WorldWideScience

Sample records for cadence synchronized multi-camera

  1. Multi-camera synchronization core implemented on USB3 based FPGA platform

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Centered on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a new technique to synchronize up to 8 individual self-timed cameras with minimal error. Small form factor self-timed camera modules of 1 mm x 1 mm or smaller do not normally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge of synchronizing multiple selftimed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames, a Master-Slave interface was implemented. A single camera is defined as the Master, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the implementation of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  2. Accurate current synchronization trigger mode for multi-framing gated camera on YANG accelerator

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Huang Xianbin; Li Chenggang; Yang Libing; Wang Yuan; Zhang Kaizhi; Ye Yi

    2007-01-01

    The current synchronization trigger mode is important for Z-pinch experiments carried out on the YANG accelerator. The technology can solve the problem of low synchronization precision. The inherent delay time between the load current waveform and the experimental phenomenon can be adopted to obtain the synchronization trigger time. The correlative time precision about ns level can be achieved in this way. The photoelectric isolator and optical fiber are used in the synchronization trigger system to eliminate the electro-magnetic interference and many accurate measurements on the YANG accelerator can be realized. The application of this trigger mode to the multi-framing gated camera synchronization trigger system has done the trick. The evolution course of Z-pinch imploding plasma has been recorded with 3 ns exposure time and 10 ns interframing time. (authors)

  3. The Power of Auditory-Motor Synchronization in Sports: Enhancing Running Performance by Coupling Cadence with the Right Beats

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  4. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Directory of Open Access Journals (Sweden)

    Robert Jan Bood

    Full Text Available Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1 a control condition without acoustic stimuli, 2 a metronome condition with a sequence of beeps matching participants' cadence (synchronization, and 3 a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation. Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps. These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  5. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants' cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory

  6. Control system for several rotating mirror camera synchronization operation

    Science.gov (United States)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  7. An intelligent space for mobile robot localization using a multi-camera system.

    Science.gov (United States)

    Rampinelli, Mariana; Covre, Vitor Buback; de Queiroz, Felippe Mendonça; Vassallo, Raquel Frizera; Bastos-Filho, Teodiano Freire; Mazo, Manuel

    2014-08-15

    This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.

  8. An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Mariana Rampinelli

    2014-08-01

    Full Text Available This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.

  9. Computational imaging with multi-camera time-of-flight systems

    KAUST Repository

    Shrestha, Shikhar

    2016-07-11

    Depth cameras are a ubiquitous technology used in a wide range of applications, including robotic and machine vision, human computer interaction, autonomous vehicles as well as augmented and virtual reality. In this paper, we explore the design and applications of phased multi-camera time-of-flight (ToF) systems. We develop a reproducible hardware system that allows for the exposure times and waveforms of up to three cameras to be synchronized. Using this system, we analyze waveform interference between multiple light sources in ToF applications and propose simple solutions to this problem. Building on the concept of orthogonal frequency design, we demonstrate state-of-the-art results for instantaneous radial velocity capture via Doppler time-of-flight imaging and we explore new directions for optically probing global illumination, for example by de-scattering dynamic scenes and by non-line-of-sight motion detection via frequency gating. © 2016 ACM.

  10. The DECam Minute Cadence Survey

    Science.gov (United States)

    Belardi, C.; Kilic, M.; Munn, J. A.; Gianninas, A.; Barber, S. D.; Dey, A.; Stetson, P. B.

    2017-03-01

    We present the first results from a minute cadence survey of a 3 deg2 field obtained with the Dark Energy Camera. We imaged part of the Canada- France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g≤ 24.5 mag and search for eclipse-like events and other sources of variability. We find a new g=20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.

  11. Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA: MASCARA

    Science.gov (United States)

    Snellen, Ignas A. G.; Stuik, Remko; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; le Poole, Rudolf

    2012-09-01

    The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.

  12. FPGA based fast synchronous serial multi-wire links synchronization

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  13. Poster: A Software-Defined Multi-Camera Network

    OpenAIRE

    Chen, Po-Yen; Chen, Chien; Selvaraj, Parthiban; Claesen, Luc

    2016-01-01

    The widespread popularity of OpenFlow leads to a significant increase in the number of applications developed in SoftwareDefined Networking (SDN). In this work, we propose the architecture of a Software-Defined Multi-Camera Network consisting of small, flexible, economic, and programmable cameras which combine the functions of the processor, switch, and camera. A Software-Defined Multi-Camera Network can effectively reduce the overall network bandwidth and reduce a large amount of the Capex a...

  14. Multi Camera Multi Object Tracking using Block Search over Epipolar Geometry

    Directory of Open Access Journals (Sweden)

    Saman Sargolzaei

    2000-01-01

    Full Text Available We present strategy for multi-objects tracking in multi camera environment for the surveillance and security application where tracking multitude subjects are of utmost importance in a crowded scene. Our technique assumes partially overlapped multi-camera setup where cameras share common view from different angle to assess positions and activities of subjects under suspicion. To establish spatial correspondence between camera views we employ an epipolar geometry technique. We propose an overlapped block search method to find the interested pattern (target in new frames. Color pattern update scheme has been considered to further optimize the efficiency of the object tracking when object pattern changes due to object motion in the field of views of the cameras. Evaluation of our approach is presented with the results on PETS2007 dataset..

  15. IMAGE CAPTURE WITH SYNCHRONIZED MULTIPLE-CAMERAS FOR EXTRACTION OF ACCURATE GEOMETRIES

    Directory of Open Access Journals (Sweden)

    M. Koehl

    2016-06-01

    Full Text Available This paper presents a project of recording and modelling tunnels, traffic circles and roads from multiple sensors. The aim is the representation and the accurate 3D modelling of a selection of road infrastructures as dense point clouds in order to extract profiles and metrics from it. Indeed, these models will be used for the sizing of infrastructures in order to simulate exceptional convoy truck routes. The objective is to extract directly from the point clouds the heights, widths and lengths of bridges and tunnels, the diameter of gyrating and to highlight potential obstacles for a convoy. Light, mobile and fast acquisition approaches based on images and videos from a set of synchronized sensors have been tested in order to obtain useable point clouds. The presented solution is based on a combination of multiple low-cost cameras designed on an on-boarded device allowing dynamic captures. The experimental device containing GoPro Hero4 cameras has been set up and used for tests in static or mobile acquisitions. That way, various configurations have been tested by using multiple synchronized cameras. These configurations are discussed in order to highlight the best operational configuration according to the shape of the acquired objects. As the precise calibration of each sensor and its optics are major factors in the process of creation of accurate dense point clouds, and in order to reach the best quality available from such cameras, the estimation of the internal parameters of fisheye lenses of the cameras has been processed. Reference measures were also realized by using a 3D TLS (Faro Focus 3D to allow the accuracy assessment.

  16. Image Capture with Synchronized Multiple-Cameras for Extraction of Accurate Geometries

    Science.gov (United States)

    Koehl, M.; Delacourt, T.; Boutry, C.

    2016-06-01

    This paper presents a project of recording and modelling tunnels, traffic circles and roads from multiple sensors. The aim is the representation and the accurate 3D modelling of a selection of road infrastructures as dense point clouds in order to extract profiles and metrics from it. Indeed, these models will be used for the sizing of infrastructures in order to simulate exceptional convoy truck routes. The objective is to extract directly from the point clouds the heights, widths and lengths of bridges and tunnels, the diameter of gyrating and to highlight potential obstacles for a convoy. Light, mobile and fast acquisition approaches based on images and videos from a set of synchronized sensors have been tested in order to obtain useable point clouds. The presented solution is based on a combination of multiple low-cost cameras designed on an on-boarded device allowing dynamic captures. The experimental device containing GoPro Hero4 cameras has been set up and used for tests in static or mobile acquisitions. That way, various configurations have been tested by using multiple synchronized cameras. These configurations are discussed in order to highlight the best operational configuration according to the shape of the acquired objects. As the precise calibration of each sensor and its optics are major factors in the process of creation of accurate dense point clouds, and in order to reach the best quality available from such cameras, the estimation of the internal parameters of fisheye lenses of the cameras has been processed. Reference measures were also realized by using a 3D TLS (Faro Focus 3D) to allow the accuracy assessment.

  17. Interaction Control Protocols for Distributed Multi-user Multi-camera Environments

    Directory of Open Access Journals (Sweden)

    Gareth W Daniel

    2003-10-01

    Full Text Available Video-centred communication (e.g., video conferencing, multimedia online learning, traffic monitoring, and surveillance is becoming a customary activity in our lives. The management of interactions in such an environment is a complicated HCI issue. In this paper, we present our study on a collection of interaction control protocols for distributed multiuser multi-camera environments. These protocols facilitate different approaches to managing a user's entitlement for controlling a particular camera. We describe a web-based system that allows multiple users to manipulate multiple cameras in varying remote locations. The system was developed using the Java framework, and all protocols discussed have been incorporated into the system. Experiments were designed and conducted to evaluate the effectiveness of these protocols, and to enable the identification of various human factors in a distributed multi-user and multi-camera environment. This work provides an insight into the complexity associated with the interaction management in video-centred communication. It can also serve as a conceptual and experimental framework for further research in this area.

  18. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    Science.gov (United States)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  19. Automatic multi-camera calibration for deployable positioning systems

    Science.gov (United States)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  20. Distributed cooperative synchronization strategy for multi-bus microgrids

    DEFF Research Database (Denmark)

    Sun, Yao; Zhong, Chaolu; Hou, Xiaochao

    2017-01-01

    Microgrids can operate in both grid-connected mode and islanded mode. In order to smooth transfer from islanded mode to grid-connected mode, it is necessary to synchronize the point of common coupling (PCC) with main utility grid (UG) in voltage frequency, phase and amplitude. Conventional...... synchronization methods based on centralized communication are very costly and not suitable for multi-bus microgrids that have a large number of distributed generators (DGs). To address this concern, this study presents an active synchronization control strategy based on distributed cooperation technology...... for multi-bus microgrids. The proposed method can reconnect the microgrid in island to UG seamlessly with sparse communication channels. Synchronization correction signals are generated by a voltage controller, which are only transmitted to the leader DGs. Meanwhile, each DG exchanges information with its...

  1. The influence of musical cadence into aquatic jumping jacks kinematics.

    Science.gov (United States)

    Costa, Mário J; Oliveira, Cristiana; Teixeira, Genoveva; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M

    2011-01-01

    The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface). Subjects performed an incremental protocol of five bouts (120 b·min(-1), 135 b·min(-1), 150 b·min(-1), 165 b·min(-1) and 180 b·min(-1)) with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands), lower limbs' (i.e. feet) and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence. Key pointsWhile performing the Jumping Jacks, expert and fit subjects increase their lower limbs segmental velocity to maintain the range of motion.The upper limbs displacement is reduced to maintain the music cadence.Expert and fit subjects present similar response for alternating or simultaneously head-out aquatic exercises when increasing the music cadence.

  2. Multi-Angle Snowflake Camera Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Martin [Univ. of Alaska, Fairbanks, AK (United States); Bailey, J. [Univ. of Alaska, Fairbanks, AK (United States)

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASC cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.

  3. Multi-rate equivalents of cyclo-static synchronous dataflow graphs

    NARCIS (Netherlands)

    de Groote, Robert; Holzenspies, P.K.F.; Kuper, Jan; Smit, Gerardus Johannes Maria

    In this paper, we present a transformation that takes a cyclo-static dataflow (CSDF) graph and produces an equivalent multi-rate synchronous dataflow (MRSDF) graph. This fills a gap in existing analysis techniques for synchronous dataflow graphs; transformations into equivalent homogeneous

  4. Multi-Angle Snowflake Camera Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Shkurko, Konstantin [Univ. of Utah, Salt Lake City, UT (United States); Garrett, T. [Univ. of Utah, Salt Lake City, UT (United States); Gaustad, K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-01

    The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32 mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.

  5. The multi-camera optical surveillance system (MOS)

    International Nuclear Information System (INIS)

    Otto, P.; Wagner, H.; Richter, B.; Gaertner, K.J.; Laszlo, G.; Neumann, G.

    1991-01-01

    The transition from film camera to video surveillance systems, in particular the implementation of high capacity multi-camera video systems, results in a large increase in the amount of recorded scenes. Consequently, there is a substantial increase in the manpower requirements for review. Moreover, modern microprocessor controlled equipment facilitates the collection of additional data associated with each scene. Both the scene and the annotated information have to be evaluated by the inspector. The design of video surveillance systems for safeguards necessarily has to account for both appropriate recording and reviewing techniques. An aspect of principal importance is that the video information is stored on tape. Under the German Support Programme to the Agency a technical concept has been developed which aims at optimizing the capabilities of a multi-camera optical surveillance (MOS) system including the reviewing technique. This concept is presented in the following paper including a discussion of reviewing and reliability

  6. Multi-beam synchronous measurement based on PSD phase detection using frequency-domain multiplexing

    Science.gov (United States)

    Duan, Ying; Qin, Lan; Xue, Lian; Xi, Feng; Mao, Jiubing

    2013-10-01

    According to the principle of centroid measurement, position-sensitive detectors (PSD) are commonly used for micro displacement detection. However, single-beam detection method cannot satisfy such tasks as multi-dimension position measurement, three dimension vision reconstruction, and robot precision positioning, which require synchronous measurement of multiple light beams. Consequently, we designed PSD phase detection method using frequency-domain multiplexing for synchronous detection of multiple modulated light beams. Compared to previous PSD amplitude detection method, the phase detection method using FDM has advantages of simplified measuring system, low cost, high capability of resistance to light interference as well as improved resolution. The feasibility of multi-beam synchronous measurement based on PSD phase detection using FDM was validated by multi-beam measuring experiments. The maximum non-linearity error of the multi-beam synchronous measurement is 6.62%.

  7. Global Calibration of Multi-Cameras Based on Refractive Projection and Ray Tracing

    Directory of Open Access Journals (Sweden)

    Mingchi Feng

    2017-10-01

    Full Text Available Multi-camera systems are widely applied in the three dimensional (3D computer vision, especially when multiple cameras are distributed on both sides of the measured object. The calibration methods of multi-camera systems are critical to the accuracy of vision measurement and the key is to find an appropriate calibration target. In this paper, a high-precision camera calibration method for multi-camera systems based on transparent glass checkerboards and ray tracing is described, and is used to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the intrinsic parameters of each camera are obtained by Zhang’s calibration method. Then, multiple cameras capture several images from the front and back of the glass checkerboard with different orientations, and all images contain distinct grid corners. As the cameras on one side are not affected by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However, the cameras on the other side are influenced by the refraction of glass checkerboard, and the direct use of projection model will produce a calibration error. A multi-camera calibration method using refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both synthetic and real data are employed to validate the proposed approach. The experimental results of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean and standard deviation of reprojection error of the four-camera system are 0.00007 and 0.4543 pixels, respectively. The proposed method is flexible, highly accurate, and simple to carry out.

  8. User-assisted visual search and tracking across distributed multi-camera networks

    Science.gov (United States)

    Raja, Yogesh; Gong, Shaogang; Xiang, Tao

    2011-11-01

    Human CCTV operators face several challenges in their task which can lead to missed events, people or associations, including: (a) data overload in large distributed multi-camera environments; (b) short attention span; (c) limited knowledge of what to look for; and (d) lack of access to non-visual contextual intelligence to aid search. Developing a system to aid human operators and alleviate such burdens requires addressing the problem of automatic re-identification of people across disjoint camera views, a matching task made difficult by factors such as lighting, viewpoint and pose changes and for which absolute scoring approaches are not best suited. Accordingly, we describe a distributed multi-camera tracking (MCT) system to visually aid human operators in associating people and objects effectively over multiple disjoint camera views in a large public space. The system comprises three key novel components: (1) relative measures of ranking rather than absolute scoring to learn the best features for matching; (2) multi-camera behaviour profiling as higher-level knowledge to reduce the search space and increase the chance of finding correct matches; and (3) human-assisted data mining to interactively guide search and in the process recover missing detections and discover previously unknown associations. We provide an extensive evaluation of the greater effectiveness of the system as compared to existing approaches on industry-standard i-LIDS multi-camera data.

  9. Back to basics: homogeneous representations of multi-rate synchronous dataflow graphs

    NARCIS (Netherlands)

    de Groote, Robert; Holzenspies, P.K.F.; Kuper, Jan; Broersma, Haitze J.

    2013-01-01

    Exact temporal analyses of multi-rate synchronous dataflow (MRSDF) graphs, such as computing the maximum achievable throughput, or sufficient buffer sizes required to reach a minimum throughput, require a homogeneous representation called a homogeneous synchronous dataflow (HSDF) graph. The size of

  10. Cycling cadence affects heart rate variability

    International Nuclear Information System (INIS)

    Lunt, Heather C; Corbett, Jo; Barwood, Martin J; Tipton, Michael J

    2011-01-01

    The purpose of this study was to examine the effect different cycling cadences have on heart rate variability (HRV) when exercising at constant power outputs. Sixteen males had ECG and respiratory measurements recorded at rest and during 8, 10 min periods of cycling at four different cadences (40, 60, 80 and 100 revs min −1 ) and two power outputs (0 W (unloaded) and 100 W (loaded)). The cycling periods were performed following a Latin square design. Spectral analyses of R–R intervals by fast Fourier transforms were used to quantify absolute frequency domain HRV indices (ms 2 ) during the final 5 min of each bout, which were then log transformed using the natural logarithm (Ln). HRV indices of high frequency (HF) power were reduced when cadence was increased (during unloaded cycling (0 W) log transformed HF power decreased from a mean [SD] of 6.3 [1.4] Ln ms 2 at 40 revs min −1 to 3.9 [1.3] Ln ms 2 at 100 revs min −1 ). During loaded cycling (at 100 W), the low to high frequency (LF:HF) ratio formed a 'J' shaped curve as cadence increased from 40 revs min −1 (1.4 [0.4]) to 100 revs min −1 (1.9 [0.7]), but dipped below the 40 revs min −1 values during the 60 revs min −1 1.1 (0.3) and 80 revs min −1 1.2 (0.6) cadence conditions. Cardiac frequency (f C ) and ventilatory variables were strongly correlated with frequency domain HRV indices (r = −0.80 to −0.95). It is concluded that HRV indices are influenced by both cycling cadence and power output; this is mediated by the f C and ventilatory changes that occur as cadence or exercise intensity is increased. Consequently, if HRV is assessed during exercise, both power output/exercise intensity and cadence should be standardized

  11. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    Directory of Open Access Journals (Sweden)

    Sergio Orts-Escolano

    2014-04-01

    Full Text Available In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units. It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.

  12. Spontaneous Entrainment of Running Cadence to Music Tempo.

    Science.gov (United States)

    Van Dyck, Edith; Moens, Bart; Buhmann, Jeska; Demey, Michiel; Coorevits, Esther; Dalla Bella, Simone; Leman, Marc

    Since accumulating evidence suggests that step rate is strongly associated with running-related injuries, it is important for runners to exercise at an appropriate running cadence. As music tempo has been shown to be capable of impacting exercise performance of repetitive endurance activities, it might also serve as a means to (re)shape running cadence. The aim of this study was to validate the impact of music tempo on running cadence. Sixteen recreational runners ran four laps of 200 m (i.e. 800 m in total); this task was repeated 11 times with a short break in between each four-lap sequence. During the first lap of a sequence, participants ran at a self-paced tempo without musical accompaniment. Running cadence of the first lap was registered, and during the second lap, music with a tempo matching the assessed cadence was played. In the final two laps, the music tempo was either increased/decreased by 3.00, 2.50, 2.00, 1.50, or 1.00 % or was kept stable. This range was chosen since the aim of this study was to test spontaneous entrainment (an average person can distinguish tempo variations of about 4 %). Each participant performed all conditions. Imperceptible shifts in musical tempi in proportion to the runner's self-paced running tempo significantly influenced running cadence ( p  tempo conditions and adaptation in running cadence ( p  effect of condition on the level of entrainment was revealed ( p  effects of music tempo on running cadence can only be obtained up to a certain level of tempo modification. Finally, significantly higher levels of tempo entrainment were found for female participants compared to their male counterparts ( p  music tempo could serve as an unprompted means to impact running cadence. As increases in step rate may prove beneficial in the prevention and treatment of common running-related injuries, this finding could be especially relevant for treatment purposes, such as exercise prescription and gait retraining. Music tempo

  13. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  14. Multi-person tracking with overlapping cameras in complex, dynamic environments

    NARCIS (Netherlands)

    Liem, M.; Gavrila, D.M.

    2009-01-01

    This paper presents a multi-camera system to track multiple persons in complex, dynamic environments. Position measurements are obtained by carving out the space defined by foreground regions in the overlapping camera views and projecting these onto blobs on the ground plane. Person appearance is

  15. A Quality Evaluation of Single and Multiple Camera Calibration Approaches for an Indoor Multi Camera Tracking System

    Directory of Open Access Journals (Sweden)

    M. Adduci

    2014-06-01

    Full Text Available Human detection and tracking has been a prominent research area for several scientists around the globe. State of the art algorithms have been implemented, refined and accelerated to significantly improve the detection rate and eliminate false positives. While 2D approaches are well investigated, 3D human detection and tracking is still an unexplored research field. In both 2D/3D cases, introducing a multi camera system could vastly expand the accuracy and confidence of the tracking process. Within this work, a quality evaluation is performed on a multi RGB-D camera indoor tracking system for examining how camera calibration and pose can affect the quality of human tracks in the scene, independently from the detection and tracking approach used. After performing a calibration step on every Kinect sensor, state of the art single camera pose estimators were evaluated for checking how good the quality of the poses is estimated using planar objects such as an ordinate chessboard. With this information, a bundle block adjustment and ICP were performed for verifying the accuracy of the single pose estimators in a multi camera configuration system. Results have shown that single camera estimators provide high accuracy results of less than half a pixel forcing the bundle to converge after very few iterations. In relation to ICP, relative information between cloud pairs is more or less preserved giving a low score of fitting between concatenated pairs. Finally, sensor calibration proved to be an essential step for achieving maximum accuracy in the generated point clouds, and therefore in the accuracy of the produced 3D trajectories, from each sensor.

  16. A framework for multi-object tracking over distributed wireless camera networks

    Science.gov (United States)

    Gau, Victor; Hwang, Jenq-Neng

    2010-07-01

    In this paper, we propose a unified framework targeting at two important issues in a distributed wireless camera network, i.e., object tracking and network communication, to achieve reliable multi-object tracking over distributed wireless camera networks. In the object tracking part, we propose a fully automated approach for tracking of multiple objects across multiple cameras with overlapping and non-overlapping field of views without initial training. To effectively exchange the tracking information among the distributed cameras, we proposed an idle probability based broadcasting method, iPro, which adaptively adjusts the broadcast probability to improve the broadcast effectiveness in a dense saturated camera network. Experimental results for the multi-object tracking demonstrate the promising performance of our approach on real video sequences for cameras with overlapping and non-overlapping views. The modeling and ns-2 simulation results show that iPro almost approaches the theoretical performance upper bound if cameras are within each other's transmission range. In more general scenarios, e.g., in case of hidden node problems, the simulation results show that iPro significantly outperforms standard IEEE 802.11, especially when the number of competing nodes increases.

  17. Video Surveillance using a Multi-Camera Tracking and Fusion System

    OpenAIRE

    Zhang , Zhong; Scanlon , Andrew; Yin , Weihong; Yu , Li; Venetianer , Péter L.

    2008-01-01

    International audience; Usage of intelligent video surveillance (IVS) systems is spreading rapidly. These systems are being utilized in a wide range of applications. In most cases, even in multi-camera installations, the video is processed independently in each feed. This paper describes a system that fuses tracking information from multiple cameras, thus vastly expanding its capabilities. The fusion relies on all cameras being calibrated to a site map, while the individual sensors remain lar...

  18. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  19. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    International Nuclear Information System (INIS)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-01-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s −1 , the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay. (paper)

  20. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    Science.gov (United States)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-05-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.

  1. Distributed Sensing and Processing for Multi-Camera Networks

    Science.gov (United States)

    Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.

    Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

  2. Adaptive Synchronization for Heterogeneous Multi-Agent Systems with Switching Topologies

    Directory of Open Access Journals (Sweden)

    Muhammad Ridho Rosa

    2018-02-01

    Full Text Available This work provides a multi-agent extension of output-feedback model reference adaptive control (MRAC, designed to synchronize a network of heterogeneous uncertain agents. The implementation of this scheme is based on multi-agent matching conditions. The practical advantage of the proposed MRAC is the possibility of handling the case of the unknown dynamics of the agents only by using the output and the control input of its neighbors. In addition, it is reasonable to consider the case when the communication topology is time-varying. In this work, the time-varying communication leads to a switching control structure that depends on the number of the predecessor of the agents. By using the switching control structure to handle the time-varying topologies, we show that synchronization can be achieved. The multi-agent adaptive switching controller is first analyzed, and numerical simulations based on formation control of simplifier quadcopter dynamics are provided.

  3. Stroboscope Based Synchronization of Full Frame CCD Sensors.

    Science.gov (United States)

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-04-07

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  4. Self-discharge synchronizing operations in the external electrode fluorescent multi-lamps backlight

    International Nuclear Information System (INIS)

    Cho, Guangsup; Kwon, Nam O; Kim, Young M; Kim, Sung J; Cho, Tae S; Kim, Bong S; Kang, June G; Choi, Eun H; Lee, Ung W; Yang, Soon C; Uhm, Han S

    2003-01-01

    The external electrode fluorescent lamp (EEFL) is operated in a high frequency mode because the lamp lighting is basically a dielectric barrier discharge. The self-discharge synchronization is defined by synchronizing the self-discharge time of the dielectric wall charge with the voltage rising and falling time. It is shown that for the self-discharge synchronization a high brightness is obtained in the multi-lamps backlight connected in parallel with the EEFLs operated with square waves from a switching inverter. The frequency for self-discharge synchronizing is also shown to increase as the driving voltage increases

  5. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    Science.gov (United States)

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  7. Stroboscope Based Synchronization of Full Frame CCD Sensors

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-04-01

    Full Text Available The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  8. Aluminum-coated optical fibers as efficient infrared timing fiducial photocathodes for synchronizing x-ray streak cameras

    International Nuclear Information System (INIS)

    Koch, J.A.; MacGowan, B.J.

    1991-01-01

    The timing fiducial system at the Nova Two-Beam Facility allows time-resolved x-ray and optical streak camera data from laser-produced plasmas to be synchronized to within 30 ps. In this system, an Al-coated optical fiber is inserted into an aperture in the cathode plate of each streak camera. The coating acts as a photocathode for a low-energy pulse of 1ω (λ = 1.054 μm) light which is synchronized to the main Nova beam. The use of the fundamental (1ω) for this fiducial pulse has been found to offer significant advantages over the use of the 2ω second harmonic (λ = 0.53 μm). These advantages include brighter signals, greater reliability, and a higher relative damage threshold, allowing routine use without fiber replacement. The operation of the system is described, and experimental data and interpretations are discussed which suggest that the electron production in the Al film is due to thermionic emission. The results of detailed numerical simulations of the relevant thermal processes, undertaken to model the response of the coated fiber to 1ω laser pulses, are also presented, which give qualitative agreement with experimental data. Quantitative discrepancies between the modeling results and the experimental data are discussed, and suggestions for further research are given

  9. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    International Nuclear Information System (INIS)

    Anderson, Robert J.

    2014-01-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  10. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  11. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Robotic and Security Systems Dept.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  12. Multi-Synchronization Caused by Uniform Disorder for Globally Coupled Maps

    International Nuclear Information System (INIS)

    Jing-Hui, Li

    2008-01-01

    We investigate the motion of the globally coupled maps (logistic map) driven by uniform disorder. It is shown that this disorder can produce multi-synchronization for the globally coupled chaotic maps studied by us. The disorder determines the synchronized dynamics, leading to the emergence of a wide range of new collective behaviour in which the individual units in isolation are incapable of producing in the absence of the disorder. Our results imply that the disorder can tame the collective motion of the coupled chaotic maps

  13. Wired and Wireless Camera Triggering with Arduino

    Science.gov (United States)

    Kauhanen, H.; Rönnholm, P.

    2017-10-01

    Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.

  14. Information Design for Synchronization and Co-ordination of Modern, Complex, Multi-National Operations

    Science.gov (United States)

    2011-06-01

    1 16th ICCRTS Information design for synchronization and co-ordination of modern, complex, multi- national operations “Collective C2 in...REPORT DATE JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Information design for synchronization and co...at 11th ICCRTS) who emphasise that information needs to be designed, not merely found or catalogued, to achieve synchronizations and co-ordinations

  15. Oblique Multi-Camera Systems - Orientation and Dense Matching Issues

    Science.gov (United States)

    Rupnik, E.; Nex, F.; Remondino, F.

    2014-03-01

    The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  16. Stroboscope Based Synchronization of Full Frame CCD Sensors

    OpenAIRE

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-01-01

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equi...

  17. Multi-spectral CCD camera system for ocean water color and seacoast observation

    Science.gov (United States)

    Zhu, Min; Chen, Shiping; Wu, Yanlin; Huang, Qiaolin; Jin, Weiqi

    2001-10-01

    One of the earth observing instruments on HY-1 Satellite which will be launched in 2001, the multi-spectral CCD camera system, is developed by Beijing Institute of Space Mechanics & Electricity (BISME), Chinese Academy of Space Technology (CAST). In 798 km orbit, the system can provide images with 250 m ground resolution and a swath of 500 km. It is mainly used for coast zone dynamic mapping and oceanic watercolor monitoring, which include the pollution of offshore and coast zone, plant cover, watercolor, ice, terrain underwater, suspended sediment, mudflat, soil and vapor gross. The multi- spectral camera system is composed of four monocolor CCD cameras, which are line array-based, 'push-broom' scanning cameras, and responding for four spectral bands. The camera system adapts view field registration; that is, each camera scans the same region at the same moment. Each of them contains optics, focal plane assembly, electrical circuit, installation structure, calibration system, thermal control and so on. The primary features on the camera system are: (1) Offset of the central wavelength is better than 5 nm; (2) Degree of polarization is less than 0.5%; (3) Signal-to-noise ratio is about 1000; (4) Dynamic range is better than 2000:1; (5) Registration precision is better than 0.3 pixel; (6) Quantization value is 12 bit.

  18. INVESTIGATION OF PARALLAX ISSUES FOR MULTI-LENS MULTISPECTRAL CAMERA BAND CO-REGISTRATION

    Directory of Open Access Journals (Sweden)

    J. P. Jhan

    2017-08-01

    Full Text Available The multi-lens multispectral cameras (MSCs, such as Micasense Rededge and Parrot Sequoia, can record multispectral information by each separated lenses. With their lightweight and small size, which making they are more suitable for mounting on an Unmanned Aerial System (UAS to collect high spatial images for vegetation investigation. However, due to the multi-sensor geometry of multi-lens structure induces significant band misregistration effects in original image, performing band co-registration is necessary in order to obtain accurate spectral information. A robust and adaptive band-to-band image transform (RABBIT is proposed to perform band co-registration of multi-lens MSCs. First is to obtain the camera rig information from camera system calibration, and utilizes the calibrated results for performing image transformation and lens distortion correction. Since the calibration uncertainty leads to different amount of systematic errors, the last step is to optimize the results in order to acquire a better co-registration accuracy. Due to the potential issues of parallax that will cause significant band misregistration effects when images are closer to the targets, four datasets thus acquired from Rededge and Sequoia were applied to evaluate the performance of RABBIT, including aerial and close-range imagery. From the results of aerial images, it shows that RABBIT can achieve sub-pixel accuracy level that is suitable for the band co-registration purpose of any multi-lens MSC. In addition, the results of close-range images also has same performance, if we focus on the band co-registration on specific target for 3D modelling, or when the target has equal distance to the camera.

  19. Image synchronization for 3D application using the NanEye sensor

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Based on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a novel technique to perfectly synchronize up to 8 individual self-timed cameras. Minimal form factor self-timed camera modules of 1 mm x 1 mm or smaller do not generally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge to synchronize multiple self-timed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras to synchronize their frame rate and frame phase. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames of multiple cameras, a Master-Slave interface was implemented. A single camera is defined as the Master entity, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the realization of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  20. Pinning adaptive synchronization of a class of uncertain complex dynamical networks with multi-link against network deterioration

    International Nuclear Information System (INIS)

    Li, Lixiang; Li, Weiwei; Kurths, Jürgen; Luo, Qun; Yang, Yixian; Li, Shudong

    2015-01-01

    For the reason that the uncertain complex dynamic network with multi-link is quite close to various practical networks, there is superiority in the fields of research and application. In this paper, we focus upon pinning adaptive synchronization for uncertain complex dynamic networks with multi-link against network deterioration. The pinning approach can be applied to adapt uncertain coupling factors of deteriorated networks which can compensate effects of uncertainty. Several new synchronization criterions for networks with multi-link are derived, which ensure the synchronized states to be local or global stable with uncertainty and deterioration. Results of simulation are shown to demonstrate the feasibility and usefulness of our method

  1. Towards jitter free synchronization of synchroscan streak cameras by noisy periodic laser pulses

    International Nuclear Information System (INIS)

    Cunin, B.; Heisel, F.; Miehe, J.A.

    1991-01-01

    In connection with the parameters characterizing the phase noise in cw mode-locked lasers and under the employ of streak cameras operated by sinewave deflection, the timing capabilities of the measuring system for two commonly used synchronization techniques are discussed by stochastic description. Especially, the power spectrum of the sweep signal versus the laser phase noise is examined in detail. The theoretical results are used to interpret experimental observations recorded by means of actively and passively mode-locked lasers. One of the interesting applications of synchroscan operations to metrology is the determination of short-term instabilities of the oscillator on a time scale near to the period. (author) 12 refs.; 3 figs

  2. Using synchronization in multi-model ensembles to improve prediction

    Science.gov (United States)

    Hiemstra, P.; Selten, F.

    2012-04-01

    In recent decades, many climate models have been developed to understand and predict the behavior of the Earth's climate system. Although these models are all based on the same basic physical principles, they still show different behavior. This is for example caused by the choice of how to parametrize sub-grid scale processes. One method to combine these imperfect models, is to run a multi-model ensemble. The models are given identical initial conditions and are integrated forward in time. A multi-model estimate can for example be a weighted mean of the ensemble members. We propose to go a step further, and try to obtain synchronization between the imperfect models by connecting the multi-model ensemble, and exchanging information. The combined multi-model ensemble is also known as a supermodel. The supermodel has learned from observations how to optimally exchange information between the ensemble members. In this study we focused on the density and formulation of the onnections within the supermodel. The main question was whether we could obtain syn-chronization between two climate models when connecting only a subset of their state spaces. Limiting the connected subspace has two advantages: 1) it limits the transfer of data (bytes) between the ensemble, which can be a limiting factor in large scale climate models, and 2) learning the optimal connection strategy from observations is easier. To answer the research question, we connected two identical quasi-geostrohic (QG) atmospheric models to each other, where the model have different initial conditions. The QG model is a qualitatively realistic simulation of the winter flow on the Northern hemisphere, has three layers and uses a spectral imple-mentation. We connected the models in the original spherical harmonical state space, and in linear combinations of these spherical harmonics, i.e. Empirical Orthogonal Functions (EOFs). We show that when connecting through spherical harmonics, we only need to connect 28% of

  3. On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras

    Science.gov (United States)

    Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.

    2017-11-01

    PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.

  4. Permanent synchronization of camcorders via LANC protocol

    Science.gov (United States)

    Vrancic, Damir; Smith, Steven L.

    2006-02-01

    A device, which keeps two camcorders permanently in synchronization, has been developed. The mentioned device uses LANC (CONTROL-L) camcorder's inputs for synchronization. It enables controlling of two camcorders simultaneously via built-in buttons, by using external LANC remote controller and/or by the PC via serial (RS232) communication. Since device requires LANC inputs on camcorders or ACC inputs on still cameras, it can be used on some camcorders produced by manufacturers Sony and Canon or some still cameras produced by Sony. The device initially synchronizes camcorders or still cameras by applying arbitrarily delayed power-up pulses on LANC (ACC) inputs. Then, on user demand, the camcorders can be permanently synchronized (valid only for some camcorders produced by Sony). The effectiveness of the proposed device is demonstrated by several experiments on three types of camcorders (DCR-TRV900E, HDR-HC1, HVR-Z1U) and one type of still camera (DSC-V1). The electronic schemes, PCB layouts, firmware and communication programs are freely available (under GPL licence).

  5. OBLIQUE MULTI-CAMERA SYSTEMS – ORIENTATION AND DENSE MATCHING ISSUES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2014-03-01

    Full Text Available The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.. The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  6. Synchronization of binocular motion parameters optoelectronic measurement system

    Science.gov (United States)

    Zhang, Lingfei; Ye, Dong; Che, Rensheng; Chen, Gang

    2008-10-01

    The synchronization between high-speed digital cameras and computers is very important for the binocular vision system based on light-weighted passive IR reflective markers and IR LED array PCB board, which is often used to measure the 3-D motion parameters of a rocket motor. In order to solve this problem, a comparison on the existing approaches to camera synchronization in the published literature was conducted. The advantages and disadvantages of the currently used methods were illustrated and their suitable applications were discussed. A new method, which uses self-made hardware resetting camera and software triggering image acquisition board, is provided. The self-made hardware is used to send TTL signal to two image acquisition boards one time per second. The TTL signal is used to reset two cameras and two image acquisition boards as PRIN signal, and then two image acquisition boards send same EXSYNC signal to two cameras. In this way, two cameras can be synchronized to exposure and capture images in the mean time. The test results indicated that the new approach designed in this paper can meet the demand of image acquisition at a speed of 200f/s, whose synchronization accuracy is up to micro second.

  7. Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems.

    Science.gov (United States)

    Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan

    2015-11-01

    This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  9. Synchronization of streak and framing camera measurements of an intense relativistic electron beam propagating through gas

    International Nuclear Information System (INIS)

    Weidman, D.J.; Murphy, D.P.; Myers, M.C.; Meger, R.A.

    1994-01-01

    The expansion of the radius of a 5 MeV, 20 kA, 40 ns electron beam from SuperIBEX during propagation through gas is being measured. The beam is generated, conditions, equilibrated, and then passed through a thin foil that produces Cherenkov light, which is recorded by a streak camera. At a second location, the beam hits another Cherenkov emitter, which is viewed by a framing camera. Measurements at these two locations can provide a time-resolved measure of the beam expansion. The two measurements, however, must be synchronized with each other, because the beam radius is not constant throughout the pulse due to variations in beam current and energy. To correlate the timing of the two diagnostics, several shots have been taken with both diagnostics viewing Cherenkov light from the same foil. Experimental measurements of the Cherenkov light from one foil viewed by both diagnostics will be presented to demonstrate the feasibility of correlating the diagnostics with each other. Streak camera data showing the optical fiducial, as well as the final correlation of the two diagnostics, will also be presented. Preliminary beam radius measurements from Cherenkov light measured at two locations will be shown

  10. A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.

    Science.gov (United States)

    Qian, Shuo; Sheng, Yang

    2011-11-01

    Photogrammetry has become an effective method for the determination of electroencephalography (EEG) electrode positions in three dimensions (3D). Capturing multi-angle images of the electrodes on the head is a fundamental objective in the design of photogrammetry system for EEG localization. Methods in previous studies are all based on the use of either a rotating camera or multiple cameras, which are time-consuming or not cost-effective. This study aims to present a novel photogrammetry system that can realize simultaneous acquisition of multi-angle head images in a single camera position. Aligning two planar mirrors with the angle of 51.4°, seven views of the head with 25 electrodes are captured simultaneously by the digital camera placed in front of them. A complete set of algorithms for electrode recognition, matching, and 3D reconstruction is developed. It is found that the elapsed time of the whole localization procedure is about 3 min, and camera calibration computation takes about 1 min, after the measurement of calibration points. The positioning accuracy with the maximum error of 1.19 mm is acceptable. Experimental results demonstrate that the proposed system provides a fast and cost-effective method for the EEG positioning.

  11. A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.

    Science.gov (United States)

    Rau, Jiann-Yeou; Yeh, Po-Chia

    2012-01-01

    The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.

  12. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    OpenAIRE

    Orts-Escolano, Sergio; Garcia-Rodriguez, Jose; Morell, Vicente; Cazorla, Miguel; Azorin-Lopez, Jorge; García-Chamizo, Juan Manuel

    2014-01-01

    In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mob...

  13. Investigation for Synchronization of a Rotor-Pendulum System considering the Multi-DOF Vibration

    Directory of Open Access Journals (Sweden)

    Yongjun Hou

    2016-01-01

    Full Text Available This work is a continuation for our published literature for vibration synchronization. A new mechanism, two rotors coupled with a pendulum rod in a multi-DOF vibration system, is proposed to implement coupling synchronization, and the dynamics equation of mechanism is derived by Lagrange equation. In addition, the coupling relationship between the vibrobody and the pendulum rod is ascertained with the Laplace transformation method, based on the dimensionless equation of the dynamics system. The Poincare method is employed to study the synchronization state between the two unbalanced rotors, which is converted into that of existence and the stability of solutions for synchronization-balance equations. The obtained results are supported by computer simulations. It is demonstrated that the values of the spring stiffness coefficient, the length of the pendulum, and the angular installation of the pendulum are important parameters with respect to the synchronous behavior in the rotor-pendulum system.

  14. Object tracking using multiple camera video streams

    Science.gov (United States)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  15. Performance analysis for automated gait extraction and recognition in multi-camera surveillance

    OpenAIRE

    Goffredo, Michela; Bouchrika, Imed; Carter, John N.; Nixon, Mark S.

    2010-01-01

    Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and thei...

  16. Euratom multi-camera optical surveillance system (EMOSS) - a digital solution

    International Nuclear Information System (INIS)

    Otto, P.; Wagner, H.G.; Taillade, B.; Pryck, C. de.

    1991-01-01

    In 1989 the Euratom Safeguards Directorate of the Commission of the European Communities drew up functional and draft technical specifications for a new fully digital multi-camera optical surveillance system. HYMATOM of Castries designed and built a prototype unit for laboratory and field tests. This paper reports and system design and first test results

  17. Implementation of a novel synchronous multi-site all day high-fidelity simulation.

    Science.gov (United States)

    Abraham, Paul; Verdonk, Franck; Buleon, Clement; Tesniere, Antoine; Lilot, Marc

    2018-01-01

    Integration of simulation in educational curricula for anesthesia and intensive care residents is a hot topic. There is a great interest for simulation centers to share their experiences through multi-site synchronous simulation sessions. The present study results from an experience conducted at three sites in France (Paris, Lyon, and Caen), which involved 16 instructors and 25 residents facing the same scenario across 1 day. Synchronous simulations were performed at each site with local and shared debriefing via teleconference. This innovative approach to simulation was found to be feasible, although certain difficulties were encountered with connectivity.

  18. Effects of Different Lifting Cadences on Ground Reaction Forces during the Squat Exercise

    Science.gov (United States)

    Bentley, Jason R.; Amonette, William E.; Hagan, R. Donald

    2008-01-01

    The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (psquat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercise

  19. Time-Sharing-Based Synchronization and Performance Evaluation of Color-Independent Visual-MIMO Communication.

    Science.gov (United States)

    Kwon, Tae-Ho; Kim, Jai-Eun; Kim, Ki-Doo

    2018-05-14

    In the field of communication, synchronization is always an important issue. The communication between a light-emitting diode (LED) array (LEA) and a camera is known as visual multiple-input multiple-output (MIMO), for which the data transmitter and receiver must be synchronized for seamless communication. In visual-MIMO, LEDs generally have a faster data rate than the camera. Hence, we propose an effective time-sharing-based synchronization technique with its color-independent characteristics providing the key to overcome this synchronization problem in visual-MIMO communication. We also evaluated the performance of our synchronization technique by varying the distance between the LEA and camera. A graphical analysis is also presented to compare the symbol error rate (SER) at different distances.

  20. A practical approach for active camera coordination based on a fusion-driven multi-agent system

    Science.gov (United States)

    Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.

    2014-04-01

    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.

  1. Acquisition, compression and rendering of depth and texture for multi-view video

    NARCIS (Netherlands)

    Morvan, Y.

    2009-01-01

    Three-dimensional (3D) video and imaging technologies is an emerging trend in the development of digital video systems, as we presently witness the appearance of 3D displays, coding systems, and 3D camera setups. Three-dimensional multi-view video is typically obtained from a set of synchronized

  2. Real-time multi-camera video acquisition and processing platform for ADAS

    Science.gov (United States)

    Saponara, Sergio

    2016-04-01

    The paper presents the design of a real-time and low-cost embedded system for image acquisition and processing in Advanced Driver Assisted Systems (ADAS). The system adopts a multi-camera architecture to provide a panoramic view of the objects surrounding the vehicle. Fish-eye lenses are used to achieve a large Field of View (FOV). Since they introduce radial distortion of the images projected on the sensors, a real-time algorithm for their correction is also implemented in a pre-processor. An FPGA-based hardware implementation, re-using IP macrocells for several ADAS algorithms, allows for real-time processing of input streams from VGA automotive CMOS cameras.

  3. Reconstruction of data for an experiment using multi-gap spark chambers with six-camera optics

    International Nuclear Information System (INIS)

    Maybury, R.; Daley, H.M.

    1983-06-01

    A program has been developed to reconstruct spark positions in a pair of multi-gap optical spark chambers viewed by six cameras, which were used by a Rutherford Laboratory experiment. The procedure for correlating camera views to calculate spark positions is described. Calibration of the apparatus, and the application of time- and intensity-dependent corrections are discussed. (author)

  4. Synchronization of multi-agent systems with metric-topological interactions.

    Science.gov (United States)

    Wang, Lin; Chen, Guanrong

    2016-09-01

    A hybrid multi-agent systems model integrating the advantages of both metric interaction and topological interaction rules, called the metric-topological model, is developed. This model describes planar motions of mobile agents, where each agent can interact with all the agents within a circle of a constant radius, and can furthermore interact with some distant agents to reach a pre-assigned number of neighbors, if needed. Some sufficient conditions imposed only on system parameters and agent initial states are presented, which ensure achieving synchronization of the whole group of agents. It reveals the intrinsic relationships among the interaction range, the speed, the initial heading, and the density of the group. Moreover, robustness against variations of interaction range, density, and speed are investigated by comparing the motion patterns and performances of the hybrid metric-topological interaction model with the conventional metric-only and topological-only interaction models. Practically in all cases, the hybrid metric-topological interaction model has the best performance in the sense of achieving highest frequency of synchronization, fastest convergent rate, and smallest heading difference.

  5. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  6. Global calibration of multi-cameras with non-overlapping fields of view based on photogrammetry and reconfigurable target

    Science.gov (United States)

    Xia, Renbo; Hu, Maobang; Zhao, Jibin; Chen, Songlin; Chen, Yueling

    2018-06-01

    Multi-camera vision systems are often needed to achieve large-scale and high-precision measurement because these systems have larger fields of view (FOV) than a single camera. Multiple cameras may have no or narrow overlapping FOVs in many applications, which pose a huge challenge to global calibration. This paper presents a global calibration method for multi-cameras without overlapping FOVs based on photogrammetry technology and a reconfigurable target. Firstly, two planar targets are fixed together and made into a long target according to the distance between the two cameras to be calibrated. The relative positions of the two planar targets can be obtained by photogrammetric methods and used as invariant constraints in global calibration. Then, the reprojection errors of target feature points in the two cameras’ coordinate systems are calculated at the same time and optimized by the Levenberg–Marquardt algorithm to find the optimal solution of the transformation matrix between the two cameras. Finally, all the camera coordinate systems are converted to the reference coordinate system in order to achieve global calibration. Experiments show that the proposed method has the advantages of high accuracy (the RMS error is 0.04 mm) and low cost and is especially suitable for on-site calibration.

  7. A multi-criteria approach to camera motion design for volume data animation.

    Science.gov (United States)

    Hsu, Wei-Hsien; Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    We present an integrated camera motion design and path generation system for building volume data animations. Creating animations is an essential task in presenting complex scientific visualizations. Existing visualization systems use an established animation function based on keyframes selected by the user. This approach is limited in providing the optimal in-between views of the data. Alternatively, computer graphics and virtual reality camera motion planning is frequently focused on collision free movement in a virtual walkthrough. For semi-transparent, fuzzy, or blobby volume data the collision free objective becomes insufficient. Here, we provide a set of essential criteria focused on computing camera paths to establish effective animations of volume data. Our dynamic multi-criteria solver coupled with a force-directed routing algorithm enables rapid generation of camera paths. Once users review the resulting animation and evaluate the camera motion, they are able to determine how each criterion impacts path generation. In this paper, we demonstrate how incorporating this animation approach with an interactive volume visualization system reduces the effort in creating context-aware and coherent animations. This frees the user to focus on visualization tasks with the objective of gaining additional insight from the volume data.

  8. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera

    Science.gov (United States)

    Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert

    2018-03-01

    Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.

  9. The influence of cadence and shoes on patellofemoral joint kinetics in runners with patellofemoral pain.

    Science.gov (United States)

    Bonacci, Jason; Hall, Michelle; Fox, Aaron; Saunders, Natalie; Shipsides, Tristan; Vicenzino, Bill

    2018-06-01

    To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain. Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence. Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2-4). Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (ppatellofemoral joint stress by 15% and joint reaction force by 17% (ppatellofemoral joint stress and joint reaction force by 16% and 19% (ppatellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Science.gov (United States)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  11. Development of intelligent control system for X-ray streak camera in diagnostic instrument manipulator

    International Nuclear Information System (INIS)

    Pei, Chengquan; Wu, Shengli; Tian, Jinshou; Liu, Zhen; Fang, Yuman; Gao, Guilong; Liang, Lingliang; Wen, Wenlong

    2015-01-01

    An intelligent control system for an X ray streak camera in a diagnostic instrument manipulator (DIM) is proposed and implemented, which can control time delay, electric focusing, image gain adjustment, switch of sweep voltage, acquiring environment parameters etc. The system consists of 16 A/D converters and 16 D/A converters, a 32-channel general purpose input/output (GPIO) and two sensors. An isolated DC/DC converter with multi-outputs and a single mode fiber were adopted to reduce the interference generated by the common ground among the A/D, D/A and I/O. The software was designed using graphical programming language and can remotely access the corresponding instrument from a website. The entire intelligent control system can acquire the desirable data at a speed of 30 Mb/s and store it for later analysis. The intelligent system was implemented on a streak camera in a DIM and it shows a temporal resolution of 11.25 ps, spatial distortion of less than 10% and dynamic range of 279:1. The intelligent control system has been successfully used in a streak camera to verify the synchronization of multi-channel laser on the Inertial Confinement Fusion Facility

  12. Development of intelligent control system for X-ray streak camera in diagnostic instrument manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Tian, Jinshou [Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Fang, Yuman [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Gao, Guilong; Liang, Lingliang [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Wen, Wenlong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-11-01

    An intelligent control system for an X ray streak camera in a diagnostic instrument manipulator (DIM) is proposed and implemented, which can control time delay, electric focusing, image gain adjustment, switch of sweep voltage, acquiring environment parameters etc. The system consists of 16 A/D converters and 16 D/A converters, a 32-channel general purpose input/output (GPIO) and two sensors. An isolated DC/DC converter with multi-outputs and a single mode fiber were adopted to reduce the interference generated by the common ground among the A/D, D/A and I/O. The software was designed using graphical programming language and can remotely access the corresponding instrument from a website. The entire intelligent control system can acquire the desirable data at a speed of 30 Mb/s and store it for later analysis. The intelligent system was implemented on a streak camera in a DIM and it shows a temporal resolution of 11.25 ps, spatial distortion of less than 10% and dynamic range of 279:1. The intelligent control system has been successfully used in a streak camera to verify the synchronization of multi-channel laser on the Inertial Confinement Fusion Facility.

  13. UCalMiCeL – UNIFIED INTRINSIC AND EXTRINSIC CALIBRATION OF A MULTI-CAMERA-SYSTEM AND A LASERSCANNER

    Directory of Open Access Journals (Sweden)

    M. Hillemann

    2017-08-01

    Full Text Available Unmanned Aerial Vehicle (UAV with adequate sensors enable new applications in the scope between expensive, large-scale, aircraftcarried remote sensing and time-consuming, small-scale, terrestrial surveyings. To perform these applications, cameras and laserscanners are a good sensor combination, due to their complementary properties. To exploit this sensor combination the intrinsics and relative poses of the individual cameras and the relative poses of the cameras and the laserscanners have to be known. In this manuscript, we present a calibration methodology for the Unified Intrinsic and Extrinsic Calibration of a Multi-Camera-System and a Laserscanner (UCalMiCeL. The innovation of this methodology, which is an extension to the calibration of a single camera to a line laserscanner, is an unifying bundle adjustment step to ensure an optimal calibration of the entire sensor system. We use generic camera models, including pinhole, omnidirectional and fisheye cameras. For our approach, the laserscanner and each camera have to share a joint field of view, whereas the fields of view of the individual cameras may be disjoint. The calibration approach is tested with a sensor system consisting of two fisheye cameras and a line laserscanner with a range measuring accuracy of 30 mm. We evaluate the estimated relative poses between the cameras quantitatively by using an additional calibration approach for Multi-Camera-Systems based on control points which are accurately measured by a motion capture system. In the experiments, our novel calibration method achieves a relative pose estimation with a deviation below 1.8° and 6.4 mm.

  14. NEW METHOD FOR THE CALIBRATION OF MULTI-CAMERA MOBILE MAPPING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. P. Kersting

    2012-07-01

    Full Text Available Mobile Mapping Systems (MMS allow for fast and cost-effective collection of geo-spatial information. Such systems integrate a set of imaging sensors and a position and orientation system (POS, which entails GPS and INS units. System calibration is a crucial process to ensure the attainment of the expected accuracy of such systems. It involves the calibration of the individual sensors as well as the calibration of the mounting parameters relating the system components. The mounting parameters of multi-camera MMS include two sets of relative orientation parameters (ROP: the lever arm offsets and the boresight angles relating the cameras and the IMU body frame and the ROP among the cameras (in the absence of GPS/INS data. In this paper, a novel single-step calibration method, which has the ability of estimating these two sets of ROP, is devised. Besides the ability to estimate the ROP among the cameras, the proposed method can use such parameters as prior information in the ISO procedure. The implemented procedure consists of an integrated sensor orientation (ISO where the GPS/INS-derived position and orientation and the system mounting parameters are directly incorporated in the collinearity equations. The concept of modified collinearity equations has been used by few authors for single-camera systems. In this paper, a new modification to the collinearity equations for GPS/INS-assisted multicamera systems is introduced. Experimental results using a real dataset demonstrate the feasibility of the proposed method.

  15. New Method for the Calibration of Multi-Camera Mobile Mapping Systems

    Science.gov (United States)

    Kersting, A. P.; Habib, A.; Rau, J.

    2012-07-01

    Mobile Mapping Systems (MMS) allow for fast and cost-effective collection of geo-spatial information. Such systems integrate a set of imaging sensors and a position and orientation system (POS), which entails GPS and INS units. System calibration is a crucial process to ensure the attainment of the expected accuracy of such systems. It involves the calibration of the individual sensors as well as the calibration of the mounting parameters relating the system components. The mounting parameters of multi-camera MMS include two sets of relative orientation parameters (ROP): the lever arm offsets and the boresight angles relating the cameras and the IMU body frame and the ROP among the cameras (in the absence of GPS/INS data). In this paper, a novel single-step calibration method, which has the ability of estimating these two sets of ROP, is devised. Besides the ability to estimate the ROP among the cameras, the proposed method can use such parameters as prior information in the ISO procedure. The implemented procedure consists of an integrated sensor orientation (ISO) where the GPS/INS-derived position and orientation and the system mounting parameters are directly incorporated in the collinearity equations. The concept of modified collinearity equations has been used by few authors for single-camera systems. In this paper, a new modification to the collinearity equations for GPS/INS-assisted multicamera systems is introduced. Experimental results using a real dataset demonstrate the feasibility of the proposed method.

  16. A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS

    Directory of Open Access Journals (Sweden)

    M. Hassanein

    2016-06-01

    Full Text Available In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated

  17. Underwater video enhancement using multi-camera super-resolution

    Science.gov (United States)

    Quevedo, E.; Delory, E.; Callicó, G. M.; Tobajas, F.; Sarmiento, R.

    2017-12-01

    Image spatial resolution is critical in several fields such as medicine, communications or satellite, and underwater applications. While a large variety of techniques for image restoration and enhancement has been proposed in the literature, this paper focuses on a novel Super-Resolution fusion algorithm based on a Multi-Camera environment that permits to enhance the quality of underwater video sequences without significantly increasing computation. In order to compare the quality enhancement, two objective quality metrics have been used: PSNR (Peak Signal-to-Noise Ratio) and the SSIM (Structural SIMilarity) index. Results have shown that the proposed method enhances the objective quality of several underwater sequences, avoiding the appearance of undesirable artifacts, with respect to basic fusion Super-Resolution algorithms.

  18. Assessment of skin wound healing with a multi-aperture camera

    Science.gov (United States)

    Nabili, Marjan; Libin, Alex; Kim, Loan; Groah, Susan; Ramella-Roman, Jessica C.

    2009-02-01

    A clinical trial was conducted at the National Rehabilitation Hospital on 15 individuals to assess whether Rheparan Skin, a bio-engineered component of the extracellular matrix of the skin, is effective at promoting healing of a variety of wounds. Along with standard clinical outcome measures, a spectroscopic camera was used to assess the efficacy of Rheparan skin. Gauzes soaked with Rheparan skin were placed on volunteers wounds for 5 minutes twice weekly for four weeks. Images of the wounds were taken using a multi spectral camera and a digital camera at baseline and weekly thereafter. Spectral images collected at different wavelengths were used combined with optical skin models to quantify parameters of interest such as oxygen saturation (SO2), water content, and melanin concentration. A digital wound measurement system (VERG) was also used to measure the size of the wound. 9 of the 15 measured subjects showed a definitive improvement post treatment in the form of a decrease in wound area. 7 of these 9 individuals also showed an increase in oxygen saturation in the ulcerated area during the trial. A similar trend was seen in other metrics. Spectral imaging of skin wound can be a valuable tool to establish wound-healing trends and to clarify healing mechanisms.

  19. Effect of gender, cadence, and water immersion on ground reaction forces during stationary running.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; Ridehalgh, Colette; Roesler, Helio

    2012-05-01

    Controlled laboratory study. To analyze the vertical and anteroposterior components of the ground reaction force during stationary running performed in water and on dry land, focusing on the effect of gender, level of immersion, and cadence. Stationary running, as a fundamental component of aquatic rehabilitation and training protocols, is little explored in the literature with regard to biomechanical variables, which makes it difficult to determine and control the mechanical load acting on the individuals. Twenty-two subjects performed 1 minute of stationary running on land, immersed to the hip, and immersed to the chest at 3 different cadences: 90 steps per minute, 110 steps per minute, and 130 steps per minute. Force data were acquired with a force plate, and the variables were vertical peak (Fy), loading rate (LR), anterior peak (Fx anterior), and posterior peak (Fx posterior). Data were normalized to subjects' body weight (BW) and analyzed using repeated-measures analysis of variance. Fy ranged from 0.98 to 2.11 BW, LR ranged from 5.38 to 11.52 BW/s, Fx anterior ranged from 0.07 to 0.14 BW, and Fx posterior ranged from 0.06 to 0.09 BW. The gender factor had no effect on the variables analyzed. A significant interaction between level of immersion and cadence was observed for Fy, Fx anterior, and Fx posterior. On dry land, Fy increased with increasing cadence, whereas in water this effect was seen only between 90 steps per minute and the 2 higher cadences. The higher the level of immersion, the lower the magnitude of Fy. LR was reduced under both water conditions and increased with increasing cadence, regardless of the level of immersion. Ground reaction forces during stationary running are similar between genders. Fy and LR are lower in water, though the values are increased at higher cadences.

  20. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner

    Science.gov (United States)

    Thoeni, K.; Giacomini, A.; Murtagh, R.; Kniest, E.

    2014-06-01

    This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS). Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp), iPhone 4S (8 Mp), Panasonic Lumix LX5 (9.5 Mp), Panasonic Lumix ZS20 (14.1 Mp) and Canon EOS 7D (18 Mp). The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.

  1. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner

    Directory of Open Access Journals (Sweden)

    K. Thoeni

    2014-06-01

    Full Text Available This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS. Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp, iPhone 4S (8 Mp, Panasonic Lumix LX5 (9.5 Mp, Panasonic Lumix ZS20 (14.1 Mp and Canon EOS 7D (18 Mp. The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.

  2. Synchronized High-Speed Vision Sensor Network for Expansion of Field of View

    Directory of Open Access Journals (Sweden)

    Akihito Noda

    2018-04-01

    Full Text Available We propose a 500-frames-per-second high-speed vision (HSV sensor network that acquires frames at a timing that is precisely synchronized across the network. Multiple vision sensor nodes, individually comprising a camera and a PC, are connected via Ethernet for data transmission and for clock synchronization. A network of synchronized HSV sensors provides a significantly expanded field-of-view compared with that of each individual HSV sensor. In the proposed system, the shutter of each camera is controlled based on the clock of the PC locally provided inside the node, and the shutters are globally synchronized using the Precision Time Protocol (PTP over the network. A theoretical analysis and experiment results indicate that the shutter trigger skew among the nodes is a few tens of microseconds at most, which is significantly smaller than the frame interval of 1000-fps-class high-speed cameras. Experimental results obtained with the proposed system comprising four nodes demonstrated the ability to capture the propagation of a small displacement along a large-scale structure.

  3. A multi-camera system for real-time pose estimation

    Science.gov (United States)

    Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin

    2007-04-01

    This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.

  4. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    Directory of Open Access Journals (Sweden)

    Y.-W. Kang

    2007-12-01

    Full Text Available We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512, KAF-1602E(1536×1024, KAF-3200E(2184×1472 made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  5. Characteristics of a multi-image camera on a CT image

    International Nuclear Information System (INIS)

    Mihara, Kazuhiro; Fujino, Tatsuo; Abe, Katsuhito

    1984-01-01

    A multi-imaging camera was used for obtaining a hard-copy image from an imaging device of a CT scanner. The contrast and brightness of the CRT and time exposure of the camera were the three important factors which influenced the quality of the hard-copy image. Two kinds of original test patterns were designed to examine the characteristics of the factors. One was the grayscale test pattern which was used to obtain the density curve. This curve, named the Film-CRT curve, (F-C curve) is to distinguish it from the H D curve. The other was the sharpness test pattern which was used to examine the relationship between brightness and sharpness. As a result, the slope of F-C curve became steeper with a decrease in brightness, with an increase in contrast and with increase in exposure time. Sharpness became worse with an increase in brightness. Therefore, to obtain a good hard copy image, the brightness must be set as dark as possible, and the contrast and exposure time must be controlled after due consideration is given to their characteristics. (author)

  6. Body contact and synchronous diving in long-finned pilot whales

    NARCIS (Netherlands)

    Aokia, K.; Sakai, M.; Miller, P.J.O.; Visser, F.; Sato, K.

    2013-01-01

    Synchronous behavior, as a form of social interaction, has been widely reported for odontocete cetaceans observed at the sea surface. However, few studies have quantified synchronous behavior underwater. Using data from an animal-borne data recorder and camera, we described how a pair of deep-diving

  7. A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation

    Science.gov (United States)

    Gil, Yeongjoon; Wu, Wanqing; Lee, Jungtae

    2012-01-01

    Background Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals. PMID:23112605

  8. A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Jungtae Lee

    2012-07-01

    Full Text Available Background: Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object: This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design: We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results: First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion: A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals.

  9. Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera

    Science.gov (United States)

    Huang, Gwo-Jong; Kleinkort, Cameron; Bringi, V. N.; Notaroš, Branislav M.

    2017-12-01

    From the radar meteorology viewpoint, the most important properties for quantitative precipitation estimation of winter events are 3D shape, size, and mass of precipitation particles, as well as the particle size distribution (PSD). In order to measure these properties precisely, optical instruments may be the best choice. The Multi-Angle Snowflake Camera (MASC) is a relatively new instrument equipped with three high-resolution cameras to capture the winter precipitation particle images from three non-parallel angles, in addition to measuring the particle fall speed using two pairs of infrared motion sensors. However, the results from the MASC so far are usually presented as monthly or seasonally, and particle sizes are given as histograms, no previous studies have used the MASC for a single storm study, and no researchers use MASC to measure the PSD. We propose the methodology for obtaining the winter precipitation PSD measured by the MASC, and present and discuss the development, implementation, and application of the new technique for PSD computation based on MASC images. Overall, this is the first study of the MASC-based PSD. We present PSD MASC experiments and results for segments of two snow events to demonstrate the performance of our PSD algorithm. The results show that the self-consistency of the MASC measured single-camera PSDs is good. To cross-validate PSD measurements, we compare MASC mean PSD (averaged over three cameras) with the collocated 2D Video Disdrometer, and observe good agreements of the two sets of results.

  10. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    Science.gov (United States)

    Simpson, D. R.

    1981-06-01

    Multi-pinhole gamma camera collimation was introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. A possible method for improving the images obtained by this technique by combining two multi-pinhole views taken 90 deg apart was investigated. Collimators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 sq mm, while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration.

  11. Generic Learning-Based Ensemble Framework for Small Sample Size Face Recognition in Multi-Camera Networks.

    Science.gov (United States)

    Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi

    2014-12-08

    Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.

  12. Generic Learning-Based Ensemble Framework for Small Sample Size Face Recognition in Multi-Camera Networks

    Directory of Open Access Journals (Sweden)

    Cuicui Zhang

    2014-12-01

    Full Text Available Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the “small sample size” (SSS problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1 how to define diverse base classifiers from the small data; (2 how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.

  13. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    Science.gov (United States)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  14. Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach

    2017-06-01

    The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.

  15. Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation

    Science.gov (United States)

    Folonier, Hugo A.; Ferraz-Mello, Sylvio

    2017-12-01

    Tidal torque drives the rotational and orbital evolution of planet-satellite and star-exoplanet systems. This paper presents one analytical tidal theory for a viscoelastic multi-layered body with an arbitrary number of homogeneous layers. Starting with the static equilibrium figure, modified to include tide and differential rotation, and using the Newtonian creep approach, we find the dynamical equilibrium figure of the deformed body, which allows us to calculate the tidal potential and the forces acting on the tide generating body, as well as the rotation and orbital elements variations. In the particular case of the two-layer model, we study the tidal synchronization when the gravitational coupling and the friction in the interface between the layers is added. For high relaxation factors (low viscosity), the stationary solution of each layer is synchronous with the orbital mean motion ( n) when the orbit is circular, but the rotational frequencies increase if the orbital eccentricity increases. This behavior is characteristic in the classical Darwinian theories and in the homogeneous case of the creep tide theory. For low relaxation factors (high viscosity), as in planetary satellites, if friction remains low, each layer can be trapped in different spin-orbit resonances with frequencies n/2,n,3n/2,2n,\\ldots . When the friction increases, attractors with differential rotations are destroyed, surviving only commensurabilities in which core and shell have the same velocity of rotation. We apply the theory to Titan. The main results are: (i) the rotational constraint does not allow us to confirm or reject the existence of a subsurface ocean in Titan; and (ii) the crust-atmosphere exchange of angular momentum can be neglected. Using the rotation estimate based on Cassini's observation (Meriggiola et al. in Icarus 275:183-192, 2016), we limit the possible value of the shell relaxation factor, when a deep subsurface ocean is assumed, to γ _s≲ 10^{-9} s^{-1}, which

  16. Analyzing Gait Using a Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    An algorithm is created, which performs human gait analysis using spatial data and amplitude images from a Time-of-flight camera. For each frame in a sequence the camera supplies cartesian coordinates in space for every pixel. By using an articulated model the subject pose is estimated in the depth...... map in each frame. The pose estimation is based on likelihood, contrast in the amplitude image, smoothness and a shape prior used to solve a Markov random field. Based on the pose estimates, and the prior that movement is locally smooth, a sequential model is created, and a gait analysis is done...... on this model. The output data are: Speed, Cadence (steps per minute), Step length, Stride length (stride being two consecutive steps also known as a gait cycle), and Range of motion (angles of joints). The created system produces good output data of the described output parameters and requires no user...

  17. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    Science.gov (United States)

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. High-Cadence Transit Timing Variation Monitoring of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Naef D.

    2011-02-01

    Full Text Available We report ground-based high-cadence transit timing observations of the extrasolar planet WASP-2b. We achieve a typical timing error of 15-30 sec. The data show no significant deviations from the predicted ephemeris.

  19. Multi-dimensional diagnostics of high power ion beams by Arrayed Pinhole Camera System

    International Nuclear Information System (INIS)

    Yasuike, K.; Miyamoto, S.; Shirai, N.; Akiba, T.; Nakai, S.; Imasaki, K.; Yamanaka, C.

    1993-01-01

    The authors developed multi-dimensional beam diagnostics system (with spatially and time resolution). They used newly developed Arrayed Pinhole Camera (APC) for this diagnosis. The APC can get spatial distribution of divergence and flux density. They use two types of particle detectors in this study. The one is CR-39 can get time integrated images. The other one is gated Micro-Channel-Plate (MCP) with CCD camera. It enables time resolving diagnostics. The diagnostics systems have resolution better than 10mrad divergence, 0.5mm spatial resolution on the objects respectively. The time resolving system has 10ns time resolution. The experiments are performed on Reiden-IV and Reiden-SHVS induction linac. The authors get time integrated divergence distributions on Reiden-IV proton beam. They also get time resolved image on Reiden-SHVS

  20. Multi-view collimators for scintillation cameras

    International Nuclear Information System (INIS)

    Hatton, J.; Grenier, R.P.

    1982-01-01

    This patent specification describes a collimator for obtaining multiple images of a portion of a body with a scintillation camera comprises a body of radiation-impervious material defining two or more groups of channels each group comprising a plurality of parallel channels having axes intersecting the portion of the body being viewed on one side of the collimator and intersecting the input surface of the camera on the other side of the collimator to produce a single view of said body, a number of different such views of said body being provided by each of said groups of channels, each axis of each channel lying in a plane approximately perpendicular to the plane of the input surface of the camera and all of such planes containing said axes being approximately parallel to each other. (author)

  1. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    International Nuclear Information System (INIS)

    Simpson, D.R.

    1981-01-01

    Recently, multi-pinhole gamma camera collimation has been introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. This study has investigated a possible method for improving the images obtained by this technique by two multi-pinhole views taken 90 0 apart. During the course of this work, multi-pinhole collimation was also applied to in vivo imaging of the disintegration of tablets. Collimmators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 mm 2 , while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration. Further experiments are planned using this technique to measure gastric emptying times disintegration times of various tablet formulations. Limitations of multi-pinhole technique included problems such as limited ranges of viewing and artifacts introduced due to incomplete sampling

  2. Introduction à la CAO CADENCE - French version only

    CERN Multimedia

    Davide Vitè

    2002-01-01

    CERN Technical Training Programme: Learning for the LHC ! Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE : de la saisie de schéma Concept-HDL au PCB est programmée pour les 10 et 11 décembre prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. L'objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Si vous désirez partic...

  3. FPS camera sync and reset chassis

    International Nuclear Information System (INIS)

    Yates, G.J.

    1980-06-01

    The sync and reset chassis provides all the circuitry required to synchronize an event to be studied, a remote free-running focus projection and scanning (FPS) data-acquisition TV camera, and a video signal recording system. The functions, design, and operation of this chassis are described in detail

  4. A novel single-step procedure for the calibration of the mounting parameters of a multi-camera terrestrial mobile mapping system

    Science.gov (United States)

    Habib, A.; Kersting, P.; Bang, K.; Rau, J.

    2011-12-01

    Mobile Mapping Systems (MMS) can be defined as moving platforms which integrates a set of imaging sensors and a position and orientation system (POS) for the collection of geo-spatial information. In order to fully explore the potential accuracy of such systems and guarantee accurate multi-sensor integration, a careful system calibration must be carried out. System calibration involves individual sensor calibration as well as the estimation of the inter-sensor geometric relationship. This paper tackles a specific component of the system calibration process of a multi-camera MMS - the estimation of the relative orientation parameters among the cameras, i.e., the inter-camera geometric relationship (lever-arm offsets and boresight angles among the cameras). For that purpose, a novel single step procedure, which is easy to implement and not computationally intensive, will be introduced. The proposed method is implemented in such a way that it can also be used for the estimation of the mounting parameters among the cameras and the IMU body frame, in case of directly georeferenced systems. The performance of the proposed method is evaluated through experimental results using simulated data. A comparative analysis between the proposed single-step and the two-step, which makes use of the traditional bundle adjustment procedure, is demonstrated.

  5. A Novel Multi-Digital Camera System Based on Tilt-Shift Photography Technology

    Science.gov (United States)

    Sun, Tao; Fang, Jun-yong; Zhao, Dong; Liu, Xue; Tong, Qing-xi

    2015-01-01

    Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product. PMID:25835187

  6. Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system.

    Science.gov (United States)

    Shieh, Wann-Yun; Huang, Ju-Chin

    2012-09-01

    For most elderly, unpredictable falling incidents may occur at the corner of stairs or a long corridor due to body frailty. If we delay to rescue a falling elder who is likely fainting, more serious consequent injury may occur. Traditional secure or video surveillance systems need caregivers to monitor a centralized screen continuously, or need an elder to wear sensors to detect falling incidents, which explicitly waste much human power or cause inconvenience for elders. In this paper, we propose an automatic falling-detection algorithm and implement this algorithm in a multi-camera video surveillance system. The algorithm uses each camera to fetch the images from the regions required to be monitored. It then uses a falling-pattern recognition algorithm to determine if a falling incident has occurred. If yes, system will send short messages to someone needs to be noticed. The algorithm has been implemented in a DSP-based hardware acceleration board for functionality proof. Simulation results show that the accuracy of falling detection can achieve at least 90% and the throughput of a four-camera surveillance system can be improved by about 2.1 times. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Complete synchronization on multi-layer center dynamical networks

    International Nuclear Information System (INIS)

    Liu Meng; Shao Yingying; Fu Xinchu

    2009-01-01

    In this paper, complete synchronization of three-layer center networks is studied. By using linear stability analysis approach, several different coupling schemes of three-layer center networks with the Logistic map local dynamics are discussed, and the stability conditions for synchronization are illustrated via some examples.

  8. Models and synchronization of time-delayed complex dynamical networks with multi-links based on adaptive control

    International Nuclear Information System (INIS)

    Peng Haipeng; Wei Nan; Li Lixiang; Xie Weisheng; Yang Yixian

    2010-01-01

    In this Letter, time-delay has been introduced in to split the networks, upon which a model of complex dynamical networks with multi-links has been constructed. Moreover, based on Lyapunov stability theory and some hypotheses, we achieve synchronization between two complex networks with different structures by designing effective controllers. The validity of the results was proved through numerical simulations of this Letter.

  9. Multiple Sensor Camera for Enhanced Video Capturing

    Science.gov (United States)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  10. A new star tracker concept for satellite attitude determination based on a multi-purpose panoramic camera

    Science.gov (United States)

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele; Pernechele, Claudio; Dionisio, Cesare

    2017-11-01

    This paper presents an innovative algorithm developed for attitude determination of a space platform. The algorithm exploits images taken from a multi-purpose panoramic camera equipped with hyper-hemispheric lens and used as star tracker. The sensor architecture is also original since state-of-the-art star trackers accurately image as many stars as possible within a narrow- or medium-size field-of-view, while the considered sensor observes an extremely large portion of the celestial sphere but its observation capabilities are limited by the features of the optical system. The proposed original approach combines algorithmic concepts, like template matching and point cloud registration, inherited from the computer vision and robotic research fields, to carry out star identification. The final aim is to provide a robust and reliable initial attitude solution (lost-in-space mode), with a satisfactory accuracy level in view of the multi-purpose functionality of the sensor and considering its limitations in terms of resolution and sensitivity. Performance evaluation is carried out within a simulation environment in which the panoramic camera operation is realistically reproduced, including perturbations in the imaged star pattern. Results show that the presented algorithm is able to estimate attitude with accuracy better than 1° with a success rate around 98% evaluated by densely covering the entire space of the parameters representing the camera pointing in the inertial space.

  11. Vertical ground reaction force in stationary running in water and on land: A study with a wide range of cadences.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Ruschel, Caroline; Dell'Antonio, Elisa; Haupenthal, Alessandro; Pereira, Gustavo Soares; Roesler, Helio

    2018-04-01

    The aim of this study was to analyze the effect of cadence, immersion level as well as body density on the vertical component (Fy max ) of ground reaction force (GRF) during stationary running (SR). In a controlled, laboratory study, thirty-two subjects ran at a wide range of cadences (85-210 steps/min) in water, immersed to the hip and to the chest, and on dry land. Fy max. was verified by a waterproof force measurement system and predicted based on a statistical model including cadence, immersion ratio and body density. The effect of cadence was shown to depend on the environment: while Fy max increases linearly with increasing cadence on land; in water, Fy max reaches a plateau at both hip and chest immersions. All factors analyzed, cadence, immersion level and body density affected Fy max significantly, with immersion (aquatic × land environment) showing the greatest effect. In water, different cadences may lead to bigger changes in Fy max than the changes obtained by moving subjects from hip to chest immersion. A regression model able to predict 69% of Fy max variability in water was proposed and validated. Cadence, Immersion and body density affect Fy max in a significant and non-independent way. Besides a model of potential use in the prescription of stationary running in water, our analysis provides insights into the different responses of GRF to changes in exercise parameters between land and aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The power of auditory-motor synchronization in sports: Enhancing running performance by coupling cadence with the right beats

    NARCIS (Netherlands)

    Bood, R.J.; Nijssen, M; van der Kamp, J.; Roerdink, M.

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our

  13. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review.

    Science.gov (United States)

    Nascimento, Lucas R; de Oliveira, Camila Quel; Ada, Louise; Michaelsen, Stella M; Teixeira-Salmela, Luci F

    2015-01-01

    After stroke, is walking training with cueing of cadence superior to walking training alone in improving walking speed, stride length, cadence and symmetry? Systematic review with meta-analysis of randomised or controlled trials. Adults who have had a stroke. Walking training with cueing of cadence. Four walking outcomes were of interest: walking speed, stride length, cadence and symmetry. This review included seven trials involving 211 participants. Because one trial caused substantial statistical heterogeneity, meta-analyses were conducted with and without this trial. Walking training with cueing of cadence improved walking speed by 0.23 m/s (95% CI 0.18 to 0.27, I(2)=0%), stride length by 0.21 m (95% CI 0.14 to 0.28, I(2)=18%), cadence by 19 steps/minute (95% CI 14 to 23, I(2)=40%), and symmetry by 15% (95% CI 3 to 26, random effects) more than walking training alone. This review provides evidence that walking training with cueing of cadence improves walking speed and stride length more than walking training alone. It may also produce benefits in terms of cadence and symmetry of walking. The evidence appears strong enough to recommend the addition of 30 minutes of cueing of cadence to walking training, four times a week for 4 weeks, in order to improve walking in moderately disabled individuals with stroke. PROSPERO (CRD42013005873). Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  14. Asteroids in the High Cadence Transient Survey

    Science.gov (United States)

    Peña, J.; Fuentes, C.; Förster, F.; Maureira, J. C.; San Martín, J.; Littín, J.; Huijse, P.; Cabrera-Vives, G.; Estévez, P. A.; Galbany, L.; González-Gaitán, S.; Martínez, J.; de Jaeger, Th.; Hamuy, M.

    2018-03-01

    We report on the serendipitous observations of solar system objects imaged during the High cadence Transient Survey 2014 observation campaign. Data from this high-cadence wide-field survey was originally analyzed for finding variable static sources using machine learning to select the most-likely candidates. In this work, we search for moving transients consistent with solar system objects and derive their orbital parameters. We use a simple, custom motion detection algorithm to link trajectories and assume Keplerian motion to derive the asteroid’s orbital parameters. We use known asteroids from the Minor Planet Center database to assess the detection efficiency of the survey and our search algorithm. Trajectories have an average of nine detections spread over two days, and our fit yields typical errors of {σ }a∼ 0.07 {au}, σ e ∼ 0.07 and σ i ∼ 0.°5 in semimajor axis, eccentricity, and inclination, respectively, for known asteroids in our sample. We extract 7700 orbits from our trajectories, identifying 19 near-Earth objects, 6687 asteroids, 14 Centaurs, and 15 trans-Neptunian objects. This highlights the complementarity of supernova wide-field surveys for solar system research and the significance of machine learning to clean data of false detections. It is a good example of the data-driven science that Large Synoptic Survey Telescope will deliver.

  15. The making of analog module for gamma camera interface

    International Nuclear Information System (INIS)

    Yulinarsari, Leli; Rl, Tjutju; Susila, Atang; Sukandar

    2003-01-01

    The making of an analog module for gamma camera has been conducted. For computerization of planar gamma camera 37 PMT it has been developed interface hardware technology and software between the planar gamma camera with PC. With this interface gamma camera image information (Originally analog signal) was changed to digital single, therefore processes of data acquisition, image quality increase and data analysis as well as data base processing can be conducted with the help of computers, there are three gamma camera main signals, i.e. X, Y and Z . This analog module makes digitation of analog signal X and Y from the gamma camera that conveys position information coming from the gamma camera crystal. Analog conversion to digital was conducted by 2 converters ADC 12 bit with conversion time 800 ns each, conversion procedure for each coordinate X and Y was synchronized using suitable strobe signal Z for information acceptance

  16. Real-time vehicle matching for multi-camera tunnel surveillance

    Science.gov (United States)

    Jelača, Vedran; Niño Castañeda, Jorge Oswaldo; Frías-Velázquez, Andrés; Pižurica, Aleksandra; Philips, Wilfried

    2011-03-01

    Tracking multiple vehicles with multiple cameras is a challenging problem of great importance in tunnel surveillance. One of the main challenges is accurate vehicle matching across the cameras with non-overlapping fields of view. Since systems dedicated to this task can contain hundreds of cameras which observe dozens of vehicles each, for a real-time performance computational efficiency is essential. In this paper, we propose a low complexity, yet highly accurate method for vehicle matching using vehicle signatures composed of Radon transform like projection profiles of the vehicle image. The proposed signatures can be calculated by a simple scan-line algorithm, by the camera software itself and transmitted to the central server or to the other cameras in a smart camera environment. The amount of data is drastically reduced compared to the whole image, which relaxes the data link capacity requirements. Experiments on real vehicle images, extracted from video sequences recorded in a tunnel by two distant security cameras, validate our approach.

  17. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    Science.gov (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  18. Stereo Cameras for Clouds (STEREOCAM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Romps, David [Univ. of California, Berkeley, CA (United States); Oktem, Rusen [Univ. of California, Berkeley, CA (United States)

    2017-10-31

    The three pairs of stereo camera setups aim to provide synchronized and stereo calibrated time series of images that can be used for 3D cloud mask reconstruction. Each camera pair is positioned at approximately 120 degrees from the other pair, with a 17o-19o pitch angle from the ground, and at 5-6 km distance from the U.S. Department of Energy (DOE) Central Facility at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) observatory to cover the region from northeast, northwest, and southern views. Images from both cameras of the same stereo setup can be paired together to obtain 3D reconstruction by triangulation. 3D reconstructions from the ring of three stereo pairs can be combined together to generate a 3D mask from surrounding views. This handbook delivers all stereo reconstruction parameters of the cameras necessary to make 3D reconstructions from the stereo camera images.

  19. Global Erratum for Kepler Q0-Q17 and K2 C0-C5 Short Cadence Data

    Science.gov (United States)

    Caldwell, Douglas; Van Cleve, Jeffrey E.

    2016-01-01

    An accounting error has scrambled much of the short-cadence collateral smear data used to correct for the effects of Keplers shutterless readout. This error has been present since launch and affects approximately half of all short-cadence targets observed by Kepler and K2 to date. The resulting calibration errors are present in both the short-cadence target pixel files and the short-cadence light curves for Kepler Data Releases 1-24 and K2 Data Releases 1-7. This error does not affect long-cadence data. Since it will take some time to correct this error and reprocess all Kepler and K2 data, a list of affected targets is provided. Even though the affected targets are readily identified, the science impact for any particular target may be difficult to assess. Since the smear signal is often small compared to the target signal, the effect is negligible for many targets. However, the smear signal is scene-dependent, so time varying signals can be introduced into any target by the other stars falling on the same CCD column. Some tips on how to assess the severity of the calibration error are provided in this document.

  20. Primary or secondary tasks? Dual-task interference between cyclist hazard perception and cadence control using cross-modal sensory aids with rider assistance bike computers.

    Science.gov (United States)

    Yang, Chao-Yang; Wu, Cheng-Tse

    2017-03-01

    This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Diagnostics and camera strobe timers for hydrogen pellet injectors

    International Nuclear Information System (INIS)

    Bauer, M.L.; Fisher, P.W.; Qualls, A.L.

    1993-01-01

    Hydrogen pellet injectors have been used to fuel fusion experimental devices for the last decade. As part of developments to improve pellet production and velocity, various diagnostic devices were implemented, ranging from witness plates to microwave mass meters to high speed photography. This paper will discuss details of the various implementations of light sources, cameras, synchronizing electronics and other diagnostic systems developed at Oak Ridge for the Tritium Proof-of-Principle (TPOP) experiment at the Los Alamos National Laboratory's Tritium System Test Assembly (TSTA), a system built for the Oak Ridge Advanced Toroidal Facility (ATF), and the Tritium Pellet Injector (TPI) built for the Princeton Tokamak Fusion Test Reactor (TFTR). Although a number of diagnostic systems were implemented on each pellet injector, the emphasis here will be on the development of a synchronization system for high-speed photography using pulsed light sources, standard video cameras, and video recorders. This system enabled near real-time visualization of the pellet shape, size and flight trajectory over a wide range of pellet speeds and at one or two positions along the flight path. Additionally, the system provides synchronization pulses to the data system for pseudo points along the flight path, such as the estimated plasma edge. This was accomplished using an electronic system that took the time measured between sets of light gates, and generated proportionally delayed triggers for light source strobes and pseudo points. Systems were built with two camera stations, one located after the end of the barrel, and a second camera located closer to the main reactor vessel wall. Two or three light gates were used to sense pellet velocity and various spacings were implemented on the three experiments. Both analog and digital schemes were examined for implementing the delay system. A digital technique was chosen

  2. Multi-target detection and positioning in crowds using multiple camera surveillance

    Science.gov (United States)

    Huang, Jiahu; Zhu, Qiuyu; Xing, Yufeng

    2018-04-01

    In this study, we propose a pixel correspondence algorithm for positioning in crowds based on constraints on the distance between lines of sight, grayscale differences, and height in a world coordinates system. First, a Gaussian mixture model is used to obtain the background and foreground from multi-camera videos. Second, the hair and skin regions are extracted as regions of interest. Finally, the correspondences between each pixel in the region of interest are found under multiple constraints and the targets are positioned by pixel clustering. The algorithm can provide appropriate redundancy information for each target, which decreases the risk of losing targets due to a large viewing angle and wide baseline. To address the correspondence problem for multiple pixels, we construct a pixel-based correspondence model based on a similar permutation matrix, which converts the correspondence problem into a linear programming problem where a similar permutation matrix is found by minimizing an objective function. The correct pixel correspondences can be obtained by determining the optimal solution of this linear programming problem and the three-dimensional position of the targets can also be obtained by pixel clustering. Finally, we verified the algorithm with multiple cameras in experiments, which showed that the algorithm has high accuracy and robustness.

  3. TH-CD-201-10: Highly Efficient Synchronized High-Speed Scintillation Camera System for Measuring Proton Range, SOBP and Dose Distributions in a 2D-Plane

    International Nuclear Information System (INIS)

    Goddu, S; Sun, B; Grantham, K; Zhao, T; Zhang, T; Bradley, J; Mutic, S

    2016-01-01

    Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range and SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal

  4. TH-CD-201-10: Highly Efficient Synchronized High-Speed Scintillation Camera System for Measuring Proton Range, SOBP and Dose Distributions in a 2D-Plane

    Energy Technology Data Exchange (ETDEWEB)

    Goddu, S; Sun, B; Grantham, K; Zhao, T; Zhang, T; Bradley, J; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range and SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.

  5. First record of multi-species synchronous coral spawning from Malaysia

    Directory of Open Access Journals (Sweden)

    Alvin Chelliah

    2015-02-01

    Full Text Available Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta exhibited highly synchronous spawning (100% of sampled colonies, two other common species (A. hyacinthus and A. digitifera did not contain visible eggs in the majority of colonies sampled (i.e., <15% of colonies in either April or October, suggesting that these species spawn at other times of the year. To the best of our knowledge, this is the first detailed documented observation of multi-species coral spawning from reefs in Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.

  6. First record of multi-species synchronous coral spawning from Malaysia.

    Science.gov (United States)

    Chelliah, Alvin; Amar, Halimi Bin; Hyde, Julian; Yewdall, Katie; Steinberg, Peter D; Guest, James R

    2015-01-01

    Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites) participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta) exhibited highly synchronous spawning (100% of sampled colonies), two other common species (A. hyacinthus and A. digitifera) did not contain visible eggs in the majority of colonies sampled (i.e., Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.

  7. Synchronization of uncertain chaotic systems using a single transmission channel

    International Nuclear Information System (INIS)

    Feng Yong; Yu Xinghuo; Sun Lixia

    2008-01-01

    This paper proposes a robust sliding mode observer for synchronization of uncertain chaotic systems with multi-nonlinearities. A new control strategy is proposed for the construction of the robust sliding mode observer, which can avoid the strict conditions in the design process of Walcott-Zak observer. A new method of multi-dimensional signal transmission via single transmission channel is proposed and applied to chaos synchronization of uncertain chaotic systems with multi-nonlinearities. The simulation results are presented to validate the method

  8. A detailed comparison of single-camera light-field PIV and tomographic PIV

    Science.gov (United States)

    Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.

    2018-03-01

    This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.

  9. Effects of different frequencies of rhythmic auditory cueing on the stride length, cadence, and gait speed in healthy young females.

    Science.gov (United States)

    Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng

    2015-02-01

    [Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.

  10. Line-Constrained Camera Location Estimation in Multi-Image Stereomatching.

    Science.gov (United States)

    Donné, Simon; Goossens, Bart; Philips, Wilfried

    2017-08-23

    Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images. Existing solutions use sparse feature matching for camera location estimation. In this paper, we propose a novel method that uses dense correspondences to do the same, leveraging an existing depth estimation framework to also yield the camera locations along the line. We illustrate the effectiveness of the proposed technique for camera location estimation both visually for the rectification of epipolar plane images and quantitatively with its effect on the resulting depth estimation. Our proposed approach yields a valid alternative for sparse techniques, while still being executed in a reasonable time on a graphics card due to its highly parallelizable nature.

  11. Video Chat with Multiple Cameras

    OpenAIRE

    MacCormick, John

    2012-01-01

    The dominant paradigm for video chat employs a single camera at each end of the conversation, but some conversations can be greatly enhanced by using multiple cameras at one or both ends. This paper provides the first rigorous investigation of multi-camera video chat, concentrating especially on the ability of users to switch between views at either end of the conversation. A user study of 23 individuals analyzes the advantages and disadvantages of permitting a user to switch between views at...

  12. Synchronization of multi-phase oscillators: an Axelrod-inspired model

    Science.gov (United States)

    Kuperman, M. N.; Zanette, D. H.

    2009-07-01

    Inspired by Axelrod’s model of culture dissemination, we introduce and analyze a model for a population of coupled oscillators where different levels of synchronization can be assimilated to different degrees of cultural organization. The state of each oscillator is represented by a set of phases, and the interaction - which occurs between homologous phases - is weighted by a decreasing function of the distance between individual states. Both ordered arrays and random networks are considered. We find that the transition between synchronization and incoherent behaviour is mediated by a clustering regime with rich organizational structure, where any two oscillators can be synchronized in some of their phases, while their remain unsynchronized in the others.

  13. Synchronization of networks

    Indian Academy of Sciences (India)

    We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster ...

  14. An application for multi-person task synchronization

    Science.gov (United States)

    Brown, Robert L.; Doyle, Dee

    1990-01-01

    Computer applications are studied that will enable a group of people to synchronize their actions when following a predefined task sequence. It is assumed that the people involved only have computer workstations available to them for communication. Hence, the approach is to study how the computer can be used to help a group remain synchronized. A series of applications were designed and developed that can be used as vehicles for experimentation. An example of how this technique can be used for a remote coaching capability is explained in a report describing an experiment that simulated a Life Sciences experiment on-board Space Station Freedom, with a ground based principal investigator providing the expertise by coaching the on-orbit mission specialist.

  15. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    International Nuclear Information System (INIS)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-01-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO 2 ) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  16. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  17. Synchronization control for ultrafast laser parallel microdrilling system

    Science.gov (United States)

    Zhai, Zhongsheng; Kuang, Zheng; Ouyang, Jinlei; Liu, Dun; Perrie, Walter; Edwardson, Stuart P.; Dearden, Geoff

    2014-11-01

    Ultrafast lasers, emitting ultra-short pulses of light, generally of the order of femtoseconds to ten picoseconds, are widely used in micro-processing with the advantage of very little thermal damage. Parallel micro-processing is seen significant developments in laser fabrication, thanking to the spatial light modulator (SLM) which can concert single beam to multiple beams through computer generate holograms (CGHs). However, without synchronization control, on the conditions of changing different holograms or processing on large area beyond scanning galvo's ability, the fabrication will be interrupted constantly for changing holograms and moving the stages. Therefore, synchronization control is very important to improve the convenience and application of parallel micro-processing. A synchronization control method, carried out through two application software: SAMLight (or WaveRunner) and Labview, is presented in this paper. SAMLight is used to control the laser and the scanning galvo to implement microprocessing, and the developed program with Labview is used to control the SLM and motion stages. The synchronization signals, transmitted between the two software, are utilized by a National Instruments (NI) device USB-6008. Using optimal control methods, the synchronized system can easily and automatically accomplish complicated fabrications with minimum time. A multi-drilling application is provided to verify the affectivity of the synchronized control method. It uses multiple annular beams, generated by superimposing multi-beam CGH onto a diffractive axicon CGH, to drill multiple holes at one time, and it can automatically finish different patterns based on synchronization control. This drilling way is an optical trepanning and it avoids huge laser energy waste with attenuation. The multi-beam CGHs, generated by the Grating and Lens algorithm, are different for different patterns. The processing is over 200 times faster than traditional mechanical trepanning

  18. Automatic camera to laser calibration for high accuracy mobile mapping systems using INS

    Science.gov (United States)

    Goeman, Werner; Douterloigne, Koen; Gautama, Sidharta

    2013-09-01

    A mobile mapping system (MMS) is a mobile multi-sensor platform developed by the geoinformation community to support the acquisition of huge amounts of geodata in the form of georeferenced high resolution images and dense laser clouds. Since data fusion and data integration techniques are increasingly able to combine the complementary strengths of different sensor types, the external calibration of a camera to a laser scanner is a common pre-requisite on today's mobile platforms. The methods of calibration, nevertheless, are often relatively poorly documented, are almost always time-consuming, demand expert knowledge and often require a carefully constructed calibration environment. A new methodology is studied and explored to provide a high quality external calibration for a pinhole camera to a laser scanner which is automatic, easy to perform, robust and foolproof. The method presented here, uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration, a well studied absolute orientation problem needs to be solved. In many cases, the camera and laser sensor are calibrated in relation to the INS system. Therefore, the transformation from camera to laser contains the cumulated error of each sensor in relation to the INS. Here, the calibration of the camera is performed in relation to the laser frame using the time synchronization between the sensors for data association. In this study, the use of the inertial relative movement will be explored to collect more useful calibration data. This results in a better intersensor calibration allowing better coloring of the clouds and a more accurate depth mask for images, especially on the edges of objects in the scene.

  19. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria; Che, Xiao [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Harries, Tim J.; Kraus, Stefan; Acreman, David [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2017-10-10

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metric introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.

  20. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    International Nuclear Information System (INIS)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria; Che, Xiao; Harries, Tim J.; Kraus, Stefan; Acreman, David

    2017-01-01

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metric introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.

  1. VideoWeb Dataset for Multi-camera Activities and Non-verbal Communication

    Science.gov (United States)

    Denina, Giovanni; Bhanu, Bir; Nguyen, Hoang Thanh; Ding, Chong; Kamal, Ahmed; Ravishankar, Chinya; Roy-Chowdhury, Amit; Ivers, Allen; Varda, Brenda

    Human-activity recognition is one of the most challenging problems in computer vision. Researchers from around the world have tried to solve this problem and have come a long way in recognizing simple motions and atomic activities. As the computer vision community heads toward fully recognizing human activities, a challenging and labeled dataset is needed. To respond to that need, we collected a dataset of realistic scenarios in a multi-camera network environment (VideoWeb) involving multiple persons performing dozens of different repetitive and non-repetitive activities. This chapter describes the details of the dataset. We believe that this VideoWeb Activities dataset is unique and it is one of the most challenging datasets available today. The dataset is publicly available online at http://vwdata.ee.ucr.edu/ along with the data annotation.

  2. Underwater Time Service and Synchronization Based on Time Reversal Technique

    Science.gov (United States)

    Lu, Hao; Wang, Hai-bin; Aissa-El-Bey, Abdeldjalil; Pyndiah, Ramesh

    2010-09-01

    Real time service and synchronization are very important to many underwater systems. But the time service and synchronization in existence cannot work well due to the multi-path propagation and random phase fluctuation of signals in the ocean channel. The time reversal mirror technique can realize energy concentration through self-matching of the ocean channel and has very good spatial and temporal focusing properties. Based on the TRM technique, we present the Time Reversal Mirror Real Time service and synchronization (TRMRT) method which can bypass the processing of multi-path on the server side and reduce multi-path contamination on the client side. So TRMRT can improve the accuracy of time service. Furthermore, as an efficient and precise method of time service, TRMRT could be widely used in underwater exploration activities and underwater navigation and positioning systems.

  3. Chaotic synchronization with gap junction of multi-neurons in external electrical stimulation

    International Nuclear Information System (INIS)

    Deng Bin; Wang Jiang; Fei Xiangyang

    2005-01-01

    The synchronization of n(n 3) neurons coupled with gap junction in external electrical stimulation is investigated. In this paper, the coupled model is established on the basis of nonlinear cable model, and then the relation between coupling strength of the gap junction and the synchronization is discussed in detail. The sufficient condition of complete synchronization is attained from rigorous mathematical derivation. The synchronizations of periodic neurons and chaotic neurons are studied respectively

  4. Ground Reaction Force and Cadence during Stationary Running Sprint in Water and on Land.

    Science.gov (United States)

    Fontana, H de Brito; Ruschel, C; Haupenthal, A; Hubert, M; Roesler, H

    2015-06-01

    This study was aimed at analyzing the cadence (Cadmax) and the peak vertical ground reaction force (Fymax) during stationary running sprint on dry land and at hip and chest level of water immersion. We hypothesized that both Fymax and Cadmax depend on the level of immersion and that differences in Cadmax between immersions do not affect Fymax during stationary sprint. 32 subjects performed the exercise at maximum cadence at each immersion level and data were collected with force plates. The results show that Cadmax and Fymax decrease 17 and 58% from dry land to chest immersion respectively, with no effect of cadence on Fymax. While previous studies have shown similar neuromuscular responses between aquatic and on land stationary sprint, our results emphasize the differences in Fymax between environments and levels of immersion. Additionally, the characteristics of this exercise permit maximum movement speed in water to be close to the maximum speed on dry land. The valuable combination of reduced risk of orthopedic trauma with similar neuromuscular responses is provided by the stationary sprint exercise in water. The results of this study support the rationale behind the prescription of stationary sprinting in sports training sessions as well as rehabilitation programs. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Science goals and expected results from the smart-1 amie multi-coulour micro-camera

    Science.gov (United States)

    Josset, J.-L.; AMIE Team

    2003-04-01

    The Advanced Moon micro-Imager Experiment (AMIE), which will be on board ESA SMART-1, the first European mission to the Moon (launch foreseen in 2003), is an imaging system with scientific, technical and public outreach oriented objectives. The science objectives are to image the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Nonmare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side. The main science goals and the expected results from the AMIE multi-colour micro-camera are presented.

  6. SHOK—The First Russian Wide-Field Optical Camera in Space

    Science.gov (United States)

    Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.

    2018-02-01

    Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.

  7. Performance analysis for gait in camera networks

    OpenAIRE

    Michela Goffredo; Imed Bouchrika; John Carter; Mark Nixon

    2008-01-01

    This paper deploys gait analysis for subject identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real...

  8. Camera network video summarization

    Science.gov (United States)

    Panda, Rameswar; Roy-Chowdhury, Amit K.

    2017-05-01

    Networks of vision sensors are deployed in many settings, ranging from security needs to disaster response to environmental monitoring. Many of these setups have hundreds of cameras and tens of thousands of hours of video. The difficulty of analyzing such a massive volume of video data is apparent whenever there is an incident that requires foraging through vast video archives to identify events of interest. As a result, video summarization, that automatically extract a brief yet informative summary of these videos, has attracted intense attention in the recent years. Much progress has been made in developing a variety of ways to summarize a single video in form of a key sequence or video skim. However, generating a summary from a set of videos captured in a multi-camera network still remains as a novel and largely under-addressed problem. In this paper, with the aim of summarizing videos in a camera network, we introduce a novel representative selection approach via joint embedding and capped l21-norm minimization. The objective function is two-fold. The first is to capture the structural relationships of data points in a camera network via an embedding, which helps in characterizing the outliers and also in extracting a diverse set of representatives. The second is to use a capped l21-norm to model the sparsity and to suppress the influence of data outliers in representative selection. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the structure, but also indicate the requirements of sparse representative selection. Extensive experiments on standard multi-camera datasets well demonstrate the efficacy of our method over state-of-the-art methods.

  9. Image-based synchronization of force and bead motion in active electromagnetic microrheometry

    International Nuclear Information System (INIS)

    Park, Chang-Young; Saleh, Omar A

    2014-01-01

    In the past, electromagnetic tweezers have been used to make active microrheometers. An active microrheometer measures the dynamic mechanical properties of a material from the motion of embedded particles under external force, e.g. a sinusoidal magnetic force generated by a sinusoidal current on a coil. The oscillating amplitude and the phase lag of the motion are then used to estimate the material’s dynamic mechanical properties. The phase lag, in particular, requires precise synchronization of the particle motion with the external force. In previous works, synchronization difficulties have arisen from measuring two parameters with two instruments, one of them being a camera. We solved the synchronization issue by measuring two parameters with a single instrument, the camera alone. From captured images, particles can be tracked in three dimensions through an image-analysis algorithm while the current on the coil can be measured from the brightness of the image; this enables simultaneous synchronization of the phases of the driving current on the electromagnet coil and the motion of the magnetic probe particle. We calibrate the phase delay between the magnetic force and the particle’s motion in glycerol and confirm the calibration with a Hall probe. The technique is further tested by measuring the shear modulus of a polyacrylamide gel, and comparing the results to those obtained using a conventional rheometer. (paper)

  10. An Evaluation of Parallel Synchronous and Conservative Asynchronous Logic-Level Simulations

    Directory of Open Access Journals (Sweden)

    Ausif Mahmood

    1996-01-01

    a circuit remain fixed during the entire simulation. We remove this limitation and, by extending the analyses to multi-input, multi-output circuits with an arbitrary number of input events, show that the conservative asynchronous simulation extracts more parallelism and executes faster than synchronous simulation in general. Our conclusions are supported by a comparison of the idealized execution times of synchronous and conservative asynchronous algorithms on ISCAS combinational and sequential benchmark circuits.

  11. Indoor integrated navigation and synchronous data acquisition method for Android smartphone

    Science.gov (United States)

    Hu, Chunsheng; Wei, Wenjian; Qin, Shiqiao; Wang, Xingshu; Habib, Ayman; Wang, Ruisheng

    2015-08-01

    Smartphones are widely used at present. Most smartphones have cameras and kinds of sensors, such as gyroscope, accelerometer and magnet meter. Indoor navigation based on smartphone is very important and valuable. According to the features of the smartphone and indoor navigation, a new indoor integrated navigation method is proposed, which uses MEMS (Micro-Electro-Mechanical Systems) IMU (Inertial Measurement Unit), camera and magnet meter of smartphone. The proposed navigation method mainly involves data acquisition, camera calibration, image measurement, IMU calibration, initial alignment, strapdown integral, zero velocity update and integrated navigation. Synchronous data acquisition of the sensors (gyroscope, accelerometer and magnet meter) and the camera is the base of the indoor navigation on the smartphone. A camera data acquisition method is introduced, which uses the camera class of Android to record images and time of smartphone camera. Two kinds of sensor data acquisition methods are introduced and compared. The first method records sensor data and time with the SensorManager of Android. The second method realizes open, close, data receiving and saving functions in C language, and calls the sensor functions in Java language with JNI interface. A data acquisition software is developed with JDK (Java Development Kit), Android ADT (Android Development Tools) and NDK (Native Development Kit). The software can record camera data, sensor data and time at the same time. Data acquisition experiments have been done with the developed software and Sumsang Note 2 smartphone. The experimental results show that the first method of sensor data acquisition is convenient but lost the sensor data sometimes, the second method is much better in real-time performance and much less in data losing. A checkerboard image is recorded, and the corner points of the checkerboard are detected with the Harris method. The sensor data of gyroscope, accelerometer and magnet meter have

  12. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    Science.gov (United States)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  13. Synchronized control of spiral CT scan for security inspection device

    International Nuclear Information System (INIS)

    Wang Jue; Jiang Zenghui; Wang Fuquan

    2008-01-01

    In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)

  14. First results of the multi-purpose real-time processing video camera system on the Wendelstein 7-X stellarator and implications for future devices

    Science.gov (United States)

    Zoletnik, S.; Biedermann, C.; Cseh, G.; Kocsis, G.; König, R.; Szabolics, T.; Szepesi, T.; Wendelstein 7-X Team

    2018-01-01

    A special video camera has been developed for the 10-camera overview video system of the Wendelstein 7-X (W7-X) stellarator considering multiple application needs and limitations resulting from this complex long-pulse superconducting stellarator experiment. The event detection intelligent camera (EDICAM) uses a special 1.3 Mpixel CMOS sensor with non-destructive read capability which enables fast monitoring of smaller Regions of Interest (ROIs) even during long exposures. The camera can perform simple data evaluation algorithms (minimum/maximum, mean comparison to levels) on the ROI data which can dynamically change the readout process and generate output signals. Multiple EDICAM cameras were operated in the first campaign of W7-X and capabilities were explored in the real environment. Data prove that the camera can be used for taking long exposure (10-100 ms) overview images of the plasma while sub-ms monitoring and even multi-camera correlated edge plasma turbulence measurements of smaller areas can be done in parallel. These latter revealed that filamentary turbulence structures extend between neighboring modules of the stellarator. Considerations emerging for future upgrades of this system and similar setups on future long-pulse fusion experiments such as ITER are discussed.

  15. Self-Organized Multi-Camera Network for a Fast and Easy Deployment of Ubiquitous Robots in Unknown Environments

    Science.gov (United States)

    Canedo-Rodriguez, Adrián; Iglesias, Roberto; Regueiro, Carlos V.; Alvarez-Santos, Victor; Pardo, Xose Manuel

    2013-01-01

    To bring cutting edge robotics from research centres to social environments, the robotics community must start providing affordable solutions: the costs must be reduced and the quality and usefulness of the robot services must be enhanced. Unfortunately, nowadays the deployment of robots and the adaptation of their services to new environments are tasks that usually require several days of expert work. With this in view, we present a multi-agent system made up of intelligent cameras and autonomous robots, which is easy and fast to deploy in different environments. The cameras will enhance the robot perceptions and allow them to react to situations that require their services. Additionally, the cameras will support the movement of the robots. This will enable our robots to navigate even when there are not maps available. The deployment of our system does not require expertise and can be done in a short period of time, since neither software nor hardware tuning is needed. Every system task is automatic, distributed and based on self-organization processes. Our system is scalable, robust, and flexible to the environment. We carried out several real world experiments, which show the good performance of our proposal. PMID:23271604

  16. Self-organized multi-camera network for a fast and easy deployment of ubiquitous robots in unknown environments.

    Science.gov (United States)

    Canedo-Rodriguez, Adrián; Iglesias, Roberto; Regueiro, Carlos V; Alvarez-Santos, Victor; Pardo, Xose Manuel

    2012-12-27

    To bring cutting edge robotics from research centres to social environments, the robotics community must start providing affordable solutions: the costs must be reduced and the quality and usefulness of the robot services must be enhanced. Unfortunately, nowadays the deployment of robots and the adaptation of their services to new environments are tasks that usually require several days of expert work. With this in view, we present a multi-agent system made up of intelligent cameras and autonomous robots, which is easy and fast to deploy in different environments. The cameras will enhance the robot perceptions and allow them to react to situations that require their services. Additionally, the cameras will support the movement of the robots. This will enable our robots to navigate even when there are not maps available. The deployment of our system does not require expertise and can be done in a short period of time, since neither software nor hardware tuning is needed. Every system task is automatic, distributed and based on self-organization processes. Our system is scalable, robust, and flexible to the environment. We carried out several real world experiments, which show the good performance of our proposal.

  17. Autofluorescence of pigmented skin lesions using a pulsed UV laser with synchronized detection: clinical results

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Svenmarker, Pontus; Tidemand-Lichtenberg, Peter

    2010-01-01

    signal, which may in turn produce high contrast images that improve diagnosis, even in the presence of ambient room light. The synchronized set-up utilizes a compact, diode pumped, pulsed UV laser at 355 nm which is coupled to a CCD camera and a liquid crystal tunable filter. The excitation and image......We report preliminary clinical results of autofluorescence imaging of malignant and benign skin lesions, using pulsed 355 nm laser excitation with synchronized detection. The novel synchronized detection system allows high signal-to-noise ratio to be achieved in the resulting autofluorescence...

  18. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2016-03-01

    Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.

  19. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    Directory of Open Access Journals (Sweden)

    S. H. Oh

    2007-12-01

    Full Text Available We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512, KAF-1602E (15367times;1024, KAF-3200E (2184×1472 made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  20. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  1. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...

  2. Dual motor drive vehicle speed synchronization and coordination control strategy

    Science.gov (United States)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  3. Multi-application inter-tile synchronization on ultra-high-resolution display walls

    KAUST Repository

    Nam, Sungwon

    2010-01-01

    Ultra-high-resolution tiled-display walls are typically driven by a cluster of computers. Each computer may drive one or more displays. Synchronization between the computers is necessary to ensure that animated imagery displayed on the wall appears seamless. Most tiled-display middleware systems are designed around the assumption that only a single application instance is running in the tiled display at a time. Therefore synchronization can be achieved with a simple solution such as a networked barrier. When a tiled display has to support multiple applications at the same time, however, the simple networked barrier approach does not scale. In this paper we propose and experimentally validate two synchronization algorithms to achieve low-latency, intertile synchronization for multiple applications with independently varying frame rates. The two-phase algorithm is more generally applicable to various highresolution tiled display systems. The one-phase algorithm provides superior results but requires support for the Network Time Protocol and is more CPU-intensive. Copyright 2010 ACM.

  4. Presence capture cameras - a new challenge to the image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  5. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras

    Science.gov (United States)

    Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro

    2018-03-01

    Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.

  6. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    Science.gov (United States)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  7. Design of microcontroller based system for automation of streak camera

    International Nuclear Information System (INIS)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.; Sharma, M. L.; Navathe, C. P.

    2010-01-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  8. Design of microcontroller based system for automation of streak camera.

    Science.gov (United States)

    Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P

    2010-08-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  9. Design of microcontroller based system for automation of streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.; Sharma, M. L.; Navathe, C. P. [Laser Electronics Support Division, RRCAT, Indore 452013 (India)

    2010-08-15

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  10. Average Albedos of Close-in Super-Earths and Super-Neptunes from Statistical Analysis of Long-cadence Kepler Secondary Eclipse Data

    Science.gov (United States)

    Sheets, Holly A.; Deming, Drake

    2017-10-01

    We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.

  11. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-06-01

    Full Text Available For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP system combining Multi-View Stereovision (MVS with the Structure from Motion (SfM algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98 and 0.57 mm (R2 = 0.99, respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency.

  12. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    Science.gov (United States)

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  13. Issues in implementing services for a wireless web-enabled digital camera

    Science.gov (United States)

    Venkataraman, Shyam; Sampat, Nitin; Fisher, Yoram; Canosa, John; Noel, Nicholas

    2001-05-01

    The competition in the exploding digital photography market has caused vendors to explore new ways to increase their return on investment. A common view among industry analysts is that increasingly it will be services provided by these cameras, and not the cameras themselves, that will provide the revenue stream. These services will be coupled to e- Appliance based Communities. In addition, the rapidly increasing need to upload images to the Internet for photo- finishing services as well as the need to download software upgrades to the camera is driving many camera OEMs to evaluate the benefits of using the wireless web to extend their enterprise systems. Currently, creating a viable e- appliance such as a digital camera coupled with a wireless web service requires more than just a competency in product development. This paper will evaluate the system implications in the deployment of recurring revenue services and enterprise connectivity of a wireless, web-enabled digital camera. These include, among other things, an architectural design approach for services such as device management, synchronization, billing, connectivity, security, etc. Such an evaluation will assist, we hope, anyone designing or connecting a digital camera to the enterprise systems.

  14. High-cadence observations of spicular-type events on the Sun

    Science.gov (United States)

    Shetye, J.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Kuridze, D.; Henriques, V.; Woeger, F.; Ray, T.

    2016-05-01

    Context. Chromospheric observations taken at high-cadence and high-spatial resolution show a range of spicule-like features, including Type-I, Type-II (as well as rapid blue-shifted excursions (RBEs) and rapid red-shifted excursions (RREs) which are thought to be on-disk counterparts of Type-II spicules) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km s-1. Aims: This article seeks to quantify and study rapidly appearing spicular-type events. We also compare the multi-object multi-frame blind deconvolution (MOMFBD) and speckle reconstruction techniques to understand if these spicules are more favourably observed using a particular technique. Methods: We use spectral imaging observations taken with the CRisp Imaging SpectroPolarimeter (CRISP) on the Swedish 1-m Solar Telescope. Data was sampled at multiple positions within the Hα line profile for both an on-disk and limb location. Results: The data is host to numerous rapidly appearing features which are observed at different locations within the Hα line profile. The feature's durations vary between 10-20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue and red wings of 3-5 s is evident, whereas, sometimes they are near simultaneous. In some instances, features are observed to fade and then re-emerge at the same location several tens of seconds later. Conclusions: We provide the first statistical analysis of these spicules and suggest that these observations can be interpreted as the line-of-sight (LOS) movement of highly dynamic spicules moving in and out of the narrow 60 mÅ transmission filter that is used to observe in different parts of the Hα line profile. The LOS velocity component of the observed fast chromospheric features, manifested as Doppler shifts, are responsible for their appearance in the red and blue wings of Hα line. Additional work involving data at other

  15. Backoff-stage synchronization in three-hop string-topology wireless networks with hidden nodes

    Science.gov (United States)

    Sanada, Kosuke; Sekiya, Hiroo; Komuro, Nobuyoshi; Sakata, Shiro

    In IEEE 802.11 wireless multi-hop networks, each node works individually and their individual operations generate entire network dynamics. It is important to clarify the network dynamics in wireless multi-hop networks for designing and constructing multi-hop communication networks. This paper presents the network-dynamics investigations for three-hop string-topology wireless network in detail. From the investigations, a “backoff-stage synchronization” phenomenon, which is mutuality between hidden nodes, is found. The mechanism of the backoff-stage synchronization is expressed and the sufficient conditions for the synchronization occurrence are given. This phenomenon gives some impacts on the IEEE 802.11 multi-hop-network communications.

  16. Variation of stemness markers expression in tumor nodules from synchronous multi-focal hepatocellular carcinoma - an immunohistochemical study.

    Science.gov (United States)

    Lo, Regina Cheuk-Lam; Leung, Carmen Oi-Ning; Chok, Kenneth Siu-Ho; Ng, Irene Oi-Lin

    2017-08-01

    Advancing knowledge in molecular pathogenesis of hepatocellular carcinoma (HCC) opens up new horizons in the diagnostic, prognostic and therapeutic perspectives. Assessing the expression of molecular targets prior to definitive treatment is gaining importance in clinical practice. In this study, we investigated the variation in expression pattern of stemness markers in synchronous multi-focal HCC. In the first cohort, 21 liver explants with multi-focal HCC were examined for expression of stemness markers EpCAM, Sox9 and CK19 by immunohistochemistry (IHC). Expression data of 50 tumor nodules were analyzed to determine the concordance of expression among nodules in the same livers. In the second cohort, 14 tumor nodules from 6 multi-focal HCC cases proven as intra-hepatic metastasis were examined for Soc9 immunoexpression. In the first cohort, thirty nodules from 16 cases expressed one or more markers, with Sox9 being most frequently expressed. Complete concordance of expression pattern for all 3 markers was observed in 6 cases. Discrepancy of staining degree was noted in 4 cases for EpCAM, 14 cases for Sox9, and 6 cases for CK19. A two-tier or three-tier difference in staining scores was noted in 5 cases for Sox9 and one case for CK19. With Sox9, identical tumor morphology in terms of Edmondson grading and growth pattern did not infer the same degree of immunoexpression; and the largest tumor nodule was not representative of highest IHC score. In the second cohort of intra-hepatic metastasis, complete concordance of Sox9 expression level was observed in 5 out of 6 cases; while the remaining case showed a 1-tier difference of positive staining. Our findings suggested that clonality of tumor nodules is apparently an important factor to infer immunoexpression pattern. When there is limited information to discern multiple primaries versus intra-hepatic metastasis in multi-focal HCC, discordant degree of stemness markers expression among tumor nodules was commonly

  17. Synchronization and an application of a novel fractional order King Cobra chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, P., E-mail: muthukumardgl@gmail.com; Balasubramaniam, P., E-mail: balugru@gmail.com [Department of Mathematics, Gandhigram Rural Institute‐Deemed University, Gandhigram 624 302, Tamilnadu (India); Ratnavelu, K., E-mail: kuru052001@gmail.com [Faculty of Science, Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-09-01

    In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results.

  18. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  19. Four-channel high speed synchronized acquisition multiple trigger storage measurement system

    International Nuclear Information System (INIS)

    Guo Jian; Wang Wenlian; Zhang Zhijie

    2010-01-01

    A new storage measurement system based on the CPLD, MCU and FLASH (large-capacity flash memory) is proposed. The large capacity storage characteristic of the FLASH MEMORY is used to realize multi channel synchronized acquisition and the function of multiple records and read once. The function of multi channel synchronization, high speed data acquisition, the triggering several times, and the adjustability of working parameters expands the application of storage measurement system. The storage measurement system can be used in a variety of pressure and temperature test in explosion field. (authors)

  20. Simulating climate with a synchronization-based supermodel

    Science.gov (United States)

    Selten, Frank M.; Schevenhoven, Francine J.; Duane, Gregory S.

    2017-12-01

    The SPEEDO global climate model (an atmosphere model coupled to a land and an ocean/sea-ice model with about 250.000 degrees of freedom) is used to investigate the merits of a new multi-model ensemble approach to the climate prediction problem in a perfect model setting. Two imperfect models are generated by perturbing parameters. Connection terms are introduced that synchronize the two models on a common solution, referred to as the supermodel solution. A synchronization-based learning algorithm is applied to the supermodel through the introduction of an update rule for the connection coefficients. Connection coefficients cease updating when synchronization errors between the supermodel and solutions of the "true" equations vanish. These final connection coefficients define the supermodel. Different supermodel solutions, but with equivalent performance, are found depending on the initial values of the connection coefficients during learning. The supermodels have a climatology and a climate response to a CO2 increase in the atmosphere that is closer to the truth as compared to the imperfect models and the standard multi-model ensemble average, showing the potential of the supermodel approach to improve climate predictions.

  1. 3D for the people: multi-camera motion capture in the field with consumer-grade cameras and open source software

    Directory of Open Access Journals (Sweden)

    Brandon E. Jackson

    2016-09-01

    Full Text Available Ecological, behavioral and biomechanical studies often need to quantify animal movement and behavior in three dimensions. In laboratory studies, a common tool to accomplish these measurements is the use of multiple, calibrated high-speed cameras. Until very recently, the complexity, weight and cost of such cameras have made their deployment in field situations risky; furthermore, such cameras are not affordable to many researchers. Here, we show how inexpensive, consumer-grade cameras can adequately accomplish these measurements both within the laboratory and in the field. Combined with our methods and open source software, the availability of inexpensive, portable and rugged cameras will open up new areas of biological study by providing precise 3D tracking and quantification of animal and human movement to researchers in a wide variety of field and laboratory contexts.

  2. Programmable synchronous communications module

    International Nuclear Information System (INIS)

    Horelick, D.

    1979-10-01

    The functional characteristics of a programmable, synchronous serial communications CAMAC module with buffering in block format are described. Both bit and byte oriented protocols can be handled in full duplex depending on the program implemented. The main elements of the module are a Signetics 2652 Multi-Protocol Communications Controller, a Zilog Z-808 8 bit microprocessor with PROM and RAM, and FIFOs for buffering

  3. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  4. Photogrammetry of a 5m Inflatable Space Antenna With Consumer Digital Cameras

    Science.gov (United States)

    Pappa, Richard S.; Giersch, Louis R.; Quagliaroli, Jessica M.

    2000-01-01

    This paper discusses photogrammetric measurements of a 5m-diameter inflatable space antenna using four Kodak DC290 (2.1 megapixel) digital cameras. The study had two objectives: 1) Determine the photogrammetric measurement precision obtained using multiple consumer-grade digital cameras and 2) Gain experience with new commercial photogrammetry software packages, specifically PhotoModeler Pro from Eos Systems, Inc. The paper covers the eight steps required using this hardware/software combination. The baseline data set contained four images of the structure taken from various viewing directions. Each image came from a separate camera. This approach simulated the situation of using multiple time-synchronized cameras, which will be required in future tests of vibrating or deploying ultra-lightweight space structures. With four images, the average measurement precision for more than 500 points on the antenna surface was less than 0.020 inches in-plane and approximately 0.050 inches out-of-plane.

  5. Collaborative simulation method with spatiotemporal synchronization process control

    Science.gov (United States)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  6. Development of high-speed video cameras

    Science.gov (United States)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  7. Sub-Camera Calibration of a Penta-Camera

    Science.gov (United States)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  8. Automatic event-based synchronization of multimodal data streams from wearable and ambient sensors

    NARCIS (Netherlands)

    Bannach, D.; Amft, O.D.; Lukowicz, P.; Barnaghi, P.; Moessner, K.; Presser, M.; Meissner, S.

    2009-01-01

    A major challenge in using multi-modal, distributed sensor systems for activity recognition is to maintain a temporal synchronization between individually recorded data streams. A common approach is to use well defined ‘synchronization actions’ performed by the user to generate, easily identifiable

  9. Approximation methods for the stability analysis of complete synchronization on duplex networks

    Science.gov (United States)

    Han, Wenchen; Yang, Junzhong

    2018-01-01

    Recently, the synchronization on multi-layer networks has drawn a lot of attention. In this work, we study the stability of the complete synchronization on duplex networks. We investigate effects of coupling function on the complete synchronization on duplex networks. We propose two approximation methods to deal with the stability of the complete synchronization on duplex networks. In the first method, we introduce a modified master stability function and, in the second method, we only take into consideration the contributions of a few most unstable transverse modes to the stability of the complete synchronization. We find that both methods work well for predicting the stability of the complete synchronization for small networks. For large networks, the second method still works pretty well.

  10. Defocus Deblurring and Superresolution for Time-of-Flight Depth Cameras

    KAUST Repository

    Xiao, Lei

    2015-06-07

    Continuous-wave time-of-flight (ToF) cameras show great promise as low-cost depth image sensors in mobile applications. However, they also suffer from several challenges, including limited illumination intensity, which mandates the use of large numerical aperture lenses, and thus results in a shallow depth of field, making it difficult to capture scenes with large variations in depth. Another shortcoming is the limited spatial resolution of currently available ToF sensors. In this paper we analyze the image formation model for blurred ToF images. By directly working with raw sensor measurements but regularizing the recovered depth and amplitude images, we are able to simultaneously deblur and super-resolve the output of ToF cameras. Our method outperforms existing methods on both synthetic and real datasets. In the future our algorithm should extend easily to cameras that do not follow the cosine model of continuous-wave sensors, as well as to multi-frequency or multi-phase imaging employed in more recent ToF cameras.

  11. Defocus Deblurring and Superresolution for Time-of-Flight Depth Cameras

    KAUST Repository

    Xiao, Lei; Heide, Felix; O'Toole, Matthew; Kolb, Andreas; Hullin, Matthias B.; Kutulakos, Kyros; Heidrich, Wolfgang

    2015-01-01

    Continuous-wave time-of-flight (ToF) cameras show great promise as low-cost depth image sensors in mobile applications. However, they also suffer from several challenges, including limited illumination intensity, which mandates the use of large numerical aperture lenses, and thus results in a shallow depth of field, making it difficult to capture scenes with large variations in depth. Another shortcoming is the limited spatial resolution of currently available ToF sensors. In this paper we analyze the image formation model for blurred ToF images. By directly working with raw sensor measurements but regularizing the recovered depth and amplitude images, we are able to simultaneously deblur and super-resolve the output of ToF cameras. Our method outperforms existing methods on both synthetic and real datasets. In the future our algorithm should extend easily to cameras that do not follow the cosine model of continuous-wave sensors, as well as to multi-frequency or multi-phase imaging employed in more recent ToF cameras.

  12. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    Science.gov (United States)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  13. A Synchronization Method for Single-Phase Grid-Tied Inverters

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    The controllers of single-phase grid-tied inverters require improvements to enable distribution generation systems to meet the grid codes/standards with respect to power quality and the fault ride through capability. In that case, the response of the selected synchronization technique is crucial...... for the performance of the entire grid-tied inverter. In this paper, a new synchronization method with good dynamics and high accuracy under a highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which thus can cancel out the oscillations on the synchronization signals due...... to the harmonic voltage distortion while maintaining the dynamic response of the synchronization. Therefore, the accurate and dynamic response of the proposed MHDC-PLL can be beneficial for the performance of the whole single-phase grid-tied inverter....

  14. Column Store for GWAC: A High-cadence, High-density, Large-scale Astronomical Light Curve Pipeline and Distributed Shared-nothing Database

    Science.gov (United States)

    Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan

    2016-11-01

    The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ˜175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.

  15. Optimum off-line trace synchronization of computer clusters

    International Nuclear Information System (INIS)

    Jabbarifar, Masoume; Dagenais, Michel; Roy, Robert; Sendi, Alireza Shameli

    2012-01-01

    A tracing and monitoring framework produces detailed execution trace files for a system. Each trace file contains events with associated timestamps based on the local clock of their respective system, which are not perfectly synchronized. To monitor all behavior in multi-core distributed systems, a global time reference is required, thus the need for traces synchronization techniques. The synchronization is time consuming when there is a cluster of many computers. In this paper we propose an optimized technique to reduce the total synchronization time. Compared with related techniques that have been used on kernel level traces, this method improves the performance while maintaining a high accuracy. It uses the packet rate and the hop count as two major criteria to focus the computation on more accurate network links during synchronization. These criteria, tested in real-word experiments, were identified as most important features of a network. Furthermore, we present numerical and analytical evaluation results, and compare these with previous methods demonstrating the accuracy and the performance of the method.

  16. Speed Synchronization of Multi Induction Motors with Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    HACHEMI Glaoui

    2013-05-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. Aspeed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed controlstrategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designedcontroller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  17. Power quality improvement of single-phase photovoltaic systems through a robust synchronization method

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2014-01-01

    An increasing amount of single-phase photovoltaic (PV) systems on the distribution network requires more advanced synchronization methods in order to meet the grid codes with respect to power quality and fault ride through capability. The response of the synchronization technique selected...... is crucial for the performance of PV inverters. In this paper, a new synchronization method with good dynamics and accurate response under highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which cancels out the oscillations on the synchronization signals due...

  18. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    Science.gov (United States)

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  19. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.

    Directory of Open Access Journals (Sweden)

    Benjamin M Althouse

    Full Text Available Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1 primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2 the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (< 10(-10, suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period

  20. Do Long-cadence Data of the Kepler Spacecraft Capture Basic Properties of Flares?

    Science.gov (United States)

    Yang, Huiqin; Liu, Jifeng; Qiao, Erlin; Zhang, Haotong; Gao, Qing; Cui, Kaiming; Han, Henggeng

    2018-06-01

    Flare research is becoming a burgeoning realm of interest in the study of stellar activity due to the launch of Kepler in 2009. Kepler provides data with two time resolutions, i.e., the long-cadence (LC) data with a time resolution of 30 minutes and the short-cadence (SC) data with a time resolution of 1 minute, both of which can be used to study stellar flares. In this paper, we search flares in light curves with both LC data and SC data, and compare them in aspects of the true-flare rate, the flare energy, the flare amplitude, and the flare duration. It is found that LC data systematically underestimated the energies of flares by 25%, and underestimated the amplitudes of flares by 60% compared with SC flares. The durations are systematically overestimated by 50% compared with SC flares. However, the above percentages are poorly constrained and there is a lot of scatter. About 60% of SC flares have not been detected by LC data. We investigate the limitation of LC data, and suggest that although LC data cannot reflect the detailed profiles of flares, they can also capture the basic properties of stellar flares.

  1. Realization of an optical multi and mono-channel analyzer, associated to a streak camera. Application to metrology of picosecond low intensity luminous pulses

    International Nuclear Information System (INIS)

    Roth, J.M.

    1985-02-01

    An electronic system including a low light level television tube (Nocticon) to digitize images from streak cameras is studied and realized. Performances (sensibility, signal-to-noise ratio) are studied and compared with a multi-channel analyzer using a linear network of photodiodes. It is applied to duration and amplitude measurement of short luminous pulses [fr

  2. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    International Nuclear Information System (INIS)

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers

  3. Multiple-camera tracking: UK government requirements

    Science.gov (United States)

    Hosmer, Paul

    2007-10-01

    The Imagery Library for Intelligent Detection Systems (i-LIDS) is the UK government's new standard for Video Based Detection Systems (VBDS). The standard was launched in November 2006 and evaluations against it began in July 2007. With the first four i-LIDS scenarios completed, the Home Office Scientific development Branch (HOSDB) are looking toward the future of intelligent vision in the security surveillance market by adding a fifth scenario to the standard. The fifth i-LIDS scenario will concentrate on the development, testing and evaluation of systems for the tracking of people across multiple cameras. HOSDB and the Centre for the Protection of National Infrastructure (CPNI) identified a requirement to track targets across a network of CCTV cameras using both live and post event imagery. The Detection and Vision Systems group at HOSDB were asked to determine the current state of the market and develop an in-depth Operational Requirement (OR) based on government end user requirements. Using this OR the i-LIDS team will develop a full i-LIDS scenario to aid the machine vision community in its development of multi-camera tracking systems. By defining a requirement for multi-camera tracking and building this into the i-LIDS standard the UK government will provide a widely available tool that developers can use to help them turn theory and conceptual demonstrators into front line application. This paper will briefly describe the i-LIDS project and then detail the work conducted in building the new tracking aspect of the standard.

  4. Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy

    Directory of Open Access Journals (Sweden)

    Shu-huai Zhang

    2018-01-01

    Full Text Available This study presents a new bidirectional multi-resonant DC-DC converter, which is named CLTC. The converter adds an auxiliary transformer and an extra resonant capacitor based on a LLC resonant DC-DC converter, achieving zero-voltage switching (ZVS for the input inverting switches and zero-current switching (ZCS for the output rectifiers in all load range. The converter also has a wide gain range in two directions. When the load is light, a half-bridge configuration is adopted instead of a full-bridge configuration to solve the problem of voltage regulation. By this method, the voltage gain becomes monotonous and controllable. Besides, the digital synchronous rectification strategy is proposed in forward mode without adding any auxiliary circuit. The conduction time of synchronous rectifiers equals the estimation value of body diodes’ conduction time with the lightest load. Power loss analysis is also conducted in different situations. Finally, the theoretical analysis is validated by a 5 kW prototype.

  5. PFGA based, full-duplex, multi-channel, optical gigabit, synchronous data transceiver for TESLA technology LLRF control system

    Energy Technology Data Exchange (ETDEWEB)

    Pozniak, K.T.; Romaniuk, R.S.; Jalmuzna, W.; Olowski, K.; Perkuszewski, K.; Zielinski, J. [Warsaw Univ. of Technology (Poland). Inst. of Electronic Systems; Kierzkowski, K. [Warsaw Univ. (Poland). Inst. of Experimental Physics

    2005-07-01

    It may be predicted now, even assuming very conservative approach, that the next generation of the Low Level RF control systems for future accelerators will use extensively such technologies like: very fast programmable circuits equipped with DSP, embedded PC and optical communication I/O functionalities, as well as multi-gigabit optical transmission of measurement data and control signals. The paper presents the idea and realization of a gigabit synchronous data distributor designed to work in the LLRF control system of TESLA technology based X-ray FEL. The design bases on a relatively simple and cheap FPGA chip Cyclone. Commercially available SERDES (serializer/deserializer) and optical transceiver chips were applied. The optoelectronic module is embedded on the main LLRF BMB (backbone mother board). The MB provides communication with the outside computer control system, programmable chip configuration, integration with other functional modules and power supply. The hardware implementation is here described and the used software for BER (bit-error-rate) testing of the multi-gigabit optical link. The measurement results are presented. The appendix contains a comparison between the available protocols of serial data transmission for FPGA technology. This TESLA Technology Report is a partial contribution to the next version of the SIMCON system which is expected to be released this year. The SIMCON, ver 3. will contain 8 channels and multi-gigabit optical transmission capability. (orig.)

  6. A Synchronization Scheme for Single-Phase Grid-Tied Inverters Under Harmonic Distortion and Grid Disturbances

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    Synchronization is a crucial aspect in grid-tied systems, including single-phase photovoltaic inverters, and it can affect the overall performance of the system. Among prior-art synchronization schemes, the Multi Harmonic Decoupling Cell Phase-Locked Loop (MHDC-PLL) presents a fast response under...

  7. Dependent Types for Multi-Rate Flows in Synchronous Programming

    Directory of Open Access Journals (Sweden)

    William Blair

    2017-02-01

    Full Text Available Synchronous programming languages emerged in the 1980s as tools for implementing reactive systems, which interact with events from physical environments and often must do so under strict timing constraints. In this report, we encode inside ATS various real-time primitives in an experimental synchronous language called Prelude, where ATS is a statically typed language with an ML-like functional core that supports both dependent types (of DML-style and linear types. We show that the verification requirements imposed on these primitives can be formally expressed in terms of dependent types in ATS. Moreover, we modify the Prelude compiler to automatically generate ATS code from Prelude source. This modified compiler allows us to solely rely on typechecking in ATS to discharge proof obligations originating from the need to typecheck Prelude code. Whereas ATS is typically used as a general purpose programming language, we hereby demonstrate that it can also be conveniently used to support some forms of advanced static checking in languages equipped with less expressive types.

  8. Computational imaging with multi-camera time-of-flight systems

    KAUST Repository

    Shrestha, Shikhar; Heide, Felix; Heidrich, Wolfgang; Wetzstein, Gordon

    2016-01-01

    Depth cameras are a ubiquitous technology used in a wide range of applications, including robotic and machine vision, human computer interaction, autonomous vehicles as well as augmented and virtual reality. In this paper, we explore the design

  9. CGLXTouch: A multi-user multi-touch approach for ultra-high-resolution collaborative workspaces

    KAUST Repository

    Ponto, Kevin; Doerr, Kai; Wypych, Tom; Kooker, John; Kuester, Falko

    2011-01-01

    multi-touch tablet and phone devices, which can be added to and removed from the system on the fly. Events from these devices are tagged with a device identifier and are synchronized with the distributed display environment, enabling multi-user support

  10. Global Calibration of Multiple Cameras Based on Sphere Targets

    Directory of Open Access Journals (Sweden)

    Junhua Sun

    2016-01-01

    Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.

  11. FEM Based Multi-Criterion Design and Implementation of a PM Synchronous Wind Generator by Fully Coupled Co-Simulation

    Directory of Open Access Journals (Sweden)

    OCAK, C.

    2018-02-01

    Full Text Available This study deals with analyzing, designing and fabricating of a 1 kW PM synchronous generator for gearless and direct drive off-grid wind turbines. Performance characteristics of this generator have been calculated analytically in collaboration with dynamic transient coupled-field analysis. All specifications of the PMSG have been investigated and optimized by using finite element method and parametric multi-criterion design approach. At the end of research, a prototype has been fabricated based on the optimized dimensions. Furthermore, the analytical calculations present along with experimental studies carried out for different shaft speeds and load levels. The comparative experimental studies have verified effectiveness of the optimized designing and dynamic co-simulations.

  12. 4D ANIMATION RECONSTRUCTION FROM MULTI-CAMERA COORDINATES TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    J. P. Jhan

    2016-06-01

    Full Text Available Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australis© coded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.

  13. Development of a compact scintillator-based high-resolution Compton camera for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, A., E-mail: daphne3h-aya@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Koide, A.; Sueoka, K.; Iwamoto, Y.; Taya, T. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Ohsuka, S. [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka (Japan)

    2017-02-11

    The Compton camera, which shows gamma-ray distribution utilizing the kinematics of Compton scattering, is a promising detector capable of imaging across a wide range of energy. In this study, we aim to construct a small-animal molecular imaging system in a wide energy range by using the Compton camera. We developed a compact medical Compton camera based on a Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG) scintillator and multi-pixel photon counter (MPPC). A basic performance confirmed that for 662 keV, the typical energy resolution was 7.4 % (FWHM) and the angular resolution was 4.5° (FWHM). We then used the medical Compton camera to conduct imaging experiments based on a 3-D imaging reconstruction algorithm using the multi-angle data acquisition method. The result confirmed that for a {sup 137}Cs point source at a distance of 4 cm, the image had a spatial resolution of 3.1 mm (FWHM). Furthermore, we succeeded in producing 3-D multi-color image of different simultaneous energy sources ({sup 22}Na [511 keV], {sup 137}Cs [662 keV], and {sup 54}Mn [834 keV]).

  14. Camera Control and Geo-Registration for Video Sensor Networks

    Science.gov (United States)

    Davis, James W.

    With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.

  15. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    Science.gov (United States)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  16. Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.

    Science.gov (United States)

    Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun

    2017-03-08

    Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.

  17. State estimation and synchronization of pendula systems over digital communication channels

    Science.gov (United States)

    Fradkov, A. L.; Andrievsky, B.; Ananyevskiy, M.

    2014-04-01

    The recent results on nonlinear systems synchronization and control under communication constraints are applied to the remote state estimation and synchronization for a class of exogenously excited nonlinear Lurie systems. State estimation of the chain of diffusively coupled pendulums over the digital communication channel with limited capacity is experimentally studied. Advantage of the adaptive coding procedure under the conditions of the plant model uncertainty and irregular disturbances is shown. Quality of the estimation is evaluated by means of the experiments with the multi-pendulum set-up. Experimental study of master-slave synchronization over network (local network, wireless network) for the system with two cart-pendulums is presented.

  18. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lili; Huang, Liansheng, E-mail: huangls@ipp.ac.cn; Fu, Peng; Gao, Ge; He, Shiying

    2016-11-15

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  19. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    International Nuclear Information System (INIS)

    Zhu, Lili; Huang, Liansheng; Fu, Peng; Gao, Ge; He, Shiying

    2016-01-01

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  20. DistancePPG: Robust non-contact vital signs monitoring using a camera

    Science.gov (United States)

    Kumar, Mayank; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2015-01-01

    Vital signs such as pulse rate and breathing rate are currently measured using contact probes. But, non-contact methods for measuring vital signs are desirable both in hospital settings (e.g. in NICU) and for ubiquitous in-situ health tracking (e.g. on mobile phone and computers with webcams). Recently, camera-based non-contact vital sign monitoring have been shown to be feasible. However, camera-based vital sign monitoring is challenging for people with darker skin tone, under low lighting conditions, and/or during movement of an individual in front of the camera. In this paper, we propose distancePPG, a new camera-based vital sign estimation algorithm which addresses these challenges. DistancePPG proposes a new method of combining skin-color change signals from different tracked regions of the face using a weighted average, where the weights depend on the blood perfusion and incident light intensity in the region, to improve the signal-to-noise ratio (SNR) of camera-based estimate. One of our key contributions is a new automatic method for determining the weights based only on the video recording of the subject. The gains in SNR of camera-based PPG estimated using distancePPG translate into reduction of the error in vital sign estimation, and thus expand the scope of camera-based vital sign monitoring to potentially challenging scenarios. Further, a dataset will be released, comprising of synchronized video recordings of face and pulse oximeter based ground truth recordings from the earlobe for people with different skin tones, under different lighting conditions and for various motion scenarios. PMID:26137365

  1. Multi-color pyrometry imaging system and method of operating the same

    Science.gov (United States)

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  2. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  3. Taking it all in : special camera films in 3-D

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2006-07-15

    Details of a 360-degree digital camera designed by Immersive Media Telemmersion were presented. The camera has been employed extensively in the United States for homeland security and intelligence-gathering purposes. In Canada, the cameras are now being used by the oil and gas industry. The camera has 11 lenses pointing in all directions and generates high resolution movies that can be analyzed frame-by-frame from every angle. Global positioning satellite data can be gathered during filming so that operators can pinpoint any location. The 11 video streams use more than 100 million pixels per second. After filming, the system displays synchronized, high-resolution video streams, capturing a full motion spherical world complete with directional sound. It can be viewed on a computer monitor, video screen, or head-mounted display. Pembina Pipeline Corporation recently used the Telemmersion system to plot a proposed pipeline route between Alberta's Athabasca region and Edmonton. It was estimated that more than $50,000 was saved by using the camera. The resulting video has been viewed by Pembina's engineering, environmental and geotechnical groups who were able to accurately note the route's river crossings. The cameras were also used to estimate timber salvage. Footage was then given to the operations group, to help staff familiarize themselves with the terrain, the proposed route's right-of-way, and the number of water crossings and access points. Oil and gas operators have also used the equipment on a recently acquired block of land to select well sites. 4 figs.

  4. Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems

    International Nuclear Information System (INIS)

    Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.

    2009-01-01

    This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.

  5. Camera-Model Identification Using Markovian Transition Probability Matrix

    Science.gov (United States)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  6. Multi-Purpose Crew Vehicle Camera Asset Planning: Imagery Previsualization

    Science.gov (United States)

    Beaulieu, K.

    2014-01-01

    Using JSC-developed and other industry-standard off-the-shelf 3D modeling, animation, and rendering software packages, the Image Science Analysis Group (ISAG) supports Orion Project imagery planning efforts through dynamic 3D simulation and realistic previsualization of ground-, vehicle-, and air-based camera output.

  7. Joint Multi-person Detection and Tracking from Overlapping Cameras

    NARCIS (Netherlands)

    Liem, M.C.; Gavrila, D.M.

    2014-01-01

    We present a system to track the positions of multiple persons in a scene from overlapping cameras. The distinguishing aspect of our method is a novel, two-step approach that jointly estimates person position and track assignment. The proposed approach keeps solving the assignment problem tractable,

  8. Euratom experience with video surveillance - Single camera and other non-multiplexed

    International Nuclear Information System (INIS)

    Otto, P.; Cozier, T.; Jargeac, B.; Castets, J.P.; Wagner, H.G.; Chare, P.; Roewer, V.

    1991-01-01

    The Euratom Safeguards Directorate (ESD) has been using a number of single camera video systems (Ministar, MIVS, DCS) and non-multiplexed multi-camera systems (Digiquad) for routine safeguards surveillance applications during the last four years. This paper describes aspects of system design and considerations relevant for installation. It reports on system reliability and performance and presents suggestions on future improvements

  9. A numerical algorithm to evaluate the transient response for a synchronous scanning streak camera using a time-domain Baum–Liu–Tesche equation

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Tian, Jinshou [Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); He, Jiai [School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China)

    2016-10-01

    The transient response is of great influence on the electromagnetic compatibility of synchronous scanning streak cameras (SSSCs). In this paper we propose a numerical method to evaluate the transient response of the scanning deflection plate (SDP). First, we created a simplified circuit model for the SDP used in an SSSC, and then derived the Baum–Liu–Tesche (BLT) equation in the frequency domain. From the frequency-domain BLT equation, its transient counterpart was derived. These parameters, together with the transient-BLT equation, were used to compute the transient load voltage and load current, and then a novel numerical method to fulfill the continuity equation was used. Several numerical simulations were conducted to verify this proposed method. The computed results were then compared with transient responses obtained by a frequency-domain/fast Fourier transform (FFT) method, and the accordance was excellent for highly conducting cables. The benefit of deriving the BLT equation in the time domain is that it may be used with slight modifications to calculate the transient response and the error can be controlled by a computer program. The result showed that the transient voltage was up to 1000 V and the transient current was approximately 10 A, so some protective measures should be taken to improve the electromagnetic compatibility.

  10. A numerical algorithm to evaluate the transient response for a synchronous scanning streak camera using a time-domain Baum–Liu–Tesche equation

    International Nuclear Information System (INIS)

    Pei, Chengquan; Tian, Jinshou; Wu, Shengli; He, Jiai; Liu, Zhen

    2016-01-01

    The transient response is of great influence on the electromagnetic compatibility of synchronous scanning streak cameras (SSSCs). In this paper we propose a numerical method to evaluate the transient response of the scanning deflection plate (SDP). First, we created a simplified circuit model for the SDP used in an SSSC, and then derived the Baum–Liu–Tesche (BLT) equation in the frequency domain. From the frequency-domain BLT equation, its transient counterpart was derived. These parameters, together with the transient-BLT equation, were used to compute the transient load voltage and load current, and then a novel numerical method to fulfill the continuity equation was used. Several numerical simulations were conducted to verify this proposed method. The computed results were then compared with transient responses obtained by a frequency-domain/fast Fourier transform (FFT) method, and the accordance was excellent for highly conducting cables. The benefit of deriving the BLT equation in the time domain is that it may be used with slight modifications to calculate the transient response and the error can be controlled by a computer program. The result showed that the transient voltage was up to 1000 V and the transient current was approximately 10 A, so some protective measures should be taken to improve the electromagnetic compatibility.

  11. Multi-exposure high dynamic range image synthesis with camera shake correction

    Science.gov (United States)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  12. REAL-TIME CAMERA GUIDANCE FOR 3D SCENE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    F. Schindler

    2012-07-01

    Full Text Available We propose a framework for operator guidance during the image acquisition process for reliable multi-view stereo reconstruction. Goal is to achieve full coverage of the object and sufficient overlap. Multi-view stereo is a commonly used method to reconstruct both camera trajectory and 3D object shape. After determining an initial solution, a globally optimal reconstruction is usually obtained by executing a bundle adjustment involving all images. Acquiring suitable images, however, still requires an experienced operator to ensure accuracy and completeness of the final solution. We propose an interactive framework for guiding unexperienced users or possibly an autonomous robot. Using approximate camera orientations and object points we estimate point uncertainties within a sliding bundle adjustment and suggest appropriate camera movements. A visual feedback system communicates the decisions to the user in an intuitive way. We demonstrate the suitability of our system with a virtual image acquisition simulation as well as in real-world scenarios. We show that when following the camera movements suggested by our system, the proposed framework is able to generate good approximate values for the bundle adjustment, leading to accurate results compared to ground truth after few iterations. Possible applications are non-professional 3D acquisition systems on low-cost platforms like mobile phones, autonomously navigating robots as well as online flight planning of unmanned aerial vehicles.

  13. Re-identification of persons in multi-camera surveillance under varying viewpoints and illumination

    NARCIS (Netherlands)

    Bouma, H.; Borsboom, A.S.; Hollander, R.J.M. den; Landsmeer, S.H.; Worring, M.

    2012-01-01

    The capability to track individuals in CCTV cameras is important for surveillance and forensics alike. However, it is laborious to do over multiple cameras. Therefore, an automated system is desirable. In literature several methods have been proposed, but their robustness against varying viewpoints

  14. Feeling the Beat: Bouncing Synchronization to Vibrotactile Music in Hearing and Early Deaf People

    Directory of Open Access Journals (Sweden)

    Pauline Tranchant

    2017-09-01

    Full Text Available The ability to dance relies on the ability to synchronize movements to a perceived musical beat. Typically, beat synchronization is studied with auditory stimuli. However, in many typical social dancing situations, music can also be perceived as vibrations when objects that generate sounds also generate vibrations. This vibrotactile musical perception is of particular relevance for deaf people, who rely on non-auditory sensory information for dancing. In the present study, we investigated beat synchronization to vibrotactile electronic dance music in hearing and deaf people. We tested seven deaf and 14 hearing individuals on their ability to bounce in time with the tempo of vibrotactile stimuli (no sound delivered through a vibrating platform. The corresponding auditory stimuli (no vibrations were used in an additional condition in the hearing group. We collected movement data using a camera-based motion capture system and subjected it to a phase-locking analysis to assess synchronization quality. The vast majority of participants were able to precisely time their bounces to the vibrations, with no difference in performance between the two groups. In addition, we found higher performance for the auditory condition compared to the vibrotactile condition in the hearing group. Our results thus show that accurate tactile-motor synchronization in a dance-like context occurs regardless of auditory experience, though auditory-motor synchronization is of superior quality.

  15. LAMOST CCD camera-control system based on RTS2

    Science.gov (United States)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  16. Variability in Cadence During Forced Cycling Predicts Motor Improvement in Individuals With Parkinson’s Disease

    Science.gov (United States)

    Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2014-01-01

    Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045

  17. CERN Technical Training 2002: Learning for the LHC! Introduction à la CAO CADENCE - French version only

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE. De la saisie de schéma Concept-HDL au PCB est programmée pour le 4 et 5 juin prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. Objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Plus d'information, et possibilité d'inscription par EDH sont accessibles depuis les pages «...

  18. Development of compact Compton camera for 3D image reconstruction of radioactive contamination

    Science.gov (United States)

    Sato, Y.; Terasaka, Y.; Ozawa, S.; Nakamura Miyamura, H.; Kaburagi, M.; Tanifuji, Y.; Kawabata, K.; Torii, T.

    2017-11-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the large tsunami caused by the Great East Japan Earthquake of March 11, 2011. Very large amounts of radionuclides were released from the damaged plant. Radiation distribution measurements inside FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a compact Compton camera to measure the distribution of radioactive contamination inside the FDNPS buildings three-dimensionally (3D). The total weight of the Compton camera is lower than 1.0 kg. The gamma-ray sensor of the Compton camera employs Ce-doped GAGG (Gd3Al2Ga3O12) scintillators coupled with a multi-pixel photon counter. Angular correction of the detection efficiency of the Compton camera was conducted. Moreover, we developed a 3D back-projection method using the multi-angle data measured with the Compton camera. We successfully observed 3D radiation images resulting from the two 137Cs radioactive sources, and the image of the 9.2 MBq source appeared stronger than that of the 2.7 MBq source.

  19. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-01-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network

  20. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-12-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.

  1. Multi-pole permanent magnet synchronous generator wind turbines' grid support capability in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.

    2009-01-01

    Emphasis in this paper is on the fault ride-through and grid support capabilities of multi-pole permanent magnet synchronous generator (PMSG) wind turbines with a full-scale frequency converter. These wind turbines are announced to be very attractive, especially for large offshore wind farms...... and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a PMSG wind farm equipped with an additional voltage control can help a nearby active stall wind farm....... A control strategy is presented, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. Its design has special focus on power converters' protection and voltage control aspects. The performance of the presented control strategy is assessed...

  2. NV-CMOS HD camera for day/night imaging

    Science.gov (United States)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  3. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    Science.gov (United States)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  4. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    Science.gov (United States)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  5. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yunsu Bok

    2014-11-01

    Full Text Available This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  6. Multi-application inter-tile synchronization on ultra-high-resolution display walls

    KAUST Repository

    Nam, Sungwon; Deshpande, Sachin; Vishwanath, Venkatram; Jeong, Byungil; Renambot, Luc; Leigh, Jason

    2010-01-01

    barrier. When a tiled display has to support multiple applications at the same time, however, the simple networked barrier approach does not scale. In this paper we propose and experimentally validate two synchronization algorithms to achieve low-latency

  7. Stereo ENA Imaging of the Ring Current and Multi-point Measurements of Suprathermal Particles and Magnetic Fields by TRIO-CINEMA

    Science.gov (United States)

    Lin, R. P.; Sample, J. G.; Immel, T. J.; Lee, D.; Horbury, T. S.; Jin, H.; SEON, J.; Wang, L.; Roelof, E. C.; Lee, E.; Parks, G. K.; Vo, H.

    2012-12-01

    The TRIO (Triplet Ionospheric Observatory) - CINEMA (Cubesat for Ions, Neutrals, Electrons, & Magnetic fields) mission consists of three identical 3-u cubesats to provide high sensitivity, high cadence, stereo measurements of Energetic Neutral Atoms (ENAs) from the Earth's ring current with ~1 keV FWHM energy resolution from ~4 to ~200 keV, as well as multi-point in situ measurements of magnetic fields and suprathermal electrons (~2 -200 keV) and ions (~ 4 -200 keV) in the auroral and ring current precipitation regions in low Earth orbit (LEO). A new Suprathermal Electron, Ion, Neutral (STEIN) instrument, using a 32-pixel silicon semiconductor detector with an electrostatic deflection system to separate ENAs from ions and from electrons below 30 keV, will sweep over most of the sky every 15 s as the spacecraft spins at 4 rpm. In addition, inboard and outboard (on an extendable 1m boom) miniature magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. An S-band transmitter will be used to provide ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station.The first CINEMA (funded by NSF) is scheduled for launch on August 14, 2012 into a 65 deg. inclination LEO. Two more identical CINEMAs are being developed by Kyung Hee University (KHU) in Korea under the World Class University (WCU) program, for launch in November 2012 into a Sun-synchronous LEO to form TRIO-CINEMA. A fourth CINEMA is being developed for a 2013 launch into LEO. This LEO constellation of nanosatellites will provide unique measurements highly complementary to NASA's RBSP and THEMIS missions. Furthermore, CINEMA's development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft may be important for future constellation space missions. Initial results from the first CINEMA will be presented if available.

  8. Investigation of implementing a synchronization protocol under multiprocessors hierarchical scheduling

    NARCIS (Netherlands)

    Nemati, F.; Behnam, M.; Bril, R.J.

    2009-01-01

    In the multi-core and multiprocessor domain, there has been considerable work done on scheduling techniques assuming that real-time tasks are independent. In practice a typical real-time system usually share logical resources among tasks. However, synchronization in the multiprocessor area has not

  9. Homography-based multiple-camera person-tracking

    Science.gov (United States)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of

  10. 100-ps framing-camera tube

    International Nuclear Information System (INIS)

    Kalibjian, R.

    1978-01-01

    The optoelectronic framing-camera tube described is capable of recording two-dimensional image frames with high spatial resolution in the <100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits. The resulting dissected electron line images from the slits are restored into framed images by a restorer deflector operating synchronously with the dissector deflector. The number of framed images on the tube's viewing screen equals the number of dissecting slits in the tube. Performance has been demonstrated in a prototype tube by recording 135-ps-duration framed images of 2.5-mm patterns at the cathode. The limitation in the framing speed is in the external drivers for the deflectors and not in the tube design characteristics. Faster frame speeds in the <100-ps range can be obtained by use of faster deflection drivers

  11. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  12. AGN Accretion Physics in the Time Domain: Survey Cadences, Stochastic Analysis, and Physical Interpretations

    Science.gov (United States)

    Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon; O'Brien, John T.; Kasliwal, Vishal

    2018-01-01

    We present rigorous testing of survey cadences (K2, SDSS, CRTS, & Pan-STARRS) for quasar variability science using a magnetohydrodynamics synthetic lightcurve and the canonical lightcurve from Kepler, Zw 229.15. We explain where the state of the art is in regards to physical interpretations of stochastic models (CARMA) applied to AGN variability. Quasar variability offers a time domain approach of probing accretion physics at the SMBH scale. Evidence shows that the strongest amplitude changes in the brightness of AGN occur on long timescales ranging from months to hundreds of days. These global behaviors can be constrained by survey data despite low sampling resolution. CARMA processes provide a flexible family of models used to interpolate between data points, predict future observations and describe behaviors in a lightcurve. This is accomplished by decomposing a signal into rise and decay timescales, frequencies for cyclic behavior and shock amplitudes. Characteristic timescales may point to length-scales over which a physical process operates such as turbulent eddies, warping or hotspots due to local thermal instabilities. We present the distribution of SDSS Stripe 82 quasars in CARMA parameters space that pass our cadence tests and also explain how the Damped Harmonic Oscillator model, CARMA(2,1), reduces to the Damped Random Walk, CARMA(1,0), given the data in a specific region of the parameter space.

  13. APPLYING CCD CAMERAS IN STEREO PANORAMA SYSTEMS FOR 3D ENVIRONMENT RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. Sh. Amini

    2012-07-01

    Full Text Available Proper recontruction of 3D environments is nowadays needed by many organizations and applications. In addition to conventional methods the use of stereo panoramas is an appropriate technique to use due to simplicity, low cost and the ability to view an environment the way it is in reality. This paper investigates the ability of applying stereo CCD cameras for 3D reconstruction and presentation of the environment and geometric measuring among that. For this purpose, a rotating stereo panorama was established using two CCDs with a base-length of 350 mm and a DVR (digital video recorder box. The stereo system was first calibrated using a 3D test-field and used to perform accurate measurements. The results of investigating the system in a real environment showed that although this kind of cameras produce noisy images and they do not have appropriate geometric stability, but they can be easily synchronized, well controlled and reasonable accuracy (about 40 mm in objects at 12 meters distance from the camera can be achieved.

  14. Synchronization of bursting neurons with a slowly varying d. c. current

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Mondal, Argha

    2017-01-01

    Highlights: • To examine synchronization, noisy chemical and electrical coupling have been considered for a coupled bursting M-L neurons. • Bursting presents the precursor to spike synchronization and coupling strength increases the locking between neurons (anti phase and in phase). • The stability of synchronization is established via similarity function. • The necessary condition to occur CS state is observed using master stability function. • A network of four M-L neurons is considered to observe the synchronization. - Abstract: Bursting of neuronal firing is an interesting dynamical consequences depending on fast/slow dynamics. Certain cells in different brain regions produce spike-burst activity. We study such firing activity and its transitions to synchronization using identical as well as non-identical coupled bursting Morris-Lecar (M-L) neurons. Synchronization of different firing activity is a multi-time-scale phenomenon and burst synchronization presents the precursor to spike synchronization. Chemical synapses are one of the dynamical means of information processing between neurons. Electrical synapses play a major role for synchronous activity in a certain network of neurons. Synaptically coupled neural cells exhibit different types of synchronization such as in phase or anti-phase depending on the nature and strength of coupling functions and the synchronization regimes are analyzed by similarity functions. The sequential transitions to synchronization regime are examined by the maximum transverse Lyapunov exponents. Synchronization of voltage traces of two types of planar bursting mechanisms is explored for both kind of synapses under realistic conditions. The noisy influence effects on the transmission of signals and strongly acts to the firing activity (such as periodic firing and bursting) and integration of signals for a network. It has been examined using the mean interspike interval analysis. The transition to synchronization states of

  15. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  16. Hardware Synchronization for Embedded Multi-Core Processors

    DEFF Research Database (Denmark)

    Stoif, Christian; Schoeberl, Martin; Liccardi, Benito

    2011-01-01

    Multi-core processors are about to conquer embedded systems — it is not the question of whether they are coming but how the architectures of the microcontrollers should look with respect to the strict requirements in the field. We present the step from one to multiple cores in this paper, establi......Multi-core processors are about to conquer embedded systems — it is not the question of whether they are coming but how the architectures of the microcontrollers should look with respect to the strict requirements in the field. We present the step from one to multiple cores in this paper...

  17. Fast in-database cross-matching of high-cadence, high-density source lists with an up-to-date sky model

    NARCIS (Netherlands)

    L.H.A. Scheers (Bart); S. Bloemen; H.F. Mühleisen (Hannes); P. Schellart; A. Van Elteren (Arjen); M.L. Kersten (Martin); P.J. Groot

    2018-01-01

    htmlabstract

    Coming high-cadence wide-field optical telescopes will image hundreds of thousands of sources per minute. Besides inspecting the near real-time data streams for transient and variability events, the accumulated data archive is a wealthy laboratory for making complementary scientific

  18. Computer vision camera with embedded FPGA processing

    Science.gov (United States)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  19. Synchronization of metronomes

    Science.gov (United States)

    Pantaleone, James

    2002-10-01

    Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.

  20. Hierarchical-control-based output synchronization of coexisting attractor networks

    International Nuclear Information System (INIS)

    Yun-Zhong, Song; Yi-Fa, Tang

    2010-01-01

    This paper introduces the concept of hierarchical-control-based output synchronization of coexisting attractor networks. Within the new framework, each dynamic node is made passive at first utilizing intra-control around its own arena. Then each dynamic node is viewed as one agent, and on account of that, the solution of output synchronization of coexisting attractor networks is transformed into a multi-agent consensus problem, which is made possible by virtue of local interaction between individual neighbours; this distributed working way of coordination is coined as inter-control, which is only specified by the topological structure of the network. Provided that the network is connected and balanced, the output synchronization would come true naturally via synergy between intra and inter-control actions, where the Tightness is proved theoretically via convex composite Lyapunov functions. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme. (general)

  1. Interactive Multi-Instrument Database of Solar Flares

    Science.gov (United States)

    Ranjan, Shubha S.; Spaulding, Ryan; Deardorff, Donald G.

    2018-01-01

    The fundamental motivation of the project is that the scientific output of solar research can be greatly enhanced by better exploitation of the existing solar/heliosphere space-data products jointly with ground-based observations. Our primary focus is on developing a specific innovative methodology based on recent advances in "big data" intelligent databases applied to the growing amount of high-spatial and multi-wavelength resolution, high-cadence data from NASA's missions and supporting ground-based observatories. Our flare database is not simply a manually searchable time-based catalog of events or list of web links pointing to data. It is a preprocessed metadata repository enabling fast search and automatic identification of all recorded flares sharing a specifiable set of characteristics, features, and parameters. The result is a new and unique database of solar flares and data search and classification tools for the Heliophysics community, enabling multi-instrument/multi-wavelength investigations of flare physics and supporting further development of flare-prediction methodologies.

  2. Design and implementation of real-time multi-sensor vision systems

    CERN Document Server

    Popovic, Vladan; Cogal, Ömer; Akin, Abdulkadir; Leblebici, Yusuf

    2017-01-01

    This book discusses the design of multi-camera systems and their application to fields such as the virtual reality, gaming, film industry, medicine, automotive industry, drones, etc.The authors cover the basics of image formation, algorithms for stitching a panoramic image from multiple cameras, and multiple real-time hardware system architectures, in order to have panoramic videos. Several specific applications of multi-camera systems are presented, such as depth estimation, high dynamic range imaging, and medical imaging.

  3. Characterization of SWIR cameras by MRC measurements

    Science.gov (United States)

    Gerken, M.; Schlemmer, H.; Haan, Hubertus A.; Siemens, Christofer; Münzberg, M.

    2014-05-01

    Cameras for the SWIR wavelength range are becoming more and more important because of the better observation range for day-light operation under adverse weather conditions (haze, fog, rain). In order to choose the best suitable SWIR camera or to qualify a camera for a given application, characterization of the camera by means of the Minimum Resolvable Contrast MRC concept is favorable as the MRC comprises all relevant properties of the instrument. With the MRC known for a given camera device the achievable observation range can be calculated for every combination of target size, illumination level or weather conditions. MRC measurements in the SWIR wavelength band can be performed widely along the guidelines of the MRC measurements of a visual camera. Typically measurements are performed with a set of resolution targets (e.g. USAF 1951 target) manufactured with different contrast values from 50% down to less than 1%. For a given illumination level the achievable spatial resolution is then measured for each target. The resulting curve is showing the minimum contrast that is necessary to resolve the structure of a target as a function of spatial frequency. To perform MRC measurements for SWIR cameras at first the irradiation parameters have to be given in radiometric instead of photometric units which are limited in their use to the visible range. In order to do so, SWIR illumination levels for typical daylight and twilight conditions have to be defined. At second, a radiation source is necessary with appropriate emission in the SWIR range (e.g. incandescent lamp) and the irradiance has to be measured in W/m2 instead of Lux = Lumen/m2. At third, the contrast values of the targets have to be calibrated newly for the SWIR range because they typically differ from the values determined for the visual range. Measured MRC values of three cameras are compared to the specified performance data of the devices and the results of a multi-band in-house designed Vis-SWIR camera

  4. The GCT camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  5. Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset.

    Science.gov (United States)

    O'Connor, Kelly M; Nathan, Lucas R; Liberati, Marjorie R; Tingley, Morgan W; Vokoun, Jason C; Rittenhouse, Tracy A G

    2017-01-01

    Camera trapping is a standard tool in ecological research and wildlife conservation. Study designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low detection probabilities by using non-random camera placement or baited cameras, which may bias data, or incorrectly estimate detection and occupancy. We investigated the ability of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study design components were evaluated for their influence on wildlife detectability by iteratively parsing an empirical dataset (1) by different sizes of camera arrays deployed (1-10 cameras), and (2) by total season length (1-365 days). Four species from our dataset that represented a range of body sizes and differing degrees of presumed detectability based on life history traits were investigated: white-tailed deer (Odocoileus virginianus), bobcat (Lynx rufus), raccoon (Procyon lotor), and Virginia opossum (Didelphis virginiana). For all species, increasing from a single camera to a multi-camera array significantly improved detection probability across the range of season lengths and number of study sites evaluated. The use of a two camera array increased survey detection an average of 80% (range 40-128%) from the detection probability of a single camera across the four species. Species that were detected infrequently benefited most from a multiple-camera array, where the addition of up to eight cameras produced significant increases in detectability. However, for species detected at high frequencies, single cameras produced a season-long (i.e, the length of time over which cameras are deployed and actively monitored) detectability greater than 0.75. These results highlight the need for researchers to be critical about camera trap study designs based on their intended target species, as detectability for each focal species responded differently to array size and season length. We suggest that researchers a priori identify

  6. Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset.

    Directory of Open Access Journals (Sweden)

    Kelly M O'Connor

    Full Text Available Camera trapping is a standard tool in ecological research and wildlife conservation. Study designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low detection probabilities by using non-random camera placement or baited cameras, which may bias data, or incorrectly estimate detection and occupancy. We investigated the ability of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study design components were evaluated for their influence on wildlife detectability by iteratively parsing an empirical dataset (1 by different sizes of camera arrays deployed (1-10 cameras, and (2 by total season length (1-365 days. Four species from our dataset that represented a range of body sizes and differing degrees of presumed detectability based on life history traits were investigated: white-tailed deer (Odocoileus virginianus, bobcat (Lynx rufus, raccoon (Procyon lotor, and Virginia opossum (Didelphis virginiana. For all species, increasing from a single camera to a multi-camera array significantly improved detection probability across the range of season lengths and number of study sites evaluated. The use of a two camera array increased survey detection an average of 80% (range 40-128% from the detection probability of a single camera across the four species. Species that were detected infrequently benefited most from a multiple-camera array, where the addition of up to eight cameras produced significant increases in detectability. However, for species detected at high frequencies, single cameras produced a season-long (i.e, the length of time over which cameras are deployed and actively monitored detectability greater than 0.75. These results highlight the need for researchers to be critical about camera trap study designs based on their intended target species, as detectability for each focal species responded differently to array size and season length. We suggest that researchers a priori

  7. Low power multi-camera system and algorithms for automated threat detection

    Science.gov (United States)

    Huber, David J.; Khosla, Deepak; Chen, Yang; Van Buer, Darrel J.; Martin, Kevin

    2013-05-01

    A key to any robust automated surveillance system is continuous, wide field-of-view sensor coverage and high accuracy target detection algorithms. Newer systems typically employ an array of multiple fixed cameras that provide individual data streams, each of which is managed by its own processor. This array can continuously capture the entire field of view, but collecting all the data and back-end detection algorithm consumes additional power and increases the size, weight, and power (SWaP) of the package. This is often unacceptable, as many potential surveillance applications have strict system SWaP requirements. This paper describes a wide field-of-view video system that employs multiple fixed cameras and exhibits low SWaP without compromising the target detection rate. We cycle through the sensors, fetch a fixed number of frames, and process them through a modified target detection algorithm. During this time, the other sensors remain powered-down, which reduces the required hardware and power consumption of the system. We show that the resulting gaps in coverage and irregular frame rate do not affect the detection accuracy of the underlying algorithms. This reduces the power of an N-camera system by up to approximately N-fold compared to the baseline normal operation. This work was applied to Phase 2 of DARPA Cognitive Technology Threat Warning System (CT2WS) program and used during field testing.

  8. Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.

    2017-12-01

    In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.

  9. An explicit multi-time-stepping algorithm for aerodynamic flows

    NARCIS (Netherlands)

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for

  10. Freely chosen cadence during a covert manipulation of ambient temperature.

    Science.gov (United States)

    Hartley, Geoffrey L; Cheung, Stephen S

    2013-01-01

    The present study investigated relationships between changes in power output (PO) to torque (TOR) or freely chosen cadence (FCC) during thermal loading. Twenty participants cycled at a constant rating of perceived exertion while ambient temperature (Ta) was covertly manipulated at 20-min intervals of 20 °C, 35 °C, and 20 °C. The magnitude responses of PO, FCC and TOR were analyzed using repeated-measures ANOVA, while the temporal correlations were analyzed using Auto-Regressive Integrated Moving Averages (ARIMA). Increases in Ta caused significant thermal strain (p FCC remained unchanged (p = .51). ARIMA indicates that changes in PO were highly correlated to TOR (stationary r2 = .954, p = .04), while FCC was moderately correlated (stationary r2 = .717, p = .01) to PO. In conclusion, changes in PO are caused by a modulation in TOR, whereas FCC remains unchanged and therefore, unaffected by thermal stressors.

  11. Synchronization ability of coupled cell-cycle oscillators in changing environments

    Science.gov (United States)

    2012-01-01

    Background The biochemical oscillator that controls periodic events during the Xenopus embryonic cell cycle is centered on the activity of CDKs, and the cell cycle is driven by a protein circuit that is centered on the cyclin-dependent protein kinase CDK1 and the anaphase-promoting complex (APC). Many studies have been conducted to confirm that the interactions in the cell cycle can produce oscillations and predict behaviors such as synchronization, but much less is known about how the various elaborations and collective behavior of the basic oscillators can affect the robustness of the system. Therefore, in this study, we investigate and model a multi-cell system of the Xenopus embryonic cell cycle oscillators that are coupled through a common complex protein, and then analyze their synchronization ability under four different external stimuli, including a constant input signal, a square-wave periodic signal, a sinusoidal signal and a noise signal. Results Through bifurcation analysis and numerical simulations, we obtain synchronization intervals of the sensitive parameters in the individual oscillator and the coupling parameters in the coupled oscillators. Then, we analyze the effects of these parameters on the synchronization period and amplitude, and find interesting phenomena, e.g., there are two synchronization intervals with activation coefficient in the Hill function of the activated CDK1 that activates the Plk1, and different synchronization intervals have distinct influences on the synchronization period and amplitude. To quantify the speediness and robustness of the synchronization, we use two quantities, the synchronization time and the robustness index, to evaluate the synchronization ability. More interestingly, we find that the coupled system has an optimal signal strength that maximizes the synchronization index under different external stimuli. Simulation results also show that the ability and robustness of the synchronization for the square

  12. Full Body Pose Estimation During Occlusion using Multiple Cameras

    DEFF Research Database (Denmark)

    Fihl, Preben; Cosar, Serhan

    people is a very challenging problem for methods based on pictorials structure as for any other monocular pose estimation method. In this report we present work on a multi-view approach based on pictorial structures that integrate low level information from multiple calibrated cameras to improve the 2D...

  13. Investigating the Magnetic Imprints of Major Solar Eruptions with SDO /HMI High-cadence Vector Magnetograms

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xudong; Hoeksema, J. Todd; Liu Yang; Chen Ruizhu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Kazachenko, Maria, E-mail: xudong@Sun.stanford.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-04-10

    The solar active region photospheric magnetic field evolves rapidly during major eruptive events, suggesting appreciable feedback from the corona. Previous studies of these “magnetic imprints” are mostly based on line of sight only or lower-cadence vector observations; a temporally resolved depiction of the vector field evolution is hitherto lacking. Here, we introduce the high-cadence (90 s or 135 s) vector magnetogram data set from the Helioseismic and Magnetic Imager, which is well suited for investigating the phenomenon. These observations allow quantitative characterization of the permanent, step-like changes that are most pronounced in the horizontal field component (B {sub h}). A highly structured pattern emerges from analysis of an archetypical event, SOL2011-02-15T01:56, where B {sub h} near the main polarity inversion line increases significantly during the earlier phase of the associated flare with a timescale of several minutes, while B {sub h} in the periphery decreases at later times with smaller magnitudes and a slightly longer timescale. The data set also allows effective identification of the “magnetic transient” artifact, where enhanced flare emission alters the Stokes profiles and the inferred magnetic field becomes unreliable. Our results provide insights on the momentum processes in solar eruptions. The data set may also be useful to the study of sunquakes and data-driven modeling of the corona.

  14. Upper Extremity Freezing and Dyscoordination in Parkinson’s Disease: Effects of Amplitude and Cadence Manipulations

    Directory of Open Access Journals (Sweden)

    April J. Williams

    2013-01-01

    Full Text Available Purpose. Motor freezing, the inability to produce effective movement, is associated with decreasing amplitude, hastening of movement, and poor coordination. We investigated how manipulations of movement amplitude and cadence affect upper extremity (UE coordination as measured by the phase coordination index (PCI—only previously measured in gait—and freezing of the upper extremity (FO-UE in people with Parkinson's disease (PD who experience freezing of gait (PD + FOG, do not experience FOG (PD-FOG, and healthy controls. Methods. Twenty-seven participants with PD and 18 healthy older adults made alternating bimanual movements between targets under four conditions: Baseline; Fast; Small; SmallFast. Kinematic data were recorded and analyzed for PCI and FO-UE events. PCI and FO-UE were compared across groups and conditions. Correlations between UE PCI, gait PCI, FO-UE, and Freezing of Gait Questionnaire (FOG-Q were determined. Results. PD + FOG had poorer coordination than healthy old during SmallFast. UE coordination correlated with number of FO-UE episodes in two conditions and FOG-Q score in one. No differences existed between PD−/+FOG in coordination or number of FO-UE episodes. Conclusions. Dyscoordination and FO-UE can be elicited by manipulating cadence and amplitude of an alternating bimanual task. It remains unclear whether FO-UE and FOG share common mechanisms.

  15. Spatial frequency domain imaging using a snap-shot filter mosaic camera with multi-wavelength sensitive pixels

    Science.gov (United States)

    Strömberg, Tomas; Saager, Rolf B.; Kennedy, Gordon T.; Fredriksson, Ingemar; Salerud, Göran; Durkin, Anthony J.; Larsson, Marcus

    2018-02-01

    Spatial frequency domain imaging (SFDI) utilizes a digital light processing (DLP) projector for illuminating turbid media with sinusoidal patterns. The tissue absorption (μa) and reduced scattering coefficient (μ,s) are calculated by analyzing the modulation transfer function for at least two spatial frequencies. We evaluated different illumination strategies with a red, green and blue light emitting diodes (LED) in the DLP, while imaging with a filter mosaic camera, XiSpec, with 16 different multi-wavelength sensitive pixels in the 470-630 nm wavelength range. Data were compared to SFDI by a multispectral camera setup (MSI) consisting of four cameras with bandpass filters centered at 475, 560, 580 and 650 nm. A pointwise system for comprehensive microcirculation analysis was used (EPOS) for comparison. A 5-min arterial occlusion and release protocol on the forearm of a Caucasian male with fair skin was analyzed by fitting the absorption spectra of the chromophores HbO2, Hb and melanin to the estimatedμa. The tissue fractions of red blood cells (fRBC), melanin (/mel) and the Hb oxygenation (S02 ) were calculated at baseline, end of occlusion, early after release and late after release. EPOS results showed a decrease in S02 during the occlusion and hyperemia during release (S02 = 40%, 5%, 80% and 51%). The fRBC showed an increase during occlusion and release phases. The best MSI resemblance to the EPOS was for green LED illumination (S02 = 53%, 9%, 82%, 65%). Several illumination and analysis strategies using the XiSpec gave un-physiological results (e.g. negative S02 ). XiSpec with green LED illumination gave the expected change in /RBC , while the dynamics in S02 were less than those for EPOS. These results may be explained by the calculation of modulation using an illumination and detector setup with a broad spectral transmission bandwidth, with considerable variation in μa of included chromophores. Approaches for either reducing the effective bandwidth of

  16. Streak-Camera Measurements with High Currents in PEP-II and Variable Optics in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weixeng; Fisher, Alan, a Corbett, Jeff; /SLAC

    2008-06-05

    A dual-axis, synchroscan streak camera was used to measure longitudinal bunch profiles in three storage rings at SLAC: the PEP-II low- and high-energy rings, and SPEAR3. At high currents, both PEP rings exhibit a transient synchronous-phase shift along the bunch train due to RF-cavity beam loading. Bunch length and profile asymmetry were measured along the train for a range of beam currents. To avoid the noise inherent in a dual-axis sweep, we accumulated single-axis synchroscan images while applying a 50-ns gate to the microchannel plate. To improve the extinction ratio, an upstream mirror pivoting at 1 kHz was synchronized with the 2kHz MCP gate to deflect light from other bunches off the photocathode. Bunch length was also measured on the HER as a function of beam energy. For SPEAR3 we measured bunch length as a function of single-bunch current for several lattices: achromatic, low-emittance and low momentum compaction. In the first two cases, resistive and reactive impedance components can be extracted from the longitudinal bunch profiles. In the low-alpha configurations, we observed natural bunch lengths approaching the camera resolution, requiring special care to remove instrumental effects, and saw evidence of periodic bursting.

  17. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  18. Integration of multispectral face recognition and multi-PTZ camera automated surveillance for security applications

    Science.gov (United States)

    Chen, Chung-Hao; Yao, Yi; Chang, Hong; Koschan, Andreas; Abidi, Mongi

    2013-06-01

    Due to increasing security concerns, a complete security system should consist of two major components, a computer-based face-recognition system and a real-time automated video surveillance system. A computerbased face-recognition system can be used in gate access control for identity authentication. In recent studies, multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed and proven to enhance the recognition performance over conventional broad-band images, especially when the illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under the given illumination. Experimental results verify the consistent performance of our algorithm via the observation that an identical set of spectral band images is selected under all tested conditions. Our discovery can be practically used for a new customized sensor design associated with given illuminations for an improved face recognition performance over conventional broad-band images. In addition, once a person is authorized to enter a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pantilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm presents substantially

  19. Re-identification of persons in multi-camera surveillance under varying viewpoints and illumination

    Science.gov (United States)

    Bouma, Henri; Borsboom, Sander; den Hollander, Richard J. M.; Landsmeer, Sander H.; Worring, Marcel

    2012-06-01

    The capability to track individuals in CCTV cameras is important for surveillance and forensics alike. However, it is laborious to do over multiple cameras. Therefore, an automated system is desirable. In literature several methods have been proposed, but their robustness against varying viewpoints and illumination is limited. Hence performance in realistic settings is also limited. In this paper, we present a novel method for the automatic re-identification of persons in video from surveillance cameras in a realistic setting. The method is computationally efficient, robust to a wide variety of viewpoints and illumination, simple to implement and it requires no training. We compare the performance of our method to several state-of-the-art methods on a publically available dataset that contains the variety of viewpoints and illumination to allow benchmarking. The results indicate that our method shows good performance and enables a human operator to track persons five times faster.

  20. Multi-channel automotive night vision system

    Science.gov (United States)

    Lu, Gang; Wang, Li-jun; Zhang, Yi

    2013-09-01

    A four-channel automotive night vision system is designed and developed .It is consist of the four active near-infrared cameras and an Mulit-channel image processing display unit,cameras were placed in the automobile front, left, right and rear of the system .The system uses near-infrared laser light source,the laser light beam is collimated, the light source contains a thermoelectric cooler (TEC),It can be synchronized with the camera focusing, also has an automatic light intensity adjustment, and thus can ensure the image quality. The principle of composition of the system is description in detail,on this basis, beam collimation,the LD driving and LD temperature control of near-infrared laser light source,four-channel image processing display are discussed.The system can be used in driver assistance, car BLIS, car parking assist system and car alarm system in day and night.

  1. Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.

    Science.gov (United States)

    Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L

    2013-02-01

    Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain.

  2. Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis

    Science.gov (United States)

    Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi

    2011-01-01

    In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…

  3. Research in Application of Geodetic GPS Receivers in Time Synchronization

    Science.gov (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least

  4. RESEARCH IN APPLICATION OF GEODETIC GPS RECEIVERS IN TIME SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-04-01

    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  5. Software programmable multi-mode interface for nuclear-medical imaging

    International Nuclear Information System (INIS)

    Zubal, I.G.; Rowe, R.W.; Bizais, Y.J.C.; Bennett, G.W.; Brill, A.B.

    1982-01-01

    An innovative multi-port interface allows gamma camera events (spatial coordinates and energy) to be acquired concurrently with a sampling of physiological patient data. The versatility of the interface permits all conventional static, dynamic, and tomographic imaging modes, in addition to multi-hole coded aperture acquisition. The acquired list mode data may be analyzed or gated on the basis of various camera, isotopic, or physiological parameters

  6. PulseCam: high-resolution blood perfusion imaging using a camera and a pulse oximeter.

    Science.gov (United States)

    Kumar, Mayank; Suliburk, James; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2016-08-01

    Measuring blood perfusion is important in medical care as an indicator of injury and disease. However, currently available devices to measure blood perfusion like laser Doppler flowmetry are bulky, expensive, and cumbersome to use. An alternative low-cost and portable camera-based blood perfusion measurement system has recently been proposed, but such camera-only system produces noisy low-resolution blood perfusion maps. In this paper, we propose a new multi-sensor modality, named PulseCam, for measuring blood perfusion by combining a traditional pulse oximeter with a video camera in a unique way to provide low noise and high-resolution blood perfusion maps. Our proposed multi-sensor modality improves per pixel signal to noise ratio of measured perfusion map by up to 3 dB and improves the spatial resolution by 2 - 3 times compared to best known camera-only methods. Blood perfusion measured in the palm using our PulseCam setup during a post-occlusive reactive hyperemia (PORH) test replicates standard PORH response curve measured using laser Doppler flowmetry device but with much lower cost and a portable setup making it suitable for further development as a clinical device.

  7. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  8. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  9. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  10. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Directory of Open Access Journals (Sweden)

    Ouannas Adel

    2018-04-01

    Full Text Available In this paper, a new type of synchronization for chaotic (hyperchaotic maps with different dimensions is proposed. The novel scheme is called F – M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F with the matrix projective synchronization (based on a matrix M. In particular, the proposed approach enables F – M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F – M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  11. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Science.gov (United States)

    Ouannas, Adel; Grassi, Giuseppe; Karouma, Abdulrahman; Ziar, Toufik; Wang, Xiong; Pham, Viet-Thanh

    2018-04-01

    In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F - M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F - M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F - M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  12. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy.

    Science.gov (United States)

    Barabas, Federico M; Masullo, Luciano A; Stefani, Fernando D

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  13. Game of thrown bombs in 3D: using high speed cameras and photogrammetry techniques to reconstruct bomb trajectories at Stromboli (Italy)

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J.; Scarlato, P.; Del Bello, E.; Houghton, B. F.; Orr, T. R.; Andronico, D.; Kueppers, U.

    2015-12-01

    Large juvenile bombs and lithic clasts, produced and ejected during explosive volcanic eruptions, follow ballistic trajectories. Of particular interest are: 1) the determination of ejection velocity and launch angle, which give insights into shallow conduit conditions and geometry; 2) particle trajectories, with an eye on trajectory evolution caused by collisions between bombs, as well as the interaction between bombs and ash/gas plumes; and 3) the computation of the final emplacement of bomb-sized clasts, which is important for hazard assessment and risk management. Ground-based imagery from a single camera only allows the reconstruction of bomb trajectories in a plan perpendicular to the line of sight, which may lead to underestimation of bomb velocities and does not allow the directionality of the ejections to be studied. To overcome this limitation, we adapted photogrammetry techniques to reconstruct 3D bomb trajectories from two or three synchronized high-speed video cameras. In particular, we modified existing algorithms to consider the errors that may arise from the very high velocity of the particles and the impossibility of measuring tie points close to the scene. Our method was tested during two field campaigns at Stromboli. In 2014, two high-speed cameras with a 500 Hz frame rate and a ~2 cm resolution were set up ~350m from the crater, 10° apart and synchronized. The experiment was repeated with similar parameters in 2015, but using three high-speed cameras in order to significantly reduce uncertainties and allow their estimation. Trajectory analyses for tens of bombs at various times allowed for the identification of shifts in the mean directivity and dispersal angle of the jets during the explosions. These time evolutions are also visible on the permanent video-camera monitoring system, demonstrating the applicability of our method to all kinds of explosive volcanoes.

  14. On Synchronization Primitive Systems.

    Science.gov (United States)

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  15. Analysis, Design, and Experimental Verification of A Synchronous Reference Frame Voltage Control for Single-Phase Inverters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2014-01-01

    Control of three-phase power converters in the synchronous reference frame is now a mature and well developed research topic. However, for single-phase converters, it is not as well-established as three-phase applications. This paper deals with the design of a synchronous reference frame multi-lo...... on a frequency response approach is presented. Finally, the theoretical achievements are supported by experimental results.......-loop control strategy for single phase inverter-based islanded distributed generation (DG) systems. The proposed controller uses a synchronous reference frame PI (SRFPI) controller to regulate the instantaneous output voltage, a capacitor current shaping loop in the stationary reference frame to provide active...

  16. Stages of chaotic synchronization.

    Science.gov (United States)

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  17. A new omni-directional multi-camera system for high resolution surveillance

    Science.gov (United States)

    Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2014-05-01

    Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.

  18. Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks

    CERN Document Server

    2013-01-01

    This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...

  19. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    Science.gov (United States)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  20. A new high-speed IR camera system

    Science.gov (United States)

    Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.

    1994-01-01

    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.

  1. Impulsive Synchronization and Adaptive-Impulsive Synchronization of a Novel Financial Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Xiuli Chai

    2013-01-01

    Full Text Available The impulsive synchronization and adaptive-impulsive synchronization of a novel financial hyperchaotic system are investigated. Based on comparing principle for impulsive functional differential equations, several sufficient conditions for impulsive synchronization are derived, and the upper bounds of impulsive interval for stable synchronization are estimated. Furthermore, a nonlinear adaptive-impulsive control scheme is designed to synchronize the financial system using invariant principle of impulsive dynamical systems. Moreover, corresponding numerical simulations are presented to illustrate the effectiveness and feasibility of the proposed methods.

  2. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels.

    Science.gov (United States)

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-04-14

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  3. Development of Camera Model and Geometric Calibration/validation of Xsat IRIS Imagery

    Science.gov (United States)

    Kwoh, L. K.; Huang, X.; Tan, W. J.

    2012-07-01

    XSAT, launched on 20 April 2011, is the first micro-satellite designed and built in Singapore. It orbits the Earth at altitude of 822 km in a sun synchronous orbit. The satellite carries a multispectral camera IRIS with three spectral bands - 0.52~0.60 mm for Green, 0.63~0.69 mm for Red and 0.76~0.89 mm for NIR at 12 m resolution. In the design of IRIS camera, the three bands were acquired by three lines of CCDs (NIR, Red and Green). These CCDs were physically separated in the focal plane and their first pixels not absolutely aligned. The micro-satellite platform was also not stable enough to allow for co-registration of the 3 bands with simple linear transformation. In the camera model developed, this platform stability was compensated with 3rd to 4th order polynomials for the satellite's roll, pitch and yaw attitude angles. With the camera model, the camera parameters such as the band to band separations, the alignment of the CCDs relative to each other, as well as the focal length of the camera can be validated or calibrated. The results of calibration with more than 20 images showed that the band to band along-track separation agreed well with the pre-flight values provided by the vendor (0.093° and 0.046° for the NIR vs red and for green vs red CCDs respectively). The cross-track alignments were 0.05 pixel and 5.9 pixel for the NIR vs red and green vs red CCDs respectively. The focal length was found to be shorter by about 0.8%. This was attributed to the lower operating temperature which XSAT is currently operating. With the calibrated parameters and the camera model, a geometric level 1 multispectral image with RPCs can be generated and if required, orthorectified imagery can also be produced.

  4. Performance characterization of UV science cameras developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-07-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-α and to detect the Hanle effect in the line core. Due to the nature of Lyman-α polarizationin the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. The CLASP cameras were designed to operate with ≤ 10 e-/pixel/second dark current, ≤ 25 e- read noise, a gain of 2.0 +- 0.5 and ≤ 1.0% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  5. Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions

    International Nuclear Information System (INIS)

    Yan-Li, Zou; Guan-Rong, Chen

    2009-01-01

    This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value. (general)

  6. Bursting oscillations, bifurcation and synchronization in neuronal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haixia [School of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang Qingyun, E-mail: drwangqy@gmail.com [Department of Dynamics and Control, Beihang University, Beijing 100191 (China); Lu Qishao [Department of Dynamics and Control, Beihang University, Beijing 100191 (China)

    2011-08-15

    Highlights: > We investigate bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. > Two types of fast-slow bursters are analyzed in detail. > We show the properties of some crucial bifurcation points. > Synchronization transition and the neural excitability are explored in the coupled bursters. - Abstract: This paper investigates bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. It is shown that for some appropriate parameters, the modified Morris-Lecar neuron can exhibit two types of fast-slow bursters, that is 'circle/fold cycle' bursting and 'subHopf/homoclinic' bursting with class 1 and class 2 neural excitability, which have different neuro-computational properties. By means of the analysis of fast-slow dynamics and phase plane, we explore bifurcation mechanisms associated with the two types of bursters. Furthermore, the properties of some crucial bifurcation points, which can determine the type of the burster, are studied by the stability and bifurcation theory. In addition, we investigate the influence of the coupling strength on synchronization transition and the neural excitability in two electrically coupled bursters with the same bursting type. More interestingly, the multi-time-scale synchronization transition phenomenon is found as the coupling strength varies.

  7. Framing-camera tube developed for sub-100-ps range

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    A new framing-camera tube, developed by Electronics Engineering, is capable of recording two-dimensional image frames with high spatial resolution in the sub-100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits; the resulting electron-line images from the slits are restored into a framed image by a restorer deflector operating synchronously with the dissector deflector. We have demonstrated its performance in a prototype tube by recording 125-ps-duration framed images of 2.5-mm patterns. The limitation in the framing speed is in the external electronic drivers for the deflectors and not in the tube design characteristics. Shorter frame durations (below 100 ps) can be obtained by use of faster deflection drivers

  8. ATLAS: A High-cadence All-sky Survey System

    Science.gov (United States)

    Tonry, J. L.; Denneau, L.; Heinze, A. N.; Stalder, B.; Smith, K. W.; Smartt, S. J.; Stubbs, C. W.; Weiland, H. J.; Rest, A.

    2018-06-01

    Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the “Asteroid Terrestrial-impact Last Alert System” (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalog of 5 × 106 sources. This is the first of a series of articles describing ATLAS, devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient light curves.

  9. A Framework for People Re-Identification in Multi-Camera Surveillance Systems

    Science.gov (United States)

    Ammar, Sirine; Zaghden, Nizar; Neji, Mahmoud

    2017-01-01

    People re-identification has been a very active research topic recently in computer vision. It is an important application in surveillance system with disjoint cameras. This paper is focused on the implementation of a human re-identification system. First the face of detected people is divided into three parts and some soft-biometric traits are…

  10. Synchronized dynamic dose reconstruction

    International Nuclear Information System (INIS)

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-01

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined

  11. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease.

    Science.gov (United States)

    De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco

    2010-02-01

    During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Cadências escolares, ritmos docentes School cadences, teaching rhythms

    Directory of Open Access Journals (Sweden)

    Inês Assunção de Castro Teixeira

    1999-07-01

    Full Text Available O artigo analisa alguns dos eixos que estruturam os ritmos cotidianos dos professores, próprios às temporalidades da vida social na escola. Parte do pressuposto de que o tempo é uma "categoria do pensamento lógico", originada no ritmo da vida social (Dukheim, e que essa rítmica é uma "modalidade concreta do tempo social" (Lefebvre e Régulier. O estudo é parte de uma pesquisa que busca tematizar a experiência do tempo de sujeitos que se encontram na condição de professores - docentes de quinta à oitava séries do ensino fundamental e do ensino médio -, levando em conta seus vínculos com a construção de identidades docentes. O texto se desenvolve em torno de três eixos: as cadências das interações entre educandos e educadores, os ritmos dos calendários e os compassos dos horários escolares. Conclui-se que os ritmos docentes, embora circunscritos à rítmica da vida moderna, têm particularidades associadas às cadências da escola, aos processos pedagógicos e àqueles relacionados à formação humana. Trata-se, pois, de analisar a polirritmia dos tempos da escola em sua complexidade e peculiaridades, de forma a se compreenderem as modulações e significações da experiência do tempo na condição de professor, vivência constitutiva das identidades docentes.This paper analyzes some of the concepts peculiar to the temporality of the school social life that structure the everyday rhythm of teachers. It assumes that time is a "category of logical thinking" originated in the rhythm of social life (Durkheim, and that such rhythmic character is a "concrete modality of social time" (Lefebvre and Régulier. This study is part of a research that seeks to discuss the experience of time for teachers of the 5th to 8th grades of the Primary Education and of the Secondary Education, taking into account the teachers’ links with the construction of their own teaching identities. The text is developed around three themes: the cadences

  13. Multi-capability color night vision HD camera for defense, surveillance, and security

    Science.gov (United States)

    Pang, Francis; Powell, Gareth; Fereyre, Pierre

    2015-05-01

    e2v has developed a family of high performance cameras based on our next generation CMOS imagers that provide multiple features and capabilities to meet the range of challenging imaging applications in defense, surveillance, and security markets. Two resolution sizes are available: 1920x1080 with 5.3 μm pixels, and an ultra-low light level version at 1280x1024 with 10μm pixels. Each type is available in either monochrome or e2v's unique bayer pattern color version. The camera is well suited to accommodate many of the high demands for defense, surveillance, and security applications: compact form factor (SWAP+C), color night vision performance (down to 10-2 lux), ruggedized housing, Global Shutter, low read noise (<6e- in Global shutter mode and <2.5e- in Rolling shutter mode), 60 Hz frame rate, high QE especially in the enhanced NIR range (up to 1100nm). Other capabilities include active illumination and range gating. This paper will describe all the features of the sensor and the camera. It will be followed with a presentation of the latest test data with the current developments. Then, it will conclude with a description of how these features can be easily configured to meet many different applications. With this development, we can tune rather than create a full customization, making it more beneficial for many of our customers and their custom applications.

  14. Innovation on structure of all automatic multi-studs four synchronous installing machine used in PWR

    International Nuclear Information System (INIS)

    Zhu Qirong; Zou Xiyang

    2002-01-01

    First of all from structure bring forth many new ideas. New stud, nut and a brand-new installing machine have been designed. In main machine, the integrated gear mechanism simple in structure achieves synchronous turning function, instead of the precision, complicated, expensive manipulator or robot. In aspect of supervising and controlling, computer electro-hydraulic proportional control and advanced examine measure system have been designed to measure stress and extension of stud as tensioning. Mathematics model and transmit function have been built using theory of modern times fluid transmission and control. As a result four synchronous installing has been achieved

  15. Evaluation of stereoscopic video cameras synchronized with the movement of an operator's head on the teleoperation of the actual backhoe shovel

    Science.gov (United States)

    Minamoto, Masahiko; Matsunaga, Katsuya

    1999-05-01

    Operator performance while using a remote controlled backhoe shovel is described for three different stereoscopic viewing conditions: direct view, fixed stereoscopic cameras connected to a helmet mounted display (HMD), and rotating stereo camera connected and slaved to the head orientation of a free moving stereo HMD. Results showed that the head- slaved system provided the best performance.

  16. Synchronization on effective networks

    International Nuclear Information System (INIS)

    Zhou Tao; Zhao Ming; Zhou Changsong

    2010-01-01

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  17. Synchronization on effective networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Changsong, E-mail: cszhou@hkbu.edu.h [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-04-15

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  18. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.

    Science.gov (United States)

    Gakne, Paul Verlaine; O'Keefe, Kyle

    2018-04-17

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.

  19. Large-scale laser-microwave synchronization for attosecond photon science facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shafak, Kemal

    2017-04-15

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  20. Large-scale laser-microwave synchronization for attosecond photon science facilities

    International Nuclear Information System (INIS)

    Shafak, Kemal

    2017-04-01

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  1. Robust output synchronization of heterogeneous nonlinear agents in uncertain networks.

    Science.gov (United States)

    Yang, Xi; Wan, Fuhua; Tu, Mengchuan; Shen, Guojiang

    2017-11-01

    This paper investigates the global robust output synchronization problem for a class of nonlinear multi-agent systems. In the considered setup, the controlled agents are heterogeneous and with both dynamic and parametric uncertainties, the controllers are incapable of exchanging their internal states with the neighbors, and the communication network among agents is defined by an uncertain simple digraph. The problem is pursued via nonlinear output regulation theory and internal model based design. For each agent, the input-driven filter and the internal model compose the controller, and the decentralized dynamic output feedback control law is derived by using backstepping method and the modified dynamic high-gain technique. The theoretical result is applied to output synchronization problem for uncertain network of Lorenz-type agents. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Autofluorescence of pigmented skin lesions using a pulsed UV laser with synchronized detection: clinical results

    Science.gov (United States)

    Cheng, Haynes P. H.; Svenmarker, Pontus; Xie, Haiyan; Tidemand-Lichtenberg, Peter; Jensen, Ole B.; Bendsoe, Niels; Svanberg, Katarina; Petersen, Paul Michael; Pedersen, Christian; Andersson-Engels, Stefan; Andersen, Peter E.

    2010-04-01

    We report preliminary clinical results of autofluorescence imaging of malignant and benign skin lesions, using pulsed 355 nm laser excitation with synchronized detection. The novel synchronized detection system allows high signal-tonoise ratio to be achieved in the resulting autofluorescence signal, which may in turn produce high contrast images that improve diagnosis, even in the presence of ambient room light. The synchronized set-up utilizes a compact, diode pumped, pulsed UV laser at 355 nm which is coupled to a CCD camera and a liquid crystal tunable filter. The excitation and image capture is sampled at 5 kHz and the resulting autofluorescence is captured with the liquid crystal filter cycling through seven wavelengths between 420 nm and 580 nm. The clinical study targets pigmented skin lesions and evaluates the prospects of using autofluorescence as a possible means in differentiating malignant and benign skin tumors. Up to now, sixteen patients have participated in the clinical study. The autofluorescence images, averaged over the exposure time of one second, will be presented along with histopathological results. Initial survey of the images show good contrast and diagnostic results show promising agreement based on the histopathological results.

  3. A Compton camera prototype for prompt gamma medical imaging

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2016-01-01

    Full Text Available Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  4. Multi-Camera and Structured-Light Vision System (MSVS for Dynamic High-Accuracy 3D Measurements of Railway Tunnels

    Directory of Open Access Journals (Sweden)

    Dong Zhan

    2015-04-01

    Full Text Available Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS. First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  5. Design of an Embedded Multi-Camera Vision System—A Case Study in Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Valter Costa

    2018-02-01

    Full Text Available The purpose of this work is to explore the design principles for a Real-Time Robotic Multi Camera Vision System, in a case study involving a real world competition of autonomous driving. Design practices from vision and real-time research areas are applied into a Real-Time Robotic Vision application, thus exemplifying good algorithm design practices, the advantages of employing the “zero copy one pass” methodology and associated trade-offs leading to the selection of a controller platform. The vision tasks under study are: (i recognition of a “flat” signal; and (ii track following, requiring 3D reconstruction. This research firstly improves the used algorithms for the mentioned tasks and finally selects the controller hardware. Optimization for the shown algorithms yielded from 1.5 times to 190 times improvements, always with acceptable quality for the target application, with algorithm optimization being more important on lower computing power platforms. Results also include a 3-cm and five-degree accuracy for lane tracking and 100% accuracy for signalling panel recognition, which are better than most results found in the literature for this application. Clear results comparing different PC platforms for the mentioned Robotic Vision tasks are also shown, demonstrating trade-offs between accuracy and computing power, leading to the proper choice of control platform. The presented design principles are portable to other applications, where Real-Time constraints exist.

  6. Integrated multi sensors and camera video sequence application for performance monitoring in archery

    Science.gov (United States)

    Taha, Zahari; Arif Mat-Jizat, Jessnor; Amirul Abdullah, Muhammad; Muazu Musa, Rabiu; Razali Abdullah, Mohamad; Fauzi Ibrahim, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2018-03-01

    This paper explains the development of a comprehensive archery performance monitoring software which consisted of three camera views and five body sensors. The five body sensors evaluate biomechanical related variables of flexor and extensor muscle activity, heart rate, postural sway and bow movement during archery performance. The three camera views with the five body sensors are integrated into a single computer application which enables the user to view all the data in a single user interface. The five body sensors’ data are displayed in a numerical and graphical form in real-time. The information transmitted by the body sensors are computed with an embedded algorithm that automatically transforms the summary of the athlete’s biomechanical performance and displays in the application interface. This performance will be later compared to the pre-computed psycho-fitness performance from the prefilled data into the application. All the data; camera views, body sensors; performance-computations; are recorded for further analysis by a sports scientist. Our developed application serves as a powerful tool for assisting the coach and athletes to observe and identify any wrong technique employ during training which gives room for correction and re-evaluation to improve overall performance in the sport of archery.

  7. Synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-01-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators

  8. Development of underwater camera using high-definition camera

    International Nuclear Information System (INIS)

    Tsuji, Kenji; Watanabe, Masato; Takashima, Masanobu; Kawamura, Shingo; Tanaka, Hiroyuki

    2012-01-01

    In order to reduce the time for core verification or visual inspection of BWR fuels, the underwater camera using a High-Definition camera has been developed. As a result of this development, the underwater camera has 2 lights and 370 x 400 x 328mm dimensions and 20.5kg weight. Using the camera, 6 or so spent-fuel IDs are identified at 1 or 1.5m distance at a time, and 0.3mmφ pin-hole is recognized at 1.5m distance and 20 times zoom-up. Noises caused by radiation less than 15 Gy/h are not affected the images. (author)

  9. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements

    Science.gov (United States)

    Chi, Yuxi; Yu, Liping; Pan, Bing

    2018-05-01

    A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.

  10. Nonlinear dynamics of the complex multi-scale network

    Science.gov (United States)

    Makarov, Vladimir V.; Kirsanov, Daniil; Goremyko, Mikhail; Andreev, Andrey; Hramov, Alexander E.

    2018-04-01

    In this paper, we study the complex multi-scale network of nonlocally coupled oscillators for the appearance of chimera states. Chimera is a special state in which, in addition to the asynchronous cluster, there are also completely synchronous parts in the system. We show that the increase of nodes in subgroups leads to the destruction of the synchronous interaction within the common ring and to the narrowing of the chimera region.

  11. Successive lag synchronization on dynamical networks with communication delay

    International Nuclear Information System (INIS)

    Zhang Xin-Jian; Wei Ai-Ju; Li Ke-Zan

    2016-01-01

    In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems. (paper)

  12. Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

    Science.gov (United States)

    2006-05-04

    Communication Periods Processing Resource Sanitization Minimum Interrupt Servicing Semaphores Multi-Core Synchronization Primitives Timers And nothing else...Communities of Interest Secure Configuration of all Nodes in Enclave Bandwidth provisioning & partitioning Secure Clock Synchronization Suppression of

  13. Content-based intermedia synchronization

    Science.gov (United States)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  14. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    The problem of asynchronous direct-sequence code division multiple access (DS-CDMA) detection over the ultra-wideband (UWB) multipath channel is considered. A joint synchronization, channel-estimation and multi-user detection scheme based on the adaptive linear minimum mean-square error (LMMSE...

  15. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Ichinohe, Yuto; Takeda, Shin'ichiro; Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Yamaguchi, Mitsutaka

    2012-01-01

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick Si-DSD and four layers of 750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  16. [Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network].

    Science.gov (United States)

    Liu, Qian-qian; Wang, Chun-yan; Shi, Xiao-feng; Li, Wen-dong; Luan, Xiao-ning; Hou, Shi-lin; Zhang, Jin-liang; Zheng, Rong-er

    2012-04-01

    In this paper, a new method was developed to differentiate the spill oil samples. The synchronous fluorescence spectra in the lower nonlinear concentration range of 10(-2) - 10(-1) g x L(-1) were collected to get training data base. Radial basis function artificial neural network (RBF-ANN) was used to identify the samples sets, along with principal component analysis (PCA) as the feature extraction method. The recognition rate of the closely-related oil source samples is 92%. All the results demonstrated that the proposed method could identify the crude oil samples effectively by just one synchronous spectrum of the spill oil sample. The method was supposed to be very suitable to the real-time spill oil identification, and can also be easily applied to the oil logging and the analysis of other multi-PAHs or multi-fluorescent mixtures.

  17. Relative camera localisation in non-overlapping camera networks using multiple trajectories

    NARCIS (Netherlands)

    John, V.; Englebienne, G.; Kröse, B.J.A.

    2012-01-01

    In this article we present an automatic camera calibration algorithm using multiple trajectories in a multiple camera network with non-overlapping field-of-views (FOV). Visible trajectories within a camera FOV are assumed to be measured with respect to the camera local co-ordinate system.

  18. Fast Self-Synchronization between LowVoltage Microgrid and Inverter using Virtual Synchronous Converter

    Directory of Open Access Journals (Sweden)

    Md Ruhul Amin

    2017-12-01

    Full Text Available In this paper, a fast self-synchronization known as virtual synchronous converter (VSCon between single-phase microgrid and inverter in low-voltage microgrid, has been developed in Matlab/Simulink. The idea is to any phase locked loop (PLL circuit for inverter-microgrid synchronization in order to improve the synchronization time. As known, it is difficult and lengthy process to tune the PLL gain parameters to reach suitable performance for synchronizing among the voltage, phase-angle and frequency between them. Due to this problem, a fast self synchronization technique is needed in order to minimize the time losses at the microgrid connection. Therefore, the VSCon has been developed which is based on the synchronous generator mathematical model but in virtual environment representation. It has been applied in the inverter control for generating switching pattern to the inverter switches in order to respond to the grid voltage for improve the synchronization. For a prove of concept, several simulation tests in MATLAB models have been conducted, in order to see the effectiveness of this VSCon. First test has been conducted, when a 240V, 50Hz frequency grid source is used for observing the self-synchronization the system with the power flows output. Furthermore, the next test is conducted when the grid frequency is changed from the rated frequency at 50Hz to 51Hz and the result shows the VSCon in inverter control takes nearly 40ms to synchronize to this new frequency value. The test on grid phase-angle delay also been tested when ac grid voltage has 150 phase delay. As from all the results, the improved inverter control with VSCon structure is able to have fast and self-synchronized between the invertergrid connection before the power from the inverter can be transferred.

  19. Strategic options towards an affordable high-performance infrared camera

    Science.gov (United States)

    Oduor, Patrick; Mizuno, Genki; Dutta, Achyut K.; Lewis, Jay; Dhar, Nibir K.

    2016-05-01

    The promise of infrared (IR) imaging attaining low-cost akin to CMOS sensors success has been hampered by the inability to achieve cost advantages that are necessary for crossover from military and industrial applications into the consumer and mass-scale commercial realm despite well documented advantages. Banpil Photonics is developing affordable IR cameras by adopting new strategies to speed-up the decline of the IR camera cost curve. We present a new short-wave IR (SWIR) camera; 640x512 pixel InGaAs uncooled system that is high sensitivity low noise ( 500 frames per second (FPS)) at full resolution, and low power consumption (market adoption by not only demonstrating high-performance IR imaging capability value add demanded by military and industrial application, but also illuminates a path towards justifiable price points essential for consumer facing application industries such as automotive, medical, and security imaging adoption. Among the strategic options presented include new sensor manufacturing technologies that scale favorably towards automation, multi-focal plane array compatible readout electronics, and dense or ultra-small pixel pitch devices.

  20. An explicit multi-time-stepping algorithm for aerodynamic flows

    OpenAIRE

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups in the order of five with respect to single time stepping are obtained.

  1. Multi-channel data acquisition system with absolute time synchronization

    Science.gov (United States)

    Włodarczyk, Przemysław; Pustelny, Szymon; Budker, Dmitry; Lipiński, Marcin

    2014-11-01

    We present a low-cost, stand-alone global-time-synchronized data acquisition system. Our prototype allows recording up to four analog signals with a 16-bit resolution in variable ranges and a maximum sampling rate of 1000 S/s. The system simultaneously acquires readouts of external sensors e.g. magnetometer or thermometer. A complete data set, including a header containing timestamp, is stored on a Secure Digital (SD) card or transmitted to a computer using Universal Serial Bus (USB). The estimated time accuracy of the data acquisition is better than ±200 ns. The device is intended for use in a global network of optical magnetometers (the Global Network of Optical Magnetometers for Exotic physics - GNOME), which aims to search for signals heralding physics beyond the Standard Model, that can be generated by ordinary spin coupling to exotic particles or anomalous spin interactions.

  2. Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction.

    Science.gov (United States)

    Yochum, Maxime; Laforêt, Jérémy; Marque, Catherine

    2018-02-01

    Preterm labor is an important public health problem. However, the efficiency of the uterine muscle during labor is complex and still poorly understood. This work is a first step towards a model of the uterine muscle, including its electrical and mechanical components, to reach a better understanding of the uterus synchronization. This model is proposed to investigate, by simulation, the possible role of mechanotransduction for the global synchronization of the uterus. The electrical diffusion indeed explains the local propagation of contractile activity, while the tissue stretching may play a role in the synchronization of distant parts of the uterine muscle. This work proposes a multi-physics (electrical, mechanical) and multi-scales (cell, tissue, whole uterus) model, which is applied to a realistic uterus 3D mesh. This model includes electrical components at different scales: generation of action potentials at the cell level, electrical diffusion at the tissue level. It then links these electrical events to the mechanical behavior, at the cellular level (via the intracellular calcium concentration), by simulating the force generated by each active cell. It thus computes an estimation of the intra uterine pressure (IUP) by integrating the forces generated by each active cell at the whole uterine level, as well as the stretching of the tissue (by using a viscoelastic law for the behavior of the tissue). It finally includes at the cellular level stretch activated channels (SACs) that permit to create a loop between the mechanical and the electrical behavior (mechanotransduction). The simulation of different activated regions of the uterus, which in this first "proof of concept" case are electrically isolated, permits the activation of inactive regions through the stretching (induced by the electrically active regions) computed at the whole organ scale. This permits us to evidence the role of the mechanotransduction in the global synchronization of the uterus. The

  3. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  4. CGLXTouch: A multi-user multi-touch approach for ultra-high-resolution collaborative workspaces

    KAUST Repository

    Ponto, Kevin

    2011-06-01

    This paper presents an approach for empowering collaborative workspaces through ultra-high resolution tiled display environments concurrently interfaced with multiple multi-touch devices. Multi-touch table devices are supported along with portable multi-touch tablet and phone devices, which can be added to and removed from the system on the fly. Events from these devices are tagged with a device identifier and are synchronized with the distributed display environment, enabling multi-user support. As many portable devices are not equipped to render content directly, a remotely scene is streamed in. The presented approach scales for large numbers of devices, providing access to a multitude of hands-on techniques for collaborative data analysis. © 2011 Elsevier B.V. All rights reserved.

  5. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system.

    Science.gov (United States)

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei

    2016-01-13

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.

  6. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system

    International Nuclear Information System (INIS)

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Sun, Wei; Wu, Honglu

    2016-01-01

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow’s internal features and constituent material’s volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy. (paper)

  7. Automated multi-camera surveillance algorithms and practice : theory and practice

    CERN Document Server

    Javed, Omar

    2008-01-01

    The deployment of surveillance systems has captured the interest of both the research and the industrial worlds in recent years. The aim of this effort is to increase security and safety in several application domains such as national security, home and bank safety, traffic monitoring and navigation, tourism, and military applications. The video surveillance systems currently in use share one feature: A human operator must monitor them at all times, thus limiting the number of cameras and the area under surveillance and increasing cost. A more advantageous system would have continuous active w

  8. Synchronization of Multipoint Hoists

    Science.gov (United States)

    A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll

  9. Development and evaluation of a portable CZT coded aperture gamma-camera

    Energy Technology Data Exchange (ETDEWEB)

    Montemont, G.; Monnet, O.; Stanchina, S.; Maingault, L.; Verger, L. [CEA, LETI, Minatec Campus, Univ. Grenoble Alpes, 38054 Grenoble, (France); Carrel, F.; Lemaire, H.; Schoepff, V. [CEA, LIST, 91191 Gif-sur-Yvette, (France); Ferrand, G.; Lalleman, A.-S. [CEA, DAM, DIF, 91297 Arpajon, (France)

    2015-07-01

    We present the design and the evaluation of a CdZnTe (CZT) based gamma camera using a coded aperture mask. This camera, based on a 8 cm{sup 3} detection module, is small enough to be portable and battery-powered (4 kg weight and 4 W power dissipation). As the detector has spectral capabilities, the gamma camera allows isotope identification and colored imaging, by affecting one color channel to each identified isotope. As all data processing is done at real time, the user can directly observe the outcome of an acquisition and can immediately react to what he sees. We first present the architecture of the system, how the detector works, and its performances. After, we focus on the imaging technique used and its strengths and limitations. Finally, results concerning sensitivity, spatial resolution, field of view and multi-isotope imaging are shown and discussed. (authors)

  10. Development and evaluation of a portable CZT coded aperture gamma-camera

    International Nuclear Information System (INIS)

    Montemont, G.; Monnet, O.; Stanchina, S.; Maingault, L.; Verger, L.; Carrel, F.; Lemaire, H.; Schoepff, V.; Ferrand, G.; Lalleman, A.-S.

    2015-01-01

    We present the design and the evaluation of a CdZnTe (CZT) based gamma camera using a coded aperture mask. This camera, based on a 8 cm 3 detection module, is small enough to be portable and battery-powered (4 kg weight and 4 W power dissipation). As the detector has spectral capabilities, the gamma camera allows isotope identification and colored imaging, by affecting one color channel to each identified isotope. As all data processing is done at real time, the user can directly observe the outcome of an acquisition and can immediately react to what he sees. We first present the architecture of the system, how the detector works, and its performances. After, we focus on the imaging technique used and its strengths and limitations. Finally, results concerning sensitivity, spatial resolution, field of view and multi-isotope imaging are shown and discussed. (authors)

  11. Feature-based automatic color calibration for networked camera system

    Science.gov (United States)

    Yamamoto, Shoji; Taki, Keisuke; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2011-01-01

    In this paper, we have developed a feature-based automatic color calibration by using an area-based detection and adaptive nonlinear regression method. Simple color matching of chartless is achieved by using the characteristic of overlapping image area with each camera. Accurate detection of common object is achieved by the area-based detection that combines MSER with SIFT. Adaptive color calibration by using the color of detected object is calculated by nonlinear regression method. This method can indicate the contribution of object's color for color calibration, and automatic selection notification for user is performed by this function. Experimental result show that the accuracy of the calibration improves gradually. It is clear that this method can endure practical use of multi-camera color calibration if an enough sample is obtained.

  12. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    Bell, P; Griffith, R; Hagans, K; Lerche, R; Allen, C; Davies, T; Janson, F; Justin, R; Marshall, B; Sweningsen, O

    2004-01-01

    The National Ignition Facility (NIF) is under construction at the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses1 (optical comb generators) that are suitable for temporal calibrations. These optical comb generators (Figure 1) are used with the LLNL optical streak cameras. They are small, portable light sources that produce a series of temporally short, uniformly spaced, optical pulses. Comb generators have been produced with 0.1, 0.5, 1, 3, 6, and 10-GHz pulse trains of 780-nm wavelength light with individual pulse durations of ∼25-ps FWHM. Signal output is via a fiber-optic connector. Signal is transported from comb generator to streak camera through multi-mode, graded-index optical fibers. At the NIF, ultra-fast streak-cameras are used by the Laser Fusion Program experimentalists to record fast transient optical signals. Their temporal resolution is unmatched by any other transient recorder. Their ability to spatially discriminate an image along the input slit allows them to function as a one-dimensional image recorder, time-resolved spectrometer, or multichannel transient recorder. Depending on the choice of photocathode, they can be made sensitive to photon energies from 1.1 eV to 30 keV and beyond. Comb generators perform two important functions for LLNL streak-camera users. First, comb generators are used as a precision time-mark generator for calibrating streak camera sweep rates. Accuracy is achieved by averaging many streak camera images of comb generator signals. Time-base calibrations with portable comb generators are easily done in both the calibration laboratory and in situ. Second, comb signals are applied

  13. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study.

    Science.gov (United States)

    Lee, Byoung-Hee

    2016-04-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials.

  14. Multi-channel data acquisition system with absolute time synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Włodarczyk, Przemysław, E-mail: pan.wlodarczyk@uj.edu.pl [Department of Electronics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków (Poland); Pustelny, Szymon, E-mail: pustelny@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków (Poland); Budker, Dmitry [Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 (United States); Lipiński, Marcin [Department of Electronics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland)

    2014-11-01

    We present a low-cost, stand-alone global-time-synchronized data acquisition system. Our prototype allows recording up to four analog signals with a 16-bit resolution in variable ranges and a maximum sampling rate of 1000 S/s. The system simultaneously acquires readouts of external sensors e.g. magnetometer or thermometer. A complete data set, including a header containing timestamp, is stored on a Secure Digital (SD) card or transmitted to a computer using Universal Serial Bus (USB). The estimated time accuracy of the data acquisition is better than ±200 ns. The device is intended for use in a global network of optical magnetometers (the Global Network of Optical Magnetometers for Exotic physics – GNOME), which aims to search for signals heralding physics beyond the Standard Model, that can be generated by ordinary spin coupling to exotic particles or anomalous spin interactions.

  15. STRATEGI PENATAAN GAMBAR PADA SISTEM MULTI KAMERA DALAM PRODUKSI PROGRAM INBOX SCTV

    Directory of Open Access Journals (Sweden)

    Reni Puspitasari

    2017-05-01

    Full Text Available The live In-SCTV Inbox program is produced with a multi-camera system because with the use of multiple cameras will produce images with various variations of composition, camera angle, type of shot in a series of time. The purpose of this research is to know the image designing strategy on multi camera system in SCTV Inbox program. There are two stages in the image structuring strategy. The first is visualization, which translates words that contain ideas into individual images. The second is the picturization, which is the activity of assembling individual images in such a way that their continuity contains a certain meaning. The paradigm of this research is constructivism where the truth of a social reality is seen as the result of social construction. The type of research used in the research is qualitative which produce descriptive data and research method used is case study. The results of research on image structuring strategy on multi-camera system in SCTV Inbox program then the researchers made the conclusion that each image that is shown in Inbox program produced with multi-camera system, based on the arrangement of image strategy that has been established and agreed between the director and the cameraman in Pre production and production stages. Program Inbox SCTV yang tayang secara langsung diproduksi dengan sistem multi kamera karena dengan penggunaan kamera lebih dari satu akan menghasilkan gambargambar dengan berbagai variasi komposisi, angle kamera, type of shot dalam satu rangkaian waktu. Tujuan dalam penelitian ini adalah untuk mengetahui strategi penataa gambar pada sistem multi kamera di program Inbox SCTV. Terdapat dua tahap yang dilakukan dalam strategi penataan gambar. Pertama adalah visualisasi (visualization, yakni menerjemahkan kata-kata yang mengandung gagasan menjadi gambar secara individual. Kedua adalah penggambaran (picturization, yakni kegiatan merangkai gambar-gambar individual sedemikian rupa, sehingga

  16. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  17. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  18. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  19. Mobile phone camera benchmarking: combination of camera speed and image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-01-01

    When a mobile phone camera is tested and benchmarked, the significance of quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. For example, ISO 15781 defines several measurements to evaluate various camera system delays. However, the speed or rapidity metrics of the mobile phone's camera system have not been used with the quality metrics even if the camera speed has become more and more important camera performance feature. There are several tasks in this work. Firstly, the most important image quality metrics are collected from the standards and papers. Secondly, the speed related metrics of a mobile phone's camera system are collected from the standards and papers and also novel speed metrics are identified. Thirdly, combinations of the quality and speed metrics are validated using mobile phones in the market. The measurements are done towards application programming interface of different operating system. Finally, the results are evaluated and conclusions are made. The result of this work gives detailed benchmarking results of mobile phone camera systems in the market. The paper defines also a proposal of combined benchmarking metrics, which includes both quality and speed parameters.

  20. Synchronized 2D/3D optical mapping for interactive exploration and real-time visualization of multi-function neurological images.

    Science.gov (United States)

    Zhang, Qi; Alexander, Murray; Ryner, Lawrence

    2013-01-01

    Efficient software with the ability to display multiple neurological image datasets simultaneously with full real-time interactivity is critical for brain disease diagnosis and image-guided planning. In this paper, we describe the creation and function of a new comprehensive software platform that integrates novel algorithms and functions for multiple medical image visualization, processing, and manipulation. We implement an opacity-adjustment algorithm to build 2D lookup tables for multiple slice image display and fusion, which achieves a better visual result than those of using VTK-based methods. We also develop a new real-time 2D and 3D data synchronization scheme for multi-function MR volume and slice image optical mapping and rendering simultaneously through using the same adjustment operation. All these methodologies are integrated into our software framework to provide users with an efficient tool for flexibly, intuitively, and rapidly exploring and analyzing the functional and anatomical MR neurological data. Finally, we validate our new techniques and software platform with visual analysis and task-specific user studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The TCSC (Thyristor Controlled Series Compensator) in a multi machine electric power system: the effects on the synchronizing power; O TCSC em um sistema de energia eletrica multimaquinas: os efeitos sobre a potencia sincronizante

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.C.; Colvara, L.D. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], Emails: jadiel_silva@hotmail.com, laurence@dee.feis.unesp.br

    2009-07-01

    The problem of stability of electric power systems, from the standpoint of ability to sync and how FACTS (Flexible Alternating Current Transmission Systems) devices affect this ability in particular the TSCS (Thyristor Controlled Series Compensator) inserted into an environment multi machine, is addressed. The effects of this device on the power synchronizing are considered through analysis of the matrix admittance of the bar, focusing on the transfer admittances between machines.

  2. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    Science.gov (United States)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  3. ACCURACY POTENTIAL AND APPLICATIONS OF MIDAS AERIAL OBLIQUE CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Madani

    2012-07-01

    Full Text Available Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm and (50 mm/50 mm were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining

  4. The development of a reliable multi-camera multiplexed CCTV system for safeguards surveillance

    International Nuclear Information System (INIS)

    Gilbert, R.S.; Chiang, K.S.

    1986-01-01

    The background, requirements and system details for a simple reliable Closed Circuit Television (CCTV) system are described. The design of the system presented allows up to 8 CCTV cameras of different makes to be multiplexed and their out-put recorded by three Time Lapse Recorders (TLRs) operating in parallel. This multiplex or MUX-CCTV system is intended to be used by the IAEA for surveillance at several nuclear facilities. The system is unique in that it allows all of the cameras to be operated asynchronously and it provides high quality video during replay. It also incorporates video event counting logic which enables IAEA inspectors to take a very quick inventory of the events which are recorded during unattended operation. This paper discusses other phases of the development for the system and it presents some speculation about future changes which may enhance performance

  5. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  6. Exploiting Schemas in Data Synchronization

    DEFF Research Database (Denmark)

    Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian

    2005-01-01

    Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety...... of tree-structureddata formats. A novel feature of this framework is that the synchronization process - in particular, the recognition of conflicts - is driven by the schema of the structures being synchronized.We formalize HARMONY's synchronization algorithm, state a simple and intuitive specification......, and illustrate, using simple address books as a case study, how it can be used to synchronize trees representing a variety of specific forms of applicationdata, including sets, records, tuples, and relations....

  7. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  8. The value of perfusion CT in predicting the short-term response to synchronous radiochemotherapy for cervical squamous cancer

    International Nuclear Information System (INIS)

    Li, Xiang Sheng; Fan, Hong Xia; Zhu, Hong Xian; Song, Yun Long; Zhou, Chun Wu

    2012-01-01

    To determine the value of the perfusion parameters in predicting short-term tumour response to synchronous radiochemotherapy for cervical squamous carcinoma. Ninety-three patients with cervical squamous carcinoma later than stage IIB were included in this study. Perfusion CT was performed for all these patients who subsequently received the same synchronous radiochemotherapy. The patients were divided into responders and non-responders according to short-term response to treatment. Baseline perfusion parameters of the two groups were compared. The perfusion parameters that might affect treatment effect were analysed by using a multivariate multi-regression analysis. The responders group had higher baseline permeability-surface area product (PS) and blood volume (BV) values than the non-responders group (P 0.05). At multivariate multi-regression analysis, BV, PS and tumour size were significant factors in the prediction of treatment effect. Small tumours usually had high PS and BV values, and thus had a good treatment response. Perfusion CT can provide some helpful information for the prediction of the short-term effect. Synchronous radiochemotherapy may be more effective in cervical squamous carcinoma with higher baseline PS and BV. (orig.)

  9. The PETRRA positron camera: design, characterization and results of a physical evaluation

    International Nuclear Information System (INIS)

    Divoli, A; Flower, M A; Erlandsson, K; Reader, A J; Evans, N; Meriaux, S; Ott, R J; Stephenson, R; Bateman, J E; Duxbury, D M; Spill, E J

    2005-01-01

    The PETRRA positron camera is a large-area (600 mm x 400 mm sensitive area) prototype system that has been developed through a collaboration between the Rutherford Appleton Laboratory and the Institute of Cancer Research/Royal Marsden Hospital. The camera uses novel technology involving the coupling of 10 mm thick barium fluoride scintillating crystals to multi-wire proportional chambers filled with a photosensitive gas. The performance of the camera is reported here and shows that the present system has a 3D spatial resolution of ∼7.5 mm full-width-half-maximum (FWHM), a timing resolution of ∼3.5 ns (FWHM), a total coincidence count-rate performance of at least 80-90 kcps and a randoms-corrected sensitivity of ∼8-10 kcps kBq -1 ml. For an average concentration of 3 kBq ml -1 as expected in a patient it is shown that, for the present prototype, ∼20% of the data would be true events. The count-rate performance is presently limited by the obsolete off-camera read-out electronics and computer system and the sensitivity by the use of thin (10 mm thick) crystals. The prototype camera has limited scatter rejection and no intrinsic shielding and is, therefore, susceptible to high levels of scatter and out-of-field activity when imaging patients. All these factors are being addressed to improve the performance of the camera. The large axial field-of-view of 400 mm makes the camera ideally suited to whole-body PET imaging. We present examples of preliminary clinical images taken with the prototype camera. Overall, the results show the potential for this alternative technology justifying further development

  10. Acquisition of gamma camera and physiological data by computer

    International Nuclear Information System (INIS)

    Hack, S.N.; Chang, M.; Line, B.R.; Cooper, J.A.; Robeson, G.H.

    1986-01-01

    We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable

  11. Comparative evaluation of consumer grade cameras and mobile phone cameras for close range photogrammetry

    Science.gov (United States)

    Chikatsu, Hirofumi; Takahashi, Yoji

    2009-08-01

    The authors have been concentrating on developing convenient 3D measurement methods using consumer grade digital cameras, and it was concluded that consumer grade digital cameras are expected to become a useful photogrammetric device for the various close range application fields. On the other hand, mobile phone cameras which have 10 mega pixels were appeared on the market in Japan. In these circumstances, we are faced with alternative epoch-making problem whether mobile phone cameras are able to take the place of consumer grade digital cameras in close range photogrammetric applications. In order to evaluate potentials of mobile phone cameras in close range photogrammetry, comparative evaluation between mobile phone cameras and consumer grade digital cameras are investigated in this paper with respect to lens distortion, reliability, stability and robustness. The calibration tests for 16 mobile phone cameras and 50 consumer grade digital cameras were conducted indoors using test target. Furthermore, practability of mobile phone camera for close range photogrammetry was evaluated outdoors. This paper presents that mobile phone cameras have ability to take the place of consumer grade digital cameras, and develop the market in digital photogrammetric fields.

  12. HUBBLE SPACE TELESCOPE/NEAR-INFRARED CAMERA AND MULTI-OBJECT SPECTROMETER OBSERVATIONS OF THE GLIMPSE9 STELLAR CLUSTER

    International Nuclear Information System (INIS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Trombley, Christine; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - K S = ∼1 mag, indicating an interstellar extinction A K s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun , integrated down to 1 M sun . In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  13. Airborne imaging for heritage documentation using the Fotokite tethered flying camera

    Science.gov (United States)

    Verhoeven, Geert; Lupashin, Sergei; Briese, Christian; Doneus, Michael

    2014-05-01

    Since the beginning of aerial photography, researchers used all kinds of devices (from pigeons, kites, poles, and balloons to rockets) to take still cameras aloft and remotely gather aerial imagery. To date, many of these unmanned devices are still used for what has been referred to as Low-Altitude Aerial Photography or LAAP. In addition to these more traditional camera platforms, radio-controlled (multi-)copter platforms have recently added a new aspect to LAAP. Although model airplanes have been around for several decades, the decreasing cost, increasing functionality and stability of ready-to-fly multi-copter systems has proliferated their use among non-hobbyists. As such, they became a very popular tool for aerial imaging. The overwhelming amount of currently available brands and types (heli-, dual-, tri-, quad-, hexa-, octo-, dodeca-, deca-hexa and deca-octocopters), together with the wide variety of navigation options (e.g. altitude and position hold, waypoint flight) and camera mounts indicate that these platforms are here to stay for some time. Given the multitude of still camera types and the image quality they are currently capable of, endless combinations of low- and high-cost LAAP solutions are available. In addition, LAAP allows for the exploitation of new imaging techniques, as it is often only a matter of lifting the appropriate device (e.g. video cameras, thermal frame imagers, hyperspectral line sensors). Archaeologists were among the first to adopt this technology, as it provided them with a means to easily acquire essential data from a unique point of view, whether for simple illustration purposes of standing historic structures or to compute three-dimensional (3D) models and orthophotographs from excavation areas. However, even very cheap multi-copters models require certain skills to pilot them safely. Additionally, malfunction or overconfidence might lift these devices to altitudes where they can interfere with manned aircrafts. As such, the

  14. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  15. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  16. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, U.; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is mounted in the ray inlet opening of the camera, while the others are placed on separate supports. The supports are swingably mounted upon a column one above the other through about 90 0 to a collimator exchange position. Each of the separate supports is swingable to a vertically aligned position, with limiting of the swinging movement and positioning of the support at the desired exchange position. The collimators are carried on the supports by means of a series of vertically disposed coil springs. Projections on the camera are movable from above into grooves of the collimator at the exchange position, whereupon the collimator is turned so that it is securely prevented from falling out of the camera head

  17. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  18. Anti-synchronization of chaotic oscillators

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai

    2003-01-01

    We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation

  19. High-precision multi-node clock network distribution.

    Science.gov (United States)

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2017-10-01

    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  20. An x-ray technique for precision laser beam synchronization

    International Nuclear Information System (INIS)

    Landen, O.L.; Lerche, R.A.; Hay, R.G.; Hammel, B.A.; Kalantar, D.; Cable, M.D.

    1994-01-01

    A new x-ray technique for recording the relative arrival times of multiple laser beams at a common target with better than ± 10 ps accuracy has been implemented at the Nova laser facility. 100 ps, 3ω Nova beam are focused to separate locations on a gold ribbon target viewed from the side. The measurement consists of using well characterized re-entrant x-ray streak cameras for 1-dimensional streaked imaging of the > 3 keV x-rays emanating from these isolated laser plasmas. After making the necessary correction for the differential laser, x-ray and electron transit times involved, timing offsets as low as ± 7 ps are resolved, and on subsequent shots, corrected for, verified and independently checked. This level of synchronization proved critical in meeting the power balance requirements for indirectly-driven pulse-shaped Nova implosions

  1. Rf-synchronized imaging for particle and photon beam characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1993-07-01

    The usefulness of imaging electro-optics for rf-driven accelerators can be enhanced by synchronizing the instruments to the system fundamental frequency or an appropriate subharmonic. This step allows one to obtain micropulse bunch length and phase during a series of linac bunches or storage ring passes. Several examples now exist of the use of synchroscan and dual-sweep streak cameras and/or image dissector tubes to access micropulse scale phenomena (10 to 30 ps) during linac and storage ring operations in the US, Japan, and Europe. As space permits, selections will be presented from the list of phase stability phenomena on photoelectric injectors, micropulse length during a macropulse, micropulse elongation effects, transverse Wakefield effects within a micropulse, and submicropulse phenomena on a stored beam. Potential applications to the subsystems of the Advanced Photon Source (APS) will be briefly addressed.

  2. FPGA based, modular, configurable controller with fast synchronous optical network

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, R.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). Inst. of Electronic Systems

    2006-07-01

    The paper describes a configurable controller equipped with programmable VLSI FPGA circuit, universal expansion modules PMC, synchronous, optical, multi-gigabit links, commonly used industrial and computer communication interfaces, Ethernet 100TB, system of automatic initialization ACE etc. There are characterized the basic functional characteristics of the device. The possibilities of its usage in various work modes were presented. Realization of particular blocks of the device were discussed. Resulting, during the realization of this project, new hardware layer solutions were also characterized. (orig.)

  3. FPGA based, modular, configurable controller with fast synchronous optical network

    International Nuclear Information System (INIS)

    Graczyk, R.; Pozniak, K.T.; Romaniuk, R.S.

    2006-01-01

    The paper describes a configurable controller equipped with programmable VLSI FPGA circuit, universal expansion modules PMC, synchronous, optical, multi-gigabit links, commonly used industrial and computer communication interfaces, Ethernet 100TB, system of automatic initialization ACE etc. There are characterized the basic functional characteristics of the device. The possibilities of its usage in various work modes were presented. Realization of particular blocks of the device were discussed. Resulting, during the realization of this project, new hardware layer solutions were also characterized. (orig.)

  4. Coexistence and switching of anticipating synchronization and lag synchronization in an optical system

    International Nuclear Information System (INIS)

    Wu, Liang; Zhu, Shiqun

    2003-01-01

    The chaotic synchronization between two bi-directionally coupled external cavity single-mode semiconductor lasers is investigated. Numerical simulation shows that anticipating synchronization and lag synchronization coexist and switch between each other in certain parameter regime. The anticipating time with different effects that were discussed quite differently in the previous theoretical analysis and experimental observation is determined by the involved parameters in the system

  5. Adaptive Backoff Synchronization Techniques

    Science.gov (United States)

    1989-07-01

    Percentage of synchronization and non- synchronisation references that cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers...processors to arrive. The slight relative increase of synchronisation overhead in all cases when going from two to five pointers is because synchronization ...MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS q~JU VLSI Memo No. 89-547 It July 1989 Adaptive Backoff Synchronization Techniques Anant

  6. Synchronicity and Leadership

    NARCIS (Netherlands)

    Merry, Philip

    2017-01-01

    LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have

  7. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    International Nuclear Information System (INIS)

    Yan Sen-Lin

    2014-01-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range. (general)

  8. Radiometric Cross-Calibration of GAOFEN-1 Wfv Cameras with LANDSAT-8 Oli and Modis Sensors Based on Radiation and Geometry Matching

    Science.gov (United States)

    Li, J.; Wu, Z.; Wei, X.; Zhang, Y.; Feng, F.; Guo, F.

    2018-04-01

    Cross-calibration has the advantages of high precision, low resource requirements and simple implementation. It has been widely used in recent years. The four wide-field-of-view (WFV) cameras on-board Gaofen-1 satellite provide high spatial resolution and wide combined coverage (4 × 200 km) without onboard calibration. In this paper, the four-band radiometric cross-calibration coefficients of WFV1 camera were obtained based on radiation and geometry matching taking Landsat 8 OLI (Operational Land Imager) sensor as reference. Scale Invariant Feature Transform (SIFT) feature detection method and distance and included angle weighting method were introduced to correct misregistration of WFV-OLI image pair. The radiative transfer model was used to eliminate difference between OLI sensor and WFV1 camera through the spectral match factor (SMF). The near-infrared band of WFV1 camera encompasses water vapor absorption bands, thus a Look Up Table (LUT) for SMF varies from water vapor amount is established to estimate the water vapor effects. The surface synchronization experiment was designed to verify the reliability of the cross-calibration coefficients, which seem to perform better than the official coefficients claimed by the China Centre for Resources Satellite Data and Application (CCRSDA).

  9. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera

    International Nuclear Information System (INIS)

    Liu Rui-Xue; Zheng Xian-Liang; Li Da-Yu; Hu Li-Fa; Cao Zhao-Liang; Mu Quan-Quan; Xuan Li; Xia Ming-Liang

    2014-01-01

    With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with −8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Instructor's guide : - synchronized skating school

    OpenAIRE

    Mokkila, Eveliina

    2011-01-01

    The starting point to the Instructor’s guide for synchronized skating school was the situation that Turun Riennon Taitoluistelu figure skating club constantly struggles to get enough skaters to the Beginner team in synchronized skating. The guidebook was written to guide the skating school instructors towards providing more synchronized skating teaching in their lessons. As a result from introducing synchronized skating more in the skating school, it is expected to have more children conti...

  11. Harmonic wave model of a permanent magnet synchronous machine for modeling partial demagnetization under short circuit conditions

    NARCIS (Netherlands)

    Kral, C.; Haumer, A.; Bogomolov, M.D.; Lomonova, E.

    2012-01-01

    This paper proposes a multi domain physical model of permanent magnet synchronous machines, considering electrical, magnetic, thermal and mechanical effects. For each component of the model, the main wave as well as lower and higher harmonic wave components of the magnetic flux and the magnetic

  12. Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems

    Science.gov (United States)

    Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian

    2014-09-01

    In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.

  13. MicroCameras and Photometers (MCP) on board the TARANIS satellite

    Science.gov (United States)

    Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Ravel, K.; Gaillac, S.

    2017-12-01

    TARANIS (Tool for the Analysis of Radiations from lightNing and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched in 2019 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose is to present the MicroCameras and Photometers (MCP) design, to show its performances after its recent characterization and at last to discuss the scientific objectives and how we want to answer it with the MCP observations. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. Simulation results of the differentiation method will be shown. After calibration and tests, the MicroCameras are now delivered to the CNES for integration on the payload. The Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. There are key instrument because of their capability to detect on-board TLEs and then switch all the instruments of the scientific payload in their high resolution acquisition mode. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The on-board TLE detection algorithm remote-controlled parameters have been tuned before launch using the electronic board and simulated or real events waveforms. After calibration, the Photometers are now going through the environmental tests. They will be delivered to the CNES for integration on the

  14. Synchronization of Concurrent Processes

    Science.gov (United States)

    1975-07-01

    Pettersen Stanford Ur.iversity Artificial Intelligence Laboratory ABSTRACT Th oaoer gives an overview of commonly used synchronization primitives and...wr.ters . ut.l.z.ng the DroDo4d synchronization primitive . The solution is simpler and shorter than other known S’ms The first sections of the paper...un reicr»» side il nrcttaary and Identity by block number) Scheduling, process scheduling, synchronization , mutual exclusion, semaphores , critical

  15. Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras

    Directory of Open Access Journals (Sweden)

    Yajie Liao

    2017-06-01

    Full Text Available Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices, which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer’s calibration.

  16. Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras.

    Science.gov (United States)

    Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai

    2017-06-24

    Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer's calibration.

  17. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    Science.gov (United States)

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  18. Cross-spectrum symbol synchronization

    Science.gov (United States)

    Mccallister, R. D.; Simon, M. K.

    1981-01-01

    A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.

  19. Fabrication of multi-focal microlens array on curved surface for wide-angle camera module

    Science.gov (United States)

    Pan, Jun-Gu; Su, Guo-Dung J.

    2017-08-01

    In this paper, we present a wide-angle and compact camera module that consists of microlens array with different focal lengths on curved surface. The design integrates the principle of an insect's compound eye and the human eye. It contains a curved hexagonal microlens array and a spherical lens. Compared with normal mobile phone cameras which usually need no less than four lenses, but our proposed system only uses one lens. Furthermore, the thickness of our proposed system is only 2.08 mm and diagonal full field of view is about 100 degrees. In order to make the critical microlens array, we used the inkjet printing to control the surface shape of each microlens for achieving different focal lengths and use replication method to form curved hexagonal microlens array.

  20. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, Ul; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is replaceably mounted in the ray inlet opening of the camera, while the others are placed on separate supports. Supports are swingably mounted upon a column one above the other

  1. Unidirectional synchronization of Hodgkin-Huxley neurons

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx

    2005-07-01

    Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.

  2. A multi-object spectral imaging instrument

    OpenAIRE

    Gibson, G.M.; