.

  20. Serum Copper, Zinc And Magnesium Levels in Children with Various Malignant Disorders

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2013-08-01

    Full Text Available Introduction: The minute amounts of several trace elements including copper, zinc and magnesium play some roles as essential constituents of various biological organs. The serum concentrations these elements are modified in some malignancies. The aim of this study is to investigate the copper, zinc and magnesium levels in the serum of children with various malignant disorders. Material and Methods: The serum levels of copper, zinc and magnesium were measured in 82 children with various malignant disorders and in 21 age-matched healty controls using an atomic absorbtion spectrophotometer. Results: The serum Cu, Zn and Mg concentrations were significantly higher than matched control values among patients with acute lymphoblastic leukemia (ALL (p<0.05, p<0.05, p<0.0001, respectively on the other hand, the serum Mg concentrations were also significantly higher than matched control values among patients with acute nonlymphocytic leukemia (ANLL and other solid tumors (p<0.0001, p<0.0001, respectively whereas there were no significant differences in serum Cu and Zn concentrations between healthy controls and in patients ANLL and other solid tumors. (p<0.05, p<0.05 Additionally the copper /zinc ratio in patients with acute lymphoblastic leukemia was significantly higher than the control value whereas a nonsignificant difference was found between healty controls and patients with ANLL and other solid tumors. Conclusion: Trace elements particularly copper and magnesium appear to be elevated in malignant diseases. Such elevation may prove to be useful markers to screen for and perhaps monitor relapse of malignant disease. [Cukurova Med J 2013; 38(4.000: 587-591

  1. Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc

    Energy Technology Data Exchange (ETDEWEB)

    Assael, Marc J.; Armyra, Ivi J.; Brillo, Juergen; Stankus, Sergei V.; Wu Jiangtao; Wakeham, William A. [Chemical Engineering Department, Aristotle University, 54124 Thessaloniki (Greece); Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Kutateladze Institute of Thermophysics, Siberian Brunch of the Russian Academy of Sciences, Lavrentyev ave. 1, 630090 Novosibirsk (Russian Federation); Center of Thermal and Fluid Science, School of Energy and Power Engineering, Xi' an Jiaotong University, Shaanxi 710049 (China); Chemical Engineering Department, Imperial College, London SW7 2BY (United Kingdom)

    2012-09-15

    The available experimental data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc have been critically examined with the intention of establishing both a density and a viscosity standard. All experimental data have been categorized into primary and secondary data according to the quality of measurement, the technique employed and the presentation of the data, as specified by a series of criteria. The proposed standard reference correlations for the density of liquid cadmium, cobalt, gallium, indium, silicon, thallium, and zinc are characterized by percent deviations at the 95% confidence level of 0.6, 2.1, 0.4, 0.5, 2.2, 0.9, and 0.7, respectively. In the case of mercury, since density reference values already exist, no further work was carried out. The standard reference correlations for the viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc are characterized by percent deviations at the 95% confidence level of 9.4, 14.0, 13.5, 2.1, 7.3, 15.7, 5.1, and 9.3, respectively.

  2. The content of copper and zinc in human ulcered atherosclerotic plaque

    Directory of Open Access Journals (Sweden)

    Radak Đorđe

    2004-01-01

    Full Text Available INTRODUCTION Copper and zinc have significant antiatherogenic effect influencing activity of antioxidant enzyms (giutathion-peroxidase i superoxid-dismutase, mechanism of apoptosis and other mechanisms. Few studies showed increased copper and zinc concentration in atherosclerotic plaque in comparison to normal vascular tissue. AIM The aim of the study was to compare copper and zinc concentrations in carotid artery tissue without significant atherosclerotic changes and human ulcered atherosclerotic plaque. MATERIAL AND METHODS Study was conducted on 66 patients. Carotid endarterectomy due to the significant carotid atherosclerotic changes with cerebrovascular disorders was performed in 54 patients (81.8%. Control group consisted of 12 patients (18.2% without carotid atherosclerotic changes operated due to the symptomatic kinking and coiling of carotid artery. Operated group consisted of 38 man (62.96% and 16 woman (37.04%. Control group had the same number of patients: six men (50% and six women (50%. Preoperatively, all patients were examined by vascular surgeon, neurologist and cardiologist. Duplex sonografy of carotid and vertebral arteries was performed by Aloca DSD 630 ultrasound with mechanical and linear transducer 7.7 MHz. Indication for surgical treatment was obtained according to non-invasive diagnostic protocol and neurological symptoms. Copper and zinc concentration in human ulcered atherosclerotic plaque and carotid artery segment were estimated by spectophotometry (Varian AA-5. RESULTS Average age of our patients was 59.8±8.1 years. For males average age was 76.1 ±9.8 years. And for females 42.4±5.8 years. In group with carotid endarterectomy female patients were significantly younger than male patients (p<0.01. In group with carotid endarterectomy clinically determined neurological disorders were found in 47 patients (87.03%-35 male (74.47% and 12 female patients (25.53%. Regarding risk factors for cardiovascular diseases, no

  3. Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure.

    Science.gov (United States)

    McCarty, Mark F

    2012-11-01

    High-level cadmium (Cd) exposure has long been known to induce nephropathy, severe osteoporosis, and fractures in humans. More recent epidemiology, however, reveals that, in populations not known to have important industrial exposure to this heavy metal, high-normal blood or urine Cd levels correlate with increased risk for vascular disorders, cancers, diabetes, and total mortality, as well as osteoporosis and nephropathy. Since these disorders appear unlikely to expedite Cd absorption, and since Cd has promoted these pathologies in rodent studies, it seems reasonable to conclude that Cd is an important mediating risk factor for these disorders in humans. Avoiding tobacco smoke or frequent ingestion of shellfish or organ meats can lessen humans exposure to Cd, but the chief dietary sources of Cd are plant-derived foods - green leafy vegetables, whole grains, tubers, and root vegetables - typically recommended for their health-supportive properties; indeed, among non-smokers, vegans tend to have the highest Cd body burden. Fortunately, iron sufficiency and ample dietary intakes of calcium, magnesium, and zinc can impede absorption of dietary Cd, both by down-regulating intestinal expression of mineral transporters, and by directly competing with Cd for access to these transporters. Correction of iron deficiency appears to be of particular importance for controlling Cd absorption. Moreover, zinc supplementation can counteract the toxicity of Cd already in the body via induction of metallothionein, which binds Cd avidly via its sulfhydryl groups; so long as it remains sequestered in this form, Cd is innocuous. Zinc supplementation may in any case be recommendable, as optimal zinc status exerts protective anti-inflammatory, antioxidant, and immunosupportive effects. Inasmuch as the toxicity of Cd appears to be mediated in large part by oxidative stress, ingestion of spirulina, lipoic acid, melatonin, and N-acetylcysteine may also have potential for mitigating the risk

  4. Jiangxi Copper Lead Zinc Smelting Project with an Investment of Nearly 5 billion yuan Started Construction in Hukou

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Recently,Jiangxi Copper Group Lead Zinc Smelting Project,a key construction project of Jiangxi Province’s "Ten,Hundred,Thousand Project" (referring to the plan to have a number of leading enterprises with annual sales topping

  5. The concentration, reactivity and fate of copper, nickel and zinc associated with a cooling-water plume in estuarine waters

    International Nuclear Information System (INIS)

    The cooling-water discharge of a northeastern USA coastal nuclear power plant is an unnatural source of copper, nickel and zinc to the receiving waters. Passage of ambient Long Island Sound waters through the system of copper-nickel-zinc alloyed cooling-pipes doubles the dissolved concentrations of the metals, which otherwise occur at about 1 μg kg-1. Also, erosion of the pipes contributes like amounts of particulate metal forms to the effluent. In the effluent plume, total copper and zinc are conserved in the water column, although particulates quickly dissolve to augment soluble copper and zinc levels, as the plume is diluted. Dissolved nickel is apparently non-conservative; the excess disappears both by dilution and by reaction with the sediments. (author)

  6. Age-related change and distribution of cadmium and zinc concentrations in the Steller sea lion (Eumetopias jubata) from the coast of Hokkaido, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hamanaka, T. (Hokkaido Univ., Japan); Itoo, T.; Mishima, S.

    1982-02-01

    Tissue cadmium and zinc levels in Steller sea lions have been analysed to elucidate the body distribution of these metals and their age-related accumulation. A significant correlation between age (0.7-8.8 year old) and renal and hepatic cadmium concentration was noted. Of the tissues examined, the kidney manifested the highest cadmium content (mean: 20.9 ..mu..g g/sup -1/ dry wt). A similar zinc distribution pattern was observed; its concentration was more uniform among tissues than that of cadmium. The tissue cadmium concentration in the Steller sea lion was lower than in other pinnipeds from various areas, possibly due to their feeding habits which may represent a major pathway of metal accumulation.

  7. EFFECT OF THERMAL PROCESSES ON COPPER-TIN ALLOYS FOR ZINC GETTERING

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.; Golyski, M.

    2013-11-01

    A contamination mitigation plan was initiated to address the discovery of radioactive zinc‐65 in a glovebox. A near term solution was developed, installation of heated filters in the glovebox piping. This solution is effective at retaining the zinc in the currently contaminated area, but the gamma emitting contaminant is still present in a system designed for tritium beta. A project was initiated to develop a solution to contain the {sup 65}Zn in the furnace module. Copper and bronze (a Cu/Sn alloy) were found to be candidate materials to combine with zinc‐65 vapor, using thermodynamic calculations. A series of binary Cu/Sn alloys were developed (after determining that commercial alloys were unacceptable), that were found to be effective traps of zinc vapor. The task described in this report was undertaken to determine if the bronze substrates would retain their zinc gettering capability after being exposed to simulated extraction conditions with oxidizing and reducing gases. Pure copper and three bronze alloys were prepared, exposed to varying oxidation conditions from 250 to 450{degree}C, then exposed to varying reduction conditions in He-H{sub 2} from 250-450{degree}C, and finally exposed to zinc vapor at 350{degree}C for four hours. The samples were characterized using scanning electron microscopy, X-ray diffraction, differential thermal analysis, mass change, and visual observation. It was observed that the as fabricated samples and the reduced samples all retained their zinc gettering capacity while samples in the "as-oxidized" condition exhibited losses in zinc gettering capacity. Over the range of conditions tested, i.e., composition, oxidation temperature, and reduction temperature, no particular sample composition appeared better. Samples reduced at 350{degree}C exhibited the greatest zinc capacity, although there were some testing anomalies associated with these samples. This work clearly demonstrated that the zinc gettering was not adversely

  8. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers

    OpenAIRE

    Choi, Yun Kyung; Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon; Kim, Yuri

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the huma...

  9. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    International Nuclear Information System (INIS)

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd ∼ Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups

  10. Determination of cadmium, aluminium, and copper in beer and products used in its manufacture by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Viñas, Pilar; Aguinaga, Nerea; López-García, Ignacio; Hernandez-Córdoba, Manuel

    2002-01-01

    Procedures were developed for determining cadmium, aluminium, and copper in beer and the products used in its manufacture by electrothermal atomic absorption spectrometry. Beer samples were injected into the furnace and solid samples were introduced as suspensions after preparation in a medium containing hydrogen peroxide, nitric acid, and ammonium dihydrogen phosphate for cadmium atomization. Calibration was performed with aqueous standards, and characteristic masses and detection limits were, respectively, 1 and 0.3 pg for cadmium, 18 and 5.4 pg for aluminium, and 5.6 and 6.8 pg for copper. Different samples of beer, wort, brewer's yeast, malt, raw grain, and hops were analyzed by the proposed procedures. Cadmium was found in low concentrations (0.001-0.08 microg/g and 0-1.3 ng/mL); copper (3-13 microg/g and 25-137 ng/mL) and aluminium (0.6-9 microg/g and 0.1-2 microg/mL) were found at higher levels. The reliability of the procedure was confirmed by comparing the results obtained with others based on microwave oven sample digestion, and by analyzing several certified reference materials. PMID:12083268

  11. Simultaneous determination of lead, cadmium and zinc in Metro Manila air particulates by anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Air particulate samples were collected from two monitoring stations in Metro Manila using a 'Gent' type dichotomous sampler for pollutant source apportionment studies. Samples were collected in two fractions: a fine fraction with aerodynamic diameter, dpp3: HCL: HF, 4: 1: 1) for at least 20 minutes with subsequent heating at lower power settings for a total of 20 minutes more, effectively decomposed the sample with complete recovery of the elements. The digests were evaporated to near dryness to eliminate the troublesome effect of HF and HNO3 and to decrease acidity of the electrolytic solution to pH ≥ 2. At pH 2, the addition of at least 0.01 M KCl was needed to improve sensitivity. The formation of Zn-Cu intermetallic compounds which interfered in the accurate quantitation of zinc was eliminated by addition of gallium as a 'third' element. The amount of gallium needed varied from sample to sample and was affected by the pH of the solution. The DPASV parameters found to be optimum for the analysis of the air particulate samples are as follows: pulse amplitude, 50 mV; scan rate, 10 mV/sec; Edep, - 1.30 V; tdep, 2 min; and RDE rotation rate, 1500 rpm. Detection limits of 0.2 ppb for zinc, 0.6 ppb for lead, and 0.05 ppb for cadmium in the sample matrix were obtained. The standard addition method was found to be reliable for the quantitative determination of the analytes in the sample. All R2 values obtained were > 0.9900 at 95% confidence level. Validation of the established analytical methodology by analyzing certified reference standards and performing parallel analysis by GF-AAS and flame AAS showed acceptable accuracy of the DPASV measurements. (Author)

  12. COPPER, ZINC, VITAMIN–C AND OX IDATIVE STRESS CAN CAUSES IRON DEFICIENCY ANEMIA IN PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    M.Rajeswari

    2013-02-01

    Full Text Available Pregnancy is precious for women it is the most memorable movement in her life. In pregnancy period the Copper, Zinc, vitamin C plays an important role for production of hemoglobin and controls the oxidative stress. The present study under taken to asses the causing Zinc, Copper, vitamin C and ROS, anemia in pregnant period. METERIALS & METHODS: 40 cases of 4th-8th month pregnant subjects were selected for the present study blood sample collected for estimation of Hemoglobin, Zinc, Copper vitamin C and ROS. Hemoglobin whole blood, Zinc, Copper, ROS serum, vitamin C heparinised blood. RESULTS: Significantly decreases the Hemoglobin (P<0.001. Zinc (P<0.001, Copper (0.001 vitamin C (P<0.001 MDA significantly elevation observed in pregnant women compare to normal healthy women’s are controls. CONCLUSION: Lowered levels of Zinc, Copper, vitaminC, Hemoglobin and elevated MDA concentration were consistently observed in pregnant women. These by abate the synthesis of hemoglobin for the lack of these biological substance which can leads to increase the oxidative stress.

  13. Hardness analysis and morphological characterization of copper-zinc alloys produced in pyrophosphate-based electrolytes

    Directory of Open Access Journals (Sweden)

    Lilian Ferreira de Senna

    2005-09-01

    Full Text Available In this work, copper-zinc alloy coatings on mild steel substrates were obtained in nontoxic pyrophosphate-based electrolytes, at room temperature and under continuous current. The effects of bath composition and current density on the hardness of the coatings, as well as on their morphologies, were evaluated. The results showed that the electrolyte composition, and the use of stress relieving additives strongly influence the hardness of the coatings, while the current density directly affect their morphology. Hence, for a current density of 116 A/m², copper-zinc alloy deposits with no pores or cracks were produced in a pyrophosphate-based electrolyte, especially when allyl alcohol was added to the solution.

  14. Different dietary lifestyles and serum zinc and copper in women of reproductive age

    Energy Technology Data Exchange (ETDEWEB)

    Breskin, M.W.; Worthington-Roberts, B.S.; Monsen, E.R.

    1986-03-01

    Nutrient intakes and biochemical measures of zinc and copper were compared in non-pregnant young women representing different dietary lifestyles, viz, those who habitually ate red meat (RM), fish or poultry (FP), or lacto-ovo-vegetarian (LV) sources of protein. All were in good health and concerned about their diets; none was using supplements or oral contraceptives. Three-day food records were analyzed for nutrient content. Serum and drinking water samples were assayed for zinc and copper (AAS), and serum, for ceruloplasmin (RID). Sign. diff. in dietary Zn or Cu content were not reflected by serum(Zn) or (Cu), but the incidence of serum(Zn) < the 95% CI for RM eaters was sign. higher in FP and LV groups (X/sup 2/ = 20.65, p < 0.001). Thus, use of diets limited in animal protein sources may be associated with an increase risk of low serum (Zn).

  15. Assessment of cadmium, copper and lead in marine species of the atlantic and pacific oceans of Guatemala by voltametry techniques

    International Nuclear Information System (INIS)

    In this thesis results of measurements of cooper, lead, and cadmium were made using voltametry. Three points in the pacific ocean and one in the atlantic were selected to obtain samples of fish and shrimp as species that are contaminated with toxic metals. The samples were treated by physical and chemical methods to turn soluble the metals and the chemical determination could be done using voltametry or differential polarography of pulse. The results shown that copper, lead and cadmium are present in the samples in traces level. The precision of measurements was verified measuring certified by the National Institute of Standard and Technology NIST of the Commerce Departmento of the United States

  16. Zinc and Copper status in children with high family risk of premature cardiovascular disease

    International Nuclear Information System (INIS)

    Zinc and copper are beneficial to health, growth and development and also for the prevention of cardiovascular disease (CVD) with regards to improved dietary habits as a preliminary step in CVD prevention. This study was conducted among 2-18 year old children with high family risk of premature CVD in comparison to controls. One hundred randomly selected children whose parents had premature myocardial infarction were included in this study. The controls were 100 individuals randomly selected from the case group's neighbors and matched for age, sex and socioeconomic status. A four-day food record questionnaire was used to assess zinc and copper intakes and their serum levels were determined using Flame-Atomic Absorption Spectrophotometry. The data were analyzed by SPSS/Windows V6 software, using the student's t and Mantel-Hanzel tests. Significance of differences was considered at P0.05). Zinc deficiency was more prevalent among the case in boys than their controls (58% vs. 18%, P=0.04). This difference was not significant in girls (44% vs. 40%). The daily intake and serum of level of copper were not significantly different between the case and control groups. No case of copper efficiency was found. The mean systolic blood pressure was not significantly different between the zinc-deficient and zinc-sufficient subjects. Although the mean diastolic blood pressure of the former was higher than the latter, there was no statistically significant difference. About 23.7% of all studied sample had mild-to-moderate degree of failure to thrive, with significantly lower daily intake and serum zinc level than other subjects (5.41+-1.06 mg, 82.09+-12.74 ug/dL vs. 6.89+-2.14 mg, 99.25+-27.15 ug/dL, respectively, P<0.05). It is recommended that emphasis be placed on the consumption of food rich in zinc by children, especially those with high family risk of premature CVD. (author)

  17. Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

    OpenAIRE

    Q. R. Wu; Wang, S. X.; Zhang, L.; J. X. Song; Yang, H.; Meng, Y.

    2012-01-01

    China is the largest anthropogenic mercury emitter in the world, where primary nonferrous metal smelting process is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China during 2000–2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting process, mercury removal efficiencies of air pollution control de...

  18. Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

    OpenAIRE

    Meng, Y.; Yang, H.; J. X. Song; Zhang, L.; Wang, S. X.; Q. R. Wu

    2012-01-01

    China is the largest anthropogenic mercury emitter in the world, where primary nonferrous metal smelting is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China between 2000–2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting processes, mercury removal efficiencies of air pollution control devices (APCDs...

  19. Porous copper zinc tin sulfide thin film as photocathode for double junction photoelectrochemical solar cells.

    Science.gov (United States)

    Dai, Pengcheng; Zhang, Guan; Chen, Yuncheng; Jiang, Hechun; Feng, Zhenyu; Lin, Zhaojun; Zhan, Jinhua

    2012-03-21

    Porous copper zinc tin sulfide (CZTS) thin film was prepared via a solvothermal approach. Compared with conventional dye-sensitized solar cells (DSSCs), double junction photoelectrochemical cells using dye-sensitized n-type TiO(2) (DS-TiO(2)) as the photoanode and porous p-type CZTS film as the photocathode shows an increased short circuit current, external quantum efficiency and power conversion efficiency. PMID:22322239

  20. Effects of Annealing on Structural Properties of Copper Zinc Tin Sulphide (CZTS) Material

    OpenAIRE

    K.K. Patel; D.V. Shah; Vipul Kheraj

    2013-01-01

    Copper Zinc Tin Sulphide compound was synthesized from its elemetal precursurs using simple solid state method. Being quarternary material, there is a large probability of formation of secondary phases like SnS, ZnS, CuS during the material growth process and it requires a detail investigation on the effects of synthesis parameters on the composition and structural properties of the CZTS compound. Here we report the study of effects of annealing on the synthesized compound. The annealing was ...

  1. Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

    Directory of Open Access Journals (Sweden)

    Q. R. Wu

    2012-07-01

    Full Text Available China is the largest anthropogenic mercury emitter in the world, where primary nonferrous metal smelting process is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China during 2000–2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting process, mercury removal efficiencies of air pollution control devices (APCDs and installation rate of a certain type of APCD combination. Our study indicated that atmospheric mercury emission from nonferrous metal smelters in 2000, 2003, 2005, 2007 and 2010 was 67.6, 100.1 86.7 80.6 and 72.5 t, respectively. In 2010, the mercury in metal concentrates consumed by primary zinc, lead and copper smelters were 543 t. The mercury emitted into atmosphere, fly ash, other solids, waste water and acid was 72.5, 61.5, 2.0, 3774 and 27.2 t, respectively. Mercury retrieved directly from flue gas as byproduct of nonferrous metal smelting was about 2.4 t. The amounts of mercury emitted into atmosphere were 39.4, 30.6 and 2.5 t from primary zinc, lead and copper smelters, respectively. The largest amount of mercury was emitted from Gansu province, followed by Henan, Yunnan, Hunan, Inner Mongolia and Shaanxi provinces. The average mercury removal efficiency was 90.5%, 71.2% and 91.8% in zinc, lead, and copper smelters, respectively.

