WorldWideScience

Sample records for cadmium contaminated wild

  1. Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Couture, Patrice; Rajender Kumar, Puja

    2003-01-01

    This study examined variations in resting oxygen consumption rate (ROCR), post-exercise oxygen consumption rate, relative scope for activity (RSA), liver and muscle aerobic and anaerobic capacities (using citrate synthase (CS) and lactate dehydrogenase, respectively, as indicators), and tissue biosynthetic capacities (using nucleoside diphosphate kinase (NDPK) as an indicator), in wild yellow perch from four lakes varying in copper (Cu) and cadmium (Cd) contamination. Liver Cu and Cd concentrations largely reflected environmental contamination and were positively correlated with liver protein concentrations and NDPK activities. Our results suggest that metal contamination leads to an upregulation of liver protein metabolism, presumably at least in part for the purpose of metal detoxification. In contrast, muscle NDPK activities decreased with increasing liver Cd concentrations and NDPK activities. There was a 25% decrease in ROCR for a doubling of liver Cu concentrations and a 42% decrease in RSA for a doubling of liver Cd concentrations in the range studied. Cu contamination was also associated with lower muscle CS activities. Our results support previous findings of impaired aerobic capacities in the muscle of metal-contaminated fish, and demonstrate that this impairment is also reflected in aerobic capacities of whole fish. The evidence presented suggests that mitochondria may be primary targets for inhibition by Cu, and that Cd may reduce gill respiratory capacity. Muscle aerobic and anaerobic capacities were inversely related. This work indicates that metal exposure of wild yellow perch leads to a wide range of disturbances in metabolic capacities

  2. Risk of contamination of wild berries from upper Orava region by cadmium

    Directory of Open Access Journals (Sweden)

    Stanislav Zupka

    2016-01-01

    Full Text Available The upper Orava region is located at the North Slovakia, near of potential sources of environmental contamination due by mining of coal, zinc and lead ores. The aim of the study was to evaluate the risk of consumption of wild forest fruit from Upper Orava region from the aspect of cadmium content. Ten sampling points were found by random search. From these points samples of soil, leaves and fruits of wild berries (9 samples of blueberries Vaccinium Myrtillus and 1 sample of strawberries Fragaria Vesca were collected. In soil samples the active soil reaction (pH/H2O ranged from 3.53 (strong acidity to 4.56 (extremly strong acidity, and the determined percentage of humus ranged from 1.66 (low humic soil to 4.90 (high humic soil.  In two soil samples the total content of cadmium determinated in soil extracts by aqua regia exceeded limit 0.70 mg.kg-1 given by the legislation in tne Slovak Republic. In three soil samples the determined content of cadmium mobile forms determined in soil extracts by NH4NO3 exceeded the limit 0.10 mg.kg-1. The content of Cd determined in leaves as well as in fruits was evaluated according to Food Codex of the Slovak Republic. Only in one sample of leaf samples the limit 1.00 mg.kg-1 was exceeded. The other leaf samples are safely when used as an ingredient in tea mixtures. On the other hand even in 7 fruit samples the limit 0.05 mg.kg-1 was exceeded. This fruit can pose a risk for the human organism when is directly consumed as well as may negatively affect the human health when is used as raw materials in the food industry. 

  3. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    International Nuclear Information System (INIS)

    Klinck, J.S.; Green, W.W.; Mirza, R.S.; Nadella, S.R.; Chowdhury, M.J.; Wood, C.M.; Pyle, G.G.

    2007-01-01

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca 2+ , principally that elevated dietary Ca 2+ reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut

  4. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    Energy Technology Data Exchange (ETDEWEB)

    Klinck, J.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada)], E-mail: klinckjs@mcmaster.ca; Green, W.W.; Mirza, R.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada); Nadella, S.R.; Chowdhury, M.J.; Wood, C.M. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Pyle, G.G. [Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada)

    2007-08-30

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca{sup 2+}, principally that elevated dietary Ca{sup 2+} reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut.

  5. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    OpenAIRE

    P. Bala Ramudu; R. P. Tiwari; R. K. Srivastava

    2007-01-01

    This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself wa...

  6. Phytoremediation of cadmium contaminated soils by tuberose

    International Nuclear Information System (INIS)

    Ramana, S.; Biswas, A.K.; Singh, A.B.; Ajay; Ahirwar, N.K.; Behera, S.K.; Subba Rao, A.; Naveen Kumar, P.

    2012-01-01

    The potential of three varieties of tuberose (Prajwal, Shringar and Mexican single) for phytoremediation of soil contaminated with cadmium was evaluated by subjecting the plants to five levels of Cd (0, 25, 50, 75 and 100 mg kg -1 soil). Applied Cd did not produce any toxic symptoms in all the three varieties of tuberose except marginal reduction in the photosynthesis rate and total dry weight beyond 50 mg Cd kg -1 soil. The study showed that tuberose possessed the typical ability of Cd hyper accumulator characterized by (1) accumulation of Cd in the shoots of the plant exceeding the critical judging standard i.e., 100 μg g -1 DW and (2) ratio of Cd in the shoots to bulbs >1. It was concluded that tuberose may be an effective accumulator plant for phytoremediation of cadmium polluted soils. (author)

  7. Remediation of cadmium by Indian mustard (Brassica juncea L.) from cadmium contaminated soil: a phytoextraction study

    OpenAIRE

    Rajeev Kumar Bhadkariya; VK Jain; GPS Chak; SK Gupta

    2014-01-01

    Cadmium is a toxic metal for living organisms and an environmental contaminant. Soils in many parts of the world are slightly too moderately contaminated by Cd due to long term use and disposal of Cd-contaminated wastes. Cost effective technologies are needed to remove cadmium from the contaminated sites. Soil phytoextraction is engineering based, low cost and socially accepted developing technology that uses plants to clean up contaminants in soils. This technology can be adopted as a remedi...

  8. Lead and cadmium in wild birds in southeastern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fernandez, A.J.; Sanchez-Garcia, J.A.; Luna, A. [Univ. of Murcia (Spain); Jimenez-Montalban, P. [Regional Environmental Agency, Murcia (Spain). Centro de Recuperacion de Fauna Silvestre El Valle

    1995-12-01

    The main purpose of this study was to monitor exposure to lead and cadmium in wild birds in Murcia, a southeastern region of Spain on the Mediterranean coast. This region lies on one of the African-European flyways. Samples of liver, kidney, brain, bone, and whole blood from several species of wild birds were obtained during 1993. The authors found a clear relationship between cadmium and lead concentrations in birds and their feedings habits. Vultures (Gyps fulvus) had the highest concentrations of lead (mean 40 {micro}g/dl in blood), and seagulls (Larus argentatus and Larus ridibundus) the highest concentrations of cadmium (mean 4.43 {micro}g/g in kidney). Insectivores had high concentrations of both metals, and diurnal and nocturnal raptors showed the lowest tissue concentrations. The findings that tissue and blood concentrations were generally not elevated suggests environmental (rather than acute) exposure. Birds from more industrialized areas of the region studied here had higher concentrations of both lead and cadmium.

  9. Fetal contamination with cadmium following chronic exposure of rat ...

    African Journals Online (AJOL)

    Fetal contamination with cadmium following chronic exposure of rat dams during gestation. ... African Journal of Applied Zoology and Environmental Biology ... It was concluded that cadmium, contrary to previous reports, can pass through the placenta in appreciable quantity to contaminate the fetus to possibly cause fetal ...

  10. Remediation of cadmium by Indian mustard (Brassica juncea L. from cadmium contaminated soil: a phytoextraction study

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Bhadkariya

    2014-05-01

    Full Text Available Cadmium is a toxic metal for living organisms and an environmental contaminant. Soils in many parts of the world are slightly too moderately contaminated by Cd due to long term use and disposal of Cd-contaminated wastes. Cost effective technologies are needed to remove cadmium from the contaminated sites. Soil phytoextraction is engineering based, low cost and socially accepted developing technology that uses plants to clean up contaminants in soils. This technology can be adopted as a remediation of cadmium from Cd-contaminated soils with the help of Brassica juncea plant. The objective of this work was to evaluate the cadmium (Cd accumulate and the tolerance of Brassica juncea. The Cd accumulates in all parts of plants (roots, stems and leaves. It was found that accumulating efficiency increased with the increase in the concentration of applied cadmium metal solution. Maximum accumulation of cadmium was found in roots than stem and leaves. Phytoextraction coefficient and translocation factor were highest to show the validity of the Brassica juncea species for hyperaccumulation of the Cd metal. These results suggested that Brassica juncea has a high ability to tolerate and accumulate Cd, so it might be a promising plant to be used for phytoextraction of Cd contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10533 International Journal of the Environment Vol.3(2 2014: 229-237

  11. Wild Boar Tissue Levels of Cadmium, Lead and Mercury in Seven Regions of Continental Croatia

    Science.gov (United States)

    Sedak, Marija; Đokić, Maja; Šimić, Branimir

    2010-01-01

    Concentrations of cadmium, mercury and lead were analysed by atomic absorption spectrometry in the kidney and muscle of free-living wild boar (n = 169) from hunting grounds in seven counties of continental Croatia. Mean levels of metals (mg/kg) in muscle and kidney of boars ranged as follows: Cd: 0.005–0.016 and 0.866–4.58, Pb: 0.033–0.15 and 0.036–0.441, Hg: 0.004–0.012 and 0.04–0.152. In all seven regions, concentrations exceeded the permitted values (muscle and kidney mg/kg: cadmium 0.05/1; lead 0.1/0.5; mercury 0.03/0.1) in 13.6% and 71.6% of samples (muscle and kidney, respectively) for cadmium; 13.6% and 8.9% for lead; 19.5% and 2.4% for mercury. There were significant differences among the regions. Vukovar-Srijem and Virovitica-Podravina Counties were highly contaminated with cadmium, Sisak-Moslavina and Virovitica-Podravina Counties with lead and Brod-Posavina County had highest mercury concentrations. These results suggest a detailed investigation of physiological and environmental factors contributing to accumulation of metals in boars. PMID:20405101

  12. Differents remediation methodos for lead, chromium and cadmium contaminated soils

    International Nuclear Information System (INIS)

    Trelles, G; Pochintesta, L; Ehrlich, S.

    2008-01-01

    The usage of phosphates in the remediation of plots contaminated with heavy metals appears to be a good strategy to lessen the danger of these metals. This study analyses the effect of the mobilization of: Lead, chromium and cadmium by utilizing diverse forms of phosphates in contaminated soils of three different origins with ph modification and without it

  13. Cadmium accumulation by Axonopus compressus (Sw.) P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil

    OpenAIRE

    Paitip Thiravetyan; Vibol Sao; Woranan Nakbanpote

    2007-01-01

    This research investigated the phyto-remediation potentials of Cyperus rotundas Linn (Nutgrass) and Axonopus compressus (Sw.) P. Beauv (Carpetgrass) for cadmium removal from cadmium solution andcadmium-zinc contaminated soil. Plants growth in the solution showed that cadmium decreased the relative growth rate of both grasses. However, the amount of cadmium accumulated in shoot and root was increasedwith the increase in cadmium concentration and exposure time. Growth in fertile soil mixed with...

  14. Cadmium contamination in cereal-based diets and diet ingredients

    International Nuclear Information System (INIS)

    Siitonen, P.H.; Thompson, H.C. Jr.

    1990-01-01

    Cereal-based diet and/or diet ingredient cadmium levels were determined by graphite furnace AAS. Cadmium contamination was 88.3 and 447 ppb in two cereal-based diets, 44.6 and 48.9 ppb in two purified diets, and ranged from less than 1.1 to 22,900 ppb in the ingredients of one cereal-based diet. The major source of cadmium contamination was attributed to the calcium supplement used for diet formulation. Comparative analyses of two purified diet samples and one cereal-based diet by the National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards) and the National Center for Toxicological Research (NCTR) gave virtually identical results for Cd. A comparative study of Cd levels determined by flame and furnace AAS was also made by the NCTR and the NIST

  15. Reduction of Cadmium Uptake of Rice Plants Using Soil Amendments in High Cadmium Contaminated Soil: A Pot Experiment

    Directory of Open Access Journals (Sweden)

    Dian Siswanto

    2013-05-01

    Full Text Available The aims of this study were to investigate the effect of agricultural residues on reducing cadmium uptake in rice plants. The rice plants growing on no cadmium/free cadmium soils (N, Cd soils (Cds, and Cd soils each amended with 1% w/w of coir pith (CP, coir pith modified with sodium hydroxide (CPm and corncob (CC under high cadmium contaminated soil with an average 145 mg Cd kg-1 soil were investigated. The results showed that the cumulative transpiration of rice grown in various treatments under high cadmium contaminated soil followed the order: Cds > CPm ≥ CP ≥ CC. These transpirations directly influenced cadmium accumulation in shoots and husks of rice plants. The CC and CP seemed to work to reduce the cadmium uptake by rice plants indicated by accumulated cadmium in the husk that were 2.47 and 7.38 mg Cd kg-1 dry weight, respectively. Overall, transpiration tended to drive cadmium accumulation in plants for rice grown in high cadmium contaminated soil. The more that plants uptake cadmium, the lower cadmium that remains in the soil.

  16. Phytoextraction trials of cadmium and lead contaminated soil using ...

    African Journals Online (AJOL)

    Study on the phytoextraction of cadmium (Cd) and lead (Pb) artificially contaminated soil using 3 weed species (Ageratum conyzoides, Syndrella nodiflora and Cleome rutidosperma) was carried out at the Centre for Ecological Studies, University of Port Harcourt. A Randomized Complete Block Design consisting of 2 sets of ...

  17. Groundwater protection from cadmium contamination by permeable reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Di Natale, F. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy)], E-mail: fdinatal@unina.it; Di Natale, M.; Greco, R. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy); Lancia, A. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy); Laudante, C.; Musmarra, D. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy)

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  18. Phytoremediation of soils contaminated by cadmium

    Science.gov (United States)

    Watai, H.; Miyazaki, T.; Fujikawa, T.; Mizoguchi, M.

    2004-12-01

    Phytoremediation is a technique to clean up soils contaminated with heavy metals. Advantages of this method are that (1) This technique is suitable to cleanup soils slightly contaminated with heavy metals in relatively wide area. (2) The expense for clean up is lower than civil engineering techniques. (3) This method can remove heavy metals fundamentally from contaminated. (4) The heavy metals are able to recycle by ashing of plants. Many researches have been done on the phytoremediation up to now, but almost all these researches were devoted to clarify the phytoremediation from the view point of plants themselves. However, few efforts have been devoted to analyze the migrations of heavy metals in soils during the phytoremediation process. The objective of this study is to clarify the features of Cd migration when plant roots are absorbing Cd from the ambient soils. Especially, we focused on finding the Cd migration pattern by changing the soil condition such as plant growing periods, planting densities, and the initial Cd concentration in soils. We planted sunflowers in columns filled with Cd contaminated soils because sunflower is a well-known hyperaccumulator of Cd from soils. By cutting the shoots of plants at the soil surface, and by keeping the plant roots in the soils without disturbance, the Cd concentrations, moisture contents, pH distributions, EC distributions, and dry weight of residual roots in the soils were carefully analyzed. The experimental results showed that (1)The growth of the planted sunflowers were suffered by applying of Cd. (2)The decrease of suction was affected by water uptake by roots at the depth from 0 to 5 cm. Water contents with plants in soils decrease more than without plants. (3)Cd adsorption by roots was predominant within 5cm from soil surface. In addition, it was also shown that there was an optimal Cd concentration where Cd is most effectively adsorbed by the plant. In this experiment we found that 40 to 60 mg kg-1 was the

  19. Cadmium accumulation by Axonopus compressus (Sw. P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil

    Directory of Open Access Journals (Sweden)

    Paitip Thiravetyan

    2007-05-01

    Full Text Available This research investigated the phyto-remediation potentials of Cyperus rotundas Linn (Nutgrass and Axonopus compressus (Sw. P. Beauv (Carpetgrass for cadmium removal from cadmium solution andcadmium-zinc contaminated soil. Plants growth in the solution showed that cadmium decreased the relative growth rate of both grasses. However, the amount of cadmium accumulated in shoot and root was increasedwith the increase in cadmium concentration and exposure time. Growth in fertile soil mixed with Cd-contaminated zinc silicate residue (65% Si, 19% Ca, 2% Zn, 1% Mg and 0.03% Cd at the ratio of 50:50 (w/wfor 30 days showed that C. rotundas Linn accumulated cadmium in root and shoot to 2,178 and 1,144 mg kg-1 dry weight, respectively. A. compressus (Sw. P. Beauv accumulated cadmium in root and shoot to 1,965and 669 mg kg-1 dry weight, respectively. Scanning electron microscope connected to energy-dispersive X-ray spectroscopy suggested that the mechanism of cadmium accumulation by both grasses involved thecadmium precipitation in the stable form of cadmium silicate, which indicated that C. rotundas Linn and A. compressus (Sw. P. Beauv could be grown to prevent soil erosion and to remediate cadmium-contaminatedsoil.

  20. Remediation of lead and cadmium-contaminated soils.

    Science.gov (United States)

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  1. Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant

    OpenAIRE

    Nasser Sewalem; Soad Elfeky; Fatma El- Shintinawy

    2014-01-01

    Phytremediation has emerged as a practical approach to clean up metal-polluted soils. In this study the role of sunflower ( Helianthus annuus L.) plants as a potential phytoremediator to soils contaminated with cadmium (Cd) and lead (Pb) was investigated. Our results showed that the effect of Cd was stronger on the growth of the roots, while the effect of Pb was stronger on the shoots of sunflower seedlings. At the physiological level, Cd treatment was found to induce low levels of lipid pero...

  2. Soil contamination with cadmium, consequences and remediation using organic amendments.

    Science.gov (United States)

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Investigations on the contamination of Saxonian wild boars with radiocaesium

    International Nuclear Information System (INIS)

    Heinrich, T.; Abraham, A.; Preusse, W.; Pianski, J.; Alisch-Mark, M.; Lange, S.

    2016-01-01

    As a result of the Chernobyl fallout some parts of the free state of Saxony were contaminated with radioactive caesium. Based on published maps of the soil contamination and on additional investigations some regions of elevated contamination could be localized. Parallel to soil investigations a game monitoring to wild boars and roe deer was performed. For both types of game typical seasonal variations of contamination were found. In Saxony only the contamination of wild boars is important. In the south of the Vogtland a region was found, where in all seasons the recommended high value of 600 Bq/kg was exceeded in game. In this region the investigation on radiocaesium is now obligatory for wild boars. The hunter can combine this analysis with the analysis on trichina. After three years measurements the region for obligatory analysis was adapted and expanded to neighbouring counties.

  4. Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant

    Directory of Open Access Journals (Sweden)

    Nasser Sewalem

    2014-03-01

    Full Text Available Phytremediation has emerged as a practical approach to clean up metal-polluted soils. In this study the role of sunflower (Helianthus annuus L. plants as a potential phytoremediator to soils contaminated with cadmium (Cd and lead (Pb was investigated. Our results showed that the effect of Cd was stronger on the growth of the roots, while the effect of Pb was stronger on the shoots of sunflower seedlings. At the physiological level, Cd treatment was found to induce low levels of lipid peroxidation and membrane leakage with less affected photosynthesis in the leaves of the treated sunflower seedlings compared to the effects of Pb. The results presented here showed that a high amount of the total absorbed Cd (88.84% was accumulated in roots, while a high amount of the total absorbed Pb (71.39 was tranlocated to shoots of sunflower seedlings. Similar trends of Cd and Pb allocation between roots and shoots at the yield stage were recorded. We suggest here that sunflower plants may remediate Cd contaminated soils through phytostabilization, while may remediate Pb contaminated soils through phytoextraction. Finaly, the trace amounts of Cd and Pb that were accumulated in seeds recommends sunflower plants to be used safely and economically for cleaning up soils contaminated with Cd and/or Pb.

  5. Recolonization and succession of subtidal macrobenthic infauna in sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Lu, L.; Wu, R.S.S.

    2003-01-01

    No significant differences in abundance, species number, diversity and species composition were found between cadmium-contaminated and control sediments after 14 months. - Recolonization and succession of macrobenthic infauna in defaunated sediment contaminated with Cd were studied over a period of 14 months. Trays with defaunated sediment contaminated with cadmium, and trays with defaunated (control) sediment, were exposed at the subtidal in a subtropical environment. Macrobenthic succession exhibited different patterns in Cd-contaminated and control sediments. Abundance and species number were significantly higher in Cd-contaminated sediment during early succession, suggesting that cadmium may facilitate recolonization of certain species of macrobenthos. Cadmium also led to a significant change in species composition in initial colonization and subsequent succession. No significant difference in abundance, species number, diversity and species composition was found between Cd-contaminated and control sediments at the end of experiment, suggesting a stable benthic community was arrived within 14 months

  6. Recolonization and succession of subtidal macrobenthic infauna in sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L.; Wu, R.S.S

    2003-01-01

    No significant differences in abundance, species number, diversity and species composition were found between cadmium-contaminated and control sediments after 14 months. - Recolonization and succession of macrobenthic infauna in defaunated sediment contaminated with Cd were studied over a period of 14 months. Trays with defaunated sediment contaminated with cadmium, and trays with defaunated (control) sediment, were exposed at the subtidal in a subtropical environment. Macrobenthic succession exhibited different patterns in Cd-contaminated and control sediments. Abundance and species number were significantly higher in Cd-contaminated sediment during early succession, suggesting that cadmium may facilitate recolonization of certain species of macrobenthos. Cadmium also led to a significant change in species composition in initial colonization and subsequent succession. No significant difference in abundance, species number, diversity and species composition was found between Cd-contaminated and control sediments at the end of experiment, suggesting a stable benthic community was arrived within 14 months.

  7. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Song Saisai [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China)], E-mail: zlz@zju.edu.cn; Zhou Wenjun [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2008-12-15

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils. - Saponin has great potential for the simultaneous removal of cadmium and phenanthrene from the combined contaminated soils.

  8. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant

    International Nuclear Information System (INIS)

    Song Saisai; Zhu Lizhong; Zhou Wenjun

    2008-01-01

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils. - Saponin has great potential for the simultaneous removal of cadmium and phenanthrene from the combined contaminated soils

  9. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae)

    International Nuclear Information System (INIS)

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanita; Corradi, Maria Grazia

    2004-01-01

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 μM). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one

  10. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanita; Corradi, Maria Grazia

    2004-07-14

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 {mu}M). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one.

  11. Poplar response to cadmium and lead soil contamination.

    Science.gov (United States)

    Radojčić Redovniković, Ivana; De Marco, Alessandra; Proietti, Chiara; Hanousek, Karla; Sedak, Marija; Bilandžić, Nina; Jakovljević, Tamara

    2017-10-01

    An outdoor pot experiment was designed to study the potential of poplar (Populus nigra 'Italica') in phytoremediation of cadmium (Cd) and lead (Pb). Poplar was treated with a combination of different concentrations of Cd (w = 10, 25, 50mgkg -1 soil) and Pb (400, 800, 1200mgkg -1 soil) and several physiological and biochemical parameters were monitored including the accumulation and distribution of metals in different plant parts (leaf, stem, root). Simultaneously, the changes in the antioxidant system in roots and leaves were monitored to be able to follow synergistic effects of both heavy metals. Moreover, a statistical analysis based on the Random Forests Analysis (RFA) was performed in order to determine the most important predictors affecting growth and antioxidative machinery activities of poplar under heavy metal stress. The study demonstrated that tested poplar could be a good candidate for phytoextraction processes of Cd in moderately contaminated soils, while in heavily contaminated soil it could be only considered as a phytostabilisator. For Pb remediation only phytostabilisation process could be considered. By using RFA we pointed out that it is important to conduct the experiments in an outdoor space and include environmental conditions in order to study more realistic changes of growth parameters and accumulation and distribution of heavy metals. Also, to be able to better understand the interactions among previously mentioned parameters, it is important to conduct the experiments during prolonged time exposure., This is especially important for the long life cycle woody species. Copyright © 2017. Published by Elsevier Inc.

  12. Rating of cesium contamination of wild mushrooms

    International Nuclear Information System (INIS)

    Henrich, E.; Zapletal, M.; Friedrich, M.; Haider, W.

    1988-08-01

    'Rating' means here a 5-fold scale with the ranges: more than 100 nCi/kg raw weight - 'very high'; 300 - 100; 3 - 30; 1 - 3; less than 1 nCi/kg - 'very low'. A list of some 50 - 60 different kinds of mushrooms are listed and evaluated in this scale, as from 1988 and from a region with a high Chernobyl fallout. As a comparison, contamination values of 12 mushroom sorts from before the Chernobyl accident, coming from atmospheric nuclear weapons tests, are also given. 2 figs., 5 tabs. (qui)

  13. In situ immobilization of cadmium and zinc in contaminated soils : fiction or fixation?

    NARCIS (Netherlands)

    Osté, L.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.

    It is generally

  14. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    Science.gov (United States)

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.

  15. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.

    Science.gov (United States)

    Wu, Longhua; Li, Zhu; Han, Cunliang; Liu, Ling; Teng, Ying; Sun, Xianghui; Pan, Cheng; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2012-07-01

    A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs.

  16. An association between urinary cadmium and urinary stone disease in persons living in cadmium-contaminated villages in northwestern Thailand: A population study

    International Nuclear Information System (INIS)

    Swaddiwudhipong, Witaya; Mahasakpan, Pranee; Limpatanachote, Pisit; Krintratun, Somyot

    2011-01-01

    Excessive urinary calcium excretion is the major risk of urinary stone formation. Very few population studies have been performed to determine the relationship between environmental cadmium exposure and urinary stone disease. This population-based study examined an association between urinary cadmium excretion, a good biomarker of long-term cadmium exposure, and prevalence of urinary stones in persons aged 15 years and older, who lived in the 12 cadmium-contaminated villages in the Mae Sot District, Tak Province, northwestern Thailand. A total of 6748 persons were interviewed and screened for urinary cadmium and urinary stone disease in 2009. To test a correlation between urinary excretion of cadmium and calcium, we measured urinary calcium content in 1492 persons, who lived in 3 villages randomly selected from the 12 contaminated villages. The rate of urinary stones significantly increased from 4.3% among persons in the lowest quartile of urinary cadmium to 11.3% in the highest quartile. An increase in stone prevalence with increasing urinary cadmium levels was similarly observed in both genders. Multiple logistic regression analysis revealed a positive association between urinary cadmium levels and stone prevalence, after adjusting for other co-variables. The urinary calcium excretion significantly increased with increasing urinary cadmium levels in both genders, after adjusting for other co-variables. Elevated calciuria induced by cadmium might increase the risk of urinary stone formation in this environmentally exposed population. - Research highlights: → Excessive calciuria is the major risk of urinary stone formation. → We examine cadmium-exposed persons for urinary cadmium, calcium, and stones. → The rate of urinary stones increases with increasing urinary cadmium. → Urinary calcium excretion increases with increasing urinary cadmium. → Elevated calciuria induced by cadmium may increase the risk of urinary stones.

  17. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil

    International Nuclear Information System (INIS)

    Wu Fuzhong; Yang Wanqin; Zhang Jian; Zhou Liqiang

    2010-01-01

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98 ± 19.22 and 576.75 ± 40.55 μg cadmium per plant with 110.77 ± 12.68 and 202.54 ± 19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil.

  18. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fuzhong [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China); Yang Wanqin, E-mail: scyangwq@163.com [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China); Zhang Jian; Zhou Liqiang [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China)

    2010-05-15

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98 {+-} 19.22 and 576.75 {+-} 40.55 {mu}g cadmium per plant with 110.77 {+-} 12.68 and 202.54 {+-} 19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil.

  19. Combined Effects of Biochar and Fertilizer on Cadmium Contaminated Soil Remediation

    OpenAIRE

    WANG Qi-kai; GUO Wen-juan; SUN Guo-hong; LIN Da-song; XU Ying-ming; LIU Jing-ru; YU Shi-lei

    2015-01-01

    The field experiment was employed to study on the combined effects of biochar and chicken manure and N, P and K compound chemical fertilizer on cadmium contaminated soil remediation, and the immobilization mechanism was elucidated through fractionation of cadmium in the tested soil. Results showed that the addition of these ammendments could significantly reduce the edible Cd accumulation in Lactuca sativa L., decreased from 32.6% to 54.8% compared with the control. The application of these a...

  20. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Science.gov (United States)

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  1. Phytoextraction potential of cadmium and lead contamination using ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-12-31

    Dec 31, 2014 ... Vegetative growth, biomass, chemical content and uptake of cadmium (Cd) and ... Vegetative growth and chemical properties of M. azedarach are ..... MSc thesis. ... In: Environmental Science, Engineering and Technology.

  2. Cadmium contamination of atmospheric air in the Silesian cities

    OpenAIRE

    Aleksandra Moździerz; Małgorzata Juszko-Piekut; Jerzy Stojko

    2014-01-01

    Background. For many years, researchers have evaluated environmental damage caused by heavy metals, including cadmium, as well as health risks in the population exposed to them. Thus the aim of our study was to evaluate cadmium levels in the atmospheric air in 2009, including summer and winter heating season. A comparative analysis was performed using the corresponding data from 2005–2008. Material and Methods. In the study, we used the statistical output data of air p...

  3. Cadmium content of commercial and contaminated rice, Oryza sativa, in Thailand and potential health implications.

    Science.gov (United States)

    Zwicker, R; Promsawad, A; Zwicker, B M; Laoharojanaphand, S

    2010-03-01

    Thailand is the number one global exporter and among the top five producers of rice in the world. A significant increase in anthropogenic contamination in agricultural soils over the past few decades has lead to concerns with cadmium and its uptake in rice. The cadmium levels in Thai rice from different sources/areas were determined and used to estimate the potential health risks to consumers. The cadmium concentration in the commercial rice samples ranged from below the detection limit to 0.016 mg/kg. The cadmium concentrations in the contaminated rice samples ranged from a low of 0.007 mg/kg to a high of 0.579 mg/kg. Five of the calculated values exceed the proposed PTWI, with one value almost three times higher and two values almost double. The three highly elevated values are certainly a concern from a health standpoint. Ultimately, action is required to address the health implications resulting from the cadmium contamination in agricultural soils used for rice production in a few select areas of Thailand. Overall, this study indicates that the vast majority of rice produced, consumed and exported by Thailand is safe pertaining to cadmium content.

  4. Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: A population study

    Energy Technology Data Exchange (ETDEWEB)

    Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Mahasakpan, Pranee [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Limpatanachote, Pisit; Krintratun, Somyot [Department of Internal Medicine, Mae Sot General Hospital, Tak (Thailand)

    2010-08-15

    Risk for hypertension and diabetes has not been conclusively found to be a result of cadmium exposure. A population-based study was conducted in 2009 to examine the correlations of urinary cadmium, a good biomarker of long-term cadmium exposure, with hypertension and diabetes in persons aged 35 years and older who lived in the 12 cadmium-contaminated rural villages in northwestern Thailand. A total of 5273 persons were interviewed and screened for urinary cadmium, hypertension, and diabetes. The geometric mean level of urinary cadmium for women (2.4{+-}2.3 {mu}g/g creatinine) was significantly greater than that for men (2.0{+-}2.2 {mu}g/g creatinine). Hypertension was presented in 29.8% of the study population and diabetes was detected in 6.6%. The prevalence of hypertension significantly increased from 25.0% among persons in the lowest tertile of urinary cadmium to 35.0% in the highest tertile. In women, the rate of hypertension significantly increased with increasing urinary cadmium levels in both ever and never smokers, after adjusting for age, alcohol consumption, body mass index, and diabetes. In men, such association was less significantly found in never smokers. The study revealed no significant association between urinary cadmium and diabetes in either gender. Our study supports the hypothesis that environmental exposure to cadmium may increase the risk of hypertension. Risk for diabetes in relation to cadmium exposure remains uncertain in this exposed population.

  5. Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: A population study

    International Nuclear Information System (INIS)

    Swaddiwudhipong, Witaya; Mahasakpan, Pranee; Limpatanachote, Pisit; Krintratun, Somyot

    2010-01-01

    Risk for hypertension and diabetes has not been conclusively found to be a result of cadmium exposure. A population-based study was conducted in 2009 to examine the correlations of urinary cadmium, a good biomarker of long-term cadmium exposure, with hypertension and diabetes in persons aged 35 years and older who lived in the 12 cadmium-contaminated rural villages in northwestern Thailand. A total of 5273 persons were interviewed and screened for urinary cadmium, hypertension, and diabetes. The geometric mean level of urinary cadmium for women (2.4±2.3 μg/g creatinine) was significantly greater than that for men (2.0±2.2 μg/g creatinine). Hypertension was presented in 29.8% of the study population and diabetes was detected in 6.6%. The prevalence of hypertension significantly increased from 25.0% among persons in the lowest tertile of urinary cadmium to 35.0% in the highest tertile. In women, the rate of hypertension significantly increased with increasing urinary cadmium levels in both ever and never smokers, after adjusting for age, alcohol consumption, body mass index, and diabetes. In men, such association was less significantly found in never smokers. The study revealed no significant association between urinary cadmium and diabetes in either gender. Our study supports the hypothesis that environmental exposure to cadmium may increase the risk of hypertension. Risk for diabetes in relation to cadmium exposure remains uncertain in this exposed population.

  6. Phyto extraction Of Cadmium And Zinc From Contaminated Soils

    International Nuclear Information System (INIS)

    Lotfy, S.M.; Mostafa, A.Z.; Abdel Sabour, M. F.

    2012-01-01

    A trial was made to study the use of different plant species to extract heavy metals out of contaminated soils. Four Kg of each air-dried surface soil sample (0-20 cm) were packed in plastic containers in three replicates. Five plant species tested in this study namely, Panikum (Panicum antidotal) and napier grass (Bennisetum purpureum), squash (Cucurbita pepo), cotton (Gossypium hirsutum), sunflower (Helianthus annuus); were grown on two different polluted soil types (Mostorud Clayey soil, irrigated with contaminated water for more than 30 years and El-Gabal EL-Asfar sandyloam soil, subjected to sewage effluent irrigation for more than 50 years) in a complete randomized block experimental design to study the mobility and fate of selected heavy metals and evaluate the efficiency of the tested plant species to extract Cadmium and Zinc out of polluted soils. Data indicated that sunflower and cotton shoots accumulated the highest Cd content among the five tested plant species, Shoot concentrations of Cd were as high as 9.6 mg/kg dry matter of sunflower, followed by panikum and napier grass, cotton then squash with a range of Cd between 9.6 to 1.6 mg/kg dry matter in case of the alluvium soil. However in the sandy soil, sunflower Cd -shoots were > penakium> napier grass > cotton> Squash with a lower order of magnitude which could be explained by the lower Cd -content in sandy soil compared to the alluvial soil .Calculation of recovery percentage based on Cd and Zn removed from the soil after cultivation ranged between 5.9 to 27.4 % and 16.1 to 49.1% of total initial Cd and Zn, Respectively. However, The percentage of Cd and Zn -removed by plant shoots from the initial total varied between 27.6 to 37.5% and 25.3 and 36.8 % of the removed Cd and Zn, Respectively, whereas the lowest values were observed in case of squash for Cd and Zn. As expected plant roots exhibited higher Cd and Zn accumulation than in shoots by 2-3 folds. Sunflower roots showed the highest Cd

  7. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering

    International Nuclear Information System (INIS)

    Robson, T.C.; Braungardt, C.B.; Rieuwerts, J.; Worsfold, P.

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite ( −1 ). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg −1 ) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg −1 ) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. -- Highlights: • Sphalerite containing cadmium presents a hazard when present in agricultural soils. • Sphalerite dissolution was slow (0.6–1.2% y −1 ) but constant in contrasting soils. • Cadmium was released during dissolution and was bioavailable to wheat and rice. • Wheat grains accumulated potentially harmful cadmium concentrations. • Flooded paddy (reducing) soils reduced cadmium bioavailability to rice. -- Sphalerite dissolves steadily in oxic agricultural soils and can release highly bioavailable Cd, which may contaminate food crops destined for human consumption

  8. Cadmium

    NARCIS (Netherlands)

    Meulenbelt, Jan

    2017-01-01

    Together with zinc and mercury, cadmium belongs to group IIb of the periodic table. It can be found in rocks, soil, water, coal, zinc ore, lead ore, and copper ore. In the environment, cadmium is present predominantly as the oxide or as the chloride, sulfide, or sulfate salt. It has no recognizable

  9. Radioactive contamination of wild mushrooms: mycological approach and risk perception

    International Nuclear Information System (INIS)

    Droujinina, I.

    2001-11-01

    Recent investigations of the wide range of polluted environments have proven that different toxic elements, especially long-lived radionuclides of caesium and strontium, can be accumulated in fruit bodies of fungi. Therefore, consumption of wild mushrooms can be regarded as a risky activity. Radiocaesium, which was released into the environment by atomic weapons testing and accidents in the nuclear industry, is now accumulated particularly in the upper, mainly organic horizons of forest soils and it is assumed that fungal mycelium play a substantial role for the retention of this pollutant in top layers of soil. Nowadays macromycete fungi become a key point of the forest radioecology because of the extremely high level of the inter- and intraspecific variability of the radionuclide accumulation (from two to four orders of magnitude). The latter significantly complicates all efforts to predict the future migration of radionuclides in the ecosystem and creates a high uncertainty in the radioecological models. At the same time, mechanisms of radiocaesium uptake by fungal mycelium remain poorly understood. In this work, physiological mechanisms of radiocaesium accumulation by fungal mycelium (complex in vitro mycological approach) were investigated along with the pilot sociological study of the perception of the contamination of wild edible mushrooms by citizens of different countries. Such bilateral approach allows the comparison of an expert's perception of the problem with the mental model of those people who consume wild mushrooms. The revealed difference should be useful in future risk communication efforts when interested population should be informed. (author)

  10. Evaluation of soil amendments as a remediation alternative for cadmium contaminated soils under cacao plantations

    Science.gov (United States)

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils...

  11. Cadmium accumulation in soils caused by contaminated irrigation water in relation to safety level of enviromental water

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H; Iimura, K

    1974-01-01

    Adsorption of cadmium on the soil from irrigation water contaminated by human production activites were investigated. Both in the equilibrium and column experiments, the soils adsorbed more than 90 per cent of cadmium from the water containing 0.01 ppm cadmium and 18 or 300 ppm calcium. The amounts of cadmium adsorbed by the soils in the equilibrium experiments increased with the increasing concentrations (0.001-10 ppm) in accordance with the Freundlich's adsorption formula, the indices of which were near unity. In column experiments, the proportions of cadmium adsorbed by the soils from the water containing 0.01 ppm cadmium and 18 ppm calcium were equal to or more than those of calcium. It was estimated that if the water containing 0.01 ppm cadmium, that is the safety level of environmental water for human health by WHO and adopted as the permissible concentration by the Japanese Government, were irrigated in paddy fields, cadmium contents of the soils would exceed 1 ppm within a few years. Furthermore, on some of those contaminated soils, brown rice containing more than 1 ppm cadmium, that is the permissible concentration in brown rice authorised by the Japanese Government, will be produced. From the viewpoint of soil conservation from contamination, it is suggested that the permissible concentration of cadmium in the environment water should be lowered to at least one tenth of the present level. The exchange equilibriums in the soils between Cd and Ca and Cd and Na were discussed.

  12. Remediation of cadmium contaminated vertisol mediated by Prosopis charcoal and coir pith

    OpenAIRE

    Palaninaicker Senthilkumar; Duraisamy Prabha; Subpiramaniyan Sivakumar; Chandra Venkatasamy Subbhuraam

    2015-01-01

    Metal contamination of soil due to industrial and agricultural activities is increasingly becoming a global problem, thereby affecting animal and human life, thus rendering soil unsuitable for agricultural purposes. Remediation of cadmium (Cd) contaminated soil (Vertisol) using agricultural by products as source of organic amendments, Coir pith- a by-product of the coir industry and Prosopis charcoal- prepared by burning Prosopis plant wood (Prosopis juliflora L.) was investigated. The allevi...

  13. Tolerance to Cadmium of Agave lechuguilla (Agavaceae Seeds and Seedlings from Sites Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Alejandra Méndez-Hurtado

    2013-01-01

    Full Text Available We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz and from a noncontaminated site (Villa de Zaragoza were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  14. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    Science.gov (United States)

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Bioremediation of the Soils Contaminated with Cadmium and Chromium, by the Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Elham Aseman- Bashiz1

    2014-07-01

    Full Text Available One of the most important environmental problems in the world is the soils contamination by heavy metals in the industrial areas, and especially the contamination of the agricultural lands. The use of earthworms to bioremediate the soils results in reducing the pollutants concentration through a bioaccumulation mechanism on the contaminants in the earthworm's body. Hence, the present study aimed to prove the biological effectiveness of Eisenia fetida earthworms in bioremediation the soils contaminated with chromium and cadmium. Concentration of chromium and cadmium pollution in soil was determined to be 0.04 mg/g and 0.08 mg/g respectively. 30 worms were added to 500 g soil samples. Chromium and cadmium concentration in soil and in the body of worms was measured at two time periods of 21 and 42 days. To measure the concentration of chromium and cadmium we used ICP spectrometry. Software in usage was SPSS version 17. There was a significant correlation between the reduction of chromium and cadmium metals in the soils and the accumulation of chromium and cadmium metals in the worm’s body. A significant decline of chromium levels of the soil was observed in the days 21 and 42 during the study compared to initial amount of 0.1 mg/g. on the other hand chromium concentration of the soil decreased from 0.14 mg/g to 0.1 mg/g after 42 days. Comparison of mortality in two different time periods showed that by passing the time and by increase in soil chromium and cadmium concentrations the death toll of worms rises. The increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, say that using the worms for bioremediation is not recommended at such concentration of chromium but using the worms for the removal of cadmium at concentrations of 0.04 mg/g and 0.08 mg/g in the soil is recommended.

  16. Evaluating cadmium bioavailability in contaminated rice paddy soils and assessing potential for contaminant immobilisation with biochar.

    Science.gov (United States)

    Kosolsaksakul, Peerapat; Oliver, Ian W; Graham, Margaret C

    2018-06-01

    Cadmium (Cd) contaminated soils from the Mae Sot district in northwest Thailand, a region in which rice Cd concentrations often exceed health limits (0.4 mg/kg) set by the World Health Organisation, were examined for isotopically exchangeable Cd (Cd E values using a 111 Cd spike) to determine how this rates as a predictor of rice grain Cd in comparison with soil total Cd and solution extractable Cd (using the commonly applied BCR scheme and, in an attempt to distinguish carbonate bound forms, the Tessier soil sequential extraction scheme reagents). Step 1 of the BCR scheme (0.11 M CH 3 COOH) and step 1 of the Tessier scheme (1M MgCl 2 ) showed the highest R 2 values in regressions with rice Cd (91% and 90%, respectively), but all predictors were strongly linked to rice Cd (p soil, of the six tested, was an exception to this, where all predictors over-estimated grain Cd by a factor of 2.5-5.7, suggesting that rice grain Cd had been restricted here by the differing flooding regime and subsequent changes to redox conditions. E values and Tessier step 1 extractions were closely related, indicating that these measurements access similar pools of soil Cd. Separately, the isotopic exchangeability (representing bioavailability) of Cd was also assessed in two soils amended with rice husk and miscanthus biochars (0, 1, 5, 10, 15 and 20% w/w) in order to assess the utility of the biochars as a soil amendment for immobilising Cd in situ. One soil showed significant reductions in Cd E value at 5% rice husk biochar addition and at 15% miscanthus biochar addition however, based on the E value-rice grain Cd regression relationship previously established, the E values in the amended soils still predicted for a rice Cd concentration above the health limit. In the second soil, neither of the biochars successfully reduced the Cd E value. This indicates that further work is needed to customise biochar properties to suit specific soil and contaminant situations if they are to be

  17. Feasilbility of phytoextraction to remediate cadmium and zinc contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Romkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and

  18. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Romkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and

  19. Electromigration of cadmium in contaminated soils driven by single and multiple primary cells

    International Nuclear Information System (INIS)

    Yuan Songhu; Wu Chan; Wan Jinzhong; Lu Xiaohua

    2008-01-01

    This study tentatively used an iron (Fe) and carbon (C) primary cell, instead of dc electric power, to drive the electromigration of cadmium in contaminated soils. The addition of acid to C compartment increased the electric potential, while the addition of acid to Fe compartment had a slight influence on the potential. It was feasible using the primary cell to drive the electromigration of cadmium in kaolin. The electromigration efficiencies were highly related to the soil pH. Lower pH led to greater migration efficiency. The mechanisms involved the desorption of cadmium from soils to pore solution and the electromigration of cadmium in the pore solution. The desorption was critical to the electromigration process. The series of primary cells could expand the treatment area, but the electromigration efficiencies of cadmium in each cell were less than that achieved by single primary cell. Since the potential gradient produced by the primary cell was rather low, the electromigration rate of pollutants was very low and remediation duration was long. The application would be acceptable in some specific sites, such as acidic soils or artificially controlled acid conditions so that heavy metals have been desorbed from soils

  20. Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Gidarakos, Evangelos

    2005-01-01

    The main objective of this study is to evaluate the combination of electrokinetic remediation and soil washing technology in order to remove cadmium from contaminated soil. This paper presents the results of an experimental research undertaken to evaluate different washing and purging solutions to enhance the removal of cadmium from a real contaminated soil during electrokinetic remediation. Two different experimental modules were applied in the laboratory. Soil was saturated with tap water, while acetic and hydrochloric acids, as well as ethylenediaminetetraacetic acid (EDTA) were used as purging solutions in the first module. Results show that there was a decrease of cadmium concentration near anode, but a significant increase in the middle of the cell, due to the increasing pH. Citric, nitric and acetic acids were used for soil washing and purging solutions in the second module. In this case, an 85% reduction of cadmium concentration was achieved. Therefore, results indicate that soil pH and washing solutions are the most important factors in governing the dissolution and/or desorption of Cd in a soil system under electrical fields

  1. Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils.

    Science.gov (United States)

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The integrated potential of oilcake manure (OM), elemental sulphur (S(0)), Glomus fasciculatum and Pseudomonas putida by growing Helianthus annuus L for phytoremediation of cadmium and zinc contaminated soils was investigated under pot experiment. The integrated treatment (2.5 g kg(-1) OM, 0.8 g kg(-1) S(0) and co-inoculation with G. fasciculatum and P. putida promoted the dry biomass of the plant. The treatment was feasible for enhanced cadmium accumulation up to 6.56 and 5.25 mg kg(-1) and zinc accumulation up to 45.46 and 32.56 mg kg(-1) in root and shoot, respectively, which caused maximum remediation efficiency (0.73 percent and 0.25 percent) and bioaccumulation factor (2.39 and 0.83) for Cd and Zn, respectively showing feasible uptake (in mg kg(-1) dry biomass) of Cd (5.55) and Zn (35.51) at the contaminated site. Thus, authors conclude to integrate oilcake manure, S(0) and microbial co-inoculation for enhanced clean-up of cadmium and zinc-contaminated soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Ecophysiological characteristics and biogas production of cadmium-contaminated crops.

    Science.gov (United States)

    Zhang, Huayong; Tian, Yonglan; Wang, Lijun; Zhang, Luyi; Dai, Liming

    2013-10-01

    The present study proposes a novel strategy to get a rational production of biogas of the biomass residues from phytoremediation. This study investigates physiological responses, cadmium (Cd) accumulation and biogas production from canola, oat and wheat in pot and batch experiments. The results indicate that (1) aerial biomasses for canola, oat and wheat were enhanced by 5 mg Cd/kg soil by 19.41%, 8.78% and 3.38%, and the upper limit of Cd concentration that canola, oat and wheat can tolerate for aerial biomass production were 50, 10 and 10 mg Cd/kg soil; (2) canola accumulates more Cd than oat and wheat in its aerial parts; (3) cumulative biogas yields were 159.37%, 179.23% and 111.34% of the control when Cd in the shoot were 2.00±0.44, 39.80±1.25 and 6.37±0.15 mg Cd/kg biomass for canola, oat and wheat. Phytoremediation in cooperation with bioenergy production provide new insights for both soil remediation and energy research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Teixeira, Catarina; Almeida, C. Marisa R.; Nunes da Silva, Marta; Bordalo, Adriano A.; Mucha, Ana P.

    2014-01-01

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed

  4. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Catarina [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Almeida, C. Marisa R.; Nunes da Silva, Marta [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Bordalo, Adriano A. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Mucha, Ana P., E-mail: amucha@ciimar.up.pt [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed.

  5. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.

    Science.gov (United States)

    Koopmans, G F; Römkens, P F A M; Fokkema, M J; Song, J; Luo, Y M; Japenga, J; Zhao, F J

    2008-12-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg(-1). A biomass production of 1 and 5 t dm ha(-1) yr(-1) yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.

  6. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    International Nuclear Information System (INIS)

    Koopmans, G.F.; Roemkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg -1 . A biomass production of 1 and 5 t dm ha -1 yr -1 yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production. - An experimental method is presented to be used to estimate the phytoextraction duration of a metal contaminated soil

  7. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Koopmans, G.F. [Department of Soil Quality, Wageningen University, Wageningen University and Research Centre (WUR), P.O. Box 47, 6700 AA, Wageningen (Netherlands)], E-mail: gerwin.koopmans@wur.nl; Roemkens, P.F.A.M.; Fokkema, M.J. [Alterra, WUR, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Song, J.; Luo, Y.M. [Soil and Environmental Bioremediation Research Centre, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Japenga, J. [Alterra, WUR, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Zhao, F.J. [Soil Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)

    2008-12-15

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg{sup -1}. A biomass production of 1 and 5 t dm ha{sup -1} yr{sup -1} yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production. - An experimental method is presented to be used to estimate the phytoextraction duration of a metal contaminated soil.

  8. Reducing the bioavailability of cadmium in contaminated soil by dithiocarbamate chitosan as a new remediation.

    Science.gov (United States)

    Yin, Zheng; Cao, Jingjing; Li, Zhen; Qiu, Dong

    2015-07-01

    Dithiocarbamate chitosan (DTC-CTS) was used as a new amendment for remediation of cadmium (Cd)-contaminated soils to reduce the Cd bioavailability. Arabidopsis thaliana was chosen as a model plant to evaluate its efficiency. It was found that DTC-CTS could effectively improve the growth of A. thaliana. The amount of Cd up-taken by A. thaliana could be decreased by as much as 50% compared with that grown in untreated Cd-contaminated soil samples. The chlorophyll content and the aerial biomass of Arabidopsis also increased substantially and eventually returned to a level comparable to plants grown in non-contaminated soils, with the addition of DTC-CTS. These findings suggested that DTC-CTS amendment could be effective in immobilizing Cd and mitigating its accumulation in plants grown in Cd-contaminated soils, with potential application as an in situ remediation of Cd-polluted soils.

  9. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium

    Directory of Open Access Journals (Sweden)

    Gołda Sylwia

    2016-03-01

    Full Text Available The aim of the study was to compare the toleration of Poa pratensis, Lolium perenne and Festuca rubra to cadmium contamination as well as the phytoremediation potential of these three species of grass. The pot experiment was conducted in four replications in pots containing 2.0 kg of soil. The soil was contaminated with three doses of Cd – 30, 60 and 120 mg·kg−1. After two months, the aerial parts of plants were harvested. The roots were dug up, brushed off from the remaining soil and washed with water. The biomass was defined and the cadmium concentration was determined in aerial parts and roots. The phytoremediation potential of grasses was evaluated using biomass of grasses, bioaccumulation factor (BF and translocation factor (TF. All three tested species of grasses had TF 1. It indicates their suitability for phytostabilisation and makes them unsuitable for phytoextraction of Cd from the soil. Comparing the usefulness of the tested grasses for phytoremediation has shown that the phytostabilisation potential of P. pratensis was lower than that of L. perenne and F. rubra. P. pratensis was distinguished by higher TF, smaller root biomass and lower tolerance for Cd excess in the soil in comparison with the two other test grasses. At the same time, L. perenne was characterised by the smallest decrease in biomass and the largest Cd accumulation in roots at the lowest dose of Cd. It indicates good usefulness for phytostabilisation of soils characterised by a relatively small pollution by cadmium.

  10. Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils

    DEFF Research Database (Denmark)

    Holm, P.E.; Christensen, T.H.

    1998-01-01

    Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu g...... to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO(3))(2) extracts of the soils and with soil...... water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils....

  11. Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.

    Science.gov (United States)

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide

    2016-03-01

    The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes.

  12. Contamination of Soil, Water, Plant and Dust by Zinc, Lead and Cadmium in Southwest Isfahan

    Directory of Open Access Journals (Sweden)

    Nastaran Esmaeilpourfard

    2016-02-01

    Full Text Available Introduction Due to mining, considerable amounts of heavy metal bearing mineralsare scattered in the atmosphere in the form of dust and make the surrounding air, water and soils polluted.Runoff water movingfrom the mountainstowardsplains may also transport heavy metals from mines to the soils.One type ofpollutions is contamination withheavy metals.The purpose of the present research has been to investigate the effect of heavy metals of mine on soil, water, plant and dust pollution. Materials and Methods: Gushfil mine is located 3 kilometers southwest of Sepahanshahr, Isfahan. Soil profiles were dug 500 meters apart along three parallel transects, between east of Sepahanshahr and Gushfil mine. The profiles were described and samples were collected from their horizons. Ore, wells, plant and dust were sampled as well. Total concentrations of lead, zinc and cadmium were measured in the samples. To find the origin of polluted dust and soil, lead isotopes contents in the samples were measured and regressional relationships between the ratios of these contents were investigated. Results and Discussion Sepahanshahr soils are not contaminated by zinc, lead and cadmium, but within a distance of one to two kilometers from the Gushfil mine, the soils are polluted by zinc and lead. Cadmium contamination was not observed in the studied soils. In all of the soils, the heavy metals content varies downwards irregularly. The reason for this variation trend is that the studied soils are alluvial. In different periods of time, alluvium parent materials have been transported by runoff water from the lead and zinc mines towards the alluvial piedmont plain. The studied heavy metals have been distributed irregularly in different horizons of the soils that have been formed in these parent materials. Lead and cadmium concentrations of drinking water in the studied area are much higher than the maximum amount allowed by the World Health Organization. Cadmium content in

  13. Combined Effects of Biochar and Fertilizer on Cadmium Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    WANG Qi-kai

    2015-12-01

    Full Text Available The field experiment was employed to study on the combined effects of biochar and chicken manure and N, P and K compound chemical fertilizer on cadmium contaminated soil remediation, and the immobilization mechanism was elucidated through fractionation of cadmium in the tested soil. Results showed that the addition of these ammendments could significantly reduce the edible Cd accumulation in Lactuca sativa L., decreased from 32.6% to 54.8% compared with the control. The application of these additives could also significantly decrease extractable Cd concentration by 7.04%~21.85%. Biochar could significantly improve soil pH value, promote the inactivation of Cd contaminated soil, while the application of chicken manure significantly decreased soil pH value, which showed the effect of activating Cd in soil. Soil pH value had significant positive correlation with root Cd concentration of tested cultivars, but did not reach the significant effect level with the shoot Cd concentration. The research can provide a theoretical basis for the application of biochar combined with chicken manure and N, P and K compound chemical fertilizer on remediation of sewage irrigated Cd contaminated soil.

  14. Cadmium Phytoremediation by Arundo donax L. from Contaminated Soil and Water

    OpenAIRE

    Sabeen, Maria; Mahmood, Qaisar; Irshad, Muhammad; Fareed, Iftikhar; Khan, Afsar; Ullah, Farid; Hussain, Jamshaid; Hayat, Yousaf; Tabassum, Sobia

    2013-01-01

    The potential of Arundo donax L. for phytoextraction of cadmium (Cd) from contaminated soil and water was probed. The plants were grown under greenhouse conditions in pots containing a nutrient solution or soil with increasing doses of Cd (0, 50, 100, 250, 500, 750, and 1000  μ g L−1) for 21 days. The growth and physiology of plants were evaluated at the end of the experiment. The maximum Cd content in root was 300  μ g g−1 during hydroponics experiments over 230  μ g g−1 in soil experiment. ...

  15. Principles and methods of using wild animals in bioindication of global radioactive contamination

    International Nuclear Information System (INIS)

    Sokolov, V.E.; Krivolutskij, D.A.; Fedorov, E.A.; Pokarzhevskij, A.D.; Ryabtsev, I.A.; Usachev, V.L.

    1986-01-01

    Wild animals (mammals), birds, reptiles, amphibians, land and soil invertebrates) in natural ecosystems accumulate the easily detected radionuclide quantities. The technique for estimation of radionuclide content in the organism of animals are considered. It is suggested to use wild animals for studying biogenic migration of radionuclides by food chains in ecosystems in global monitoring of medium contamination, particularly on biosphers preserves

  16. Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F1 hybrids grown in cadmium-contaminated soils.

    Science.gov (United States)

    Li, Kun; Yu, Haiying; Li, Tingxuan; Chen, Guangdeng; Huang, Fu

    2017-07-01

    Cadmium (Cd) pollution has threatened severely to food safety and human health. A pot experiment and a field experiment were conducted to investigate the difference of Cd accumulation between rice (Oryza sativa L.) lines and F 1 hybrids in Cd-contaminated soils. The adverse effect on biomass of rice lines was greater than that of F 1 hybrids under Cd treatments in the pot experiment. The variations of Cd concentration among rice cultivars in different organs were smaller in stem and leaf, but larger in root and ear. Average proportion of Cd in root of F 1 hybrids was 1.39, 1.39, and 1.16 times higher than those of rice lines at the treatment of 1, 2, and 4 mg Cd kg -1 soil, respectively. Cd concentrations in ear of F 1 hybrids were significantly lower than rice lines with the reduction from 29.24 to 50.59%. Cd concentrations in brown rice of all F 1 hybrids were less than 0.2 mg kg -1 at 1 mg Cd kg -1 soil, in which Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be screened out as cadmium-safe cultivars (CSCs) for being safe even at 2 mg Cd kg -1 soil. C268A/YaHui2816 showed the lowest Cd concentration in root among F 1 hybrids, while Lu98A/YaHui2816 and 5406A/YaHui2816 showed lower capability of Cd translocation from root to shoot under Cd exposure, which eventually caused the lower Cd accumulation in brown rice. The lower level of Cd translocation contributed to reducing the accumulation of Cd in brown rice had been validated by the field experiment. Thus, Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be considered as potential CSCs to cultivate in Cd-contaminated soils (<2 mg Cd kg -1 soil).

  17. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.T. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Qiu, J.W. [Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong (China); Wang, X.W. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Zhong, Y. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Lan, C.Y. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China)]. E-mail: ls04@zsu.edu.cn; Shu, W.S. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China)]. E-mail: ls53@zsu.edu.cn

    2006-09-15

    This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents. - Carambola fruit can accumulate high levels of cadmium and may be a health risk for humans.

  18. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China

    International Nuclear Information System (INIS)

    Li, J.T.; Qiu, J.W.; Wang, X.W.; Zhong, Y.; Lan, C.Y.; Shu, W.S.

    2006-01-01

    This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents. - Carambola fruit can accumulate high levels of cadmium and may be a health risk for humans

  19. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils

    International Nuclear Information System (INIS)

    Thawornchaisit, Usarat; Polprasert, Chongrak

    2009-01-01

    The efficiency of three phosphate fertilizers including triple superphosphate (TSP), diammonium phosphate (DAP), and phosphate rock (PR) as stabilizing agents of cadmium-contaminated soils has been assessed in this study. Two types of assessment criteria, (a) the reduction of leachable cadmium concentration; and (b) the changes in Cd association with specific operational soil fraction based on the sequential extraction data, are used in the evaluation of stabilization performance of each fertilizer. Results of the study showed that after the 60-day stabilization, the leachable concentrations of Cd in PR-, DAP- and TSP- treated soils reduced from 306 mg/kg (the control) to 140, 34, and 12 mg/kg with the stabilization efficiency as TSP>DAP>PR. Results from the assessment of Cd speciation via sequential extraction procedure revealed that the soluble-exchangeable fraction and the surface adsorption fraction of Cd in the soils treated with PO 4 fertilizers, especially with TSP, have been reduced considerably. In addition, it is found that the reduction was correspondingly related with the increase of more stable forms of cadmium: the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (based on the molar ratio of PO 4 /Cd) increased. In addition, it was observed that stabilization was most effective when using the molar ratio of PO 4 /Cd at 2:1 and at least 21-day and 28-day stabilization time for TSP and DAP, respectively.

  20. Investigations on the contamination of Saxonian wild boars with radiocaesium; Untersuchungen zur Radiocaesiumbelastung von saechsischem Schwarzwild

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, T.; Abraham, A.; Preusse, W.; Pianski, J.; Alisch-Mark, M.; Lange, S. [Staatliche Betriebsgesellschaft fuer Umwelt und Landwirtschaft, Radebeul (Germany)

    2016-07-01

    As a result of the Chernobyl fallout some parts of the free state of Saxony were contaminated with radioactive caesium. Based on published maps of the soil contamination and on additional investigations some regions of elevated contamination could be localized. Parallel to soil investigations a game monitoring to wild boars and roe deer was performed. For both types of game typical seasonal variations of contamination were found. In Saxony only the contamination of wild boars is important. In the south of the Vogtland a region was found, where in all seasons the recommended high value of 600 Bq/kg was exceeded in game. In this region the investigation on radiocaesium is now obligatory for wild boars. The hunter can combine this analysis with the analysis on trichina. After three years measurements the region for obligatory analysis was adapted and expanded to neighbouring counties.

  1. Ecotoxicological effects of decabromodiphenyl ether and cadmium contamination on soil microbes and enzymes.

    Science.gov (United States)

    Zhang, Wei; Zhang, Meng; An, Shuai; Xiong, Bang; Li, Hui; Cui, Changzheng; Lin, Kuangfei

    2012-08-01

    The ecotoxicological effects of decabromodiphenyl ether (BDE209) and cadmium (Cd) contamination on soil culturable microbial population, enzyme activity and bacterial community structure were investigated. Results of the indoor incubation test runs performed on many series of control and contaminated soil samples have demonstrated some notable toxic effects due to long term exposure to either or both contaminants. The two contaminants produced notable yet different toxic effects on the test microbes; the population of the exposed species generally declined according to certain dose-response relationships. The soil culturable microbial population and enzyme activity data show that the sensitivity to one or both contaminants followed the order of: bacteria>fungi>actinomycete and urease>saccharase, respectively. The interaction between BDE209 and Cd was dependent on both the exposure dose and time and that the joint toxic effects were synergistic, antagonistic or additive. The PCR-DGGE analysis data of species composition and richness suggest the synergistic combined effects on bacterial community structure during the 30d exposure. Pseudomonas tuomuerensis strain CCM 7280 and Pseudomonas alcaliphila strain AL15-21 were enriched, indicating these species might be major functional populations and highly tolerant. Such observations have provided the useful information of potential ecotoxicological effects of BDE209 and Cd contamination in the environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Contamination of soil and the medicinal plant Phyllanthus niruri Linn. with cadmium in ceramic industrial areas.

    Science.gov (United States)

    Santos, Vanessa Santana Vieira; Arantes, Karen Magalhães; Gonçalves, Ester Luiza; Campos, Carlos Fernando; de Campos Júnior, Edimar Olegário; de Oliveira, Antônio Marcos Machado; Pereira, Boscolli Barbosa

    2018-04-22

    Phyllanthus niruri is a plant that is used to prevent calcium oxalate crystallisation and to block the stone formation in urolithiasis. Contaminants in the environment can be readily taken up by medicinal plants due to their ability to absorb chemicals into their tissues. If contaminated plants are ingested, they have the potential to negatively affect human and environmental health. The aim of this study was to assess contamination in the soil and the medicinal plant P. niruri by cadmium (Cd) in ceramic industrial areas of Monte Carmelo, Brazil. Soil samples and plant samples (divided in root, shoot and leaves) were collected from a contaminated monitoring site and from a rural area (which was used as a reference site for comparative purposes). The Cd concentrations of the samples were analysed with an atomic absorption spectrometer. P. niruri was found to be sensitive to soil contamination by Cd that was attributed to ceramic industrial emissions. The results revealed that Cd bioaccumulation in the roots and shoots of P. niruri was associated with a significant increase (p risk of contamination of the site and the risk of a high dose of Cd to people exposed at the site.

  3. Remediation of cadmium contaminated vertisol mediated by Prosopis charcoal and coir pith

    Directory of Open Access Journals (Sweden)

    Palaninaicker Senthilkumar

    2015-01-01

    Full Text Available Metal contamination of soil due to industrial and agricultural activities is increasingly becoming a global problem, thereby affecting animal and human life, thus rendering soil unsuitable for agricultural purposes. Remediation of cadmium (Cd contaminated soil (Vertisol using agricultural by products as source of organic amendments, Coir pith- a by-product of the coir industry and Prosopis charcoal- prepared by burning Prosopis plant wood (Prosopis juliflora L. was investigated. The alleviation potential of Prosopis charcoal and Coir pith on the negative effects of Cd in soil was evaluated in pot culture experiments with Vigna radiata as the test plant, a Cd accumulator. Cadmium addition to soil resulted in accumulation of Cd in all plant parts of V. radiata predominantly in roots. The influence of Cd in the presence and absence of organic amendments on the various biological and chemical parameters of the soil, on the levels of Cd accumulation and on the growth attributes of V. radiata has been assessed. Among the organic amendments, Prosopis charcoal was found to be more effective in reducing the bioavailable levels of Cd in the soil artificially spiked with Cd in graded concentrations of 0, 5, 10, 20, 40, 60, 80 and 100 µg g-1 and its accumulation in V. radiata, thus resulting in an increase in the root, leaf and stem biomass. Coir pith, however, was effective in increasing the total mycorrhizal colonization of roots and second in reducing Cd levels in plants. Therefore, Prosopis charcoal was considered best for stabilization of Cd in soil.

  4. Use of solar cell in electrokinetic remediation of cadmium-contaminated soil.

    Science.gov (United States)

    Yuan, Songhu; Zheng, Zhonghua; Chen, Jing; Lu, Xiaohua

    2009-03-15

    This preliminary study used a solar cell, instead of direct current (DC) power supply, to generate electric field for electrokinetic (EK) remediation of cadmium-contaminated soil. Three EK tests were conducted and compared; one was conducted on a cloudy and rainy day with solar cell, one was conducted on a sunny day with solar cell and another was conducted periodically with DC power supply. It was found that the output potential of solar cell depended on daytime and was influenced by weather conditions; the applied potential in soil was affected by the output potential and weather conditions, and the current achieved by solar cell was comparable with that achieved by DC power supply. Solar cell could be used to drive the electromigration of cadmium in contaminated soil, and removal efficiency achieved by solar cell was comparable with that achieved by DC power supply. Compared with traditional DC power supply, using solar cell as power supply for EK remediation can greatly reduce energy expenditure. This study provided an alternative to improve the EK soil remediation and expanded the use of solar cell in environmental remediation.

  5. Use of solar cell in electrokinetic remediation of cadmium-contaminated soil

    International Nuclear Information System (INIS)

    Yuan Songhu; Zheng Zhonghua; Chen Jing; Lu Xiaohua

    2009-01-01

    This preliminary study used a solar cell, instead of direct current (DC) power supply, to generate electric field for electrokinetic (EK) remediation of cadmium-contaminated soil. Three EK tests were conducted and compared; one was conducted on a cloudy and rainy day with solar cell, one was conducted on a sunny day with solar cell and another was conducted periodically with DC power supply. It was found that the output potential of solar cell depended on daytime and was influenced by weather conditions; the applied potential in soil was affected by the output potential and weather conditions, and the current achieved by solar cell was comparable with that achieved by DC power supply. Solar cell could be used to drive the electromigration of cadmium in contaminated soil, and removal efficiency achieved by solar cell was comparable with that achieved by DC power supply. Compared with traditional DC power supply, using solar cell as power supply for EK remediation can greatly reduce energy expenditure. This study provided an alternative to improve the EK soil remediation and expanded the use of solar cell in environmental remediation

  6. Clonal integration facilitates spread of Paspalum paspaloides from terrestrial to cadmium-contaminated aquatic habitats.

    Science.gov (United States)

    Luo, F-L; Xing, Y-P; Wei, G-W; Li, C-Y; Yu, F-H

    2017-11-01

    Cadmium (Cd) is a hazardous environmental pollutant with high toxicity to plants, which has been detected in many wetlands. Clonal integration (resource translocation) between connected ramets of clonal plants can increase their tolerance to stress. We hypothesised that clonal integration facilitates spread of amphibious clonal plants from terrestrial to Cd-contaminated aquatic habitats. The spread of an amphibious grass Paspalum paspaloides was simulated by growing basal older ramets in uncontaminated soil connected (allowing integration) or not connected (preventing integration) to apical younger ramets of the same fragments in Cd-contaminated water. Cd contamination of apical ramets of P. paspaloides markedly decreased growth and photosynthetic capacity of the apical ramets without connection to the basal ramets, but did not decrease these properties with connection. Cd contamination did not affect growth of the basal ramets without connection to the apical ramets, but Cd contamination of 4 and 12 mg·l -1 significantly increased growth with connection. Consequently, clonal integration increased growth of the apical ramets, basal ramets and whole clones when the apical ramets were grown in Cd-contaminated water of 4 and 12 mg·l -1 . Cd was detected in the basal ramets with connection to the apical ramets, suggesting Cd could be translocated due to clonal integration. Clonal integration, most likely through translocation of photosynthates, can support P. paspaloides to spread from terrestrial to Cd-contaminated aquatic habitats. Amphibious clonal plants with a high ability for clonal integration are particularly useful for re-vegetation of degraded aquatic habitats caused by Cd contamination. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  7. Drinking water exposure to cadmium, an environmental contaminant, results in the exacerbation of autoimmune disease in the murine model

    International Nuclear Information System (INIS)

    Leffel, Elizabeth K.; Wolf, Carl; Poklis, Alphonse; White, Kimber L.

    2003-01-01

    Cadmium is a pervasive environmental contaminant. The primary route of exposure to the general population occurs via contaminated drinking water or food supplies. Our hypothesis was that cadmium could be a trigger for inducing autoimmune disease (AD) in genetically predisposed populations. Therefore, New Zealand Black/White F1 (NZBW) mice were exposed to cadmium via drinking water. Mice were exposed to: 0, 3, 30, 3000 or 10000 parts per billion (ppb) of cadmium in tap water for 2, 4, 28, or 31 weeks. After 4 weeks of exposure, in the group of mice exposed to 10000 ppb cadmium, there was an increased incidence of antinuclear antibodies (ANA). There was also deposition of immune complexes in all groups after 4 weeks of exposure. After 31 weeks, there were increases in IgG2a in mice exposed to low doses of cadmium. In an attempt to establish the progression from an autoimmune reaction to the development of AD, the biological marker for AD, proteinuria, was assessed. Onset of proteinuria was exacerbated by 11 weeks in mice exposed to cadmium. This data suggests that short-term exposure may result in a type of autoimmune reaction since the mice are beginning to produce ANA after only 4 weeks of exposure and there is immune-complex deposition in the kidney. Long-term exposure to cadmium appears to result in the exacerbation of AD as indicated by the development of proteinuria and continued presence of immune complexes in the kidney. The mechanism may involve the increased production of IgG2a, which is capable of forming immune complexes and causing autoimmune glomerulonephritis

  8. Remediation of lead, cadmium and uranium contaminated water and soil by apatite amendment

    International Nuclear Information System (INIS)

    Raicevic, S.; Plecas, I.; Kaludjerovic, T.

    2002-01-01

    During the past years as a consequence of war and some accidents in neighboring countries large areas in Serbia were contaminated by toxic heavy metals, including lead, cadmium and uranium. For example, the concentrations of Pb, Cd, Cu and Cr have been doubled above the allowed maximum value in the Romanian part of the Danube while sediments near the border in Bulgaria have higher concentrations of Pb 3 times, Cu 1400 times and Cd 30 times more than the average long-standing levels. Furthermore, an estimated 10 tons of depleted uranium (DU) was spread mainly throughout the territory of Kosovo. This contamination is a potential source of different chronic diseases including malignant diseases and represents a long-term threat for the population living in the affected areas. For this reason, remediation of contaminated sites represents an urgent need and priority. The standard remediation procedure which includes soil removal, treatment (washing, chelating), conditioning etc. is costly, disruptive and not sustainable. This study was carried out to evaluate apatite from the Lisina deposit as soil amendment for in situ stabilization of toxic heavy metals. Preliminary theoretical and experimentally results presented here point out this natural apatite as an ecological, nontoxic material which can be used for efficient and cost-effective remediation of large areas contaminated with Pb, Cd and U. (author)

  9. Ricinus communis L. A Value Added Crop for Remediation of Cadmium Contaminated Soil.

    Science.gov (United States)

    Bauddh, Kuldeep; Singh, Kripal; Singh, Rana P

    2016-02-01

    Heavy metal pollution of soil is a global environmental problem and therefore its remediation is of paramount importance. Cadmium (Cd) is a potential toxicant to living organisms and even at very low concentrations. This study was aimed to assess the effectiveness of Ricinus communis for remediation of Cd contaminated soils. For this, growth and biomass of R. communis and Cd accumulation, translocation and partitioning in different plant parts were investigated after 8 months of plant growth in Cd contaminated soil (17.50 mg Cd kg−1 soil). Eight months old plants stabilized 51 % Cd in its roots and rest of the metal was transferred to the stem and leaves. There were no significant differences in growth, biomass and yield between control and Cd treated plants, except fresh weight of shoots. The seed yield per plant was reduced only by 5 % of Cd contaminated plants than control. The amount of Cd translocated to the castor seeds was nominal i.e. 0.007 µg Cd g−1 seeds. The bioconcentration factor reduced significantly in shoots and seeds in comparison to roots. The data indicates that R. communis is highly tolerant to Cd contamination and can be used for remediation of heavy metal polluted sites.

  10. Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative

    International Nuclear Information System (INIS)

    Daud, M.K.; Variath, M.T.; Ali, Shafaqat; Najeeb, U.; Jamil, Muhammad; Hayat, Y.; Dawood, M.; Khan, Muhammad Imran; Zaffar, M.; Cheema, Sardar Alam; Tong, X.H.; Zhu Shuijin

    2009-01-01

    The present study describes cadmium-induced alterations in the leaves as well as at the whole plant level in two transgenic cotton cultivars (BR001 and GK30) and their wild relative (Coker 312) using both ultramorphological and physiological indices. With elevated levels of Cd (i.e. 10, 100, 1000 μM), the mean lengths of root, stem and leaf and leaf width as well as their fresh and dry biomasses linearly decreased over their respective controls. Moreover, root, stem and leaf water absorption capacities progressively stimulated, which were high in leaves followed by roots and stems. BR001 accumulated more cadmium followed by GK30 and Coker 312. Root and shoot cadmium uptakes were significantly and directly correlated with each other as well as with leaf, stem and root water absorption capacities. The ultrastructural modifications in leaf mesophyll cells were triggered with increase in Cd stress regime. They were more obvious in BR001 followed by GK30 and Coker 312. Changes in morphology of chloroplast, increase in number and size of starch grains as well as increase in number of plastoglobuli were the noticed qualitative effects of Cd on photosynthetic organ. Cd in the form of electron dense granules could be seen inside the vacuoles and attached to the cell walls in all these cultivars. From the present experiment, it can be well established that both apoplastic and symplastic bindings are involved in Cd detoxification in these cultivars. Absence of tonoplast invagination reveals that Cd toxic levels did not cause water stress in any cultivars. Additionally, these cultivars possess differential capabilities towards Cd accumulation and its sequestration.

  11. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies.

    Science.gov (United States)

    Juhasz, Albert L; Weber, John; Naidu, Ravi; Gancarz, Dorota; Rofe, Allan; Todor, Damian; Smith, Euan

    2010-07-01

    In this study, cadmium (Cd) relative bioavailability in contaminated (n = 5) and spiked (n = 2) soils was assessed using an in vivo mouse model following administration of feed containing soil or Cd acetate (reference material) over a 15 day exposure period. Cadmium relative bioavailability varied depending on whether the accumulation of Cd in the kidneys, liver, or kidney plus liver was used for relative bioavailability calculations. When kidney plus liver Cd concentrations were used, Cd relative bioavailability ranged from 10.1 to 92.1%. Cadmium relative bioavailability was higher (14.4-115.2%) when kidney Cd concentrations were used, whereas lower values (7.2-76.5%) were derived when liver Cd concentrations were employed in calculations. Following in vivo studies, four in vitro methodologies (SBRC, IVG, PBET, and DIN), encompassing both gastric and intestinal phases, were assessed for their ability to predict Cd relative bioavailability. Pearson correlations demonstrated a strong linear relationship between Cd relative bioavailability and Cd bioaccessibility (0.62-0.91), however, stronger in vivo-in vitro relationships were observed when Cd relative bioavailability was calculated using kidney plus liver Cd concentrations. Whereas all in vitro assays could predict Cd relative bioavailability with varying degrees of confidence (r(2) = 0.348-0.835), large y intercepts were calculated for a number of in vitro assays which is undesirable for in vivo-in vitro predictive models. However, determination of Cd bioaccessibility using the intestinal phase of the PBET assay resulted in a small y intercept (5.14; slope =1.091) and the best estimate of in vivo Cd relative bioavailability (r(2) = 0.835).

  12. BIOREMEDIATION OF CONTAMINATED WASTE BY CADMIUM (Cd) IN WATERS USING INDIGEN BACTERIUM WITH EX-SITU WAY

    OpenAIRE

    Titik Wijayanti; Dinna Eka Graha Lestari

    2017-01-01

    The bioremediation technique for a contaminated liquid waste of heavy metals using indigenous bacteria is a convenient alternative to steps continues to be developed. The research aims to find out the effectiveness of an indigenous bacterial consortium in bioremediation of contaminated liquid waste by cadmium by ex-situ. Experiments were arranged in RAL made in ex-situ where a liquid waste industry was given five treatments, namely control and four indigenous bacterial consortia (A, D, E, and...

  13. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China.

    Science.gov (United States)

    Li, J T; Qiu, J W; Wang, X W; Zhong, Y; Lan, C Y; Shu, W S

    2006-09-01

    This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents.

  14. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    Science.gov (United States)

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P soils and significantly diminished M3-extractable Cd (P soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P soils.

  15. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    Science.gov (United States)

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  16. Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design.

    Science.gov (United States)

    Mu'azu, Nuhu Dalhat; Haladu, Shamsuddeen A; Jarrah, Nabeel; Zubair, Mukarram; Essa, Mohammad H; Ali, Shaikh A

    2018-01-15

    The occurrences of heavy metal contaminated sites and soils and the need for devising environmentally friendly solutions have become global issues of serious concern. In this study, polyaspartate (a highly biodegradable agent) was synthesized using L-Aspartic acid via a new modified thermal procedure and employed for extraction of cadmium ions (Cd) from contaminated soil. Response surface methodology approach using 3 5 full faced centered central composite design was employed for modeling, evaluating and optimizing the influence of polyaspartate concentration (36-145mM), polyaspartate/soil ratio (5-25), initial heavy metal concentration (100-500mg/kg), initial pH (3-6) and extraction time (6-24h) on Cd ions extracted into the polyaspartate solution and its residual concentration in the treated soil. The Cd extraction efficacy obtained reached up to 98.8%. Increase in Cd extraction efficiency was associated with increase in the polyaspartate and Cd concentration coupled with lower polyaspertate/soil ratio and initial pH. Under the optimal conditions characterized with minimal utilization of the polyaspartate and high Cd ions removal, the extractible Cd in the polyaspartate solution reached up to 84.4mg/L which yielded 85% Cd extraction efficacy. This study demonstrates the suitability of using polyaspartate as an effective environmentally friendly chelating agent for Cd extraction from contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-01-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. - Highlights: • Plant shoot Cd decreased in high-Cd acid soil and also plant Zn did in two acid soils. • Plant shoot Cd remained constant in low-Cd acid soil and also plant Zn did in alkaline soils. • Acidic soils showed much higher total metal removal efficiency than the alkaline soils. - Acid soil has high total metal phytoremediation efficiency while a strategy based on stripping of the bioavailable contaminant might be feasible for alkaline soil phytoremediation

  18. Association of soil cadmium contamination with ceramic industry: A case study in a Chinese town

    International Nuclear Information System (INIS)

    Liao, Q. Lin; Liu, Cong; Wu, H. Yun; Jin, Yang; Hua, Ming; Zhu, B. Wan; Chen, Kai; Huang, Lei

    2015-01-01

    Soil cadmium (Cd) contamination is attributable to many sources, among which the ceramic industry is probably an important contributor whose relationship will be explored in this study. Upon studying a town in southeastern China that is quite famous for its ceramics, we observed that the soil Cd distribution agreed with the local ceramic industry's distribution in space and time from 2004 to 2014. Ceramic and pigment samples from a typical factory were selected in a case study, and a sediment core from a nearby river was collected. First, an application of the geo-accumulation index suggested that the sediment was very strongly polluted by Cd (mean 1874 mg/kg). Second, sediment dating indicated that the Cd concentration surge and the establishment of the factory were proximate in time (2002–2004). Third, principal component analysis showed high loading of Cd (0.947) solely, suggesting that the factory was most likely responsible for the Cd pollution found in the sediments of a nearby river. Finally, we infer that the soil cadmium pollution in the whole area may be related to the region's prosperous ceramic industry. Local government should reinforce controls of the ceramic industry and implement effective countermeasures. - Highlights: • The sediment is strongly polluted by Cd in a Chinese town. • Cd concentration surged when the nearby ceramic factory was established. • Cd is solely loaded in a principal component and abundant in the ceramic pigments. • The local ceramic industry may be responsible for the soil Cd contamination

  19. Association of soil cadmium contamination with ceramic industry: A case study in a Chinese town

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Q. Lin [Geological Survey of Jiangsu Province, Nanjing 210018 (China); Liu, Cong [Jiangsu Provincial Department of Land Resources, Nanjing 210017 (China); Wu, H. Yun [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Campus, Box 624, 163 Xianlin Avenue, Nanjing 210023 (China); Jin, Yang; Hua, Ming; Zhu, B. Wan [Geological Survey of Jiangsu Province, Nanjing 210018 (China); Chen, Kai [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Campus, Box 624, 163 Xianlin Avenue, Nanjing 210023 (China); Huang, Lei, E-mail: huanglei@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Campus, Box 624, 163 Xianlin Avenue, Nanjing 210023 (China)

    2015-05-01

    Soil cadmium (Cd) contamination is attributable to many sources, among which the ceramic industry is probably an important contributor whose relationship will be explored in this study. Upon studying a town in southeastern China that is quite famous for its ceramics, we observed that the soil Cd distribution agreed with the local ceramic industry's distribution in space and time from 2004 to 2014. Ceramic and pigment samples from a typical factory were selected in a case study, and a sediment core from a nearby river was collected. First, an application of the geo-accumulation index suggested that the sediment was very strongly polluted by Cd (mean 1874 mg/kg). Second, sediment dating indicated that the Cd concentration surge and the establishment of the factory were proximate in time (2002–2004). Third, principal component analysis showed high loading of Cd (0.947) solely, suggesting that the factory was most likely responsible for the Cd pollution found in the sediments of a nearby river. Finally, we infer that the soil cadmium pollution in the whole area may be related to the region's prosperous ceramic industry. Local government should reinforce controls of the ceramic industry and implement effective countermeasures. - Highlights: • The sediment is strongly polluted by Cd in a Chinese town. • Cd concentration surged when the nearby ceramic factory was established. • Cd is solely loaded in a principal component and abundant in the ceramic pigments. • The local ceramic industry may be responsible for the soil Cd contamination.

  20. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides.

    Science.gov (United States)

    Peng, Weihua; Li, Xiaomin; Song, Jingxiang; Jiang, Wei; Liu, Yingying; Fan, Wenhong

    2018-04-01

    Bioremediation using microorganisms is a promising technique to remediate soil contaminated with heavy metals. In this study, Rhodobacter sphaeroides was used to bioremediate soils contaminated with cadmium (Cd) and zinc (Zn). The study found that the treatment reduced the overall bioavailable fractions (e.g., exchangeable and carbonate bound phases) of Cd and Zn. More stable fractions (e.g., Fe-Mn oxide, organic bound, and residual phases (only for Zn)) increased after bioremediation. A wheat seedling experiment revealed that the phytoavailability of Cd was reduced after bioremediation using R. sphaeroides. After bioremediation, the exchangeable phases of Cd and Zn in soil were reduced by as much as 30.7% and 100.0%, respectively; the Cd levels in wheat leaf and root were reduced by as much as 62.3% and 47.2%, respectively. However, when the soils were contaminated with very high levels of Cd and Zn (Cd 54.97-65.33 mg kg -1 ; Zn 813.4-964.8 mg kg -1 ), bioremediation effects were not clear. The study also found that R. sphaeroides bioremediation in soil can enhance the Zn/Cd ratio in the harvested wheat leaf and root overall. This indicates potentially favorable application in agronomic practice and biofortification. Although remediation efficiency in highly contaminated soil was not significant, R. sphaeroides may be potentially and practically applied to the bioremediation of soils co-contaminated by Cd and Zn. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Contamination by cadmium and lead of some fruits and vegetables exposed to polluted air

    International Nuclear Information System (INIS)

    Nohra, R.

    2004-01-01

    .45 ppm ± 0.025 for the lead and, 0.04 ± 0.006 and 0.12 ppm ± 0.013 for the cadmium. Regarding lead, Chiah region was the most contaminated (0.18 ppm ± 0.02) because of the presence of the electrical center, as for the supermarket, the average value was the lowest (0.06 ppm ± 0.015)

  2. BIOREMEDIATION OF CONTAMINATED WASTE BY CADMIUM (Cd IN WATERS USING INDIGEN BACTERIUM WITH EX-SITU WAY

    Directory of Open Access Journals (Sweden)

    Titik Wijayanti

    2017-10-01

    Full Text Available The bioremediation technique for a contaminated liquid waste of heavy metals using indigenous bacteria is a convenient alternative to steps continues to be developed. The research aims to find out the effectiveness of an indigenous bacterial consortium in bioremediation of contaminated liquid waste by cadmium by ex-situ. Experiments were arranged in RAL made in ex-situ where a liquid waste industry was given five treatments, namely control and four indigenous bacterial consortia (A, D, E, and J obtained from the isolation of bacteria originating from cadmium-contaminated of waste in Pasuruan district. Furthermore conducted observations of BOD5, COD, d.o. and Cd for seven days to find out the effectiveness of bioremediation. The results showed the four indigenous bacteria consortia have the bioremediation ability to reduce levels of cadmium, BOD5, COD, and increasing levels of DO. Indigenous bacterial consortia D has the best ability of liquid industrial waste bioremediation by ex-situ. Indigenous bacterial consortia J has the best of capacity reduction levels of cadmium, then the other of indigenous bacterial consortia.

  3. [Differential Effect and Mechanism of in situ Immobilization of Cadmium Contamination in Soil Using Diatomite Produced from Different Areas].

    Science.gov (United States)

    Zhu, Jian; Wang, Ping; Lin, Yan; Lei, Ming-jing; Chen, Yang

    2016-02-15

    In order to understand the difference of in situ immobilization effect and mechanism of Cd contamination in soil using diatomite produced from different areas, the test was conducted using diatomite produced from Yunnan Tengchong, Jilin Linjiang, Zhejiang Shengzhou and Henan Xinyang of China as modifiers to immobilize cadmium contamination in simulated soil. The results indicated that the diatomite from all the four producing areas could effectively immobilize available Cd in soil, decreasing the available Cd content in soil by 27.7%, 28.5%, 30.1% and 57.2%, respectively when the adding concentration was 30 g x kg(-1). Their ability for immobilizing available Cd in soil followed the sequence of Henan Xinyang > Zhejiang Shengzhou > Jilin Linjiang > Yunnan Tengchong. It was also found that the physical and chemical properties of diatomite played a main role in soil cadmium immobilization, lower bulk density, larger specific surface area, more micro pores and wider distribution range of aperture were more favorable for available Cd immobilization. The results also showed that, the diatomite could control Cd contamination by changing soil physical and chemical properties, among these properties, pH and organic matter content were the key factors, increasing soil pH value and organic matter content was favorable for available cadmium immobilization, while the soil water content had little effect on available cadmium immobilization. The control of soil cadmium contamination by using diatomite to change cation exchange capacity was limited by time in some degree. The diatomite produced from Henan Xinyang, Zhejiang Shengzhou and Yunnan Tengchong increased the soil pH value and organic matter content, and was favorable for available Cd immobilization, while the diatomite from Jilin Linjiang showed converse effect.

  4. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination

    International Nuclear Information System (INIS)

    Mandal, Asit; Biswas, Bhabananda; Sarkar, Binoy; Patra, Ashok K.; Naidu, Ravi

    2016-01-01

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30 mg L"−"1 metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10 mg L"−"1), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72–78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP–bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil. - Highlights: • Surface tailored organobentonite synthesised and characterised • Modified clay adsorbs Cd and reduces toxicity to Mycobacterium gilvum. • It creates congenial microenvironment for bacterial survival. • It enhances phenanthrene biodegradation in metal co-contaminated condition.

  5. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Asit [Future Industries Institute (formerly Centre for Environmental Risk Assessment and Remediation), University of South Australia, Mawson Lakes, SA 5095 (Australia); Indian Council of Agricultural Research (ICAR), Indian Institute of Soil Science, Bhopal (India); Biswas, Bhabananda [Future Industries Institute (formerly Centre for Environmental Risk Assessment and Remediation), University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT Building, University of Newcastle, Callaghan, NSW 2308 (Australia); Sarkar, Binoy, E-mail: binoy.sarkar@unisa.edu.au [Future Industries Institute (formerly Centre for Environmental Risk Assessment and Remediation), University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT Building, University of Newcastle, Callaghan, NSW 2308 (Australia); Patra, Ashok K. [Indian Council of Agricultural Research (ICAR), Indian Institute of Soil Science, Bhopal (India); Naidu, Ravi, E-mail: ravi.naidu@newcastle.edu.au [Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT Building, University of Newcastle, Callaghan, NSW 2308 (Australia); Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-04-15

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30 mg L{sup −1} metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10 mg L{sup −1}), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72–78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP–bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil. - Highlights: • Surface tailored organobentonite synthesised and characterised • Modified clay adsorbs Cd and reduces toxicity to Mycobacterium gilvum. • It creates congenial microenvironment for bacterial survival. • It enhances phenanthrene biodegradation in metal co-contaminated condition.

  6. Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices

    International Nuclear Information System (INIS)

    Liu Wan; Yang, Y.S.; Li, P.J.; Zhou, Q.X.; Xie, L.J.; Han, Y.P.

    2009-01-01

    Impact assessment of contaminants in soil is an important issue in environmental quality study and remediation of contaminated land. A random amplified polymorphic DNA (RAPD) 'fingerprinting' technique was exhibited to detect genotoxin-induced DNA damage of plants from heavy metal contaminated soil. This study compared the effects occurring at molecular and population levels in barley seedlings exposed to cadmium (Cd) contamination in soil. Results indicate that reduction of root growth and increase of total soluble protein level in the root tips of barley seedlings occurred with the ascending Cd concentrations. For the RAPD analyses, nine 10-base pair (bp) random RAPD primers (decamers) with 60-70% GC content were found to produce unique polymorphic band patterns and subsequently were used to produce a total of 129 RAPD fragments of 144-2639 base pair in molecular size in the root tips of control seedlings. Results produced from nine primers indicate that the changes occurring in RAPD profiles of the root tips following Cd treatment included alterations in band intensity as well as gain or loss of bands compared with the control seedlings. New amplified fragments at molecular size from approximately 154 to 2245 bp appeared almost for 10, 20 and 40 mg L -1 Cd with 9 primers (one-four new polymerase chain reaction, (PCR) products), and the number of missing bands enhanced with the increasing Cd concentration for nine primers. These results suggest that genomic template stability reflecting changes in RAPD profiles were significantly affected and it compared favourably with the traditional indices such as growth and soluble protein level at the above Cd concentrations. The DNA polymorphisms detected by RAPD can be applied as a suitable biomarker assay for detection of the genotoxic effects of Cd stress in soil on plants. As a tool in risk assessment the RAPD assay can be used in characterisation of Cd hazard in soil

  7. Increasing cadmium and zinc levels in wild common eiders breeding along Canada's remote northern coastline

    International Nuclear Information System (INIS)

    Mallory, Mark L.; Braune, Birgit M.; Robertson, Gregory J.; Gilchrist, H. Grant; Mallory, Conor D.; Forbes, Mark R.; Wells, Regina

    2014-01-01

    The common eider (Somateria mollissima) is an abundant sea duck breeding around the circumpolar Arctic, and is an important component of subsistence and sport harvest in some regions. We determined hepatic cadmium (Cd) and zinc (Zn) concentrations in the livers of breeding females sampled during three time periods including 1992/3, 2001/2 and 2008 at three sites spanning 53.7°N–75.8°N in the eastern Canadian Arctic. At all sites, concentrations of both Cd and Zn increased ∼ 300% over this time period. The reasons for this rapid increase in concentrations are unclear. - Highlights: • Cd and Zn analyzed in common eider (Somateria mollissima) liver tissue in Canadian Arctic from sites spanning 3000 km. • ∼ 300% increase in concentrations observed over ∼ 20 years • Levels of both elements considered high and near levels thought to pose concerns for wildlife health

  8. DNA damage in haemocytes and midgut gland cells of Steatoda grossa (Theridiidae) spiders exposed to food contaminated with cadmium.

    Science.gov (United States)

    Stalmach, Monika; Wilczek, Grażyna; Wilczek, Piotr; Skowronek, Magdalena; Mędrzak, Monika

    2015-03-01

    The aim of this study was to assess the genotoxic effects of Cd on haemocytes and midgut gland cells of web-building spiders, Steatoda grossa (Theridiidae), exposed to the metal under laboratory conditions. Analyzes were conducted on adult females and males, fed for four weeks with cadmium-contaminated Drosophila hydei flies, grown on a medium suplemented with 0.25 mM CdCl2. The comet assay, providing a quantitative measure of DNA strand breaks, was used to evaluate the DNA damage caused by the metal. Cadmium content was measured in whole spider bodies by the AAS method. Metal body burden was significantly lower in females (0.25 µgg(-1) dry weight) than in males (3.03 µgg(-1) dry weight), suggesting that females may have more effective mechanisms controlling the uptake of metal, via the digestive tract, or its elimination from the body. Irrespectively of sex, spiders fed prey contaminated with cadmium showed significantly higher values of comet parameters: tail DNA (TDNA), tail length (TL) and olive tail moment (OTM), in comparison with the control. In midgut gland cells, the level of DNA damage was higher for males than females, while in haemocytes the genotoxic effect of cadmium was greater in females. The obtained results indicate that in spiders cadmium displays strong genotoxic effects and may cause DNA damage even at low concentrations, however the severity of damage seems to be sex- and internal organ-dependent. The comet assay can be considered a sensitive tool for measuring the deleterious effect of cadmium on DNA integrity in spiders. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.

    Science.gov (United States)

    Hechmi, Nejla; Ben Aissa, Nadhira; Abdennaceur, Hassen; Jedidi, Naceur

    2013-01-01

    The ubiquitous coexistence of heavy metals and organic contaminants was increased in the polluted soil and phytoremediation as a remedial technology and management option is recommended to solve the problems of co-contamination. Growth of Zea mays L and pollutant removal ability may be influenced by interactions among mixed pollutants. Pot-culture experiments were conduced to investigate the single and interactive effect of cadmium (Cd) and pentachlorophenol (PCP) on growth of Zea mays L, PCP, and Cd removal from soil. Growth response of Zea mays L is considerably influenced by interaction of Cd and PCP, significantly declining with either Cd or PCP additions. The dissipation of PCP in soils was notably affected by interactions of Cd, PCP, and plant presence or absence. At the Pentachlorophenol in both planted and non-planted soil was greatly decreased at the end of the 10-week culture, accounting for 16-20% of initial extractable concentrations in non-planted soil and 9-14% in planted soil. With the increment of Cd level, residual pentachlorophenol in the planted soil tended to increase. The pentachlorophenol residual in the presence of high concentration of Cd was even higher in the planted soil than that in the non-planted soil.

  10. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite

    International Nuclear Information System (INIS)

    Zhang Zizhong; Li Mengyan; Chen Wei; Zhu Shuzhen; Liu Nannan; Zhu Lingyan

    2010-01-01

    The effectiveness and mechanism of nano-hydroxyapatite particles (nHAp) in immobilizing Pb and Cd from aqueous solutions and contaminated sediment were investigated. The maximum sorption amount (Q max ) of Pb and Cd in aqueous solution was 1.17 and 0.57 mmol/g. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) surface and depth analysis indicated that dissolution-precipitation is the primary immobilization mechanism for Pb, while surface complexation and intraparticle diffusion account for Cd sequestration. Different amounts of nHAp (0-10% nHAp/dry weight) were added to the contaminated sediment. Sequential extraction showed that nHAp could effectively reduce the exchangeable fraction of Pb and Cd in the sediment and significantly reduce the concentration in porewater. The results in this study showed that nHAp can immobilize Pb and Cd in sediment effectively. - Nano-hydroxyapatite shows potential and advantages to immobilize lead and cadmium in aqueous solution and sediment.

  11. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals

    International Nuclear Information System (INIS)

    Makino, Tomoyuki; Sugahara, Kazuo; Sakurai, Yasuhiro; Takano, Hiroyuki; Kamiya, Takashi; Sasaki, Kouta; Itou, Tadashi; Sekiya, Naoki

    2006-01-01

    The efficiencies of neutral salts, strong acids, and chelates were tested for extracting cadmium (Cd) from three paddy soils. The higher the selectivity of the cations of the added neutral salts toward soil adsorption sites, the lower the pH in the extracts and the more soil Cd could be extracted. In addition, soil carbon and nitrogen contents and mineral composition were closely associated with the amount of Cd extracted. Calcium chloride and iron(III) chloride were selected as wash chemicals to restore Cd-contaminated paddy soils in situ. Washing with calcium chloride led to the formation of Cd chloride complexes, enhancing Cd extraction from the soils. The washing also substantially decreased soil levels of exchangeable and acid-soluble Cd, which are the major forms of bioavailable Cd for rice (Oryza sativa L.). The optimum conditions for in situ soil washing were also determined for calcium chloride. - Calcium chloride and iron(III) chloride were useful for the in situ washing of Cd-contaminated paddy soils

  12. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Nikolaou, Aris; Pentari, Despina; Gidarakos, Evangelos

    2009-01-01

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  13. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Nikolaou, Aris [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Laboratory of Inorganic and Organic Geochemistry and Organic Petrography, Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2009-12-15

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  14. Effect of coated urea on cadmium accumulation in Oryza sativa L. grown in contaminated soil.

    Science.gov (United States)

    Xu, Chao; Wu, Zisong; Zhu, Qihong; Zhu, Hanhua; Zhang, Yangzhu; Huang, Daoyou

    2015-11-01

    Experiments were conducted to determine the effects of three types of coated urea on the accumulation of cadmium (Cd) in rice (Oryza sativa L.) grown in contaminated soil. Pot-culture experiments were conducted in a greenhouse from July to November 2012 on the rice cultivar "Hua Hang Si Miao" in Guangzhou (China). The experimental design was completely randomized with four treatments and three replications. The treatments were control (CK) (N 0 mg/kg), prilled urea (PU) (N 200 mg/kg), polymer-coated urea (PCU) (N 200 mg/kg), and sulfur-coated urea (SCU) (N 200 mg/kg). Our results indicated that applications of PCU and SCU slightly increased the dry weight of rice grains. The application of SCU significantly decreased the CaCl2 and toxicity characteristic leaching procedure (TCLP)-extractable Cd concentrations by 15.4 and 56.1%, respectively. Sequential extractions showed that PCU and SCU applications led to a significant decrease in Cd in the exchangeable fraction and an increase in the bound iron (Fe) and manganese (Mn) oxides fractions. Cd concentrations in grains treated with PCU were reduced by 11.7%, whereas SCU significantly reduced Cd concentrations by 29.1%. SCU reduced Cd transfer from the straws to the grain. Our results demonstrated that PCU and SCU may be effective in mitigating Cd accumulation in rice grown in acidic Cd-contaminated soil, especially in plants receiving SCU.

  15. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  17. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils.

    Science.gov (United States)

    Jia, Weitao; Lv, Sulian; Feng, Juanjuan; Li, Jihong; Li, Yinxin; Li, Shizhong

    2016-09-01

    Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall

  18. Enzymatic correlates of energy status in wild yellow perch inhabiting clean and contaminated environments.

    Science.gov (United States)

    Gauthier, Charles; Campbell, Peter G C; Couture, Patrice

    2011-09-01

    Enzymes representing a variety of metabolic pathways were examined in yellow perch (Perca flavescens) collected from a metal-contaminated region (Rouyn-Noranda, Québec, Canada) to determine which were most closely related to fish condition factor, pyloric caeca weight, and visceral lipid accumulation, as well to seek a better understanding of the influence of metal contamination on the physiology and biometrics of perch. Compared to laboratory fish, wild perch were under important energy restrictions. The condition factor of wild fish was correlated with indicators of aerobic metabolism (citrate synthase, cytochrome C oxidase), protein anabolism (nucleoside diphosphokinase), and indicators of lipid accumulation (glucose-6-phosphate dehydrogenase, visceral lipid index). Pyloric caeca weights were well correlated with indicators of protein anabolism, but only when both seasons were examined together, possibly indicating a lag in the response of enzymes to changes in diet. The addition of contaminant stress to existing energy restrictions led to changes in the relationships between enzymes and biometrics, reducing the predictive power of the models for perch in contaminated lakes. The present study broadens our knowledge of the impact of metal contamination on energy accumulation and tissue metabolic capacities in wild perch. Copyright © 2011 SETAC.

  19. Cadmium transfer from contaminated soils to the human body through rice consumption in southern Jiangsu Province, China.

    Science.gov (United States)

    Li, Tianyuan; Chang, Qing; Yuan, Xuyin; Li, Jizhou; Ayoko, Godwin A; Frost, Ray L; Chen, Hongyan; Zhang, Xinjian; Song, Yinxian; Song, Wenzhi

    2017-06-21

    Consumption of crops grown in cadmium-contaminated soils is an important Cd exposure route to humans. The present study utilizes statistical analysis and in vitro digestion experiments to uncover the transfer processes of Cd from soils to the human body through rice consumption. Here, a model was created to predict the levels of bioaccessible Cd in rice grains using phytoavailable Cd quantities in the soil. During the in vitro digestion, a relatively constant ratio between the total and bioaccessible Cd in rice was observed. About 14.89% of Cd in soils was found to be transferred into rice grains and up to 3.19% could be transferred from rice grains to the human body. This model was able to sufficiently predict rice grain cadmium concentrations based on CaCl 2 extracted zinc and cadmium concentrations in soils (R 2 = 0.862). The bioaccessible Cd concentration in rice grains was also able to be predicted using CaCl 2 extracted cadmium from soil (R 2 = 0.892). The models established in this study demonstrated that CaCl 2 is a suitable indicator of total rice Cd concentrations and bioaccessible rice grain Cd concentrations. The chain model approach proposed in this study can be used for the fast and accurate evaluation of human Cd exposure through rice consumption based on the soil conditions in contaminated regions.

  20. Oxidative stress biomarkers and aggressive behavior in fish exposed to aquatic cadmium contamination

    Directory of Open Access Journals (Sweden)

    Jeane A. Almeida

    Full Text Available The objective of this study was to investigate the possible link between cadmium exposure, hepatic markers of oxidative stress and aggressive behavior in Nile tilapia (Oreochromis niloticus. Fish were first exposed to 0.75 mg/L CdCl2 for 15 days (12 isolated fish for each group and afterward a behavioral test was performed. Fish from the control and cadmium-exposed groups were paired for 1 h (6 pairs of fish per group for determination of aggressiveness parameters. Immediately after the behavioral test, the animals were sacrificed and the liver was used to determine biochemical parameters. Cadmium decreased aggression in Nile tilapia. Subordinate animals exposed to cadmium showed decreased glutathione peroxidase (GSH-Px activity compared to dominant ones. No alterations were observed in selenium-dependent glutathione peroxidase Se-GSH-P and Cu-Zn superoxide dismutase activities, but total superoxide dismutase activity was increased in subordinate animals exposed to cadmium compared to subordinate control. Catalase activity was increased in cadmium-exposed fish. Lipoperoxide concentrations also increased in cadmium exposed fish indicating that cadmium toxicity may affect oxidative stress biomarkers in Nile tilapia. Social stress induced lipoperoxidation in Nile tilapia, and subordinate animals exposed to cadmium responded with lower activities of liver antioxidant enzymes compared to dominant fish. The present study shows that cadmium exposure is capable of inducing changes in the social status and oxidative stress parameters in this species.

  1. Additional Burden of Diseases Associated with Cadmium Exposure: A Case Study of Cadmium Contaminated Rice Fields in Mae Sot District, Tak Province, Thailand

    Directory of Open Access Journals (Sweden)

    Nisarat Songprasert

    2015-08-01

    Full Text Available The cadmium (Cd contaminated rice fields in Mae Sot District, Tak Province, Thailand has been one of the major environmental problems in Thailand for the last 10 years. We used disability adjusted life years (DALYs to estimate the burden of disease attributable to Cd in terms of additional DALYs of Mae Sot residents. Cd exposure data included Cd and β2–microglobulin (β2-MG in urine (as an internal exposure dose and estimated cadmium daily intake (as an external exposure dose. Compared to the general Thai population, Mae Sot residents gained 10%–86% DALYs from nephrosis/nephritis, heart diseases, osteoporosis and cancer depending on their Cd exposure type and exposure level. The results for urinary Cd and dietary Cd intake varied according to the studies used for risk estimation. The ceiling effect was observed in results using dietary Cd intake because of the high Cd content in rice grown in the Mae Sot area. The results from β2-MG were more robust with additional DALYs ranging from 36%–86% for heart failure, cerebral infraction, and nephrosis/nephritis. Additional DALYs is a useful approach for assessing the magnitude of environmental Cd exposure. The Mae Sot population lost more healthy life compared to populations living in a non- or less Cd polluted area. This method should be applicable to various types of environmental contamination problems if exposure assessment information is available.

  2. Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany

    International Nuclear Information System (INIS)

    Schlecht, Martin Thomas; Säumel, Ina

    2015-01-01

    Health effects by consuming urban garden products are discussed controversially due to high urban pollution loads. We sampled wild edible mushrooms of different habitats and commercial mushroom cultivars exposed to high traffic areas within Berlin, Germany. We determined the content of cadmium and lead in the fruiting bodies and analysed how the local setting shaped the concentration patterns. EU standards for cultivated mushrooms were exceeded by 86% of the wild mushroom samples for lead and by 54% for cadmium but not by mushroom cultures. We revealed significant differences in trace metal content depending on species, trophic status, habitat and local traffic burden. Higher overall traffic burden increased trace metal content in the biomass of wild mushrooms, whereas cultivated mushrooms exposed to inner city high traffic areas had significantly lower trace metal contents. Based on these we discuss the consequences for the consumption of mushrooms originating from urban areas. - Highlights: • Popular edible mushrooms display large variations in Cd and Pb content. • Low accumulating species are Sparassis crispa, Boletus luridus, or Boletus badius. • High accumulating species are Agaricus ssp., Russula vesca, or Calvatia gigantea. • Cd and Pb content in wild growing edible mushrooms were mostly above EU limits for cultivated mushrooms. • Cd and Pb content in commercial mushrooms cultures were regularly below EU limits for cultivated mushrooms. - Commercial mushroom cultures can be integrated into ‘Edible City’ approaches, but majority of wild growing mushroom samples highly accumulate trace metals

  3. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    Science.gov (United States)

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid < 0.1 M EDTA<0.3 M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  4. Cadmium Contamination and Health Assessment in Frog Microhyla fissipes Living Downstream of Zinc Mining Area in Thailand

    Directory of Open Access Journals (Sweden)

    Jirarach Kitana

    2015-01-01

    Full Text Available In Mae Sot District, Tak Province, Thailand, concerns have been raised over cadmium contamination, potentially due to zinc mining activities. Although there is no report of acute toxicity on animals in this area, the impact of long-term environmental exposure to cadmium on their health are of attention. Water and sediment samples collected from two field sites (low-Cd and high-Cd sites in Mae Sot during 2008 were analyzed by GFAAS. Year round cadmium contamination in water ranged from 0.0015-0.002 mg/L in low-Cd site to 0.0019-0.0023 mg/L in high-Cd site, while higher levels were found in sediment ranged from 0.1013-0.2206 mg/kg in low-Cd site to 2.9260-3.2888 mg/kg in high-Cd site. Microhyla fissipes was collected from each habitat in 2-month interval during wet season. Detectable level of cadmium residue was found only in the frog collected from high-Cd habitat. Gravimetric analysis showed that hepatosomatic indices were significantly higher in high-Cd habitat. Histopathology showed several similar alterations in the liver, however higher number of melanomacrophage center was found in high-Cd habitat. Renosomatic indices and kidney tissue alterations were not significantly different between two sites. Reproductive health in term of gonadosomatic indices (GSI was not significantly different between male frogs from both habitats. But in the females living in high-Cd habitat, significantly lower GSI were observed. The results indicate that exposure to environmentally relevant dose of cadmium may interfere with the frog health. Using the frog as a sentinel species in this study suggests an important implication for overall health of animals/human in this area.

  5. Cadmium Phytoremediation by Arundo donax L. from Contaminated Soil and Water

    Directory of Open Access Journals (Sweden)

    Maria Sabeen

    2013-01-01

    Full Text Available The potential of Arundo donax L. for phytoextraction of cadmium (Cd from contaminated soil and water was probed. The plants were grown under greenhouse conditions in pots containing a nutrient solution or soil with increasing doses of Cd (0, 50, 100, 250, 500, 750, and 1000 μg L−1 for 21 days. The growth and physiology of plants were evaluated at the end of the experiment. The maximum Cd content in root was 300 μg g−1 during hydroponics experiments over 230 μg g−1 in soil experiment. Cd concentration in stem was 262 μg g−1 at 750 μg L−1 supplied Cd in hydroponics over 191.2 μg g−1 at 1000 in soil experiment. The maximum Cd concentration in leaves from hydroponics was 187 μg g−1. Relatively low Cd uptake occurred during soil experiment with low translocation factor (TF values. Both Bioaccumulation Factor (BF and TF values for hydroponics were greater than 1. The IC50 values of ABTS and DPPH showed that both time and increasing Cd concentrations affected the production of antioxidants with lower half maximal inhibitory concentration (IC50 value on the 21st days. A. donax showed better potential for Cd remediation of aquatic environments.

  6. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Pentari, Despina; Wang, Jing-Yuan; Gidarakos, Evangelos

    2010-01-01

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type.

  7. Cadmium Phytoremediation by Arundo donax L. from Contaminated Soil and Water

    Science.gov (United States)

    Sabeen, Maria; Mahmood, Qaisar; Irshad, Muhammad; Fareed, Iftikhar; Ullah, Farid; Hussain, Jamshaid; Hayat, Yousaf; Tabassum, Sobia

    2013-01-01

    The potential of Arundo donax L. for phytoextraction of cadmium (Cd) from contaminated soil and water was probed. The plants were grown under greenhouse conditions in pots containing a nutrient solution or soil with increasing doses of Cd (0, 50, 100, 250, 500, 750, and 1000 μg L−1) for 21 days. The growth and physiology of plants were evaluated at the end of the experiment. The maximum Cd content in root was 300 μg g−1 during hydroponics experiments over 230 μg g−1 in soil experiment. Cd concentration in stem was 262 μg g−1 at 750 μg L−1 supplied Cd in hydroponics over 191.2 μg g−1 at 1000 in soil experiment. The maximum Cd concentration in leaves from hydroponics was 187 μg g−1. Relatively low Cd uptake occurred during soil experiment with low translocation factor (TF) values. Both Bioaccumulation Factor (BF) and TF values for hydroponics were greater than 1. The IC50 values of ABTS and DPPH showed that both time and increasing Cd concentrations affected the production of antioxidants with lower half maximal inhibitory concentration (IC50) value on the 21st days. A. donax showed better potential for Cd remediation of aquatic environments. PMID:24459667

  8. Assessment of the Use of Natural Materials for the Remediation of Cadmium Soil Contamination.

    Science.gov (United States)

    de O Pinto, Tatiana; García, Andrés C; Guedes, Jair do N; do A Sobrinho, Nelson M B; Tavares, Orlando C H; Berbara, Ricardo L L

    2016-01-01

    Rice plants accumulate cadmium (Cd2+) within the grain, increasing the danger of human exposure. Natural materials have been used in soil remediation, but few studies have examined the risks (based on the bioavailability of these metals to plants) of using these materials, so the practice remains controversial. In the present study, we evaluated the effectiveness of biochar produced from sugarcane bagasse, vermicompost (VC), vermicompost solid residue (VCR) and humin for remediation of Cd2+-contaminated soils. We characterized the interactions between these materials and Cd2+ and evaluated their capacity to alter Cd2+ availability to rice plants. Our results show that under the conditions in this study, biochar and humin were not effective for soil remediation. Although biochar had high Cd2+ retention, it was associated with high Cd2+ bioavailability and increased Cd2+ accumulation in rice plants. VC and VCR had high Cd2+ retention capacity as well as low Cd2+ availability to plants. These characteristics were especially notable for VCR, which was most effective for soil remediation. The results of our study demonstrate that in the tested materials, the bioavailability of Cd2+ to plants is related to their structural characteristics, which in turn determine their retention of Cd2+.

  9. Assessment of the Use of Natural Materials for the Remediation of Cadmium Soil Contamination.

    Directory of Open Access Journals (Sweden)

    Tatiana de O Pinto

    Full Text Available Rice plants accumulate cadmium (Cd2+ within the grain, increasing the danger of human exposure. Natural materials have been used in soil remediation, but few studies have examined the risks (based on the bioavailability of these metals to plants of using these materials, so the practice remains controversial. In the present study, we evaluated the effectiveness of biochar produced from sugarcane bagasse, vermicompost (VC, vermicompost solid residue (VCR and humin for remediation of Cd2+-contaminated soils. We characterized the interactions between these materials and Cd2+ and evaluated their capacity to alter Cd2+ availability to rice plants. Our results show that under the conditions in this study, biochar and humin were not effective for soil remediation. Although biochar had high Cd2+ retention, it was associated with high Cd2+ bioavailability and increased Cd2+ accumulation in rice plants. VC and VCR had high Cd2+ retention capacity as well as low Cd2+ availability to plants. These characteristics were especially notable for VCR, which was most effective for soil remediation. The results of our study demonstrate that in the tested materials, the bioavailability of Cd2+ to plants is related to their structural characteristics, which in turn determine their retention of Cd2+.

  10. Phytoavailability and geospeciation of cadmium in contaminated soil remediated by Rhodobacter sphaeroides.

    Science.gov (United States)

    Fan, Wenhong; Jia, Yingying; Li, Xiaomin; Jiang, Wei; Lu, Lin

    2012-07-01

    A microorganism was isolated from oil field injection water and identified as Rhodobacter sphaeroides. It was used for the remediation of simulated cadmium-contaminated soil. The phytoavailability of Cd was investigated through wheat seedling method to determine the efficiency of remediation. It was found that after remediation, the accumulation of Cd in wheat roots and leaves decreased by 67% and 53%, respectively. The Cd speciation in soil was determined with Tessier extraction procedure. It was found that the total Cd content in soil did not change during the experiments, but the geo-speciation of Cd changed remarkably. Among the five fractions, the concentration of exchangeable phases decreased by 27-46% and that of the phases bound to Fe-Mn oxides increased by 22-44%. The decrease of Cd accumulation in wheat showed significant positive correlation with the decrease of exchangeable phases. It could be concluded that the remediation of R. sphaeroides was carried out through the conversion of Cd to more stable forms. The decrease of sulfate concentration in supernatant indicated that the R. sphaeroides consumed sulfate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.gr [Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Wang, Jing-Yuan [Residues and Resource Reclamation Centre (R3C), Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2010-12-15

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type.

  12. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management.

    Science.gov (United States)

    Han, Xiao-Qing; Xiao, Xi-Yuan; Guo, Zhao-Hui; Xie, Ye-Hua; Zhu, Hui-Wen; Peng, Chi; Liang, Yu-Qin

    2018-05-03

    Agricultural soils contaminated with cadmium (Cd) pose a risk to receiving surface water via drainage or runoff. A 90-day laboratory incubation experiment was conducted to investigate the release characteristics and transformation of Cd from contaminated paddy soil amended with agrochemical (NPK fertilizer) and lime (L) under water management regimes of continuous flooding (F) and drying-wetting cycles (DW). The result showed that the dissolved Cd concentrations in overlying water of the fertilizer treatment under flooding (NPK+F) and drying-wetting (NPK+DW) reached up to 81.0 μg/L and 276 μg/L, and were much higher than that from the corresponding controls without NPK fertilizer addition at the end of experiment. The Cd concentration showed significantly negative correlation with overlying water pH, but positive correlation with soil redox potential and concentrations of dissolved total nitrogen, sulfate and manganese in overlying water (P < 0.05), indicating that drying-wetting cycles and N fertilizer addition may enhance soil Cd release. The Cd concentrations in overlying water from all treatments except NPK+L+F treatment exceeded the Cd threshold limit of Chinese Environmental Quality Standards for Surface Water (10 μg/L Grade V) and poses potential risk to surface water quality. Meanwhile, the proportion of Cd in the acid-soluble fraction from all incubated soil except NPK+L+F treatment increased compared to before incubation. The results indicated that continuous flooding was a reasonable water management candidate coupled with lime addition for immobilizing soil Cd. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Remediation of cadmium contaminated water and soil using vinegar residue biochar.

    Science.gov (United States)

    Li, Yuxin; Pei, Guangpeng; Qiao, Xianliang; Zhu, Yuen; Li, Hua

    2018-06-01

    This study investigated a new biochar produced from vinegar residue that could be used to remediate cadmium (Cd)-contaminated water and soil. Aqueous solution adsorption and soil incubation experiments were performed to investigate whether a biochar prepared at 700 °C from vinegar residue could efficiently adsorb and/or stabilize Cd in water and soil. In the aqueous solution adsorption experiment, the Cd adsorption process was best fitted by the pseudo-second-order kinetic and Freundlich isotherm models. If the optimum parameters were used, i.e., pH 5 or higher, a biochar dosage of 12 g L -1 , a 10 mg L -1 Cd initial concentration, and 15-min equilibrium time, at 25 °C, then Cd removal could reach about 100%. The soil incubation experiment evaluated the biochar effects at four different application rates (1, 2, 5, and 10% w/w) and three Cd contamination rates (0.5, 1, and 2.5 mg kg -1 ) on soil properties and Cd fractionation. Soil pH and organic matter increased after adding biochar, especially at the 10% application rate. At Cd pollution levels of 1.0 or 2.5 mg kg -1 , a 10% biochar application rate was most effective. At 0.5 mg Cd kg -1 soil, a 5% biochar application rate was most efficient at transforming the acid extractable and easily reducible Cd fractions to oxidizable and residual Cd. The results from this study demonstrated that biochar made from vinegar residue could be a new and promising alternative biomass-derived material for Cd remediation in water and soil.

  14. Characterization of high molecular weight cadmium species in contaminated vegetable food

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K.; Kastenholz, B. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Chemie und Dynamik der Geosphaere 7: Angewandte Physikalische Chemie; Ji, G. [Bonn Univ. (Germany). Lehrstuhl fuer Lebensmittelwissenschaft und Lebensmittelchemie

    2000-10-01

    Spinach and radish grown from seeds were each contaminated with 4 different amounts of cadmium. After a cell breakdown of the eatable parts and centrifugation of the resulting homogenates all supernatants (cytosols) were separated by gel permeation chromatography (GPC). The size-range of the GPC method used was about 20-8000 kDa for globular proteins. The high molecular weight (HMW-Cd-SP, 150-700 kDa) and the low molecular weight Cd species (LMW-Cd-SP, < 150 kDa) in all plant cytosols eluted at about the same retention volume by GPC. The most important Cd binding form in the cytosols of all plants was found to be HMW-Cd-SP. The Cd elution maxima were detected in the range of about 200 kDa. The Cd determinations were performed with ET-AAS by means of matrix modifier. By incubating chosen cytosols with a proteinase before the GPC it was verified that the HMW-Cd-SP in both vegetables are Cd proteins. The molar proportions protein/Cd were about 2-6 in the respective GPC fractions of the HMW-Cd-SP of the highest contaminated plants. The GPC fractions of the HMW-Cd-SP of spinach and radish were further separated by a preparative, native and continuous polyacrylamide gel electrophoresis (PAGE) method. At pH 8 the species were negatively charged, had only a small UV-absorption at 280 nm and showed a very similar elution behavior in all analyzed cytosols. Therefore, we suppose that the HMW-Cd-SP of these two different vegetable foodstuffs have a very similar chemical structure. (orig.)

  15. Effect of Sulfur Application on Spinach Phytoremedaiton Process of Cadmium in Contaminated Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Ali Kasraian

    2012-07-01

    Full Text Available Recently, cadmium (Cd concentration has increased in croplands through sewage sludge and phosphorous fertilizers application. On the other hand, some special methods, like phytoremedation, were introduced in order to decrease soil contamination hazard. Calcium carbonate plays an important role in Cd solubility in highly calcareous soils. Sulfurs oxidation, by dissolving Cd carbonate fraction, may improve phytoremediation efficiency. An experiment was conducted to study the effects of S application (equivalent to 0, 2, 4 and 6 Mg S ha-1 on Diethylene Triamine Pentaacetic Acid  (DTPA extractable Cd and also on Cd uptake and extraction by spinach (Spinacea oleracea L. in calcareous soils which were contaminated by 40mg Cd kg-1. To ensure biological S oxidation, all S-treated samples were inoculated by Thiobacillus spp. and incubated for 50 days. The soil pH, EC and soluble sulfate were affected by S application and it clearly showed that S oxidation process was occurred in Cd treated soils. The most significant change for pH and sulfate were observed at 4 Mg S ha-1 and for electrical conductivity (EC of soil it occurred at 6Mg S ha-1. Application of S had no effect on DTPA extractable Cd in soils whereas; its concentration increased 73.55% in average in plant tissue. Plant dry matter decreased significantly (about 63 percent following Cd application. Although the highest rate of S oxidation was observed at 4 and 6 Mg S ha-1 tٰٰٰhe maximum Cd extraction (2.5µg Cd pot-1 was observed at 2 Mg S ha-1 . This may be due to adverse effect of Cd toxicity and increase of soluble salt resulted by S oxidation in higher level of S application.

  16. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming

    Energy Technology Data Exchange (ETDEWEB)

    Vieira da Cunha, Karina Patricia [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil); Araujo do Nascimento, Clistenes Williams [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil)], E-mail: clistenes@depa.ufrpe.br; Magalhaes de Mendonca Pimentel, Rejane; Pereira Ferreira, Clebio [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil)

    2008-12-15

    The effects of different concentrations of soil cadmium (0, 1, 3, 5, 10, and 20 mg kg{sup -1}) on growth, structural changes and cadmium cellular localization in leaves of maize plants (Zea mays L.) were investigated in a pot experiment. The results showed that the structural changes observed in maize leaves were not only a response to the Cd-induced stress but also a cellular mechanism to reduce the free Cd{sup +2} in the cytoplasm. However, this mechanism seems to be efficient only up to a Cd concentration in leaves between 27 and 35 mg kg{sup -1} for soils without and with liming, respectively. The cellular response varied with both the Cd concentration in soil and liming. For limed soil, Cd was preferentially accumulated in the apoplast while for unlimed soils Cd was more evenly distributed into the cells. The ability of Cd accumulation depended on the leaf tissue considered. The apoplast collenchyma presented the highest Cd concentration followed by the endodermis, perycicle, xylem, and epidermis. On the other hand, symplast Cd accumulated mainly in the endodermis, bundle sheath cells, parenchyma, and phloem. Based on the structural changes and growth reduction, the critical toxic concentration of soil Cd to maize plants is between 5 and 10 mg kg{sup -1}.

  17. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming

    International Nuclear Information System (INIS)

    Vieira da Cunha, Karina Patricia; Araujo do Nascimento, Clistenes Williams; Magalhaes de Mendonca Pimentel, Rejane; Pereira Ferreira, Clebio

    2008-01-01

    The effects of different concentrations of soil cadmium (0, 1, 3, 5, 10, and 20 mg kg -1 ) on growth, structural changes and cadmium cellular localization in leaves of maize plants (Zea mays L.) were investigated in a pot experiment. The results showed that the structural changes observed in maize leaves were not only a response to the Cd-induced stress but also a cellular mechanism to reduce the free Cd +2 in the cytoplasm. However, this mechanism seems to be efficient only up to a Cd concentration in leaves between 27 and 35 mg kg -1 for soils without and with liming, respectively. The cellular response varied with both the Cd concentration in soil and liming. For limed soil, Cd was preferentially accumulated in the apoplast while for unlimed soils Cd was more evenly distributed into the cells. The ability of Cd accumulation depended on the leaf tissue considered. The apoplast collenchyma presented the highest Cd concentration followed by the endodermis, perycicle, xylem, and epidermis. On the other hand, symplast Cd accumulated mainly in the endodermis, bundle sheath cells, parenchyma, and phloem. Based on the structural changes and growth reduction, the critical toxic concentration of soil Cd to maize plants is between 5 and 10 mg kg -1

  18. Long-Term Survey of Cadmium and Lead Contamination in Japanese Black Bears Captured in Iwate Prefecture, Japan.

    Science.gov (United States)

    Sato, Itaru; Yamauchi, Kiyoshi; Tsuda, Shuji

    2016-12-01

    Cadmium and lead were measured in liver and kidney samples of 242 Japanese black bears (Ursus thibetanus japonicus) captured from 1999 to 2014 from two local populations in Japan. The median concentration of cadmium was 0.54 (mean: 0.80) mg/kg-w.w. in liver and 7.7 (mean: 11.8) mg/kg-w.w. in kidney. The median concentration of lead was 0.24 (mean: 0.40) and 0.21 (mean: 0.32) mg/kg-w.w. in liver and kidney, respectively. Bears in the Kita-ou local population had higher concentrations of cadmium and lead than those in the Kitakami Highlands local population. No chronological change was observed in cadmium levels in tissues, but the percentage of bears whose lead levels exceeded 0.5 mg/kg-w.w. has been decreasing in recent years. Countermeasures against lead poisoning in wildlife, which were instituted in 2002, may have contributed to the decrease in lead contamination of the Japanese black bear.

  19. Gonadal transcriptome analysis of wild contaminated female European eels during artificial gonad maturation.

    Science.gov (United States)

    Baillon, Lucie; Oses, Jennifer; Pierron, Fabien; Bureau du Colombier, Sarah; Caron, Antoine; Normandeau, Eric; Lambert, Patrick; Couture, Patrice; Labadie, Pierre; Budzinski, Hélène; Dufour, Sylvie; Bernatchez, Louis; Baudrimont, Magalie

    2015-11-01

    Since the early 1980s, the population of European eels (Anguilla anguilla) has dramatically declined. Nowadays, the European eel is listed on the red list of threatened species (IUCN Red List) and is considered as critically endangered of extinction. Pollution is one of the putative causes for the collapse of this species. Among their possible effects, contaminants gradually accumulated in eels during their somatic growth phase (yellow eel stage) would be remobilized during their reproductive migration leading to potential toxic events in gonads. The aim of this study was to investigate the effects of organic and inorganic contaminants on the gonad development of wild female silver eels. Female silver eels from two sites with differing contamination levels were artificially matured. Transcriptomic analyses by means of a 1000 candidate gene cDNA microarray were performed on gonads after 11weeks of maturation to get insight into the mechanisms of toxicity of contaminants. The transcription levels of several genes, that were associated to the gonadosomatic index (GSI), were involved in mitotic cell division but also in gametogenesis. Genes associated to contaminants were mainly involved in the mechanisms of protection against oxidative stress, in DNA repair, in the purinergic signaling pathway and in steroidogenesis, suggesting an impairment of gonad development in eels from the polluted site. This was in agreement with the fact that eels from the reference site showed a higher gonad growth in comparison to contaminated fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil.

    Science.gov (United States)

    Ok, Yong Sik; Lee, Sang Soo; Jeon, Weon-Tai; Oh, Sang-Eun; Usman, Adel R A; Moon, Deok Hyun

    2011-01-01

    Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO₃) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0-5% powdered eggshell waste and curing the soil (1,246 mg Pb kg⁻¹ soil and 17 mg Cd kg⁻¹ soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl₂), 1 M CaCl₂, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH₃COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO₃ and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO₃ and eggshell waste, regardless of extractant. Using CaCl₂ extraction, the lowest Cd concentration was achieved upon both CaCO₃ and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH₃COOH or EDTA in soils treated with CaCO₃ and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO₃ for the immobilization of heavy metals in soils.

  1. Accounting for pH heterogeneity and variability in modelling human health risks from cadmium in contaminated land

    International Nuclear Information System (INIS)

    Gay, J. Rebecca; Korre, Anna

    2009-01-01

    The authors have previously published a methodology which combines quantitative probabilistic human health risk assessment and spatial statistical methods (geostatistics) to produce an assessment, incorporating uncertainty, of risks to human health from exposure to contaminated land. The model assumes a constant soil to plant concentration factor (CF veg ) when calculating intake of contaminants. This model is modified here to enhance its use in a situation where CF veg varies according to soil pH, as is the case for cadmium. The original methodology uses sequential indicator simulation (SIS) to map soil concentration estimates for one contaminant across a site. A real, age-stratified population is mapped across the contaminated area, and intake of soil contaminants by individuals is calculated probabilistically using an adaptation of the Contaminated Land Exposure Assessment (CLEA) model. The proposed improvement involves not only the geostatistical estimation of the contaminant concentration, but also that of soil pH, which in turn leads to a variable CF veg estimate which influences the human intake results. The results presented demonstrate that taking pH into account can influence the outcome of the risk assessment greatly. It is proposed that a similar adaptation could be used for other combinations of soil variables which influence CF veg .

  2. Legacy and emerging organohalogenated contaminants in wild edible aquatic organisms: Implications for bioaccumulation and human exposure.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Li, Qing X; Wang, Tao; Zheng, Xiaobo; Peng, Pingan; Mai, Bixian

    2018-03-01

    Highly industrialized and urbanized watersheds may receive various contaminants from anthropogenic activities. In this study, legacy and emerging organohalogenated contaminants (OHCs) were measured in edible wild aquatic organisms sampled from the Pearl River and Dongjiang River in a representative industrial and urban region in China. High concentrations of target contaminants were observed. The Pearl River exhibited higher concentrations of OHCs than the Dongjiang River due to high industrialization and urbanization. Agrochemical inputs remained an important source of OHCs in industrialized and urbanized watershed in China, but vigilance is needed for recent inputs of polychlorinated biphenyls (PCBs) originated from e-waste recycling activities. Bioaccumulation of dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), PCBs, polybrominated diphenyl ethers (PBDEs), and Dechlorane Plus (DP) was biological species- and compound-specific, which can be largely attributed to metabolic capability for xenobiotics. No health risk was related to the daily intake of DDTs, HCHs, and PBDEs via consumption of wild edible species investigated for local residents. However, the current exposure to PCBs through consuming fish is of potential health concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Assessment of levels of bacterial contamination of large wild game meat in Europe.

    Science.gov (United States)

    Membré, Jeanne-Marie; Laroche, Michel; Magras, Catherine

    2011-08-01

    The variations in prevalence and levels of pathogens and fecal contamination indicators in large wild game meat were studied to assess their potential impact on consumers. This analysis was based on hazard analysis, data generation and statistical analysis. A total of 2919 meat samples from three species (red deer, roe deer, wild boar) were collected at French game meat traders' facilities using two sampling protocols. Information was gathered on the types of meat cuts (forequarter or haunch; first sampling protocol) or type of retail-ready meat (stewing meat or roasting meat; second protocol), and also on the meat storage conditions (frozen or chilled), country of origin (eight countries) and shooting season (autumn, winter, spring). The samples were analyzed in both protocols for detection and enumeration of Escherichia coli, coagulase+staphylococci and Clostridium perfringens. In addition, detection and enumeration of thermotolerant coliforms and Listeria monocytogenes were performed for samples collected in the first and second protocols, respectively. The levels of bacterial contamination of the raw meat were determined by performing statistical analysis involving probabilistic techniques and Bayesian inference. C. perfringens was found in the highest numbers for the three indicators of microbial quality, hygiene and good handling, and L. monocytogenes in the lowest. Differences in contamination levels between game species and between meats distributed as chilled or frozen products were not significant. These results might be included in quantitative exposure assessments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd and Lead (Pb

    Directory of Open Access Journals (Sweden)

    Bulmău C

    2013-04-01

    Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.

  5. Pasture soils contaminated with fertilizer-derived cadmium and fluorine: livestock effects.

    Science.gov (United States)

    Loganathan, Paripurnanda; Hedley, Mike J; Grace, Neville D

    2008-01-01

    Fertilizers are indispensable for ensuring sustainability of agricultural production, thereby achieving food and fiber security. Nitrogen, sulfur, and potassium fertilizers are relatively free of impurities, but phosphorus (P) fertilizers, the main fertilizer input for the economic production of legume-based pastures, contain several contaminants, of which F and Cd are considered to be of most concern because they have potentially harmful effects on soil quality, livestock health, and food safety. Incidences of fluorosis in grazing livestock, and accumulation of Cd in the edible offal products of livestock, above the maximum permissible concentration set by food authorities have been reported in many countries. The majority of Cd and F applied to pastures in many countries continues to accumulate in the biologically active topsoil due to strong adsorption to soil constituents. However, the rate of Cd accumulation in the last decade has slowed as a result of selective use of low-Cd fertilizers. Cd and F adsorption in soils increase with increased contents of iron and aluminium oxides, layer silicates and allophane in soils, and increased soil pH. Cadmium adsorption also increases with increased Mn oxides and organic matter in soil. However, some Cd will be released during decomposition of plant and animal remains and organic matter. In most pastoral soils the majority of Cd and F added in fertilizers remains in the topsoil and little moves below 20-30 cm, and therefore these are unlikely to contaminate groundwater. However, F may pose a risk to shallow groundwater in very acidic low-P-fixing soils, and Cd may pose a risk in very acidic soils containing low organic matter and clay contents, or in soils with high chloride concentrations. Research is required both to test whether groundwater beneath farms with long histories of P fertilizer use is contaminated by these elements and also to examine their mechanisms of movement. Cd intake by grazing livestock occurs

  6. Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils

    Science.gov (United States)

    Wei, Yanyan; Zheng, Xiaoman; Shohag, Md. Jahidul Islam; Gu, Minghua

    2017-01-01

    In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi (Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0–87.6% and 20.1–82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9–71.8% for Cd bioaccessibility and 16.1–59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities. PMID:28850097

  7. Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates.

    Science.gov (United States)

    van der Fels-Klerx, H J; Camenzuli, L; van der Lee, M K; Oonincx, D G A B

    2016-01-01

    Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species.

  8. Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene.

    Science.gov (United States)

    Sharonova, Natalia; Breus, Irina

    2012-05-01

    In laboratory experiments on leached chernozem contaminated by kerosene (1-15 wt.%), germination of 50 plants from 21 families (cultivated and wild, annual and perennial, mono- and dicotyledonous) as affected by kerosene type and concentration and plant features was determined. Tested plants formed three groups: more tolerant, less tolerant, and intolerant, in which relative germination was more than 70%, 30-70% and less than 30%, respectively. As parameters of soil phytotoxicity, effective kerosene concentrations (EC) causing germination depression of 10%, 25% and 50% were determined. EC values depended on the plant species and varied in a wide range of kerosene concentrations: 0.02-7.3% (EC(10)), 0.05-8.1% (EC(25)), and 0.2-12.7% (EC(50)). The reported data on germination in soils contaminated by oil and petrochemicals were generalized. The comparison showed that at very high contamination levels (10 and 15%) kerosene was 1.3-1.6 times more phytotoxic than diesel fuel and 1.3-1.4 times more toxic than crude oil, and at low (1 and 2%) and medium (3 and 5%) levels the toxicity of these contaminants was close differing by a factor of 1.1-1.2. Tolerance of plants to soil contamination had a species-specific nature and, on the average, decreased in the following range of families: Fabaceae (germination decrease of 10-60% as compared to an uncontaminated control)>Brassicaceae (5-70%)>Asteraceae (25-95%)>Poaceae (10-100%). The monocotyledonous species tested were characterized as medium- and low-stable to contamination, whereas representatives of dicotyledonous plants were met in all groups of tolerance. Tested wild plants, contrary to reference data on oil toxicity, were more sensitive to kerosene than cultivated. No correlation was observed between degree of plant tolerance to kerosene and mass of seeds. The evidence indicates factors as structure and properties of testa, structure of germ, type of storage compounds, and type of seed germination (underground or

  9. Mushroom contamination by mercury, cadmium and lead; Contaminazione di funghi commestibili con mercurio, cadmio e piombo

    Energy Technology Data Exchange (ETDEWEB)

    Dojmi Di Delupis, G.; Dojmi Di Delupis, F. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia

    1996-12-01

    Occurrence and bioaccumulation of mercury, cadmium and lead were found in mushrooms by various researchers. Such mushrooms were often found in polluted areas. Pollution was mainly caused by industrial or mining plants, by some agricultural treatments and by road traffic. Considerations and recommendations concerning food consumption are made.

  10. [Reduction of 137caesium contamination in wild boars by supplementing offered food with ammonium-iron-hexa-cyanoferrate].

    Science.gov (United States)

    Morfeld, P; Reddemann, J; Schungel, P; Kienzle, E

    2014-01-01

    This replication study investigated whether the 137caesium (137Cs) contamination of wild boars could be relevantly reduced under field conditions by adding ammonium-iron-hexa-cyanoferrate (AFCF; Prussian blue) to the food. In 285 wild boars that had been shot in six Bavarian hunting territories during the season (November until May) between 01 November 2010 and 10 December 2011 137Cs contamination was analysed. Thirty-five animals originated from two hunting territories in which offered food had been supplemented with 1250 mg AFCF per kilogram food. The control animals showed a mean 137Cs contamination of 522 Bq/kg lean skeletal muscle meat. Direct (univariable) comparisons of the two experimental territories with the four control territories yielded a mean reduction in 137Cs contamination due to Prussian bluefeeding by -211 Bq/kg (p contamination by -380 Bq/kg due to the feeding of Prussian blue in other territories.

  11. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    Science.gov (United States)

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  12. Wild rodents (Dipodomys merriami) used as biomonitors in contaminated mining sites.

    Science.gov (United States)

    Espinosa-Reyes, Guillermo; Torres-Dosal, Arturo; Ilizaliturri, Cesar; Gonzalez-Mille, Donaji; Diaz-Barriga, Fernando; Mejia-Saavedra, Jesus

    2010-01-01

    Mining is one of the most important industrial activities globally; however, mining processes have critical environmental impacts, as mining is a major source of metals and metalloids that contribute significantly to the pollution of soil, sediment, water and air. Heavy metals can impact the health of exposed human populations and nonhuman receptors. This study focused on arsenic because its genotoxicity is well-known. Previously, we proposed a methodology to evaluate and integrate risk from a single source affecting different biologic receptors. Here, we propose an alternative approach estimating arsenic exposure in children and kangaroo rats using probabilistic simulation with Monte Carlo modeling. The estimates are then associated to measured DNA damage and compared to both populations of children and rodents living in contaminated and in reference areas. Finally, based on the integrated analysis of the generated information, we evaluate the potential use of wild rodents (Dipodomys merriami) as a biomonitor at mining sites. Results indicate that the variation of genotoxicity in children of the reference site is approximately 2 units when compared to the children of the contaminated site. In the rodents we observed a variation of approximately 4 units between those of the reference site when compared to those living on the contaminated site. We propose that D. merriami can be used as a biomonitor organism in sites with mining activity, and that a non-lethal test can be used to evaluate risk from metal exposure.

  13. Radioactive contamination of wild mushrooms: a cross-cultural risk perception study

    Energy Technology Data Exchange (ETDEWEB)

    Druzhinina, I. E-mail: druzhini@mail.zserv.tuwien.ac.at; Palma-Oliveira, J.M

    2004-07-01

    The aim of the present work was to determine the public perception of radioactive contamination of wild mushrooms, to confront this perception with an expert opinion, and to determine those factors that are perceived differently by specialists and lay people. The Internet appeared to be a useful tool in attaining these goals by finding the appropriate people across the world. The statistically significant differences in the perception of various aspects of mushroom pollution were revealed between respondents from three world regions, which were differently affected by the Chernobyl accident. Moreover, the majority of people have demonstrated a considerable difference in the perception of the global contamination of the environment versus the pollution of their local counties. The socio-psychological explanations of data are given. In general, there is a steady consistency in the perception of factors, which may control the radioactive contamination of edible fungi, by the majority of respondents. However, experts (radioecologists) rank the factor of fungal species as an extremely important parameter, while other people perceive the factors of the distance from the source of the pollution and the time thereafter as the most important parameters. Such discrepancies between professional and unprofessional opinions are discussed and some recommendations for risk communications are presented.

  14. Radioactive contamination of wild mushrooms: a cross-cultural risk perception study

    International Nuclear Information System (INIS)

    Druzhinina, I.; Palma-Oliveira, J.M.

    2004-01-01

    The aim of the present work was to determine the public perception of radioactive contamination of wild mushrooms, to confront this perception with an expert opinion, and to determine those factors that are perceived differently by specialists and lay people. The Internet appeared to be a useful tool in attaining these goals by finding the appropriate people across the world. The statistically significant differences in the perception of various aspects of mushroom pollution were revealed between respondents from three world regions, which were differently affected by the Chernobyl accident. Moreover, the majority of people have demonstrated a considerable difference in the perception of the global contamination of the environment versus the pollution of their local counties. The socio-psychological explanations of data are given. In general, there is a steady consistency in the perception of factors, which may control the radioactive contamination of edible fungi, by the majority of respondents. However, experts (radioecologists) rank the factor of fungal species as an extremely important parameter, while other people perceive the factors of the distance from the source of the pollution and the time thereafter as the most important parameters. Such discrepancies between professional and unprofessional opinions are discussed and some recommendations for risk communications are presented

  15. Is the soil quality monitoring an effective tool in consumers' protection of agricultural crops from cadmium soil contamination?-a case of the Silesia region (Poland).

    Science.gov (United States)

    Piekut, Agata; Baranowska, Renata; Marchwińska-Wyrwał, Ewa; Ćwieląg-Drabek, Małgorzata; Hajok, Ilona; Dziubanek, Grzegorz; Grochowska-Niedworok, Elżbieta

    2017-12-16

    The monitoring of soil quality should be a control tool used to reduce the adverse health effects arising from exposure to toxic chemicals in soil through cultivated crop absorption. The aim of the study was to evaluate the effectiveness of the monitoring and control system of soil quality in Poland, in terms of consumer safety, for agricultural plants cultivated in areas with known serious cadmium contamination, such as Silesia Province. To achieve the objective, the contents of cadmium in soils and vegetables in the Silesia administrative area were examined. The obtained results were compared with the results of soil contamination from the quality monitoring of arable soil in Poland. The studies show a significant exceedance of the permissible values of cadmium in soil samples and the vegetables cultivated on that soil. The threat to consumer health is a valid concern, although this threat was not indicated by the results of the national monitoring of soil quality. The results indicated an unequal distribution of risk to consumers resulting from contaminated soil. Moreover, the monitoring systems should be designed at the local or regional scale to guarantee the safety of consumers of edible plants cultivated in the areas contaminated with cadmium.

  16. Cadmium, lead, and chromium in large game: a local-scale exposure assessment for hunters consuming meat and liver of wild boar.

    Science.gov (United States)

    Danieli, P P; Serrani, F; Primi, R; Ponzetta, M P; Ronchi, B; Amici, A

    2012-11-01

    Heavy metals are ubiquitous in soil, water, and air. Their entrance into the food chain is an important environmental issue that entails risks to humans. Several reports indicate that game meat can be an important source of heavy metals, particularly because of the increasing consumption of game meat, mainly by hunters. We performed an exposure assessment of hunters and members of their households, both adults and children, who consumed wild boar (WB) meat and offal. We estimated the amount of cadmium, lead, and chromium in the tissues of WB hunted in six areas within Viterbo Province (Italy) and gathered data on WB meat and offal consumption by conducting specific diet surveys in the same areas. The exposure to cadmium, lead, and chromium was simulated with specifically developed Monte Carlo simulation models. Cadmium and lead levels in WB liver and meat harvested in Viterbo Province (Italy) were similar to or lower than the values reported in other studies. However, some samples contained these metals at levels greater then the EU limits set for domestic animals. The chromium content of meat or liver cannot be evaluated against any regulatory limit, but our results suggest that the amounts of this metal found in WB products may reflect a moderate environmental load. Our survey of the hunter population confirmed that their consumption of WB meat and liver was greater than that of the general Italian population. This level of consumption was comparable with other European studies. Consumption of WB products contributes significantly to cadmium and lead exposure of both adults and children. More specifically, consumption of the WB liver contributed significantly to total cadmium and lead exposure of members of the households of WB hunters. As a general rule, liver consumption should be kept to a minimum, especially for children living in these hunter households. The exposure to chromium estimated for this population of hunters may be considered to be safe. However

  17. Seasonal variation of the Cs137 contamination of the tree forage of wild hoofed animals of the Pripyat National Park

    International Nuclear Information System (INIS)

    Uglyanets, A.V.

    2011-01-01

    In the conditions of the Republic of Belarus there were presented the results of studies of the 137Cs contamination of the tree forage of wild hoofed animals in the Pripyat national park. The parameters of this radioisotope accumulation in the shoots of different trees, shrubs, dwarf shrubs and bushes were studied in the seasonal and edaphic aspects, and their influencing factors were specified. The 137Cs contamination of the tree forage of wild hoofed animals was determined to be dependent on the soil pollution degree, growth conditions and species composition of plants and their proportion in the phytocenosis, as well as on the edaphic conditions and a season of the year

  18. Assessment of the Use of Natural Materials for the Remediation of Cadmium Soil Contamination

    OpenAIRE

    de O. Pinto, Tatiana; Garc?a, Andr?s C.; Guedes, Jair do N.; do A. Sobrinho, Nelson M. B.; Tavares, Orlando C. H.; Berbara, Ricardo L. L.

    2016-01-01

    Rice plants accumulate cadmium (Cd2+) within the grain, increasing the danger of human exposure. Natural materials have been used in soil remediation, but few studies have examined the risks (based on the bioavailability of these metals to plants) of using these materials, so the practice remains controversial. In the present study, we evaluated the effectiveness of biochar produced from sugarcane bagasse, vermicompost (VC), vermicompost solid residue (VCR) and humin for remediation of Cd2+-c...

  19. Fitoremediation for the Rehabilitation of Agricultural Land Contaminated by Cadmium and Copper

    OpenAIRE

    SA'AD, N. SUTRISNO; ARTANTI, R; DEWI, T

    2009-01-01

    There are many agricultural land using irrigation water from polluted industrial waste of heavy metals. Improvement of agricultural land quality using fitoremediation is needed to overcome heavy metal pollution. The reasearch aims to make remedies for paddy field polluted by cadmium (Cd) and copper (Cu) using plants that have the ability to absorb heavy metals in order to increase the quality of the land. This research was conducted at the screen house of Indonesian Agricultural Enviroment Re...

  20. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Chavez, M.C. [Programa de Edafologia. Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo. Carretera Mexico-Texcoco, km 36.5. Montecillo, Texcoco, Mexico, 56230 (Mexico)], E-mail: carmeng@colpos.mx; Carrillo-Gonzalez, R.; Gutierrez-Castorena, M.C. [Programa de Edafologia. Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo. Carretera Mexico-Texcoco, km 36.5. Montecillo, Texcoco, Mexico, 56230 (Mexico)

    2009-01-30

    A field study of the natural attenuation occurring in a slag heap contaminated with high available cadmium was carried out. The aims of this research were: to determine plants colonizing this slag heap; to analyze colonization and morphological biodiversity of spores of arbuscular mycorrhizal fungi (AMF); to determine spore distribution in undisturbed samples; to know mycelium and glomalin abundance in the rhizosphere of these plants, and to investigate glomalin participation in Cd-stabilization. Forming vegetal islands, 22 different pioneering plant species from 11 families were colonizing the slag heap. The most common plants were species of Fabaceae, Asteraceae and Poaceae. Almost all plants were hosting AMF in their roots, and spores belonging to Gigaspora, Glomus, Scutellospora and Acaulospora species were observed. Micromorphological analysis showed that spores were related to decomposing vegetal residues and excrements, which means that mesofauna is contributing to their dispersion in the groundmass. Mycelium mass ranged from 0.11 to 26.3 mg/g, which contained between 13 and 75 mg of glomalin/g. Slag-extracted total glomalin was between 0.36 and 4.74 mg/g. Cadmium sequestered by glomalin extracted from either slag or mycelium was 0.028 mg/g. The ecological implication of these results is that organisms occupying vegetal patches are modifying mine residues, which contribute to soil formation.

  1. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Gonzalez-Chavez, M.C.; Carrillo-Gonzalez, R.; Gutierrez-Castorena, M.C.

    2009-01-01

    A field study of the natural attenuation occurring in a slag heap contaminated with high available cadmium was carried out. The aims of this research were: to determine plants colonizing this slag heap; to analyze colonization and morphological biodiversity of spores of arbuscular mycorrhizal fungi (AMF); to determine spore distribution in undisturbed samples; to know mycelium and glomalin abundance in the rhizosphere of these plants, and to investigate glomalin participation in Cd-stabilization. Forming vegetal islands, 22 different pioneering plant species from 11 families were colonizing the slag heap. The most common plants were species of Fabaceae, Asteraceae and Poaceae. Almost all plants were hosting AMF in their roots, and spores belonging to Gigaspora, Glomus, Scutellospora and Acaulospora species were observed. Micromorphological analysis showed that spores were related to decomposing vegetal residues and excrements, which means that mesofauna is contributing to their dispersion in the groundmass. Mycelium mass ranged from 0.11 to 26.3 mg/g, which contained between 13 and 75 mg of glomalin/g. Slag-extracted total glomalin was between 0.36 and 4.74 mg/g. Cadmium sequestered by glomalin extracted from either slag or mycelium was 0.028 mg/g. The ecological implication of these results is that organisms occupying vegetal patches are modifying mine residues, which contribute to soil formation

  2. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    Science.gov (United States)

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  3. [Mechanism Study of the Smectite-OR-SH Compound for Reducing Cadmium Uptake by Plants in Contaminated Soils].

    Science.gov (United States)

    Zeng, Yan-jun; Zhou, Zhi-jun; Zhao, Qiu-xiang

    2015-06-01

    Adsorption and desorption experiments, pot experiments and characterization test were performed to investigate the immobilization effect and mechanism of the smectite-OR-SH compound for reducing cadmium uptake by plants in contaminated soils. The results showed that the saturated adsorption capacity for the adsorption of Cd2+ on smectite raised distinctly after functionalized. The adsorption of Cd2+ on smectite-OR-SH compound was very stable and it was difficult for Cd2+ to be desorbed from it. Crop yields promoted differently in original soil, Cd 3 mg x kg(-1) soil and Cd 10 mg x kg(-1) soil after adding the smectite-OR-SH compound. And the cadmium content of the cabbage reduced 61.00%, 62.10% and 83.73% respectively compare with the control. Characterization test analysis showed that Cd was adsorbed by the compound successfully and ligand interaction occurred between Cd and the thiol group. Floc amount on the compound surface increased correspondingly. In addition to electrostatic adsorption, ion exchange and hydroxyl ligand adsorption, the reaction mechanism of smectite-OR-SH compound with Cd was mainly sulfhydryl ligand adsorption.

  4. Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover.

    Science.gov (United States)

    Jin, Zhong Min; Sha, Wei; Zhang, Yan Fu; Zhao, Jing; Ji, Hongyang

    2013-07-01

    Phytoremediation combined with suitable microorganisms and biodegradable chelating agents can be a means of reclaiming lands contaminated by toxic heavy metals. We investigated the ability of a lead- and cadmium-resistant bacterial strain (JB12) and the biodegradable chelator ethylenediamine-N,N'-disuccinic acid (EDDS) to improve absorption of these metals from soil by tall fescue and red clover. Strain JB12 was isolated from contaminated soil samples, analysed for lead and cadmium resistance, and identified as Burkholderia cepacia. Tall fescue and red clover were grown in pots to which we added JB12, (S,S)-EDDS, combined JB12 and EDDS, or water only. Compared with untreated plants, the biomass of plants treated with JB12 was significantly increased. Concentrations of lead and cadmium in JB12-treated plants increased significantly, with few exceptions. Plants treated with EDDS responded variably, but in those treated with combined EDDS and JB12, heavy metal concentrations increased significantly in tall fescue and in the aboveground parts of red clover. We conclude that JB12 is resistant to lead and cadmium. Its application to the soil improved the net uptake of these heavy metals by experimental plants. The potential for viable phytoremediation of lead- and cadmium-polluted soils with tall fescue and red clover combined with JB12 was further enhanced by the addition of EDDS.

  5. Potential of MuS1 Transgenic Tobacco for Phytoremediation of the Urban Soils Contaminated with Cadmium

    Science.gov (United States)

    Kim, K. H.; Kim, Y. N.; Kim, S. H.

    2010-05-01

    Urban soils are prone to contamination by trace elements such as Cd, Cu, Pb and Zn. Phytoremediation is one of the attractive remediation methods for soils contaminated with trace elements due to its non-destructive and environmentally-friendly characteristic. Scientists have tried to find hyper-accumulator plants in nature or to develop transgenic plant through genetic engineering. This study was carried out to identify a potential of MuS1 transgenic tobacco for phytoremediation of the urban soils contaminated with Cd. MuS1 is known as a multiple stress related gene with several lines. The previous study using RT-PCR showed that the expression of MuS1 gene in tobacco plant induced tolerance to Cd stress. For this study, MuS1 transgenic tobacco and wild-type tobacco (control) were cultivated in a hydroponic system treated with Cd (0, 50, 100 and 200μM Cd) for 3 weeks. At harvest, both tobacco and nutrient solution were collected and were analyzed for Cd. Effect of Cd treatment on morphological change of the tobacco leaves was also observed by variable-pressure scanning electron microscopy (VP-SEM). The tolerance of MuS1 transgenic tobacco to Cd stress was better than that of wild-type tobacco at all Cd levels. Especially, wild-type tobacco showed chlorosis and withering with 200μM Cd treatment, whereas MuS1 transgenic tobacco gradually recovered from Cd damage. Wild-type tobacco accumulated more Cd (4.65mg per plant) than MuS1 transgenic tobacco (2.37mg per plant) with 200μM Cd treatment. Cd translocation rate from root to leaves was 81.8 % for wild-type tobacco compared to 37.1 % for MuS1 transgenic tobacco. Result of VP-SEM showed that the number of trichome in the leaves for wild-type tobacco increased in comparison with that for untreated samples after 3 weeks, while that for MuS1 transgenic tobacco was not changed by Cd treatment. Results showed that the mechanism of the recovery of the MuS1 tobacco plant was not by high level of Cd uptake and accumulation

  6. Evaluation of the Effects of Lime-bassanite-charcoal Amendment on the Immobilization of Cadmium in Contaminated Soil.

    Science.gov (United States)

    Huang, Shunhong; Yang, Yi; Li, Qian; Su, Zhen; Yuan, Cuiyu; Ouyang, Kun

    2017-03-01

    The effects of amendments, such as lime, bassanite, sodium phosphate, steel slag and charcoal, and their compounds on the immobilization of cadmium (Cd) are investigated. The lime-bassanite-charcoal compound shows the best remediation performance compared to other agents in conducted experiments. The optimum condition for lime-bassanite-charcoal application in contaminated soil is lime-bassanite-charcoal with a mass ratio of 1:1/3:2/3, a dose of 2% of the soil weight, and a liquid-to-solid ratio of 35%-40%; additionally, the agents should be added before water addition. The highest Cd removal rate was 58.94% (±1.19%) with a ∆pH of 0.23, which is much higher than the rates reported in previous studies. The compound amendment was used in a field experiment, demonstrating a Cd removal efficiency of 48.78% (±4.23), further confirming its effectiveness.

  7. Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils.

    Science.gov (United States)

    Wei, Yanyan; Zheng, Xiaoman; Shohag, Md Jahidul Islam; Gu, Minghua

    2017-08-29

    In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi ( Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0-87.6% and 20.1-82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9-71.8% for Cd bioaccessibility and 16.1-59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg -1 bw day -1 , BEDI of As < 3 μg kg -1 bw day -1 ) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated

  8. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator.

    Science.gov (United States)

    Shi, Yu; Huang, Zhanbin; Liu, Xiujie; Imran, Suheryani; Peng, Licheng; Dai, Rongji; Deng, Yulin

    2016-04-01

    Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA + SAP + ZE + FC was superior for remediation of soils contaminated with high levels of Pb and Cd.

  9. Enhanced bioremediation of 4-nonylphenol and cadmium co-contaminated sediment by composting with Phanerochaete chrysosporium inocula.

    Science.gov (United States)

    Xu, Piao; Lai, Cui; Zeng, Guangming; Huang, Danlian; Chen, Ming; Song, Biao; Peng, Xin; Wan, Jia; Hu, Liang; Duan, Abing; Tang, Wangwang

    2018-02-01

    Composting is identified as an effective approach for solid waste disposal. The bioremediation of 4-nonylphenol (4NP) and cadmium (Cd) co-contaminated sediment was investigated by composting with Phanerochaete chrysosporium (P. chrysosporium) inocula. P. chrysosporium inocula and proper C/N ratios (25.51) accelerated the composting process accompanied with faster total organic carbon loss, 4NP degradation and Cd passivation. Microbiological analysis demonstrated that elevated activities of lignocellulolytic enzymes and sediment enzymes was conducive to organic chemical transformation. Bacterial community diversity results illustrated that Firmicutes and Proteobacteria were predominant species during the whole composting process. Aerobic cellulolytic bacteria and organic degrading species played significant roles. Toxicity characteristic leaching procedure (TCLP) extraction and germination indices results indicated the efficient detoxification of 4NP and Cd co-contaminated sediment after 120 days of composting. Overall, results demonstrated that P. chrysosporium enhanced composting was available for the bioremediation of 4NP and Cd co-contaminated sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Combined Amendments of Nano-hydroxyapatite Immobilized Cadmium in Contaminated Soil-Potato (Solanum tuberosum L.) System.

    Science.gov (United States)

    Liu, Chang; Wang, Lei; Yin, Jiang; Qi, Lipan; Feng, Yan

    2018-04-01

    The toxicity of cadmium (Cd) has posed major public health concern in crops grown in the Cd-contaminated soils. The effects of five amendments, nano-hydroxyapatite (n-HA) and it combined with lime, zeolite, bone mill and fly ash on Cd immobilization in soils and uptake in potatoes, were investigated in a contaminated soil by pot experiments. The result showed that the applications of combined amendments significantly decreased the bioavailable Cd concentrations extracted by TCLP, DTPA-TEA and MgCl 2 in the contaminated soils, and changed the soluble and exchangeable and specifically sorbed fractions to oxide-bound and organic-bound fractions. Compared to the control group, the concentrations of Cd in the potato tubers grown in n-HA, n-HA + Fly ash, n-HA + Lime, n-HA + Bone mill and n-HA + Zeolite soil were reduced 17.4%, 20.7%, 15.2%, 32.6% and 39.1%, respectively. Nano-hydroxyapatite combined amendments was more effective in reducing bioavailable Cd concentrations and Cd accumulations in potatoes, especially for n-HA + Z.

  11. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil.

    Science.gov (United States)

    Hassan, Saad Eldin; Hijri, Mohamed; St-Arnaud, Marc

    2013-09-25

    Trace metal (TM) pollution of soil is a worldwide problem that threatens the quality of human and environmental health. Phytoremediation using plants and their associated microbes has been increasingly used as a green technology for cleaning up TM-polluted soils. In this study, we investigated the effect of inoculating two arbuscular mycorrhizal fungal isolates, Rhizophagus irregularis and Funneliformis mosseae, on trace metal uptake by sunflower plants grown in soils contaminated with three different Cd concentrations in a greenhouse trial. Root colonization, plant dry mass, and plant tissue cadmium (Cd), zinc (Zn), and copper (Cu) concentrations in roots and shoots were determined after sunflower harvesting. We found that root mycorrhizal colonization rates were not significantly affected by Cd treatments. At low soil Cd concentration, R. irregularis-inoculated plants had significantly higher shoot Cd and Zn concentrations than plants inoculated with F. mosseae and non-inoculated plants. However, at high soil Cd concentrations, F. mosseae-inoculated plants had significantly lower shoot Cd and Zn concentrations and biological concentration factor (BCF) values than plants inoculated with R. irregularis and non-inoculated plants. Cadmium was mainly translocated in shoot tissues of R. irregularis-inoculated plants and sequestered in the rhizosphere of F. mosseae-inoculated plants. The results indicate that these AMF strains mediate different tolerance strategies to alleviate TM toxicity in their host plants and that inoculation with the R. irregularis strain can be used for Cd phytoextraction, whereas this F. mosseae strain can be useful for Cd and Zn phytostabilization of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments.

    Science.gov (United States)

    Phusantisampan, Theerawut; Meeinkuirt, Weeradej; Saengwilai, Patompong; Pichtel, John; Chaiyarat, Rattanawat

    2016-10-01

    Soil contamination by cadmium (Cd) poses a serious environmental and public health concern. Phytoremediation, i.e., the use of plants to remove contaminants from soil, has been proposed for treatment of Cd-contaminated ecosystems. In this study, we demonstrated the potential of Vetiveria zizanioides, commonly known as vetiver, to serve as an effective phytoremediation agent. Two ecotypes, i.e., India and Sri Lanka, were grown in greenhouse pots and in the field. Soils were amended with cow manure, pig manure, bat manure, and an organic fertilizer. Among all amendments, pig manure performed best in both greenhouse and field studies in terms of increasing total V. zizanioides biomass production in both ecotypes. In both greenhouse and in the field, tissue of the Sri Lanka ecotype had higher Cd concentrations than did the India ecotype. In the greenhouse, the presence of Cd did not affect total biomass production or root dry weight. The Sri Lanka ecotype had 2.7 times greater adventitious root numbers and 3.6 times greater Cd accumulation in roots than did the India ecotype. In the field study, the Sri Lanka ecotype offers potential as an excluder species, as it accumulated Cd primarily in roots, with translocation factor values 1 for all experiments except for the pig manure amendment. In addition, the highest Cd concentration in the Sri Lanka ecotype root (71.3 mg kg(-1)) was consistent with highest Cd uptake (10.4 mg plant(-1)) in the cow manure treatment. The India ecotype contained lower root Cd concentrations, and Cd accumulation was slightly higher in shoots compared to roots, with translocation factor (TF) values >1. The India ecotype was therefore not considered as an excluder in the Cd-contaminated soil. With the use of excluder species combined with application of organic amendments, soil contamination by Cd may be treated by alternative remediation methods such as phytostabilization.

  13. Determination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Quentin Hurdebise

    2015-04-01

    Full Text Available Zinc, lead and cadmium are metallic trace elements (MTEs that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed.

  14. RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM

    Science.gov (United States)

    Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

  15. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower.

    Science.gov (United States)

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2016-02-01

    The potential of vermicompost, elemental sulphur, Thiobacillus thiooxidans and Pseudomonas putida for phytoremediation is well known individually but their integrated approach has not been discovered so far. The present work highlights the consideration of so far overlooked aspects of their integrated treatment by growing the ornamental plant, Gladiolus grandiflorus L in uncontaminated and sewage-contaminated soils (sulphur-deficient alluvial Entisols, pH 7.6-7.8) for phytoremediation of cadmium and lead under pot experiment. Between vermicompost and elemental sulphur, the response of vermicompost was higher towards improvement in the biometric parameters of plants, whereas the response of elemental sulphur was higher towards enhanced bioaccumulation of heavy metals under soils. The integrated treatment (T7: vermicompost 6g and elemental sulphur 0.5gkg(-1) soil and co-inoculation of the plant with T. thiooxidans and P. putida) was found superior in promoting root length, plant height and dry biomass of the plant. The treatment T7 caused enhanced accumulation of Cd up to 6.96 and 6.45mgkg(-1) and Pb up to 22.6 and 19.9mgkg(-1) in corm and shoot, respectively at the contaminated soil. T7 showed maximum remediation efficiency of 0.46% and 0.19% and bioaccumulation factor of 2.92 and 1.21 and uptake of 6.75 and 21.4mgkg(-1) dry biomass for Cd and Pb respectively in the contaminated soil. The integrated treatment T7 was found significant over the individual treatments to promote plant growth and enhance phytoremediation. Hence, authors conclude to integrate vermicompost, elemental sulphur and microbial co-inoculation for the enhanced clean-up of Cd and Pb-contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Evaluation of organic amendment on the effect of cadmium bioavailability in contaminated soils using the DGT technique and traditional methods.

    Science.gov (United States)

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Ding, Shi-Ming

    2017-03-01

    Organic amendments have been widely proposed as a remediation technology for metal-contaminated soils, but there exist controversial results on their effectiveness. In this study, the effect of pig manure addition on cadmium (Cd) bioavailability in Cd-contaminated soils was systematically evaluated by one dynamic, in situ technique of diffusive gradients in thin films (DGT) and four traditional methods based on the equilibrium theory (soil solution concentration and the three commonly used extractants, i.e., acetic acid (HAc), ethylenediamine tetraacetic acid (EDTA), and calcium chloride (CaCl 2 ). Wheat and maize were selected for measurement of plant Cd uptake. The results showed that pig manure addition could promote the growth of two plants, accompanied by increasing biomasses of shoots and roots with increasing doses of pig manure addition. Correspondingly, increasing additions of pig manure reduced plant Cd uptake and accumulation, as indicated by the decreases of Cd concentrations in shoots and roots. The bioavailable concentrations of Cd in Cd-contaminated soils reflected by the DGT technique obviously decreased with increasing doses of pig manure addition, following the same changing trend as plant Cd uptake. Changes in soil solution Cd concentration and extractable Cd by HAc, EDTA, and CaCl 2 in soils were similar to DGT measurement. Meanwhile, the capability of Cd resupply from solid phase to soil solution decreased with increasing additions of pig manure, as reflected by the decreases in the ratio (R) value of C DGT to C sol . Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in the tissues of the two plants. These findings provide stronger evidence that pig manure amendment is effective in reducing Cd mobility and bioavailability in soils and it is an ideal organic material for remediation of Cd-contaminated soils.

  17. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies.

    Science.gov (United States)

    Deng, Lin; Li, Zhu; Wang, Jie; Liu, Hongyan; Li, Na; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2016-01-01

    In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment "S. plumbizincicola intercropped with maize" was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha(-1) gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.

  18. Response of soil microbial communities to red mud-based stabilizer remediation of cadmium-contaminated farmland.

    Science.gov (United States)

    Li, Hui; Liu, Lemian; Luo, Lin; Liu, Yan; Wei, Jianhong; Zhang, Jiachao; Yang, Yuan; Chen, Anwei; Mao, Qiming; Zhou, Yaoyu

    2018-04-01

    In this work, a field test was conducted to investigate the effects of heavy metal stabilizer addition on brown rice and microbial variables in a cadmium (Cd)-contaminated farmland from April to October in 2016. Compared with the control, red mud-based stabilizer (RMDL) effectively reduced the concentration of Cd in brown rice (with the removal rate of 48.14% in early rice, 20.24 and 47.62% in late rice). The results showed that adding 0.3 kg m -2 RDML in early rice soil or soil for both early and late rice increased the microbial biomass carbon (MBC), the number of culturable heterotrophic bacteria and fungi, and the catalase activity in soil at different stages of paddy rice growth. Furthermore, there was no notable difference in the diversity of the bacterial species, community composition, and relative abundance at phylum (or class) or operational taxonomic unit (OTU) levels between the control and treatment (RMDL addition) groups. In a word, RMDL could be highly recommended as an effective remediation stabilizer for Cd-contaminated farmland, since its continuous application in paddy soil cultivating two seasons rice soil could effectively decrease the Cd content in brown rice and had no negative impact on soil microorganisms.

  19. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.

    Science.gov (United States)

    Hechmi, Nejla; Ben Aissa, Nadhira; Abdenaceur, Hassen; Jedidi, Naceur

    2015-01-01

    Despite many studies on phytoremediation of soils contaminated with either heavy metals or organics, little information is available on the effectiveness of phytoremediation of co-occurring metal and organic pollutants especially by using wetland species. Phragmites australis is a common wetland plant and its potential for phytoremediation of cadmium pentachlorophenol (Cd-PCP) co-contaminated soil was investigated. A greenhouse study was executed to elucidate the effects of Cd (0, 10, and 20 mg kg(-1)) without or with PCP (0, 50, and 250 mg kg(-1)) on the growth of the wetland plant P. australis and its uptake, accumulation and removal of pollutant from soils. After 75 days, plant biomass was significantly influenced by interaction of Cd and PCP and the effect of Cd on plant growth being stronger than that of PCP. Coexistence of PCP at low level lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues. The dissipation of PCP in soils was significantly influenced by interactions of Cd, PCP and plant presence or absence. As an evaluation of soil biological activities after remediation soil enzyme was measured.

  20. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Jin, Cheng; Wang, Ning; Luo, Huanzhang

    2014-01-01

    To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.

  1. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation.

    Science.gov (United States)

    Xiao, Xiyuan; Chen, Tongbin; An, Zhizhuang; Lei, Mei; Huang, Zechun; Liao, Xiaoyong; Liu, Yingru

    2008-01-01

    Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (< or = 20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.

  2. [Effects of soil properties on the stabilization process of cadmium in Cd alone and Cd-Pb contaminated soils].

    Science.gov (United States)

    Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen

    2012-07-01

    In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.

  3. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents.

    Science.gov (United States)

    Zhu, Hao; Wu, Chunfa; Wang, Jun; Zhang, Xumei

    2018-04-16

    Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier's sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.

  4. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals.

    Science.gov (United States)

    Čudić, Vladica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2016-09-01

    Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants' phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.

  5. EFFICIENCY OF THE EARTHWORM Eisenia fetida UNDER THE EFFECT OF ORGANIC MATTER FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH CADMIUM AND CHROMIUM

    Directory of Open Access Journals (Sweden)

    G. R. Mostafaii

    Full Text Available Abstract The use of earthworms to bioremediate soil results in decreasing the pollutant concentration through a bioaccumulation mechanism of the contaminants in the earthworm's body. The present work is an empirical study that was carried out on soils contaminated with chromium and cadmium. Organic matter in the amount of 5% and 9% of soil weight was added. Chromium and cadmium concentrations in soil and in the body of worms were measured at two time periods of 21 and 42 days. According to the results, increasing from 5% to 9% the organic material of the soil contaminated with chromium at the initial concentration of 0.06 mg/g, the removal efficiency decreased by 5%. In 0.1 mg/g concentration the bioremediation efficiency decreased by 20%, showing that the earthworms probably have more tendency to consume the organic material and low tendency for consuming the soil contaminated by metal. Results showed that, considering the increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, using this method is not recommended. For cadmium we require more study, though we can say that the organic material had no influence on the bioremediation of the soil.

  6. The Nile monitor (Varanus niloticus; Squamata: Varanidae) as a sentinel species for lead and cadmium contamination in sub-Saharan wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Ciliberti, Alexandre [Universite de Lyon, F-69000, Lyon, Vetagro-Sup, Campus Veterinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy-l' Etoile, UMR 1233 Mycotoxines et Toxicologie Comparee des Xenobiotiques (France); Berny, Philippe, E-mail: p.berny@vetagro-sup.fr [Universite de Lyon, F-69000, Lyon, Vetagro-Sup, Campus Veterinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy-l' Etoile, UMR 1233 Mycotoxines et Toxicologie Comparee des Xenobiotiques (France); Delignette-Muller, Marie-Laure [Universite de Lyon, F-69000, Lyon, Vetagro-Sup, Campus Veterinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy-l' Etoile (France); Universite de Lyon, F-69000, Lyon, Universite Lyon 1, CNRS, UMR5558, Laboratoire de Biometrie et Biologie Evolutive, F-69622, Villeurbanne (France); Buffrenil, Vivian de [Museum National d' Histoire Naturelle, CC 48, 57 rue Cuvier, F-75005 Paris, Departement Histoire de la Terre, UMR 7207 CR2P (France)

    2011-10-15

    Wetland pollution is a matter of concern in sub-Saharan Africa. Though regularly exploited, the Nile monitor (Varanus niloticus), a large amphibious lizard, is not threatened. This work aims at assessing the value of this varanid as a sentinel species in surveys of environmental contamination by metals. Lead and cadmium quantifications were performed by graphite furnace-atomic absorption spectrophotometry in bone, intestine, kidney, liver and muscle in 71 monitors from three unevenly polluted sites in Mali and Niger, plus a reference site. The effects of sex, size and fat reserves as well as factors related to the sampling strategy (tissue sampled, sampling site) were studied with a mixed linear model. Metal contamination is moderate at the four sites but clear differences nevertheless occur. Lead levels are generally maximal in bone, with a gender-independent median value 320 ng.g{sup -1}. Median cadmium concentrations never exceed 70.2 ng.g{sup -1} in females (kidney) and 57.5 ng.g{sup -1} in males (intestine). Such levels should have no detrimental effects on the monitors. Lead and cadmium levels in muscles are generally below 200 and 20 ng.g{sup -1}, respectively, and should provoke no health hazard to occasional consumers of monitor meat. Metal organotropisms are consistent with those observed in other studies about Squamates: for lead: bone > [kidney, intestine, liver] > muscle in males and [bone, kidney] > [intestine, liver] > muscle in females; for cadmium: [liver, intestine, kidney] > [bone, muscle] for both genders. Females are more contaminated, especially in their kidneys. In this tissue, median values in ng.g{sup -1} are 129.7 and 344.0 for lead and 43.0 and 70.2 for cadmium, for males and females, respectively. Nile monitors can reveal subtle differences in local pollution by metals; moreover, the spatial resolution of the pollution indication that they give seems to be very sharp. The practical relevance of this new tool is thus validated.

  7. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops.

    Science.gov (United States)

    Chen, Zhaojin; Zheng, Yuan; Ding, Chuanyu; Ren, Xuemin; Yuan, Jian; Sun, Feng; Li, Yuying

    2017-11-01

    Two energy crops (maize and soybean) were used in the remediation of cadmium-contaminated soils. These crops were used because they are fast growing, have a large biomass and are good sources for bioenergy production. The total accumulation of cadmium in maize and soybean plants was 393.01 and 263.24μg pot -1 , respectively. The rhizosphere bacterial community composition was studied by MiSeq sequencing. Phylogenetic analysis was performed using 16S rRNA gene sequences. The rhizosphere bacteria were divided into 33 major phylogenetic groups according to phyla. The dominant phylogenetic groups included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes. Based on principal component analysis (PCA) and unweighted pair group with arithmetic mean (UPGMA) analysis, we found that the bacterial community was influenced by cadmium addition and bioenergy cropping. Three molecular ecological networks were constructed for the unplanted, soybean- and maize-planted bacterial communities grown in 50mgkg -1 cadmium-contaminated soils. The results indicated that bioenergy cropping increased the complexity of the bacterial community network as evidenced by a higher total number of nodes, the average geodesic distance (GD), the modularity and a shorter geodesic distance. Proteobacteria and Acidobacteria were the keystone bacteria connecting different co-expressed operational taxonomic units (OTUs). The results showed that bioenergy cropping altered the topological roles of individual OTUs and keystone populations. This is the first study to reveal the effects of bioenergy cropping on microbial interactions in the phytoremediation of cadmium-contaminated soils by network reconstruction. This method can greatly enhance our understanding of the mechanisms of plant-microbe-metal interactions in metal-polluted ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Nile monitor (Varanus niloticus; Squamata: Varanidae) as a sentinel species for lead and cadmium contamination in sub-Saharan wetlands

    International Nuclear Information System (INIS)

    Ciliberti, Alexandre; Berny, Philippe; Delignette-Muller, Marie-Laure; Buffrenil, Vivian de

    2011-01-01

    Wetland pollution is a matter of concern in sub-Saharan Africa. Though regularly exploited, the Nile monitor (Varanus niloticus), a large amphibious lizard, is not threatened. This work aims at assessing the value of this varanid as a sentinel species in surveys of environmental contamination by metals. Lead and cadmium quantifications were performed by graphite furnace-atomic absorption spectrophotometry in bone, intestine, kidney, liver and muscle in 71 monitors from three unevenly polluted sites in Mali and Niger, plus a reference site. The effects of sex, size and fat reserves as well as factors related to the sampling strategy (tissue sampled, sampling site) were studied with a mixed linear model. Metal contamination is moderate at the four sites but clear differences nevertheless occur. Lead levels are generally maximal in bone, with a gender-independent median value 320 ng.g -1 . Median cadmium concentrations never exceed 70.2 ng.g -1 in females (kidney) and 57.5 ng.g -1 in males (intestine). Such levels should have no detrimental effects on the monitors. Lead and cadmium levels in muscles are generally below 200 and 20 ng.g -1 , respectively, and should provoke no health hazard to occasional consumers of monitor meat. Metal organotropisms are consistent with those observed in other studies about Squamates: for lead: bone > [kidney, intestine, liver] > muscle in males and [bone, kidney] > [intestine, liver] > muscle in females; for cadmium: [liver, intestine, kidney] > [bone, muscle] for both genders. Females are more contaminated, especially in their kidneys. In this tissue, median values in ng.g -1 are 129.7 and 344.0 for lead and 43.0 and 70.2 for cadmium, for males and females, respectively. Nile monitors can reveal subtle differences in local pollution by metals; moreover, the spatial resolution of the pollution indication that they give seems to be very sharp. The practical relevance of this new tool is thus validated.

  9. Use of clay to remediate cadmium contaminated soil under different water management regimes.

    Science.gov (United States)

    Li, Jianrui; Xu, Yingming

    2017-07-01

    We examined in situ remediation of sepiolite on cadmium-polluted soils with diverse water regimes, and several variables including brown rice Cd, exchangeable Cd, pH, and available Fe/P. pH, available Fe/P in soils increased gradually during continuous flooding, which contributed to Cd absorption on colloids. In control group (untreated soils), compared to conventional irrigation, brown rice Cd in continuous flooding reduced by 37.9%, and that in wetting irrigation increased by 31.0% (psoils reduced by 44.4%, 34.5% and 36.8% under continuous flooding, conventional irrigation and wetting irrigation (psoils reduced by 27.5-49.0%, 14.3-40.5%, and 24.9-32.8% under three water management regimes (psoils were higher in continuous flooding than in conventional irrigation and wetting irrigation. Continuous flooding management promoted soil Cd immobilization by sepiolite. Copyright © 2017. Published by Elsevier Inc.

  10. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification.

    Science.gov (United States)

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-06-04

    Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation

  11. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa; Tao, Shu

    2016-01-01

    The wide occurrence of Cd-contaminated rice in southern China poses significant public health risk and deserves immediate action, which arises primarily from extensive metal (including Cd) contamination of paddies with the fast expansion of nonferrous metal mining and smelting activities. Accumulation of Cd in rice grains can be reduced by removing Cd from the contaminated paddy soils, reducing its bioavailability, and controlling its uptake by rice plants. Although a range of measures can be taken to rehabilitate Cd-contaminated lands, including soil replacement and turnover, chemical washing, and phytoremediation, they are either too expensive and/or too slow. Various amendment materials, including lime, animal manures, and biochar, can be used to immobilize Cd in soils, but such fixation approach can only temporarily reduce Cd availability to rice uptake. Cultivation of alternative crops with low Cd accumulation in edible plant parts is impractical on large scales due to extensive contamination and food security concerns in southern China. Transgenic techniques can help develop rice cultivars with low Cd accumulation in grains, but little public acceptance is expected for such products. As an alternative, selection and development of low-Cd rice varieties and hybrids through plant biotechnology and breeding, particularly, by integration of marker-assisted selection (MAS) with traditional breeding, could be a practical and acceptable option that would allow continued rice production in soils with high bioavailability of Cd. Plant biotechnology and breeding can also help develop Cd-hyperaccumulating rice varieties, which can greatly facilitate phytoremediation of contaminated paddies. To eliminate the long-term risk of Cd entering the food chain, soils contaminated by Cd should be cleaned up when cost-effective remediation measures are available. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Increasing cadmium and zinc levels in wild common eiders breeding along Canada's remote northern coastline

    Energy Technology Data Exchange (ETDEWEB)

    Mallory, Mark L., E-mail: mark.mallory@acadiau.ca [Biology Department, Acadia University, Wolfville, Nova Scotia B4P 2R6 (Canada); Braune, Birgit M. [Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario K1A 0H3 (Canada); Robertson, Gregory J. [Environment Canada, Wildlife Research Division, 6 Bruce Street, Mount Pearl, Newfoundland and Labrador A1N 4T3 (Canada); Gilchrist, H. Grant [Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario K1A 0H3 (Canada); Mallory, Conor D. [Chemistry Department, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Forbes, Mark R. [Biology Department, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Wells, Regina [Environment Canada, Canadian Wildlife Service, 512 Lahr Boulevard, Happy Valley-Goose Bay, Newfoundland and Labrador A0P 1C0 (Canada)

    2014-04-01

    The common eider (Somateria mollissima) is an abundant sea duck breeding around the circumpolar Arctic, and is an important component of subsistence and sport harvest in some regions. We determined hepatic cadmium (Cd) and zinc (Zn) concentrations in the livers of breeding females sampled during three time periods including 1992/3, 2001/2 and 2008 at three sites spanning 53.7°N–75.8°N in the eastern Canadian Arctic. At all sites, concentrations of both Cd and Zn increased ∼ 300% over this time period. The reasons for this rapid increase in concentrations are unclear. - Highlights: • Cd and Zn analyzed in common eider (Somateria mollissima) liver tissue in Canadian Arctic from sites spanning 3000 km. • ∼ 300% increase in concentrations observed over ∼ 20 years • Levels of both elements considered high and near levels thought to pose concerns for wildlife health.

  13. Distribution and geology accumulation contamination analysis of heavy metal cadmium in agricultural soil of Zunyi county

    International Nuclear Information System (INIS)

    Chen Hongliang; Long Qian; Ke Yang

    2011-01-01

    The pollution of heavy metal Cd in agricultural soils of Zunyi County, Guizhou Province, was investigated and assessed by using geology accumulation indices (igeo) and pollution index method in this study. Results showed that the average content of Cd is 0.356 mg/kg, and the geochemistry baseline content of Cd was 0.147 mg/kg. The I geo s of Cd was 0.691, which suggested that non-contaminated soil accounts for 13.84%, 59.17% of tested soils was between non-polluted and mid-level polluted, 21.37% with mid-level polluted and 5.17% was between mid-level polluted and severely polluted, 0.45% of which was severely polluted. Contamination degree analysis indicated that non-contaminated soil was only 10.57%, 54.44% was influenced by Cd and 34.98% was seriously influenced by Cd. (authors)

  14. Modeling Phytoremediation of Cadmium Contaminated Soil with Sunflower (Helianthus annus) Under Salinity Stress

    International Nuclear Information System (INIS)

    Motesharezadeh, B.; Navabzadeh, M.; Liyaghat, A. M.

    2016-01-01

    This study was carried out as a factorial experiment with 5 levels of cadmium (Cd) (o, 25, 50, 75, and 100 mg/kg), 5 levels of salinity (Control, 4, 5, 6, and 7 dS/m), and two soil textures (sandy loam and clay loam). The results showed that the amount of Cd in root and shoot of sunflower increased as soil salinity and Cd concentration increased. The best concentrations for Cd phytoremediation were 75 mg/kg in sandy loam and 100 mg/kg in clay loam. Mass-Hoffman model in simulating transpiration Cd stress as well as Homaee model in simulating salt stress indicated the best results in light soils. By multiplying the salinity stress model by Cd stress model, the simultaneous model for each soil was calculated. These models in light soil (r2=0.68) and heavy soil (r2=0.81) were compatible with measured values. In the heavy soil, absorbed Cd by plant along with increased salinity reflected low changes, but changes in Cd absorbed by plants in the heavy soil were more uniform than in the light soil. In conclusion, for estimating the Cd uptake, the model had a better performance in the heavy soil (under salt stress).

  15. Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium

    Science.gov (United States)

    Petrovský, E.; Kapička, A.; Jordanova, N.; Borůvka, L.

    2001-09-01

    Several proxy methods have been used recently to outline increased levels of pollution. One of them is based on measurements of the concentration of (ferri)magnetic minerals of anthropogenic origin. This method has been used recently in the mapping of both polluted and unpolluted areas. In order to validate this method, a more detailed study of links between magnetic parameters characterising the physical shape of magnetic minerals and concentrations of heavy metals is needed. In this study, we analysed the magnetic characteristics of alluvial soils, formed as a result of several breakdowns of wet deposit sink of ashes from a lead ore smelter. The soils were previously analysed for concentration of lead, zinc and cadmium. Our results show that in this case of a shared source of heavy metals and magnetic minerals, simple measurements of magnetic susceptibility discriminate well between polluted and clean areas. In addition, the concentration pattern agrees with the concentrations of the heavy metals studied in deeper soil layers that were not affected by post-depositional changes due to climate and remediation efforts.

  16. Reduction of 137caesium contamination in wild boars by supplementing offered food with ammonium-iron-hexa-cyanoferrate

    International Nuclear Information System (INIS)

    Morfeld, P.; Kienzle, E.

    2014-01-01

    This replication study investigated whether the 137 caesium ( 137 Cs) contamination of wild boars could be relevantly reduced under field conditions by adding ammonium-iron-hexa-cyanoferrate (AFCF; Prussian blue) to the food. In 285 wild boars that had been shot in six Bavarian hunting territories during the season (November until May) between 01 November 2010 and 10 December 2011 137 Cs contamination was analysed. Thirty-five animals originated from two hunting territories in which offered food had been supplemented with 1250 mg AFCF per kilogram food. The control animals showed a mean 137 Cs contamination of 522 Bq/kg lean skeletal muscle meat. Direct (univariable) comparisons of the two experimental territories with the four control territories yielded a mean reduction in 137 Cs contamination due to Prussian bluefeeding by -211 Bq/kg (p < 0.001). Multivariable mo dels that took potential confounders into account (age, weight, sex, hunting date, territory) estimated the effect to be -344 Bq/kg (p < 0.05). This replication study confirmed the finding of Kienzle et al. (12) who described a statistically significant reduction in 137 Cs contamination by -380 Bq/kg due to the feeding of Prussian blue in other territories. [de

  17. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium.

    Science.gov (United States)

    Zeng, Peng; Guo, Zhaohui; Cao, Xia; Xiao, Xiyuan; Liu, Yanan; Shi, Lei

    2018-03-21

    In a greenhouse experiment, five ornamental plants, Osmanthus fragrans (OF), Ligustrum vicaryi L. (LV), Cinnamomum camphora (CC), Loropetalum chinense var. rubrum (LC), and Euonymus japonicas cv. Aureo-mar (EJ), were studied for the ability to phytostabilization for Cd-contaminated soil. The results showed that these five ornamental plants can grow normally when the soil Cd content is less than 24.6 mg·kg -1 . Cd was mainly deposited in the roots of OF, LV, LC and EJ which have grown in Cd-contaminated soils, and the maximum Cd contents reached 15.76, 19.09, 20.59 and 32.91 mg·kg -1 , respectively. For CC, Cd was mainly distributed in the shoots and the maximum Cd content in stems and leaves were 12.5 and 10.71 mg·kg -1 , however, the total amount of Cd in stems and leaves was similar with the other ornamental plants. The enzymatic activities in Cd-contaminated soil were benefited from the five tested ornamental plants remediation. Soil urease and sucrase activities were improved, while dehydrogenase activity was depressed. Meanwhile, the soil microbial community was slightly influenced when soil Cd content is less than 24.6 mg·kg -1 under five ornamental plants remediation. The results further suggested that ornamental plants could be promising candidates for phytostabilization of Cd-contaminated soil.

  18. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.

    Science.gov (United States)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-05-30

    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (Psoils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cadmium and zinc in plants and soil solutions from contaminated soils

    DEFF Research Database (Denmark)

    Lorenz, S.E.; Hamon, R.E.; Holm, P.E.

    1997-01-01

    In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably...

  20. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures.

    Science.gov (United States)

    Guittonny-Philippe, Anna; Petit, Marie-Eléonore; Masotti, Véronique; Monnier, Yogan; Malleret, Laure; Coulomb, Bruno; Combroux, Isabelle; Baumberger, Teddy; Viglione, Julien; Laffont-Schwob, Isabelle

    2015-01-01

    Constructed wetlands (CWs) offer an alternative to traditional industrial wastewater treatment systems that has been proved to be efficient, cost-effective and environmentally friendly. Most of the time, CWs are planted with proliferative species such as Phragmites australis or with plants originating from nurseries, both representing a risk for the natural biodiversity conservation of aquatic ecosystems located downstream of the CWs. For the removal of metals and organic pollutant mixtures present in industrial effluents, it is necessary to select tolerant plant species that are able to produce a high aboveground biomass and to develop a healthy belowground system. Wild plant species growing in aquatic bodies at industrial outfalls could constitute suitable tolerant species to use in CWs for industrial effluent treatment. To test this hypothesis, we assessed, under laboratory conditions (using an experimental design), the tolerance to mixtures of metals (Al, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Sn, Zn) or/and organic pollutants (THC, PHE, PYR, LAS) of five European sub-cosmopolitan native macrophytes (Alisma lanceolatum, Carex cuprina, Epilobium hirsutum, Iris pseudacorus and Juncus inflexus) that had been collected in a polluted Mediterranean wetland, after a field study (crossing ecological relevés and analyses of contaminant concentrations in water and sediments). Our results demonstrated that research on phytoremediation of industrial effluents should focus much more on the use of native macrophytes growing at short distances from industrial discharges (such as C. cuprina in this study), and that root/shoot ratio, aerial height and proportion of green leaves are good and cost-effective indicators of plant tolerance to metals and organic pollutant mixtures in laboratory studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid.

    Science.gov (United States)

    Li, Yu-jiao; Hu, Peng-jie; Zhao, Jie; Dong, Chang-xun

    2015-04-01

    Composite washing of cadmium (Cd)- and lead (Pb)-contaminated agricultural soil from Hunan province in China using mixtures of chlorides (FeCl3, CaCl2) and citric acid (CA) was investigated. The concentrations of composite washing agents for metal removal were optimized. Sequential extraction was conducted to study the changes in metal fractions after soil washing. The removal of two metals at optimum concentration was reached. Using FeCl3 mixed with CA, 44% of Cd and 23% of Pb were removed, and 49 and 32% by CaCl2 mixed with CA, respectively. The mechanism of composite washing was postulated. A mixture of chlorides and CA enhanced metal extraction from soil through the formation of metal-chloride and metal-citrate complexes. CA in extract solutions promoted the formation of metal-chloride complexes and reduced the solution pH. Composite washing reduced Cd and Pb in Fe-Mn oxide forms significantly. Chlorides and CA exerted a synergistic effect on metal extraction during composite washing.

  2. Phytoavailability, human risk assessment and transfer characteristics of cadmium and zinc contamination from urban gardens in Kano, Nigeria.

    Science.gov (United States)

    Abdu, Nafiu; Agbenin, John O; Buerkert, Andreas

    2011-12-01

    Quantitative data about phytoavailability and transfer into consumed plant parts for heavy metals in intensively managed urban vegetable production areas of sub-Saharan Africa are scarce. We therefore studied the transfer of zinc (Zn) and cadmium (Cd) from soil to the root and subsequent translocation to edible portions of four vegetables in six urban gardens. While respective diethylenetriaminepentaacetic acid (DTPA)-available Zn and Cd concentrations ranged from 18 to 66 mg kg(-1) and from 0.19 to 0.35 mg kg(-1) , respectively, in soils, total Zn and Cd were 8.4-256 mg kg(-1) and 0.04-1.7 mg kg(-1) in shoot parts. Metal transfer factor (MTF) ratios were higher in Zn (0.2-0.9) than in Cd (0.1-0.6). Our data suggest that total Zn concentration in soil is a reliable indicator to assess its transfer from soil to crop in lettuce, carrot and parsley, while for Cd DTPA-extractable concentration may be used to estimate soil-crop transfer of Cd in amaranthus and carrot. Overall, Cd was more easily translocated to the aerial plant parts than Zn. Zinc and Cd accumulation by vegetables in our soils is mainly a metabolically controlled process. Such accumulation can contaminate the ecosystem but under our conditions intake and ingestion of these metals will likely have to occur over a prolonged period to experience health hazard. Copyright © 2011 Society of Chemical Industry.

  3. Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes.

    Science.gov (United States)

    Pereira, Marcio Paulo; Corrêa, Felipe Fogaroli; de Castro, Evaristo Mauro; de Oliveira, Jean Paulo Vitor; Pereira, Fabricio José

    2017-11-01

    Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd 2+ ) contamination. The aim of this study was to evaluate the Cd 2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd 2+ . Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd 2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd 2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd 2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd 2+ -exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd 2+ levels. Furthermore, older leaves showed higher Cd 2+ content when compared to the younger ones, preventing the Cd 2+ toxicity to these leaves. Thus, low Cd 2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.

  4. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    Science.gov (United States)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  5. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils.

    Science.gov (United States)

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Liu, Weitao; Liang, Xuefeng; Wang, Lin

    2016-01-15

    A pot trial was conducted to assess the effectiveness of sepiolite, bentonite, and phosphate on the immobilization remediation of cadmium (Cd)-contaminated soils using a set of variables, namely, physiological traits, sequential extraction procedure, plant growth and Cd concentration, and soil enzymatic activities and microbial population. Results showed that superoxide dismutase and peroxidase activities in the leaves of Oryza sativa L. and catalase activities in soils were stimulated after applying the amendments. However, soluble protein contents in leaves and urease and invertase activities in soils were reduced from 7.1% to 31.7%, 1.0%-23.3%, and 21.1%-62.5%, respectively, compared with the control. Results of the sequence extraction procedures revealed that the exchangeable fraction of Cd in soils was mostly converted into carbonated-associated forms. The water soluble plus exchangeable fraction (SE) of Cd in soil decreased when treated with single and compound materials of sepiolite, bentonite and phosphate, which resulted in 13.2%-69.2% reduction compared with that of CK (control test). The amendments led to decreased Cd concentrations in roots, stems, leaves, brown rice, and rice hull by 16.2%-54.5%, 16.6%-42.8%, 19.6%-59.6%, 5.0%-68.2%, and 6.2%-20.4%, respectively. Higher bacterial and actinomycete amount indicated that remediation measures improved soil environmental quality. Composite amendments could be more efficiently used for the stabilization remediation of Cd contaminated soils with low Cd uptake and translocation in the plants and available contents of Cd in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies.

    Science.gov (United States)

    Liao, Guojian; Wu, Qianhua; Feng, Renwei; Guo, Junkang; Wang, Ruigang; Xu, Yingming; Ding, Yongzhen; Fan, Zhilian; Mo, Liangyu

    2016-04-01

    Paddy soils in many regions of China have been seriously polluted by multiple heavy metals or metalloids, such as arsenic (As), cadmium (Cd) and lead (Pb). In order to ensure the safety of food and take full advantage of the limited farmland resources of China, exploring an effective technology to repair contaminated soils is urgent and necessary. In this study, three technologies were employed, including variety screening, water management and foliage dressing, to assess their abilities to reduce the accumulation of Cd and As in the grains of different rice varieties, and meanwhile monitor the related yields. The results of variety screening under insufficient field drying condition showed that the As and Cd contents in the grains of only four varieties [Fengliangyouxiang 1 (P6), Zhongzheyou 8 (P7), Guangliangyou 1128 (P10), Y-liangyou 696 (P11)] did not exceed their individual national standard. P6 gained a relatively high grain yield but accumulated less As and Cd in the grains despite of the relatively high As and Cd concentrations in the rhizosphere soil. However, long-playing field drying in water management trial significantly increased Cd but decreased As content in the grains of all tested three varieties including P6, suggesting an important role of water supply in controlling the accumulation of grain As and Cd. Selenium (Se) showed a stronger ability than silicon (Si) to reduce As and Cd accumulation in the grains of Fengliangyou 4 (P2) and Teyou 524 (P13), and keep the yields. The results of this study suggest that combined application of water management and foliage dressing may be an efficient way to control As and Cd accumulation in the grains of paddy rice exposing to As- and Cd-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Blood parameters as biomarkers of cadmium and lead exposure and effects in wild wood mice (Apodemus sylvaticus) living along a pollution gradient.

    Science.gov (United States)

    Tête, Nicolas; Afonso, Eve; Bouguerra, Ghada; Scheifler, Renaud

    2015-11-01

    Small mammal populations living on contaminated sites are exposed to various chemicals. Lead (Pb) and cadmium (Cd), two well-known nonessential trace metals, accumulate in different organs and are known to cause multiple adverse effects. To develop nonlethal markers in ecotoxicology, the present work aimed to study the relationships between blood parameters (hematocrit, leukocyte levels and granulated erythrocyte levels) and Cd and Pb concentrations in the soil and in the liver and kidneys of wood mice (Apodemus sylvaticus). Individuals were trapped along a pollution gradient with high levels of Cd, Pb and zinc (Zn) contamination. The results indicated that hematological parameters were independent of individual characteristics (age and gender). Blood parameters varied along the pollution gradient, following a pattern similar to the accumulation of Cd in the organs of the wood mice. No relationship was found between the blood parameters studied and Pb concentrations in the organs or in the environment. The hematocrit and leukocyte number decreased with increasing concentrations of Cd in the kidneys and/or in the liver. Moreover, the hematocrit was lower in the animals that were above the thresholds (LOAELs) for Cd concentrations in the liver. These responses were interpreted as a warning of potential negative effects of Cd exposure on the oxygen transport capacity of the blood (e.g., anemia). The present results suggest that blood parameters, notably hematocrit, may offer a minimally invasive biomarker for the evaluation of Cd exposure in further ecotoxicological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    International Nuclear Information System (INIS)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-01-01

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm 3 g −1 and 76.9 m 2 g −1 , respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl 2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments

  9. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xinxin, E-mail: xxye@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kang, Shenghong; Wang, Huimin [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Hongying [Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031 (China); Zhang, Yunxia [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Guozhong, E-mail: gzhwang@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Huijun [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2015-05-30

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm{sup 3} g{sup −1} and 76.9 m{sup 2} g{sup −1}, respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl{sub 2} extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments.

  10. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L

    International Nuclear Information System (INIS)

    Ji Puhui; Sun Tieheng; Song Yufang; Ackland, M. Leigh; Liu Yang

    2011-01-01

    Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg -1 Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil. - Research highlights: →S. nigrum L. is an effective phytoremediation plant for Cd-polluted soils. →Agronomy practices that increase harvested biomass improve bioremediation efficiency. →Double cropping of S. nigrum L. is an effective phytoremediation strategy. →Field experiments are necessary to effectively assess phytoremediation techniques. - Agronomic practice for the phytoremediation potential of Solanum nigrum L. for Cd uptake was demonstrated in field contaminated soils.

  11. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Ji Puhui [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Sun Tieheng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Song Yufang, E-mail: jipuhui1983@163.com [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Ackland, M. Leigh [School of Life and Environmental Sciences, Deakin University, Burwood 3125, Melbourne (Australia); Liu Yang [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China)

    2011-03-15

    Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg{sup -1} Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil. - Research highlights: > S. nigrum L. is an effective phytoremediation plant for Cd-polluted soils. > Agronomy practices that increase harvested biomass improve bioremediation efficiency. > Double cropping of S. nigrum L. is an effective phytoremediation strategy. > Field experiments are necessary to effectively assess phytoremediation techniques. - Agronomic practice for the phytoremediation potential of Solanum nigrum L. for Cd uptake was demonstrated in field contaminated soils.

  12. Spatial patterns in PCBs, pesticides, mercury and cadmium in the common sole in the NW Mediterranean Sea, and a novel use of contaminants as biomarkers

    International Nuclear Information System (INIS)

    Dierking, J.; Wafo, E.; Schembri, T.; Lagadec, V.; Nicolas, C.; Letourneur, Y.; Harmelin-Vivien, M.

    2009-01-01

    We assessed spatial patterns in 37 PCB congeners, eight pesticides, and the heavy metals mercury and cadmium in the flatfish Solea solea at four sites in the Gulf of Lions (NW Mediterranean). Overall contaminant concentrations generally exceeded those reported for S. solea elsewhere, but fell into the range of other Gulf fishes, testifying of a relatively high contaminant load of this area. Spatial patterns in all three contaminant classes were highly significant, but differed among classes. PCB congener and chlorination class profiles also differed among sites. The observed patterns would be consistent with (1) PCB point-sources in the Eastern Gulf (Marseille, Rhone River) versus dominance of atmospheric input in the West, (2) pesticide input by the Rhone and from agricultural fields in the West, and (3) mercury point-sources near Marseille. The unique, site-specific contaminant profiles prove to be a powerful tool to differentiate between S. solea populations from different sites.

  13. Cadmium determination in lettuce grown in contaminated soil by INAAA and GFAAS

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria Jose A.; Maihara, Vera A.; Saiki, Mitiko, E-mail: marmelin@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Trevizam, Anderson R.; Silva, Maria Ligia S. [Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, PR (Brazil); Muraoka, Takashi, E-mail: muraoka@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2011-07-01

    Although Cd is not essential for the mammalian organism, it follows in body the same pathways of essential elements such as zinc and copper. There is evidence that the Cd induced reduction of Ca absorption, may lead to the development of osteoporosis. Anthropogenic activities associated with industrial activities, mining and use of fertilizers, limestone pesticides in agriculture are the main sources of Cd enrichment in soils. Due to the possibility that Cd being absorbed by plants and through them to reach the food chain, interest has increased in regard to developing techniques for remediation of contaminated sites. The addition of substances capable of immobilizing the toxic elements from the soil is a procedure that has been used for remediation of contaminated sites. The function of these substances is to reduce the mobility and bioavailability of potentially toxic elements in the soil. In this study, five doses of phosphorus as triple phosphorus were used in a number of lettuce plants grown in contaminated soil. The concentration of Cd present in lettuce leaves treated with phosphate was compared with the Cd absorbed by the control plant leaves. Instrumental Neutron Activation Analysis (INAA) and Graphite-Furnace Absorption Atomic Spectrometry (GFAAS) were the analytical methods used to determine Cd contents in lettuce leaves. The objective was to evaluate the performance of the employed analytical methods: INAA and GFAAS in the assessment of the efficiency of phosphorus treatments to reduce the Cd concentrations in leaves of lettuce. Results obtained indicated that both analytical methods were efficient to discriminate the response of Cd concentration in lettuce as a function of soil treatment with phosphorus. Although INAA has shown a positive performance in this study, GFAAS seemed more appropriate because its sensitivity was much higher than that obtained by INAA, in the experimental conditions. (author)

  14. Cadmium determination in lettuce grown in contaminated soil by INAAA and GFAAS

    International Nuclear Information System (INIS)

    Armelin, Maria Jose A.; Maihara, Vera A.; Saiki, Mitiko; Trevizam, Anderson R.; Silva, Maria Ligia S.; Muraoka, Takashi

    2011-01-01

    Although Cd is not essential for the mammalian organism, it follows in body the same pathways of essential elements such as zinc and copper. There is evidence that the Cd induced reduction of Ca absorption, may lead to the development of osteoporosis. Anthropogenic activities associated with industrial activities, mining and use of fertilizers, limestone pesticides in agriculture are the main sources of Cd enrichment in soils. Due to the possibility that Cd being absorbed by plants and through them to reach the food chain, interest has increased in regard to developing techniques for remediation of contaminated sites. The addition of substances capable of immobilizing the toxic elements from the soil is a procedure that has been used for remediation of contaminated sites. The function of these substances is to reduce the mobility and bioavailability of potentially toxic elements in the soil. In this study, five doses of phosphorus as triple phosphorus were used in a number of lettuce plants grown in contaminated soil. The concentration of Cd present in lettuce leaves treated with phosphate was compared with the Cd absorbed by the control plant leaves. Instrumental Neutron Activation Analysis (INAA) and Graphite-Furnace Absorption Atomic Spectrometry (GFAAS) were the analytical methods used to determine Cd contents in lettuce leaves. The objective was to evaluate the performance of the employed analytical methods: INAA and GFAAS in the assessment of the efficiency of phosphorus treatments to reduce the Cd concentrations in leaves of lettuce. Results obtained indicated that both analytical methods were efficient to discriminate the response of Cd concentration in lettuce as a function of soil treatment with phosphorus. Although INAA has shown a positive performance in this study, GFAAS seemed more appropriate because its sensitivity was much higher than that obtained by INAA, in the experimental conditions. (author)

  15. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil

    Energy Technology Data Exchange (ETDEWEB)

    Gabrijel, Ondrasek [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)], E-mail: gondrasek@agr.hr; Davor, Romic [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia); Zed, Rengel [Soil Science and Plant Nutrition, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley WA 6009 (Australia); Marija, Romic; Monika, Zovko [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd{sup 2+} pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg{sup -1}) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd{sup 2+} increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit

  16. Feasibility of Using Phytoextraction to Remediate a Compost-Based Soil Contaminated with Cadmium.

    Science.gov (United States)

    Parisien, Michele A; Rutter, Allison; Zeeb, Barbara A

    2015-01-01

    Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site.

  17. Can energy willow (Salix sp.) remediate cadmium- and nickel-contaminated fish farm sludge?

    DEFF Research Database (Denmark)

    Pedersen, Marianne Bruus

    it meets the criteria. Phytoremediation by willow may combine accumulation of cadmium and nickel from the sludge with the production of an energy crop. The ability of eight selected willow clones to take up and tolerate cadmium and nickel was studied in pots under outdoor conditions. Fish farm sludge...

  18. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence.

    Science.gov (United States)

    Sanchez, Wilfried; Bender, Coline; Porcher, Jean-Marc

    2014-01-01

    Marine ecosystem contamination by microplastics is extensively documented. However few data is available on the contamination of continental water bodies and associated fauna. The aim of this study was to address the occurrence of microplastics in digestive tract of gudgeons (Gobio gobio) from French rivers. These investigations confirm that continental fish ingested microplastics while 12% of collected fish are contaminated by these small particles. Further works are needed to evaluate the occurence of this contamination. © 2013 Published by Elsevier Inc.

  19. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L.

    Science.gov (United States)

    Ji, Puhui; Sun, Tieheng; Song, Yufang; Ackland, M Leigh; Liu, Yang

    2011-03-01

    Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg(-1) Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Contamination of roadside soil and vegetation with lead, zinc and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, N; Sumiyoshi, M; Toyoda, S; Sato, Y; Kojima, M

    1973-01-01

    In order to survey the contamination of roadside soil and vegetation with heavy metals, distributions of Pb, Zn and Cd were examined in roadside soil and grass samples from some locations adjacent to heavily traveled route No. 6. Sampling sites were selected at comparatively level areas at both Matsudo and Kashiwa, Chiba prefecture. Concentrations of Pb and Zn in roadside soil decreased with distance from traffic. The same tendency was also observed in the case of Cd. Pb, Zn and Cd contents in grass samples increased remarkably at the adjacent site of traffic. These findings suggest that the contamination of roadside soil and vegetation with Pb, Zn and Cd must be caused by traffic. Pb, Zn and Cd contents in surface soil varied with climatological and seasonal conditions. Contents of Pb, Zn and Cd in grasses grown at the identical site of roadside varied with plant species and with sampling seasons. Concentrations of heavy metals in Solidago altissima L. increased with the lapse of time. Contents of Pb, Zn and Cd in roadside subsoil were less than those in surface soil. In both soils, a significant correlation was observed between concentrations of heavy metals in soils and the distance from traffic.

  1. Mapping risk of cadmium and lead contamination to human health in soils of Central Iran

    International Nuclear Information System (INIS)

    Amini, M.; Afyuni, M.; Khademi, H.; Abbaspour, K.C.; Schulin, R.

    2005-01-01

    In order to map Cd and Pb contamination in the soils of the region of Isfahan, Central Iran, we performed indicator kriging on a set of 255 topsoil samples (0-20 cm) gathered irregularly from an area of 6800 km 2 . The measured Cd concentrations exceeded the Swiss guide value in more than 80% of the samples whereas Pb concentrations exceeded the respective guide value only in 2% of the samples. Based on the simulated conditional distribution functions, the probability of exceeding the concentration of Cd and Pb from the specific threshold was computed. The results indicated that in most parts of the region the probability of contamination by Cd is very large (>0.95) whereas it is small (<0.5) for Pb. Based on a misclassification analysis, we chose the probability of 0.45 as optimum probability threshold to delineate the polluted from unpolluted areas for Cd. In addition, we performed a loss analysis to separate risks to human health from potential losses due to remediation costs. Based on this analysis a probability threshold of 0.8 was found to be the optimum threshold for the classification of polluted and unpolluted areas in the case of Cd. Health risks were found to be larger in the western parts of the region. Misclassification analysis was sufficient for risk mapping for Pb as its concentration did not reach risk levels for human health. A probability of 0.7 for Pb was found to be the optimum threshold for the delineation of polluted and unpolluted lands

  2. The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil.

    Science.gov (United States)

    Maric, Miroslava; Antonijevic, Milan; Alagic, Sladjana

    2013-02-01

    The copper production in Bor (East Serbia) during the last 100 years presents an important source of the pollution of environment. Dust, waste waters, tailing, and air pollutants influence the quality of soil, water, and air. Over 2,000 ha of fertile soil have been damaged by the flotation tailing from Bor's facilities. The goal of the present work has been to determine the content of Pb, Cu, and Fe in wild plants (17 species) naturally growing in the damaged soil and in fodder crops (nine species) planted at the same place. The content of Pb, Cu, and Fe has been analyzed in damaged soil as well. This study has also searched for native (wild) and cultivated plants which are able to grow in contaminated soil in the area of the intense industrial activity of copper production in Bor, which means that they can accumulate and tolerate heavy metals in their above-ground tissues. It has been found out that the content of all metals in contaminated soil decreases considerably at the end of the experiment. As it has been expected, all plant species could accumulate investigated metals. All tested plants, both wild-growing and cultivated plants, seem to be quite healthy on the substrate which contained extremely high concentrations of copper.

  3. CONTAMINATION STATUS OF CADMIUM IN DIFFERENT BIOTIC AND ABIOTIC COMPONENTS AROUND THE BIDHYADHARI RIVER OF INDIAN SUNDARBAN DELTA

    Directory of Open Access Journals (Sweden)

    Shivaji Bhattacharya

    2014-12-01

    Full Text Available This study has been conducted to estimate the concentration of total Cadmium (Cd in different biotic and abiotic substrates including human in and around the Bidyadhari river of Sundarban delta. Bidyadhari river presently serves as a sewage and excess rainwater outlet from Kolkata metropolitan and adjacent area, which ultimately empties at the Bay of Bengal. The study reveals that the Cd content in surface water of the river and ponds as well as ground water was generally high up to 0.294 µg/ml and 0.205 µg/ml respectively during most of the seasons, which was above the maximum permissible level for drinking water as per various national and international standards like Indian Standard Specification, European Union, WHO, USEPA etc. Though, range of Cd in sediment of the river and ponds was 0.025 to 0.281µg/g and 0.018 to 0.317µg/g respectively but that was considerably higher in grasses up to 0.324µg/g. Backyard hen demonstrated considerably high levels of Cd in their egg up to 0.247µg/g in albumen and 0.272 µg/g in yolk. Goat and cattle demonstrated Cd content in meat up to 0.295µg/g and milk up to 0.295µg/ml respectively which crosses the permissible levels recommended by different international standards. High Cd content in human hairs up to 1.11µg/g indicated considerably bioaccumulation of the metal in local inhabitants resides in the northern part of Sundarban mangrove eco-region. This whole observation may be considered as base line study to know the present status of Cd contamination and bioaccumulation in flora and fauna including humans in Sundarban mangrove eco-region to prepare mitigation planning against this carcinogen from the biota immediately.

  4. Removal and Remediation Effects of Cd from Cadmium-contaminated Farmland Soils by A Magnetic Solid Chelator

    Directory of Open Access Journals (Sweden)

    NIE Xin-xing

    2017-10-01

    Full Text Available In this paper, a simulated experiment was carried out to study the removal and remediation effects of Cd from cadmium-contaminated farmland soils by a magnetic solid chelator(MSC at different application rates as well as its recovery rates and chelating capacity for Cd. The results showed that when the application rates of MSC materials was between 0.4% and 1.2%, the removal rate of total Cd and available Cd were 15.91%~17.69% and 33.33%~50.26%, respectively. And the MSC recovery rates were between 74.01% and 94.33% which increased with the increase of application rates of MSC and gradually tended to be stable. The content of Cd in recycled magnetic materials(mainly MSC was between 19.31 mg·kg-1 to 25.72 mg·kg-1, reaching to the highest at the application rates of 0.4% which was significantly higher than those of 0.8%, 1% and 1.2% treatment. But the content of Cd in magnetic materials had the trend that decreased with the increase of the recovery amount of MSC. The amount of Cd chelated by magnetic materials was nearly equal to the removal amount of Cd from soil at the 0.8% and 1.2% treatments. Besides, the Cd concentration in water samples was lower thanⅠ-level standard issued by the surface water environment quality standard(GB 3838-2002, meaning that it would not be a new pollution source. Therefore, MSC does have some removal and remediation effects on soil Cd and will provide a new method for remediation of heavy metals in farmland soils.

  5. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: The role of surface area.

    Science.gov (United States)

    Li, Hongying; Guo, Xisheng; Ye, Xinxin

    2017-02-01

    Hydroxyapatite (HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium (Cd) uptake, but has no effect on lead (Pb) uptake, is not clear. The aim of this study was to determine the factors causing the differences in sorption behavior between Cd and Pb by evaluating HAPs with different surface areas. We synthesized HAPs with two different surface areas, which were characterized by X-ray diffraction, N 2 adsorption, and scanning electron microscopy, and then evaluated them as sorbents for Cd and Pb removal by testing in single and binary systems. The sorption capacity of large surface area HAP (1.85mmol/g) for Cd in the single-metal system was higher than that of small surface area HAP (0.64mmol/g), but there were no differences between single- and binary-metal solutions containing Pb. After the Cd experiments, the HAP retained a stable structure and intact morphology, which promotes the accessibility of reactive sites for Cd. However, a newly formed precipitate covered the surface and blocked the channels in the presence of Pb, which reduced the number of potential adsorption sites on HAP for Cd and Pb. Remediation experiments using Cd- and Pb-contaminated soil produced similar results to the solution tests. These results indicate that alterations of the structure and morphology during the reaction is an important factor influencing metal sorption to HAP. Copyright © 2016. Published by Elsevier B.V.

  6. Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation.

    Science.gov (United States)

    Khan, Abdur Rahim; Ullah, Ihsan; Khan, Abdul Latif; Park, Gun-Seok; Waqas, Muhammad; Hong, Sung-Jun; Jung, Byung Kwon; Kwak, Yunyoung; Lee, In-Jung; Shin, Jae-Ho

    2015-09-01

    The growth of hyperaccumulator plants is often compromised by increased toxicity of metals like cadmium (Cd). However, extraction of such metals from the soil can be enhanced by endophytic microbial association. Present study was aimed to elucidate the potential of microbe-assisted Cd phytoextraction in hyperaccumulator Solanum nigrum plants and their interactions under varied Cd concentrations. An endophytic bacteria Serratia sp. RSC-14 was isolated from the roots of S. nigrum. In addition to Cd tolerance up to 4 mM, the RSC-14 exhibited phosphate solubilization and secreted plant growth-promoting phytohormones such as indole-3-acetic acid (54 μg/mL). S. nigrum plants were inoculated with RSC-14 and were grown in different concentrations of Cd (0, 10, and 30 mg Cd kg(-1) sand). Results revealed that Cd treatment caused significant cessation in plant growth, biomass, and chlorophyll content, whereas significantly higher malondialdehyde (MDA) and electrolyte production in leaves were observed in a dose-dependent manner. Conversely, RSC-14 inoculation relived the toxic effects of Cd-induced stress by significantly increasing root/shoot growth, biomass production, and chlorophyll content and decreasing MDA and electrolytes contents. Ameliorative effects on host growth were also observed by the regulation of metal-induced oxidative stress enzymes such as catalase, peroxidase, and polyphenol peroxidase. Activities of these enzymes were significantly reduced in RSC-14 inoculated plants as compared to control plants under Cd treatments. The lower activities of stress responsive enzymes suggest modulation of Cd stress by RSC-14. The current findings support the beneficial uses of Serratia sp. RSC-14 in improving the phytoextraction abilities of S. nigrum plants in Cd contamination.

  7. Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet

    International Nuclear Information System (INIS)

    Dang Fei; Wang Wenxiong

    2009-01-01

    Commercially produced fish diet is now widely used in fish farming but it often contains elevated levels of cadmium (Cd). However, the adverse effects on fish are poorly understood. In this study, farm-raised marine grunts, Terapon jarbua, were fed Cd-contaminated diet or exposed to waterborne Cd for 4 weeks. Tissue-specific Cd bioaccumulation and its effects were subsequently examined. We found that Cd was accumulated in different fish tissues (digestive tracts, gills or livers). At the end of the exposure, Cd accumulation peaked in the fishes' livers (5.0-6.3 μg g -1 ), followed by the digestive tracts (0.83-3.16 μg g -1 ) and gills (0.27-2.74 μg g -1 ). Endpoints such as the survival rate, specific growth rate, condition factor, and superoxide dismutase activity were not significantly affected by Cd exposure. In contrast, metallothionein (MT) induction and subcellular Cd distribution indicated that there were possible sublethal effects of Cd exposure. MT was induced in response to Cd accumulation, but it returned to the control levels after a longer exposure period, except for hepatic MT induction resulting from waterborne or low dietary Cd exposure. The Cd percentage in the metallothionein-like protein (MTLP) fraction increased over exposure time, and it accounted for more than 57% Cd in the fishes' livers and 80% Cd in their digestive tracts by the end of the exposure period. Overall, although Cd in commercial fish diet did not have significant lethality to T. jarbua, sensitive responses such as hepatic MT induction and subcellular Cd distribution revealed that the Cd-induced storage and detoxification in T. jarbua may increase fish's tolerance to toxic metals.

  8. Fate of cadmium in the rhizosphere of Arabidopsis halleri grown in a contaminated dredged sediment

    Energy Technology Data Exchange (ETDEWEB)

    Huguet, Séphanie, E-mail: huguet.st@gmail.com [ISTerre, Université Grenoble Alpes, CNRS, F-38041 Grenoble (France); Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des sciences analytiques et de physico-chimie pour l' environnement et les matériaux (IPREM UMR 5254), Université de Pau et des Pays de l' Adour and CNRS, Hélioparc, 2 Av. Pierre Angot, 64053 Pau Cedex 9 (France); INERIS, Parc technologique Alata, 60550 Verneuil-en-Halatte (France); EMDouai, MPE-GCE, 930 Boulevard Lahure, 59500 Douai (France); Isaure, Marie-Pierre [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des sciences analytiques et de physico-chimie pour l' environnement et les matériaux (IPREM UMR 5254), Université de Pau et des Pays de l' Adour and CNRS, Hélioparc, 2 Av. Pierre Angot, 64053 Pau Cedex 9 (France); Bert, Valérie [INERIS, Parc technologique Alata, 60550 Verneuil-en-Halatte (France); Laboudigue, Agnès [EMDouai, MPE-GCE, 930 Boulevard Lahure, 59500 Douai (France); Proux, Olivier [OSUG, UMS832 CNRS/UJF, 414 rue de la piscine, 38400 Saint-Martin d' Hères (France); Flank, Anne-Marie; Vantelon, Delphine [Beamline LUCIA, SLS, Swiss Light Source, CH-5232 Villigen (Switzerland); Synchrotron SOLEIL, F-91192 Gif Sur Yvette (France); Sarret, Géraldine, E-mail: geraldine.sarret@ujf-grenoble.fr [ISTerre, Université Grenoble Alpes, CNRS, F-38041 Grenoble (France)

    2015-12-01

    In regions impacted by mining and smelting activities, dredged sediments are often contaminated with metals. Phytotechnologies could be used for their management, but more knowledge on the speciation of metals in the sediment and on their fate after colonization by plant roots is needed. This work was focused on a dredged sediment from the Scarpe river (North of France), contaminated with Zn and Cd. Zn, Cd hyperaccumulating plants Arabidopsis halleri from metallicolous and non-metallicolous origin were grown on the sediment for five months in a pot experiment. The nature and extent of the modifications in Cd speciation with or without plant were determined by electron microscopy, micro X-ray fluorescence and bulk and micro X-ray absorption spectroscopy. In addition, changes in Cd exchangeable and bioavailable pools were evaluated, and Cd content in leachates was measured. Finally, Cd plant uptake and plant growth parameters were monitored. In the original sediment, Cd was present as a mixed Zn, Cd, Fe sulfide. After five months, although pots still contained reduced sulfur, Cd-bearing sulfides were totally oxidized in vegetated pots, whereas a minor fraction (8%) was still present in non-vegetated ones. Secondary species included Cd bound to O-containing groups of organic matter and Cd phosphates. Cd exchangeability and bioavailability were relatively low and did not increase during changes in Cd speciation, suggesting that Cd released by sulfide oxidation was readily taken up with strong interactions with organic matter and phosphate ligands. Thus, the composition of the sediment, the oxic conditions and the rhizospheric activity (regardless of the plant origin) created favorable conditions for Cd stabilization. However, it should be kept in mind that returning to anoxic conditions may change Cd speciation, so the species formed cannot be considered as stable on the long term. - Highlights: • Cd was present as a mixed Zn, Cd, Fe sulfide in the sediment before

  9. Fate of cadmium in the rhizosphere of Arabidopsis halleri grown in a contaminated dredged sediment

    International Nuclear Information System (INIS)

    Huguet, Séphanie; Isaure, Marie-Pierre; Bert, Valérie; Laboudigue, Agnès; Proux, Olivier; Flank, Anne-Marie; Vantelon, Delphine; Sarret, Géraldine

    2015-01-01

    In regions impacted by mining and smelting activities, dredged sediments are often contaminated with metals. Phytotechnologies could be used for their management, but more knowledge on the speciation of metals in the sediment and on their fate after colonization by plant roots is needed. This work was focused on a dredged sediment from the Scarpe river (North of France), contaminated with Zn and Cd. Zn, Cd hyperaccumulating plants Arabidopsis halleri from metallicolous and non-metallicolous origin were grown on the sediment for five months in a pot experiment. The nature and extent of the modifications in Cd speciation with or without plant were determined by electron microscopy, micro X-ray fluorescence and bulk and micro X-ray absorption spectroscopy. In addition, changes in Cd exchangeable and bioavailable pools were evaluated, and Cd content in leachates was measured. Finally, Cd plant uptake and plant growth parameters were monitored. In the original sediment, Cd was present as a mixed Zn, Cd, Fe sulfide. After five months, although pots still contained reduced sulfur, Cd-bearing sulfides were totally oxidized in vegetated pots, whereas a minor fraction (8%) was still present in non-vegetated ones. Secondary species included Cd bound to O-containing groups of organic matter and Cd phosphates. Cd exchangeability and bioavailability were relatively low and did not increase during changes in Cd speciation, suggesting that Cd released by sulfide oxidation was readily taken up with strong interactions with organic matter and phosphate ligands. Thus, the composition of the sediment, the oxic conditions and the rhizospheric activity (regardless of the plant origin) created favorable conditions for Cd stabilization. However, it should be kept in mind that returning to anoxic conditions may change Cd speciation, so the species formed cannot be considered as stable on the long term. - Highlights: • Cd was present as a mixed Zn, Cd, Fe sulfide in the sediment before

  10. Changes in Mineralization Activity of Microbial Communities Depending on Physico-Chemical Properties of Soils and Cadmium Contamination

    Directory of Open Access Journals (Sweden)

    A.R. Gilmullina

    2016-09-01

    Full Text Available The effects of glucose and cadmium addition, as well as their combination on the CO2 efflux from soils, which differed by the total organic carbon content and texture, were studied. Glucose (10 g/kg addition induced an increase in the CO2 efflux from soil and a decrease in the content of dissolved organic carbon. The intensity of this effect reduced in samples with the low total organic carbon content. Cadmium (300 mg/kg addition alone did not affect the studied parameters. In case of combined addition of glucose and cadmium, the mineralization activity of microbial community was mainly determined by glucose amendment.

  11. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite.

    Science.gov (United States)

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Lin, Dasong; Liang, Xuefeng; Shi, Xin

    2012-01-01

    The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was < or = 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain.

  12. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    Science.gov (United States)

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  13. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda

    International Nuclear Information System (INIS)

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-01-01

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0±2.3 to 64.6±11.7 mg/kg Pb, 78.4±18.4 to 265.6±63.2 mg/kg Zn, and 0.8±0.13 to 1.40±0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas

  14. Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China

    International Nuclear Information System (INIS)

    Cheng Fangmin; Zhao Ningchun; Xu Haiming; Li Yi; Zhang Wenfang; Zhu Zhiwei; Chen Mingxue

    2006-01-01

    On the basis of a large-scale survey with 269 sampling sites and a field experiment with 12 cultivars grown at 3 ecologically different locations, Cadmium (Cd) and lead (Pb) contamination in milled rice grains and its variation among different locations were investigated in the area of southeast China. The objective of this study was mainly to assess the present situation of Cd and Pb contamination in rice grains harvested locally and find out the variation of Cd and Pb background levels in rice grains among the diverse regional locations. The results showed that: a) Cd concentrations in milled rice grains ranged from trace (below 10 ng/g) to 340 ng/g, with the means of 81.4 ng/g (AM) and 55.2 ng/g (GM) for the 269 samples, whereas Pb concentrations ranged from trace (below 10 ng/g) to 1136 ng/g, with the means of 113.5 ng/g (AM) and 51.0 ng/g (GM), respectively. High frequency was observed for both the Cd and Pb concentrations ranging from trace to 200 ng/g, with 95.9% for Cd and 84.8% for Pb, respectively. b) ANOVA for the AMs and GMs among 269 sampling sites indicated that there were significant differences among the different spatial locations in Cd or Pb concentrations. c) The Cd concentrations in milled rice grains were poorly correlated with Pb concentration among the 269 sampling sites surveyed, and no significant difference (P > 0.05) in the AMs or GMs of Cd and Pb concentration was observed among different cities within a range of the same provinces, only with an exception for 1-2 provinces. d) Variance analysis of Cd, Pb concentrations for 12 rice cultivars grown in three locations showed that the great difference in coefficients of variation (CV) was observed both among cultivars grown in the same location and among locations of cultivars planted, in which locations showed much more contribution to the variation of Cd or Pb concentration in milled rice grains as compared with cultivars

  15. Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium in dried bee pollen produced in Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Gasparotto SATTLER

    2016-01-01

    Full Text Available Abstract Like other beehive products, such as honey, royal jelly and propolis, bee pollen has attracted great interest because of the health benefits it can provide when consumed. Bee pollen has high contents of sugars and proteins and a low content of lipids, it is also a rich source of vitamins and other bioactive compounds, which makes it an attractive micronutrient supplement. However, few studies have investigated its composition. Therefore, the aim of this study was to characterize the essential minerals and inorganic contaminants present in bee pollen produced at apiaries in Rio Grande do Sul State, Brazil. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES revealed the presence of 8 essential minerals (calcium, iron, copper, chromium, manganese, molybdenum, phosphorus and zinc in the 5 analyzed samples; 6 of them were in sufficiently high amounts to meet dietary requirements. Of the 5 inorganic contaminants assessed (barium, cadmium, lithium, lead and vanadium, only cadmium was present at levels over the International Honey Commission’s standards. All bee pollen samples showed a high content of the 8 essential minerals. Contamination usually results from the use of pesticides, fertilizers and other chemicals in agriculture; thus, monitoring of its levels must be included in bee pollen analysis.

  16. Lead, Chromium and Cadmium Removal from Contaminated Water Using Phosphate Sorbents

    Directory of Open Access Journals (Sweden)

    Fariborz Riahi

    2010-06-01

    Full Text Available Sorption of 3 poisonous metal ions (Pb2+, Cd2+, Cr3+ in aqueous solutions by two phosphate sorbents under dynamic and static conditions was studied. Phosphate sorbents (MgNH4PO4. H2O, Mg3(PO42. 6H2O were synthesized by known procedures. The resulting crystalline samples were analyzed for the contents of Mg2+, Pb2+, P, N using spectrophotometric and elemental analysis methods. Likewise, the amounts of Pb2+, Cd2+, Cr3+ in solutions were determined before and after the sorption process using the atomic absorption method. The relative standard deviations for Pb2+, Cd2+, Cr3+ were 4.7%, 2.17%, and 1.61% and the detection limits were 5 g/L, 0.05 mg/L, and 0.1 mg/L, respectively. The sorbents showed a high performance in the purification of contaminated solutions under static conditions. The sorption capacity levels of Mg3 (PO42. 6H2O and MgNH4 PO4. H2O were 9.8m.mol/gr and 8.9m.mol/gr for Pb2+; 10.5m.mol/gr and 9m.mol/gr for Cd2+; and 6.6m.mol/gr and 5.3m.mol/gr for Cr3+, respectively. Pb2+ , Cd2+, Cr3+. sorption by inorganic phosphate sorbents from solutions is associated with complicated chemical transformations of the sorbents. A proper account of these transformations allows for the sorption process to be optimized. The data on Pb2+, Cd2+, Cr3+ sorption under static conditions (24-h contact of Mg3 (PO42. 6H2O, MgNH4PO4. H2O, with solutions at 20oC and under dynamic conditions were obtained and the sorption behaviors of the metal ions were investigated in response to the sorbents used. It was found that Mg3 (PO42. 6H2O was the best sorbent for Pb2+, Cd2+, Cr3+ under dynamic conditions.

  17. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Deary, Michael E., E-mail: michael.deary@northumbria.ac.uk [Department of Geography,Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Ekumankama, Chinedu C. [Department of Geography,Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Cummings, Stephen P. [Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2016-04-15

    Highlights: • 40 week study of the biodegradation of 16 US EPA priority PAHs in a soil with high organic matter. • Effects of cadmium, lead and mercury co-contaminants studied. • Novel kinetic approach developed. • Biodegradation of lower molecular weight PAHs relatively unaffected by Cd or Pb. • Soil organic matter plays a key role in the PAH removal mechanism. - Abstract: We report on the results of a 40 week study in which the biodegradation of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) was followed in microcosms containing soil of high organic carbon content (11%) in the presence and absence of lead and cadmium co-contaminants. The total spiked PAH concentration was 2166 mg/kg. Mercury amendment was also made to give an abiotic control. A novel kinetic model has been developed to explain the observed biphasic nature of PAH degradation. The model assumes that PAHs are distributed across soil phases of varying degrees of bioaccessibility. The results of the analysis suggest that overall percentage PAH loss is dependent on the respective rates at which the PAHs (a) are biodegraded by soil microorganisms in pore water and bioaccessible soil phases and (b) migrate from bioaccessible to non-bioaccessible soil phases. In addition, migration of PAHs to non-bioaccessible and non-Soxhlet-extractable soil phases associated with the humin pores gives rise to an apparent removal process. The presence of metal co-contaminants shows a concentration dependent inhibition of the biological degradation processes that results in a reduction in overall degradation. Lead appears to have a marginally greater inhibitory effect than cadmium.

  18. Microplastic Contamination of Wild and Captive Flathead Grey Mullet (Mugil cephalus)

    Science.gov (United States)

    Lui, Ching Yee

    2018-01-01

    A total of 60 flathead grey mullets were examined for microplastic ingestion. Thirty wild mullets were captured from the eastern coast of Hong Kong and 30 captive mullets were obtained from fish farms. Microplastic ingestion was detected in 60% of the wild mullets, with an average of 4.3 plastic items per mullet, while only 16.7% of captive mullets were found to have ingested microplastics, with an average of 0.2 items per mullet. The results suggested that wild mullets have a higher risk of microplastic ingestion than their captive counterparts. The most common plastic items were fibres that were green in colour and small in size (microplastics was positively correlated with larger body size among the mullets. PMID:29587444

  19. Microplastic Contamination of Wild and Captive Flathead Grey Mullet (Mugil cephalus

    Directory of Open Access Journals (Sweden)

    Lewis T. O. Cheung

    2018-03-01

    Full Text Available A total of 60 flathead grey mullets were examined for microplastic ingestion. Thirty wild mullets were captured from the eastern coast of Hong Kong and 30 captive mullets were obtained from fish farms. Microplastic ingestion was detected in 60% of the wild mullets, with an average of 4.3 plastic items per mullet, while only 16.7% of captive mullets were found to have ingested microplastics, with an average of 0.2 items per mullet. The results suggested that wild mullets have a higher risk of microplastic ingestion than their captive counterparts. The most common plastic items were fibres that were green in colour and small in size (<2 mm. Polypropylene was the most common polymer (42%, followed by polyethylene (25%. In addition, the abundance of microplastics was positively correlated with larger body size among the mullets.

  20. Metales pesados en hongos de areas contaminadas Heavy metals in wild mushrooms from contaminated areas

    Directory of Open Access Journals (Sweden)

    A. Moyano

    2010-01-01

    organic matter. Mycorrhizal improve their hosts mineral nutrition. The mycorrhizal as­sociations give resistance in contaminated areas to the plants. Sometimes inoculated plants hold up better the contamination that non-inoculated plants. The mycelia absorbs (extracts the soil available fraction and de­crease the heavy metal concentration in the plants. The fruit-bodies can be eaten by many animal specie as well as by humans. Some specie wild fungi have a high nutri­tional value and represent an important eco­nomical resource. Soil, mushrooms and litter were sampled in a lead (Pb-zinc (Zn mine (Soria prov­ince, Spain. The distribution of metals in soil, litter and fungi shows a high concentra­tion of metals in relation to the control ar­eas. The Zn soil contents ranges are 797­3540 mg/kg, Cd: 2.1-10 mg/kg and Pb: 1485-8166 mg/kg, Litter content ranges: (Zn: 92-1475 mg/kg; Cd 0.9-4.2 mg/kg; Pb: 54-2756 mg/kg and fruit-bodies ranges: (Zn 118-915 mg/kg; Cd: 1.2-45.2 mg/kg and Pb 12-1475 mg/kg. The bioacumula­tion factors show high environmental and toxicological risks.

  1. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Clemente, Rafael; Lepp, Nicholas; Dickinson, Nicholas

    2010-01-01

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  2. Metal and metalloid contamination in roadside soil and wild rats around a Pb-Zn mine in Kabwe, Zambia

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Shouta M.M.; Ikenaka, Yoshinori; Hamada, Kyohei [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan); Muzandu, Kaampwe; Choongo, Kennedy [Department of Biomedical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka (Zambia); Teraoka, Hiroki; Mizuno, Naoharu [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.j [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan)

    2011-01-15

    Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe. - The area around Kabwe, Zambia is highly polluted with metals and As. Wild rats from this area had high tissue concentrations of Pb and decreased body weight.

  3. Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour.

    Science.gov (United States)

    Bednarska, Agnieszka J; Świątek, Zuzanna

    2016-11-01

    By studying the internal compartmentalization of metals in different subcellular fractions we are able to better understand the mechanisms of metal accumulation in organisms and the transfer of metals through trophic chains. We investigated the internal compartmentalization of cadmium (Cd) and zinc (Zn) in mealworm beetle (Tenebrio molitor) larvae by breeding them in flour contaminated with either Cd at 100, 300 and 600mgkg(-1), or Zn at 1000 and 2000mgkg(-1). We separated the cellular components of the larvae into 3 fractions: the S1 or cytosolic fraction containing organelles, heat-sensitive and heat-stable proteins, the S2 or cellular debris fraction and the G or metal-rich granule fraction. The concentration of Cd and Zn in each fraction was measured at 0, 7, 14 and 21 days of being fed the flour. The concentration of Cd in the flour affected the concentration of Cd measured in each larval subcellular fraction (p≤0.0001), while the concentration of Zn in the flour only affected the Zn concentration in the S2 and G fractions (p≤0.02). Both Cd and Zn concentrations in mealworms remained relatively constant during the exposure (days 7, 14 and 21) in all three fractions, but the Cd concentrations were much higher than those found in larvae before the exposure (day 0). The concentration of Cd in the flour, however, did not affect the percentage of Cd in the S1 fraction. The contribution of Cd in the G fraction to the total Cd amount was similar (30-40%) in all Cd treatments. The percentage of Zn in all three fractions was not affected by the concentration of Zn in the flour and the relative contributions of each subcellular fraction to the total burden of Zn remained generally constant for both control and treated larvae. In general, larvae sequestered approximately 30% of Cd and Zn in the S1 fraction, which is important for the transport of metals to higher trophic levels in a food web. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout

    Science.gov (United States)

    Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.

    2008-01-01

    We investigated the influence of acclimation on results of in situ bioassays with cutthroat trout in metal-contaminated streams. Cutthroat trout (Oncorhynchus clarki) were held for 21 days (1) in live containers at a reference or "clean" site having dissolved metals near detection limits (0.01 ??g/L cadmium [Cd] and 2.8 ??g/L zinc [Zn]; hardness 32 mg/L as CaCO3) and (2) at a site in a mining-impacted watershed having moderately increased metals (0.07 ??g/L Cd and 38 to 40 ??g/L Zn; hardness 50 mg/L as CaCO3). The 96-hour survival of each treatment group was then tested in situ at five sites from September 5 to 9, 2002, and each group exhibited a range of metal concentrations (0.44 to 39 ??g/L arsenic [As], 0.01 to 2.2 ??g/L Cd, and 0.49 to 856 ??g/L Zn). Survival was 100% at three sites for both treatments. However, a higher percentage of metal-acclimated fish survived at the site with the second highest concentrations of Cd and Zn (0.90 and 238 ??g/L, respectively) compared with fish acclimated at the reference site (100% vs. 55%, respectively). Survival was 65% for acclimated fish and 0% for metal-nai??ve fish at the site with the largest metal concentrations (2.2 ??g/L Cd and 856 ??g/L Zn). Water collected from the site with the largest concentrations of dissolved metals (on October 30, 2002) was used in a laboratory serial dilution to determine 96-hour LC50 values. The 96-hour LC50 estimates of nai??ve fish during the in situ and laboratory experiments were similar (0.60 ??g Cd/L and 226 ??g Zn/L for in situ and 0.64 ??g Cd/L and 201 ??g Zn/L for laboratory serial dilutions). However, mortality of nai??ve cutthroat trout tested under laboratory conditions was more rapid in dilutions of 100%, 75%, and 38% site water than in situ experiments. ?? 2007 Springer Science+Business Media, LLC.

  5. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination.

    Science.gov (United States)

    Rizwan, Muhammad; Meunier, Jean-Dominique; Miche, Hélène; Keller, Catherine

    2012-03-30

    Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica (ASi) that had been extracted from a diatomite mine for Si distribution at 0, 1, 10 and 15 ton ASi ha(-1). ASi applications increased plant biomass and plant Si concentrations, reduced the available Cd in the soil and the Cd translocation to shoots, while Cd was more efficiently sequestrated in roots. But ASi is limiting for Si uptake by plants. We conclude that significant plant-available Si in soil contributes to decreased Cd concentrations in wheat shoots and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species.

    Science.gov (United States)

    Cheng, Lijuan; Wang, Yanan; Cai, Zhang; Liu, Jie; Yu, Binbin; Zhou, Qixing

    2017-03-04

    As a green remediation technology, phytoremediation is becoming one of the most promising methods for treating petroleum hydrocarbons (PHCs)-contaminated soil. Pot culture experiments were conducted in this study to investigate phytoremediation potential of two representative Iridaceae species (Iris dichotoma Pall. and Iris lactea Pall.) in remediation of petroleum hydrocarbon-contaminated saline-alkali soil from the Dagang Oilfield in Tianjin, China. The results showed that I. lactea was more endurable to extremely high concentration of PHCs (about 40,000 mg/kg), with a relatively high degradation rate of 20.68%.The degradation rate of total petroleum hydrocarbons (TPHs) in soils contaminated with 10,000 and 20,000 mg/kg of PHCs was 30.79% and 19.36% by I. dichotoma, and 25.02% and 19.35% by I. lactea, respectively, which improved by 10-60% than the unplanted controls. The presence of I. dichotoma and I. lactea promoted degradation of PHCs fractions, among which saturates were more biodegradable than aromatics. Adaptive specialization was observed within the bacterial community. In conclusion, phytoremediation by I. dichotoma should be limited to soils contaminated with ≤20,000 mg/kg of PHCs, while I. lactea could be effectively applied to phytoremediation of contaminated soils by PHCs with at least 40,000 mg/kg.

  7. Feasibility study on reducing lead and cadmium absorption by spinach (Spinacia oleracea L.) in a contaminated soil using nanoporous activated carbon

    International Nuclear Information System (INIS)

    Sara Darvishi; Mohammad Reza Ardakani; Saeed Vazan; Farzad Paknejad; Amir Hossein Faregh; Hossein Ghafourian

    2012-01-01

    Activated carbons (AC) have been long recognized as prominent absorbents in industries and feature numerous applications in preventing or absorbing the harmful gases and liquids and could be employed for filtration and remediation or even reutilization of chemicals. In order to investigate the capacity of AC in reducing the absorption of heavy metals (HM) including lead (Pb) and cadmium (Cd) and dual complex (Pb x Cd) by spinach, a factorial experiment in a completely randomized design with three replications on a pot trial was conducted. Three factors including five levels of AC 0, 5000, 10000, 15000, 20000 mg/kg soil, one concentration level of Pb 4,000 mg/kg soil and one concentration level of cadmium Cd 8 mg/kg soil were tested. The index of heavy metal concentration was calculated in leaf, stem and root and their corresponding dry weights. Results illustrated that in contaminated soils, plants with AC exhibited a superior reduction of absorption of HM vis-a-vis the plants without AC. The foremost result regarding the impact of AC on reducing the concentration of Pb and Cd was observed in 20,000 level of AC. This reveals that AC declined the soil contamination and lessened the accumulation of HM into the shoots and roots. Results suggest that the application of AC may be an eligible solution for decreasing the translocation of HM into the plants. (author)

  8. Cultural and wild plant species as bio indicators and phyto-remedies of PHC contaminated soils in Russia

    International Nuclear Information System (INIS)

    Breus, I.; Larionova, N.; Semenova, E.; Breus, V.

    2005-01-01

    The biological indicators are widely used along with the chemical and physical soil characteristics for the ecological risk assessment for soils during and after anthropogenic impacts. In many cases it often happens that only biological indicators are capable of establishing the physiological activity of contaminant complex in soil and of revealing the critical levels of soil contamination. Bio-testing is often used to determine the toxicity of various environmental objects - soils, waters, sediments and wastes. Firstly bio-testing demands the selection of testable biological organisms adequate to studying objects. The test objects must be representative for a given contaminated ecosystem community which is influenced by toxicants. So one can obtain data adequate to the real situation and also minimise the mistakes during the extrapolation of data obtained in bio-testing. Among bio-testing methods the methods of soil toxicity determination using high plants gained wide distribution. And moreover, if such plants are relatively tolerant to soil contamination and can accumulate sufficient plant biomass, it is possible to expect their phyto-remediation effect, which can be realized by different mechanisms. But the experimental investigations of the plant use for soil remediation in Russia are now still under development. The aims of this work were: i) the determination and selection of informative bio-indicative parameters could be used for evaluation of PHC (petroleum hydrocarbons) - soil contamination levels; ii) the choose of test plants based on these values; and iii) the revelation of the possible phyto-remediation effects in soil contaminated with PHC.In laboratory experiments the phyto-toxicity of soil contaminated with PHC was evaluated in relation to 35 plant species and sorts traditional and non-traditional for Russia and cultivated for fodder green biomass purposes, and also for some wild plant species. The following parameters were determined in the

  9. Cultural and wild plant species as bio indicators and phyto-remedies of PHC contaminated soils in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Breus, I.; Larionova, N.; Semenova, E.; Breus, V. [Kazan State Univ., Dept. of Geography and Geoecology (Russian Federation)

    2005-07-01

    The biological indicators are widely used along with the chemical and physical soil characteristics for the ecological risk assessment for soils during and after anthropogenic impacts. In many cases it often happens that only biological indicators are capable of establishing the physiological activity of contaminant complex in soil and of revealing the critical levels of soil contamination. Bio-testing is often used to determine the toxicity of various environmental objects - soils, waters, sediments and wastes. Firstly bio-testing demands the selection of testable biological organisms adequate to studying objects. The test objects must be representative for a given contaminated ecosystem community which is influenced by toxicants. So one can obtain data adequate to the real situation and also minimise the mistakes during the extrapolation of data obtained in bio-testing. Among bio-testing methods the methods of soil toxicity determination using high plants gained wide distribution. And moreover, if such plants are relatively tolerant to soil contamination and can accumulate sufficient plant biomass, it is possible to expect their phyto-remediation effect, which can be realized by different mechanisms. But the experimental investigations of the plant use for soil remediation in Russia are now still under development. The aims of this work were: i) the determination and selection of informative bio-indicative parameters could be used for evaluation of PHC (petroleum hydrocarbons) - soil contamination levels; ii) the choose of test plants based on these values; and iii) the revelation of the possible phyto-remediation effects in soil contaminated with PHC.In laboratory experiments the phyto-toxicity of soil contaminated with PHC was evaluated in relation to 35 plant species and sorts traditional and non-traditional for Russia and cultivated for fodder green biomass purposes, and also for some wild plant species. The following parameters were determined in the

  10. Elevated contaminants contrasted with potential benefits of ω-3 fatty acids in wild food consumers of two remote first nations communities in northern Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Timothy A Seabert

    Full Text Available Indigenous communities in Boreal environments rely on locally-harvested wild foods for sustenance. These foods provide many nutritional benefits including higher levels of polyunsaturated fatty acids (PUFAs; such as ω-3 than what is commonly found in store-bought foods. However, wild foods can be a route of exposure to dietary mercury and persistent organic pollutants (POPs such as polychlorinated biphenyls (PCBs. Here, we show a strong association between the frequency of wild food consumption in adults (N=72 from two remote First Nations communities of Northern Ontario and environmental contaminants in blood (POPs and hair (mercury. We observed that POPs and mercury were on average 3.5 times higher among those consuming wild foods more often, with many frequent wild food consumers exceeding Canadian and international health guidelines for PCB and mercury exposures. Contaminants in locally-harvested fish and game from these communities were sufficiently high that many participants exceeded the monthly consumption limits for methylmercury and PCBs. Those consuming more wild foods also had higher proportions of potentially beneficial ω-3 fatty acids including eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These results show that the benefits of traditional dietary choices in Boreal regions of Canada must be weighed against the inherent risks of contaminant exposure from these foods.

  11. Additive vs non-additive genetic components in lethal cadmium tolerance of Gammarus (Crustacea): Novel light on the assessment of the potential for adaptation to contamination

    International Nuclear Information System (INIS)

    Chaumot, Arnaud; Gos, Pierre; Garric, Jeanne; Geffard, Olivier

    2009-01-01

    Questioning the likelihood that populations adapt to contamination is critical for ecotoxicological risk assessment. The appraisal of genetic variance in chemical sensitivities within populations is currently used to evaluate a priori this evolutionary potential. Nevertheless, conclusions from this approach are questionable since non-additive genetic components in chemical tolerance could limit the response of such complex phenotypic traits to selection. Coupling quantitative genetics with ecotoxicology, this study illustrates how the comparison between cadmium sensitivities among Gammarus siblings enabled discrimination between genetic variance components in chemical tolerance. The results revealed that, whereas genetically determined differences in lethal tolerance exist within the studied population, such differences were not significantly heritable since genetic variance mainly relied on non-additive components. Therefore the potential for genetic adaptation to acute Cd stress appeared to be weak. These outcomes are discussed in regard to previous findings for asexual daphnids, which suggest a strong potency of genetic adaptation to environmental contamination, but which contrast with compiled field observations where adaptation is not the rule. Hereafter, we formulate the reconciling hypothesis of a widespread weakness of additive components in tolerance to contaminants, which needs to be further tested to gain insight into the question of the likelihood of adaptation to contamination.

  12. Microarray applications to understand the impact of exposure to environmental contaminants in wild dolphins (Tursiops truncatus).

    Science.gov (United States)

    Mancia, Annalaura; Abelli, Luigi; Kucklick, John R; Rowles, Teresa K; Wells, Randall S; Balmer, Brian C; Hohn, Aleta A; Baatz, John E; Ryan, James C

    2015-02-01

    It is increasingly common to monitor the marine environment and establish geographic trends of environmental contamination by measuring contaminant levels in animals from higher trophic levels. The health of an ecosystem is largely reflected in the health of its inhabitants. As an apex predator, the common bottlenose dolphin (Tursiops truncatus) can reflect the health of near shore marine ecosystems, and reflect coastal threats that pose risk to human health, such as legacy contaminants or marine toxins, e.g. polychlorinated biphenyls (PCBs) and brevetoxins. Major advances in the understanding of dolphin biology and the unique adaptations of these animals in response to the marine environment are being made as a result of the development of cell-lines for use in in vitro experiments, the production of monoclonal antibodies to recognize dolphin proteins, the development of dolphin DNA microarrays to measure global gene expression and the sequencing of the dolphin genome. These advances may play a central role in understanding the complex and specialized biology of the dolphin with regard to how this species responds to an array of environmental insults. This work presents the creation, characterization and application of a new molecular tool to better understand the complex and unique biology of the common bottlenose dolphin and its response to environmental stress and infection. A dolphin oligo microarray representing 24,418 unigene sequences was developed and used to analyze blood samples collected from 69 dolphins during capture-release health assessments at five geographic locations (Beaufort, NC, Sarasota Bay, FL, Saint Joseph Bay, FL, Sapelo Island, GA and Brunswick, GA). The microarray was validated and tested for its ability to: 1) distinguish male from female dolphins; 2) differentiate dolphins inhabiting different geographic locations (Atlantic coasts vs the Gulf of Mexico); and 3) study in detail dolphins resident in one site, the Georgia coast, known to

  13. [Investigation of urinary cadmium reference of general population in two rural high background areas of soil cadmium and non-cadmium-polluted in China].

    Science.gov (United States)

    Han, Jingxiu; Li, Qiujuan; Yao, Dancheng; Zheng, Jiangang; Zhang, Wenli; Shang, Qi

    2014-09-01

    To study the reference of urinary. cadmium of the general population in rural high background areas of soil cadmium and non-cadmium contaminated in China. In rural high background areas of soil cadmium and non-cadmium contaminated, randomly selected non-occupational-cadmium exposed population 1134 people (male 519, female 615) with each gender and age groups, questionnaire surveyed and collected random urine. Urinary cadmium and urinary creatinine (Cr) concentration were tested, excluding urinary Cr 3 g/L. Analyze the impact factors of urinary cadmium and calculated 95% quantile (P,95 ) of urinary cadmium after correction by urinary Cr. Female median urinary cadmium was significantly higher than men, male smokers median urinary cadmium was significantly higher than male non-smokers (P 30 year-old. According to gender, and 15 -30, 30 years old, analysis the upper limit of cadmium in urine. The 95% upper limit of urinary cadmium of 30 year-old female (12.24 microg/gCr) was significantly higher than other populations ( population exceeded the upper limit (5 microg/gCr) of the occupational cadmium poisoning diagnostic criteria in China (GBZ 17-2002). In the two rural high background areas of soil cadmium and non-cadmium polluted , urinary cadmium reference of non-cadmium-occupational-exposed male is <9.0 microg/gCr, and female <13.0 microg/gCr.

  14. [Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application].

    Science.gov (United States)

    Nai, Feng-Jiao; Wu, Long-Hua; Liu, Hong-Yan; Ren, Jing; Liu, Wu-Xing; Luo, Yong-Ming

    2013-05-01

    Taking the vegetable soil with zinc- and cadmium contamination from a long-term sewage sludge application as the object, a pot experiment was conducted to study the remediation effect of Sedum plumbizincicola and Apium graceolens under continuous monoculture and intercropping. With the remediation time increased, both S. plumbizincicola and A. graceolens under monoculture grew poorly, but S. plumbizincicola under intercropping grew well. Under intercropping, the soil organic matter, total N, extractable N, and total P contents decreased significantly while the soil extractable K content had a significant increase, the counts of soil bacteria and fungi increased by 7.9 and 18.4 times and 3.7 and 4.3 times, respectively, but the soil urease and catalase activities remained unchanged, as compared with those under A. graceolens and S. plumbizincicola monoculture. The BIOLOG ECO micro-plates also showed that the carbon sources utilization level and the functional diversity index of soil microbial communities were higher under intercropping than under monoculture, and the concentrations of soil zinc and cadmium under intercropping decreased by 5.8% and 50.0%, respectively, with the decrements being significantly higher than those under monoculture. It was suggested that soil microbial effect could be one of the important factors affecting plant growth.

  15. Wild mushroom contamination by 137Cs in Central Slovakia region in 2011

    International Nuclear Information System (INIS)

    Durecova, Alzbeta; Durec, F.; Auxtova, L.; Cechova, A.

    2012-01-01

    A total of 98 wild mushrooms (24 species collected at 26 sites) were analyzed for 137 Cs in 2011. The radionuclide was determined separately in the caps and the stipes of the majority of the mushrooms species. The highest activities were found in the genera Boletus, Leccinum, Lactarius and Russula whereas the lowest activities were found in Amanita. In the vast majority of mushrooms, the cap-to-stipe 137 Cs activity ratio was larger than 1. The cap-to-stipe 137 Cs activity ratio did not correlate with the cap-to-stipe 40 K activity ratio in Russula or Amanita. The cap of a Boletus pulverulentus specimen collected at Skalka pri Kremnici in August had a 137 Cs activity 190 Bq/kg fresh sample. For an individual who ate 10 kg of fresh caps of this mushroom during a year, their committed effective dose estimate is 0.025 mSv/year (adults) or 0.019 mSv/year (children aged 10). (orig.)

  16. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium.

    Science.gov (United States)

    Zhang, Rong; Xu, Xingjian; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    A multifunctional Pseudomonas putida X3 strain was successfully engineered by introducing methyl parathion (MP)-degrading gene and enhanced green fluorescent protein (EGFP) gene in P. putida X4 (CCTCC: 209319). In liquid cultures, the engineered X3 strain utilized MP as sole carbon source for growth and degraded 100 mg L(-1) of MP within 24 h; however, this strain did not further metabolize p-nitrophenol (PNP), an intermediate metabolite of MP. No discrepancy in minimum inhibitory concentrations (MICs) to cadmium (Cd), copper (Cu), zinc (Zn), and cobalt (Co) was observed between the engineered X3 strain and its host strain. The inoculated X3 strain accelerated MP degradation in different polluted soil microcosms with 100 mg MP kg(-1) dry soil and/or 5 mg Cd kg(-1) dry soil; MP was completely eliminated within 40 h. However, the presence of Cd in the early stage of remediation slightly delayed MP degradation. The application of X3 strain in Cd-contaminated soil strongly affected the distribution of Cd fractions and immobilized Cd by reducing bioavailable Cd concentrations with lower soluble/exchangeable Cd and organic-bound Cd. The inoculated X3 strain also colonized and proliferated in various contaminated microcosms. Our results suggested that the engineered X3 strain is a potential bioremediation agent showing competitive advantage in complex contaminated environments.

  17. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination

    International Nuclear Information System (INIS)

    Rizwan, Muhammad; Meunier, Jean-Dominique

    2012-01-01

    Highlights: ► Metal stress alleviation in wheat supplemented with amorphous Si (ASi). ► Pot experiment with a metal-contaminated soil and increased doses of ASi. ► Effects are observed both at the soil and the plant levels. ► ASi increases plant biomass and Cd content in roots and decreases Cd in shoots. ► ASi decreases soil-available Cd but is limiting for Si uptake. - Abstract: Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica (ASi) that had been extracted from a diatomite mine for Si distribution at 0, 1, 10 and 15 ton ASi ha −1 . ASi applications increased plant biomass and plant Si concentrations, reduced the available Cd in the soil and the Cd translocation to shoots, while Cd was more efficiently sequestrated in roots. But ASi is limiting for Si uptake by plants. We conclude that significant plant-available Si in soil contributes to decreased Cd concentrations in wheat shoots and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat.

  18. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, Muhammad, E-mail: rizwan@cerege.fr [Aix-Marseille Universite, Centre National de la Recherche Scientifique, Institut pour la Recherche et le Developpement, College de France, CEREGE (Centre Europeen de Recherche et d' Enseignement en Geosciences de l' Environnement), Europole mediterraneen de l' Arbois, BP 80, 13454 Aix-en-Provence, Cedex 4 (France); Meunier, Jean-Dominique, E-mail: meunier@cerege.fr [Aix-Marseille Universite, Centre National de la Recherche Scientifique, Institut pour la Recherche et le Developpement, College de France, CEREGE (Centre Europeen de Recherche et d' Enseignement en Geosciences de l' Environnement), Europole mediterraneen de l' Arbois, BP 80, 13454 Aix-en-Provence, Cedex 4 (France); and others

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Metal stress alleviation in wheat supplemented with amorphous Si (ASi). Black-Right-Pointing-Pointer Pot experiment with a metal-contaminated soil and increased doses of ASi. Black-Right-Pointing-Pointer Effects are observed both at the soil and the plant levels. Black-Right-Pointing-Pointer ASi increases plant biomass and Cd content in roots and decreases Cd in shoots. Black-Right-Pointing-Pointer ASi decreases soil-available Cd but is limiting for Si uptake. - Abstract: Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica (ASi) that had been extracted from a diatomite mine for Si distribution at 0, 1, 10 and 15 ton ASi ha{sup -1}. ASi applications increased plant biomass and plant Si concentrations, reduced the available Cd in the soil and the Cd translocation to shoots, while Cd was more efficiently sequestrated in roots. But ASi is limiting for Si uptake by plants. We conclude that significant plant-available Si in soil contributes to decreased Cd concentrations in wheat shoots and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat.

  19. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd) and Lead (Pb)

    OpenAIRE

    Bulmău C; Cocârță D. M.; Reșetar-Deac A. M.

    2013-01-01

    It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007). This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil f...

  20. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.

    Science.gov (United States)

    Wang, Quanzhen; Gu, Muyu; Ma, Xiaomin; Zhang, Hongjuan; Wang, Yafang; Cui, Jian; Gao, Wei; Gui, Jing

    2015-11-01

    Soil pollution with heavy metals is an increasingly serious threat to the environment, food security, and human health. Therefore, it is urgent to develop economic and highly efficient soil restoration technology for environmental improvement; phytoremediation is an option that is safe, has low cost, and is environmentally friendly. However, in selecting hyperaccumulators or tolerant plants, theories and operation technologies for optimal restoration should be satisfied. In this study, the switchgrass growth response and performance of phytoextraction under the coupling effect of Cd and pH were investigated by evaluating seed germination, seedling growth, and the Cd content in the plant to evaluate the potential use of switchgrass as a phytoremediation plant in cadmium contaminated soil. This study conducted three sets of independent experiments with five levels of Cd concentrations, including two orthogonal matrix designs of combining Cd with pH values. The results showed that switchgrass was germinated well under all treatments (Cd concentration of 0-500 μM), but the seedling growth was significantly affected by Cd and pH, as shown by multivariate regression analyses. Hormesis was found during the growth of switchgrass plants exposed to low Cd concentrations under hydroponic conditions, and switchgrass plants were capable of developing with a Cd concentration of 100-175 μM and pH of 4.1-5.9. Mild acidic conditions can enhance the ability of Cd to accumulate in switchgrass. Switchgrass was moderately tolerant to Cd and may be used as a phytoremediation plant for Cd-contaminated soils in the future. Our results also suggest that hormetic effects should be taken into consideration in the phytoremediation of Cd-contaminated soils. We discuss the physiological and biochemical mechanisms contributing to the effective application of the plant for the phytoremediation of Cd-contaminated soils.

  1. Cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waalkes, Michael P.

    2003-01-01

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis

  2. Cadmium carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, Michael P

    2003-12-10

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis.

  3. A tiered approach for the human health risk assessment for consumption of vegetables from with cadmium-contaminated land in urban areas

    International Nuclear Information System (INIS)

    Swartjes, Frank A.; Versluijs, Kees W.; Otte, Piet F.

    2013-01-01

    Consumption of vegetables that are grown in urban areas takes place worldwide. In developing countries, vegetables are traditionally grown in urban areas for cheap food supply. In developing and developed countries, urban gardening is gaining momentum. A problem that arises with urban gardening is the presence of contaminants in soil, which can be taken up by vegetables. In this study, a scientifically-based and practical procedure has been developed for assessing the human health risks from the consumption of vegetables from cadmium-contaminated land. Starting from a contaminated site, the procedure follows a tiered approach which is laid out as follows. In Tier 0, the plausibility of growing vegetables is investigated. In Tier 1 soil concentrations are compared with the human health-based Critical soil concentration. Tier 2 offers the possibility for a detailed site-specific human health risk assessment in which calculated exposure is compared to the toxicological reference dose. In Tier 3, vegetable concentrations are measured and tested following a standardized measurement protocol. To underpin the derivation of the Critical soil concentrations and to develop a tool for site-specific assessment the determination of the representative concentration in vegetables has been evaluated for a range of vegetables. The core of the procedure is based on Freundlich-type plant–soil relations, with the total soil concentration and the soil properties as variables. When a significant plant–soil relation is lacking for a specific vegetable a geometric mean of BioConcentrationFactors (BCF) is used, which is normalized according to soil properties. Subsequently, a ‘conservative’ vegetable-group-consumption-rate-weighted BioConcentrationFactor is calculated as basis for the Critical soil concentration (Tier 1). The tool to perform site-specific human health risk assessment (Tier 2) includes the calculation of a ‘realistic worst case’ site-specific vegetable

  4. A tiered approach for the human health risk assessment for consumption of vegetables from with cadmium-contaminated land in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Swartjes, Frank A., E-mail: frank.swartjes@rivm.nl; Versluijs, Kees W.; Otte, Piet F.

    2013-10-15

    Consumption of vegetables that are grown in urban areas takes place worldwide. In developing countries, vegetables are traditionally grown in urban areas for cheap food supply. In developing and developed countries, urban gardening is gaining momentum. A problem that arises with urban gardening is the presence of contaminants in soil, which can be taken up by vegetables. In this study, a scientifically-based and practical procedure has been developed for assessing the human health risks from the consumption of vegetables from cadmium-contaminated land. Starting from a contaminated site, the procedure follows a tiered approach which is laid out as follows. In Tier 0, the plausibility of growing vegetables is investigated. In Tier 1 soil concentrations are compared with the human health-based Critical soil concentration. Tier 2 offers the possibility for a detailed site-specific human health risk assessment in which calculated exposure is compared to the toxicological reference dose. In Tier 3, vegetable concentrations are measured and tested following a standardized measurement protocol. To underpin the derivation of the Critical soil concentrations and to develop a tool for site-specific assessment the determination of the representative concentration in vegetables has been evaluated for a range of vegetables. The core of the procedure is based on Freundlich-type plant–soil relations, with the total soil concentration and the soil properties as variables. When a significant plant–soil relation is lacking for a specific vegetable a geometric mean of BioConcentrationFactors (BCF) is used, which is normalized according to soil properties. Subsequently, a ‘conservative’ vegetable-group-consumption-rate-weighted BioConcentrationFactor is calculated as basis for the Critical soil concentration (Tier 1). The tool to perform site-specific human health risk assessment (Tier 2) includes the calculation of a ‘realistic worst case’ site-specific vegetable

  5. Use of a nanoplanktonic alga as a test organism in marine molysmology. Some responses of Dunaliella Bioculata Butcher 1959 to gamma irradiation and to chromium and cadmium contamination

    International Nuclear Information System (INIS)

    Peneda-Saraiva, M.C.

    1975-01-01

    Some response of a nanoplanktonic alga, Dunaliella bioculata to gamma irradiation ( 60 Co) and to heavy metal contamination, (chromium and cadmium) used either at strong concentrations (stable isotopes) or as tracers ( 51 Cr) and ( 109 Cd) were studied. The average variation of several biological functions under the effect of these agents was followed: mitotic activity, culture development, cell volume, chlorophyll a and protein concentrations per cell per unit volume (μm 3 ), respiratory and photosynthetic activities, ultrastructure or cytological aspect of the algae. Concentration factors were investigated in cases of contamination. The method used include standard digital counting with a Thoma cell or a particle counter coupled to an amplitude analyser, volume estimation using the hematocrit, pigment determination by acetone extraction, protein determination by the Nessler method. The polarographic method of dissolved oxygen measurement was adapted for successive respiration and photosynthesis experiments on the material concerned. Any Cr and Cd incorporated by Dunaliella bioculata were determined after splitting of the cells and separation of the membranes from the cell contents. The quantity of metal present was measured on each fraction by atomic absorption spectrophotometry [fr

  6. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation.

    Science.gov (United States)

    Rehman, Muhammad Zia-ur; Rizwan, Muhammad; Ghafoor, Abdul; Naeem, Asif; Ali, Shafaqat; Sabir, Muhammad; Qayyum, Muhammad Farooq

    2015-11-01

    Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.

  7. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    Science.gov (United States)

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  8. Histopathology of liver and kidneys of wild living Mallards Anas platyrhynchos and Coots Fulica atra with considerable concentrations of lead and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Binkowski, Łukasz J., E-mail: ljbinkowski@gmail.com [Institute of Biology, Pedagogical University of Cracow, Podbrzezie 3, 31-054 Cracow (Poland); Sawicka-Kapusta, Katarzyna, E-mail: katarzyna.sawicka-kapusta@uj.edu.pl [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Cracow (Poland); Szarek, Józef, E-mail: szarek@uwm.edu.pl [Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn (Poland); Strzyżewska, Emilia, E-mail: emijel@wp.pl [Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn (Poland); Felsmann, Mariusz, E-mail: felsmann.mariusz@wp.pl [Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn (Poland)

    2013-04-15

    Concentrations of cadmium and lead were measured in liver and kidneys of Mallard (n = 60) and Coot (n = 50). Free living birds were collected by hunters in years 2006–2008 in the area of fishponds near Zator in southern Poland. Age group was determined according to the appearance of the plumage (Mallards) and iris color (Coot). Concentrations of metals were measured with ET-AA spectrometer. Among all birds specimens with negligible (n = 5) and high concentrations (Mallards n = 18 and Coots n = 17) of cadmium and lead were chosen for further analysis. Histopathological alterations were observed, ranging from circulatory disturbances, retrogressive changes, inflammations to leukocytic infiltration in liver and kidney. They dominated among birds with the highest concentrations of metals. The control group of birds was characterized by a very small number of mentioned lesions. Probably the higher cadmium and lead concentrations in tissues are co-factors in the development of lesions. - Highlights: ► High levels of Cd and Pb were found in liver and kidneys of Mallard and Coot. ► Lower concentrations were found in young birds. ► Amount of metals exceeded the safety threshold established for edible poultry. ► Histopathological alterations were found in studied tissues. ► Lesions in birds with the highest concentrations of metals were numerous.

  9. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment

    International Nuclear Information System (INIS)

    Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott

    2014-01-01

    Highlights: • Biochar significantly increased soil pH, organic matter and immobilized soil Cd and Pb. • Biochar treatment consistently reduced rice Cd and Pb content in three years. • Contaminated biochar from the study field contained much higher heavy metals than fresh biochar. • Biochar caused metal immobilization primarily due to the precipitation and surface adsorption. - Abstract: Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010–2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues’ Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure

  10. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Rongjun [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Joseph, Stephen [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia); Cui, Liqiang [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Pan, Genxing, E-mail: pangenxing@aliyun.com [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Li, Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Liu, Xiaoyu; Zhang, Afeng [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Rutlidge, Helen [Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Wong, Singwei [Electron Microscope Unit, University of Newcastle, Callaghan, NSW 2308 (Australia); Chia, Chee [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Marjo, Chris; Gong, Bin [Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Munroe, Paul [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Donne, Scott [Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-05-01

    Highlights: • Biochar significantly increased soil pH, organic matter and immobilized soil Cd and Pb. • Biochar treatment consistently reduced rice Cd and Pb content in three years. • Contaminated biochar from the study field contained much higher heavy metals than fresh biochar. • Biochar caused metal immobilization primarily due to the precipitation and surface adsorption. - Abstract: Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010–2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues’ Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure.

  11. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan

    Science.gov (United States)

    Rehman, Zahir Ur; Khan, Sardar; Brusseau, Mark L; Shah, Mohammad Tahir

    2017-01-01

    Rapid urbanization and industrialization result in serious contamination of soil with toxic metals such as lead (Pb) and cadmium (Cd), which can lead to deleterious health impacts in the exposed population. This study aimed to investigate Pb and Cd contamination in agricultural soils and vegetables in five different agricultural sites in Pakistan. The metal transfer from soil-to-plant, average daily intake of metals, and health risk index (HRI) were also characterized. The Pb concentrations for all soils were below the maximum allowable limits (MAL 350 mg kg−1) set by the State Environmental Protection Administration of China (SEPA), for soils in China. Conversely, Cd concentrations in the soils exceeded the MAL set by SEPA (0.6 mg kg−) and the European Union (1.5 mg kg−1) by 62-74% and 4-34%, respectively. The mean Pb concentration in edible parts of vegetables ranged from 1.8-11 mgkg−1. The Pb concentrations for leafy vegetables were higher than the fruiting and pulpy vegetables. The Pb concentrations exceeded the MAL (0.3 mg kg−1) for leafy vegetables and the MAL for fruity and rooty/tuber vegetables (0.1 mg kg−1) set by FAO/WHO-CODEX.. Likewise, all vegetables except Pisum sativum (0.12 mg kg−1) contained Cd concentrations that exceeded the MAL set by SEPA. The HRI values for Pb and Cd were vegetable species except Luffa acutangula, Solanum lycopersicum, Benincasa hispada, Momordi charantia, Aesculantus malvaceae, Cucumis sativus, Praecitrullus fistulosus, Brassica oleracea, and Colocasia esculanta for children. Based on these results, consumption of these Pb and Cd contaminated vegetables poses a potential health risk to the local consumers. PMID:27939659

  12. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment.

    Science.gov (United States)

    Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott

    2014-05-15

    Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010-2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues' Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. [Investigation of urinary cadmium characteristics of the general population in three non-cadmium-polluted rural areas in China].

    Science.gov (United States)

    Han, Jingxiu; Hu, Ji; Sun, Hong; Jing, Qiqing; Wang, Xiaofeng; Lou, Xiaoming; Ding, Zhen; Chen, Xiaodong; Zhang, Wenli; Shang, Qi

    2014-11-01

    To investigate the characteristics of urinary cadmium of the non-occupational-cadmium-exposed population in non-cadmium contaminated rural area in China. Randomly selected non-occupational cadmium exposed population 2548 people (male 1290, female 1258) with each gender and age groups, questionnaire surveyed and collected random urine. Urinary cadmium and urinary creatinine (Cr) concentration were tested, excluding urinary Cr 3 g/L. Analyze the impact factors of urinary cadmium and calculated 95% quantile (P95) of urinary cadmium after correction by urinary Cr. Urinary cadmium increased with age and showed an upward trend. The urinary cadmium of the population of ≥ 30 years old was significantly higher than that of populations (China (GB Z17-2002). The urinary cadmium reference value of non-occupational-cadmium-exposed populations is China, but for smoking women over 30 year-old it needs more research to explore.

  14. The use of carbon nanotubes co-polymerized with calixarenes for the removal of cadmium and organic contaminants from water

    OpenAIRE

    2012-01-01

    M.Sc. The contamination of water by toxic compounds is one of the most serious environmental problems today. These toxic compounds mostly originate from industrial effluents, agriculture runoff, natural sources (e.g. heavy metals in water from rocks and soil erosion) and human waste. The contamination, which is both “organic” and “inorganic” has an impact on the environment and human health. The demand for water and the pressure to re-use this valuable resource has increased the need for i...

  15. Remediation of cadmium-contaminated soil by extraction with para-sulphonato-thiacalix[4]arene, a novel supramolecular receptor.

    Science.gov (United States)

    Li, Yushuang; Hu, Xiaojun; Song, Xueying; Sun, Tieheng

    2012-08-01

    Batch extractions were conducted to evaluate the performance of para-sulphonato-thiacalix[4]arene (STC[4]A), a novel supramolecular receptor, for removing cadmium (Cd) from soil. The extraction mechanism was investigated by determination of the conditional stability constants (log K) of the STC[4]A-Cd complex. The influences of various variables were examined, including pH, contact time, and extractant concentration. The Cd extraction efficiency increased with increasing pH, reaching the maximum at pH 11 and then declining at higher pH values. This pH dependence was explained by the variation in the log K value of the STC[4]A-Cd complex along with pH change. When the STC[4]A dose was increased to an STC[4]A:Cd molar ratio of 2.5:1, Cd was exhaustively removed (up to 96.8%). The comparison experiment revealed that the Cd extraction performance of STC[4]A was almost equivalent to that of EDTA and significantly better than that of natural organic acids. STC[4]A extraction could efficiently prevent co-dissolution of soil minerals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  17. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2004-01-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed

  18. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H.; Ye, Z.H.; Wong, M.H

    2004-11-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.

  19. Food-chain transfer of cadmium and zinc from contaminated Urtica dioica to Helix aspersa and Lumbricus terrestris.

    Science.gov (United States)

    Sinnett, Danielle E; Hodson, Mark E; Hutchings, Tony R

    2009-08-01

    The present study examines the potential of Urtica dioica as an ecologically relevant species for use in ecotoxicological testing. It is prevalent in degraded ecosystems and is a food source for invertebrates. Urtica dioica grown in hydroponic solutions containing from less than 0.003 to 5.7 mg Cd/L or from 0.02 to 41.9 mg Zn/L accumulated metals resulting in leaf tissue concentrations in the range of 0.10 to 24.9 mg Cd/kg or 22.5 to 2,772.0 mg Zn/kg. No toxicological effects were apparent except at the highest concentrations tested, suggesting that this species may be an important pathway for transfer of metals to primary plant consumers. Helix aspersa and Lumbricus terrestris were fed the Cd- and Zn-rich leaves of U. dioica for six and four weeks, respectively. Cadmium and Zn body load increased with increasing metal concentration in the leaves (p nettle leaves with concentrations of approximately 23 mg Cd/kg and 3,400 mg Zn/kg. Models demonstrate that L. terrestris Cd tissue concentrations (r2 = 0.74, p < 0.001) and H. aspersa Zn tissue concentrations (r(2) = 0.69, p < 0.001) can be estimated from concentrations of Cd and Zn within the leaves of U. dioica and suggest that reasonably reproducible results can be obtained using these species for ecotoxicological testing.

  20. Effects of Nanoparticle Hydroxyapatite on Growth and Antioxidant System in Pakchoi (Brassica chinensis L. from Cadmium-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Zhangwei Li

    2014-01-01

    Full Text Available The effects of nanoscale particle hydroxyapatite (nHAP on biomass, Cd uptake, the level of chlorophyll, vitamin C, malondialdehyde (MDA, and the activities of antioxidant enzymes, including SOD, CAT, and POD in pakchoi in Cd-contaminated soil, were evaluated by conducting pot experiment. Results showed that, by application of the 5 g·kg−1, 10 g·kg−1, 20 g·kg−1, and 30 g·kg−1 nHAP in 10 mg·kg−1 Cd-contaminated soil, the biomass of plant increased by 7.97%, 13.21%, 19.53%, and 20.23%, respectively. In addition, the reduction of Cd in shoots was 27.12%, 44.20%, 50.91%, and 62.36% compared to control samples. It was found that the supplement of the nHAP can increase the level of chlorophyll and vitamin C and decrease the level of MDA in plant shoots. Furthermore, the increment activities of SOD, CAT, and POD can be observed after addition of nHAP in Cd-contaminated soil. The results confirmed that nHAP can be applied to reduce the plant uptake of Cd and resist the Cd stress in the plant in Cd-contaminated soil.

  1. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.

    Science.gov (United States)

    Hadi, Fazal; Ali, Nasir; Fuller, Michael Paul

    2016-10-01

    Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2  = 0.793, 0.807 and 0.739) and leaves (R 2  = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2  = 0.668, 0.694 and 0.673) and leaves (R 2  = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  2. Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil.

    Science.gov (United States)

    Zhao, Shuyan; Fan, Ziyan; Sun, Lihui; Zhou, Tao; Xing, Yuliang; Liu, Lifen

    2017-03-01

    A vegetation study was conducted to investigate the interactive effects of perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and Cadmium (Cd) on soil enzyme activities, phytotoxicity and bioaccumulation of wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Soil urease activities were inhibited significantly but catalase activities were promoted significantly by interaction of PFASs and Cd which had few effects on sucrase activities. Joint stress with PFASs and Cd decreased the biomass of plants and chlorophyll (Chl) content in both wheat and rapeseed, and malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities were increased in wheat but inhibited in rapeseed compared with single treatments. The bioconcentration abilities of PFASs in wheat and rapeseed were decreased, and the translocation factor of PFASs was decreased in wheat but increased in rapeseed with Cd addition. The bioaccumulation and translocation abilities of Cd were increased significantly in both wheat and rapeseed with PFASs addition. These findings suggested important evidence that the co-existence of PFASs and Cd reduced the bioavailability of PFASs while enhanced the bioavailability of Cd in soil, which increased the associated environmental risk for Cd but decreased for PFASs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Competitive Traits Are More Important than Stress-Tolerance Traits in a Cadmium-Contaminated Rhizosphere: A Role for Trait Theory in Microbial Ecology.

    Science.gov (United States)

    Wood, Jennifer L; Tang, Caixian; Franks, Ashley E

    2018-01-01

    Understanding how biotic and abiotic factors govern the assembly of rhizosphere-microbial communities is a long-standing goal in microbial ecology. In phytoremediation research, where plants are used to remediate heavy metal-contaminated soils, a deeper understanding of rhizosphere-microbial ecology is needed to fully exploit the potential of microbial-assisted phytoremediation. This study investigated whether Grime's competitor/stress-tolerator/ruderal (CSR) theory could be used to describe the impact of cadmium (Cd) and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the assembly of soil-bacterial communities using Illumina 16S rRNA profiling and the predictive metagenomic-profiling program, PICRUSt. Using predictions based on CSR theory, we hypothesized that Cd and the presence of a rhizosphere would affect community assembly. We predicted that the additional resource availability in the rhizosphere would enrich for competitive life strategists, while the presence of Cd would select for stress-tolerators. Traits identified as competitive followed CSR predictions, discriminating between rhizosphere and bulk-soil communities whilst stress-tolerance traits increased with Cd dose, but only in bulk-soil communities. These findings suggest that a bacterium's competitive attributes are critical to its ability to occupy and proliferate in a Cd-contaminated rhizosphere. Ruderal traits, which relate to community re-colonization potential, were synergistically decreased by the presence of the rhizosphere and Cd dose. Taken together this microcosm study suggests that the CSR theory is broadly applicable to microbial communities. Further work toward developing a simplified and robust strategy for microbial CSR classification will provide an ecologically meaningful framework to interpret community-level changes across a range of biomes.

  4. Concentrations of Trace Elements in Organic Fertilizers and Animal Manures and Feeds and Cadmium Contamination in Herbal Tea (Gynostemma pentaphyllum Makino).

    Science.gov (United States)

    Nookabkaew, Sumontha; Rangkadilok, Nuchanart; Prachoom, Norratouch; Satayavivad, Jutamaad

    2016-04-27

    Thailand is predominantly an agriculture-based country. Organic farming is enlisted as an important national agenda to promote food safety and international export. The present study aimed to determine the concentrations of trace elements in commercial organic fertilizers (fermented and nonfermented) composed of pig and cattle manures available in Thailand. Pig and cattle manures as well as animal feeds were also collected from either animal farms or markets. The results were compared to the literature data from other countries. Fermented fertilizer composed of pig manure contained higher concentrations of nitrogen (N) and phosphorus (P) than fertilizer composed of cattle manure. High concentrations of copper (Cu) and zinc (Zn) were also found in fertilizers and manures. Some organic fertilizers had high concentrations of arsenic (As), cadmium (Cd), and lead (Pb). The range of As concentration in these fertilizers was 0.50-24.4 mg/kg, whereas the ranges of Cd and Pb were 0.10-11.4 and 1.13-126 mg/kg, respectively. Moreover, pig manure contained As and Cd (15.7 and 4.59 mg/kg, respectively), higher than their levels in cattle manure (1.95 and 0.16 mg/kg, respectively). The use of pig manure as soil supplement also resulted in high Cd contamination in herbal tea (Gynostemma pentaphyllum Makino; GP). The Cd concentration in GP plants positively correlated with the Cd concentration in the soil. Therefore, the application of some organic fertilizers or animal manures to agricultural soil could increase some potentially toxic elements in soil, which may be absorbed by plants and, thus, increase the risk of contamination in agricultural products.

  5. Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils.

    Science.gov (United States)

    Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie

    2015-12-01

    Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.

  6. Extraction of bismuth, cadmium, lead, and uranyl ions from contaminated soil and the influence of bacterial on the process

    International Nuclear Information System (INIS)

    Tsang, K.W.; Dugan, P.R.; Pfister, R.M.

    1992-01-01

    Among the various environmental concerns, soil and sediment remediation has received considerable attention in recent years because soils and sediments are the ultimate repositories for many metals that cycle in the environment as a result of activities such as mining, electroplating, and various manufacturing and industrial processes. There is considerable interest in the remediation of contaminated soils and sediments by so-called soil-cleaning techniques and in the prevention of future contamination via removal of hazardous metals from processing streams prior to deposition into receiving waters. Bioremediation also appears to have value because of its potential economic advantage. This paper demonstrates the effectiveness of the amino acid cysteine, either alone or in combination with the activity of microorganisms, for the removal of several hazardous metals from soil

  7. Remediation of cadmium-contaminated soil by extraction with para-sulphonato-thiacalix[4]arene, a novel supramolecular receptor

    International Nuclear Information System (INIS)

    Li Yushuang; Hu Xiaojun; Song Xueying; Sun Tieheng

    2012-01-01

    Batch extractions were conducted to evaluate the performance of para-sulphonato-thiacalix[4]arene (STC[4]A), a novel supramolecular receptor, for removing cadmium (Cd) from soil. The extraction mechanism was investigated by determination of the conditional stability constants (log K) of the STC[4]A-Cd complex. The influences of various variables were examined, including pH, contact time, and extractant concentration. The Cd extraction efficiency increased with increasing pH, reaching the maximum at pH 11 and then declining at higher pH values. This pH dependence was explained by the variation in the log K value of the STC[4]A-Cd complex along with pH change. When the STC[4]A dose was increased to an STC[4]A:Cd molar ratio of 2.5:1, Cd was exhaustively removed (up to 96.8%). The comparison experiment revealed that the Cd extraction performance of STC[4]A was almost equivalent to that of EDTA and significantly better than that of natural organic acids. STC[4]A extraction could efficiently prevent co-dissolution of soil minerals. - Highlights: ► First report on para-sulphonato-thiacalix[4]arene (STC[4]A) as extractant for soil washing. ► The Cd extraction performance of STC[4]A was almost equivalent to that of EDTA. ► STC[4]A extraction could efficiently avoid the dissolution of soil minerals, such as K, Ca, Mn. ► Extraction mechanism was investigated by determination of log K values of STC[4]A-Cd complex. ► A rational explanation for the pH dependence of extraction performance was given. - This is the first report on para-sulphonato-thiacalix[4]arene as an extractant for soil washing, which proved to be very efficient for Cd removal and could prevent co-dissolution of soil minerals.

  8. Residues of lead, cadmium, and arsenic in livers of Mexican free-tailed bats

    Energy Technology Data Exchange (ETDEWEB)

    Thies, M.; Gregory, D. (Oklahoma State Univ., Stillwater (United States))

    1994-05-01

    Since 1936, the size of the summer population of Mexican free-tailed bats, Tadarida brasiliensisat Carlsbad Caverns, New Mexico, declined from an estimated 8.7 million to 700,000 in 1991. This decline has been attributed primarily to human disturbance and the heavy agricultural use of organochlorine pesticides. Members of this species forage extensively over heavily agricultural areas, feeding on insects potentially contaminated with high levels of insecticides and trace metals. However, contamination from elements such as lead, cadmium, and arsenic have not been examined. The accumulation of these elements in wild vertebrates is often a primary reflection of contamination of the food supply. The presence of elemental contaminants in body tissues of bats is poorly documented. The objectives of this study were to examine and compare lead, cadmium, and arsenic contamination in livers of adult T. Brasiliensis from Carlsbad Caverns and Vickery Cave, a maternity colony in northwestern Oklahoma. Lead, cadmium, and arsenic were specifically selected because of their documented toxic and/or reproductive effects and their potential availability to this species. Large quantities of tetraethyl lead have been released into the environment and other lead compounds continue to be released by industrial manufacturing and petroleum refinement processes. Cadmium is used in a number of industrial processes such as metal plating and fabrication of alloys and is released from phosphate fertilizers and combusted coals. Teratogenicity appears to be greater for cadmium than for other elements. Arsenical compounds have been commonly used as herbicides and defoliants. These compounds have been demonstrated to cause abnormal embryonic development, degenerative tissue changes, cancer, chromosomal damage, and death in domestic animals.

  9. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium.

    Science.gov (United States)

    Puga, A P; Abreu, C A; Melo, L C A; Beesley, L

    2015-08-15

    Heavy metals in soil are naturally occurring but may be enhanced by anthropogenic activities such as mining. Bio-accumulation of heavy metals in the food chain, following their uptake to plants can increase the ecotoxicological risks associated with remediation of contaminated soils using plants. In the current experiment sugar cane straw-derived biochar (BC), produced at 700 °C, was applied to a heavy metal contaminated mine soil at 1.5%, 3.0% and 5.0% (w/w). Jack bean (Canavalia ensiformis) and Mucuna aterrima were grown in pots containing soil and biochar mixtures, and control pots without biochar. Pore water was sampled from each pot to confirm the effects of biochar on metal solubility, whilst soils were analyzed by DTPA extraction to confirm available metal concentrations. Leaves were sampled for SEM analysis to detect possible morphological and anatomical changes. The application of BC decreased the available concentrations of Cd, Pb and Zn in 56, 50 and 54% respectively, in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water (1st collect: 99 to 39 μg L(-1), 2nd: 97 to 57 μg L(-1) and 3rd: 71 to 12 μg L(-1)). The application of BC reduced the uptake of Cd, Pb and Zn by plants with the jack bean translocating high proportions of metals (especially Cd) to shoots. Metals were also taken up by Mucuna aterrima but translocation to shoot was more limited than for jack bean. There were no differences in the internal structures of leaves observed by scanning electron microscopy. This study indicates that biochar application during mine soil remediation reduce plant concentrations of potential toxic metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment

    Science.gov (United States)

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Miao, Ling-Zhan; Ding, Shi-Ming

    2016-01-01

    Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT) technique in combination with traditional chemical methods, such as HOAc (aqua regia), EDTA (ethylene diamine tetraacetic acid), NaOAc (sodium acetate), CaCl2, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R) value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only reflect the extremely low capability of labile Cd to be released from its solid phase, but may also be applied to evaluate the abnormal growth of the plants. PMID:27314376

  11. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment.

    Science.gov (United States)

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Miao, Ling-Zhan; Ding, Shi-Ming

    2016-06-15

    Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT) technique in combination with traditional chemical methods, such as HOAc (aqua regia), EDTA (ethylene diamine tetraacetic acid), NaOAc (sodium acetate), CaCl₂, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R) value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only reflect the extremely low capability of labile Cd to be released from its solid phase, but may also be applied to evaluate the abnormal growth of the plants.

  12. Ecological risk assessment on a cadmium contaminated soil landfill-a preliminary evaluation based on toxicity tests on local species and site-specific information

    International Nuclear Information System (INIS)

    Chen, C.-M.; Liu, M.-C.

    2006-01-01

    In recent years, methodology of ecological risk assessment has been developed and applied frequently for addressing various circumstances where ecological impacts are suspected or have occurred due to environmental contamination; however, its practice is very limited in Taiwan. In 1982, brown rice from rice paddy fields in Da-Tan, Tau-Yuan, was found to be contaminated with Cd and Pb due to illegal discharges of wastewater, known as the 'Cd rice' incidence. Cadmium laden soil was transferred to a constructed landfill in an industrial park 15 years after the incident. Possible leakage of the landfill was suspected by committee members of a supervising board for the remediation process, and a preliminary ecological risk evaluation was requested. A possible risk scenario was that groundwater contamination due to the leachate containing Cd and Pb from the landfill could result in pollution of coastal water, and subsequently produce toxic effects to aquatic organisms. Chemical dissipation in groundwater systems was simulated and short-term chronic toxicity tests on larvae of three local aquatic species were also performed to determine the no-observed adverse-effect concentrations (NOAECs), as well as the predicted no effect concentrations (PNECs), of the two metals in the organisms tested. The hazard quotient (HQ), the ratio of predicted environmental concentrations (PECs) to PNECs, was used for risk characterization. A worst-case-scenario calculation showed that the maximum Cd concentration at 60 m and farther downstream from the site in the groundwater system would be 0.0028 mg l -1 with a maximum initial concentration of 0.65 mg l -1 in the leachate, while for Pb, the highest concentration of 0.044 mg l -1 would be reached at a distance of 40 m and farther, which was based on an initial concentration of 4.4 mg l -1 in the leachate; however, both cases would only occur 80 years after the initiation of leakage. A presumed dilution factor of 100 was used to calculate

  13. The potential of wild vegetation species of Eleusine indica L., and Sonchus arvensis L. for phytoremediation of Cd-contaminated soil

    Directory of Open Access Journals (Sweden)

    Amir Hamzah

    2017-04-01

    Full Text Available Phytoremediation has been intensively studied due its costs effectiveness and environmentally sound. Studies of heavy metal pollution phytoremediation has been done in develop countries, but still limited in Indonesia. This study aims to explore the potential of wild plant species Eleusine indica L. and Sonchus arvensis L. as an agent of phytoremediation on Cd-contaminated soil. This study was done descriptively in Pujon, Malang, Indonesia, to test the ability of two species of wild plants E. indica and S. arvensis in absorbing Cd. Along this research, plant growth and the concentration of Cd in roots, stems and leaves, was monitored. Plant growth was measured every week for three months. The plant roots, stems, and leaves collected separately, then analyzed its Cd levels. The results showed that both of two species of wild plants grew well on soil contaminated Cd. Plant roots can accumulate higher Cd than the stem part. In addition, E indica has the ability to accumulate Cd higher than S. arvensis, i.e. 57.11% and 35.84%, respectively

  14. Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: Verification of on-site washing

    International Nuclear Information System (INIS)

    Makino, Tomoyuki; Kamiya, Takashi; Takano, Hiroyuki; Itou, Tadashi; Sekiya, Naoki; Sasaki, Kouta; Maejima, Yuji; Sugahara, Kazuo

    2007-01-01

    We developed a new, three-step soil-wash method to remediate Cd-contaminated paddy fields. The method comprises (1) chemically washing the field soil with a CaCl 2 solution; (2) washing the treated soil with water to eliminate residual Cd and CaCl 2 ; and (3) on-site treatment of wastewater using a portable wastewater treatment system. Cd concentrations in the treated water were below Japan's environmental quality standard (0.01 mg Cd L -1 ), and the removal of Cd from the exchangeable fraction was 55% and from the acid-soluble fraction 15%. While soil fertility properties were affected by the soil washing, adverse effects were not crucial and could be corrected. The washing had no affect on rice growth, and reduced the average Cd concentration in rice grains by about two-thirds compared to a control plot. These results confirmed the effectiveness of the soil-wash method in remediating Cd-contaminated paddy fields. - In situ soil washing in a paddy field using an on-site wastewater treatment system resulted in an effective decrease of Cd in soil and rice grains without affecting rice yield

  15. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge.

    Science.gov (United States)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-15

    Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2016-06-01

    Full Text Available Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT technique in combination with traditional chemical methods, such as HOAc (aqua regia, EDTA (ethylene diamine tetraacetic acid, NaOAc (sodium acetate, CaCl2, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p < 0.01 with the accumulation of Cd in plant tissues, however, all of the methods could not reflect plant growth status. Additionally, the capability of Cd to change from solid phase to become available in a soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only

  17. Field trial using bone meal amendments to remediate mine waste derived soil contaminated with zinc, lead and cadmium

    International Nuclear Information System (INIS)

    Sneddon, I.R.; Orueetxebarria, M.; Hodson, M.E.; Schofield, P.F.; Valsami-Jones, E.

    2008-01-01

    Bone meal amendments are being considered as a remediation method for metal-contaminated wastes. In various forms (biogenic, geogenic or synthetic), apatite, the principal mineral constituent of bone, has shown promise as an amendment to remediate metal-contaminated soils via the formation of insoluble phosphates of Pb and possibly other metals. The efficacy of commercially available bovine bone meal in this role was investigated in a field trial at Nenthead, Cumbria with a mine waste derived soil contaminated with Zn, Pb and Cd. Two 5 m 2 plots were set up; the first as a control and the second, a treatment plot where the soil was thoroughly mixed with bone meal to a depth of 50 cm at a soil to amendment ratio of 25:1 by weight. An array of soil solution samplers (Rhizon SMS TM ) were installed in both plots and the soil pore water was collected and analysed for Ca, Cd, Zn and Pb regularly over a period of 2 a. Concurrently with the field trial, a laboratory trial with 800 mm high and 100 mm wide leaching columns was conducted using identical samplers and with soil from the field site. A substantial release of Zn, Pb, Cd and Ca was observed associated with the bone meal treatment. This release was transient in the case of the leaching columns, and showed seasonal variation in the case of the field trial. It is proposed that this effect resulted from metal complexation with organic acids released during breakdown of the bone meal organic fraction and was facilitated by the relatively high soil pH of 7.6-8.0. Even after this transient release effect had subsided or when incinerated bone meal was substituted in order to eliminate the organic fraction, no detectable decrease in dissolved metals was observed and no P was detected in solution, in contrast with an earlier small column laboratory study. It is concluded that due to the relative insolubility of apatite at above-neutral pH, the rate of supply of phosphate to soil solution was insufficient to result in

  18. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    Science.gov (United States)

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation.

    Science.gov (United States)

    del Carmen Hernández-Soriano, Maria; Peña, Aránzazu; Mingorance, M Dolores

    2011-10-01

    Accumulation of metals in soil at elevated concentrations causes risks to the environmental quality and human health for more than one hundred million people globally. The rate of metal release and the alteration of metal distribution in soil phases after soil washing with a sulfosuccinamate surfactant solution (Aerosol 22) were evaluated for four contaminated soils. Furthermore, a sequential extraction scheme was carried out using selective extractants (HAcO, NH(2)OH·HCl, H(2)O(2) + NH(4)AcO) to evaluate which metal species are extracted by A22 and the alteration in metal distribution upon surfactant-washing. Efficiency of A22 to remove metals varied among soils. The washing treatment released up to 50% of Cd, 40% of Cu, 20% of Pb and 12% of Zn, mainly from the soluble and reducible soil fractions, therefore, greatly reducing the fraction of metals readily available in soil. Metal speciation analysis for the solutions collected upon soil washing with Aerosol 22 further confirmed these results. Copper and lead in solution were mostly present as soluble complexes, while Cd and Zn were present as free ions. Besides, redistribution of metals in soil was observed upon washing. The ratios of Zn strongly retained in the soil matrix and Cd complexed with organic ligands increased. Lead was mobilized to more weakly retained forms, which indicates a high bioavailability of the remaining Pb in soil after washing. Comprehensive knowledge on chemical forms of metals present in soil allows a feasible assessment of the environmental impact of metals for a given scenario, as well as possible alteration of environmental conditions, and a valuable prediction for potential leaching and groundwater contamination.

  20. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    International Nuclear Information System (INIS)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-01

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH) 2 , and Mg(OH) 2 to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg −1 ) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L −1 DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH 4 ) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively

  1. Modeling cadmium in the feed chain and cattle organs

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Romkens, P.F.A.M.; Franz, E.; Raamsdonk, van L.W.D.

    2011-01-01

    The objectives of this study were to estimate cadmium contamination levels in different scenarios related to soil characteristics and assumptions regarding cadmium accumulation in the animal tissues, using quantitative supply chain modeling. The model takes into account soil cadmium levels, soil pH,

  2. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils.

    Science.gov (United States)

    Qiao, Jiang-Tao; Liu, Tong-Xu; Wang, Xiang-Qin; Li, Fang-Bai; Lv, Ya-Hui; Cui, Jiang-Hu; Zeng, Xiao-Duo; Yuan, Yu-Zhen; Liu, Chuan-Ping

    2018-03-01

    The fates of cadmium (Cd) and arsenic (As) in paddy fields are generally opposite; thus, the inconsistent transformation of Cd and As poses large challenges for their remediation. In this study, the impacts of zero valent iron (ZVI) and/or biochar amendments on Cd and As bioavailability were examined in pot trials with rice. Comparison with the untreated soil, both Cd and As accumulation in different rice tissues decreased significantly in the ZVI-biochar amendments and the Cd and As accumulation in rice decreased with increasing ZVI contents. In particular, the concentrations of Cd (0.15 ± 0.01 mg kg -1 ) and As (0.17 ± 0.01 mg kg -1 ) in rice grains were decreased by 93% and 61% relative to the untreated soil, respectively. A sequential extraction analysis indicated that with increasing Fe ratios in the ZVI-biochar mixtures, bioavailable Cd and As decreased, and the immobilized Cd and As increased. Furthermore, high levels of Fe, Cd, and As were detected in Fe plaque of the ZVI-biochar amendments in comparison with the single biochar or single ZVI amendments. The ZVI-biochar mixture may have a synergistic effect that simultaneously reduces Cd and As bioavailability by increasing the formation of amorphous Fe and Fe plaque for Cd and As immobilization. The single ZVI amendment significantly decreased As bioavailability, while the single biochar amendment significantly reduced the bioavailability of Cd compared with the combined amendments. Hence, using a ZVI-biochar mixture as a soil amendment could be a promising strategy for safely-utilizing Cd and As co-contaminated sites in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Chen, Guan-Bu [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China)

    2013-01-15

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH){sub 2}, and Mg(OH){sub 2} to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg{sup −1}) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L{sup −1} DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH{sub 4}) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively.

  4. Modelling cadmium contamination in paddy soils under long-term remediation measures: Model development and stochastic simulations.

    Science.gov (United States)

    Peng, Chi; Wang, Meie; Chen, Weiping

    2016-09-01

    A pollutant accumulation model (PAM) based on the mass balance theory was developed to simulate long-term changes of heavy metal concentrations in soil. When combined with Monte Carlo simulation, the model can predict the probability distributions of heavy metals in a soil-water-plant system with fluctuating environmental parameters and inputs from multiple pathways. The model was used for evaluating different remediation measures to deal with Cd contamination of paddy soils in Youxian county (Hunan province), China, under five scenarios, namely the default scenario (A), not returning paddy straw to the soil (B), reducing the deposition of Cd (C), liming (D), and integrating several remediation measures (E). The model predicted that the Cd contents of soil can lowered significantly by (B) and those of the plants by (D). However, in the long run, (D) will increase soil Cd. The concentrations of Cd in both soils and rice grains can be effectively reduced by (E), although it will take decades of effort. The history of Cd pollution and the major causes of Cd accumulation in soil were studied by means of sensitivity analysis and retrospective simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: determination by chemical analysis of moss bags and leaves of Crimean linden.

    Science.gov (United States)

    Dmuchowski, Wojciech; Bytnerowicz, Andrzej

    2009-12-01

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less.

  6. Advances in Phytoremediation of Cadmium Contaminated Soil%镉污染土壤的植物修复研究进展与展望

    Institute of Scientific and Technical Information of China (English)

    苏慧; 魏树和; 周启星

    2013-01-01

    In recent years,more attention has been paid to cadmium (Cd) and its combine pollution problems.In order to solve these intractable problems,phytoremediation of Cd contaminated soil has become a promising technology to be widely applied due to some advantages such as low cost,compatibility of the environmental aesthetics and its adaptability in situ.In this review,domestic and overseas progresses in the identification of Cd hyperaccumulators,and the enduring mechanisms and potential of the reported plants hyperaccumulating Cd were overviewed.Some relevant important work on phytoremediation of combined contaminated soil with Cd and other heavy metals or organic pollutants were summarized,focused on some enhanced remediation techniques,such as chemical-enhanced remediation,agro-ecological strengthening remediation and other approaches.At the last,the key researching contents and the important developing directions of the future study on phytoremediation was also prospected.%近年来,重金属镉(Cd)及其复合污染问题越来越受到人们的关注.Cd污染土壤的植物修复技术因其具有治理成本的低廉性、环境美学的兼容性和治理过程的原位性等优势,随之成为具有广泛应用前景的技术.本文概述了Cd超积累植物的筛选及耐性机理与修复潜力的评价等方面的国内外进展,总结了Cd-重金属复合污染土壤、Cd-有机物复合污染土壤的植物修复相关的重要工作,着重评述了Cd复合污染土壤的化学强化、农业生态强化及其它方法的研发现状,展望了这一领域今后的重点研究内容和重要发展方向.

  7. Effects of a natural sepiolite bearing material and lime on the immobilization and persistence of cadmium in a contaminated acid agricultural soil.

    Science.gov (United States)

    Cao, Xueying; Hu, Pengjie; Tan, Changyin; Wu, Longhua; Peng, Bo; Christie, Peter; Luo, Yongming

    2018-05-25

    Soil contamination with cadmium (Cd) represents a substantial threat to human health and environmental quality. Long-term effectiveness and persistence of remediation are two important criteria for the evaluation of amendment techniques used to remediate soils polluted with potentially toxic metals. In the current study, we investigated the remediation persistence of a natural sepiolite bearing material (NSBM, containing 15% sepiolite) and ground limestone (equivalent to > 98.0% CaO) on soil pH, Cd bioavailability, and Cd accumulation by pak choi (Brassica chinensis L.) during the growth of four consecutive crops in a Cd-contaminated acid soil with different amounts of NSBM (0, 0.2, 0.5, 1, 2, and 5%). Soil pH levels ranged from 5.21 to 7.76 during the first crop, 4.30 to 7.34 during the second, 4.23 to 7.80 during the third, and 4.33 to 6.98 during the fourth, and increased significantly with increasing the application rate of NSBM. Soil CaCl 2 -Cd and shoot Cd concentrations decreased by 8.11 to 99.2% and 6.58 to 94.5%, respectively, compared with the control throughout the four cropping seasons. A significant negative correlation was found between soil CaCl 2 -Cd and soil pH. Combined use of 0.1% lime and NSBM showed greater effects than NSBM alone, especially, when the application rate of NSBM was ˂ 2%. Moreover, pak choi tissue Cd concentrations in the treatments with NSBM addition alone at ≥ 2% or at ≥ 1% NSBM combined with 0.1% lime met the maximum permissible concentration (MPC) over the four crops, allowed by the Chinese and European regulations. Based on the present study, safe crop production in the test soil is possible at a soil pH > 6.38 and CaCl 2 -Cd soil Cd immobilization by NSBM without or with lime is a potentially feasible method of controlling the transfer of soil Cd into the food chain.

  8. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil.

    Science.gov (United States)

    Nie, Jian; Liu, Yunguo; Zeng, Guangming; Zheng, Bohong; Tan, Xiaofei; Liu, Huan; Xie, Jieli; Gan, Chao; Liu, Wei

    2016-05-01

    Heavy metal pollution is a major concern of the public due to their threats to the safety of food chains. A 60-day pot experiment was conducted using Macleaya cordata as plant material to investigate the phytoremediation potential and anti-oxidative responses of M. cordata under different Cd stress. Significant growth inhibition phenomenon and toxic symptoms were not detected in the experiment. The high biomass of the plant provided high accumulation capacity for Cd with an average dry weight of 3.6 g. The maximum extraction amount of Cd was 393 μg·plant(-1), suggesting that this species had potential for phytoremediation of Cd-contaminated soil. A slight increase of chlorophyll (CHL) content was observed in Cd10 treatment. The plant was confirmed to have relatively high tolerance to the Cd stress on the basis of tolerance indexes (TI), relative water content, and CHLa/CHLb ratio. M. cordata could maintain high level of superoxide dismutase (SOD) activity under Cd stress, indicating strong tolerance capacity for reactive oxygen species (ROS) in plant cells. Catalase (CAT) activity show a certain range of decline in the experiment compare to the control. And peroxidase (POD) activity in leaves changed irregularly when compared to the control. The malondialdehyde (MDA) content increased as Cd concentration elevated compared to the control. In addition, as an inedible crop with relatively high economic value, M. cordata have shown the advantage of high biomass and high tolerance under Cd stress, which can provide a new plant resource for sustainable phytoremediation.

  9. Rising environmental cadmium levels in developing countries ...

    African Journals Online (AJOL)

    olayemitoyin

    Cadmium (Cd) is a non essential heavy metal belonging to group ... Cd from a contaminated environment leads to various pathological ..... interact with genes that are involved in human ..... Tolonen, M. (1990) Vitamins and minerals in Health.

  10. Cadmium Alternatives

    Science.gov (United States)

    2012-08-01

    carcinogenic, leachable Trivalent and non- chrome passivates generally struggle with conductivity Major Differences in Trivalent vs. Hexavalent Passivates...for Change Cadmium passivated with hexavalent chromium has been in use for many decades Cadmium is toxic, and is classified as a priority...Executive Orders 13514 & 13423 DoD initiatives – Young memo (April 2009) DFAR restricting use of hexavalent chromium Allows the use of hexavalent

  11. Exposure of the endangered Milky stork population to cadmium and lead via food and water intake in Kuala Gula Bird Sanctuary, Perak, Malaysia

    OpenAIRE

    Rahman, Faid; Ismail, Ahmad; Omar, Hishamuddin; Hussin, Mohamed Zakaria

    2017-01-01

    The Milky stork is listed as an endangered species endemic to the Southeast Asia region. In Malaysia, the population is currently being reintroduced back into the wild. However, the increase of anthropogenic activity throughout the coastal area might expose the population to hazardous chemicals such as heavy metals. This study highlights the contamination of cadmium (Cd) and lead (Pb) in the Milky storkâs diet. Additionally, this is the first time an integrated exposure model being used to as...

  12. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).

    Science.gov (United States)

    Hancock, Laura M S; Ernst, Charlotte L; Charneskie, Rebecca; Ruane, Lauren G

    2012-09-01

    Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.

  13. Mechanisms of cadmium induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Filipic, Metka, E-mail: metka.filipic@nib.si [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana (Slovenia)

    2012-05-01

    Cadmium is an ubiquitous environmental contaminant that represents hazard to humans and wildlife. It is found in the air, soil and water and, due to its extremely long half-life, accumulates in plants and animals. The main source of cadmium exposure for non-smoking human population is food. Cadmium is primarily toxic to the kidney, but has been also classified as carcinogenic to humans by several regulatory agencies. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Cadmium dose not induce direct DNA damage, however it induces increase in reactive oxygen species (ROS) formation, which in turn induce DNA damage and can also interfere with cell signalling. More important seems to be cadmium interaction with DNA repair mechanisms, cell cycle checkpoints and apoptosis as well as with epigenetic mechanisms of gene expression control. Cadmium mediated inhibition of DNA repair mechanisms and apoptosis leads to accumulation of cells with unrepaired DNA damage, which in turn increases the mutation rate and thus genomic instability. This increases the probability of developing not only cancer but also other diseases associated with genomic instability. In the in vitro experiments cadmium induced effects leading to genomic instability have been observed at low concentrations that were comparable to those observed in target organs and tissues of humans that were non-occupationally exposed to cadmium. Therefore, further studies aiming to clarify the relevance of these observations for human health risks due to cadmium exposure are needed.

  14. Mechanisms of cadmium induced genomic instability

    International Nuclear Information System (INIS)

    Filipič, Metka

    2012-01-01

    Cadmium is an ubiquitous environmental contaminant that represents hazard to humans and wildlife. It is found in the air, soil and water and, due to its extremely long half-life, accumulates in plants and animals. The main source of cadmium exposure for non-smoking human population is food. Cadmium is primarily toxic to the kidney, but has been also classified as carcinogenic to humans by several regulatory agencies. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Cadmium dose not induce direct DNA damage, however it induces increase in reactive oxygen species (ROS) formation, which in turn induce DNA damage and can also interfere with cell signalling. More important seems to be cadmium interaction with DNA repair mechanisms, cell cycle checkpoints and apoptosis as well as with epigenetic mechanisms of gene expression control. Cadmium mediated inhibition of DNA repair mechanisms and apoptosis leads to accumulation of cells with unrepaired DNA damage, which in turn increases the mutation rate and thus genomic instability. This increases the probability of developing not only cancer but also other diseases associated with genomic instability. In the in vitro experiments cadmium induced effects leading to genomic instability have been observed at low concentrations that were comparable to those observed in target organs and tissues of humans that were non-occupationally exposed to cadmium. Therefore, further studies aiming to clarify the relevance of these observations for human health risks due to cadmium exposure are needed.

  15. Evaluation of cadmium bioaccumulation and translocation by Hopea ...

    African Journals Online (AJOL)

    Cadmium (Cd) contamination has an adverse effect on soil productivity and crop production. Phytoremediation is a long term and environmental friendly technology to remediate Cadmium polluted areas. This study was conducted to evaluate the potential of Hopea adorata for remediation of soils contaminated with Cd.

  16. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.

    Science.gov (United States)

    Sangthong, Chirawee; Setkit, Kunchaya; Prapagdee, Benjaphorn

    2016-01-01

    Cadmium-resistant Micrococcus sp. TISTR2221, a plant growth-promoting bacterium, has stimulatory effects on the root lengths of Zea mays L. seedlings under toxic cadmium conditions compared to uninoculated seedlings. The performance of Micrococcus sp. TISTR2221 on promoting growth and cadmium accumulation in Z. mays L. was investigated in a pot experiment. The results indicated that Micrococcus sp. TISTR2221significantly promoted the root length, shoot length, and dry biomass of Z. mays L. transplanted in both uncontaminated and cadmium-contaminated soils. Micrococcus sp. TISTR2221 significantly increased cadmium accumulation in the roots and shoots of Z. mays L. compared to uninoculated plants. At the beginning of the planting period, cadmium accumulated mainly in the shoots. With a prolonged duration of cultivation, cadmium content increased in the roots. As expected, little cadmium was found in maize grains. Soil cadmium was significantly reduced with time, and the highest percentage of cadmium removal was found in the bacterial-inoculated Z. mays L. after transplantation for 6 weeks. We conclude that Micrococcus sp. TISTR2221 is a potent bioaugmenting agent, facilitating cadmium phytoextraction in Z. mays L.

  17. Radiocesium contamination and estimated internal exposure doses in edible wild plants in Kawauchi Village following the Fukushima nuclear disaster.

    Directory of Open Access Journals (Sweden)

    Rimi Tsuchiya

    Full Text Available Kawauchi Village, in Fukushima Prefecture, is located within a 30-km radius of the nuclear disaster site of the Fukushima Daiichi Nuclear Power Plant (FDNPP. "Sansai" (edible wild plants in this village have been evaluated by gamma spectrometry after the residents had returned to their homes, to determine the residents' risk of internal exposure to artificial radionuclides due to consumption of these plants. The concentrations of radiocesium (cesium-134 and cesium-137 were measured in all 364 samples collected in spring 2015. Overall, 34 (9.3% samples exceeded the regulatory limit of 100 Bq/kg established by Japanese guidelines, 80 (22.0% samples registered between 100 Bq/kg and 20 Bq/kg, and 250 (68.7% registered below 20 Bq/kg (the detection limit. The internal effective doses from edible wild plants were sufficiently low (less than 1 mSv/y, at 3.5±1.2 μSv/y for males and 3.2±0.9 μSv/y for females (2.7±1.5 μSv/y for children and 3.7±0.7 μSv/y for adults in 2015. Thus, the potential internal exposure doses due to consumption of these edible wild plants were below the applicable radiological standard limits for foods. However, high radiocesium levels were confirmed in specific species, such as Eleutherococcus sciadophylloides ("Koshiabura" and Osmunda japonica (Asian royal fern, "Zenmai". Consequently, a need still might exist for long-term follow-up such as environmental monitoring, physical and mental support to avoid unnecessary radiation exposure and to remove anxiety about adverse health effects due to radiation. The customs of residents, especially the "satoyama" (countryside culture of ingesting "sansai," also require consideration in the further reconstruction of areas such as Kawauchi Village that were affected by the nuclear disaster.

  18. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-01

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland.

  19. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland.

    Science.gov (United States)

    Johnson, Michael D; Kenney, Nicholas; Stoica, Adriana; Hilakivi-Clarke, Leena; Singh, Baljit; Chepko, Gloria; Clarke, Robert; Sholler, Peter F; Lirio, Apolonio A; Foss, Colby; Reiter, Ronald; Trock, Bruce; Paik, Soonmyoung; Martin, Mary Beth

    2003-08-01

    It has been suggested that environmental contaminants that mimic the effects of estrogen contribute to disruption of the reproductive systems of animals in the wild, and to the high incidence of hormone-related cancers and diseases in Western populations. Previous studies have shown that functionally, cadmium acts like steroidal estrogens in breast cancer cells as a result of its ability to form a high-affinity complex with the hormone binding domain of the estrogen receptor. The results of the present study show that cadmium also has potent estrogen-like activity in vivo. Exposure to cadmium increased uterine wet weight, promoted growth and development of the mammary glands and induced hormone-regulated genes in ovariectomized animals. In the uterus, the increase in wet weight was accompanied by proliferation of the endometrium and induction of progesterone receptor (PgR) and complement component C3. In the mammary gland, cadmium promoted an increase in the formation of side branches and alveolar buds and the induction of casein, whey acidic protein, PgR and C3. In utero exposure to the metal also mimicked the effects of estrogens. Female offspring experienced an earlier onset of puberty and an increase in the epithelial area and the number of terminal end buds in the mammary gland.

  20. Cadmium immobilization by hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Smičiklas Ivana D.

    2003-01-01

    Full Text Available The contamination of air, soil and water by cadmium is a great environmental problem. If cadmium occurs in nature in ionic form, soluble in water, it easily enters into the food chain. Hydroxyapatite (HAP, Ca-o(POAe(OH2 is a sparingly soluble salt and an excellent matrix for the removal of heavy metals from solutions. Considerable research attention has been paid to the bond between Cc/2+ ions and synthetic hydroxyapatite of known composition. The sorption mechanism is complex. The dominant process is ion exchange, but surface adsorption, surface complexation and coprecipitation can also contribute to the overall mechanism. The sorption capacity depends on the characteristics of hydroxyapatite itself and on the experimental conditions. Under optimum conditions a maximum capacity of 0.8 mol Cd2+/mol HAP can be achieved. HAP is a potential sorbent for the remediation of contaminated water and soil, for industrial waste treatment, and it is also referenced as a material that can be used as a barrier around waste depositories.

  1. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan

    International Nuclear Information System (INIS)

    Malik, R.N.; Husain, S.Z.; Nazir, I.

    2010-01-01

    This study was designed to assess total contents of 6 toxic metals viz., Pb, Cu, Zn, Co, Ni, and Cr in the soil and plant samples of 16 plant species collected from industrial zone of Islamabad, Pakistan. The concentration, transfer and accumulation of metals from soil to roots and shoots was evaluated in terms of Biological Concentration Factor (BCF), Translocation Factor (TF) and Bioaccumulation Coefficient (BAC). Total metal concentrations of Pb, Zn, Cu, Co, Ni, and Cr in soils varied between 2.0-29.0, 61.9-172.6, 8.9 to 357.4, 7.3-24.7, 41.4-59.3, and 40.2-927.2 mg/kg. Total metal concentrations pattern in roots were: Cu>Cr>Zn>Ni>Pb>Co. Grasses showed relatively higher total Zn concentration. Accumulation of Cu was highest in shoots followed by Zn, Cr, Pb, Co and Ni. None of plant species were identified as hyper accumulator; however, based on BCFs, TFs, and BACs values, most of the studied species have potential for phyto stabilization and phyto extraction. Parthenium hysterophoirus L., and Amaranthus viridis L., is suggested for phytoextraction of Pb and Ni, whereas, Partulaca oleracea L., Brachiaria reptans (L.) Gard. and Hubb., Solanum nigrum L., and Xanthium stromarium L., for hytostabilization of soils contaminated with Pb and Cu. (author)

  2. Cadmium decontamination using in-house resin

    International Nuclear Information System (INIS)

    Pal, Sangita; Thalor, K.L; Prabhakar, S.; Srivastava, V.K.; Goswami, J.L.; Tewari, P.K.; Dhanpal, Pranav; Goswami, J.L.

    2010-01-01

    A selective and strong in-house chelator has been studied w.r.t. basic parameters like concentration, time, and elution. De-contamination of cadmium, mercury, chromium, lead etc by using high uptake values fro cadmium ions proves its selectivity with high elution ratio ensures further decontamination of run-off water during natural calamities. In three step cascade use the concentration of original cadmium solution (500 ppm) decocted to safe disposable attribute. This polymeric ligand exchanger displayed outlet effluent concentration to 1 ppm and less than 200 ppb when treated for inlet feed concentration of 50 ppm and 500 ppm respectively. (author)

  3. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: Determination by chemical analysis of moss bags and leaves of Crimean linden

    Energy Technology Data Exchange (ETDEWEB)

    Dmuchowski, Wojciech, E-mail: dmuchowski@ob.neostrada.p [Botanical Garden-Center for Conservation of Biological Diversity, Polish Academy of Sciences, 2 Prawdziwka St., 02-973 Warszawa (Poland); Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, 159 Nowoursynowska St., 02-776 Warszawa (Poland); Bytnerowicz, Andrzej [US Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2009-12-15

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less. - Between 1992 and 2004, concentrations of Pb decreased, while those of Cd and Zn remained little changed in moss bags and linden foliage exposed to ambient air in Warsaw, Poland.

  4. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: Determination by chemical analysis of moss bags and leaves of Crimean linden

    International Nuclear Information System (INIS)

    Dmuchowski, Wojciech; Bytnerowicz, Andrzej

    2009-01-01

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less. - Between 1992 and 2004, concentrations of Pb decreased, while those of Cd and Zn remained little changed in moss bags and linden foliage exposed to ambient air in Warsaw, Poland.

  5. Modeling cadmium in the feed chain and cattle organs

    OpenAIRE

    Fels-Klerx, van der, H.J.; Romkens, P.F.A.M.; Franz, E.; Raamsdonk, van, L.W.D.

    2011-01-01

    The objectives of this study were to estimate cadmium contamination levels in different scenarios related to soil characteristics and assumptions regarding cadmium accumulation in the animal tissues, using quantitative supply chain modeling. The model takes into account soil cadmium levels, soil pH, soil-to-plant transfer, animal consumption patterns, and transfer into animal organs (liver and kidneys). The model was applied to cattle up to the age of six years which were fed roughage (maize ...

  6. Determination of cadmium, lead and mercury residual levels in meat ...

    African Journals Online (AJOL)

    Determination of cadmium, lead and mercury residual levels in meat of canned light tuna ( Katsuwonus pelamis and Thunnus albacares ) and fresh little tunny ( Euthynnus alletteratus ) in Libya. ... Surveillance for mercury (Hg), lead (Pb) and cadmium (Cd) contamination in tuna products is crucial for consumer food safety.

  7. Cadmium in the aquatic environment. Volume 19. Advances in environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nriagu, J.O.; Sprague, J.B. (eds.)

    1987-01-01

    This book addresses the biogeochemistry of cadmium in the marine and freshwater aquatic environment and comprises 10 chapters on: distribution and cycling of cadmium in the environment; evidence for anthropogenic modification of global transport of cadmium; cadmium in fresh water: The Great Lakes and St. Lawrence River; cadmium associations in freshwater and marine sediment; biological cycling of cadmium in fresh water; toxicity of cadmium to freshwater microorganisms, phytoplankton, and invertebrates; effects of cadmium on freshwater fish; effects of cadmium on marine biota; biological cycling of cadmium in marine environment; and methods of cadmium detection. Although there is some overlap of chapter topics, the major compartments of the aquatic system are addressed: atmosphere, water, sediment, phytoplankton, macrophytes, zooplankton, and fish. These chapters are well written and critically review the available data in each area. The research cited is heavily dominated by studies of the Great Lakes and Western European rivers such as the Rhine, but this reflects the degree of cadmium contamination of these important water bodies and the environmental concerns they have raised. Many of the chapters strive to critically address the problems of data quality, which are a result of the great difficulty in detecting cadmium at the ng/L or ..mu..g/kg levels at which cadmium contamination occurs.

  8. Cadmium and the kidney.

    OpenAIRE

    Friberg, L

    1984-01-01

    The paper is a review of certain aspects of importance of cadmium and the kidney regarding the assessment of risks and understanding of mechanisms of action. The review discusses the following topics: history and etiology of cadmium-induced kidney dysfunction and related disorders; cadmium metabolism, metallothionein and kidney dysfunction; cadmium in urine as indicator of body burden, exposure and kidney dysfunction; cadmium levels in kidney and liver as indicators of kidney dysfunction; cha...

  9. IS THE MEAT OF WILD WATERFOWL FIT FOR HUMAN CONSUMPTION? PRELIMINARY RESULTS OF CADMIUM AND LEAD CONCENTRATION IN PECTORAL MUSCLES OF MALLARDS AND COOTS SHOT IN 2006 IN SOUTHERN POLAND

    Directory of Open Access Journals (Sweden)

    Lukasz Jakub Binkowski

    2012-02-01

    Full Text Available Concentrations of cadmium and lead in pectoral muscles of mallards (N = 15 and coots (N = 15 shot on fishponds in Zator area (southern Poland, Europe were determined with the graphite furnace AAS. Samples were dried and wet digested in the mixture of HNO3 and HClO4. Median concentration of cadmium was 0.0616 µg.g-1d.w. among mallards and 0.0868 µg.g-1d.w. among coots. Concentrations of lead were higher and median run to 0.1898 µg.g-1d.w. in mallards and to 0.2637 µg.g-1d.w. in coots. No differences in heavy metals concentrations between species were statistically significant. According to the thresholds for foodstuff given by European Commission, meat of all birds was edible in the aspect of cadmium concentration (only meat of one coot contained cadmium near the given border. In the aspect of lead, 26% of researched birds have concentration beyond the safety limit and their meat was not fit for human consumption. Considering the annually number of shot birds, any kind of monitoring must be planned to assess potential consumers’ safety.

  10. Adsorption of copper, cadmium and zinc on suspended sediments in a stream contaminated by acid mine drainage: The effect of seasonal changes in dissolved organic carbon

    International Nuclear Information System (INIS)

    Macalady, D.L.; Ranville, J.F.; Smith, K.S.; Daniel, S.R.

    1991-01-01

    The release of metal-rich, acidic waters from abandoned mining operations is a major problem in Colorado and throughout the Western United States. In Colorado, over 600 km of stream reach are estimated to be affected by such releases (Wentz, 1974). The metals released adversely affect stream biota, including fish. It is therefore important to understand the chemical processes which influence metal transport in these waters. The report details studies of the role of suspended sediments with respect to the transport of several important trace metals in a stream impacted by acid mine drainage. The role of streambed sediments was studied in the same system as part of an earlier project (Acid Mine Drainage: streambed sorption of copper, cadmium and zinc, PB--93-118263)

  11. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident.

    Science.gov (United States)

    Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi

    2015-04-01

    The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after the accident. This dose rate exceeds 0.1-1 mGy d(-1) derived consideration reference level for Reference rat

  12. Evaluation of cadmium bioaccumulation and translocation by Hopea ...

    African Journals Online (AJOL)

    parisa

    2012-04-10

    Apr 10, 2012 ... 6Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia. Accepted 19 December, 2011. Cadmium (Cd) contamination has an adverse effect on soil productivity and ...... J. Food, Agric.

  13. Cadmium, an environmental poison

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard, A K

    1974-04-15

    In recent years, industrial employment of cadmium has increased considerably. Cadmium is now present in the environment and has caused acute and chronic poisoning. Inhalation of cadmium vapor or dust causes pulmonary damage while the kidney is the critical organ in absorption of cadmium. The element accumulates in the kidney and causes tubular damage or 200 ppm in the renal cortex. In animal experiments, cadmium may cause raised blood pressure, sterility and malignant tumors. On account of the pronounced tendency of cadmium to accumulate and its toxicity, it is important to trace sources and to reduce exposure of the population. 62 references.

  14. Cadmium-induced fetal toxicity in the rat

    International Nuclear Information System (INIS)

    Levin, A.A.

    1980-01-01

    Cadmium, a heavy metal environment contaminant, induces fetal death and placental necrosis in the Wistar rat. This study investigated fetal, maternal, and placental responses to cadmium intoxication. Subcutaneous injection of CdCl 2 to dams on day 18 of pregnancy produced a high incidence of fetal death (75%) and placental necrosis. Death in the fetus was produced despite limited fetal accumulations of cadmium. Distribution studies using 109 Cd-labeled CdCl 2 demonstrated that less than 0.1% of the injected dose was associated with the fetus. To determine if fetuses were sensitive to these low levels of cadmium, direct injections of CdCl 2 into fetuses were performed in utero. Direct injections produced fetal accumulations 8-fold greater than those following maternal injections. The 8-fold greater fetal accumulations following direct injection were associated with only a 12% fetal mortality compared to the 75% mortality following maternal injections. The data indicated that the fetal toxicity of cadmium following maternal injections was not the result of direct effects of cadmium on the fetus. In conclusion, cadmium-induced fetal death was not the result of direct effects of cadmium on the fetus but may have been induced by placental cellular injury resulting from high accumulations of cadmium in the placenta. A vascular response to placental injury, leading to decreased utero-placental bood flow and cadmium-induced alterations in trophoblastic function, resulted in fetal death

  15. Bacterial bioremediation of aquatic cadmium 11 of area of Pakistan

    International Nuclear Information System (INIS)

    Mahmood, T.; Malik, S. A.; Javed, M.; Qamar, I.

    2005-01-01

    Cadmium Cd/sup +2/ pollution arises mainly from contamination of minerals used in agriculture and from industrial process. The usual situation is of large volume of soil and H/sub 2/O that are contaminated with low but significant concentration of Cd/sup +2/. Cadmium is one of the most dangerous heavy metal both to human health and aquatic ecosystem. Microorganisms have developed different strategies to regulate uptake and to detoxify heavy metals viz; by different mechanisms i.e. by adsorption to cell surface, by intercellular accumulation, precipitation, biosynthesis of metallothioneins to volatile compounds. Microcosm experiments in chemostat incubated at 20 deg. C showed that Cadmium Contamination does not greatly affect bacterial communities in cultures contaminated with up to 1mg CdI/sup -1/. acterial productivity remains unchanged and Cadmium- resistant strains arise quickly and in great number. The cadmium accumulation by bacteria depend on the bacterial productivity. The free bacteria can accumulate up to 1200 ppm Cadmium Where as the adhering bacteria concentrate up to 6100 ppm. At a steady state, 11-29% Cadmium is removed from the water phase of cultures. This paper includes Cd (II) removal by Bacteria from waste water of Wah Cantonment Pakistan. (author)

  16. Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites.

    Science.gov (United States)

    Yang, Zhihui; Liang, Lifen; Yang, Weichun; Shi, Wei; Tong, Yunping; Chai, Liyuan; Gao, Shikang; Liao, Qi

    2018-04-01

    Self-aggregation of bulk nano-hydroxyapatites (n-HAPs) undermines their immobilization efficiencies of heavy metals in the contaminated soils. Here, the low-cost, easily obtained, and environment-friendly filamentous fungi have been introduced for the bio-matrices of the hybrid bio-nanocomposites to potentially solve such problem of n-HAPs. According to SEM, TEM, XRD, and FT-IR analyses, n-HAPs were successfully coated onto the fungal hyphae and their self-aggregation was improved. The immobilization efficiencies of diethylene-triamine-pentaacetic acid (DTPA)-extractable Cd and Pb in the contaminated soils by the bio-nanocomposites were individually one to four times of that by n-HAPs or the fungal hyphae. Moreover, the Aspergillus niger-based bio-nanocomposite (ANHP) was superior to the Penicillium Chrysogenum F1-based bio-nanocomposite (PCHP) in immobilization of Cd and Pb in the contaminated soils. In addition, the results of XRD showed that one of the potential mechanisms of metal immobilization by the hybrid bio-nanocomposites was dissolution of n-HAPs followed by precipitation of new metal phosphate minerals. Our results suggest that the hybrid bio-nanocomposite (ANHP) can be recognized as a promising soil amendment candidate for effective remediation on the soils simultaneously contaminated by Cd and Pb.

  17. Monitored Attenuation of Inorganic Contaminants in Ground Water Volume 2 – Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium

    Science.gov (United States)

    This document represents the second volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. V...

  18. Concentrations of cadmium, Cobalt, Lead, Nickel, and Zinc in Blood and Fillets of Northern Hog Sucker (Hypentelium nigricans) from streams contaminated by lead-Zinc mining: Implications for monitoring

    Science.gov (United States)

    Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.

    2009-01-01

    Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet-to-blood relation explained an

  19. Calcium enhances cadmium tolerance and decreases cadmium ...

    African Journals Online (AJOL)

    We aimed at characterizing mechanisms controlling cadmium accumulation in lettuce, which is a food crop showing one of the highest capacities to accumulate this toxic compound. In this study, plants from three lettuce varieties were grown for eight days on media supplemented or not with cadmium (15 μM CdCl2) and ...

  20. Contamination levels of mercury and cadmium in melon-headed whales (Peponocephala electra) from a mass stranding on the Japanese coast

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Tetsuya [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)], E-mail: endotty@hoku-iryo-u.ac.jp; Hisamichi, Yohsuke; Kimura, Osamu [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Haraguchi, Koichi [Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka 815-8511 (Japan); Baker, C. Scott [Marine Mammal Institute and Department of Fisheries and Wildlife, Oregon State University, Newport, Oregon 97365 (United States)

    2008-08-15

    Total mercury (T-Hg), methyl mercury (M-Hg), cadmium (Cd), selenium (Se), zinc (Zn) and copper (Cu) concentrations in the organs of melon-headed whales from a mass stranding on the Japanese coast were analyzed. The mean concentration of T-Hg in the liver (126 {+-} 97 {mu}g/wet g, n = 13) was markedly higher than those in kidney (6.34 {+-} 2.36 {mu}g/wet g, n = 12) and muscle (4.90 {+-} 2.33 {mu}g/wet g, n = 15). In contrast, the mean concentration of M-Hg in the liver (9.08 {+-} 2.24 {mu}g/wet g) was similar to those in the kidney (3.47 {+-} 0.91 {mu}g/wet g) and muscle (3.78 {+-} 1.53 {mu}g/wet g). The mean percentage of M-Hg in the T-Hg found in the liver (13.1 {+-} 10.3) was significantly lower than those in the kidney (58.3 {+-} 15.0) and muscle (78.9 {+-} 8.4). The molar ratio of T-Hg to Se in the liver was effectively 1.0, but those in the kidney and muscle were markedly lower. Conversely, the mean concentration of Cd was markedly higher in the kidney (24.4 {+-} 7.4 {mu}g/wet g) than in the liver (7.24 {+-} 2.08 {mu}g/wet g) and muscle (less than 0.05 {mu}g/wet g). These results suggest that the formation of Hg-Se compounds mainly occurs in the liver after the demethylation of M-Hg, and Cd preferentially accumulates in the kidney of melon-headed whales.

  1. Contamination levels of mercury and cadmium in melon-headed whales (Peponocephala electra) from a mass stranding on the Japanese coast

    International Nuclear Information System (INIS)

    Endo, Tetsuya; Hisamichi, Yohsuke; Kimura, Osamu; Haraguchi, Koichi; Baker, C. Scott

    2008-01-01

    Total mercury (T-Hg), methyl mercury (M-Hg), cadmium (Cd), selenium (Se), zinc (Zn) and copper (Cu) concentrations in the organs of melon-headed whales from a mass stranding on the Japanese coast were analyzed. The mean concentration of T-Hg in the liver (126 ± 97 μg/wet g, n = 13) was markedly higher than those in kidney (6.34 ± 2.36 μg/wet g, n = 12) and muscle (4.90 ± 2.33 μg/wet g, n = 15). In contrast, the mean concentration of M-Hg in the liver (9.08 ± 2.24 μg/wet g) was similar to those in the kidney (3.47 ± 0.91 μg/wet g) and muscle (3.78 ± 1.53 μg/wet g). The mean percentage of M-Hg in the T-Hg found in the liver (13.1 ± 10.3) was significantly lower than those in the kidney (58.3 ± 15.0) and muscle (78.9 ± 8.4). The molar ratio of T-Hg to Se in the liver was effectively 1.0, but those in the kidney and muscle were markedly lower. Conversely, the mean concentration of Cd was markedly higher in the kidney (24.4 ± 7.4 μg/wet g) than in the liver (7.24 ± 2.08 μg/wet g) and muscle (less than 0.05 μg/wet g). These results suggest that the formation of Hg-Se compounds mainly occurs in the liver after the demethylation of M-Hg, and Cd preferentially accumulates in the kidney of melon-headed whales

  2. Effects of warming on uptake and translocation of cadmium (Cd) and copper (Cu) in a contaminated soil-rice system under Free Air Temperature Increase (FATI).

    Science.gov (United States)

    Ge, Li-Qiang; Cang, Long; Liu, Hui; Zhou, Dong-Mei

    2016-07-01

    Global warming has received growing attentions about its potential threats to human in recent, however little is known about its effects on transfer of heavy metals in agro-ecosystem, especially for Cd in rice. Pot experiments were conducted to evaluate Cd/Cu translocation in a contaminated soil-rice system under Free Air Temperature Increase (FATI). The results showed that warming gradually decreased soil porewater pH and increased water-soluble Cd/Cu concentration, reduced formation of iron plaque on root surface, and thus significantly increased total uptake of Cd/Cu by rice. Subsequently, warming significantly promoted Cd translocation from root to shoot, and increased Cd distribution percentage in shoot, while Cu was not significantly affected. Enhanced Cd uptake and translocation synergistically resulted in higher rice grain contamination with increasing concentration from 0.27 to 0.65 and 0.14-0.40 mg kg(-1) for Indica and Japonica rice, respectively. However increase of Cu in brown grain was only attributed to its uptake enhancement under warming. Our study provides a new understanding about the food production insecurity of heavy metal contaminated soil under the future global warming. Copyright © 2016. Published by Elsevier Ltd.

  3. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.

    Science.gov (United States)

    Marques, Ana P G C; Moreira, Helena; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2013-06-01

    Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cadmium and renal cancer

    International Nuclear Information System (INIS)

    Il'yasova, Dora; Schwartz, Gary G.

    2005-01-01

    Background: Rates of renal cancer have increased steadily during the past two decades, and these increases are not explicable solely by advances in imaging modalities. Cadmium, a widespread environmental pollutant, is a carcinogen that accumulates in the kidney cortex and is a cause of end-stage renal disease. Several observations suggest that cadmium may be a cause of renal cancer. Methods: We performed a systematic review of the literature on cadmium and renal cancer using MEDLINE for the years 1966-2003. We reviewed seven epidemiological and eleven clinical studies. Results: Despite different methodologies, three large epidemiologic studies indicate that occupational exposure to cadmium is associated with increased risk renal cancer, with odds ratios varying from 1.2 to 5.0. Six of seven studies that compared the cadmium content of kidneys from patients with kidney cancer to that of patients without kidney cancer found lower concentrations of cadmium in renal cancer tissues. Conclusions: Exposure to cadmium appears to be associated with renal cancer, although this conclusion is tempered by the inability of studies to assess cumulative cadmium exposure from all sources including smoking and diet. The paradoxical findings of lower cadmium content in kidney tissues from patients with renal cancer may be caused by dilution of cadmium in rapidly dividing cells. This and other methodological problems limit the interpretation of studies of cadmium in clinical samples. Whether cadmium is a cause of renal cancer may be answered more definitively by future studies that employ biomarkers of cadmium exposure, such as cadmium levels in blood and urine

  5. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants

    Directory of Open Access Journals (Sweden)

    Zouheir Elouear

    2016-05-01

    Full Text Available In Jebel Ressas mining area (Southern of Tunisia, the dispersion of particles that contain Pb, Zn and Cd results in the contamination of the surrounding agricultural soils. These soils have high concentrations of Pb (970 mg kg−1, Zn (9641 mg kg−1 and Cd (53 mg kg−1. This glasshouse study examined the effect of application of fertilizers, i.e., organic fertilizer as local sheep manure and inorganic fertilizer as potassium chloride (KCl, on the growth, uptake and translocation of Cd, Pb, and Zn of alfalfa (Medicago sativa L. grown on a contaminated soil. Obtained results showed that alfalfa could tolerate high Cd, Pb, and Zn concentrations in soil and had very good growth performance. Regarding to biomass generation it was observed, in every case, that plant growth is not affected in the treated soil compared with blanks sown in an untreated control soil; improvement ranged from 80% for the KCl to 97% for sheep manure. Application of sheep manure increased electrical conductivity and reduced DTPA-extractable metal concentrations in the soils. But KCl fertilizer favored their accumulation in plants. So, KCl could be a useful amendment for phytoextraction of metals by accumulator species, while sheep manure can be very useful for phytostabilisation.

  6. Contamination of the Alluvium of the Nitra River in Slovakia by Cadmium, Mercury and Lead as a Result of Previous Intense Industrial Activity.

    Science.gov (United States)

    Vollmannova, A; Kujovsky, M; Stanovic, R; Arvay, J; Harangozo, L

    2016-10-01

    The Nitra river is one of the most polluted rivers in the Slovak Republic. The aim of the study was to estimate the risk of Cd, Pb and Hg contamination of riverside sediments and alluvial soil in the vicinity of the Nitra river. The pseudototal Cd (all Cd forms except for residual fraction) and total Hg contents in riverside sediments (0.74-1.88 and 0.06-5.44 mg/kg, respectively) exceeded the limits for Cd and Hg in sandy soils (0.4 and 0.15 mg/kg). In three chosen localities in the flood plain of the Nitra river the soil content of mobile Pb forms (0.10-0.32 mg/kg), the pseudototal Cd (0.25-2.52 mg/kg) and total Hg content (0.03-1.6 mg/kg) exceeded the limits for Pb, Cd and Hg in loamy soils (0.1, 0.7 and 0.5 mg/kg, respectively). The obtained results confirmed the risk of Pb, Cd, Hg contamination caused by industrial activity in the vicinity of the Nitra river.

  7. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-05

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. In vitro digestion and DGT techniques for estimating cadmium and lead bioavailability in contaminated soils: Influence of gastric juice pH

    International Nuclear Information System (INIS)

    Pelfrene, Aurelie; Waterlot, Christophe; Douay, Francis

    2011-01-01

    A sensitivity analysis was conducted on an in vitro gastrointestinal digestion test (i) to investigate the influence of a low variation of gastric juice pH on the bioaccessibility of Cd and Pb in smelter-contaminated soils (F B , using the unified bioaccessibility method UBM) and fractions of metals that may be transported across the intestinal epithelium (F A , using the diffusive gradient in thin film technique), and (ii) to provide a better understanding of the significance of pH in health risk assessment through ingestion of soil by children. The risk of metal exposure to children (hazard quotient, HQ) was determined for conditions that represent a worst-case scenario (i.e., ingestion rate of 200 mg day -1 ) using three separate calculations of metal daily intake: estimated daily intake (EDI), bioaccessible EDI (EDI-F B ), and oral bioavailable EDI (EDI-F A ). The increasing pH from 1.2 to 1.7 resulted in: (i) no significant variation in Cd-F B in the gastric phase but a decrease in the gastrointestinal phase; (ii) a decrease in soluble Pb in the gastric phase and a significant variation in Pb-F B in the gastrointestinal phase; (iii) a significant decrease in Cd-F A and no variation in Pb-F A ; (iv) no change in EDI-F B and EDI-F A HQs for Cd; (v) a significant decrease in EDI-F B HQs and no significant variation in EDI-F A HQ for Pb. In the analytical conditions, these results show that risk to children decreases when the bioavailability of Pb in soils is taken into account and that the studied pH values do not affect the EDI-F A HQs. The present results provide evidence that the inclusion of bioavailability analysis during health risk assessment could provide a more realistic estimate of Cd and Pb exposure, and opens a wide field of practical research on this topic (e.g., in contaminated site management). - Highlights: → Sensitivity analysis on an in vitro gastrointestinal digestion test. → Influence of gastric juice pH on metal bioaccessibility

  9. In vitro digestion and DGT techniques for estimating cadmium and lead bioavailability in contaminated soils: Influence of gastric juice pH

    Energy Technology Data Exchange (ETDEWEB)

    Pelfrene, Aurelie, E-mail: aurelie.pelfrene@isa-lille.fr [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geo-Environnement (LGCgE) Lille Nord de France (EA 4515), 48 boulevard Vauban, 59046 Lille cedex (France); Waterlot, Christophe; Douay, Francis [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geo-Environnement (LGCgE) Lille Nord de France (EA 4515), 48 boulevard Vauban, 59046 Lille cedex (France)

    2011-11-01

    A sensitivity analysis was conducted on an in vitro gastrointestinal digestion test (i) to investigate the influence of a low variation of gastric juice pH on the bioaccessibility of Cd and Pb in smelter-contaminated soils (F{sub B}, using the unified bioaccessibility method UBM) and fractions of metals that may be transported across the intestinal epithelium (F{sub A}, using the diffusive gradient in thin film technique), and (ii) to provide a better understanding of the significance of pH in health risk assessment through ingestion of soil by children. The risk of metal exposure to children (hazard quotient, HQ) was determined for conditions that represent a worst-case scenario (i.e., ingestion rate of 200 mg day{sup -1}) using three separate calculations of metal daily intake: estimated daily intake (EDI), bioaccessible EDI (EDI-F{sub B}), and oral bioavailable EDI (EDI-F{sub A}). The increasing pH from 1.2 to 1.7 resulted in: (i) no significant variation in Cd-F{sub B} in the gastric phase but a decrease in the gastrointestinal phase; (ii) a decrease in soluble Pb in the gastric phase and a significant variation in Pb-F{sub B} in the gastrointestinal phase; (iii) a significant decrease in Cd-F{sub A} and no variation in Pb-F{sub A}; (iv) no change in EDI-F{sub B} and EDI-F{sub A} HQs for Cd; (v) a significant decrease in EDI-F{sub B} HQs and no significant variation in EDI-F{sub A} HQ for Pb. In the analytical conditions, these results show that risk to children decreases when the bioavailability of Pb in soils is taken into account and that the studied pH values do not affect the EDI-F{sub A} HQs. The present results provide evidence that the inclusion of bioavailability analysis during health risk assessment could provide a more realistic estimate of Cd and Pb exposure, and opens a wide field of practical research on this topic (e.g., in contaminated site management). - Highlights: {yields} Sensitivity analysis on an in vitro gastrointestinal digestion test

  10. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines.

    Science.gov (United States)

    Xue, Shengguo; Shi, Lizheng; Wu, Chuan; Wu, Hui; Qin, Yanyan; Pan, Weisong; Hartley, William; Cui, Mengqian

    2017-07-01

    A mining district in south China shows significant metal(loid) contamination in paddy fields. In the soils, average Pb, Cd and As concentrations were 460.1, 11.7 and 35.1mgkg -1 respectively, which were higher than the environmental quality standard for agricultural soils in China (GB15618-1995) and UK Clea Soil Guideline Value. The average contents of Pb, Cd and As in rice were 5.24, 1.1 and 0.7mgkg -1 respectively, which were about 25, 4.5 or 2.5 times greater than the limit values of the maximum safe contaminant concentration standard in food of China (GB 2762-2012), and about 25, 10 or 1 times greater than the limit values of FAO/WHO standard. The elevated contents of Pb, Cd and As detected in soils around the factories, indicated that their spatial distribution was influenced by anthropogenic activity, while greater concentrations of Cd in rice appeared in the northwest region of the factories, indicating that the spatial distribution of heavy metals was also affected by natural factors. As human exposure around mining districts is mainly through oral intake of food and dermal contact, the effects of these metals on the viability and MT protein of HepG2 and KERTr cells were investigated. The cell viability decreased with increasing metal concentrations. Co-exposure to heavy metals (Pb+Cd) increased the metals (Pb or Cd)-mediated MT protein induction in both human HepG2 and KERTr cells. Increased levels of MT protein will lead to greater risk of carcinogenic manifestations, and it is likely that chronic exposure to metals may increase the risk to human health. Nevertheless, when co-exposure to two or more metals occur (such as As+Pb), they may have an antagonistic effect thus reducing the toxic effects of each other. Metal contaminations in paddy soils and rice were influenced by anthropogenic activity; metal co-exposure induced MT protein in human cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The effects of low environmental cadmium exposure on bone density

    Energy Technology Data Exchange (ETDEWEB)

    Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland); Jakubowski, M. [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland); Szymczak, W. [Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz (Poland); Insitute of Psychology, University of Lodz (Poland); Janasik, B.; Brodzka, R. [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland)

    2010-04-15

    Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9; 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone

  12. Isolation, identification and cadmium adsorption of a high cadmium ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... 1School of Minerals Processing and Bioengineering, Central South University, Changsha, ... Cadmium is a non-essential ... (1994) reported that cadmium might interact ... uptake of cadmium, lead and mercury (Svecova et al.,.

  13. Distance-dependent varieties of microbial community structure and metabolic functions in the rhizosphere of Sedum alfredii Hance during phytoextraction of a cadmium-contaminated soil.

    Science.gov (United States)

    Yang, Wenhao; Zhang, Taoxiang; Lin, Sen; Ni, Wuzhong

    2017-06-01

    The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial community composition and metabolic characteristics in the rhizospheric soil of hyperaccumulator during phytoextraction are poorly understood. A 12-month phytoextraction experiment with Sedum alfredii in a Cd-contaminated soil was conducted. A pre-stratified rhizobox was used for separating sub-layer rhizospheric (0-2, 2-4, 4-6, 6-8, 8-10 mm from the root mat)/bulk soils. Soil microbial structure and function were analyzed by phospholipid fatty acid (PLFA) and MicroResp™ methods. The concentrations of total and specified PLFA biomarkers and the utilization rates for the 14 substrates (organic carbon) in the 0-2-mm sub-layer rhizospheric soil were significantly increased, as well as decreased with the increase in the distance from the root mat. Microbial structure measured by the ratios of different groups of PLFAs such as fungal/bacterial, monounsaturated/saturated, ratios of Gram-positive to Gram-negative (GP/GN) bacterial, and cyclopropyl/monoenoic precursors and 19:0 cyclo/18:1ω7c were significantly changed in the 0-2-mm soil. The PLFA contents and substrate utilization rates were negatively correlated with pH and total, acid-soluble, and reducible fractions of Cd, while positively correlated with labile carbon. The dynamics of microbial community were likely due to root exudates and Cd uptake by S. alfredii. This study revealed the stimulations and gradient changes of rhizosphere microbial community through phytoextraction, as reduced Cd concentration, pH, and increased labile carbons are due to the microbial community responses.

  14. Mercury, Lead, Cadmium, Cobalt, Arsenic and Selenium in the Blood of Semipalmated Sandpipers (Calidris pusilla from Suriname, South America: Age-related Differences in Wintering Site and Comparisons with a Stopover Site in New Jersey, USA

    Directory of Open Access Journals (Sweden)

    Joanna Burger

    2018-05-01

    Full Text Available It is essential to understand contaminant exposure and to compare levels of contaminants in organisms at different ages to determine if there is bioaccumulation, and to compare levels encountered in different geographical areas. In this paper, we report levels of mercury, lead, cadmium, cobalt, arsenic and selenium in the blood of semipalmated sandpipers (Calidris pusilla wintering in Suriname as a function of age, and compare them to blood levels in northbound migrants at a stopover in Delaware Bay, New Jersey. We found (1 young birds had higher levels of cadmium, cobalt, and lead than adults (after second year birds; (2 there were no age-related differences for arsenic, mercury and selenium; (3 only four of the possible 16 inter-metal correlations were significant, at the 0.05 level; (4 the highest correlation was between cadmium and lead (Kendall tau = 0.37; and (5 the adult sandpipers had significantly higher levels of cadmium, mercury and selenium in Suriname than in New Jersey, while the New Jersey birds had significantly higher levels of arsenic. Suriname samples were obtained in April, after both age classes had spent the winter in Suriname, which suggests that sandpipers are accumulating higher levels of trace elements in Suriname than in Delaware Bay. The levels of selenium may be within a range of concern for adverse effects, but little is known about adverse effect levels of trace elements in the blood of wild birds.

  15. Lead and cadmium in food

    International Nuclear Information System (INIS)

    Gliesmann, S.; Kruse, H.; Kriews, M.; Mangels, H.

    1992-08-01

    The amounts of lead and cadmium produced and processed in these days are considerable. As a result, our environment is increasingly polluted by heavy metals and industrial installations, motor vehicles or incinerating plants appear to be among the main culprits here. Air and water are the media permitting the entry of heavy metals into our natural environment where they accumulate in the soil and then gradually migrate into the plants. Their further transport in the food constitutes the third step in the environmental spread of heavy metals. The consumption of muscle and organ meats, of vegetables, fruits, canned food and drinking water is unavoidably associated with some ingestion of lead and cadmium. The degree to which they are taken up and stored in different tissues is determined by absorption properties and the nutritional state of the organism. Cadmium tends to accumulate in the kidneys, lead is mainly stored in the bones. A continuously increasing uptake finally results in health injuries that range from unspecific complaints to damaged kidneys or bones and disorders of liver function. Children and elderly people are at a particular risk here. The level of food contamination is such that screening for heavy metals must be rigorously carried out once appropriate legal thresholds have been set, which ought to be based on proven detrimental effects of lead and cadmium on our health and also take account of infants and children or any other risk groups, where particular caution must be exercised. It should be pointed out that such thresholds have so far not been determined. (orig./MG) [de

  16. Field Evidence of Cadmium Phytoavailability Decreased Effectively by Rape Straw and/or Red Mud with Zinc Sulphate in a Cd-Contaminated Calcareous Soil

    Science.gov (United States)

    Li, Bo; Yang, Junxing; Wei, Dongpu; Chen, Shibao; Li, Jumei; Ma, Yibing

    2014-01-01

    To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg−1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils. PMID:25303439

  17. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba).

    Science.gov (United States)

    Kusznierewicz, Barbara; Bączek-Kwinta, Renata; Bartoszek, Agnieszka; Piekarska, Anna; Huk, Anna; Manikowska, Anna; Antonkiewicz, Jacek; Namieśnik, Jacek; Konieczka, Piotr

    2012-11-01

    The relationship between the ability to accumulate heavy metals (represented by Cd and Zn) and to synthesize bioactive compounds (represented by glucosinolates [GLS]) was investigated in two cabbage cultivars. Plants were grown in the greenhouse of a phytotron under controlled conditions in soils spiked with two different Zn or Cd concentrations. The measurements of Cd and Zn contents in soil and cabbage (leaf) samples were performed by atomic absorption spectroscopy, whereas GLS levels in cabbage were determined by high-performance liquid chromatography. The ranges of metal contents in soil were 80 to 450 mg/kg dry weight for Zn and 0.3 to 30 mg/kg dry weight for Cd, whereas the levels of accumulated Zn and Cd in cabbage amounted to 15 to 130 and 0.02 to 3 mg/kg dry weight, respectively. After initial symptoms of toxicity, during a later stage of growth, the plants exhibited very good tolerance to both metals. Enhanced biosynthesis of GLS was observed in a dose-dependent manner following exposure to the heavy metals. The GLS content in Zn-exposed cabbage rose from 3.2 to 12 µmol/g dry weight, and the corresponding values for Cd-treated plants were 3.5 to 10 µmol/g dry weight. Thus, the increased soil contamination by metals caused greater accumulation in cabbage, as well as stimulation of GLS biosynthesis. The results obtained point to the high phytoremediation and biofumigation potential of white cabbage. Copyright © 2012 SETAC.

  18. Field evidence of cadmium phytoavailability decreased effectively by rape straw and/or red mud with zinc sulphate in a Cd-contaminated calcareous soil.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg-1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils.

  19. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils.

    Science.gov (United States)

    Lan, Jichuan; Zhang, Shirong; Lin, Haichuan; Li, Ting; Xu, Xiaoxun; Li, Yun; Jia, Yongxia; Gong, Guoshu

    2013-05-01

    Chelant assisted phytoextraction has been proposed to enhance the efficiency of remediation. This study evaluated the effects of biodegradable ethylene diamine tetraacetate (EDDS), nitrilotriacetic (NTA) and anionic polyacrylamide (APAM) on the tolerance and uptake of Siegesbeckia orientalis L. at 10 and 100 mg kg(-1) Cd-contaminated soils. On the 80th and 90th days of transplanting, pots were treated with EDDS and NTA at 0 (control), 1 and 2 mmol kg(-1) soils, and APAM at 0 (control), 0.07 and 0.14 g kg(-1). Generally, the root and shoot biomass of S. orientalis in all treatments reduced not significantly compared with the control, and the activities of peroxidase and catalase in leaves generally increased by the application of chelants (P<0.05). The concentrations of Cd in the shoots were increased significantly by addition of all chelants. As a result, the Cd accumulation of S. orientalis under treatments with higher dosages of the three chelants on the 80th day were 1.40-2.10-fold and 1.12-1.25-fold compared to control at 10 and 100 mg kg(-1) Cd, respectively. Under the addition of 2 mmol kg(-1) NTA on the 80th day, the highest metal extraction ratio reached 1.2% and 0.4% at 10 and 100 mg kg(-1) Cd soils, respectively. Therefore, the applications of EDDS, NTA and APAM may provide more efficient choices in chemical-enhanced phytoextraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Gravimetric determination of cadmium with o-phenanthroline and iodide

    International Nuclear Information System (INIS)

    Yoshida, Hitoshi; Mizuno, Kazunori; Taga, Mitsuhiko; Hikime, Seiichiro

    1976-01-01

    Cadmium forms insoluble mixed ligand complex with o-phenanthroline and iodide ions. By using the complex a new gravimetric method for the determination of cadmium was investigated. The recommended analytical procedure is as follows: Adjust pH value of a solution containing 5 to 45 mg cadmium to 4 with 3 M acetic acid-sodium acetate buffer solution. Add over threefold moles of potassium iodide to the solution and heat to just before boiling. To the solution add 0.1% ascorbic acid solution and then 0.1 M o-phenanthroline solution drop by drop in excess with stirring, and cool the mixture to room temperature. Filter the precipitates and wash first with 0.01% potassium iodide solution and then with water. Dry the precipitates at 110 0 C for two hours and weigh as Cd(o-phen) 2 I 2 (I). The gravimetric factor of the complex for cadmium is 0.1547. Chemical composition of the precipitate is variable when o-phenanthroline is added less than twofold moles to cadmium. Adding the o-phenanthroline solution 2.4-fold moles against cadmium, the ternary complex (I) precipitates quantitatively. Though a large excess of iodide ion in the solution contaminated the precipitate, the contamination was avoided when precipitation was carryed out at high temperature and in the presence of ascorbic acid. By the presented procedure 5 to 45 mg of cadmium are determined with a standard deviation of 0 C. (JPN)

  1. Phytoremediation of cadmium polluted soils using soybean varieties

    OpenAIRE

    Mihajlov, Ljupco; Balabanova, Biljana; Zajkova-Paneva, Vesna; Wei, Shuhe

    2016-01-01

    Industrialization and extraction of natural resources have resulted in large scale environmental contamination and pollution. Soil pollution with cadmium is due to strengthened industrial development, especially in the areas of drilling, exploitation and processing of mineral raw materials. On the territory of the Republic of Macedonia there are several areas with significant higher content of cadmium in the soil, including the vicinity of the mine lead and zinc “Zletovo” near the...

  2. Wild harvest

    NARCIS (Netherlands)

    Cruz-Garcia, G.S.; Struik, P.C.; Johnson, D.E.

    2016-01-01

    Rice fields provide not only a staple food but are also bio-diverse and multi-functional ecosystems. Wild food plants are important elements of biodiversity in rice fields and are critical components to the subsistence of poor farmers. The spatial and seasonal distribution of wild food plants

  3. Effects of Aluminium Sulfate on Cadmium Accumulation in Rice

    International Nuclear Information System (INIS)

    Khamvarn, Vararas; Boontanon, Narin; Prapagdee, Benjaphorn; Kumsopa, Acharaporn; Boonsirichai, Kanokporn

    2011-06-01

    Full text: Cadmium accumulation in Pathum Thani 1 and Suphan Buri 60 rice cultivars was investigated upon treatment with aluminium sulfate as a precipitant. Rice was grown hydroponically in a medium containing 4 ppm cadmium nitrate with or without 4 ppm aluminium sulfate. Root, stem with leaves and grain samples were collected and analyzed for cadmium content using atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy. Without the addition of aluminium sulfate, Pathum Thani 1 and Suphan Buri 60 accumulated 24.71∫ 3.14 ppm and 34.43 ∫ 4.51 ppm (dry weight of whole plant) of cadmium, respectively. With aluminium sulfate, cadmium accumulation increased to 40.66 ∫ 2.47 ppm and 62.94 ∫ 10.69 ppm, respectively. The addition of aluminium sulfate to the planting medium did not reduce cadmium accumulation but caused the rice to accumulate more cadmium especially in the shoots and grains. This observation might serve as the basis for future research on the management of agricultural areas that are contaminated with cadmium and aluminium

  4. Zinc and cadmium monosalicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC 6 H 4 COOH (H 2 Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC 6 H 4 COO) and products of their thepmal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure

  5. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA?

    Science.gov (United States)

    Goodbred, Steven L.; Patino, Reynaldo; Torres, Leticia; Echols, Kathy R.; Jenkins, Jill A.; Rosen, Michael R.; Orsak, Erik

    2015-01-01

    Male Largemouth Bass were sampled from two locations in Lake Mead (USA), a site influenced by treated municipal wastewater effluent and urban runoff (Las Vegas Bay), and a reference site (Overton Arm). Samples were collected in summer (July '07) and spring (March '08) to assess general health, endocrine and reproductive biomarkers, and compare contaminant body burdens by analyzing 252 organic chemicals. Sperm count and motility were measured in spring. Contaminants were detected at much higher frequencies and concentrations in fish from Las Vegas Bay than Overton Arm. Those with the highest concentrations included PCBs, DDTs, PBDEs, galaxolide, and methyl triclosan. Fish from Las Vegas Bay also had higher Fulton condition factor, hepatosomatic index, and hematocrit, and lower plasma 11-ketotestosterone concentration (KT). Gonadosomatic index (GSI) and sperm motility did not differ between sites, but sperm count was lower by nearly 50% in fish from Las Vegas Bay. A positive association between KT and GSI was identified, but this association was nonlinear. On average, maximal GSI was reached at sub-maximal KT concentrations. In conclusion, the higher concentration of contaminant body burdens coupled with reduced levels of KT and sperm count in fish from Las Vegas Bay suggest that male reproductive condition was influenced by contaminant exposures. Also, the nonlinear KT-GSI association provided a framework to understand why GSI was similar between male bass from both sites despite their large difference in KT, and also suggested the existence of post-gonadal growth functions of KT at high concentrations.

  6. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA?

    Science.gov (United States)

    Goodbred, Steven L; Patiño, Reynaldo; Torres, Leticia; Echols, Kathy R; Jenkins, Jill A; Rosen, Michael R; Orsak, Erik

    2015-08-01

    Male Largemouth Bass were sampled from two locations in Lake Mead (USA), a site influenced by treated municipal wastewater effluent and urban runoff (Las Vegas Bay), and a reference site (Overton Arm). Samples were collected in summer (July '07) and spring (March '08) to assess general health, endocrine and reproductive biomarkers, and compare contaminant body burdens by analyzing 252 organic chemicals. Sperm count and motility were measured in spring. Contaminants were detected at much higher frequencies and concentrations in fish from Las Vegas Bay than Overton Arm. Those with the highest concentrations included PCBs, DDTs, PBDEs, galaxolide, and methyl triclosan. Fish from Las Vegas Bay also had higher Fulton condition factor, hepatosomatic index, and hematocrit, and lower plasma 11-ketotestosterone concentration (KT). Gonadosomatic index (GSI) and sperm motility did not differ between sites, but sperm count was lower by nearly 50% in fish from Las Vegas Bay. A positive association between KT and GSI was identified, but this association was nonlinear. On average, maximal GSI was reached at sub-maximal KT concentrations. In conclusion, the higher concentration of contaminant body burdens coupled with reduced levels of KT and sperm count in fish from Las Vegas Bay suggest that male reproductive condition was influenced by contaminant exposures. Also, the nonlinear KT-GSI association provided a framework to understand why GSI was similar between male bass from both sites despite their large difference in KT, and also suggested the existence of post-gonadal growth functions of KT at high concentrations. Published by Elsevier Inc.

  7. Investigating the ability of Pseudomonas fluorescens UW4 to reduce cadmium stress in Lactuca sativa via an intervention in the ethylene biosynthetic pathway.

    Science.gov (United States)

    Albano, Lucas J; Macfie, Sheila M

    2016-12-01

    A typical plant response to any biotic or abiotic stress, including cadmium (Cd), involves increased ethylene synthesis, which causes senescence of the affected plant part. Stressed plants can experience reduced ethylene and improved growth if they are inoculated with bacteria that have the enzyme ACC deaminase, which metabolizes the ethylene precursor ACC (1-aminocyclopropane-1-carboxylate). We investigated whether one such bacterium, Pseudomonas fluorescens UW4, reduces the production of ethylene and improves the growth of lettuce (Lactuca sativa) sown in Cd-contaminated potting material (PRO-MIX® BX). Plants were inoculated with the wild-type P. fluorescens UW4 or a mutant strain that cannot produce ACC deaminase. Cadmium-treated plants contained up to 50 times more Cd than did control plants. In noninoculated plants, Cd induced a 5-fold increase in ethylene concentration. The wild-type bacterium prevented Cd-induced reductions in root biomass but there was no relationship between Cd treatment and ethylene production in inoculated plants. In contrast, when the concentration of ethylene was plotted against the extent of bacterial colonization of the roots, increased colonization with wild-type P. fluorescens UW4 was associated with 20% less ethylene production. Ours is the first study to show that the protective effect of this bacterium is proportional to the quantity of bacteria on the root surface.

  8. Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by Autochthonous Willow (Salix x aureo-pendula CL 'J1011') in the lower reaches of the Yangtze River

    International Nuclear Information System (INIS)

    Li Jiahua; Sun Yuanyuan; Yin Ying; Ji Rong; Wu Jichun; Wang Xiaorong; Guo Hongyan

    2010-01-01

    In order to explore a practical approach to the remediation of the cadmium (Cd)-contaminated soil in the lower reaches of the Yangtze River, we evaluated the effects of a local willow (Salix x aureo-pendula CL 'J1011') of absorbing, accumulating, and translocating Cd; and assessed the potential of chelator ethylenediaminetetraacetic acid (EDTA) in combination with ethyl lactate for enhancing the efficiency of the willow in removing Cd in two water-culture growth chamber trials and a field one. The willow showed a high tolerance to Cd in growth chamber trial 1 where the Cd concentration in the medium reached up to 25 mg L -1 medium, and the bioaccumulation factors (BAFs) of the shoots for Cd rose from 3.8 to 7.4 as the Cd concentration in the medium was elevated from 5 to 25 mg L -1 medium. In growth chamber trial 2, the average Cd removal rates in two treatments with EDTA and ethyl lactate (molar ratios of EDTA to ethyl lactate = 68/39 and 53.5/53.5, respectively) reached 0.71 mg d -1 pot -1 for the duration of Day 5-8 and 0.59 mg d -1 pot -1 for that of Day 8-11, which were 5- and 4-fold of their counterparts in the control, respectively. In the field trial, for the remediational duration of 45 days, three treatments-willow alone, willow combined with EDTA, and willow combined with EDTA and ethyl lactate-led to decreases in the Cd concentration in soil by 5%, 20%, and 29%, respectively; increases in that in the leaves by 14.6%, 56.7%, and 146.5%, respectively; and increases in that in the stems by 15.6%, 41.2%, and 87.4%, respectively, compared to their counterparts on Day 0. These results indicate that EDTA combined with ethyl lactate significantly enhanced the efficiency of willow in removing Cd from the soil. Therefore, a phytoextration system consisting of the autochthonous willow, EDTA, and ethyl lactate has high potential for the remediation of the Cd-polluted soil in the lower reaches of the Yangtze River.

  9. Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by Autochthonous Willow (Salix x aureo-pendula CL 'J1011') in the lower reaches of the Yangtze River

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiahua [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Sun Yuanyuan [State Key Laboratory of Pollution Control and Resource Reuse, Department of Hydrosciences, Nanjing University, Nanjing 210093 (China); Yin Ying; Ji Rong [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Wu Jichun [State Key Laboratory of Pollution Control and Resource Reuse, Department of Hydrosciences, Nanjing University, Nanjing 210093 (China); Wang Xiaorong [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Guo Hongyan, E-mail: hyguo@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2010-09-15

    In order to explore a practical approach to the remediation of the cadmium (Cd)-contaminated soil in the lower reaches of the Yangtze River, we evaluated the effects of a local willow (Salix x aureo-pendula CL 'J1011') of absorbing, accumulating, and translocating Cd; and assessed the potential of chelator ethylenediaminetetraacetic acid (EDTA) in combination with ethyl lactate for enhancing the efficiency of the willow in removing Cd in two water-culture growth chamber trials and a field one. The willow showed a high tolerance to Cd in growth chamber trial 1 where the Cd concentration in the medium reached up to 25 mg L{sup -1} medium, and the bioaccumulation factors (BAFs) of the shoots for Cd rose from 3.8 to 7.4 as the Cd concentration in the medium was elevated from 5 to 25 mg L{sup -1} medium. In growth chamber trial 2, the average Cd removal rates in two treatments with EDTA and ethyl lactate (molar ratios of EDTA to ethyl lactate = 68/39 and 53.5/53.5, respectively) reached 0.71 mg d{sup -1}pot{sup -1} for the duration of Day 5-8 and 0.59 mg d{sup -1}pot{sup -1} for that of Day 8-11, which were 5- and 4-fold of their counterparts in the control, respectively. In the field trial, for the remediational duration of 45 days, three treatments-willow alone, willow combined with EDTA, and willow combined with EDTA and ethyl lactate-led to decreases in the Cd concentration in soil by 5%, 20%, and 29%, respectively; increases in that in the leaves by 14.6%, 56.7%, and 146.5%, respectively; and increases in that in the stems by 15.6%, 41.2%, and 87.4%, respectively, compared to their counterparts on Day 0. These results indicate that EDTA combined with ethyl lactate significantly enhanced the efficiency of willow in removing Cd from the soil. Therefore, a phytoextration system consisting of the autochthonous willow, EDTA, and ethyl lactate has high potential for the remediation of the Cd-polluted soil in the lower reaches of the Yangtze River.

  10. Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by autochthonous willow (Salix x aureo-pendula CL 'J1011') in the lower reaches of the Yangtze River.

    Science.gov (United States)

    Li, Jiahua; Sun, Yuanyuan; Yin, Ying; Ji, Rong; Wu, Jichun; Wang, Xiaorong; Guo, Hongyan

    2010-09-15

    In order to explore a practical approach to the remediation of the cadmium (Cd)-contaminated soil in the lower reaches of the Yangtze River, we evaluated the effects of a local willow (Salix x aureo-pendula CL 'J1011') of absorbing, accumulating, and translocating Cd; and assessed the potential of chelator ethylenediaminetetraacetic acid (EDTA) in combination with ethyl lactate for enhancing the efficiency of the willow in removing Cd in two water-culture growth chamber trials and a field one. The willow showed a high tolerance to Cd in growth chamber trial 1 where the Cd concentration in the medium reached up to 25 mg L(-1) medium, and the bioaccumulation factors (BAFs) of the shoots for Cd rose from 3.8 to 7.4 as the Cd concentration in the medium was elevated from 5 to 25 mg L(-1) medium. In growth chamber trial 2, the average Cd removal rates in two treatments with EDTA and ethyl lactate (molar ratios of EDTA to ethyl lactate=68/39 and 53.5/53.5, respectively) reached 0.71 mg d(-1) pot(-1) for the duration of Day 5-8 and 0.59 mg d(-1) pot(-1) for that of Day 8-11, which were 5- and 4-fold of their counterparts in the control, respectively. In the field trial, for the remediational duration of 45 days, three treatments-willow alone, willow combined with EDTA, and willow combined with EDTA and ethyl lactate-led to decreases in the Cd concentration in soil by 5%, 20%, and 29%, respectively; increases in that in the leaves by 14.6%, 56.7%, and 146.5%, respectively; and increases in that in the stems by 15.6%, 41.2%, and 87.4%, respectively, compared to their counterparts on Day 0. These results indicate that EDTA combined with ethyl lactate significantly enhanced the efficiency of willow in removing Cd from the soil. Therefore, a phytoextration system consisting of the autochthonous willow, EDTA, and ethyl lactate has high potential for the remediation of the Cd-polluted soil in the lower reaches of the Yangtze River. Copyright 2010 Elsevier B.V. All rights

  11. Renal and blood pressure effects from environmental cadmium exposure in Thai children

    Energy Technology Data Exchange (ETDEWEB)

    Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Mahasakpan, Pranee [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Jeekeeree, Wanpen [Department of Medical Technology, Mae Sot General Hospital, Tak 63110 (Thailand); Funkhiew, Thippawan [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Sanjum, Rungaroon; Apiwatpaiboon, Thitikarn [Department of Medical Technology, Mae Sot General Hospital, Tak 63110 (Thailand); Phopueng, Ittipol [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand)

    2015-01-15

    Very few studies have shown renal and blood pressure effects from environmental cadmium exposure in children. This population study examined associations between urinary cadmium excretion, a good biomarker of long-term cadmium exposure, and renal dysfunctions and blood pressure in environmentally exposed Thai children. Renal functions including urinary excretion of β{sub 2}-microglobulin, calcium (early renal effects), and total protein (late renal effect), and blood pressure were measured in 594 primary school children. Of the children studied, 19.0% had urinary cadmium ≥1 μg/g creatinine. The prevalence of urinary cadmium ≥1 μg/g creatinine was significantly higher in girls and in those consuming rice grown in cadmium-contaminated areas. The geometric mean levels of urinary β{sub 2}-microglobulin, calcium, and total protein significantly increased with increasing tertiles of urinary cadmium. The analysis did not show increased blood pressure with increasing tertiles of urinary cadmium. After adjusting for age, sex, and blood lead levels, the analysis showed significant positive associations between urinary cadmium and urinary β{sub 2}-microglobulin and urinary calcium, but not urinary total protein nor blood pressure. Our findings provide evidence that environmental cadmium exposure can affect renal functions in children. A follow-up study is essential to assess the clinical significance and progress of renal effects in these children. - Highlights: • Few studies show renal effects from environmental cadmium exposure in children. • We report renal and blood pressure effects from cadmium exposure in Thai children. • Urinary β{sub 2}-microglobulin and calcium increased with increasing urinary cadmium. • The study found no association between urinary cadmium levels and blood pressure. • Environmental cadmium exposure can affect renal functions in children.

  12. Renal and blood pressure effects from environmental cadmium exposure in Thai children

    International Nuclear Information System (INIS)

    Swaddiwudhipong, Witaya; Mahasakpan, Pranee; Jeekeeree, Wanpen; Funkhiew, Thippawan; Sanjum, Rungaroon; Apiwatpaiboon, Thitikarn; Phopueng, Ittipol

    2015-01-01

    Very few studies have shown renal and blood pressure effects from environmental cadmium exposure in children. This population study examined associations between urinary cadmium excretion, a good biomarker of long-term cadmium exposure, and renal dysfunctions and blood pressure in environmentally exposed Thai children. Renal functions including urinary excretion of β 2 -microglobulin, calcium (early renal effects), and total protein (late renal effect), and blood pressure were measured in 594 primary school children. Of the children studied, 19.0% had urinary cadmium ≥1 μg/g creatinine. The prevalence of urinary cadmium ≥1 μg/g creatinine was significantly higher in girls and in those consuming rice grown in cadmium-contaminated areas. The geometric mean levels of urinary β 2 -microglobulin, calcium, and total protein significantly increased with increasing tertiles of urinary cadmium. The analysis did not show increased blood pressure with increasing tertiles of urinary cadmium. After adjusting for age, sex, and blood lead levels, the analysis showed significant positive associations between urinary cadmium and urinary β 2 -microglobulin and urinary calcium, but not urinary total protein nor blood pressure. Our findings provide evidence that environmental cadmium exposure can affect renal functions in children. A follow-up study is essential to assess the clinical significance and progress of renal effects in these children. - Highlights: • Few studies show renal effects from environmental cadmium exposure in children. • We report renal and blood pressure effects from cadmium exposure in Thai children. • Urinary β 2 -microglobulin and calcium increased with increasing urinary cadmium. • The study found no association between urinary cadmium levels and blood pressure. • Environmental cadmium exposure can affect renal functions in children

  13. An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China.

    Science.gov (United States)

    Zhang, Weiwei; Liu, Yungang; Liu, Yufei; Liang, Boheng; Zhou, Hongwei; Li, Yingyue; Zhang, Yuhua; Huang, Jie; Yu, Chao; Chen, Kuncai

    2018-03-20

    Cadmium and its compounds are human carcinogens with severe organ toxicity, and their contamination of agricultural soil in China has been frequently reported; however, the dietary exposure to cadmium in residents and the relevant health risk have seldom been reported. In this study, the concentration of cadmium in various types of food collected from 2013 to 2015 were analyzed using graphite furnace atomic absorption spectrometry, and the dietary exposure to cadmium assessed based on a dietary survey in 2976 Guangzhou residents. In total, 3074 out of 4039 food samples had cadmium levels above the limit of detection. The mean ± standard deviation (50th, 95th percentile) cadmium content in all samples was 159.0 ± 112.7 (8.6, 392.4) μg/kg, with levels ranging from 1.0 to 7830 μg/kg. Using the mean cadmium concentrations, the average monthly dietary exposure of Guangzhou residents to cadmium was 14.4 (μg/kg body weight (BW), accounting for 57.6% of the provisional tolerable monthly intake (PTMI). Rice, laver, vegetables, and live aquatic products were the main sources of cadmium intake, on average accounting for 89% of the total value. The dietary cadmium exposure in high consumers (95th percentile food consumption) was 41.0 μg/kg·BW/month, accounting for 163% of the PTMI. Additionally, dietary cadmium exposure at mean consumption but high cadmium food concentration (95th percentile) was 32.3 μg/kg·BW/month, corresponding to 129% of the PTMI. The level of dietary exposure to cadmium in most Guangzhou residents was within the safety limit, thus increased health risk from dietary cadmium exposure is low at present. However, continued efforts by local governments to monitor the levels of cadmium in the four main food categories contributing to exposure are necessary.

  14. An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2018-03-01

    Full Text Available Cadmium and its compounds are human carcinogens with severe organ toxicity, and their contamination of agricultural soil in China has been frequently reported; however, the dietary exposure to cadmium in residents and the relevant health risk have seldom been reported. In this study, the concentration of cadmium in various types of food collected from 2013 to 2015 were analyzed using graphite furnace atomic absorption spectrometry, and the dietary exposure to cadmium assessed based on a dietary survey in 2976 Guangzhou residents. In total, 3074 out of 4039 food samples had cadmium levels above the limit of detection. The mean ± standard deviation (50th, 95th percentile cadmium content in all samples was 159.0 ± 112.7 (8.6, 392.4 μg/kg, with levels ranging from 1.0 to 7830 μg/kg. Using the mean cadmium concentrations, the average monthly dietary exposure of Guangzhou residents to cadmium was 14.4 (μg/kg body weight (BW, accounting for 57.6% of the provisional tolerable monthly intake (PTMI. Rice, laver, vegetables, and live aquatic products were the main sources of cadmium intake, on average accounting for 89% of the total value. The dietary cadmium exposure in high consumers (95th percentile food consumption was 41.0 μg/kg·BW/month, accounting for 163% of the PTMI. Additionally, dietary cadmium exposure at mean consumption but high cadmium food concentration (95th percentile was 32.3 μg/kg·BW/month, corresponding to 129% of the PTMI. The level of dietary exposure to cadmium in most Guangzhou residents was within the safety limit, thus increased health risk from dietary cadmium exposure is low at present. However, continued efforts by local governments to monitor the levels of cadmium in the four main food categories contributing to exposure are necessary.

  15. Extensive Variation in Cadmium Tolerance and Accumulation among Populations of Chamaecrista fasciculata

    Science.gov (United States)

    Henson, Tessa M.; Cory, Wendy; Rutter, Matthew T.

    2013-01-01

    Plant populations may vary substantially in their tolerance for and accumulation of heavy metals, and assessment of this variability is important when selecting species to use in restoration or phytoremediation projects. We examined the population variation in cadmium tolerance and accumulation in a leguminous pioneer species native to the eastern United States, the partridge pea (Chamaecrista fasciculata). We assayed growth, reproduction and patterns of cadmium accumulation in six populations of C. fasciculata grown on a range of cadmium-contaminated soils. In general, C. fasciculata exhibited tolerance in low to moderate soil cadmium concentrations. Both tolerance and accumulation patterns varied across populations. C. fasciculata exhibited many characteristics of a hyperaccumulator species, with high cadmium uptake in shoots and roots. However, cadmium was excluded from extrafloral nectar. As a legume with tolerance for moderate cadmium contamination, C. fasciculata has potential for phytoremediation. However, our findings also indicate the importance of considering the effects of genetic variation on plant performance when screening plant populations for utilization in remediation and restoration activities. Also, there is potential for cadmium contamination to affect other species through contamination of leaves, fruits, flowers, pollen and root nodules. PMID:23667586

  16. CADMIUM SOLUBILITY IN PADDY SOILS: EFFECTS OF SOIL OXIDATION, METAL SULFIDES AND COMPETITIVE IONS.

    Science.gov (United States)

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) an...

  17. Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculata.

    Directory of Open Access Journals (Sweden)

    Tessa M Henson

    Full Text Available Plant populations may vary substantially in their tolerance for and accumulation of heavy metals, and assessment of this variability is important when selecting species to use in restoration or phytoremediation projects. We examined the population variation in cadmium tolerance and accumulation in a leguminous pioneer species native to the eastern United States, the partridge pea (Chamaecrista fasciculata. We assayed growth, reproduction and patterns of cadmium accumulation in six populations of C. fasciculata grown on a range of cadmium-contaminated soils. In general, C. fasciculata exhibited tolerance in low to moderate soil cadmium concentrations. Both tolerance and accumulation patterns varied across populations. C. fasciculata exhibited many characteristics of a hyperaccumulator species, with high cadmium uptake in shoots and roots. However, cadmium was excluded from extrafloral nectar. As a legume with tolerance for moderate cadmium contamination, C. fasciculata has potential for phytoremediation. However, our findings also indicate the importance of considering the effects of genetic variation on plant performance when screening plant populations for utilization in remediation and restoration activities. Also, there is potential for cadmium contamination to affect other species through contamination of leaves, fruits, flowers, pollen and root nodules.

  18. Determination of cadmium selenide nonstoichiometry

    International Nuclear Information System (INIS)

    Brezhnev, V.Yu.; Kharif, Ya.L.; Kovtunenko, P.V.

    1986-01-01

    Physicochemical method of determination of cadmium selenide nonstoichiometry is developed. The method nature consists in the fact, that under definite conditions dissolved cadmium is extracted from crystals to a vapor phase and then is determined in it using the photocolorimetric method. Cadmium solubility in CdSe crystal is calculated from known CdSe mass and amount of separated cadmium. The lower boundary of determined contents constitutes 1x10 -5 % mol at sample of cadmium selenide 10 g

  19. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  20. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  1. Cadmium and zinc accumulation in soybean: A threat to food safety?

    International Nuclear Information System (INIS)

    Shute, Tracy; Macfie, Sheila M.

    2006-01-01

    A greenhouse study was conducted to quantify cadmium and zinc accumulated by soybean (Glycine max (L.) Merr.) when the metals were supplied separately and together. The highest dose of cadmium (100 mg/kg) reduced plant height and dry weight (down to 40% and 34% of control, respectively); the highest dose of zinc (2000 mg/kg) reduced plant height to 55% of control and dry weight to 70% of control. With both metals present, the plants were approximately the same size as those treated with cadmium only. The concentration of cadmium in the roots was unaffected by zinc. In other tissues, the effect of zinc on the accumulation of cadmium depended on the doses provided. At low doses, the addition of zinc reduced the concentration of cadmium in aboveground tissues to 40-50% of that found in plants exposed to cadmium only. However, when applied in high doses, the presence of zinc in cadmium-contaminated soils increased the uptake and accumulation of cadmium in aboveground tissues by up to 42%. In contrast, at high doses, the presence of cadmium in zinc-contaminated soil resulted in approximately 35% lower concentrations of zinc in all tissues. At a lower dose, cadmium had no effect on concentration of zinc in the plant tissues. The effects of high doses of one metal on the uptake of the other metal can be partially explained by the effects of one metal on the bioavailability of the other metal. In soils to which only one metal was added, bioavailable cadmium was 70-80% of the total cadmium, and bioavailable zinc was 50-70% of the total zinc. When both metals were added to the soil, 80-100% of the cadmium and 46-60% of the zinc were bioavailable. Concentrations of both metals were highest in root tissues (10-fold higher for cadmium, and up to 2-fold higher for zinc). Although relatively little cadmium was translocated to pods and seeds, the seeds of all plants (including those from control and zinc-treated plants) had concentrations of cadmium 3-4 times above the limit of 0

  2. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2007-01-01

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems

  3. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems.

  4. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Lundebye, Anne-Katrine; Lock, Erik-Jan; Rasinger, Josef D; Nøstbakken, Ole Jakob; Hannisdal, Rita; Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S; Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin

    2017-05-01

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200g portion per week contributing 3.2g or 2.8g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250mg/day or 1.75g/week). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Calcium enhances cadmium tolerance and decreases cadmium ...

    African Journals Online (AJOL)

    Yomi

    2012-04-26

    Apr 26, 2012 ... concentrations alleviated the toxic effect of cadmium on the growth and water status of lettuce plants. The three lettuce varieties ... electroplating, in batteries, in electrical conductors, in the manufacture of alloys ..... Handbook on the Toxicology of Metals, Third edition, Salt Lake City, UT: Acad. Press. Österås ...

  6. Accumulation and distribution of 137Cs and 90Sr in the body of the wild boar (Sus scrofa) found on the territory with radioactive contamination

    International Nuclear Information System (INIS)

    Gulakov, Andrey Vladimirovich

    2014-01-01

    We studied the concentration and distribution of 137 Cs and 90 Sr in the bodies of 188 wild boar (Sus scrofa Linnaeus, 1758) taken near the Chernobyl site. Of these, 111 animals were taken in the Alienation Zone, 41 animals were taken in the Permanent Control Zone and 36 animals were taken in the Periodic Control Zone. The samples included muscle and bone (rib) tissues and samples of heart, liver, lungs, kidneys, spleen, genitals and skin. The weight of the samples was 0.5 kg fresh weigh. The average concentration of 137 Cs in the muscles of the wild boar found in the Alienation Zone was 46 ± 10 kBq/kg, in the Permanent Control Zone – 13 ± 3.0 kBq/kg and in the Periodic Control Zone – 0.6 ± 0.1 kBq/kg. The largest concentration of 137 Cs was detected in the muscle tissue and kidneys taken animals. In some samples of muscle tissue it reached more than 660 kBq/kg. The 137 Cs concentrations were also high in heart and spleen up 64.3 kBq/kg and 67.5 kBq/kg – animals from the Alienation Zone and 10.3–10.6 kBq/kg – animals from the Permanent Control zone. The lowest concentration of 137 Cs was found in the lungs and skin of animals. The analyses of 90 Sr concentration in the organs and tissues of the wild boar showed that 90 Sr was concentrated mainly in the bone tissue. The average level of 90 Sr concentration in bone was 17.6 kBq/kg fresh weight animals from the Alienation Zone and 13.47 kBg/kg – animals from the Permanent Control zone. In muscle tissues and organs contained 90 Sr – 30.0–110.0 Bq/kg in the Alienation Zone and 11.0–30.0 Bq/kg in the Permanent Control zone

  7. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Lundebye, Anne-Katrine; Lock, Erik-Jan; Rasinger, Josef D.; Nøstbakken, Ole Jakob; Hannisdal, Rita; Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S.; Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin

    2017-01-01

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200 g portion per week contributing 3.2 g or 2.8 g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250 mg/day or 1.75 g/week). - Highlights: • A comprehensive study of contaminants and nutrients in farmed- and wild Atlantic salmon. • Wild salmon had higher levels of persistent organic pollutants and mercury than farmed salmon. • Farmed salmon had higher levels of omega-6 fatty acids than wild salmon. • Farmed- and wild salmon had comparable

  8. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Lundebye, Anne-Katrine, E-mail: aha@nifes.no [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway); Lock, Erik-Jan; Rasinger, Josef D.; Nøstbakken, Ole Jakob; Hannisdal, Rita [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway); Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S. [Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen (Norway); Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway)

    2017-05-15

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200 g portion per week contributing 3.2 g or 2.8 g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250 mg/day or 1.75 g/week). - Highlights: • A comprehensive study of contaminants and nutrients in farmed- and wild Atlantic salmon. • Wild salmon had higher levels of persistent organic pollutants and mercury than farmed salmon. • Farmed salmon had higher levels of omega-6 fatty acids than wild salmon. • Farmed- and wild salmon had comparable

  9. Ion exchange of Cobalt and Cadmium in Zeolite X

    International Nuclear Information System (INIS)

    Nava M, I.

    1994-01-01

    The growing development in the industry has an important contribution to the environmental damage, where the natural effluents are each day more contaminated by toxic elements, such as: mercury, chromium, lead and cadmium. So as to separate such elements it has sorbent must have enough stability, and have a sharp capacity of sorption. In this work it was studied the sorption behavior of cobalt and on the other hand, cadmium in aqueous solutions, which along with sodic form of the Zeolite X, undergoes a phenomenon of ionic interchange. Such interchange was verify to different concentration of cadmium, cobalt and hydronium ion. The content of cobalt and sodium in the interchanged samples was detected through the neutronic activation analysis. The results disclose a higher selectivity for cadmium than cobalt. (Author)

  10. Wild Marshmallows.

    Science.gov (United States)

    Kallas, John N.

    1984-01-01

    Provides information for teaching a unit on wild plants, including resources to use, plants to learn, safety considerations, list of plants (with scientific name, edible parts, and uses), list of plants that might cause allergic reactions when eaten. Also describes the chickweed, bull thistle, and common mallow. (BC)

  11. Cadmium, ATPase-P, yeast. From transport to toxicity

    International Nuclear Information System (INIS)

    Gardarin, Aurelie

    2007-01-01

    Two projects has been developed during my PhD. One consisting in the functional study of CadA, the Cd 2+ -ATPase from Listeria monocytogenes, the other one was focused on the toxicity of cadmium and the associated response of the yeast Saccharomyces cerevisiae. This two studies used a a phenotype of sensitivity to cadmium induced by CadA expression in yeast. This phenotype was used as a screening tool to identify essential amino acids of Cd transport by CadA and to study cadmium toxicity and the corresponding yeast cellular response. CadA actively transports Cd using ATP hydrolysis as energy source. Directed mutagenesis of the membranous polar, sulphur and charged amino-acids revealed that Cd transport pathway implied four transmembrane segments (Tm) and more precisely the cysteine C 354 , C 356 and proline P 355 of the CPC motif located in Tm6, aspartate D 692 in Tm8, glutamate E 164 in Tm4 and methionine M 149 in Tm5. From our studies, 2 Cd ions would be translocated for each hydrolysis ATP. Expression of CadA in the yeast Saccharomyces cerevisiae induces an hypersensitivity to Cd. A wild type cell can grow up to 100 μm cadmium whereas CadA expressing yeast cannot grow with 1 μm cadmium in the culture medium. This cadmium sensitivity was due to the localisation of CadA in the endoplasmic reticulum membrane. Transport of cadmium in this compartment produces an accumulation of mis-folded proteins that induces the Unfolded Protein Response (UPR). As UPR also occurs in a wild type yeast exposed to low Cd concentration, one can point out endoplasmic reticulum as a extremely sensitive cellular compartment. UPR also appears as an early response to Cd as it happens far before any visible signs of toxicity. (author) [fr

  12. Simultaneous determination of oxygen and cadmium in cadmium and cadmium compounds

    International Nuclear Information System (INIS)

    Imaeda, K.; Kuriki, T.; Ohsawa, K.; Ishii, Y.

    1977-01-01

    Cadmium and its compounds were analysed for oxygen and cadmium by a modification of the Schutze-Unterzaucher method. Oxygen in some compounds such as cadmium oxide, nitrate and sulphate could not be determined by the usual method. The method of adding carbon was employed for the determination of total oxygen. Total oxygen could be determined by the addition of 5 mg of carbon to a sample boat and heating at 950 0 . The determination was also carried out by addition of naphthalene (2 mg). It was found that the cadmium powder and cadmium flake used contained ca. 1 and 0.15% oxygen, respectively. Oxygen and cadmium in cadmium and its compounds were simultaneously determined by the addition of 2 mg of naphthalene. Cadmium was determined colorimetrically by use of glyoxal-bis-(2-hydroxyanil). Oxygen and cadmium in the samples could be determined simultaneously with an average error of -0.02 and -0.22%, respectively. (author)

  13. The prevalence and transmission to exotic equids (Equus quagga antiquorum, Equus przewalskii, Equus africanus) of intestinal nematodes in contaminated pasture in two wild animal parks.

    Science.gov (United States)

    Epe, C; Kings, M; Stoye, M; Böer, M

    2001-06-01

    Wild equids maintained in large enclosures may suffer from helminth diseases because common hygiene practices have only limited effects on parasite populations. Weekly monitoring of helminth prevalences and pasture infestation was performed for 1 yr in several extensive maintenance systems of two wildlife parks with similar climates to determine when veterinary intervention to control parasites would be useful. We also sought evidence of natural immunogenic reactions among herds of Chapman zebras (Equus quagga antiquorum), Przewalski's horses (Equus przewalskii) and dwarf donkeys (Equus asinus africanus). Fecal and vegetation samples and cultures for third-stage larvae revealed permanent egg shedding in the three species and pasture infestation during the warm, moist periods (July-September) in all enclosures. Stable social structure and low equid population density may be sufficient to make prophylaxis unnecessary in adults, whereas biotic and abiotic environmental factors such as crowding, animal transfers, social integration of subadults, and weaning stress may facilitate temporary severe infections of individuals. Biweekly helminth monitoring is a useful diagnostic tool for extensive management of exotic equids.

  14. Soil ecotoxicity assessment using cadmium sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    An, Youn-Joo

    2004-01-01

    The crop plants, sorghum and cucumber, can be used as indicator species to assess ecotoxicity of soils contaminated by cadmium. - Four crop plant species (sweet corn, Zea may; wheat, Triticum aestivum; cucumber, Cucumis sativus; and sorghum, Sorghum bicolor) were tested to assess an ecotoxicity in cadmium-amended soils. The measurement endpoints used were seed germination and seedling growth (shoot and root). The presence of cadmium decreased the seedling growth. The medium effective concentration values (EC50) for shoot or root growth were calculated by the Trimmed Spearman-Karber method. Due to the greater accumulation of Cd to the roots, root growth was a more sensitive endpoint than shoot growth. Bioavailability and transport of Cd within plant were related to concentration and species. The ratio of bioaccumulation factor (BAF) in the shoots to the roots indicated high immobilization of Cd in the roots. Seed germination was insensitive to Cd toxicity, and is not recommended for a suitable assay. Among the test plants and test endpoints, root growth of sorghum and cucumber appears to be a good protocol to assess ecotoxicity of soils contaminated by Cd.

  15. Soil ecotoxicity assessment using cadmium sensitive plants

    International Nuclear Information System (INIS)

    An, Youn-Joo

    2004-01-01

    The crop plants, sorghum and cucumber, can be used as indicator species to assess ecotoxicity of soils contaminated by cadmium. - Four crop plant species (sweet corn, Zea may; wheat, Triticum aestivum; cucumber, Cucumis sativus; and sorghum, Sorghum bicolor) were tested to assess an ecotoxicity in cadmium-amended soils. The measurement endpoints used were seed germination and seedling growth (shoot and root). The presence of cadmium decreased the seedling growth. The medium effective concentration values (EC50) for shoot or root growth were calculated by the Trimmed Spearman-Karber method. Due to the greater accumulation of Cd to the roots, root growth was a more sensitive endpoint than shoot growth. Bioavailability and transport of Cd within plant were related to concentration and species. The ratio of bioaccumulation factor (BAF) in the shoots to the roots indicated high immobilization of Cd in the roots. Seed germination was insensitive to Cd toxicity, and is not recommended for a suitable assay. Among the test plants and test endpoints, root growth of sorghum and cucumber appears to be a good protocol to assess ecotoxicity of soils contaminated by Cd

  16. An experimental study of the retention of zinc, zinc-cadmium mixture and zinc-65 in the presence of cadmium in Anguilla anguilla (L.)

    International Nuclear Information System (INIS)

    Pally, Monique; Foulquier, Luc

    1976-07-01

    Zinc uptake was studied in eels in fresh water, using stable zinc, a zinc-cadmium mixture, and zinc 65 in the presence of small amounts of cadmium. The zinc content in the eel began to increase after 45 days only, and reached approximately 85 ppm after 76 days in water initially containing 5ppm of zinc. At the conclusion of the experiment (76 days), the body organs could be classified in decreasing order in zinc content (in ppm): kidneys (152), skeleton (133), skin (129), muscles (89), head (80), gills (78), digestive tract (77), liver (63) spleen-heart-air bladder (32), and mucus (15). A comparison of experimental results obtained with the zinc-cadmium mixture and cadmium alone showed that zinc decreased the cadmium content of all organs except the gills. The presence of cadmium in water did not inhibit zinc uptake. As cadmium content in water increased, then zinc content in the digestive tract and the kidneys decreased and in all cases remained lower than when zinc alone was present. In the presence of cadmium the percentage of zinc in the kidneys was always lower than the value obtained for zinc alone, and that of the digestive tract did not increase. Contamination of eels treated with 18 and 50ppb of cadmium for 29 days, then contaminated by zinc-65 (5μCi/l) while maintaining the same low cadmium content, showed no significant difference in zinc 65 uptake in the two groups. The same applied to the body organs, and particularly the digestive tract and kidneys, where the highest activity levels were observed. By weight, muscles represented approximately 30% of the total contamination after 45 days [fr

  17. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    Science.gov (United States)

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  18. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Prachy Dixit

    Full Text Available BACKGROUND: Cadmium (Cd is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. RESULTS: Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. CONCLUSION: The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for

  19. Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater

    International Nuclear Information System (INIS)

    Gu Yingying; Yeung, Albert T.

    2011-01-01

    Highlights: → CAIW is very effective in desorbing cadmium from soil particle surfaces at soil mixture pHs of lower than 5. → The cadmium desorption efficiency of CAIW also depends on the initial sorbed concentration of cadmium on soil particle surfaces. → Complexions of cadmium with citric acid and acetic acid are the dominant mechanisms for cadmium desorption in the soil mixture pH range of 4-8. → CAIW may be a promising enhancement agent for the remediation of heavy metal-contaminated soils. - Abstract: The sorption/desorption characteristics of heavy metals onto/from soil particle surfaces are the primary factors controlling the success of the remediation of heavy-metal contaminated soils. These characteristics are pH-dependent, chemical-specific, and reversible; and can be modified by enhancement agents such as chelates and surfactants. In this study, batch experiments were conducted to evaluate the feasibility of using citric acid industrial wastewater (CAIW) to desorb cadmium from a natural clay from Shanghai, China at different soil mixture pHs. It can be observed from the results that the proportion of cadmium desorbed from the soil using synthesized CAIW is generally satisfactory, i.e., >60%, when the soil mixture pH is lower than 6. However, the proportion of desorbed cadmium decreases significantly with increase in soil mixture pH. The dominant cadmium desorption mechanism using CAIW is the complexion of cadmium with citric acid and acetic acid in CAIW. It is concluded that CAIW can be a promising enhancement agent for the remediation of cadmium-contaminated natural soils when the environmental conditions are favorable. As a result, CAIW, a waste product itself, can be put into productive use in soil remediation.

  20. Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yingying, E-mail: guyong99hg@yahoo.com.cn [Department of Environmental Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266555 (China); Yeung, Albert T., E-mail: yeungat@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-07-15

    Highlights: {yields} CAIW is very effective in desorbing cadmium from soil particle surfaces at soil mixture pHs of lower than 5. {yields} The cadmium desorption efficiency of CAIW also depends on the initial sorbed concentration of cadmium on soil particle surfaces. {yields} Complexions of cadmium with citric acid and acetic acid are the dominant mechanisms for cadmium desorption in the soil mixture pH range of 4-8. {yields} CAIW may be a promising enhancement agent for the remediation of heavy metal-contaminated soils. - Abstract: The sorption/desorption characteristics of heavy metals onto/from soil particle surfaces are the primary factors controlling the success of the remediation of heavy-metal contaminated soils. These characteristics are pH-dependent, chemical-specific, and reversible; and can be modified by enhancement agents such as chelates and surfactants. In this study, batch experiments were conducted to evaluate the feasibility of using citric acid industrial wastewater (CAIW) to desorb cadmium from a natural clay from Shanghai, China at different soil mixture pHs. It can be observed from the results that the proportion of cadmium desorbed from the soil using synthesized CAIW is generally satisfactory, i.e., >60%, when the soil mixture pH is lower than 6. However, the proportion of desorbed cadmium decreases significantly with increase in soil mixture pH. The dominant cadmium desorption mechanism using CAIW is the complexion of cadmium with citric acid and acetic acid in CAIW. It is concluded that CAIW can be a promising enhancement agent for the remediation of cadmium-contaminated natural soils when the environmental conditions are favorable. As a result, CAIW, a waste product itself, can be put into productive use in soil remediation.

  1. Subproduto da indústria de alumínio como amenizante de solos contaminados com cádmio e chumbo Aluminum industry by-product as an amendment for cadmium and lead-contaminated soils

    Directory of Open Access Journals (Sweden)

    Enio Tarso de Souza Costa

    2008-12-01

    . This study evaluated the performance of an aluminum industry by-product as soil amendment in Cd- and Pb-contaminated soils. Samples of a sandy (50 g kg-1 clay and a clayey (540 g kg-1 clay soil were mixed with polluted soil (15 % with high Cd and Pb concentrations and then treated with increasing doses: 0, 0.25, 0.50, 1.00, and 2.00 % (dry weight basis - of an Al industry by-product. Additional treatments for comparison purposes consisted of: lime, a silicate by-product and turf, at rates of 0.25, 0.50, and 2.00 % respectively, as well as the non-contaminated soils. Plant and soil parameters were evaluated as follows: i root and shoot dry matter production of Brachiaria decumbens and the respective Cd and Pb concentrations; and, ii soil Cd and Pb concentrations, as well as the pH and the electrolytic conductivity (EC of soil leachates. Cadmium and lead concentrations were measured in both unfiltered and 0.45 µm- filtered leachates, and Cd and Pb amounts in the plant roots and shoots were measured after nitric-perchloric digestion. Metal analysis were performed by either flame or graphite furnace atomic absorption spectrophotometry. Increasing the application rates of the Al industry by-product caused an increase in pH of the leachates and yielded higher EC values in the sandy than in the clayey soil. Unlike Cd, the Pb concentration differed between filtered and non-filtered soil leachates. The Al industry by-product favored the root and shoot dry matter production of B. decumbens and reduced Cd concentrations in the latter (mg kg-1 while the Pb concentration was not significantly altered.

  2. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice

    OpenAIRE

    Shimo, Hugo; Ishimaru, Yasuhiro; An, Gynheung; Yamakawa, Takashi; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2011-01-01

    The contamination of food crops by cadmium (Cd) is a major concern in food production because it can reduce crop yields and threaten human health. In this study, knockout rice plants (Oryza sativa) tagged with the gene trap vector pGA2707 were screened for Cd tolerance, and the tolerant line lcd was obtained. The lcd mutant showed tolerance to Cd on agar plates and in hydroponic culture during early plant development. Metal concentration measurements in hydroponically grown plants revealed si...

  3. Cadmium phytoextraction potential of different Alyssum species

    International Nuclear Information System (INIS)

    Barzanti, R.; Colzi, I.; Arnetoli, M.; Gallo, A.; Pignattelli, S.; Gabbrielli, R.; Gonnelli, C.

    2011-01-01

    Highlights: ► The possibility of using serpentine plants for phytoextraction of Cd was investigated. ► Variation in Cd tolerance, accumulation and translocation in three Alyssum plants with different phenotypes were found. ► Alyssum montanum showed higher Cd tolerance and accumulation than the Ni hyperaccumulator Alyssum bertolonii. ► As for the kinetic parameters of the Cd uptake system, A. montanum presented a low apparent K m value. ► The V max values were not significantly different among the plants. - Abstract: This work was planned for providing useful information about the possibility of using serpentine adapted plants for phytoextraction of cadmium, element scarcely represented in such metalliferous environment. To this aim, we investigated variation in cadmium tolerance, accumulation and translocation in three Alyssum plants with different phenotypes: Alyssum bertolonii, that is a serpentine endemic nickel hyperaccumulator, and two populations of Alyssum montanum, one adapted and one not adapted to serpentine soils. Plants were hydroponically cultivated in presence of increasing concentrations of CdSO 4 for two weeks. For the metal concentration used in the experiments, the three different Alyssum populations showed variation in cadmium tolerance, accumulation and content. The serpentine adapted population of A. montanum showed statistically higher cadmium tolerance and accumulation than A. bertolonii and the population of A. montanum not adapted to serpentine soil thus deserving to be investigated for phytoextraction purposes. Furthermore, as for the kinetic parameters of the cadmium uptake system, A. montanum serpentine population presented a low apparent K m value, suggesting a high affinity for this metal of its uptake system, whereas the V max values were not significantly different among the plants. Present data revealed metallicolous plants are also suitable for the phytoremediation of metals underrepresented in the environment of their

  4. Cadmium phytoextraction potential of different Alyssum species

    Energy Technology Data Exchange (ETDEWEB)

    Barzanti, R., E-mail: rbarzanti@supereva.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Colzi, I., E-mail: ilariacolzi@hotmail.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Arnetoli, M., E-mail: miluscia@gmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gallo, A., E-mail: galloalessia@hotmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Pignattelli, S., E-mail: sara.pignattelli@gmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gabbrielli, R., E-mail: gabbrielli@unifi.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gonnelli, C., E-mail: cristina.gonnelli@unifi.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer The possibility of using serpentine plants for phytoextraction of Cd was investigated. Black-Right-Pointing-Pointer Variation in Cd tolerance, accumulation and translocation in three Alyssum plants with different phenotypes were found. Black-Right-Pointing-Pointer Alyssum montanum showed higher Cd tolerance and accumulation than the Ni hyperaccumulator Alyssum bertolonii. Black-Right-Pointing-Pointer As for the kinetic parameters of the Cd uptake system, A. montanum presented a low apparent K{sub m} value. Black-Right-Pointing-Pointer The V{sub max} values were not significantly different among the plants. - Abstract: This work was planned for providing useful information about the possibility of using serpentine adapted plants for phytoextraction of cadmium, element scarcely represented in such metalliferous environment. To this aim, we investigated variation in cadmium tolerance, accumulation and translocation in three Alyssum plants with different phenotypes: Alyssum bertolonii, that is a serpentine endemic nickel hyperaccumulator, and two populations of Alyssum montanum, one adapted and one not adapted to serpentine soils. Plants were hydroponically cultivated in presence of increasing concentrations of CdSO{sub 4} for two weeks. For the metal concentration used in the experiments, the three different Alyssum populations showed variation in cadmium tolerance, accumulation and content. The serpentine adapted population of A. montanum showed statistically higher cadmium tolerance and accumulation than A. bertolonii and the population of A. montanum not adapted to serpentine soil thus deserving to be investigated for phytoextraction purposes. Furthermore, as for the kinetic parameters of the cadmium uptake system, A. montanum serpentine population presented a low apparent K{sub m} value, suggesting a high affinity for this metal of its uptake system, whereas the V{sub max} values were not significantly different among the

  5. High cadmium / zinc ratio in cigarette smokers: potential implications ...

    African Journals Online (AJOL)

    Tobacco smoke may be one of the most common sources of cadmium (Cd) in the general population, particularly in the rising population of smokers in developing countries. Although a relationship between both cigarette smoking and environmental Cd contamination with prostate cancer exist, the mechanisms are unclear.

  6. Determination and estimation of Cadmium intake from Tarom rice 1 ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    entrance to food chain causes the serious damage in humans. One of the major .... Malaysia. 27.74. Spain. 0.85. Philippines. 20.14. USA. 7.43. Dietary intake of Cadmium: The intake of Cd was ... and contaminants of the joint FAO/WHO Food.

  7. Spatial and temporal variation in cadmium body loads of four ...

    African Journals Online (AJOL)

    Increasing urbanization and industrialization along the coastal areas of False Bay in South Africa can endanger coastal ecosystems because of increasing metal pollution. To obtain baseline data on contamination levels in the intertidal zone, cadmium (Cd) body loads of four invertebrate species were measured seasonally ...

  8. Impact of Cadmium Polluted Groundwater on Human Health

    OpenAIRE

    Farkhunda Burke; Salma Hamza; Shahid Naseem; Syed Nawaz-ul-Huda; Muhammad Azam; Imran Khan

    2016-01-01

    A number of serious studies have been conducted to decipher relationships between geological environment, potable/drinking water, and diseases as they were considered to have triggered suffering due to diseases among people. Chronic anemia can be caused by prolonged exposure to drinking water contaminated with cadmium (Cd). Under such circumstances, accumulation of Cd is manifested in the kidney, resulting in cancer an...

  9. Flux of Cadmium through Euphausiids

    International Nuclear Information System (INIS)

    Benayoun, G.; Fowler, S.W.; Oregioni, B.

    1976-01-01

    Flux of the heavy metal cadmium through the euphausiid Meganyctiphanes norvegica was examined. Radiotracer experiments showed that cadmium can be accumulated either directly from water or through the food chain. When comparing equilibrium cadmium concentration factors based on stable element measurements with those obtained from radiotracer experiments, it is evident that exchange between cadmium in the water and that in euphausiid tissue is a relatively slow process, indicating that, in the long term, ingestion of cadmium will probably be the more important route for the accumulation of this metal. Approximately 10% of cadmium ingested by euphausiids was incorporated into internal tissues when the food source was radioactive Artemia. After 1 month cadmium, accumulated directly from water, was found to be most concentrated in the viscera with lesser amounts in eyes, exoskeleton and muscle, respectively. Use of a simple model, based on the assumption that cadmium taken in by the organism must equal cadmium released plus that accumulated in tissue, allowed assessment of the relative importance of various metabolic parameters in controlling the cadmium flux through euphausiids. Fecal pellets, due to their relatively high rate of production and high cadmium content, accounted for 84% of the total cadmium flux through M. norvegica. Comparisons of stable cadmium concentrations in natural euphausiid food and the organism's resultant fecal pellets indicate that the cadmium concentration in ingested material was increased nearly 5-fold during its passage through the euphausiid. From comparisons of all routes by which cadmium can be released from M. norvegica to the water column, it is concluded that fecal pellet deposition represents the principal mechanism effecting the downward vertical transport of cadmium by this species. (author)

  10. miR395 is involved in detoxification of cadmium in Brassica napus

    International Nuclear Information System (INIS)

    Zhang, Liu Wei; Song, Jian Bo; Shu, Xia Xia; Zhang, Yun; Yang, Zhi Min

    2013-01-01

    Highlights: ► Involvement of miR395 in sulfate uptake and assimilation in B. napus. ► miR395 regulation of Cd accumulation and distribution in B. napus. ► Depression of Cd-induced oxidative stress by miR395. -- Abstract: The toxic metal cadmium (Cd) constitutes one of the major inorganic contaminants in environments. microRNAs (miRNAs) are a class of endogenous non-coding small RNAs. miR395 is conserved and regulates sulfate assimilation and distribution in higher plants, but whether it is involved in detoxification of Cd in plants has not been described. In this study, transgenic rapeseed (Brassica napus) over-expressing miR395 was identified under Cd stress. miR395-over-expressing plants showed a lower degree of Cd-induced oxidative stress than wild type. By contrast, chlorophyll, glutathione and non-protein thiols contents were higher in the transformants than wild type. Determination of growth response showed that 35S::MIR395 plants accumulated higher levels of biomass and sulfur than wild type under Cd exposure. miR395 transgenic plants had higher levels of Cd in plants, particularly at the high supply of Cd in the medium, but they tended to repress Cd translocation from roots to shoots. Simultaneously, expression of metal-tolerance genes such as BnPCS1, BnHO1 and Sultr1;1 was up-regulated under Cd stress, and the expression of the genes was more pronounced in 35S::MIR395 plants than in wild type. These results suggest that miR395 would be involved in detoxification of Cd in B. napus

  11. miR395 is involved in detoxification of cadmium in Brassica napus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liu Wei; Song, Jian Bo; Shu, Xia Xia; Zhang, Yun [Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China); Yang, Zhi Min, E-mail: zmyang@njau.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-04-15

    Highlights: ► Involvement of miR395 in sulfate uptake and assimilation in B. napus. ► miR395 regulation of Cd accumulation and distribution in B. napus. ► Depression of Cd-induced oxidative stress by miR395. -- Abstract: The toxic metal cadmium (Cd) constitutes one of the major inorganic contaminants in environments. microRNAs (miRNAs) are a class of endogenous non-coding small RNAs. miR395 is conserved and regulates sulfate assimilation and distribution in higher plants, but whether it is involved in detoxification of Cd in plants has not been described. In this study, transgenic rapeseed (Brassica napus) over-expressing miR395 was identified under Cd stress. miR395-over-expressing plants showed a lower degree of Cd-induced oxidative stress than wild type. By contrast, chlorophyll, glutathione and non-protein thiols contents were higher in the transformants than wild type. Determination of growth response showed that 35S::MIR395 plants accumulated higher levels of biomass and sulfur than wild type under Cd exposure. miR395 transgenic plants had higher levels of Cd in plants, particularly at the high supply of Cd in the medium, but they tended to repress Cd translocation from roots to shoots. Simultaneously, expression of metal-tolerance genes such as BnPCS1, BnHO1 and Sultr1;1 was up-regulated under Cd stress, and the expression of the genes was more pronounced in 35S::MIR395 plants than in wild type. These results suggest that miR395 would be involved in detoxification of Cd in B. napus.

  12. Chlorination leaching of cadmium

    International Nuclear Information System (INIS)

    Lach, E.; Pajak, I.; Bojanowska, A.

    1978-01-01

    The results of the investigations on chlorination leaching of cadmium from dust coming from dry dust collector of sinter belt, that is leaching with water saturated with gaseous chlorine and leaching with solutions of ammonium chloride and sodium chloride were given. The optimum conditions for these processes were established. It was found, that the method of leaching in the presence of gaseous chlorine is more effective, as it allows to report into the solution over 90% cadmium contained in dust. Owing to technical difficulties, environmental protection and safety conditions more advantageous seems to be the use as leaching agent of the ammonium chloride solutions. When applying 20% NH 4 Cl and temperature of 60 0 C, the time of 2 hours and the ratio of solid to liquid of 1:5, 70% cadmium contained in the dust can be reported into the solution. (auth.)

  13. Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces IRT1-mediated cadmium uptake of roots.

    Science.gov (United States)

    Xu, Qianru; Pan, Wei; Zhang, Ranran; Lu, Qi; Xue, Wanlei; Wu, Cainan; Song, Bixiu; Du, Shaoting

    2018-05-08

    Cadmium (Cd) contamination of agricultural soils represents a serious risk to crop safety. A new strategy using abscisic acid (ABA)-generating bacteria, Bacillus subtilis or Azospirillum brasilense, was developed to reduce the Cd accumulation in plants grown in Cd-contaminated soil. Inoculation with either bacterium resulted in a pronounced increase in the ABA level in wild-type Arabidopsis Col-0 plants, accompanied by a decrease in Cd levels in plant tissues, which mitigated the Cd toxicity. As a consequence, the growth of plants exposed to Cd was improved. Nevertheless, B. subtilis and A. brasilense inoculation had little effect on Cd levels and toxicity in the ABA-insensitive mutant snrk 2.2/2.3, indicating that the action of ABA is required for these bacteria to reduce Cd accumulation in plants. Furthermore, inoculation with either B. subtilis or A. brasilense down-regulated the expression of IRT1 (IRON-REGULATED TRANSPORTER 1) in the roots of wild-type plants and had little effect on Cd levels in the IRT1-knockout mutants irt1-1 and irt1-2. In summary, we conclude that B. subtilis and A. brasilense can reduce Cd levels in plants via an IRT1-dependent ABA-mediated mechanism.

  14. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors.

    Science.gov (United States)

    Bereza-Malcolm, Lara; Aracic, Sanja; Kannan, Ruban; Mann, Gülay; Franks, Ashley E

    2017-08-15

    Widespread presence of cadmium in soil and water systems is a consequence of industrial and agricultural processes. Subsequent accumulation of cadmium in food and drinking water can result in accidental consumption of dangerous concentrations. As such, cadmium environmental contamination poses a significant threat to human health. Development of microbial biosensors, as a novel alternative method for in situ cadmium detection, may reduce human exposure by complementing traditional analytical methods. In this study, a multiplex cadmium biosensing construct was assembled by cloning a single-output cadmium biosensor element, cadRgfp, and a constitutively expressed mrfp1 onto a broad-host range vector. Incorporation of the duplex fluorescent output [green and red fluorescence proteins] allowed measurement of biosensor functionality and viability. The biosensor construct was tested in several Gram-negative bacteria including Pseudomonas, Shewanella and Enterobacter. The multiplex cadmium biosensors were responsive to cadmium concentrations ranging from 0.01 to 10µgml -1 , as well as several other heavy metals, including arsenic, mercury and lead at similar concentrations. The biosensors were also responsive within 20-40min following exposure to 3µgml -1 cadmium. This study highlights the importance of testing biosensor constructs, developed using synthetic biology principles, in different bacterial genera. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of cadmium on aneuploidy and hemocyte parameters in the Pacific oyster, Crassostrea gigas

    International Nuclear Information System (INIS)

    Bouilly, Karine; Gagnaire, Beatrice; Bonnard, Marc; Thomas-Guyon, Helene; Renault, Tristan; Miramand, Pierre; Lapegue, Sylvie

    2006-01-01

    Pacific oysters, Crassostrea gigas, are commonly reared in estuaries where they are exposed to anthropogenic pollution. Much research has been made on the toxicity of cadmium to aquatic organisms because the compound recurrently contaminates their environment. Our study examined the influence of cadmium on aneuploidy level (lowered chromosome number in a percentage of somatic cells) and hemocyte parameters in C. gigas at different stages of life. Adults and juveniles were exposed to two different concentrations of cadmium. The first concentration applied was equivalent to a peak value found in Marennes-Oleron bay (Charente-Maritime, France; 50 ng L -1 ) and the second was 10 times higher (500 ng L -1 ). Exposure to 50 ng L -1 cadmium caused a significant decrease in the survival time of C. gigas, but exposure to 500 ng L -1 surprisingly affected the survival time positively. Significant differences in aneuploidy level were observed between the cadmium treatments and the control in adults but not in juveniles or the offspring of the adult groups. The effects of cadmium on hemocyte parameters were analyzed by flow cytometry. Several hemocyte parameters increased significantly after 21 days of cadmium exposure and subsequently decreased. Phenoloxidase-like activity, evaluated by spectrophotometry, varied over the time of the experiment and increased after 66 days of contact with 500 ng L -1 cadmium. Taken together, cadmium at environmentally relevant concentrations seems to have only moderate effects on aneuploidy and hemocyte parameters

  16. Immobilization of cadmium in soils by UV-mutated Bacillus subtilis 38 bioaugmentation and NovoGro amendment

    International Nuclear Information System (INIS)

    Jiang Chunxiao; Sun Hongwen; Sun Tieheng; Zhang Qingmin; Zhang Yanfeng

    2009-01-01

    Immobilization of cadmium (10 mg Cd per kilogram soil) in soil by bioaugmentation of a UV-mutated microorganism, Bacillus subtilis 38 accompanied with amendment of a bio-fertilizer, NovoGro was investigated using extractable cadmium (E-Cd) by DTPA. B. subtilis 38, the mutant with the strongest resistance against Cd, could bioaccumulate Cd four times greater than the original wild type. Single bioaugmentation of B. subtilis 38 (SB treatment) to soil however did not reduce E-Cd significantly, while the amendment of NovoGro (SN treatment) reduced E-Cd remarkably. Simultaneous application of B. subtilis 38 and NovoGro (SNB treatment) exhibited a synergetic effect compared to the single SB and SN treatment. The immobilization effect was significantly affected by temperature, soil moisture, and pH. It seems that the immobilization on Cd reached the maximum when environmental conditions favored the activity of microorganisms. Under the optimum conditions, after 90 days incubation, E-Cd was 3.34, 3.39, 2.25 and 0.87 mg kg -1 in the control soil, SB, SN and SNB soils, respectively. NovoGro not only showed a great capacity for Cd adsorption, but also promoted the growth of B. subtilis 38. This study provides a potential cost-effective technique for in situ remediation of Cd contaminated soils with bioaugmentation.

  17. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  18. Cadmium: The deformed metal

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, R L [Cadmium Association, London (UK)

    1979-03-01

    The paper, which is a somewhat abridged version of the introductory paper of the 2nd International Cadmium Conference in Cannes on February 6 to 8, 1979, outlines the present trends in production, reserves, consumption, world trade, prices, and cost. Due to the lack of statistics on the USSR and other socialist countries, the review is limited to the non-socialist world.

  19. zinc, chromium, cadmium

    African Journals Online (AJOL)

    2016-06-30

    Jun 30, 2016 ... Cadmium also causes destruction of the immune system, thus, predisposes the consumer to infectious diseases like tuberculosis (Khan et al., 2008). ... years, sputum specimens positive for acid-fast bacilli by microscopy and clinical and radiographic abnormalities consistent with pulmonary tuberculosis.

  20. Temporal trending of lead and cadmium contamination in the Vigo estuary intertidal area Evolución temporal de la contaminación por plomo y cadmio en la zona intermareal de la ría de Vigo

    Directory of Open Access Journals (Sweden)

    J. Alonso Díaz

    2004-12-01

    Full Text Available At the present work, limpet (Patella vulgata L. and seaweed (Ulva lactuca specimens have been monthly sampled at the same point from the Vigo estuary, during a year. Heavy metal (cadmium and lead content has been determined by means of differential pulse anodic stripping voltammetry in both limpet and seaweed tissues, as well as in seawater. The obtained results have shown the main heavy metal content in limpet soft tissues with respect to shell, with maximum concentrations of 3 ppm (limpet shell for lead, whereas the highest content for cadmium was identified in seaweed samples (1.1 ppm. The statistical study revealed the existence of a clear correlation between cadmium and lead concentrations in seaweed samples.En el presente trabajo se han recogido muestras de lapa (Patella vulgata L. y alga verde (Ulva lactuca en un mismo punto de muestreo de la ría de Vigo, con una periodicidad mensual, a lo largo de un año, analizándose por medio de voltamperometría de redisolución anódica la concentración en dos metales pesados con claras repercusiones toxicológicas, cadmio y plomo, en estas muestras, así como en el agua marina. Los resultados obtenidos mostraron la mayor concentración de ambos metales en los tejidos blandos de las lapas frente a las valvas de estos moluscos, con valores máximos en el caso del plomo próximos a 3 ppm (valva de lapa, mientras que para el cadmio se situó en torno a 1,1 ppm (alga verde. El estudio estadístico permitió poner en evidencia una clara correlación estadística entre los valores de cadmio y plomo cuantificados en las muestras de algas.

  1. Molecular basis of cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nath, R; Prasad, R; Palinal, V K; Chopra, R K

    1984-01-01

    Cadmium has been shown to manifest its toxicity in human and animals by mainly accumulating in almost all of the organs. The kidney is the main target organ where it is concentrated mainly in the cortex. Environmental exposure of cadmium occurs via food, occupational industries, terrestrial and aquatic ecosystem. At molecular level, cadmium interferes with the utilization of essential metals e.g. Ca, Zn, Se, Cr and Fe and deficiencies of these essential metals including protein and vitamins, exaggerate cadmium toxicity, due to its increased absorption through the gut and greater retention in different organs as metallothionein (Cd-Mt). Cadmium transport, across the intestinal and renal brush border membrane vesicles, is carrier mediated and it competes with zinc and calcium. It has been postulated that cadmium shares the same transport system. Cadmium inhibits protein synthesis, carbohydrate metabolism and drug metabolizing enzymes in liver of animals. Chronic environmental exposure of cadmium produces hypertension in experimental animals. Functional changes accompanying cadmium nephropathy include low molecular weight proteinuria which is of tubular origin associated with excess excretion of proteins such as beta 2 microglobulin, metallothionein and high molecular weight proteinuria of glomerular origin (excretion of proteins such as albumin IgG, transferrin etc.). Recent data has shown that metallothionein is more nephrotoxic to animals. Cadmium is also toxic to central nervous system. It causes an alterations of cellular functions in lungs. Cadmium affects both humoral and cell mediated immune response in animals. Cadmium induces metallothionein in liver and kidney but under certain nutritional deficiencies like protein-calorie malnutrition and calcium deficiency, enhanced induction and greater accumulation of cadmium metallothionein has been observed.

  2. Effects of cadmium on the performance and microbiology of laboratory-scale lagoons treating domestic sewage.

    Science.gov (United States)

    Bonnet, J L; Bohatier, J; Pépin, D

    1999-06-01

    Two experiments were performed to assess the impact of cadmium on the sewage lagoon wastewater treatment process. For each one, three laboratory-scale pilot plants with one tank receiving the same raw effluent were used; one plant served as control and the other two were contaminated once only with cadmium. In the first study, the effects of a shock load of two concentrations of cadmium chloride (60 and 300 micrograms/l) on the plant performance, microbial populations (protists and bacteria) and enzyme activities were determined. Initially, most of the performance parameters were affected concentration-dependently. A reduction in the protist population density and some influence on the total bacterial population were observed, and the potential enzymatic activities were also modified. A second experiment with a lower cadmium concentration (30 micrograms/l), supplied as chloride or sulphate, still perturbed most of the parameters studied, and the effects of the two cadmium salts were identical.

  3. Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice

    International Nuclear Information System (INIS)

    Smith, Euan; Gancarz, Dorota; Rofe, Allan; Kempson, Ivan M.; Weber, John; Juhasz, Albert L.

    2012-01-01

    Highlights: ► We investigate the exposure of pregnant and non-pregnant mice to cadmium (Cd) on lead (Pb) contaminated soil. ► We examine the changes in lead accumulation in mice due to the presence of cadmium in soil. ► Lead accumulation is higher in pregnant compared to non-pregnant mice. ► Cadmium decreases lead accumulation in all mice irrespective of status. - Abstract: People are frequently exposed to combinations of contaminants but there is a paucity of data on the effects of mixed contaminants at low doses. This study investigated the influence of cadmium (Cd) on lead (Pb) accumulation in pregnant and non-pregnant mice following exposure to contaminated soil. Exposure to Pb from contaminated soils increased Pb accumulation in both pregnant and non-pregnant mice compared to unexposed control animals (pregnant and non-pregnant). Lead accumulation in the liver and kidneys of exposure pregnant mice (40 ± 15 mg Pb kg −1 ) was significantly higher (P −1 ). The presence of Cd in contaminated soil had a major effect on the Pb and Fe accumulation in the kidneys and liver, respectively. This study shows that Pb uptake is mediated by the presence of Cd in the co-contaminated soil and demonstrates that further research is required to investigate the influence of co-contaminants on human exposure at sub-chronic concentrations.

  4. Regional modeling of cadmium leaching to groundwater in the Kempen region, The Netherlands

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.

    2003-01-01

    Sandy soils in the border area of Belgium and the Netherlands (the Kempen region), are heavily contaminated with cadmium and zinc by atmospheric deposition from nearby smelters. Leaching of heavy metals from the topsoil is a major risk for groundwater contamination. The sandy soils in the Kempen

  5. The Graphene/l-Cysteine/Gold-Modified Electrode for the Differential Pulse Stripping Voltammetry Detection of Trace Levels of Cadmium

    OpenAIRE

    Yu Song; Chao Bian; Jianhua Tong; Yang Li; Shanghong Xia

    2016-01-01

    Cadmium(II) is a common water pollutant with high toxicity. It is of significant importance for detecting aqueous contaminants accurately, as these contaminants are harmful to human health and environment. This paper describes the fabrication, characterization, and application of an environment-friendly graphene (Gr)/l-cysteine/gold electrode to detect trace levels of cadmium (Cd) by differential pulse stripping voltammetry (DPSV). The influence of hydrogen overflow was decreased and the curr...

  6. Cadmium in Sweden - environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H; Iverfeldt, Aa [Swedish Environmental Research Inst. (Sweden); Borg, H; Lithner, G [Stockholm Univ. (Sweden). Inst. for Applied Environmental Research

    1998-03-01

    This report aims at assessing possible effects of cadmium in the Swedish environment. Swedish soils and soft freshwater systems are, due to a generally poor buffering capacity, severely affected by acidification. In addition, the low salinity in the Baltic Sea imply a naturally poor organism structure, with some important organisms living close to their limit of physiological tolerance. Cadmium in soils is mobilized at low pH, and the availability and toxicity of cadmium in marine systems are enhanced at low salinity. The Swedish environment is therefore extra vulnerable to cadmium pollution. The average concentrations of cadmium in the forest mor layers, agricultural soils, and fresh-waters in Sweden are enhanced compared to `back-ground concentrations`, with a general increasing trend from the north to the south-west, indicating strong impact of atmospheric deposition of cadmium originating from the central parts of Europe. In Swedish sea water, total cadmium concentrations, and the fraction of bio-available `free` cadmium, generally increases with decreasing salinity. Decreased emissions of cadmium to the environment have led to decreasing atmospheric deposition during the last decade. The net accumulation of cadmium in the forest mor layer has stopped, and even started to decrease. In northern Sweden, this is due to the decreased deposition, but in southern Sweden the main reason is increased leakage of cadmium from the topsoil as a consequence of acidification. As a result, cadmium in the Swedish environments is undergoing an extended redistribution between different soil compartments, and from the soils to the aquatic systems. 90 refs, 23 figs, 2 tabs. With 3 page summary in Swedish

  7. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium.

    Science.gov (United States)

    Varun, Mayank; D'Souza, Rohan; Pratas, João; Paul, M S

    2011-07-01

    Root and shoot samples of Prosopis juliflora were assessed for their heavy metal content to evaluate the species as a green solution to decontaminate soils contaminated with lead and cadmium. The highest uptake of both the metals was observed in plants from industrial sites. Sites with more anthropogenic disturbance exhibited reduced chlorophyll levels, stunted growth, delayed and shortened reproductive phase. The ratios of lead and cadmium in leaves to lead and cadmium in soil were in the range of 0.62-1.46 and 0.55-1.71, respectively. Strong correlation between the degree of contamination and concentrations of lead and cadmium in plant samples identifies P. juliflora as an effective heavy metal remediator coupled with environmental stress.

  8. Cadmium: The deformed metal

    International Nuclear Information System (INIS)

    Stubbs, R.L.

    1979-01-01

    The paper, which is a somewhat abridged version of the introductory paper of the 2nd International Cadmium Conference in Cannes on February 6 to 8, 1979, outlines the present trends in production, reserves, consumption, world trade, prices, and cost. Due to the lack of statistics on the USSR and other socialist countries, the review is limited to the non-socialist world. (orig./IHOE) [de

  9. The Study on the Effect of Cadmium, Zinc and Zeolite Application on Physiomorphological Characteristics of St. Johnʼs Wort (Hypericum perforatum L.)

    OpenAIRE

    Zhaleh Zandavifard; Majid Azizi; Hossein Aroiee; Amir Fotovat

    2018-01-01

    Introduction: Among the heavy metals, cadmium, because of high mobility and bioavailability in soil and also toxicity at low concentrations is very important. Cadmium (Cd) is known as carcinogen and can induce many types of cancers. Human activities (metallic industries, contaminated fertilizer, herbicides or insecticides, irrigation with contaminated groundwater, and use of contaminated sewage sludge) are largely responsible for accumulation of different levels of Cd in soil. Saint John’s Wo...

  10. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  11. Accumulation of dietary and aqueous cadmium into the epidermal mucus of the discus fish Symphysodon sp

    International Nuclear Information System (INIS)

    Maunder, Richard J.; Buckley, Jonathan; Val, Adalberto L.; Sloman, Katherine A.

    2011-01-01

    The discus fish Symphysodon sp. is an Amazonian cichlid with a unusual form of parental care where fry obligately feed from parental mucus for the first few weeks of life. Here, we investigated the possible impact of environmental cadmium on this species, particularly with respect to mucus contamination. We exposed groups of fish to cadmium either through their food (400 mg kg -1 ) or through the water (3 μg l -1 ) for 4 weeks, and measured tissue concentrations and ATPase activities at weekly intervals. Cadmium significantly accumulated in all tissues (except for muscle) after 7 days, and tissue concentrations increased until the end of the experiment. Significant alterations in ATPase activities of intestine and kidney were observed at day 7 and 14, but no alterations in gill ATPase activities occurred. The epidermal mucus showed a high accumulation of cadmium from both exposures, but particularly from the diet, indicating that dietary cadmium can be transferred from gut to mucus. Combining this data with approximations of fry bite volumes and bite frequencies, we constructed daily estimates of the cadmium that could potentially be consumed by newly hatched fry feeding on this mucus. These calculations suggest that feeding fry might consume up to 11 μg g -1 day -1 , and hence indicate that this species' dependency on parental mucus feeding of fry could make them particularly susceptible to cadmium contamination of their native habitat.

  12. Accumulation of dietary and aqueous cadmium into the epidermal mucus of the discus fish Symphysodon sp

    Energy Technology Data Exchange (ETDEWEB)

    Maunder, Richard J., E-mail: richard.maunder@astrazeneca.com [School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA (United Kingdom); Buckley, Jonathan, E-mail: jonathan.buckley@plymouth.ac.uk [School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA (United Kingdom); Val, Adalberto L., E-mail: dalval@inpa.gov.br [Department of Ecology, Laboratory of Ecophysiology and Molecular Evolution, INPA, Manaus (Brazil); Sloman, Katherine A., E-mail: katherine.sloman@uws.ac.uk [School of Science, University of the West of Scotland, Paisley, PA1 2BE, Scotland (United Kingdom)

    2011-06-15

    The discus fish Symphysodon sp. is an Amazonian cichlid with a unusual form of parental care where fry obligately feed from parental mucus for the first few weeks of life. Here, we investigated the possible impact of environmental cadmium on this species, particularly with respect to mucus contamination. We exposed groups of fish to cadmium either through their food (400 mg kg{sup -1}) or through the water (3 {mu}g l{sup -1}) for 4 weeks, and measured tissue concentrations and ATPase activities at weekly intervals. Cadmium significantly accumulated in all tissues (except for muscle) after 7 days, and tissue concentrations increased until the end of the experiment. Significant alterations in ATPase activities of intestine and kidney were observed at day 7 and 14, but no alterations in gill ATPase activities occurred. The epidermal mucus showed a high accumulation of cadmium from both exposures, but particularly from the diet, indicating that dietary cadmium can be transferred from gut to mucus. Combining this data with approximations of fry bite volumes and bite frequencies, we constructed daily estimates of the cadmium that could potentially be consumed by newly hatched fry feeding on this mucus. These calculations suggest that feeding fry might consume up to 11 {mu}g g{sup -1} day{sup -1}, and hence indicate that this species' dependency on parental mucus feeding of fry could make them particularly susceptible to cadmium contamination of their native habitat.

  13. Cadmium analysis using field deployable nano-band electrode system and its removal using electrocoagulation

    Science.gov (United States)

    Guttula, Mallikarjuna Murthy

    Cadmium (Cd) is an extremely toxic metal commonly found in industrial workplaces. Major industrial releases of Cd stem from waste streams, leaching of landfills, and from a variety of operations that involve cadmium or zinc. Particularly, cadmium can be released to drinking water from the corrosion of some galvanized plumbing and water main pipe materials. The United State Environmental Protection Agency (USEPA) has set the Maximum Contaminant Level (MCL) for cadmium at 5 ppb. Long term exposure of cadmium above the MCL results in kidney, liver, bone and blood damage. An accurate and rapid measurement of cadmium in the field remains a technical challenge. In this work, a relatively new method of a Nano-Band Electrode system using anodic stripping voltammetry was optimized by changing deposition potential, electrolyte, and plating time. We efficiently used Electrocoagulation remove cadmium from wastewater and obtained a removal efficiency of +/-99%. Removal mechanism of cadmium in electrocoagulation was also proposed with the help of X-ray Diffraction (XRD), Attenuated Total Reflection - Fourier Transform Infra Red Spectroscopy (ATR-FTIR), and Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS).

  14. Influence of iron and zinc status on cadmium accumulation in Bangladeshi women

    International Nuclear Information System (INIS)

    Kippler, Maria; Ekstroem, Eva-Charlotte; Loennerdal, Bo; Goessler, Walter; Akesson, Agneta; El Arifeen, Shams; Persson, Lars-Ake; Vahter, Marie

    2007-01-01

    Cadmium is a widespread environmental contaminant present in food. The absorption in the intestine increases in individuals with low iron stores, but the effect of zinc deficiency is not clear. The aim of the present study was to assess the influence of iron and zinc status on cadmium accumulation in pregnant Bangladeshi women. We measured cadmium in urine from 890 women using inductively coupled plasma mass spectrometry (ICPMS). Further, we also measured ferritin and zinc in plasma. The median cadmium concentration in urine was 0.59 μg/L (adjusted to mean specific gravity of 1.012 g/mL). Analysis of covariance (ANCOVA) showed that urinary cadmium was associated with plasma ferritin and plasma zinc via a significant interaction between dichotomized plasma ferritin and plasma zinc. The analysis was adjusted for age and socioeconomic status. Women with low iron stores and adequate zinc status had significantly higher urinary cadmium compared to women with both adequate iron stores and zinc status. There was no difference in urinary cadmium between women with both low iron stores and zinc status compared to those with both adequate iron stores and zinc status. In conclusion, low iron stores were associated with increased cadmium accumulation, but only at adequate zinc status

  15. The effect of elevated cadmium content in soil on the uptake of nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Ciecko, Z.; Kalembasa, S.; Wyszkowski, M.; Rolka, E. [University of Warmia & Mazury Olsztyn, Olsztyn (Poland). Dept. of Environmental Chemistry

    2004-07-01

    The aim of this study was to determine the effect of cadmium (10, 20, 30 and 40 mg Cd/kg of soil) contamination in soil with the application of different substances (compost, brown coal, lime and bentonite) on the intake of nitrogen by some plants. The correlations between the nitrogen content in the plants and the cadmium concentration in the soil, as well as the plant yield and the content of micro- and macroelements in the plants were determined. Plant species and cadmium dose determined the effects of soil contamination with cadmium on the content of nitrogen. Large doses of cadmium caused an increase in nitrogen content in the Avena sativa straw and roots and in the Zea mays roots. Soil contamination with cadmium resulted in a decrease of nitrogen content in the Avena sativa grain, in above-ground parts and roots of the Lupinus luteus, in the above-ground parts of the Zea mays and in the above-ground parts and roots of Phacelia tanacaetifolia. Among the experimental different substances, the application of bentonite had the strongest and a usually negative effect on the nitrogen content in plants. The greatest effect of bentonite was on Avena sativa grain, above-ground parts Zea mays and Lupinus luteus and Phacelia tanacaetifolia. The content of nitrogen in the plants was generally positively correlated with the content of the macroelements and some of the microelements, regardless of the substances added to the soil.

  16. Cadmium in blood and hypertension

    International Nuclear Information System (INIS)

    Eum, Ki-Do; Lee, Mi-Sun; Paek, Domyung

    2008-01-01

    Objectives:: This study is to examine the effect of cadmium exposure on blood pressure in Korean general population. Methods:: The study population consisted of 958 men and 944 women who participated in the 2005 Korean National Health and Nutrition Examination Survey (KNHANES), in which blood pressure and blood cadmium were measured from each participant. Results:: The mean blood cadmium level was 1.67 μg/L (median level 1.55). The prevalence of hypertension was 26.2%. The blood cadmium level was significantly higher among those subjects with hypertension than those without (mean level 1.77 versus 1.64 μg/dL). After adjusting for covariates, the odds ratio of hypertension comparing the highest to the lowest tertile of cadmium in blood was 1.51 (95% confidence interval 1.13 to 2.05), and a dose-response relationship was observed. Systolic, diastolic, and mean arterial blood pressure were all positively associated with blood cadmium level, and this effect of cadmium on blood pressure was markedly stronger when the kidney function was reduced. Conclusions:: Cadmium exposures at the current level may have increased the blood pressure of Korean general population

  17. Cadmium in blood and hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Ki-Do; Lee, Mi-Sun [Department of Environmental Health, Graduate School of Public Health and Institute of Health and Environment, Seoul National University, Seoul (Korea, Republic of); Paek, Domyung [Department of Environmental Health, Graduate School of Public Health and Institute of Health and Environment, Seoul National University, Seoul (Korea, Republic of)], E-mail: paekdm@snu.ac.kr

    2008-12-15

    Objectives:: This study is to examine the effect of cadmium exposure on blood pressure in Korean general population. Methods:: The study population consisted of 958 men and 944 women who participated in the 2005 Korean National Health and Nutrition Examination Survey (KNHANES), in which blood pressure and blood cadmium were measured from each participant. Results:: The mean blood cadmium level was 1.67 {mu}g/L (median level 1.55). The prevalence of hypertension was 26.2%. The blood cadmium level was significantly higher among those subjects with hypertension than those without (mean level 1.77 versus 1.64 {mu}g/dL). After adjusting for covariates, the odds ratio of hypertension comparing the highest to the lowest tertile of cadmium in blood was 1.51 (95% confidence interval 1.13 to 2.05), and a dose-response relationship was observed. Systolic, diastolic, and mean arterial blood pressure were all positively associated with blood cadmium level, and this effect of cadmium on blood pressure was markedly stronger when the kidney function was reduced. Conclusions:: Cadmium exposures at the current level may have increased the blood pressure of Korean general population.

  18. 玉米秸秆生物炭对稻田土壤砷、镉形态的影响%Effects of waterlogging and application of bio-carbon from corn stalks on the physico-chemical properties and the forms of arsenic and cadmium in arsenic and cadmium-contaminated soils

    Institute of Scientific and Technical Information of China (English)

    张燕; 铁柏清; 刘孝利; 张淼; 叶长城; 彭鸥; 许蒙

    2018-01-01

    Effects of corn stover biechar (1% addition) prepared at different temperatures (300,400 and 500 ℃) on pH,oxidation-reduction potential and arsenic and cadmium contents in arsenic-cadmium polluted paddy soil under waterlogged conditon were investigated by indoor soil incubation.The corn stover biochar prepared at 300,400 and 500 ℃ were designated as CB-300,CB-400 and CB-500,respectively,with no addition of CB as blank control.The results showed that pyrolysis temperature has a significant effect on physical and chemical properties of corn straw.Increasing the pyrolysis temperature from 300 ℃ to 500 ℃ resulted in increases in aromaticity (corresponding to decrease in hydrophilicity and polarity),ash content and pH in corn stalks.Addition of corn straw biocoke increased The soil pH increased from 0.2 to 1.24 after addition of corn straw biocoke in soil,compared with CK and followed the order:CB-500>CB-400>CB-300>CK,and the pH reached equilibrium with prolongation of culture.The redox potential of soil under flooded condition decreased rapidly,and there was significant difference among different treatments.The higher the temperature of biocarbon preparation,the more obvious decreases in redox potential.The redox potential decreased to the lowest at 96th day.The percentage of extractable Cd in CK,CB-300,CB-400 and CB-500 decreased from 73.55% to 63.46%,57.73%,54.50% and 53.94%,respectively,and the cadmium changed from extractable and oxidizablestate to the residual and reducible state,with the extension of culture time.Soil pH exhibited a significant negative correlation with weak acid extractable cadmium.The content of exchangeable arsenic in the soil under waterlogged condition increased,and the exchangeable arsenic,calcium arsenic,aluminum arsenic and iron arsenic in the soil were increased by 75.68%,20.92% and 13.49% and 48.66%,respectively,however,residuestate arsenic dereased.There was a significant positive correlation between

  19. Avaliação dos níveis de chumbo e cádmio em leite em decorrência de contaminação ambiental na região do Vale do Paraíba, Sudeste do Brasil Evaluation of lead and cadmium levels in milk due to environmental contamination in the Paraiba Valley region of Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Isaura A. Okada

    1997-04-01

    Full Text Available INTRODUÇÃO: Localizada em Caçapava, SP, Brasil, indústria produtora de lingotes de chumbo provocou contaminação ambiental na região do Vale do Paraíba, com chumbo e cádmio. Com o objetivo de avaliar o grau de contaminação do leite produzido na região, devido à possível ingestão, pelo gado, de gramíneas e águas contaminadas, foram determinados os teores de chumbo e cádmio no leite. MATERIAL E MÉTODO: Foram analisadas 218 amostras de leite in natura e pasteurizado. O cádmio e o chumbo foram determinados por espectrofotometria de absorção atômica com chama. RESULTADOS E CONCLUSÕES: Das amostras analisadas, 43 apresentaram teores de chumbo acima do limite máximo estabelecido pela legislação brasileira que é 0,05 mg/kg. O valor da mediana encontrada para o chumbo foi 0,04 mg/L. Os níveis de cádmio em todas as amostras foram menores que o limite de quantificação do método que é 0,02 mg/L. Apesar da contaminação ambiental, os níveis encontrados para o cádmio no leite estão abaixo do limite estabelecido pela legislação brasileira que é 1,0 mg/kg.INTRODUCTION: A factory producing lead ingots, located in Caçapava, caused lead and cadmium contamination of the environment, in the Paraiba Valley region of Southeastern, Brazil, through the discharge of industrial waste and the recycling of batteries. The factory, set in a rural, dairy cattle breeding area, worried sanitary authorities who envisaged the possibility of these metals' having entered the food chain. For the purpose of assessing the levels of contamination of the milk produced in the region, due to the cattle's possible consumption of contaminated grass and water, the amounts of cadmium and lead present in the milk were verified. MATERIAL AND METHOD: Major producers, covering an area of up to 20 km from the contaminated source, authorized collection of 218 samples of both pasteurized and non-pasteurized milk, which were analysed. Lead and cadmium levels

  20. Cadmium exposure in the Swedish environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report gives a thorough description of cadmium in the Swedish environment. It comprises three parts: Cadmium in Sweden - environmental risks;, Cadmium in goods - contribution to environmental exposure;, and Cadmium in fertilizers, soil, crops and foods - the Swedish situation. Separate abstracts have been prepared for all three parts

  1. Cadmium and zinc

    International Nuclear Information System (INIS)

    Safaya, N.M.; McLean, J.E.; Halverson, G.A.

    1987-01-01

    Cadmium and zinc are naturally occurring trace metals that are often considered together because of their close geochemical association and similarities in chemical reactivity. The loss of two electrons from an atom of Cd or Zn imparts to each an electron configuration with completely filled d orbitals; this results in a highly stable 2/sup +/ oxidation state. But Cd and Zn differ greatly in their significance to biological systems. Whereas Zn is an essential nutrient for plants, animals, and humans, Cd is best known for its toxicity to plants and as a causative agent of several disease syndromes in animals and humans

  2. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  3. Sex differences in shotgun proteome analyses for chronic oral intake of cadmium in mice.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Yamanobe

    Full Text Available Environmental diseases related to cadmium exposure primarily develop owing to industrial wastewater pollution and/or contaminated food. In regions with high cadmium exposure in Japan, cadmium accumulation occurs primarily in the kidneys of individuals who are exposed to the metal. In contrast, in the itai-itai disease outbreak that occurred in the Jinzu River basin in Toyama Prefecture in Japan, cadmium primarily accumulated in the liver. On the other hand, high concentration of cadmium caused renal tubular disorder and osteomalacia (multiple bone fracture, probably resulting from the renal tubular dysfunction and additional pathology. In this study, we aimed to establish a mouse model of chronic cadmium intake. We administered cadmium-containing drinking water (32 mg/l to female and male mice ad libitum for 11 weeks. Metal analysis using inductively coupled plasma mass spectrometry revealed that cadmium accumulated in the kidneys (927 x 10 + 185 ng/g in females and 661 x 10 + 101 ng/g in males, liver (397 x 10 + 199 ng/g in females and 238 x 10 + 652 ng/g in males, and thyroid gland (293 + 93.7 ng/g in females and 129 + 72.7 ng/g in males of mice. Female mice showed higher cadmium accumulation in the kidney, liver, and thyroid gland than males did (p = 0.00345, p = 0.00213, and p = 0.0331, respectively. Shotgun proteome analyses after chronic oral administration of cadmium revealed that protein levels of glutathione S-transferase Mu2, Mu4, and Mu7 decreased in the liver, and those of A1 and A2 decreased in the kidneys in both female and male mice.

  4. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    International Nuclear Information System (INIS)

    Sinha, Parikhit; Kriegner, Christopher J.; Schew, William A.; Kaczmar, Swiatoslav W.; Traister, Matthew; Wilson, David J.

    2008-01-01

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted

  5. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Parikhit; Kriegner, Christopher J.; Schew, William A.; Kaczmar, Swiatoslav W.; Traister, Matthew; Wilson, David J. [O' Brien and Gere, Ecological Sciences, E. 512 Township Line Road, Two Valley Square, Suite 120, Blue Bell, PA 19422 (United States)

    2008-01-15

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted. (author)

  6. Cadmium colours: composition and properties

    International Nuclear Information System (INIS)

    Paulus, J.; Knuutinen, U.

    2004-01-01

    The composition and the properties of cadmium aquarelle colours are discussed. The examined colours were 24 different aquarelle cadmium colours from six different manufacturers. The colours ranged from light, bright yellows to dark, deep-red tones. The aim of this research was to find out if the pigments contain cadmium salts: sulphides and/or selenides. This information will help in choosing watercolours in conservation processes. Today, aquarelle colours not containing cadmium pigments are being sold as cadmium colours; thus their properties might be different from actual cadmium colours. The aim of the research was to verify that the colour samples contained cadmium pigments and to estimate their compositions and ageing properties. Element analyses were performed from colour samples using micro-chemical tests and X-ray fluorescence measurements. Thin-layer chromatography was used for analysing gum Arabic as a possible binding medium in the chosen colour samples. Through ageing tests, the resistance of the colour samples to the exposure to light, heat and humidity was studied. Visible-light spectroscopy was used in determining the hues and hue changes of the aquarelle colour samples. The spectrophotometer used the CIE L * a * b * tone colour measuring system. From the colour measurements the changes in the lightness/darkness, the redness, the yellowness and the saturation of the samples were examined. (orig.)

  7. Cadmium in the biofuel system

    International Nuclear Information System (INIS)

    Aabyhammar, T.; Fahlin, M.; Holmroos, S.

    1993-12-01

    Removal of biofuel depletes the soil of important nutrients. Investigations are being made of possibilities to return most of these nutrients by spreading the ashes remaining after combustion in the forest or on field. Return of ashes implies that both beneficial and harmful substances are returned. This study has been conducted to illustrate that the return of cadmium implies the greatest risk for negative influences. The occurrence, utilization, emissions and effects of cadmium are discussed. The behaviour of cadmium in soil is discussed in detail. Flows and quantities of cadmium in Swedish society are reviewed. Flows and quantities of both total and plant available cadmium in the entire forest and arable areas of Sweden are given. A scenario for a bioenergy system of max 100 TWh is discussed. The cadmium flow in different biofuels and forest raw products, and anticipated amounts of ashes and cadmium concentrations, are calculated. Power production from biofuels is surveyed. Possibilities to clean ashes have been examined in laboratory experiments. Ashes and trace elements occurring as a result of the gasification of biofuels are reviewed. Strategies for handling ashes are discussed. Proposals on continued inputs in both the biological and technical sciences are made. 146 refs, 23 figs, 38 tabs

  8. Histopathological changes in kidneys of free ranging animals in relation to lead and cadmium residues

    International Nuclear Information System (INIS)

    Beiglboeck, C.

    2000-05-01

    Kidney samples of 234 roe deer and 45 wild boars were collected in Lower Austria and Vienna, and were analyzed for lead and cadmium contents. Samples of the organs were examined histologically, considering 12 different morphological parameters. Influences of age, sex and origin of the animals on heavy metal burdens were assessed, and the possible correlation between histopathological changes and age, sex, origin and heavy metal concentrations in the kidneys was tested. Lead concentrations were low with medians (mg/kg wet tissue) being 0,062 in roe deer and 0,044 in wild boars. Neither age nor sex nor origin influenced the lead contents of the kidneys. Cadmium burden was fairly high, both in roe deer (median: 0,954) and wild boars (median: 3,009). It increased with age in both species, while female roe deer showed higher contents as well. No influence of the animals' origin was found. The correlation between histopathological changes and age, sex, origin and heavy metal concentrations in the kidneys was tested in 208 roe deer and 44 wild boars which showed no signs of kidney related diseases. In roe deer, the frequency of vacuolic degeneration, pycnotic nuclei, caryolysis and necrosis was related with increased cadmium concentrations. Increasing age correlated with lymphohistiocytic infiltration, interstitial fibrosis and swelling of glomeruli. Pigment deposits and thickening of the Bowman's capsule could be related to both cadmium and age. Furthermore, roe deer from Vienna more frequently showed alterations as observed in animals from Lower Austria. No correlation existed between morphological changes and lead concentrations or sex. In wild boars, there was no obvious relationship between all parameters tested and the frequency of histopathologic changes, except changes in pigmentation. Possible nephrotoxic agents in free ranging animals and the demonstrated influence of cadmium on severe kidney damage are discussed. (author)

  9. Cadmium determination in Lentinus edodes mushroom species

    Directory of Open Access Journals (Sweden)

    Vera Akiko Maihara

    2012-09-01

    Full Text Available Many studies have drawn attention to the occurrence and concentration of toxic elements found in the fruiting body of mushrooms. Some edible mushroom species are known to accumulate high levels of inorganic contaminants, mainly cadmium, mercury, and lead. There are about 2,000 known edible mushroom species, but only 25 of them are cultivated and used as food. In Brazil, the most marketed and consumed mushroom species are Agaricus bisporus, known as Paris champignon, Lentinus edodes, or Shitake and Pleurotus sp, also called Shimeji or Hiratake. In this study, the concentration of cadmium was determined in Lentinus edodes mushrooms from different cities in São Paulo state and some samples imported from Japan and China. The analyses were performed by graphite furnace atomic absorption spectrometry after HNO3-H2O2 digestion. The results showed a lower concentration of Cd in the mushrooms cultivated in São Paulo (0.0079 to 0.023 mg.kg-1 in natura than that of the mushrooms cultivated abroad (0.125 to 0.212 mg.kg-1 in natura. Although there is no tolerance limit for Cd in mushrooms in Brazil, the results show that Lentinus edodes mushrooms can be safely consumed.

  10. The characterization of the adsorption of cadmium from aqueous solution using natural fibers treated with nanoparticles

    Science.gov (United States)

    Rediske, Nicole M.

    The objective of this research was to characterize natural carbon fibers from coconut husks, both bare and impregnated with metallic nanoparticles, in removing cadmium from aqueous media. The adsorbent load, kinetics, isotherm parameters, removal efficiencies, desorption capacity and possible contaminant removal mechanisms were evaluated. It was found that the fibers treated with metallic nanoparticles performed better than the bare fibers in removing cadmium from water. The ideal conditions were found to be neutral pH with low initial cadmium concentrations. Through the kinetic analyses, the adsorption process was first thought to be pseudo first order with two separate adsorption mechanisms apparent. Upon further analysis, it was seen that the first mechanism does not follow the pseudo first order kinetics model. An increase in calcium and magnesium concentrations was observed as the cadmium concentrations decreases. This increase corresponds with first mechanism. This suggests the cadmium removal in the first mechanism is due to ion exchange. The second mechanism's rate constant was consistently lower than the first mechanisms rate constant by an order of magnitude. This led to the hypothesis that the second mechanism is controlled by van de Waals forces, specifically ion-induced dipole interactions, and physical adsorption. It was also found that the cadmium does not effectively desorb from the wasted fibers in DI water. Keywords: Adsorption; kinetics; pseudo first order; cadmium; metallic nanoparticles; natural fibers; removal efficiencies; ion exchange.

  11. Acute Toxicity of a Heavy Metal Cadmium to an Anuran, the Indian Skipper Frog Rana cyanophlyctis

    Directory of Open Access Journals (Sweden)

    Ajai Kumar Srivastav

    2016-08-01

    Full Text Available Background: There has been increasing awareness throughout the world regarding the remarkable decrease in amphibian population. For such amphibian population decline several causes have been given. Cadmium, a heavy metal is released both from natural sources (leaching of cadmium rich soils and anthropogenic activities to the aquatic and terrestrial environments. This study evaluated the toxicity of heavy metal cadmium to Indian skipper frog Rana cyanophlyctis. Methods: For the determination of LC50 values for cadmium, four-day static renewal acute toxicity test was used. Five replicates each containing ten frogs were subjected to each concentration of cadmium chloride (15, 20, 25, 30, 35, 40, 45 and 50 mg/L. At different exposure periods (24, 48, 72 and 96 h, the mortality of the frog was subjected to Probit analysis with the POLO-PC software (LeOra Software to calculate the LC50 and 95% confidence level. Results: The LC50 values of cadmium chloride for the frog R. cyanophlyctis at 24, 48, 72, and 96 h are 32.586, 29.994, 27.219 and 23.048 mg/L, respectively. The results have been discussed with the toxicity reported for other aquatic vertebrate --fish. Conclusion: Cadmium caused mortality to the frog and this could be one of the reasons for population decline of frogs which inhabit water contaminated with heavy metals.

  12. Heavy metals in wild boar (Sus scrofa and related lesions

    Directory of Open Access Journals (Sweden)

    A. Zaccaroni

    2003-10-01

    Full Text Available Heavy metals are toxic elements naturally present in the environment which can be bioconcentrated by plants and animals and incorporated into food cycles. Thus the use of wildlife species as monitors is a useful tool to assess environmental pollution. Because of its ethological characteristics, wild boar is highly probable to be exposed to pollution, mainly by heavy metals. These pollutants, when present at high enough concentrations, can induce histological lesion in various tissues. The purpose of the present work was to investigate the levels of five metals (cadmium, copper, iron, lead and zinc in wild boar, Sus scrofa, originating from an Apennine area of Emilia Romagna, Northern Italy, and to evaluate any possible correlation with histological lesions eventually observed. Samples of several organs (liver, heart, kidney, diaphragm, abductor muscle, masseter, eye, testis, brain, lung and spleen were collected from hunted animals during winter 2001. Levels of metals were determined on freeze dried tissues employing microwave wet digestion. Toxicological analysis were performed by atomic absorption spectrophotometry and data expressed on a dry weight basis. Histopatological analyses were performed on fixed samples of the same tissue. Highest mean values were found in kidney for cadmium and copper (7 ± 1 ppm and 30 ± 2.6 ppm respectively and in liver for copper (21.16 ± 3.28 ppm, lead (2139 ± 680.6 ppb, iron (415.92 ± 24.41 ppm and zinc (94.76 ± 6.11 ppm. In all other tissues, mean concentrations of each metal were at low levels, and were comparable one another. A statistical difference was found for iron (p<0.05, copper (p<0.05 and cadmium (p<0.01 in kidney, in testis (p<0.01 for zinc and in liver for copper (p<0.05 and cadmium (p<0.01 as function of age cohorts. When sex was considered, a statistical difference was found for iron in eye, for copper in heart and for cadmium in heart and kidney. Histopatological analysis allowed

  13. The use of vegetables in the biomonitoring of cadmium and lead pollution in the environment.

    Science.gov (United States)

    Szczygłowska, Marzena; Bodnar, Małgorzata; Namieśnik, Jacek; Konieczka, Piotr

    2014-01-01

    Lead and cadmium emitted from various anthropogenic sources have the ability to accumulate in tissues of living organisms. The phenomenon of accumulation of metals in the body is harmful and undesirable. The ability of plants to accumulate heavy