  2. Pre-Assessment of Environmental Impact of Zinc and Copper Used in Animal Nutrition

    OpenAIRE

    Monteiro, Sara C.; Lofts, Steve; Boxall, Alistair B.A.

    2010-01-01

    Copper and zinc are routinely used as additives in feed for livestock and aquaculture farming. During their use as feed additives, it is inevitable that Cu and Zn will be released to the environment. This project therefore assessed the environmental impact of Cu and Zn arising from use as additives in feed for livestock and aquaculture animals. The environmental risks of Cu and Zn arising from aquaculture were assessed using simple exposure models recommended by EFSA. Predicted concentra...

  3. Zinc and copper supplementation in acute diarrhea in children: a double-blind randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mamtani Manju

    2009-05-01

    Full Text Available Abstract Background Diarrhea causes an estimated 2.5 million child deaths in developing countries each year, 35% of which are due to acute diarrhea. Zinc and copper stores in the body are known to be depleted during acute diarrhea. Our objectives were to evaluate the efficacy of zinc and copper supplementation when given with standard treatment to children with acute watery or bloody diarrhea. Methods We conducted a double-blind randomized controlled clinical trial in the Department of Pediatrics at Indira Gandhi Government Medical College Nagpur, India. Eight hundred and eight children aged 6 months to 59 months with acute diarrhea were individually randomized to placebo (Pl, zinc (Zn only, and zinc and copper (Zn+Cu together with standard treatment for acute diarrhea. Results The mean duration of diarrhea from enrolment and the mean stool weight during hospital stay were 63.7 hours and 940 grams, respectively, and there were no significant differences in the adjusted means across treatment groups. Similarly, the adjusted means of the amount of oral rehydration solution or intravenous fluids used, the proportion of participants with diarrhea more than 7 days from onset, and the severity of diarrhea indicated by more than three episodes of some dehydration or any episode of severe dehydration after enrolment, did not differ across the three groups. Conclusion The expected beneficial effects of zinc supplementation for acute diarrhea were not observed. Therapeutic Zn or Zn and Cu supplementation may not have a universal beneficial impact on the duration of acute diarrhea in children. Trial registration The study was registered as an International Standard Randomized Controlled Trial (ISRCTN85071383.

  4. Effects of Cadmium,Lead ,and Zinc on Size of Microbial Biomass in Red Soil

    Institute of Scientific and Technical Information of China (English)

    K.S.KHAN; XIEZHENGMIAO; 等

    1998-01-01

    A laboratory incubation experiment was conducted to study the influence of cadmium(Cd),lead (Pb) and zinc( Zn) on the size of the microbial biomass in red soil.All the three metals were applied,separately,at five different levels that were:Cd at 5,15,30,60, and 100μgg-1;Pb at 100,200,300,450 and 600μg g-1 and Zn at 50,100,150,200 and 250μg g-1 soil,In Comparison to uncaontaminated soil ,the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd,Pb and Zn,A more considerable increase in the microbial biomass C:N ratio was observed in the metal contaminated soils than the non-treated control.Among the tested metals ,Cd displayed the greatest biocidal effect followed by Zn and Pb,showin their relative toxicity in the order of Cd>Zn>Pb.

  5. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.gr [Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Wang, Jing-Yuan [Residues and Resource Reclamation Centre (R3C), Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2010-12-15

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type.

  6. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils.

    Science.gov (United States)

    Giannis, Apostolos; Pentari, Despina; Wang, Jing-Yuan; Gidarakos, Evangelos

    2010-12-15

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type. PMID:20833468

  7. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. - Highlights: • Plant shoot Cd decreased in high-Cd acid soil and also plant Zn did in two acid soils. • Plant shoot Cd remained constant in low-Cd acid soil and also plant Zn did in alkaline soils. • Acidic soils showed much higher total metal removal efficiency than the alkaline soils. - Acid soil has high total metal phytoremediation efficiency while a strategy based on stripping of the bioavailable contaminant might be feasible for alkaline soil phytoremediation

  8. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  9. Investigation of the Electronic Properties of Cadmium Zinc Telluride (CZT) Detectors using a Nuclear Microprobe

    International Nuclear Information System (INIS)

    The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated

  10. Fractionation and mobility of cadmium and zinc in urban vegetable gardens of Kano, northern Nigeria.

    Science.gov (United States)

    Abdu, Nafiu; Agbenin, John O; Buerkert, Andreas

    2012-04-01

    Metal fractionation provides information on mobility and stability of various metal species which can be used to evaluate the movement of such metals in soils. The effect of wastewater irrigation on the fractions, spatial distribution, and mobility of cadmium (Cd) and zinc (Zn) was investigated in five urban gardens in Kano, Nigeria. Concentration of total Zn in the surface soils (0-20 cm) ranged from 121 to 207 mg kg(- 1) while Cd concentration was 0.3-2.0 mg kg(- 1). Speciation of both heavy metals into seven operationally defined fractions indicated that the most reactive forms extracted with ammonium nitrate and ammonium acetate, also considered as the bioavailable fractions, accounted for 29-42% of total Cd and 22-54% of total Zn, respectively. The weakly bound fractions of Cd and Zn reached up to 50% of the total Cd and Zn concentrations in the soils. Such high proportions of labile Cd and Zn fractions are indicative of anthropogenic origins, arising from the application of wastewater for irrigation and municipal biosolids for soil fertility improvement. Thus, given the predominance of sandy soil textures, high concentrations of labile Cd and Zn in these garden soils represent a potential hazard for the redistribution and translocation of these metals into the food chain and aquifer. PMID:21603920

  11. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils

    International Nuclear Information System (INIS)

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type.

  12. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    International Nuclear Information System (INIS)

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a −5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time. (paper)

  13. Postexposure effects of brief cadmium, zinc, and phenol exposures on freshwater organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.N.; Herricks, E.E. [Univ. of Illinois, Urbana, IL (United States). Dept. of Civil Engineering

    1998-10-01

    Conventional toxicity testing has relied heavily on fixed duration continuous exposure conditions. These conditions have little relevance to the exposure conditions of many environmental pollutants, particularly the highly variable and often brief exposure regimes of episodic pollution events. This research was designed to assess the effects of brief exposures using a postexposure observation period. The common freshwater organisms Ceriodaphnia dubia, Hyalella azteca, and Pimephales promelas were exposed to a range of cadmium (Cd), zinc (Zn), and/or phenol concentrations for durations ranging from 15 to 240 min. Immobility was measured for up to 7 d after the exposure period. Results showed that organisms exposed to Cd and Zn exhibited delayed effects that resulted in increasing immobility for up to 172 h after the exposure period. Ceriodaphnia dubia, H. azteca, and P. promelas exposed to Cd for as short as 30 min exhibited 100, 95, and 85% immobility, respectively, during postexposure observation. Ceriodaphnia dubia and H. azteca exposed to Zn for as short as 30 min exhibited 100 and 30% immobility, respectively, during postexposure observation. Ceriodaphnia dubia exposed to phenol exhibited recovery of mobility after the exposure period. The presence of delayed effects or organism recovery suggests that toxicity tests used to monitor brief exposures should use environmentally relevant exposure durations and postexposure observations.

  14. On systems of vaporous polonium dioxide-zinc, cadmium and barium oxides

    International Nuclear Information System (INIS)

    Using the thermal method of the direct synthesis in oxygen medium and radiometrically it has been established that vaporous polonium dioxide does not interact with zinc and cadmium oxides during their heating up to 1050 deg C. Using the method of the direct synthesis in oxygen medium and radiotensimetric method it is shown that barium oxides at 900 and 950 deg C absorb polonium dioxide to the mole ratio of polonium dioxide-barium oxide (0.71-0.77)+-0.15 and (1.04-1.25)+-0.25 respectively with the formation of Ba4Po3O10 and BaPoO3. During heating in oxygen medium up to 1000 deg C these compounds separate polonium dioxide to the mole ratio of polonium dioxide-barium oxide 0.54+-0.11 with the formation of Ba2PoO4. Temperature dependences of vapour pressure of polonium dioxide in the process of dissociation of the compounds prepared are determined and the heats of the processes are calculated

  15. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    Science.gov (United States)

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology. PMID:27237438

  16. Interaction between essential elements selenium and zinc with cadmium and mercury in samples from hypertensive patients.

    Science.gov (United States)

    Afridi, Hassan Imran; Kazi, Tasneem Gul; Talpur, Farah Naz; Kazi, Atif; Arain, Sadaf Sadia; Arain, Salma Aslam; Brahman, Kapil Dev; Panhwar, Abdul Haleem; Naeemullah; Shezadi, Mariam; Ali, Jamshed

    2014-08-01

    The abnormal metabolism of metal ions plays an important role in health and disease conditions; hence, the studies about them have received much interest. The objective of this study was to evaluate the association between trace and toxic elements zinc (Zn), cadmium (Cd), selenium (Se), and mercury (Hg) in biological samples (scalp hair, blood, and urine) of hypertensive patients (n = 257), residents of Hyderabad, Pakistan. For comparison purpose, the biological samples of age-matched healthy controls were selected as referents. The concentrations of trace and toxic elements were measured by atomic absorption spectrophotometer prior to microwave-assisted acid digestion. The validity and accuracy of the methodology was checked using certified reference materials and by the conventional wet acid digestion method. The recovery of all studied elements was found in the range of 96.4-99.1 % in certified reference materials. The results of this study showed that the mean values of Cd and Hg were significantly higher in scalp hair, blood, and urine samples of hypertensive patients than in referents (P < 0.001), whilst the concentrations of Zn and Se were lower in the scalp hair and blood, but higher in the urine samples of hypertensive patients. The deficiency of Zn and Se and the high exposure of toxic metals may be synergistic with risk factors associated with hypertension. PMID:24962640

  17. THE EFFECTS OF COPPER AND ZINC IONS DURING THEIR BINDING WITH HUMAN SERUM γ-GLOBULIN

    Directory of Open Access Journals (Sweden)

    S. B. Cheknev

    2014-07-01

    Full Text Available Abstract. Conformational changes of human serum γ-globulin were studied during and after its binding with copper and zinc ions, using molecular ultrafiltration and differential spectrophotometry. The contents of nonbound metals in the filtrate were evaluated, resp., with sodium diethyl thyocarbamate and o-phenanthroline. It has been shown that copper and zinc exhibited common biological properties during their interactions with protein, but the binding differed sufficiently under similar experimental conditions. E.g., it was confirmed that copper was more active at the external sites of γ-globulin molecule, whereas zinc demonstrated tropicity for the areas of protein intraglobular compartments. The metal-binding sites have been described that differ in their parameters of interactions with cations and their spatial location within globular domains. Approaches are suggested for dynamic analysis of saturation for these differently located sites by the metal ions. We discuss the issues of altered conformational state of the γ-globulin molecule during the binding of cations, as well as potential usage of these data in clinical immunology.

  18. Interaction of ions in water system containing copper-zinc alloy for boiler energy saving

    Institute of Scientific and Technical Information of China (English)

    MING Xing; LIANG Jinsheng; OU Xiuqin; TANG Qingguo; DING Yan

    2006-01-01

    Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally. The fouling was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray detector (EDX). The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction. Some calcium ions of calcium carbonate crystal are replaced by zinc ions, the growth of aragonite crystal nucleus is retarded, and the transition of calcium carbonate from aragonite to calcite is hampered.

  19. Development of a thermodynamic model for zinc, lead and cadmium in saline solutions; Entwicklung eines thermodynamischen Modells fuer Zink, Blei und Cadmium in salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven

    2012-07-15

    Waters on aboveground and underground landfills often contain high concentrations of pollutants like zinc, lead and cadmium. Interactions between wastes and aqueous solutions could lead to a mobilisation of these elements. If their maximum solubilities are to be predicted by geochemical modelling a thermodynamic data base is needed. Due to the lack of experimental data such a data base could not be developed yet. In order to fill the gaps isopiestic as well as solubility measurements were made at 25 C. Furthermore the complex formation of zinc and cadmium was investigated and quantified by means of Raman spectrometry and evolving factor analysis. It could be proven that only complexes with two and four chlorine atoms achieve significant concentrations. On basis of these results and a critical evaluation of literature data a consistent thermodynamic data base for was developed for the calculation of activity coefficients and solubilities in the system Na, K, Mg, Ca, Zn, Cd, Cl, SO{sub 4}-H{sub 2}O at 298,15 K.

  20. Relación entre las cantidades de cobre y zinc administradas a pacientes graves con nutrición parenteral total y los niveles de cobre y zinc en plasma y eritrocitos Relationship between the amount of copper and zinc given to critically ill patients on total parenteral nutrition and plasma and erythrocyte copper and zinc levels

    Directory of Open Access Journals (Sweden)

    A. M. Menéndez

    2008-08-01

    superiores a 1,2 mg/d.Objectives: Complications resulting from zinc and copper deficiency, or adverse effects from excessive zinc and copper intake should be avoided during total parenteral nutrition (TPN. This study was conducted on critically ill patients requiring TPN to determine the relationship between the zinc and copper levels of the TPN mixtures, patients' clinical progression, and changes in plasma levels of zinc, serum levels of copper, and erythrocyte levels of zinc and copper. Patients and methods: 29 adult critically ill patients following pancreatitis or after a major abdominal surgery were studied. Zinc and copper levels in TPN, plasmatic zinc levels, copper serum levels and erythrocyte levels of zinc and copper were determined at the onset and at the end of the treatment (5-21 days (using Atomic Absorption Spectrometry. Results: The mean ± standard deviation (and ranges in parenthesis of zinc and copper levels in TPN were (μg/mL: zinc: 4.2 ± 1.7 (1.8 a 9.3; copper: 0.94 ± 0.66 (0.1 a 3.1. Biochemical parameters at the onset and at the end of the treatment were, respectively: (μg/mL: plasmatic zinc: 80 ± 45 (29-205 and 122 ± 56 (37-229; erythrocyte zinc: 2,300 ± 1,070 (790-5,280 and 2,160 ± 920 (790-4,440; serum copper (μg/dL: 124 ± 35 (62-211 and 128 ± 41 (60- 238; erythrocyte copper (μg/dl: 72 ± 39 (4-183 and 70 ± 41 (9-156. Plasmatic and erythrocyte zinc levels did not correlated neither at the onset nor at the end of the treatment. Changes in erythrocyte zinc levels correlated with daily administered zinc (mg/d in the parenteral nutrition (r = 0.38. Serum copper and erythrocyte copper showed significant correlation at the onset (p = 0.0005 and at the end of treatment (p = 0.008. Changes of serum or erythrocyte copper levels showed a significant correlation with daily administered copper (r = 0.31 and 0.26, respectively. Conclusions: These results show that: 1 determination of erythrocyte zinc and copper levels in these critically ill

  1. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2014-03-01

    Full Text Available The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reservedReceived: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014. The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 1-15. (doi:10.9767/bcrec.9.1.4899.1-15[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15

  2. Surfactant-mediated complex formation for determination of traces amounts of zinc, cadmium, and lead with 4-(2-thiazolylazo) resorcinol and chemometric methods.

    Science.gov (United States)

    Ghasemi, Jahan B; Hashemi, Beshare

    2011-12-01

    The partial least squares modeling is a powerful multivariate statistical tool applied to the spectrophotometric simultaneous determination of the divalent ions of zinc, cadmium, and lead based on the formation of their complexes with 4-(2-thiazolylazo) resorcinol in surfactant media. The linear concentration range for zinc, cadmium, and lead were 0.10-1.31, 0.148-1.92, and 0.148-3.70 mg L( -1), respectively. The experimental calibration set was composed of 36 sample solutions using a mixture design for three component mixtures. The absorption spectra were recorded from 380 through 650 nm. The effect of pH on the sensitivity in determination of zinc, cadmium, and lead was studied in order to choose the optimum pH (pH = 8) for determination. The root-mean-square errors of predictions for zinc, cadmium, and lead were 0.0466, 0.0282, and 0.050, respectively. The proposed method was successfully applied for the determination of zinc, cadmium, and lead in water samples. PMID:21409367

  3. Comparison of copper and zinc in vitro bioaccessibility from cyanobacteria rich in proteins and a synthetic supplement containing gluconate complexes: LC-MS mapping of bioaccessible copper complexes.

    Science.gov (United States)

    Wojcieszek, Justyna; Witkoś, Katarzyna; Ruzik, Lena; Pawlak, Katarzyna

    2016-01-01

    An analytical procedure was proposed to estimate bioaccessibility of copper and zinc in Spirulina Pacifica tablets with respect to that of copper and zinc in gluconate complexes. Spirulina is the common name for diet supplements produced primarily from two species of cyanobacteria, namely Arthrospira platensis and Arthrospira maxima. Spirulina tablets are an excellent source of proteins, vitamins and minerals. To obtain information about the bioavailability of these elements, an in vitro bioaccessibility test was performed by application of a two-step protocol which simulated the gastric (pepsin) and intestinal (pancreatin) digestion. The species obtained were investigated by size exclusion chromatography on a chromatograph coupled to a mass spectrometer with inductively coupled plasma (SEC-ICP-MS) and an on-capillary liquid chromatograph coupled to an electrospray mass spectrometer (μ-HPLC-ESI-MS). Both copper and zinc were found to be highly bioaccessible in Spirulina tablets (90-111%) and those containing gluconate complexes (103% for Cu and 62% for Zn). In Spirulina tablets, copper was found to form two types of complex: (1) polar ones with glycine and aspartic acid and (2) more hydrophobic ones containing amino acids with cyclic hydrocarbons (phenylalanine, histidine, proline and tyrosine). Zinc and copper were also proved to form complexes during the digestion process with products of pepsin digestion, but the stability of these complexes is lower than that of the complexes formed in Spirulina. The results proving the involvement of proteins in the enhancement of copper and zinc bioaccessibility will be useful for the design of new copper and zinc supplements. PMID:26597916

  4. Draft Genome of Streptomyces zinciresistens K42, a Novel Metal-Resistant Species Isolated from Copper-Zinc Mine Tailings

    Science.gov (United States)

    Lin, Yanbing; Hao, Xiuli; Johnstone, Laurel; Miller, Susan J.; Baltrus, David A.; Rensing, Christopher; Wei, Gehong

    2011-01-01

    A draft genome sequence of Streptomyces zinciresistens K42, a novel Streptomyces species displaying a high level of resistance to zinc and cadmium, is presented here. The genome contains a large number of genes encoding proteins predicted to be involved in conferring metal resistance. Many of these genes appear to have been acquired through horizontal gene transfer. PMID:22038968

  5. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers.

    Science.gov (United States)

    Choi, Yun Kyung; Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon; Kim, Yuri

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  6. Study of oxidative stress, homocysteine, copper & zinc in nephrotic syndrome: therapy with antioxidants, minerals and B-complex vitamins

    Directory of Open Access Journals (Sweden)

    Jyoti Dwivedi*

    2009-09-01

    Full Text Available Oxidative damage has been proposed as one of the possiblemechanism involved in the nephrotic syndrome. Strengthening thedefense system by antioxidants may provide protection againstoxidative damage. Therefore, this study was carried out toinvestigate oxidant and antioxidant status with copper, zinc andhomocysteine in nephrotic syndrome patients and the effect ofantioxidants, minerals and B-complex vitamins on oxidant andantioxidant status. The blood samples were analyzed for quantitationof malondialdehyde as index of lipid peroxide, vitamin C, totalantioxidant capacity, copper, zinc, and homocysteine. Significantlyincreased levels of serum lipid peroxide, homocysteine anddecreased levels of serum total antioxidant capacity, copper, zincand plasma vitamin C were noticed in the patients with nephroticsyndrome as compared to control subjects. However, significantreduction in lipid peroxide, homocysteine and improvement invitamin C, total antioxidant capacity, copper, and zinc activity wereobserved after treatment of antioxidants and minerals with Bcomplexvitamins.

  7. Effects induced following the treatments with copper, manganese and zinc on corn seeds germination (Carrera, Turda 200 and HD-160

    Directory of Open Access Journals (Sweden)

    Ioana Mihaela TOMULESCU

    2009-05-01

    Full Text Available Due to the human activities (mining, industrial activity, waste disposal, agricultural practice, pollution by copper, manganese and zinc is a major problem. To establish the effects induced by copper, manganese and zinc treatments on germination in corn, we used solution with different concentration for 24 hours. We treated corn seeds with the following solutions: CuSO4 3 ppm, 30 ppm, 300 ppm, ZnSO4 3 ppm, 30 ppm, 300 ppm, MnSO4 3 ppm, 30 ppm and 300 ppm. Control groups were imbued in distillated water. We determined the energy and capacity of germination. Our results showed that copper solutions significantly inhibit germination compared to the untreated control. The toxicity of copper is higher if concentration increases. Zinc solutions also inhibit germination, however their effect highly depend on concentration. The effect of manganese was not so harmful comparatively with control group.

  8. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Mangano, Valentina [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Bakiu, Rigers [Department of Crop Production, Agricultural University of Tirana, Tirana (Albania); Cammarata, Matteo; Parrinello, Nicolò [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2013-09-15

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  9. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    International Nuclear Information System (INIS)

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  10. Bio-accumulation of copper, zinc, iron and manganese in oyster Saccostrea cucullata, Snail Cerithium rubus and Clam Tellina angulata from the Bombay coast

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R.; Moraes, C.

    accumulation was high in S. cucullata, manganese in C. rubus and iron in T. angulata. Similarly, copper and zinc in S. cucullata and copper in C. rubus were found occasionally higher than accepted health standards...

  11. Investigation and Evaluation on Heavy Metal Copper and Cadmium Contaminations of Vegetables Grown in Huanggang City of China

    OpenAIRE

    Xiaoming Hu; Weibin Jin; Wenjuan Lv; Shuiyuan Cheng; Yanyan Jiang

    2013-01-01

    No published data are available on heavy metals concentrations and contaminations of vegetables in Huanggang City, Hubei Province, China. This study focused on characteristics and evaluation on heavy metal (Copper and Cadmium) concentrations and contaminations in vegetables grown in the suburbs of Huanggang. Several important vegetable bases in the suburbs of the city were employed as study areas and 150 representative vegetable samples, including leaf vegetables, melon-fruit vegetables, root...

  12. The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure

    OpenAIRE

    Lazarova, Nevena; Krumova, Ekaterina; Stefanova, Tsvetanka; Georgieva, Nelly; Angelova, Maria

    2014-01-01

    Despite the intensive research in the past decade on the microbial bioaccumulation of heavy metals, the significance of redox state for oxidative stress induction is not completely clarified. In the present study, we examined the effect of redox-active (copper and chromium) and redox-inactive (cadmium) metals on the changes in levels of oxidative stress biomarkers and antioxidant enzyme defence in Trichosporon cutaneum R57 cells. This filamentous yeast strain showed significant tolerance and ...

  13. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice

    OpenAIRE

    Al-Attar, Atef M.

    2011-01-01

    Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of ...

  14. Influences of petroleum on accumulation of copper and cadmium in the polychaete Nereis diversicolor

    Institute of Scientific and Technical Information of China (English)

    SUN Fu-hong; ZHOU Qi-xing; ZHANG Qian-ru

    2006-01-01

    Using the exposure simulation experiment, the action of petroleum affecting the accumulation of the trace metals including copper (Cu) and cadmium (Cd) in littoral polychaete Nereis diversicolor collected from the Shuangtaizi Estuary in Liaoning Province,China was examined. The results showed that there was a markedly non-linear relationship between the accumulation of Cu in worms and the experimental concentration of Cu in exposure solutions when the concentration of petroleum remained at 0, 100, and 220 μl/L, respectively. However, significantly non-linear relationship for worms exposed to Cd was observed only when the concentration of added petroleum was 0 and 220 μl/L. The accumulation of Cu in worms did not differ significantly among the three different levels of petroleum concentrations combined with various concentrations of Cu. So was the accumulation of Cd in worms (p>0.05).However, the addition of petroleum in exposure solutions brought about an increase in the accumulation of Cu in Nereis diversicolor,in comparison with single Cu pollution. On the other hand, when the concentration of added petroleum remained at 100 μl/L, the accumulation of Cd in worms was lower than that in worms exposed to various concentrations of only cadmium. However, the worms exposed to Cd and petroleum 220 μl/L did not show obvious and identical increase in the accumulation of Cd, compared with single Cd exposure. The accumulation of both Cu and Cd in worms did not increase significantly with the increases in concentrations of Cu or Cd in exposure solutions combined with petroleum (0, 100, and 220 μl/L) under the experimental conditions. Although Nereis diversicolor is exposed to very high Cu and Cd in exposure solutions, accumulation and detoxification mechanisms are sufficient to cope with the extra metal influx in order to survive.

  15. Influences of petroleum on accumulation of copper and cadmium in the polychaete Nereis diversicolor.

    Science.gov (United States)

    Sun, Fu-Hong; Zhou, Qi-Xing; Zhang, Qian-Ru

    2006-01-01

    Using the exposure simulation experiment, the action of petroleum affecting the accumulation of the trace metals including copper (Cu) and cadmium (Cd) in littoral polychaete Nereis diversicolor collected from the Shuangtaizi Estuary in Liaoning Province, China was examined. The results showed that there was a markedly non-linear relationship between the accumulation of Cu in worms and the experimental concentration of Cu in exposure solutions when the concentration of petroleum remained at 0, 100, and 220 microl/L, respectively. However, significantly non-linear relationship for worms exposed to Cd was observed only when the concentration of added petroleum was 0 and 220 microl/L. The accumulation of Cu in worms did not differ significantly among the three different levels of petroleum concentrations combined with various concentrations of Cu. So was the accumulation of Cd in worms (p > 0.05). However, the addition of petroleum in exposure solutions brought about an increase in the accumulation of Cu in Nereis diversicolor, in comparison with single Cu pollution. On the other hand, when the concentration of added petroleum remained at 100 microl/L, the accumulation of Cd in worms was lower than that in worms exposed to various concentrations of only cadmium. However, the worms exposed to Cd and petroleum 220 microl/L did not show obvious and identical increase in the accumulation of Cd, compared with single Cd exposure. The accumulation of both Cu and Cd in worms did not increase significantly with the increases in concentrations of Cu or Cd in exposure solutions combined with petroleum (0, 100, and 220 microl/L) under the experimental conditions. Although Nereis diversicolor is exposed to very high Cu and Cd in exposure solutions, accumulation and detoxification mechanisms are sufficient to cope with the extra metal influx in order to survive. PMID:20050557

  16. Fabrication of a Functionally Graded Copper-Zinc Sulfide Phosphor

    Science.gov (United States)

    Park, Jehong; Park, Kwangwon; Kim, Jongsu; Jeong, Yongseok; Kawasaki, Akira; Kwon, Hansang

    2016-03-01

    Functionally graded materials (FGMs) are compositionally gradient materials. They can achieve the controlled distribution of the desired characteristics within the same bulk material. We describe a functionally graded (FG) metal-phosphor adapting the concept of the FGM; copper (Cu) is selected as a metal and Cu- and Cl-doped ZnS (ZnS:Cu,Cl) is selected as a phosphor and FG [Cu]-[ZnS:Cu,Cl] is fabricated by a very simple powder process. The FG [Cu]-[ZnS:Cu,Cl] reveals a dual-structured functional material composed of dense Cu and porous ZnS:Cu,Cl, which is completely combined through six graded mediating layers. The photoluminescence (PL) of FG [Cu]-[ZnS:Cu,Cl] is insensitive to temperature change. FG [Cu]-[ZnS:Cu,Cl] also exhibits diode characteristics and photo reactivity for 365 nm -UV light. Our FG metal-phosphor concept can pave the way to simplified manufacturing of low-cost and can be applied to various electronic devices.

  17. Bioavailability of zinc, copper, and manganese from infant diets

    International Nuclear Information System (INIS)

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of 64Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of 64Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. 65Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of 54Mn) was high from all milks and commercial formulas tested

  18. Fabrication of a Functionally Graded Copper-Zinc Sulfide Phosphor

    Science.gov (United States)

    Park, Jehong; Park, Kwangwon; Kim, Jongsu; Jeong, Yongseok; Kawasaki, Akira; Kwon, Hansang

    2016-01-01

    Functionally graded materials (FGMs) are compositionally gradient materials. They can achieve the controlled distribution of the desired characteristics within the same bulk material. We describe a functionally graded (FG) metal-phosphor adapting the concept of the FGM; copper (Cu) is selected as a metal and Cu- and Cl-doped ZnS (ZnS:Cu,Cl) is selected as a phosphor and FG [Cu]-[ZnS:Cu,Cl] is fabricated by a very simple powder process. The FG [Cu]-[ZnS:Cu,Cl] reveals a dual-structured functional material composed of dense Cu and porous ZnS:Cu,Cl, which is completely combined through six graded mediating layers. The photoluminescence (PL) of FG [Cu]-[ZnS:Cu,Cl] is insensitive to temperature change. FG [Cu]-[ZnS:Cu,Cl] also exhibits diode characteristics and photo reactivity for 365 nm -UV light. Our FG metal-phosphor concept can pave the way to simplified manufacturing of low-cost and can be applied to various electronic devices. PMID:26972313

  19. Tandem quadruplication of HMA4 in the zinc (Zn and cadmium (Cd hyperaccumulator Noccaea caerulescens.

    Directory of Open Access Journals (Sweden)

    Seosamh Ó Lochlainn

    Full Text Available Zinc (Zn and cadmium (Cd hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea.A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs.Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue.This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.

  20. Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens.

    Science.gov (United States)

    Ó Lochlainn, Seosamh; Bowen, Helen C; Fray, Rupert G; Hammond, John P; King, Graham J; White, Philip J; Graham, Neil S; Broadley, Martin R

    2011-01-01

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea.A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs.Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue.This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae. PMID:21423774

  1. Cadmium zinc telluride based infrared interferometry for X-ray detection

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm3 CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes

  2. Phytoremediation potential of charophytes: Bioaccumulation and toxicity studies of cadmium, lead and zinc

    Institute of Scientific and Technical Information of China (English)

    Najjapak Sooksawat; Metha Meetam; Maleeya Kruatrachue; Prayad Pokethitiyook; Koravisd Nathalang

    2013-01-01

    The ability for usage of common freshwater charophytes,Chara aculeolata and Nitella opaca in removal of cadmium (Cd),lead (Pb)and zinc (Zn) from wastewater was examined.C aculeolata and N.opaca were exposed to various concentrations of Cd (0.25 and 0.5 mg/L),Pb (5 and 10 mg/L) and Zn (5 and 10 mg/L) solutions under hydroponic conditions for 6 days.C.aculeolata was more tolerant of Cd and Pb than N.opaca.The relative growth rate of N.opaca was drastically reduced at high concentrations of Cd and Pb although both were tolerant of Zn.Both macroalgae showed a reduction in chloroplast,chlorophyll and carotenoid content after Cd and Pb exposure,while Zn exposure had little effects.The bioaccumulation of both Cd and Pb was higher in N.opaca (1544.3 μg/g at 0.5 mg/L Cd,21657.0 μg/g at 10 mg/L Pb) whereas higher Zn accumulation was observed in C.aculeolata (6703.5 μg/g at 10 mg/L Zn).In addition,high bioconcentration factor values (> 1000) for Cd and Pb were observed in both species.C.aculeolata showed higher percentage of Cd and Pb removal (> 95%) than N.opaca and seemed to be a better choice for Cd and Pb removal from wastewater due to its tolerance to these metals.

  3. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  4. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  5. Hydrometallurgical Extraction of Zinc and Copper - A {sup 57}Fe-Moessbauer and XRD Approach

    Energy Technology Data Exchange (ETDEWEB)

    Mulaba-Bafubiandi, A. F., E-mail: antoinemulaba@hotmail.com [Technikon Witwatersrand, Extraction Metallurgy Department, Faculty of Engineering (South Africa); Waanders, F. B., E-mail: chifbw@puk.ac.za [North-West University (Potchefstroom campus), School of Chemical and Minerals Engineering (South Africa)

    2005-02-15

    The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate-roast-leach-electro winning process. In the present investigation a zinc-copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS{sub 2}), was studied. The {sup 57}Fe-Moessbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900{sup o}C for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe{sub 2}O{sub 4}) and zinc oxide (ZnO) and half the amount of willemite (Zn{sub 2}SiO{sub 4}). The Moessbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H{sub 2}SO{sub 4} and HNO{sub 3}, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.

  6. Hydrometallurgical Extraction of Zinc and Copper - A 57Fe-Moessbauer and XRD Approach

    International Nuclear Information System (INIS)

    The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate-roast-leach-electro winning process. In the present investigation a zinc-copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS2), was studied. The 57Fe-Moessbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900oC for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe2O4) and zinc oxide (ZnO) and half the amount of willemite (Zn2SiO4). The Moessbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H2SO4 and HNO3, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.

  7. Synthesis and characterization of heteroleptic copper and zinc complexes with saccharinate and aminoacids. Evaluation of SOD-like activity of the copper complexes.

    Science.gov (United States)

    Santi, Eduardo; Viera, Inés; Mombrú, Alvaro; Castiglioni, Jorge; Baran, Enrique J; Torre, María H

    2011-12-01

    Five new copper and zinc heteroleptic complexes with saccharin and aminoacids with general stoichiometry Na(2)[M(sac)(2)(aa)(2)].nH(2)O (M denotes Cu or Zn, sac the saccharinate ion, and aa the aminoacids) were synthesized and characterized by elemental and thermogravimetric analysis, conductimetric measurements and IR, Raman and UV-vis spectroscopies. In all the complexes, copper and zinc ions coordinated with the aminoacids through the terminal amine and carboxylate residues and with saccharin through the heterocyclic nitrogen atom. Besides, the superoxide dismutase-like activity of the heteroleptic copper complexes was evaluated and compared with the homoleptic copper amino acid complexes with the aim to observe the influence of the saccharin coordination. PMID:21336583

  8. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance

    Institute of Scientific and Technical Information of China (English)

    Yan XING; Hong-yun PENG; Xia LI; Meng-xi ZHANG; Ling-ling GAO; Xiao-e YANG

    2012-01-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China.The current study demonstrates that a salidroside-type metabolite can be yielded from the ZniCd hyperaccumulator S.alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation.The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards.

  9. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance.

    Science.gov (United States)

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-10-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  10. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance*

    Science.gov (United States)

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-01-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  11. Internal Electric Field Investigations of a Cadmium Zinc Telluride Detector Using Synchrotron X-ray Mapping and Pockels Effect Measurements

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT) has remained a major focus of research due to its promising application as a room-temperature nuclear radiation detector material. Among the several parameters that substantially affect the detectors' performance, an important one is the distribution of the internal electric field. Brookhaven National Laboratory (BNL) employed synchrotron x-ray microscale mapping and measurements of the Pockels effect to investigate the distribution of the internal electric field in a CZT strip detector. Direct evidence that dislocations can distort the internal electric field of the detector was obtained. Furthermore, it was found that 'star' defects in the CZT crystal, possibly ascribed to dislocation loop punching, cause charge trapping.

  12. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction

    OpenAIRE

    Herzog, B A; Buechel, R R; Katz, R.; Brueckner, M; Husmann, L; Burger, I A; Pazhenkottil, A P; Valenta, I; Gaemperli, O; Treyer, V.; Kaufmann, P A

    2009-01-01

    We aimed at establishing the optimal scan time for nuclear myocardial perfusion imaging (MPI) on an ultrafast cardiac gamma-camera using a novel cadmium-zinc-telluride (CZT) solid-state detector technology. METHODS: Twenty patients (17 male; BMI range, 21.7-35.5 kg/m(2)) underwent 1-d (99m)Tc-tetrofosmin adenosine stress and rest MPI protocols, each with a 15-min acquisition on a standard dual-detector SPECT camera. All scans were immediately repeated on an ultrafast CZT camera over a 6-min a...

  13. Extraction of zinc and cadmium thiocyanate complexes in the presence of pyridine and some metal ion separations

    International Nuclear Information System (INIS)

    Extraction of zinc(II) and cadmium(II) from ammonium thiocyanate solutions has been studied in benzene in the presence of pyridine. The effect of such variables as the pH of aqueous phase and concentration of metal, thiocyanate and pyridine on extraction has been investigated and the extracting species identified. The extraction behaviour of silver(I), manganese(II), cobalt(II), mercury(II) and thallium(III) has also been studied under identical conditions and some binary metal ion separations of analytical and radiochemical importance are reported. (author)

  14. A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids

    International Nuclear Information System (INIS)

    The use of biosolids in agriculture continues to be debated, largely in relation to their metal contents. Our knowledge regarding the speciation and bioavailability of biosolids metals is still far from complete. In this study, a multi-technique approach was used to investigate copper and zinc speciation and partitioning in one contemporary and two historical biosolids used extensively in previous research and field trials. Using wet chemistry and synchrotron spectroscopy techniques it was shown that copper/zinc speciation in the biosolids was largely equivalent despite the biosolids being derived from different countries over a 50 year period. Furthermore, copper speciation was consistently dominated by sorption to organic matter whereas Zn partitioned mainly to iron oxides. These data suggest that the results of historical field trials are still relevant for modern biosolids and that further risk assessment studies should concentrate particularly on Cu as this metal is associated with the mineralisable biosolids fraction. - Highlights: ► Complementary techniques were used to investigate Cu and Zn speciation in biosolids. ► Historic and contemporary biosolids with differing metal contents were examined. ► Similarities in Cu/Zn speciation were observed irrespective of biosolids provenance. ► Key binding environments identified were organic matter for Cu and Fe oxides for Zn. ► Similarities show historic field trial results are still relevant for biosolids management. - Historic and contemporary biosolids show similarities in Cu/Zn speciation despite having very different total Zn/Cu contents.

  15. Validity of the copper/zinc ratio as a diagnostic marker for taste disorders associated with zinc deficiency.

    Science.gov (United States)

    Yanagisawa, Hiroyuki; Kawashima, Toru; Miyazawa, Mai; Ohshiro, Tadahiro

    2016-07-01

    Although zinc (Zn) deficiency is often suspected in patients with taste disorders, it may be difficult to diagnose Zn deficiency, especially in patients without any clear risk factors. Accordingly, the aim of the present study was to detect possible markers for taste disorders or zinc deficiency. To achieve this aim, we analyzed data obtained from 122 Japanese men who were not using medicines and had no diseases requiring treatment. We evaluated the following factors: awareness of dysgeusia; salty taste recognition threshold (SRT); the serum concentrations of Zn, copper (Cu), iron, alkaline phosphatase, and albumin; and the Cu/Zn ratio. The serum Cu/Zn ratio was positively correlated with the both the SRT and the awareness of dysgeusia. The serum Zn concentration was not correlated with the SRT or the awareness of dysgeusia in univariate analyses. However, in multivariate logistic regression, the serum Zn concentration was associated with the awareness of dysgeusia. In conclusion, the serum Cu/Zn ratio is a good diagnostic marker for taste disorders and the value of 1.1 may be a threshold level for detecting taste disorders. PMID:27259356

  16. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2009-08-13

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 {mu}M Cu or 1.0 and 2.0 {mu}M Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO{sub 2} assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  17. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Nikolaou, Aris [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Laboratory of Inorganic and Organic Geochemistry and Organic Petrography, Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2009-12-15

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  18. Cadmium, Chromium, and Copper Concentration plus Semen-Quality in Environmental Pollution Site, China.

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-01-01

    Full Text Available The environmental pollution is one of the factors contributing to the decrease of sperm quality for human beings. The aim of this study was to assess cadmium (Cd, chromium (Cr, and copper (Cu concentration of man in environmental pollution site, and explore relationships between men exposure to Cd, Cr, and Cu and semen-quality parameters in environmental pollution site.Ninety five men were recruited through pollution area and controls in 2011. We measured semen quality using Computer-aided Semen Quality Analysis, and Cd, Cr, and Cu levels in seminal plasma using Graphite Gurnace Atomic Absorption Spectroscopy. Spearman rank correlation analysis was used to evaluate the correlation between Cd, Cr and Cu concentration in seminal plasma and semen quality.The mean of seminal plasma Cd, Cr, and Cu values in pollution area was higher than the controls. Seminal plasma Cr values displayed a significant negative correlation with total motility and normomorph sperm rate. Seminal plasma Cu values also displayed a negative correlation with normomorph sperm rate.Male reproductive health may be threatened by environmental pollution, and it may be influence local population diathesis.

  19. Use of Atomic Absorption Spectrometry in Assessment of Biomonitor Plants for Lead, Cadmium and Copper Pollution

    Institute of Scientific and Technical Information of China (English)

    Gokce Kaya; Mehmet Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep,Turkey.Lead,cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry.Lead,Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304~602,0.4~0.44 and 31~37 mg · kg-1,respectively.Significantly increased lead concentration up to 2 750 mg · kg-1 was found in the leaves of Eleagnus angustifolia L.plant.The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima >Morus sp.> Juglans regia L.> Ficus carica L.>Cydonia oblonga Miller> Prunus x domestica L.The plants,Populus nigra L.,Eleagnus angustifolia L.and Salix sp.were found useful for Cd,and the plant,Eleagnus angustifolia L.for Pb,to be considered as potential biomonitor.Especially,leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations.Therefore,people who and animals which live in this area and benefit from these soil and plants have vital risks.

  20. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks. PMID:22497165

  1. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    International Nuclear Information System (INIS)

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 μg l-1) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 μg l-1 Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 μg l-1 metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response

  2. Influences of macroalga-derived dissolved organic carbon on the aquatic toxicity of copper and cadmium.

    Science.gov (United States)

    Tsui, Martin T K; Wang, Wen-Xiong; Wong, Ming H

    2006-12-01

    In this study, the effect of dissolved organic carbon (DOC) derived from macroalga (Sargassum) on the acute toxicity of copper (Cu) and cadmium (Cd) to a freshwater cladoceran (Daphnia magna) was investigated. Potassium-loaded macroalga was incubated with ultrapure water to extract macroalgal DOC, which was then spiked with the constituents of the Elendt M7 hard water media. The 48 h median lethal concentration of Cu increased linearly with DOC levels but that of Cd was relatively independent of DOC levels (0-44 mg l(-1)). The independence of Cd toxicity on DOC level might be due to the competitive effect of high calcium concentrations in the media with Cd for the binding sites of DOC. The decreased Cu toxicity was a result of reduced Cu uptake as evidenced in a separate accumulation test. Also, the capability of the macroalgal DOC on reducing Cu toxicity was found to be comparable to DOC tested in other studies. Therefore, the present study suggested that the biosorption treatment process using macroalgae should consider the effect of DOC release from the biomass as a step of modifying the metal toxicity as well as influencing metal biosorption capacity. PMID:16709424

  3. Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol–gel method

    International Nuclear Information System (INIS)

    Highlights: ► Cu1−xCdxFe2O4 mixed metal oxides. ► Sol–gel auto-combustion method. ► Cubic spinel symmetry. ► Semiconducting nature. ► Ferrimagnetic material. - Abstract: Cu1−xCdxFe2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) ferrite nanoparticles were synthesized by sol–gel auto-combustion method. The thermal decomposition process was investigated by Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA) technique. The phase composition of the copper cadmium ferrite samples were characterized by powder X-ray diffraction analyses (XRD). All the samples reveal formation of cubic spinel symmetry. The surface morphology of Cu1−xCdxFe2O4 ferrite powder was investigated by scanning electron microscope (SEM), while elemental compositions of sample were studied by energy dispersive X-ray analysis (EDAX). The DC conductivity studies of the samples reveal their semiconducting nature. Vibrating sample magnetometer (VSM) studies showed that, all the samples are ferrimagnetic in nature at room temperature.

  4. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  5. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchelmore, Carys L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, MD 20688 (United States)], E-mail: Mitchelmore@cbl.umces.edu; Verde, E. Alan [Corning School of Ocean Studies, Maine Maritime Academy, Castine, ME 04420 (United States); Weis, Virginia M. [Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331 (United States)

    2007-11-15

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 {mu}g l{sup -1}) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 {mu}g l{sup -1} Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 {mu}g l{sup -1} metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response.

  6. Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants

    Directory of Open Access Journals (Sweden)

    JinZhao Hu

    2010-02-01

    Full Text Available The cadmium(Cd, copper(Cu and lead(Pb accumulation, as well as their relative content of different chemical forms in Sagittaria sagittifolia L. and Potamogeton crispus L. were determined. The results showed that both the plants had the ability to accumulate large amounts of Cd, Cu and Pb, and they absorbed metals in dose-dependent manners. The roots of S. sagittifolia appeared more sensitive to Cd and Pb than the leaves of P. crispus. The potential of Cu uptake by these two plant tissues was similar. Under the same concentration, the uptake of Cu for both the plants was higher than Pb and Cd, while that of Pb was lowest. The Cd, Cu and Pb existed with various forms in the plants. Cd and Pb were mainly in the NaCl extractable form in S. sagittifolia and P. crispus. The HAc and ethanol extractable Cu were the main forms in the root, whereas the ethanol extractable form was the dominant chemical form in the caulis and bulb of the S. sagittifolia L.

  7. EPR of Cu(II) in sarcosine cadmium chloride: probe into dopant site - symmetry and copper-sarcosine interaction

    CERN Document Server

    Pathinettam-Padiyan, D; Murugesan, R

    2000-01-01

    The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.

  8. Comparison of Serum Zinc and Copper levels in Children and adolescents with Intractable and Controlled Epilepsy

    Directory of Open Access Journals (Sweden)

    Zeynab KHERADMAND

    2014-07-01

    Full Text Available How to Cite This Article: Kheradmand Z, Yarali B, Zare A, Pourpak Z, Shams S, Ashrafi MR. Comparison of Serum Zinc and Copper levels in Children and adolescents with Intractable and Controlled Epilepsy. Iran J Child Neurol. 2014; 8(3:49-54. AbstractObjectiveTrace elements such as zinc and copper have physiological effects on neuronal excitability that may play a role in the etiology of intractable epilepsy. This topic has been rarely discussed in Iranian epileptic patients.This study with the analysis of serum zinc and copper levels of children and adolescents with intractable and controlled epilepsy may identifies the potential role of these two trace elements in the development of epilepsy and intractabilityto antiepileptic drug treatment. Materials & MethodsSeventy patients between the ages of 6 months to 15 years that referred to Children’s Medical Center with the diagnosis of epilepsy, either controlled or intractable to treatment enrolled in the study. After informed parental consent the levels of serum zinc and copper were measured with atomic absorptionspectrophotometer and analyzed with SPSS version 11.Results35 patients were enrolled in each group of intractable (IE and controlled epilepsy (CE. 71.45% of the IE and 25.72% of the CE group had zinc deficiency that was statistically significant. 48.58% of the IE and 45.72 of the CE group were copper deficient, which was not statistically significant.ConclusionOur findings showed significant low serum zinc levels of patients with intractable epilepsy in comparison with controlled epilepsy group. We recommend that serum zinc level may play a role in the etiology of epilepsy and intractable epilepsy therefore its measurement and prescription may be regarded in the treatment of intractable epilepsy.ReferencesMikati MA. Seizures in childhood. In: Kliegman RM, Stanton BF, Schor NF, Geme JWS, Behrman R (eds. Nelson textbook of pediatrics. 19th ed. Elsevier:Saunders; 2011. Pp

  9. Longitudinal Study on Trace Mineral Compositions (Selenium, Zinc, Copper, Manganese) in Korean Human Preterm Milk

    OpenAIRE

    Kim, Seung-Yeon; Park, Jung Hwa; Kim, Ellen Ai-Rhan; Lee-Kim, Yang Cha

    2012-01-01

    We measured selenium, zinc, copper and manganese concentrations in the human milk of Korean mothers who gave birth to preterm infants, and compared these measurements with the recommended daily intakes. The samples of human milk were collected postpartum at week-1, -2, -4, -6, -8, and -12, from 67 mothers who gave birth to preterm infants (< 34 weeks, or birth weight < 1.8 kg). All samples were analyzed using atomic absorption spectrophotometry. The concentrations of selenium were 11.8 ± 0.5,...

  10. Serum Levels of Zinc, Copper, Vitamin B12, Folate and Immunoglobulins in Individuals with Giardiasis

    OpenAIRE

    Zarebavani, M; D Dargahi; Einollahi, N; Dashti, N; M Mohebali; Rezaeian, M.

    2012-01-01

    Background: Giardia lamblia is one of the most important intestinal parasites. The aim of this study was to measure serum levels of IgA, IgE, zinc, copper, vitamin B12 and folate in individuals with giardiasis in comparison to normal subjects. Methods: The study was carried out among 49 Giardia positive and 39 age and sex matched healthy volunteers. Examination of stool samples was done by direct wet smear and formol-ether concentration method. Serum samples were obtained for further laborato...

  11. Neutron Activation Analysis of Vanadium, Copper, Zinc, Bromine and Iodine in Pyura Microcosmus

    International Nuclear Information System (INIS)

    Most of the tunicates seem to accumulate vanadium more energetically than other marine organisms. However, there is a very great variation within the group. Maximum amounts of vanadium were found in the Ascididae family whereas in some species of the Pyuridae family vanadium was apparently absent. This paper describes the simple and rapid determination by activation analysis of vanadium, copper, zinc, bromine and iodine in Pyura microcosmus, a species of the Pyuridae family. The same elements were also investigated in the environmental sea-water. Samples of P. microcosmus and sea-water were collected from a point about 15 m below the surface in the Saronic Gulf near Athens. All irradiations of samples and standards were carried out with the DEMOCRITUS Reactor of the Nuclear Research Centre of Greece, at a neutron flux of 2 x 1011 n/cm2s. The time of irradiation with the pneumatic transfer system ranged from 1 to 25 min, depending on the element being determined. After irradiation and addition of inactive carriers, the radioisotopes of interest were isolated by fast radiochemical procedures based on solvent extraction techniques. Vanadium and copper were extracted as cupferrates into chloroform, and zinc was extracted with 8% methyldioctylamine into trichloroethylene. Bromine and iodine were distilled first and then separated from each other by selective redox and extraction procedures. The photopeak areas of 52V, 64Cu, 69mZn, 82Br and 128I were measured by means of a multichannel analyser and compared with those of standards of the above radionuclides processed in the same manner. After irradiation the time to complete the analysis ranged from 5 to 35 min depending on the element being determined. The quantities of the elements determined in P. microcosmus, expressed in micrograms per gram of dry matter, were: vanadium 1.0, copper 7.5, iodine 14.1, bromine 406 and zinc 702. The per cent concentration of the same elements found in the sea-water was as follows

  12. Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting.

    Science.gov (United States)

    Yang, Haoran; Jauregui, Luis A; Zhang, Genqiang; Chen, Yong P; Wu, Yue

    2012-02-01

    Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoelectric applications. The CZTS nanocrystals can be synthesized in large quantities from solution phase reaction and compressed into robust bulk pellets through spark plasma sintering and hot press while still maintaining nanoscale grain size inside. Electrical and thermal measurements have been performed from 300 to 700 K to understand the electron and phonon transports. Extra copper doping during the nanocrystal synthesis introduces a significant improvement in the performance. PMID:22214524

  13. Copper, zinc and lead bioaccumulation in marine snail, Strombus gigas, from Guacanayabo Gulf, Cuba.

    Science.gov (United States)

    Díaz Rizo, O; Olivares Reumont, S; Viguri Fuente, J; Díaz Arado, O; López Pino, N; D'Alessandro Rodríguez, K; Arado López, J O; Gelen Rudnikas, A; Arencibia Carballo, G

    2010-09-01

    Levels of copper, zinc and lead were determined in sediments and edible muscle of marine snail Strombus gigas collected from Guacanayabo Gulf, Cuba. The concentration range of each metal in marine snail muscle on mg kg(-1) wet weight varied as follows: Cu = 6.4-32.6, Zn = 20.4-31.1 and Pb = 0.2-2.3; and in corresponding sediments (on mg kg(-1) dry weight) as: Cu = 157-186, Zn = 56-94 and Pb = 20-37. The average biota-sediment accumulation factors (BSAFs) obtained for studied metals are less than unity in all cases, indicating that only a little fraction of metal content in the sediments is bioavailable, independently of their possible enrichments in the sediments. The concentrations of copper and lead in some of the marine snails are above typical public health recommended limits. PMID:20676604

  14. Effect of topical silver sulfadiazine on plasma copper, zinc and silver concentrations in a burn rat model

    Energy Technology Data Exchange (ETDEWEB)

    Shippee, R.; Boosalis, M.; McClain, C.; Becker, W.; Watiwat, S. (Army Inst. of Surgery Research, Ft. Sam Houston, TX (United States))

    1991-03-15

    One percent silver sulfadiazine cream (AgSD) is routinely used as a topical agent to prevent wound infection in burned patients. This report describes the effect of such topical therapy on plasma copper, silver and zinc concentrations in burned rats. Twelve male Sprague-Dawley rats received full thickness burns of 30% of the total body surface and were maintained for seven days on Purina Rat Chow and deionized water ad libitum. Twelve sham burned animals were similarly maintained. The wounds in six burned and a similar area in six sham burned animals were treated daily with 3 gms of AgSD, beginning on the day of injury. Blood was drawn on the seventh postburn day and analyzed for plasma copper, silver and zinc, using graphite furnace atomic absorption spectrophotometry. Silver absorption was associated with decreased plasma copper concentration in both burned and sham burned animals. Zinc concentrations did not differ significantly.

  15. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers What is zinc and what does it do? Zinc is a ... find out more about zinc? Disclaimer How much zinc do I need? The amount of zinc you ...

  16. Analysis of Copper and Zinc Plasma Concentration and the Efficacy of Zinc Therapy in Individuals with Asperger's Syndrome, Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) and Autism

    OpenAIRE

    A.J. Russo; Robert deVito

    2011-01-01

    Aim To assess plasma zinc and copper concentration in individuals with Asperger’s Syndrome, Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS) and autistic disorder, and to analyze the efficacy of zinc therapy on the normalization of zinc and copper levels and symptom severity in these disorders. Subjects and methods Plasma from 79 autistic individuals, 52 individuals with PDD-NOS, 21 individuals with Asperger’s Syndrome (all meeting DSM-IV diagnostic criteria), and 18 age and...

  17. New precise determination of the high temperature unusual temperature dependent thermopower of liquid divalent cadmium and zinc

    International Nuclear Information System (INIS)

    We do not know any precise measurement of the absolute thermopower (ATP) of liquid cadmium and zinc at high temperatures. For liquid cadmium, there are, in the literature, apparent contradictory results. Bath and Kliem and North and Wagner observed that the ATP increases with temperature between 350 deg. C and 650 deg. C, but Bradley observed the opposite behaviour between 600 deg. C and 750 deg. C. In this work we measured accurately the absolute thermopower of liquid cadmium from the melting point up to 900 deg. C. We find a maximum around 520 deg. C, and then the thermopower decreases down to a surprising negative value. To our knowledge, it is the first time that such an unusual behaviour is reported. Nevertheless, it is qualitatively consistent with all the authors mentioned and the apparent contradictory results should only be due to the different temperature ranges of measurements. Using the ATP expression from the Faber-Ziman formalism, we can fit very well the experimental absolute thermopower versus temperature curve with only one adjustable parameter. For this, we have considered that the temperature dependence of the ATP is dominated by the resistivity, and we have introduced the experimental resistivity temperature dependence in the ATP expression. The very good fitting quality demonstrates that our hypothesis is consistent. In contrast, the liquid zinc ATP only increases with temperature. Nevertheless, near 1100 deg. C, the highest temperature achieved, it shows saturation that may be an indication of a decrease at higher temperature. The same type of fitting gives also quite good results. (author)

  18. Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions

    Directory of Open Access Journals (Sweden)

    Alysia eCox

    2013-12-01

    Full Text Available Synechococcus sp. WH 8102 is a motile marine cyanobacterium isolated originally from the Sargasso Sea. To test the response of this organism to cadmium (Cd -generally considered a toxin- cultures were grown in a matrix of high and low zinc (Zn and phosphate (PO43- and were then exposed to an addition of 4.4 pM free Cd2+ at mid-log phase and harvested after 24 h. Whereas Zn and PO43- had little effect on overall growth rates, in the final 24 h of the experiment three growth effects were noticed: i low PO43- treatments showed increased growth rates relative to high PO43- treatments, ii the Zn/high PO43- treatment appeared to enter stationary phase, and iii Cd increased growth rates further in both the low PO43- and Zn treatments. Global proteomic analysis revealed that: i Zn appeared to be critical to the PO43- response in this organism, ii bacterial metallothionein (SmtA appears correlated with PO43- stress-associated proteins, iii Cd has the greatest influence on the proteome at low PO43- and Zn, iv Zn buffered the effects of Cd, and v in the presence of both replete PO43- and added Cd the proteome showed little response to the presence of Zn. Similar trends in alkaline phosphate (ALP and SmtA suggest the possibility of a Zn supply system to provide Zn to ALP that involves SmtA. In addition, proteome results were consistent with a previous transcriptome study of PO43- stress (with replete Zn in this organism, including the greater relative abundance of ALP (PhoA, ABC phosphate binding protein (PstS and other proteins. Yet with no Zn in this proteome experiment the PO43- response was quite different including the greater relative abundance of five hypothetical proteins with no increase in PhoA or PstS, suggesting that Zn nutritional levels are connected to the PO43- response in this cyanobacterium. Alternate ALP PhoX (Ca was found to be a low abundance protein, suggesting that PhoA (Zn, Mg may be more environmentally relevant than PhoX.

  19. Plasma clearance of cadmium and zinc in non-acclimated and metal-acclimated trout

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, M. Jasim; Grosell, M.; McDonald, D.G.; Wood, C.M

    2003-08-20

    Adult rainbow trout were pre-exposed to a sublethal concentration of waterborne cadmium (Cd, 26.7 nmol/l) or waterborne zinc (Zn, 2294 nmol/l) for 30 days to induce acclimation. A single dose of radiolabeled Cd (64.4 nmol/kg) or Zn (183.8 nmol/kg) was injected into the vascular system of non-acclimated and Cd- or Zn-acclimated trout through indwelling arterial catheters. Subsequently, repetitive blood samples over 10 h and terminal tissue samples (liver, heart, bile, stomach, intestine, kidney, gills, muscle, and spleen) were taken to characterize the effect of metal acclimation on clearance kinetics in vivo. Plasma clearance of Cd in Cd-acclimated fish (0.726{+-}0.015 and 0.477{+-}0.012 ml/min per kg for total and newly accumulated Cd, respectively), was faster than that in non-acclimated trout (0.493{+-}0.013 and 0.394{+-}0.009 ml/min per kg). Unlike plasma Cd, the levels of Cd in red blood cells (RBCs) were 1.2-2.2 times higher in Cd-acclimated fish than in non-acclimated fish. At 10 h post-injection, the liver accumulated the highest proportion ({approx}22%) of the injected Cd dose in both non-acclimated and Cd-acclimated fish but did not account for the difference in plasma levels of Cd between two groups. Plasma clearance of Zn ({approx}0.23 ml/min per kg for new Zn) was substantially lower than Cd clearance. Pre-acclimation to waterborne Zn reduced the new Zn levels in RBCs, but did not affect the clearance of Zn from blood plasma or tissue burdens of Zn in fish. Bile concentrations of both Cd and Zn were elevated in acclimated fish, but total bile burden accounted for <1% of the injected metal dose. The results suggest that the detoxification process of injected plasma Cd is stimulated by pre-acclimation to waterborne Cd, and that Zn levels are homeostatically controlled in both non-acclimated and acclimated trout.

  20. Determination of cadmium, lead and zinc in a candidate reference materials using isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    The growing demands placed on analytical laboratories to ensure the reliability of their results, due to the introduction of systems of quality and to the increasing use of metrology in chemical measurements has led most laboratories to validate their methodologies and to control them statistically. One of the techniques used most often for these purposes is based on the use of reference materials. The proper use of these materials means that laboratory results may be traced to the International System of Units, analytical methodologies can be validated, instruments calibrated and chemical measurements harmonized. One of the biggest challenges in developing reference materials is that of certifying their properties, a process that has been defined as assigning a concentration value that is as close as possible to the true value together with its uncertainty. Organizations that produce reference materials use several options for their certification process, and among these is the use of a primary method. Among the primary methods recognized by the International Office of Weights and Measures is the Isotope Dilution Mass Spectrometry technique. The Chilean Nuclear Energy Commission, through its Reference Materials Program, has prepared a reference material of clam tissue, which has been chemically defined by different analytical methodologies applied in different national and international laboratories. This work describes the methodology developed with the CIEMAT for determining the elements lead, cadmium and zinc in the clam tissue reference material using the primary technique of Isotope Dilution Mass Spectrometry. The calculation is described for obtaining the spike amounts to be added to the sample and the procedure is explained for carrying out the isotopic exchange. The isotopic relationships 204Pb/205Pb, 111Cd/114Cd and 66Zn/67Zn were determined in an atomic emission spectrometer with a plasma source with the following characteristics: plasma ionization

  1. Trace elements studies on Karachi population, part I: normal ranges for blood copper, zinc and magnesium for adults

    International Nuclear Information System (INIS)

    Normal ranges in whole blood were established for copper, zinc and magnesium for a Karachi (Pakistan) population. For copper, it is 71-116 ug/dl (mean 93.5), there being no significant difference between the sexes; for zinc, males 602.5-850 ug/dl (mean 726), females 519-853 (686), p p > 0.01; for males + females 2.75-4.80 (3.61). There were weak correlations only between pairs of blood metal levels for the population. (author)

  2. Effect of zinc and copper additions on catalytic response of noble metal alloyed 304 SS in high temperature water

    International Nuclear Information System (INIS)

    The effect of zinc (Zn) and copper (Cu) additions on the catalytic behavior of noble metal alloyed 304 stainless steel (SS) in 288 C water understoichiometric excess hydrogen was studied. It was observed that an increase in the Zn or Cu content of the water increased the electrochemical corrosion potential (ECP) of noble metal alloyed 304 SS by ∼ 30 to 50 mV and decreased the recombination efficiency of oxygen (O2)and hydrogen (H2) by ∼ 10%. The change in the ECP and recombination rate was correlated with incorporation of zinc and copper in the oxide film, which, by covering catalytic sites, would alter the redox reaction rate

  3. Soil Pollution with Copper, Lead and Zinc in the Surroundings of Large Copper Ore Tailings Impoundment

    Directory of Open Access Journals (Sweden)

    Musztyfaga Elżbieta

    2014-12-01

    Full Text Available Analysis of the top-soil total content of heavy metals was carried out inthe vicinity of large copper ore tailings pound in the south-western Poland with regard to soil properties, direction and distance from the tailings pound. None of the soils under study ex-ceeded the limits admitted in the official standards for soil quality, but the assessment made in accordance with IUNG-guidelines to soil contamination determination showed that more than half of the monitoring sites have elevated metal content, Cu, in par-ticular. The results confirmed high effectiveness of dust control preventing its eolian spread from the tailings pound.

  4. APPLICATION OF METAL RESISTANT BACTERIA BY MUTATIONAL ENHANCMENT TECHNIQUE FOR BIOREMEDIATION OF COPPER AND ZINC FROM INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    M. R. Shakibaie ، A. Khosravan ، A. Frahmand ، S. Zare

    2008-10-01

    Full Text Available In this research, using mutation in the metal resistant bacteria, the bioremediation of the copper and zinc from copper factory effluents was investigated. Wastewater effluents from flocculation and rolling mill sections of a factory in the city of Kerman were collected and used for further experiments. 20 strains of Pseudomonas spp. were isolated from soil and effluents surrounding factory and identified by microbiological methods. Minimum inhibitory concentrations for copper (Cu and zinc (Zn were determined by agar dilution method. Those strains that exhibited highest minimum inhibitory concentrations values to the metals (5mM were subjected to 400-3200 mg/L concentrations of the three mutagenic agents, acriflavine, acridine orange and ethidium bromide. After determination of subinhibitory concentrations, the minimum inhibitory concentrations values for copper and zinc metal ions were again determined, which showed more than 10 fold increase in minimum inhibitory concentrations value (10 mM for Cu and 20 mM for Zn with P≤0.05. The atomic absorption spectroscopy of dried biomass obtained from resistant strains after exposure to mutagenic agents revealed that strains 13 accumulate the highest amount of intracellular copper (0.35% Cu/mg dried biomass and strain 10 showed highest accumulation of zinc (0.3% Zn/mg dried biomass respectively with P≤0.05. From above results it was concluded that the treatment of industrial waste containing heavy metals by artificially mutated bacteria may be appropriate solution for effluent disposal problems.

  5. Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine

    OpenAIRE

    Benjaphorn Prapagdee; Anchulee Watcharamusik

    2009-01-01

    Cadmium (Cd) is a major environmental hazard, which usually is detected in its ionic form of Cd2+. It also causes adverse toxic effects on human health and other living organisms. Cd-resistant bacteria were isolated from Cd-contaminated soils. One isolate, TAK1, was highly resistance level to Cd toxicity. TAK1 was isolated from soil contaminated with a high Cd concentration (204.1 mg.kg-1). The result of 16S rDNA sequence analysis found that the TAK1 showed the similarity to Ralstonia sp. Phy...

  6. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology

    Directory of Open Access Journals (Sweden)

    Min-Yen Yeh

    2016-06-01

    Full Text Available Cu2ZnSnS4 (CZTS thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu, zinc (Zn, tin (Sn, and sulfur (S in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2, zinc chloride (ZnCl2, tin chloride (SnCl2, and thiourea (SC(NH22, whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDXS, Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF = 66%.

  7. Grain-to-Grain Compositional Variations and Phase Segregation in Copper-Zinc-Tin-Sulfide Films.

    Science.gov (United States)

    Alvarez Barragan, Alejandro; Malekpour, Hoda; Exarhos, Stephen; Balandin, Alexander A; Mangolini, Lorenzo

    2016-09-01

    We have performed a rigorous investigation of the structure and composition of individual grains in copper-zinc-tin-sulfide (CZTS) films realized by sulfurization of a sputtered metal stack. Although on average close to the ideal CZTS stoichiometry, elemental analysis shows significant grain-to-grain variations in composition. High-resolution Raman spectroscopy indicates that this is accompanied by grain-to-grain structural variations as well. The intensity from the 337 cm(-1) Raman peak, generally assigned to the kesterite phase of CZTS, remains constant over a large area of the sample. On the other hand, signals from secondary phases at 376 cm(-1) (copper-tin-sulfide) and 351 cm(-1) (zinc-sulfide) show significant variation over the same area. These results confirm the great complexity inherent to this material system. Moreover, structural and compositional variations are recognized in the literature as a factor limiting the efficiency of CZTS photovoltaic devices. This study demonstrates how a seemingly homogeneous CZTS thin film can actually have considerable structural and compositional variations at the microscale, and highlights the need for routine microscale characterization in this material system. PMID:27538122

  8. Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution

    Directory of Open Access Journals (Sweden)

    Edson Cavalcanti Silva Filho

    2013-02-01

    Full Text Available Cellulose was first modified with thionyl chloride, followed by reaction with 2-aminomethylpyridine to yield 6-(2'-aminomethylpyridine-6-deoxycellulose. The resulting chemically-immobilized surface was characterized by elemental analysis, FTIR, 13C NMR and thermogravimetry. From 0.28% of nitrogen incorporated in the polysaccharide backbone, the amount of 0.10 ± 0.01 mmol of the proposed molecule was anchored per gram of the chemically modified cellulose. The available basic nitrogen centers attached to the covalent pendant chain bonded to the biopolymer skeleton were investigated for copper, cobalt, nickel and zinc adsorption from aqueous solution at room temperature. The newly synthesized biopolymer gave maximum sorption capacities of 0.100 ± 0.012, 0.093 ± 0.021, 0.074 ± 0.011 and 0.071 ± 0.019 mmol.g-1 for copper, cobalt, nickel and zinc cations, respectively, using the batchwise method, whose data was fitted to different sorption models, the best fit being obtained with the Langmuir model. The results suggested the use of this anchored biopolymer for cation removal from the environment.

  9. Determining the experimental leachability of copper, lead, and zinc in a harbor sediment and modeling.

    Science.gov (United States)

    Chatain, Vincent; Blanc, Denise; Borschneck, Daniel; Delolme, Cécile

    2013-01-01

    The potential leaching of pollutants present in harbor sediments has to be evaluated in order to choose the best practices for managing them. Little is known about the speciation and mobility of heavy metals in these specific solid materials. The objective of this paper is to determine and model the leachability of copper, lead, and zinc present in harbor sediments in order to obtain essential new data. The mobility of inorganic contaminants in a polluted harbor sediment collected in France was investigated as a function of physicochemical conditions. The investigation relied mainly on the use of leaching tests performed in combination with mineralogical analysis and thermodynamic modeling using PHREEQC. The modeling phase was dedicated to both confirm the hypothesis formulated to explain the experimental results and improve the determination of the main physico-chemical parameters governing mobility. The experimental results and modeling showed that the release of copper, lead, and zinc is very low with deionized water which is due to the stability of the associated solid phases (organic matter, carbonate minerals, and/or iron sulfides) at natural slightly basic conditions. However, increased mobilization is observed under pH values below 6.0 and above 10.0. This methodology helped to consistently obtain the geochemical parameters governing the mobility of the contaminants studied. PMID:23086130

  10. Synthesis, nuclear magnetic resonance and infrared studies of zinc(II) and cadmium(II) complexes of thiosemicarbazones derived from fluorenone and p-anisaldehyde

    International Nuclear Information System (INIS)

    Fluorenone (FTSCH) and p-anisaldehyde (ATSCH) thiosemicarbazones react with zinc(II) and cadmium(II) acetates forming M:L 1:2 complexes, characterized by IR, 1H and 13C NMR spectra and elemental analyses. The coordination mode of the ligands is discussed and four-coordinate, pseudo-tetrahedral structures are suggested. (author)

  11. The role of copper, molybdenum, selenium, and zinc in nutrition and health.

    Science.gov (United States)

    Chan, S; Gerson, B; Subramaniam, S

    1998-12-01

    Copper, zinc, selenium, and molybdenum are involved in many biochemical processes supporting life. The most important of these processes are cellular respiration, cellular utilization of oxygen, DNA and RNA reproduction, maintenance of cell membrane integrity, and sequestration of free radicals. Copper, zinc, and selenium are involved in destruction of free radicals through cascading enzyme systems. Superoxide radicals are reduced to hydrogen peroxide by superoxide dismutases in the presence of copper and zinc cofactors. Hydrogen peroxide is then reduced to water by the selenium-glutathione peroxidase couple. Efficient removal of these superoxide free radicals maintains the integrity of membranes, reduces the risk of cancer, and slows the aging process. On the other hand, excess intake of these trace elements leads to disease and toxicity; therefore, a fine balance is essential for health. Trace element--deficient patients usually present with common symptoms such as malaise, loss of appetite, anemia, infection, skin lesions, and low-grade neuropathy, thus complicating the diagnosis. Symptoms for intoxication by trace elements are general, for example, flu-like and CNS symptoms, fever, coughing, nausea, vomiting, diarrhea, anemia, and neuropathy. A combination of observation, medical and dietary history, and analyses for multiple trace elements is needed to pinpoint the trace element(s) involved. Serum, plasma, and erythrocytes may be used for the evaluation of copper and zinc status, whereas only serum or plasma is recommended for selenium. Whole blood is preferred for molybdenum. When trace element levels are inconsistent with medical evaluations, a test for activity of the suspected enzyme(s) would support the differential diagnosis. Furthermore, it is important to differentiate whether trace element deficiency or toxicity is the primary cause of the disorder, or is secondary to other underlying diseases. Only successful treatment of the primary disorder will

  12. Maternal Body Mass Index, Dietary Intake and Socioeconomic Status: Differential Effects on Breast Milk Zinc, Copper and Iron Content

    Directory of Open Access Journals (Sweden)

    Zeinab Nikniaz

    2011-12-01

    Full Text Available Background: As breast milk micronutrients content are essential for health and growth of the infants, this study was conducted to determine the breast milk zinc, copper and iron concen-trations and their possible correlations with maternal nutritional status, dietary intakes as well as socioeconomic status.Methods: Breast milk samples and information on maternal anthropometric characteristics and dietary intake were collected from 90 Iranian lactating women with 3 different socioeco-nomic status who exclusively breastfed their infants. Concentrations of trace elements were analyzed using atomic absorption spectrophotometry. Nutritionist III program, Multiple Re-gression and ANOVA test were used for data analyses.Results: The mean milk zinc, copper, and iron concentrations were 1.93 ± 0.71, 0.58 ± 0.32, and 0.81 ± 0.2 mg/l, respectively. In all three SES groups only zinc mean level was lower than the recommended range. A significant difference was observed in breast milk zinc, copper and iron concentration between high and low SES groups (Zn (P<0.001, Cu (P<0.001 and Fe (P<0.044 and also moderate and low SES groups (Zn (P<0.03, Cu (P<0.001 and Fe (P<0.049. After adjusting for maternal body mass index (BMI, socioeconomic status, mean dietary energy, zinc, copper, and iron intakes, there was a negative and significant association between maternal age and breast milk zinc (β=-0.28, P<0.034, copper (β=-0.18, P<0.048, and iron (β=-0.22, P<0.04 concentrations.Conclusion: In low socioeconomic group with lower mean age, breast milk mineral levels were higher than others and there was no significant correlation between mineral levels and dietary intake. Hence it is supposed that maternal age may be better predictor of breast milk mineral levels.

  13. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings. PMID:26298186

  14. Evaluation of Lead, Cadmium and Copper Concentrations in Bee Honey and Edible Molasses

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2010-01-01

    Full Text Available Problem statement: Content of Cadmium, lead and copper in 26 bee honey samples from different places of Assiut governorate (south of Egypt and three different botanical origins (Clover, Multi-flower and Citrus in addition to four edible molasses samples from Egypt market were evaluated by Differential Pulse Anodic Stripping Voltammetry (DPASV in Briton-Robinson buffer solution at pH ~ 2.1, as well as atomic absorption spectrometry after wet digestion. Approach: The optimal deposition potentials and times for the detection of these metal ions in all sample solutions have been studied. Results: The concentration of each metal ion was determined by the standard addition method. The statistical parameters i.e., slope, standard deviation, correlation coefficient and confidence have been calculated. Conclusion/Recommendations: The results obtained using stripping voltammetry indicate that the average concentration of Cu ions ranged from 0.085-0.987 μg g−1. In addition, the average concentrations of Cd and Pb ions ranged 0.001-0.077 and 0.006-1.640 μg g−1; respectively. On the other hand, the average concentrations obtained using atomic absorption spectrometry of the same element mentioned above ranged from 0.077-0.991 μg g−1 for Cu; 0.001-0.087 μg g−1 for Cd and 0.007-1.650 μg g−1 for Pb.

  15. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp [School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Tsuruta, Osamu; Akao, Naoya; Fujii, Satoshi [School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}- or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.

  16. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    International Nuclear Information System (INIS)

    Highlights: ► Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. ► Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. ► Two cadmium ions were coordinated in a trigonal–bipyramidal and octahedral manner. ► The second metal ion was more weakly coordinated than the first at the FOC. ► A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn2+- or Cd2+-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal–bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.

  17. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti

    OpenAIRE

    Urbain Fifi; Thierry Winiarski; Evens Emmanuel

    2013-01-01

    The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch test...

  18. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    Science.gov (United States)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  19. Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493

    International Nuclear Information System (INIS)

    Bacillus thuringiensis israelensis loaded on Dowex optipore V-493 as new adsorbent for the separation-preconcentration of heavy metal ions has been proposed. The analytical conditions for the quantitative recoveries of copper(II), iron(III) and zinc(II) including pH, amounts of adsorbent, sample volume, etc. were investigated. The influences of alkaline and earth alkaline ions were also reported. The recovery values for the analytes are generally higher than 95%. The preconcentration factor was 37. The limit of detections of the analyte ions (k = 3, N = 21) were 1.14 μg L-1 for copper, 2.01 μg L-1 for iron and 0.14 μg L-1 for zinc. The relative standard deviations of the determinations were found to be lower than 9%. The procedure was validated by analyzing copper, iron and zinc contents in two certified reference materials, NRCC-SLRS-4 Riverine water and NIST SRM 1515 Apple leaves. Agreements between the obtained results and the certified values were achieved. The developed preconcentration method was applied in the flame atomic absorption spectrometric determination of copper, iron and zinc in several samples including a multivitamin-multimineral tablet, dialysis solutions, natural waters and some food samples

  20. The technical and economic efficiency in the mineral processing for lead-zinc and copper ores by Microsoft excel

    OpenAIRE

    Krstev, Aleksandar; Krstev, Boris; Krstev, Dejan; Vuckovski, Zoran

    2012-01-01

    The comparisons between economical and technical efficiency for lead flotation indicators, zinc flotation indicators in Sasa mine, Toranica and Zletovo mine. The comparisons for economic and technical efficiency for copper flotation indicators in Bucim mine. The possibility of equaled between both efficiencies for flotation indicators from mentioned mines using Microsoft Excel 2010.

  1. Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Melek, Esra [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-11-30

    Bacillus thuringiensis israelensis loaded on Dowex optipore V-493 as new adsorbent for the separation-preconcentration of heavy metal ions has been proposed. The analytical conditions for the quantitative recoveries of copper(II), iron(III) and zinc(II) including pH, amounts of adsorbent, sample volume, etc. were investigated. The influences of alkaline and earth alkaline ions were also reported. The recovery values for the analytes are generally higher than 95%. The preconcentration factor was 37. The limit of detections of the analyte ions (k = 3, N = 21) were 1.14 {mu}g L{sup -1} for copper, 2.01 {mu}g L{sup -1} for iron and 0.14 {mu}g L{sup -1} for zinc. The relative standard deviations of the determinations were found to be lower than 9%. The procedure was validated by analyzing copper, iron and zinc contents in two certified reference materials, NRCC-SLRS-4 Riverine water and NIST SRM 1515 Apple leaves. Agreements between the obtained results and the certified values were achieved. The developed preconcentration method was applied in the flame atomic absorption spectrometric determination of copper, iron and zinc in several samples including a multivitamin-multimineral tablet, dialysis solutions, natural waters and some food samples.

  2. Semi-empirical approach to modeling of soil flushing: Model development, application to soil polluted by zinc and copper

    Czech Academy of Sciences Publication Activity Database

    Šváb, M.; Žilka, M.; Müllerová, M.; Kočí, V.; Müller, Vladimír

    2008-01-01

    Roč. 392, 2-3 (2008), s. 187-197. ISSN 0048-9697 Institutional research plan: CEZ:AV0Z10190503 Keywords : copper * flushing * model ing * remediation * soil * zinc Subject RIV: EH - Ecology, Behaviour Impact factor: 2.579, year: 2008

  3. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  4. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    Science.gov (United States)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  5. Serum and tissue contents of copper, calcium, iron and magnesium elements in cases of acne vulgaris after zinc therapy

    International Nuclear Information System (INIS)

    The effect of zinc therapy on some trace elements contents in serum and skin was studied in normal group (forty) and patients group with acne vulgaris (26 males and 14 females) with age ranged between 14-30 year. They were under medical treatment with 330 mg oral zinc sulfate for 12 weeks. Highly significant decreases in both serum and tissue contents of copper and calcium were detected, as well as, highly significant decrease in the serum content of magnesium was recorded. The serum content of iron was highly significantly increased and that for tissue content was slightly significantly increased. It could be concluded that zinc therapy could be valuable through modulation of copper. calcium, iron and magnesium in acne patients

  6. Copper and zinc level in biological samples from healthy subjects of vegetarian food habit in reference to community environment

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.D.; Patel, T.S.; Pandya, C.B.

    1985-04-01

    Many epidemiologists have found a correlation between copper and zinc in the community environment and diseases, such as myocardial and vascular pathologies, and diabetes. The purpose of this study was to investigate the total daily intake of these two metals in cooked food, drinking water and air and their respective levels in blood and urine. A chronobiological methodology has been adopted to establish the reference values of these two metals in biological samples. It has been observed that the daily intake of copper is within the recommended value, whereas its urinary excretion is high. The daily intake of zinc is below the recommended value and its urinary excretion is also high. Both the metals showed a temporal oscillation pattern in blood and urine. A possible chronic zinc deficiency has been anticipated in this particular ethnic group of vegetarian food habit.

  7. Radiochemical extraction and separation of mercury(II) from zinc(II) and cadmium(II) with cyanex 471X

    International Nuclear Information System (INIS)

    The extraction of zinc(II), cadmium(II) and mercury(II) from thiocyanate solutions has been investigated by tracer techniques with triisobutylphosphine sulfide (= TIBPS, commercially known as CYANEX 471X) in benzene as an extractant. The extraction data have been analyzed by both graphical and theoretical methods taking into account aqueous phase speciation and all plausible complexes extracted into the organic phase. These results demonstrate that Hg(II) is extracted into benzene as Hg(SCN)2 and Hg(SCN)2.3 TIBPS. On the other hand, under the present experimental conditions, Zn(II) and Cd(II) are not found to be extracted into benzene with TIBPS. These results also demonstrate the selective separation possibility of Hg(II) from Zn(II) and Cd(II) with TIBPS as an extractant from aqueous solutions containing thiocyanate. (orig.)

  8. The heat capacity of zinc and cadmium chalcogenides (ZnTe, CdSe, and CdTe)

    International Nuclear Information System (INIS)

    Heat capacity of zinc telluride, cadmium selenide and telluride are measured by the calorimetry method at 370-640 K (ZnTe) and 500-760 K (CdSe, CdTe). Analysis of literature data on heat capacity of the above-mentioned solid solutions at temperatures in excess of 298 K is carried out. On the basis of the results obtained and most dependable literature data on heat capacity of the compounds for temperature ranges of 220-1500 K (ZnTe, CdSe) and 220-1300 K (CdTe) new equations of heat capacity temperature dependence are suggested and thermodynamic functions of the compounds are calculated

  9. Syntheses, characterizations and structures of cadmium(II) and zinc(II) pseudohalide complexes containing pyridylpyrazole ligand

    International Nuclear Information System (INIS)

    The details of syntheses, characterizations and structures of cadmium(II) and zinc(II) pseudohalide complexes of the types (M(L)(NCS)2), (M(L)(N3)PF6, (Zn(L)(NCO)PF6 and (Cd(L)(NCO)2)(PF6)2 (1-6) (M = CdII and ZnII; L = N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)aminomethylpyridine) are described. All the complexes are characterized using their spectroscopic and other physicochemical results. Crystal structures of (Cd(L)(NCO))2(PF6)2 (3) and (Zn(L)(N3))PF6 (5) have been solved by single crystal X-ray diffraction measurements. Each metal center in binuclear compound 3 has double NCO- bridged distorted octahedral structure whereas in mononuclear compound 5 adopts a distorted trigonal bipyramidal geometry. (author)

  10. Adsorption of zinc and cadmium on peat columns; Adsorcao de zinco e cadmio em colunas de turfa

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Sergio Luis Graciano; Pires, Maria Aparecida Faustino [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Diagnostico Ambiental; Munita, Casimiro Sepulveda [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Sup. de Radioquimica

    2000-08-01

    The aim of this work was to evaluate the adsorption conditions of zinc and cadmium ions from aqueous solutions using a commercially available peat from Balneario Arroio do Silva, Santa Catarina State, Brazil. Adsorption studies were carried out in column experiments using radiotracers of the studied metals ({sup 65} Zn and {sup 115} Cd). The pH influence and the interference of other ions, such as Na{sup +}, Ca{sup 2+}, Fe{sup 3+} and Al{sup 3+} on the adsorption process were investigated. The results showed that peat columns are able to retain more than 99% of metal ions in solution in a range of pH from 3,7 to 6,5 Ca{sup 2}'+ and Al{sup 3+} ions were the main interferent on adsorption of Zn and Cd ions in solution. (author)

  11. Increasing cadmium and zinc levels in wild common eiders breeding along Canada's remote northern coastline

    Energy Technology Data Exchange (ETDEWEB)

    Mallory, Mark L., E-mail: mark.mallory@acadiau.ca [Biology Department, Acadia University, Wolfville, Nova Scotia B4P 2R6 (Canada); Braune, Birgit M. [Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario K1A 0H3 (Canada); Robertson, Gregory J. [Environment Canada, Wildlife Research Division, 6 Bruce Street, Mount Pearl, Newfoundland and Labrador A1N 4T3 (Canada); Gilchrist, H. Grant [Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario K1A 0H3 (Canada); Mallory, Conor D. [Chemistry Department, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Forbes, Mark R. [Biology Department, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Wells, Regina [Environment Canada, Canadian Wildlife Service, 512 Lahr Boulevard, Happy Valley-Goose Bay, Newfoundland and Labrador A0P 1C0 (Canada)

    2014-04-01

    The common eider (Somateria mollissima) is an abundant sea duck breeding around the circumpolar Arctic, and is an important component of subsistence and sport harvest in some regions. We determined hepatic cadmium (Cd) and zinc (Zn) concentrations in the livers of breeding females sampled during three time periods including 1992/3, 2001/2 and 2008 at three sites spanning 53.7°N–75.8°N in the eastern Canadian Arctic. At all sites, concentrations of both Cd and Zn increased ∼ 300% over this time period. The reasons for this rapid increase in concentrations are unclear. - Highlights: • Cd and Zn analyzed in common eider (Somateria mollissima) liver tissue in Canadian Arctic from sites spanning 3000 km. • ∼ 300% increase in concentrations observed over ∼ 20 years • Levels of both elements considered high and near levels thought to pose concerns for wildlife health.

  12. Study of crystalline perfection and thermal analysis of zinc cadmium thiocyanate single crystals grown in silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Nisha Santha Kumari, P. [Department of Physics, Auxilium College, Vellore (India); Kalainathan, S. [School of Science and Humanities, VIT University, Vellore (India); Bhagavannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi (India)

    2008-03-15

    Zinc cadmium thiocyanate ZnCd(SCN){sub 4} abbreviated as ZCTC is a bimetallic thiocyanate complex that exhibits excellent nonlinear optical property. Single crystals of ZCTC have been grown in silica gel by the process of diffusion. Colorless transparent crystals of size 12 mm x 2 mm x 1.3 mm have been obtained. High resolution X-ray diffraction study was carried out to investigate the crystalline perfection of the grown crystal and the quality of the crystal was found to be quite good. Thermal stability of the grown crystal was investigated by thermogravimetric and differential thermal analyses. Fourier Transform Infrared spectrum was recorded to confirm the functional groups. Microhardness of the crystal is also studied. Being a nonlinear optical material, a comparative study of its second harmonic generation efficiency with urea has been made. (copyright 2007 WILEY -VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Determination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Quentin Hurdebise

    2015-04-01

    Full Text Available Zinc, lead and cadmium are metallic trace elements (MTEs that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed.

  14. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    Science.gov (United States)

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  15. Interaction of cadmium and zinc in biological samples of smokers and chewing tobacco female mouth cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Wadhwa, Sham Kumar, E-mail: wadhwashamkumar@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Naveed, E-mail: tgkazi@yahoo.com [Liaquat University of Medical and Health Sciences, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Baig, Jamil Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kolachi, Nida Fatima [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_ku2004@yahoo.com [Department of Mathematics and Basic Sciences, NED University of Engineering and Technology, Karachi 75270 (Pakistan)

    2010-04-15

    Epidemiologic studies suggest that zinc (Zn) deficiency and high accumulation of cadmium (Cd) may be associated with increased risk of cancer. The incidence of mouth cancer has increased among females, who possess habits of chewing tobacco with gradients (areca nut and betel quid) and smoking tobacco in Pakistan. In present study, we measured the concentration of Cd and Zn in 96 mouth cancer patients (MCPs) and 110 female controls/referents (67 smoker and chewing tobacco), while 43 have none of smoking and chewing tobacco habits, belongs to different cities of Pakistan. Both controls and patients have same age group (ranged 35-65 years), socio-economic status, localities and dietary habits. The Zn and Cd were determined by flame/graphite furnace atomic absorption spectrophotometer, prior to microwave assisted acid digestion method. The Cd/Zn ratio in both biological samples was also calculated. The results of this study showed that the mean value of Zn was lower, while the mean concentration of Cd was higher in the blood and scalp hair samples of MCPs as compared to control subjects (p < 0.001). The controls chewing and smoking tobacco have high level of Cd in both biological samples as compared to those have not smoking or chewing tobacco (p < 0.012). The Cd/Zn ratio was higher in MCPs than control subjects. This study is compelling evidence in support of positive associations between cadmium, cigarette smoking, deficiency of Zn and cancer risk.

  16. Zinc(II) and Cadmium(II) complexes with N4-coordinate pyrazole based ligand: Syntheses, characterization and structure

    Science.gov (United States)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran; Mitra, Partho

    2014-11-01

    A series of six new mononuclear zinc(II) complexes of the type [Zn(X)(dbdmp)]Y (1-6) (X = N3-/NCO-/NCS-, Y = ClO4-/PF6-, and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine), two binuclear cadmium(II) complexes [{Cd(dbdmp)}2(μ-N3)2](Y)2 (7-8) and three mononuclear cadmium(II) complexes [Cd(NCO)(dbdmp)]Y (Y = ClO4-/PF6-) (9-10) and [Cd(NCS)2(dbdmp)] (11) have been synthesized and characterized by physico-chemical methods. Crystal structures of the complexes [Zn(N3)(dbdmp)]ClO4 (1), [{Cd(dbdmp)}2(μ-N3)2](ClO4)2 (7), [Cd(NCO)(dbdmp)]ClO4 (9) and [Cd(NCS)2(dbdmp)] (11) have been solved by single crystal X-ray diffraction studies and showed that [Zn(N3)(dbdmp)]ClO4 (1) and [Cd(NCO)(dbdmp)]ClO4 (9) have distorted trigonal bipyramidal geometry, [Cd(NCS)2(dbdmp)] (11) and [(dbdmp)Cd(μ-N3)]2(ClO4)2 (7) have distorted octahedral geometry.

  17. Interaction of cadmium and zinc in biological samples of smokers and chewing tobacco female mouth cancer patients

    International Nuclear Information System (INIS)

    Epidemiologic studies suggest that zinc (Zn) deficiency and high accumulation of cadmium (Cd) may be associated with increased risk of cancer. The incidence of mouth cancer has increased among females, who possess habits of chewing tobacco with gradients (areca nut and betel quid) and smoking tobacco in Pakistan. In present study, we measured the concentration of Cd and Zn in 96 mouth cancer patients (MCPs) and 110 female controls/referents (67 smoker and chewing tobacco), while 43 have none of smoking and chewing tobacco habits, belongs to different cities of Pakistan. Both controls and patients have same age group (ranged 35-65 years), socio-economic status, localities and dietary habits. The Zn and Cd were determined by flame/graphite furnace atomic absorption spectrophotometer, prior to microwave assisted acid digestion method. The Cd/Zn ratio in both biological samples was also calculated. The results of this study showed that the mean value of Zn was lower, while the mean concentration of Cd was higher in the blood and scalp hair samples of MCPs as compared to control subjects (p < 0.001). The controls chewing and smoking tobacco have high level of Cd in both biological samples as compared to those have not smoking or chewing tobacco (p < 0.012). The Cd/Zn ratio was higher in MCPs than control subjects. This study is compelling evidence in support of positive associations between cadmium, cigarette smoking, deficiency of Zn and cancer risk.

  18. Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine

    Directory of Open Access Journals (Sweden)

    Benjaphorn Prapagdee

    2009-12-01

    Full Text Available Cadmium (Cd is a major environmental hazard, which usually is detected in its ionic form of Cd2+. It also causes adverse toxic effects on human health and other living organisms. Cd-resistant bacteria were isolated from Cd-contaminated soils. One isolate, TAK1, was highly resistance level to Cd toxicity. TAK1 was isolated from soil contaminated with a high Cd concentration (204.1 mg.kg-1. The result of 16S rDNA sequence analysis found that the TAK1 showed the similarity to Ralstonia sp. Physiological adaptive and cross-protective responses to Cd and Zn killing were investigated in Ralstonia sp.TAK1. Exposure to a low concentration of Cd induced adaptive resistance to higher concentrations of Cd. In addition, pretreatment of Ralstonia sp.TAK1 with an inducing concentration of Cd conferred cross-protective response against subsequent exposure to the lethal concentrations of Zn. The induced adaptive and cross-protective response Ralstonia sp.TAK1 required newly synthesized protein(s. Cd-induced adaptive and cross-protective responses against Cd and Zn toxicity are the important mechanisms used by Ralstonia sp.TAK1 to survive in the heavy metal contaminated environments. These findings might lead to the use of Ralstonia sp.TAK1 for microbial based remediation in Cd and Zn-contaminated soils.

  19. COMPARISON OF TOXICOKINTICS BASED BIOACCUMULATION OF COPPER AND CADMIUM BY EARTHWORM LAMPTITO MAURITHI (KINBERG UNDER CONTROLLED LABORATORY CONDITION

    Directory of Open Access Journals (Sweden)

    P.N. SUDHA

    2006-01-01

    Full Text Available ntevertebrates particularly earthworms are being used extensively in laboratory test of evaluating the toxicity of chemicals. Earthworms are also known to accumulate large concentration of metals into their tissues when exposed to contaminated soil. Bioavailability of metals to organism is strongly site specific and is controlled by the species of the metral, the organism are exposed and the ability of the organisms to reduce or eliminate metal and effect to vulnerable tissues by sequestration etc. Thus uptake of the metal by earthworms is not simply a case of bioavailability of the metal but also depends on the biokinetics of uptake, storage and excretion. The rate at which these process occur will determine the amount of metal in the organism at any one time and the toxicity of any contaminant. Toxicokinetics studies are of major importance in soil eco-toxicology since many effect can hardly be recognized in acute and chronic toxicity tests. Cadmium and copper are two of the toxic heavy metals. The general aim of the present study was to investigate toxicokinetic behaviour of heavy metals, copper and cadmium on earthworm Lampito mauritii. The sutdy revealed that the biokinetics process follows first order kinetic equation, But the rate of accumulation differs for the two metals

  20. Extraction of copper(II) and zinc(II) from chloride media with mixed extractants

    International Nuclear Information System (INIS)

    Extraction of copper(II) and zinc(II) from acidic chloride solutions with mixtures of two extractants: a basic or solvating one and a chelating extractant was discussed. Processes for recovery and separation of Cu(II) from Zn(II) were proposed, which consist of the following steps: extraction from chloride media with the formation of metal chlorocomplex ion pair or solvate, scrubbing of chloride ions with an aqueous solution of appropriate pH with simultaneous transfer of the metal ion to the chelate, traditional stripping with sulphuric acid and conditioning of the basic extractant. Both effective recovery and separation of metal ions with simultaneous change of the system from the chloride to the sulphate state can be achieved. A bifunctional reagent, such as alkyl derivative of 8-hydroxyquinoline, can be also used instead of the extractant mixture. (author)

  1. Extractant of copper(II) and zinc(II) from chloride media with mixed extractants

    International Nuclear Information System (INIS)

    Extraction of copper(II) and zinc(II) from acidic chloride solutions with mixtures of two extractants: a basic or solvating one and a chelating extractant was discussed. The processes for recovery and separation of Cu(II) from Zn(II) were proposed. The processes consist of the following steps: extraction from chloride media with the formation of metal chloro-complex ion pair or solvate, scrubbing of chloride ions with an aqueous solution of appropriate pH with simultaneous transfer of the metal ion to the chelate, traditional stripping with sulphuric acid and conditioning of the basic extractant. Both effective recovery and separation of metal ions with simultaneous change of the system from the chloride to sulphate one can be achieved. A bifunctional reagent, such as alkyl-derivative of 8-hydroxyquinoline, can be also used instead of the extractant mixture. (authors)

  2. Evaluation of the change of serum copper and zinc concentrations of dairy cows with subclinical ketosis.

    Science.gov (United States)

    Zhang, Zhigang; Liu, Guowen; Li, Xiaobing; Gao, Li; Guo, Changming; Wang, Hongbin; Wang, Zhe

    2010-12-01

    Ketosis in dairy cows can lead to poor reproductive success and decreased milk production. Since the serum concentrations of copper (Cu) and zinc (Zn) are closely associated with the health status of cows, we investigated whether serum concentrations of Cu and Zn differed in dairy cows with subclinical ketosis and healthy dairy cows. Blood samples of 19 healthy dairy cows and 15 subclinically ketotic dairy cows were collected from three farms, and the concentrations of β-hydroxybutyrate (BHBA), glucose, non-esterified fatty acids (NEFA), Cu, and Zn were determined. Subclinically ketotic dairy cows had significantly higher BHBA and NEFA levels (p dairy cows. Likewise, serum concentrations of Zn were significantly decreased (p dairy cows with subclinical ketosis. There was no significant difference observed for serum Cu concentration between healthy and subclinically ketotic dairy cows. This study suggests that a decreased serum Zn concentration could be a cause of decreased reproductive performance in subclinically ketotic dairy cows. PMID:20101474

  3. Use of ionic liquid in leaching process of brass wastes for copper and zinc recovery

    Institute of Scientific and Technical Information of China (English)

    Ayfer Kilicarslan; Muhlis Nezihi Saridede; Srecko Stopic; Bernd Friedrich

    2014-01-01

    Brass ash from the industrial brass manufacturer in Turkey was leached using the solutions of ionic liquid (IL) 1-butyl-3-methyl-imi-dazolium hydrogen sulfate ([bmim]HSO4) at ambient pressure in the presence of hydrogen peroxide (H2O2) and potassium peroxymonosulfate (oxone) as the oxidants. Parameters affecting leaching efficiency, such as dissolution time, IL concentration, and oxidizing agent addition, were investigated. The results show that [bmim]HSO4 is an efficient IL for the brass ash leaching, providing the dissolution efficiencies of 99%for Zn and 24.82%for Cu at a concentration of 50vol%[bmim]HSO4 in the aqueous solution without any oxidant. However, more than 99%of zinc and 82%of copper are leached by the addition of 50vol%H2O2 to the [bmim]HSO4 solution. Nevertheless, the oxone does not show the promising oxidant behavior in leaching using [bmim]HSO4.

  4. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure].

    Science.gov (United States)

    Wang, Meng; Cao, Hong-Bin; Zhang, Yi

    2011-02-01

    The ammonia/ammonium leaching process using oxygen as oxidant in autoclave was studied to extract copper, zinc and nickel from printed circuit board. Parameters such as leaching time, concentration of leaching reagents, stirring speed, oxygen pressure and temperature were optimized. The best results were achieved when the leaching was carried out at 55 degrees C for 150 minutes, using 4 mol/L NH4OH and 1 mol/L (NH4)2CO3 as leaching solution, with 700 r/min stirring speed and 0.2 MPa oxygen. With this method, Zn, Cu and Ni could be effectively recovered from printed circuit boards by 100%, more than 99% and more than 64%, respectively. The kinetics of Cu leaching behavior was studied and it was found that the shrinking core model described it well. It was a diffusion control process and the apparent activation energy was 14.68 kJ/mol. PMID:21528589

  5. Effects of Annealing on Structural Properties of Copper Zinc Tin Sulphide (CZTS Material

    Directory of Open Access Journals (Sweden)

    K.K. Patel

    2013-05-01

    Full Text Available Copper Zinc Tin Sulphide compound was synthesized from its elemetal precursurs using simple solid state method. Being quarternary material, there is a large probability of formation of secondary phases like SnS, ZnS, CuS during the material growth process and it requires a detail investigation on the effects of synthesis parameters on the composition and structural properties of the CZTS compound. Here we report the study of effects of annealing on the synthesized compound. The annealing was performed at two different temperatures in the presence of Sulphur. The structural and compositional properties of the as-grown and annealed samples were examined by X-ray diffraction (XRD and Energy Dispersive Analysis of X-Ray (EDAX. The formation of Kesterite CZTS phase was confirmed by Raman Spectroscopy.

  6. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    International Nuclear Information System (INIS)

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  7. The Serum Zinc and Copper Values of the Morkaraman and Tuj Sheep Grown Up in The Pasture Conditions in and Around Kars

    OpenAIRE

    Kaya, Necati; UTLU, Necati

    1998-01-01

    This study was performed on 100 sheep, of which 50 were Morkaraman and 50 were Tuj, grown up in the pasture conditions in and around Kars. The serum zinc and copper values of the animals were analysed with Atomic Absorbtion Spectrophotometre. The serum zinc and copper values were respectively determined as; 40.56 ± 5.6 µg/dl, 80.10 ± 7.49 µg/dl in Morkaramans and, 38.72 ± 5.32 µg/dl, 75.04 ± 6.58 µg/dl in Tujs. There were no significant differences between the value of zinc and copper sta...

  8. Exposure to a mixture of zinc and copper decreases survival and fecundity of Discocotyle sagittata (Leuckart) parasitizing juvenile Atlantic salmon, Salmo salar L.

    Science.gov (United States)

    Blanar, Christopher A; MacLatchy, Deborah L; Kieffer, Jim D; Munkittrick, Kelly R

    2010-06-01

    We assessed the effects of zinc and copper on freshwater monogenean ectoparasites (Discocotyle sagittata Leuckart) infecting juvenile Atlantic salmon (Salmo salar L.). Exposure to 47 microg/L zinc and 3 microg/L copper reduced survival and fecundity of adult D. sagittata, while egg hatching success was only reduced at high exposure concentrations (2704 microg/L zinc and 164 microg/L copper). Parasitized salmon had decreased plasma chloride, but this was negated in infected fish exposed to metals. No other effects on Atlantic salmon survival and physiology (plasma osmolality, hematocrit) were noted, suggesting that D. sagittata may be more susceptible to metal toxicity than its host fish. PMID:20473654

  9. Amelioration Effect of Zinc and Iron Supplementation on Selected Oxidative Stress Enzymes in Liver and Kidney of Cadmium-Treated Male Albino Rat

    OpenAIRE

    Jamakala, Obaiah; Rani, Usha A.

    2015-01-01

    Cadmium (Cd) is a highly toxic, nonessential heavy metal with many industrial uses that can contribute to a well-defined spectrum of diseases in animals as well as in humans. The present study examines the effect of zinc (Zn) and iron (Fe) supplementation on oxidative stress enzymes in Cd-treated rats. Wistar strain male albino rats were treated with cadmium chloride (CdCl2) at a dose of 1/10th LD50/48 h, that is, 22.5 mg/kg body weight for 7, 15, and 30 days (d) time intervals. The 15d Cd-tr...

  10. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, M.; Thomsen, Pernille Sjølin;

    2001-01-01

    The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured...... brains, zinc deficiency only affected significantly lectin (increasing) and glial fibrillary acidic protein (GFAP) and Cu,Zn-superoxide dismutase (Cu,Zn-SOD) (decreasing) immunoreactivities (irs). In injured brains, a profound gliosis was observed in the area surrounding the lesion, along with severe...... damage to neurons as indicated by neuron specific enolase (NSE) ir, and the number of cells undergoing apoptosis (measured by TUNEL) was dramatically increased. Zinc deficiency significantly altered brain response to TBI, potentiating the microgliosis and reducing the astrogliosis, while increasing the...

  11. Synthesis and crystal structures of novel LaOAgS-type alkaline earth – Zinc, manganese, and cadmium fluoride pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Charkin, Dmitri O., E-mail: charkin@inorg.chem.msu.ru; Urmanov, Arthur V.; Plokhikh, Igor V.; Korshunov, Alexander D.; Kuznetsov, Alexey N.; Kazakov, Sergey M.

    2014-02-05

    Highlights: • Sight new alkaline earth – Mn, Zn, Cd fluoride pnictides were prepared. • All new compounds adopt the LaOAgS structure type. • Bond distances in their structures are transferable within 2–3%. • Very close similarities are observed in structural chemistry of LaOAgS- and HfCuSi{sub 2}-type compounds of Mn, Cu, Zn, Ag, and Cd. -- Abstract: Systematic studies of the LaOAgS-type compounds among alkaline earth – Zn/Cd/Mn fluoride pnictides revealed the existence of new representatives SrFMnP, SrFMnAs, SrFMnSb, SrFZnAs, SrFZnSb, BaFZnAs, BaFCdP, and BaFCdAs. Similar to rare-earth oxide compounds and contrary to isolobal chalcogenides of Cu/Ag, not all possible compositions could be realized. No compound of the structure type is formed for calcium; strontium forms fluoride pnictides only with zinc and manganese, while for barium, new representatives are also formed with cadmium. This trend, which possibly has a geometrical origin, is corroborated by quantum chemical calculations. Formation of NdOZnP-type compounds also was not observed suggesting the structure to be characteristic only for rare earth – zinc oxide phosphides.

  12. Zinc, nickel and cadmium in carambolas marketed in Guangzhou and Hong Kong, China: Implication for human health

    International Nuclear Information System (INIS)

    Carambola (Averrhoa carambola L.) is a popular juicy fruit throughout the tropical and subtropical world. This study was designed to quantify the levels of zinc (Zn), nickel (Ni) and cadmium (Cd) in carambolas marketed in southern China, and further to evaluate the potential health risk of human consumption of carambola. Zinc concentrations, ranging from 1.471 to 2.875 mg/kg (on fresh weight basis), were below the maximum permissible concentration for Zn in fruit of China (5 mg/kg). However, Ni concentrations (0.134-0.676 mg/kg) were considerably higher than the related recommendation values. Furthermore, Cd concentrations in 51% of the carambolas purchased from Guangzhou exceeded the maximum permissible concentration for Cd in fruit of China (0.03 mg/kg). Our results implicated that the consumption of 0.385 kg carambola contaminated by Cd per day would cause the tolerable daily intake (TDI) of Cd by the consumer to be exceeded. In addition, the remarkably high Ni concentrations in carambolas should also be of concern. The status of heavy metal contamination of carambola products marketed in the other regions and their implications for human health should be identified urgently by in-depth studies

  13. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  14. Investigation of copper-zinc superoxide dismutase Ser-137 and Ala-137 mutants

    International Nuclear Information System (INIS)

    Ser- and Ala-137 mutants of human copper-zinc superoxide dismutase (Cu,ZnSOD) have been thoroughly characterized in an attempt to understand the subtle effect of the nature of the residue at position 137 on the structure of the copper site and on the activity profile. The results show that the nature of the residue at position 137 determines the presence of water in the active cavity as monitored through water 1H nuclear magnetic relaxation dispersion. Also, the hyperfine shifts experienced by the protons of His-48 in the Cu2Co2 derivative are sensitive to the group at the 137 position. These effects are not detected through electronic and EPR spectroscopies. The activity profiles of Ser-137 and Ala-137 mutants are virtually identical and are very close to that of the Ile-137 mutant at pH a between 6 and 7. The affinity of N3- for the Ser-137 and Ala-137 mutants is very similar to that for the wild type. This is again at variance with the Ile-137 derivative that shows an N3- affinity twice as large. 50 refs., 6 figs., 2 tabs

  15. Screening of Blood Levels of Mercury, Cadmium, and Copper in Pregnant Women in Dakahlia, Egypt: New Attention to an Old Problem.

    Science.gov (United States)

    Motawei, Shimaa M; Gouda, Hossam E

    2016-06-01

    Heavy metals toxicity is a prevalent health problem particularly in developing countries. Mercury and cadmium are toxic elements that have no physiologic functions in human body. They should not be present in the human body by any concentration. Copper, on the other hand, is one of the elements that are essential for normal cell functions and a deficiency as well as an excess of which can cause adverse health effects. To test blood levels of mercury, cadmium, and copper in pregnant women in Dakahlia, Egypt. Using atomic absorption spectrophotometry, blood levels of cadmium, mercury, and copper were measured in 150 pregnant women attending to the antenatal care in Mansoura University Hospital in Dakahlia governorate, Egypt. The mean ± SD of blood mercury, cadmium, and copper levels were found to be far from their levels in the population surveys carried in developed countries like United States of America (USA) and Canada. Heavy metal intoxication and accumulation is a major health hazard. Developing countries, including Egypt, still lack many of the regulatory policies and legislations to control sources of pollution exposure. This should be dealt with in order to solve this problem and limit its health consequences. PMID:26521060

  16. Immobilization of Trichosporon cutaneum R 57 Cells onto Methylcellulose/SiO2 Hybrids and Biosorption of Cadmium and Copper Ions

    Directory of Open Access Journals (Sweden)

    Georgieva N.

    2009-12-01

    Full Text Available Methylcellulose/Silica (MC/SiO2 hybrids were synthesized via poly step sol-gel method. SiO2 was included into the hybrids from two silica precursors - methyltriethoxysilane (MTES and ethyltrimethoxysilane (ETMS with different quantity of organic part-5, 20 and 50 wt.%. The filamentous yeasts Trichosporon cutaneum strain R 57 was immobilized onto the synthesized MC/SiO2 hybrids. After immobilization the hybrid materials were used in the processes of sorption of cadmium and copper ions. The obtained results of protein content analysis indicated that the amount of protein increased with increasing of MC in the hybrids. It was established that the maximal efficiency of copper and cadmium removal were observed for hybrid materials containing MTES and 50 wt.% MC - 66% and 26% respectively. For ETMS and 50 wt.% MC a high value of copper removal was 56% and for cadmium - 45% removal, respectively. FTIR analysis of free and immobilized cells with metal ions was conducted. SEM images showed successful immobilization of the yeasts cells. Second order model was employed in order to investigate the kinetics of copper and cadmium biosorption.

  17. Sorption of mono ethanol amine and mono ethanol aminate of copper(II) and cadmium(II) on hydrated zirconium dioxide

    International Nuclear Information System (INIS)

    The sorption of mono ethanol amine and mono ethanol aminate of copper(II) and cadmium(II) on hydrated zirconium dioxide is studied. Influence of ph of equilibrium solution, nature of central cation and outer-sphere anion on sorption of mono ethanol amine on hydrated zirconium dioxide is considered.

  18. A screening-level assessment of lead, cadmium, and zinc in fish and crayfish from Northeastern Oklahoma, USA.

    Science.gov (United States)

    Schmitt, Christopher J; Brumbaugh, William G; Linder, Gregory L; Hinck, Jo Ellen

    2006-10-01

    The objective of this study was to evaluate potential human and ecological risks associated with metals in fish and crayfish from mining in the Tri-States Mining District (TSMD). Crayfish (Orconectes spp.) and fish of six frequently consumed species (common carp, Cyprinus carpio; channel catfish, Ictalurus punctatus; flathead catfish, Pylodictis olivaris; largemouth bass, Micropterus salmoides; spotted bass, M. punctulatus; and white crappie, Pomoxis annularis) were collected in 2001--2002 from the Oklahoma waters of the Spring River (SR) and Neosho River (NR), which drain the TSMD. Samples from a mining-contaminated site in eastern Missouri and from reference sites were also analyzed. Individual fish were prepared for human consumption in the manner used locally by Native Americans (headed, eviscerated, and scaled) and analyzed for lead, cadmium, and zinc. Whole crayfish were analyzed as composite samples of 5--60 animals. Metals concentrations were typically higher in samples from sites most heavily affected by mining and lowest in reference samples. Within the TSMD, most metals concentrations were higher at sites on the SR than on the NR and were typically highest in common carp and crayfish than in other taxa. Higher concentrations and greater risk were associated with fish and crayfish from heavily contaminated SR tributaries than the SR or NR mainstems. Based on the results of this and previous studies, the human consumption of carp and crayfish could be restricted based on current criteria for lead, cadmium, and zinc, and the consumption of channel catfish could be restricted due to lead. Metals concentrations were uniformly low in Micropterus spp. and crappie and would not warrant restriction, however. Some risk to carnivorous avian wildlife from lead and zinc in TSMD fish and invertebrates was also indicated, as was risk to the fish themselves. Overall, the wildlife assessment is consistent with previously reported biological effects attributed to metals

  19. Transfer of zinc-65 from sediments to chironomid larvae and to a freshwater fish and the effect of cadmium on transfer

    International Nuclear Information System (INIS)

    This transfer was studied by equilibrating - in the presence of 109Cd - a sediment rich in organic matter with water from Lake Maggiore in three different cadmium concentrations (0, 10 and 20 pp109)). The chironomid larvae reared on this sediment were then used as 'natural' food for a small tropical fish (Haplochromis burtoni), kept in an aquarium at these same concentrations of cadmium in the water. The transfer of radiozinc and radiocadmium was traced over various links of the ecological chain (sediment - water - larvae - fish). The results indicate that cadmium strongly inhibits the exchange of zinc for the larvae. This inhibition must constitute a significant sublethal effect on a population of benthic organisms of considerable ecological importance. In the case of the fish, however, this inhibition is not apparent at the cadmium concentrations employed. Branchial adsorption plays a predominant role, compared with intestinal absorption, for both radiozinc and radiocadmium. While the equilibration time for the accumulation of radiozinc by the fish is very long, the cadmium accumulation reaches equilibrium rapidly (5-7 days). On the other hand, the excretion of the accumulated cadmium takes place at a relatively slow rate. (author)

  20. Ultrastructural changes in the hepatocytes of juvenile rainbow trout and mature brown trout exposed to copper or zinc

    Science.gov (United States)

    Leland, H.V.

    1983-01-01

    Morphological changes in hepatocytes of mature brown trout (Salmo trutta Linnaeus) and juvenile rainbow trout (Salmo gairdneri Richardson), accompanying chronic exposures to copper and zinc, were examined by transmission electron microscopy. At a concentration of copper not inhibitory to the final stages of gonadal development or spawning of brown trout, structural alterations included contraction of mitochondria and a tendency for nuclei to be slightly enlarged. Concentrations of copper or zinc lethal to a small fraction (10% and 4%, respectively) of a population of juvenile rainbow trout exposed for 42 d during larval and early juvenile development caused hepatocyte changes in survivors indicative of a reduction in ability to maintain intracellular water and cation balance and possible intranuclear metal sequestering. Specific structural alterations included increased vesiculation of rough endoplasmic reticulum, an increase in the abundance of electron-dense particles in the nucleus, increases in the numbers of multilaminar and globular inclusions, pooling of glycogen, increased autophagocytic activity and an increase in the number of necrotic cells. At advanced stages of toxicosis (concentrations of copper or zinc lethal to approximately 50% of the juveniles exposed for 42 d during development), loss in integrity of mitochondrial membranes, rupturing of plasma and nuclear membranes, separation of granular and fibrillar nuclear components, fragmentation of endoplasmic reticulum, and extensive autophagic vacuolization were significant features of hepatocytes of surviving juvenile rainbow trout. ?? 1983.

  1. Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand

    International Nuclear Information System (INIS)

    Waste piles, created from open cast coal mining activities at the abandoned Wangaloa mine in SE Otago, have exposed pyrite (FeS2) to atmospheric conditions. This has led to the acidification of the surface tailings and nearby drainage waters (acid mine drainage, AMD). Mobilisation of trace metals arsenic (As), copper (Cu), and zinc (Zn) has occurred, partly as a result of the low pH levels (ca. pH 2-4), leading to elevated concentrations of these metals in receiving waters. Authigenic pyrite deposited in a marginal marine coal-forming environment is enriched in As with levels reaching up to 100 ppm. Copper and Zn in solid solution are not elevated above background levels in either coal measures or associated pyrite. Water discharges, sediments, waste rock and background samples were sampled and analysed during the driest (summer) and wettest (winter) seasons of 1998 and 1999. During the winter season, water discharging from the waste piles contained up to 0.7 ppm (mg/kg) As, as measured in 1998. During the 1999 wettest season, no such levels of As were observed, with the highest level attaining 0.07 ppm As. Copper and Zn were locally elevated in waters, with Zn concentrations reaching 1 ppm. During the summer season of 1999, only one sampling site recorded elevated metal concentrations. Adverse effects from the remnant waste piles appear to be highly localised due to downstream natural remediation processes occurring in a wetland area. The absence of strongly elevated metal concentrations during the drier season is a result of strongly depressed water levels within the waste piles. Flushing of acid and metals occurs when the water levels increase with the onset of the winter season. During the summer season, pyrite within the waste piles has been readily decomposing from the increased availability and transport of atmospheric oxygen

  2. Copper and Zinc Enrichment in Different Size Fractions of Organic Matter from Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-Kui; KE Zi-Xia

    2004-01-01

    Bioavailability of heavy metals in soil organic matter depends on its components. Characterization of heavy metal distributions in different fractions of soil organic matter is needed for better understanding of the fate of heavy metals. This study investigated the accumulation and partitioning of copper and zinc among different size particulate organic matter (POM) fractions in polluted soils from a former iron ore processing site in western Shaoxing County, Zhejiang Province. Physical fractionations were carried out to separate soil primary particles according to their size and density. Copper and Zn had a heterogeneous distribution among soil particle fractions. Copper and Zn were significantly (p < 0.05) enriched in the POM fractions. > 0.05 mm POM and < 0.05 mm fine soil fractions were mainly responsible for Cu and Zn retention in soils. The POM fraction contained up to 1 322 mg Cu kg-1 and 1 115 mg Zn kg-1 and the fine soil fraction contained up to 422 mg Cu kg-1 and 537 mg Zn kg-1. The total POM fraction was responsible for 15.8%-41.2% and 12.2%-31.7% of the total amount of Cu and Zn, respectively, in the polluted soils. The percentages of Cu and Zn associated with organic matter in < 0.05 mm fine soil fractions for the polluted soils ranged from 14.1% to 24.5%, and 5.4% to 15.8%, respectively. Accumulation of soil organic matter could increase enrichment of Gu (or Zn) in the POM fractions. Also, Cu provided a greater enrichment in the POM fractions than Zn.

  3. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    International Nuclear Information System (INIS)

    Research highlights: →At. caldus sorbs lead, zinc, and copper across a range of pH and temperature. →At. caldus shows a relatively high sorption capacity for zinc and copper at low pH. → Lead, zinc, and copper sorption decreases in tertiary mixtures. → Copper appears to sorb via a different mechanism(s) than lead or zinc. - Abstract: This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells at pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.

  4. Zinc Deficiency and Zinc Therapy Efficacy with Reduction of Serum Free Copper in Alzheimer’s Disease

    OpenAIRE

    George J. Brewer; Sukhvir Kaur

    2013-01-01

    We are in the midst of an epidemic of Alzheimer's disease (AD) in developed countries. We have postulated that ingestion of inorganic copper from drinking water and taking supplement pills and a high fat diet are major causative factors. Ingestion of inorganic copper can directly raise the blood free copper level. Blood free copper has been shown by the Squitti group to be elevated in AD, to correlate with cognition, and to predict cognition loss. Secondly, we have shown that AD patients are ...

  5. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. [University of South Florida, Tampa, FL (United States)

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  6. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    Science.gov (United States)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  7. Unusual route for preparation of manganese(II), cobalt(II), zinc(II) and cadmium(II) carbonate compounds: synthesis and spectroscopic characterizations

    Indian Academy of Sciences (India)

    Moamen S Refat; Mohsen M Al-Qahtani

    2011-07-01

    The manganese(II) carbonate, MnCO3.H2O, cobalt(II) carbonate, CoCO3.4H2O, zinc(II) carbonate, ZnCO3 and cadmium(II) carbonate, CdCO3, respectively, were synthesis by a new simple unusual route during the reaction of aqueous solutions of MnX2, CoX2, ZnX2 and CdX2, where (X = Br- and ClO$^{-}_{4}$) with urea at high temperature within ∼ 90°C for 6 h. The infrared spectra of the reaction products clearly indicate the absence of the bands of urea, but show the characteristic bands of ionic carbonate, CO$^{2-}_{3}$. A general mechanism describing the preparation of manganese(II), cobalt(II), zinc(II) and cadmium(II) carbonate compounds are discussed.

  8. The use of retardion 11A8 amphoteric ion exchange resin for separation and determination of cadmium and zinc in geological and environmental materials by neutron activation analysis

    International Nuclear Information System (INIS)

    In this work the ion exchange separation scheme with the use of amphoteric ion exchange resin Retardion 11A8 underlying the method for the determination of cadmium and zinc in geological and environmental materials by neutron activation analysis has been devised. The accuracy of the elaborated method was tested by determining Cd and Zn content in two reference materials: Lake Sediment (SL-1) of environmental and Zinnwaldite ZW-C of geological origin. The results of quantitative determinations show good agreement with the certified values. Gamma ray spectra of zinc and cadmium fractions are practically free from other activities apart from those, which are normally observed in the background. Analytical results were corrected for the blank resulting from using reagents, glassware and contact with atmosphere when isolation of analytes before neutron activation is accomplished. Considerable minimization and good reproducibility of the blank was finally achieved.(authors)

  9. Dispersive liquid-liquid microextraction for the simultaneous separation of trace amounts of zinc and cadmium ions in water samples prior to flame atomic absorption spectrometry determination

    Directory of Open Access Journals (Sweden)

    Sayed Zia Mohammadi

    2012-01-01

    Full Text Available In the proposed method, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, such as extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, linearity was maintained between 1.0 ng mL-1 to 1.5 mg mL-1 for zinc and 1.0 ng mL-1 to 0.4 mg mL-1 for cadmium. The proposed method has been applied for determination of trace amount of zinc and cadmium in standard and water samples with satisfactory results.

  10. Complexation of fibrous Tiopan-1 sorbent with cadmium(2), cobalt(2) zinc(2) ions

    International Nuclear Information System (INIS)

    Complex formation processing of functional groups of fibrous sulfur-nitrogen-containing adsorbent Tiopan-1 with cadmium ions are studied using potentiometry, IR-spectroscopy, as well as electron spectroscopy with diffusion reflection. Composition of forming complexes in adsorbent phase is established. Stability constants are determined in 0.096-1.92 ionic force interval of sodium chloride phone. Thermodynamic constants of stability are calculated

  11. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population)

    OpenAIRE

    Küpper, Hendrik; Kochian, Leon V.

    2010-01-01

    - We investigated changes in mineral nutrient uptake and cellular expression levels for metal transporter genes in the cadmium (Cd)/zinc (Zn) hyperaccumulator, Thlaspi caerulescens during whole plant and leaf ontogenesis under different long-term treatments with Zn and Cd.- Quantitative mRNA in situ hybridization (QISH) revealed that transporter gene expression changes not only dependent on metal nutrition/toxicity, but even more so during plant and leaf development. The main mRNA abundances ...

  12. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera

    OpenAIRE

    Buechel, R R; Pazhenkottil, A P; Herzog, B A; Husmann, L; Nkoulou, R N; Burger, I A; Valenta, I; Wyss, C A; Ghadri, J R; Kaufmann, P A

    2010-01-01

    PURPOSE: The aim of this study was to assess the ability of real-time breath-hold-triggered myocardial perfusion imaging (MPI) using a novel cadmium-zinc-telluride (CZT) gamma camera to discriminate artefacts from true perfusion defects. METHODS: A group of 40 patients underwent a 1-day (99m)Tc-tetrofosmin pharmacological stress/rest imaging protocol on a conventional dual detector SPECT gamma camera with and without attenuation correction (AC), immediately followed by scanning on an ultrafas...

  13. Impact of injection dose, post-reconstruction filtering, and collimator choice on image quality of myocardial perfusion SPECT using cadmium-zinc telluride detectors in the rat

    OpenAIRE

    Mizutani, Asuka; Matsunari, Ichiro; Kobayashi, Masato; Nishi, Kodai; Fujita, Wataru; Miyazaki, Yoshiharu; Nekolla, Stephan G; Kawai, Keiichi

    2015-01-01

    Background The aims of this study were (1) to evaluate the impact of injection dose, post-reconstruction filtering, and collimator choice on image quality of myocardial perfusion single-photon emission computed tomography (SPECT) using cadmium-zinc telluride (CZT) detectors and (2) to determine how these factors affect measured infarct size in the in vivo rat. Methods Twenty-four healthy and eight myocardial infarct (MI) rats underwent myocardial perfusion SPECT imaging after injection of var...

  14. Separation of selenium, zinc, and copper compounds in bovine whey using size exclusion chromatography linked to inductively coupled plasma mass spectrometry.

    OpenAIRE

    Hoac, Tien; Lundh, Thomas; Purup, Stig; Onning, Gunilla; Sejrsen, Kristen; Akesson, Bjorn

    2007-01-01

    To study the role of trace elements for the quality and nutritional value of bovine milk, the distribution of selenium, zinc, and copper in whey was investigated using a method linking size exclusion chromatography to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Three major peaks were detected for selenium, two peaks for zinc, and five peaks for copper. More than 65% of the selenium was found in protein fractions, mainly in fractions coinciding with the major whey proteins beta-...

  15. Contamination of houses by workers occupationally exposed in a lead-zinc-copper mine and impact on blood lead concentrations in the families.

    OpenAIRE

    M. Chiaradia; Gulson, B L; MacDonald, K.

    1997-01-01

    OBJECTIVE: To evaluate the pathway of leaded dust from a lead-zinc-copper mine to houses of employees, and the impact on blood lead concentrations (PbB) of children. METHODS: High precision lead isotope and lead concentration data were obtained on venous blood and environmental samples (vacuum cleaner dust, interior dustfall accumulation, water, paint) for eight children of six employees (and the employees) from a lead-zinc-copper mine. These data were compared with results for 11 children fr...

  16. The concentrations of copper, zinc, manganese and selenium in the hair of newborn piglets and their dams.

    OpenAIRE

    Friendship, R M; Wilson, M R; Gibson, R S

    1985-01-01

    Instrumental neutron activation analysis was employed to determine the levels of certain trace elements in the hair of newborn piglets and their dams. The mean concentrations (mumoles/mg) of copper, zinc, manganese and selenium in the neonatal piglet hair samples were 222 +/- 55, 4940 +/- 1728, 12.7 +/- 17.1 and 8.9 +/- 5.5, respectively, and in sow hair samples the mean concentrations (mumoles/mg) were 156 +/- 22, 5124 +/- 1927, 31.7 +/- 22.2 and 6.5 +/- 3.7, respectively. The mean copper le...

  17. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. PMID:25545296

  18. [Stoichiometry of multi-elements in the zinc-cadmium hyperaccumulator Thlaspi caerulescens grown hydroponically under different zinc concentrations determined by ICP-AES].

    Science.gov (United States)

    Han, Wen-xuan; Xu, Yi-ming; Du, Wei; Tang, Ao-han; Jiang, Rong-feng

    2009-09-01

    Thlaspi caerulescens is commonly known as a zinc (Zn) and cadmium (Cd) hyperaccumulator, which can be used to clean up the Zn- and/or Cd-contaminated soil. However, it is unclear whether high soil Zn concentrations will stimulate undue accumulations of other elements to such an extent as to cause the nutrient unbalance in the soil. To address this question, the inductively coupled plasma-atomic emission spectrometry (ICP-AES) was employed to investigate the effect of Zn on the stoichiometry of Zn, Cd, K, P, Mg, Ca, Fe, Mn and Cu in T. caerulescens (Ganges ecotype) exposed to low, middle and high Zn concentrations (5, 50 and 500 micromol x L(-1), respectively) in a hydroponic experiment. The results showed that there were no significant variations in contents of Cd, K, P, Mg, Ca, Fe, Mn and Cu in the shoot of T. caerulescens, however, the Zn content in the shoot and root with 500 mciromol x L(-1) Zn treatment increased as much as 13 times higher than that with low Zn exposure, indicating that the plant is capable of Zn hyperaccumulating. The authors' study suggests that it is improbable to induce soil nutrient unbalance when T. caerulescensis (Ganges) is used for phytoremediation of Zn-contaminated soil, in that over-uptake of nutrient elements from the soil other than Zn was not observed, at least for the elements K, P, Mg, Ca, Fe, Mn and Cu. PMID:19950676

  19. Modulation of brain opioid receptors by zinc and histidine

    International Nuclear Information System (INIS)

    The effect of zinc and several trace elements was studied on the binding of the opioid receptor antagonist [3H]-naloxone and the agonists [3H]-DAGO, [3H]-DSTLE, and [3H]-EKC, specific for the mu, delta and kappa receptors, respectively, in several areas of the rat brain. Physiological concentrations of zinc were inhibitory to the binding of naloxone, DAGO, and EKC, whereas delta receptors were insensitive to this inhibition. Copper, cadmium, and mercury also inhibited the binding of all the ligands studied to their receptors. Histidine was most effective in preventing the inhibitory effects of zinc and copper, whereas it was less effective on cadmium, and without any effect on the inhibit was less effective on cadmium, and without any effect on the inhibition caused by mercury. Its metabolites histamine and imidazoleacetic acid, and also citrate were ineffective. Magnesium and manganese were stimulatory to opioid receptor binding, whereas cobalt and nickel had dual effects. Concentrations of zinc less that its IC50 totally prevented the stimulatory effects of magnesium and manganese on the mu and delta receptors on which zinc alone had no effects. The reducing reagents dithiothreitol and B-mercaptoethanol partially protected against zinc inhibition, and the oxidizing reagent dithiobisnitrobenzoic acid even potentiated the inhibitory effects of zinc on DSTLE and DAGO binding, although to different extents

  20. Modulation of brain opioid receptors by zinc and histidine

    Energy Technology Data Exchange (ETDEWEB)

    Hanissian, S.H.

    1988-01-01

    The effect of zinc and several trace elements was studied on the binding of the opioid receptor antagonist ({sup 3}H)-naloxone and the agonists ({sup 3}H)-DAGO, ({sup 3}H)-DSTLE, and ({sup 3}H)-EKC, specific for the mu, delta and kappa receptors, respectively, in several areas of the rat brain. Physiological concentrations of zinc were inhibitory to the binding of naloxone, DAGO, and EKC, whereas delta receptors were insensitive to this inhibition. Copper, cadmium, and mercury also inhibited the binding of all the ligands studied to their receptors. Histidine was most effective in preventing the inhibitory effects of zinc and copper, whereas it was less effective on cadmium, and without any effect on the inhibit was less effective on cadmium, and without any effect on the inhibition caused by mercury. Its metabolites histamine and imidazoleacetic acid, and also citrate were ineffective. Magnesium and manganese were stimulatory to opioid receptor binding, whereas cobalt and nickel had dual effects. Concentrations of zinc less that its IC{sub 50} totally prevented the stimulatory effects of magnesium and manganese on the mu and delta receptors on which zinc alone had no effects. The reducing reagents dithiothreitol and B-mercaptoethanol partially protected against zinc inhibition, and the oxidizing reagent dithiobisnitrobenzoic acid even potentiated the inhibitory effects of zinc on DSTLE and DAGO binding, although to different extents.

  1. Investigation of the influence of cadmium processing on zinc gallium oxide:manganese thin films for photoluminescent and thin film electroluminescent applications

    Science.gov (United States)

    Flynn, Michael John

    Cadmium processing of ZnGa2O4 films provides a new fabrication route for phosphor powders and thin films. It relies on the enhanced diffusion due to the large vacancy concentration left by the sublimation of cadmium. Photoluminescent powders can be made with a single high temperature firing. Thin film devices can be processed at a significantly lower temperature, expanding the range of available substrates. Powders and thin films of ZnGa2O4:Mn were fabricated using starting materials in which between 0% and 50% of the ZnO was substituted by CdO. It was found that the emission spectra of the various compositions was unaffected by the change in composition, peaking at 504 nm, with the colour coordinates x = 0.08 and y = 0.69. The invariance of the emission spectrum is due to the spinel crystal structure exhibited by the compound. However, the maximum PL brightness was obtained from powders in which 10% of the ZnO had been substituted by CdO in the starting materials. The improved brightness is the result of better manganese incorporation which resulted from CdO sublimation during processing. This left a large vacancy concentration which enhanced the diffusion, and hence the manganese incorporation. In the case of thin films sputtered from cadmium processed targets, the composition of the films as deposited closely mirrored that of the target starting materials. The as deposited films were not luminescent and had to be annealed in vacuum in order to activate the manganese. EDX of these films showed that all of the cadmium had sublimed during the anneal. Very long anneal times also resulted in the loss of zinc. The decomposition products were amorphous or nanocrystalline. These films had an identical PL emission to the powders. The loss of cadmium correlated with the onset of bright 254 nm photoluminescence in the films, indicating that cadmium loss aided in the activation of the manganese. This was the result of the enhanced diffusion due to the large vacancy

  2. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    Energy Technology Data Exchange (ETDEWEB)

    Beesley, Luke, E-mail: l.beesley@2007.ljmu.ac.u [Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Moreno-Jimenez, Eduardo [Departamento de Quimica Agricola, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Clemente, Rafael [Dep. of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, 30100 Espinardo, Murcia (Spain); Lepp, Nicholas; Dickinson, Nicholas [Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom)

    2010-01-15

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  3. Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation

    International Nuclear Information System (INIS)

    In this study, removal of cadmium and zinc from their respective water samples was conducted by micellar-enhanced ultrafiltration (MEUF), using sodium dodecyl sulfate (SDS) as the surfactant. Response surface methodology (RSM) was used for modelling and optimising the process, and to gain a better understanding of the process performance. Face Centred Composite (CCF) Design was used as the experimental design. The factors studied were pressure (P), nominal molecular weight limit (NMWL), heavy metal feed concentration (CZn, CCd) and SDS feed concentration (CSDS). Using RSM the retention of heavy metals was maximized while optimising the surfactant to metal ratio (S/M). Response surface plots improved the understanding the effect of the factors on permeate flux. Concentration polarisation was negligible and therefore, high NMWL membranes with high pressure provided high flux with negligible effect on the retention of heavy metals. The optimal conditions of zinc removal were CSDS = 13.9 mM, CZn = 0.5 mM, NMWL = 10 kDa and P = 3.0 bar, and for cadmium removal CSDS = 14.2 mM, CCd = 0.5 mM, NMWL = 10 kDa and P = 3.0 bar. The retentions achieved were 98.0 ± 0.4% for zinc and 99.0 ± 0.4% for cadmium. To improve resource efficiency, the surfactant was reclaimed after use; 84% of the initial SDS was recovered by precipitation.

  4. Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation.

    Science.gov (United States)

    Landaburu-Aguirre, Junkal; Pongrácz, Eva; Perämäki, Paavo; Keiski, Riitta L

    2010-08-15

    In this study, removal of cadmium and zinc from their respective water samples was conducted by micellar-enhanced ultrafiltration (MEUF), using sodium dodecyl sulfate (SDS) as the surfactant. Response surface methodology (RSM) was used for modelling and optimising the process, and to gain a better understanding of the process performance. Face Centred Composite (CCF) Design was used as the experimental design. The factors studied were pressure (P), nominal molecular weight limit (NMWL), heavy metal feed concentration (C(Zn), C(Cd)) and SDS feed concentration (C(SDS)). Using RSM the retention of heavy metals was maximized while optimising the surfactant to metal ratio (S/M). Response surface plots improved the understanding the effect of the factors on permeate flux. Concentration polarisation was negligible and therefore, high NMWL membranes with high pressure provided high flux with negligible effect on the retention of heavy metals. The optimal conditions of zinc removal were C(SDS)=13.9 mM, C(Zn)=0.5 mM, NMWL=10 kDa and P=3.0 bar, and for cadmium removal C(SDS)=14.2 mM, C(Cd)=0.5 mM, NMWL=10 kDa and P=3.0 bar. The retentions achieved were 98.0+/-0.4% for zinc and 99.0+/-0.4% for cadmium. To improve resource efficiency, the surfactant was reclaimed after use; 84% of the initial SDS was recovered by precipitation. PMID:20488619

  5. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry.

    Science.gov (United States)

    Jensen, John; Larsen, Martin Mørk; Bak, Jesper

    2016-07-01

    The increasing consumption of copper and zinc in modern farming is linked to their documented benefit as growth promoting agents and usefulness for controlling diarrhoea. Copper and zinc are inert and non-degradable in the slurry and the environment and thereby introducing new challenges and concern. Therefore, a follow-up to pervious national soil monitoring programs on heavy metals was initiated in 2014 with special focus on the historical trends in soil concentrations of copper and zinc in Danish arable soils. Hereby it is possible to analyse trends for a 28 year period. Data shows that: 1) Amendment of soils with pig slurry has led to a significant increase in soil concentrations of copper and zinc, especially in the latest monitoring period from 1998 to 2014; 2) Predicted no-effect concentrations for soil dwelling species published by the European Union is exceeded for zinc in 45% of all soil samples, with the highest proportion on sandy soils; 3) The current use of zinc and copper in pig production may lead to leaching of metals, especially zinc, from fields fertilized with pig slurry in concentrations that may pose a risk to aquatic species. PMID:27107257

  6. Analysis of serum and urinal copper and zinc in Chinese northeast population with the prediabetes or diabetes with and without complications.

    Science.gov (United States)

    Xu, Jiancheng; Zhou, Qi; Liu, Gilbert; Tan, Yi; Cai, Lu

    2013-01-01

    This study investigated the association of copper and zinc levels in the serum or urine of patients living in northeast China, with either prediabetes or diabetes. From January 2010 to October 2011, patients with type 1 diabetes (T1D, n = 25), type 2 diabetes (T2D, n = 137), impaired fasting glucose (IFG, n = 12) or impaired glucose tolerance (IGT, n = 15), and age/gender matched controls (n = 50) were enrolled. In the T2D group, there were 24 patients with nephropathy, 34 with retinopathy, and 50 with peripheral neuropathy. Serum copper levels were significantly higher in IFG, IGT, and T2D groups. Serum zinc level was dramatically lower, and urinary zinc level was significantly higher in both T1D and T2D subjects compared with controls. The serum zinc/copper ratio was significantly lower in all the patients with IFG, ITG, T1D, and T2D. The serum copper level was positively associated with HbA1c in T2D subjects. Simvastatin treatment in T2D patients had no significant effect on serum and urinary copper and zinc. These results suggest the need for further studies of the potential impact of the imbalanced serum copper and zinc levels on metabolic syndrome, diabetes, and diabetic complications. PMID:24175012

  7. Analysis of Serum and Urinal Copper and Zinc in Chinese Northeast Population with the Prediabetes or Diabetes with and without Complications

    Directory of Open Access Journals (Sweden)

    Jiancheng Xu

    2013-01-01

    Full Text Available This study investigated the association of copper and zinc levels in the serum or urine of patients living in northeast China, with either prediabetes or diabetes. From January 2010 to October 2011, patients with type 1 diabetes (T1D, n=25, type 2 diabetes (T2D, n=137, impaired fasting glucose (IFG, n = 12 or impaired glucose tolerance (IGT, n=15, and age/gender matched controls (n=50 were enrolled. In the T2D group, there were 24 patients with nephropathy, 34 with retinopathy, and 50 with peripheral neuropathy. Serum copper levels were significantly higher in IFG, IGT, and T2D groups. Serum zinc level was dramatically lower, and urinary zinc level was significantly higher in both T1D and T2D subjects compared with controls. The serum zinc/copper ratio was significantly lower in all the patients with IFG, ITG, T1D, and T2D. The serum copper level was positively associated with HbA1c in T2D subjects. Simvastatin treatment in T2D patients had no significant effect on serum and urinary copper and zinc. These results suggest the need for further studies of the potential impact of the imbalanced serum copper and zinc levels on metabolic syndrome, diabetes, and diabetic complications.

  8. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    Science.gov (United States)

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  9. Variation of the Concentration of Isotopes Copper and Zinc in Human Plasmas of Patients Affected by Cancer

    Science.gov (United States)

    Triassi, Antonio

    2006-02-01

    In this paper, we demonstrate that the increase of copper and the reduction of zinc in the human plasma of patient with cancer, and in particular the Lymphoid Leukaemia, is a consequence of the isotopic constant of the enzymatic components copper/zinc dependent (DNA/RNA polymerase). Our hypothesis is that the reaction happens at the nuclear level in the human cell, and it is due to the action of a neutron (probably of deuterium of water) (J.F. Thomson, Biological Effects of Deuterium, Pergamon Press, Oxford, 1963) with the isotopic component of 64Zn transmutation into 65Cu stable following reaction: [ ^{64}Zn + N(HDO) rightarrow ^{65}Zn rightarrow beta^+ rightarrow EC rightarrow gamma rightarrow ^{65}Cu ] this produces energy of 0.325 MeV for the β+ and equal energy of 1.118 MeV for the photon γ with a half-life of 250 days.

  10. Distribution of Zinc and Cadmium in Tissues of Giant Reed (Arundo Donax L.: Sequential Extraction - Radiometric Study

    Directory of Open Access Journals (Sweden)

    Richveisová Barbora Micháleková

    2014-06-01

    Full Text Available Heavy metals are taken up by the vascular plant root system from water solutions in cationic forms. Subsequently, during both short and long distance transport to other plant tissues, cation forms are incorporated to many bioorganic compounds differing in stability, ionic character and physico-chemical properties such as solubility in lipid structures and mobility across cell membrane systems. Many sequential and single step extraction methods have been elaborated for characterization of the role of individual components of plant cells components in transport and detoxication of heavy metals. In our study, dry biomass of giant reed (Arundo donax L. grown in hydroponic media spiked with 65ZnCl2 and 109CdCl2 was treated with dithizone solutions as complexing ligand in order to convert free Zn2+ and Cd2+ ions to corresponding dithizonates. Treatment with dithizone showed that up to 67 % of the total plant Cd and 56 % of the total plant Zn were transformed to dithizonate complexes extracted with chloroform. Extraction of biomass with Folch reagent showed that up to 48 % of the total root cadmium and up to 18 % of the total shoot cadmium is bound in lipid fraction. Zinc was not found in lipid fraction of root and shoot. Derivatization of the dried root and shoot lipid fraction by dithizone showed that two third of Cd in root and practically all Cd in shoot lipid fraction could be transformed to Cd-dithizonate. Methods of biomass treating with complexing ligands and a method of sequential extraction procedures with non-polar organic solvents and radiotracer methodology seem to be useful methods for the study of metal speciation and distribution in vascular plants

  11. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li Tingqiang, E-mail: litq@zju.edu.cn [Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Yang Xiaoe; Lu Lingli [Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Islam, Ejazul [Nuclear Institute of Agriculture, Tandojam, 48800 Hyderabad (Pakistan); He Zhenli [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida 34945 (United States)

    2009-09-30

    Effects of zinc (Zn) and cadmium (Cd) interactions on root morphology and metal translocation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under hydroponic conditions. Specific root lengths (SRL), specific root surface areas (SRA) and specific root volumes (SRV) of the HE increased significantly when plant were treated with 500 {mu}M Zn or 100 {mu}M Cd + 500 {mu}M Zn, whereas these root parameters were significantly decreased for the NHE when plant were treated with 100 {mu}M Cd, 500 {mu}M Zn or 100 {mu}M Cd + 500 {mu}M Zn. SRL and SRA of the HE were mainly constituted by roots with diameter between 0.2-0.4 mm (diameter class 3 and 4) which were significantly increased in treatment of 500 {mu}M Zn or 100 {mu}M Cd + 500 {mu}M Zn, whereas in the NHE, metal treatments caused a significant decrease in SRL and SRA of the finest diameter class root (diameter between 0.1-0.3 mm). The HE of S. alfredii could maintain a fine, widely branched root system under contaminated conditions compared with the NHE. Relative root growth, net Cd uptake and translocation rate in the HE were significantly increased by adding 500 {mu}M Zn, as compared with the second growth period, where 100 {mu}M Cd was supplied alone. Cadmium and Zn concentrations in the shoots of the HE were 12-16 times and 22-27 times higher than those of the NHE under 100 {mu}M Cd + 500 {mu}M Zn combined treatment. These results indicate strong positive interactions of Zn and Cd occurred in the HE under 100 {mu}M Cd + 500 {mu}M Zn treatment and Cd uptake and translocation was enhanced by adding 500 {mu}M Zn.

  12. Zinc and cadmium accumulation in single zebrafish (Danio rerio) embryos - A total reflection X-ray fluorescence spectrometry application

    International Nuclear Information System (INIS)

    Trace metals such as Cadmium (Cd) and Zinc (Zn) are known to exhibit adverse effects on many aquatic organisms including early life stages of fish. In contact with contaminated sediment, fish eggs and embryos may be exposed to metals via the water phase as well as via direct contact with contaminated particles. This may result in body burdens that are difficult to predict and may vary according to individual micro scale exposure conditions. The highly sensitive total reflection X-ray fluorescence spectrometry (TXRF) may provide a tool to analyse individual embryos for internal contaminant concentrations and thus helps to develop a better understanding of dose-response relationships. To test this hypothesis, embryos of Danio rerio were exposed to Cd and Zn spiked sediment in different treatments applying an ion exchange resin for modification of bioavailable concentrations. The TXRF analysis indicated individual embryos with dramatically enhanced exposure compared to other individuals despite uniform exposure conditions on a macro scale. Ion exchanger reduced embryo Zn concentrations to values close to control value with a comparably low standard deviation. Cadmium concentrations in embryos were in the range of 4000 to 7000 μg/g with a median of 5740 μg/g. A commercial ion exchanger reduced individual body burdens by a factor 50 to 100. Individual peak body burdens of up to 3160 μg/g were accompanied by reduced weight of the fish eggs due to early death i.e. coagulation. The investigation of exposure and effects on an individual-based scale may significantly help to reduce uncertainty and inconsistencies occurring in conventional analysis of pooled fish embryo samples

  13. Zinc and cadmium accumulation in single zebrafish (Danio rerio) embryos - A total reflection X-ray fluorescence spectrometry application

    Energy Technology Data Exchange (ETDEWEB)

    Mages, Margarete [UFZ - Helmholtz Centre for Environmental Research, Dept. River Ecology Brueckstr. 3a/39114 Magdeburg/Germany (Germany); University of Lueneburg, Institute of Ecology and Environmental Chemistry, Department Environmental Chemistry, Scharnhorststrasse 1/21335 Lueneburg/Germany (Germany)], E-mail: margarete.mages@ufz.de; Bandow, Nicole [UFZ - Helmholtz Centre for Environmental Research, Dept. Effect Directed Analysis, Permoser Strasse 15/ 04318 Leipzig/Germany (Germany); Kuester, Eberhard [UFZ - Helmholtz Centre for Environmental Research, Dept. Bioanalytical Ecotoxicology, Permoser Strasse 15/ 04318 Leipzig/Germany (Germany); Brack, Werner [UFZ - Helmholtz Centre for Environmental Research, Dept. Effect Directed Analysis, Permoser Strasse 15/ 04318 Leipzig/Germany (Germany); Tuempling, Wolf von [UFZ - Helmholtz Centre for Environmental Research, Dept. River Ecology Brueckstr. 3a/39114 Magdeburg/Germany (Germany)

    2008-12-15

    Trace metals such as Cadmium (Cd) and Zinc (Zn) are known to exhibit adverse effects on many aquatic organisms including early life stages of fish. In contact with contaminated sediment, fish eggs and embryos may be exposed to metals via the water phase as well as via direct contact with contaminated particles. This may result in body burdens that are difficult to predict and may vary according to individual micro scale exposure conditions. The highly sensitive total reflection X-ray fluorescence spectrometry (TXRF) may provide a tool to analyse individual embryos for internal contaminant concentrations and thus helps to develop a better understanding of dose-response relationships. To test this hypothesis, embryos of Danio rerio were exposed to Cd and Zn spiked sediment in different treatments applying an ion exchange resin for modification of bioavailable concentrations. The TXRF analysis indicated individual embryos with dramatically enhanced exposure compared to other individuals despite uniform exposure conditions on a macro scale. Ion exchanger reduced embryo Zn concentrations to values close to control value with a comparably low standard deviation. Cadmium concentrations in embryos were in the range of 4000 to 7000 {mu}g/g with a median of 5740 {mu}g/g. A commercial ion exchanger reduced individual body burdens by a factor 50 to 100. Individual peak body burdens of up to 3160 {mu}g/g were accompanied by reduced weight of the fish eggs due to early death i.e. coagulation. The investigation of exposure and effects on an individual-based scale may significantly help to reduce uncertainty and inconsistencies occurring in conventional analysis of pooled fish embryo samples.

  14. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide 110Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide 199Au and 438.6 keV of metastable radionuclide 69mZn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide 66Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used, various geological

  15. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author)

  16. Economic evaluation of zinc and copper use in treating acute diarrhea in children: A randomized controlled trial

    OpenAIRE

    Dhande Leena A; Patel Archana B; Rawat Manwar S

    2003-01-01

    Abstract Background The therapeutic effects of zinc and copper in reducing diarrheal morbidity have important cost implications. This health services research study evaluated the cost of treating a child with acute diarrhea in the hospital, the impact of micronutrient supplementation on the mean predicted costs and its cost-effectiveness as compared to using only standard oral rehydration solution (ORS), from the patient's and government's (providers) perspective. Methods Children aged 6 mont...

  17. Study of oxidative stress, homocysteine, copper & zinc in nephrotic syndrome: therapy with antioxidants, minerals and B-complex vitamins

    OpenAIRE

    Jyoti Dwivedi; Purnima Dey Sarkar

    2009-01-01

    Oxidative damage has been proposed as one of the possible mechanism involved in the nephrotic syndrome. Strengthening the defense system by antioxidants may provide protection against oxidative damage. Therefore, this study was carried out to investigate oxidant and antioxidant status with copper, zinc and homocysteine in nephrotic syndrome patients and the effect of antioxidants, minerals and B-complex vitamins on oxidant and antioxidant status. The blood samples were analyzed for quantitati...

  18. Cloning and Expressing of a Gene Encoding Cytosolic Copper/Zinc Superoxide Dismutase in the Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    HU Gen-hai; YU Shu-xun; FAN Shu-li; SONG Mei-zhen

    2007-01-01

    In this study, a gene encoding a superoxide dismutase (SOD) was cloned from senescent leaves of cotton (Gossypium hirsutum), and its expressing profile was analyzed. The gene was cloned by rapid amplification of cDNA ends (RACE)method. Northern blotting was used to show the profile of the gene expression, and the enzyme activity was mensurated by NBT deoxidization method in different growth periods. The full length of a gene of cytosolic copper/zinc superoxide dismutase (Cu/Zn-SOD) was isolated from cotton (GenBank Accession Number: DQ445093). The sequence of cDNA contained 682 bp, the opening reading frame 456 bp, and encoded polypeptide 152 amino acids with the predicted molecular mass of 15.03 kD and theoretical pI of 6.09. The amino acid sequence was similar with the other plants from 82 to 87%. Southern blotting showed that the gene had different number of copies in different cotton species. Northern blotting suggested that the gene had different expression in different tissues and development stages. The enzyme activity was the highest in peak flowering stage. The cotton cytosolic (Cu/Zn-SOD) had lower copies in the upland cotton. The copper/zinc superoxide dismutase mRNA expressing level showed regular changing in the whole development stages; it was lower in the former stages, higher in latter stages and the highest at the peak flowering stage. The curve of the copper/zinc superoxide dismutase mRNA expressing level was consistent with that of the Cu/Zn-SOD enzyme activity.The copper/zinc superoxide dismutase mRNA expressing levels of different organs showed that the gene was higher in the root, leaf, and lower in the flower.

  19. Evaluation of suitability of Giant Miscanthus (Miscanthus × giganteus Greef et Deu.) in phytoextraction of copper and zinc from soil

    OpenAIRE

    Maciej Bosiacki

    2013-01-01

    The main objective of this study was to determine the suitability of Miscanthus × giganteus to phytoextraction of copper and zinc from soil, as well as evaluation of the tolerance of this species to the increasing concentration of the metals. Potential for phytoextraction of Miscanthus × giganteus had been studied for two years, pot experiment in the plastic greenhouse when they grown in mineral soil (which was slightly loamy sand) and soil with raised peat substrate with four lev...

  20. Determination of sodium, potassium, calcium, magnesium, iron, copper, zinc and mercury in contaminated wheat and wheat flour

    International Nuclear Information System (INIS)

    The wheat and wheat flour samples from district Khairpur, were dissolved in acids and analyzed spectrophotometrically for mercury contents, using dithiozone method. Mercury was found in 0.92-5.8 mg/ kg range, above the safe limits for human consumption, samples were also analysed for sodium, potassium, calcium, magnesium, iron, copper and zinc, after dry ashing, followed by acid dissolution and flame atomic absorption determination. Metal ions were found within the normal limits reported for wheat and wheat flour. (author)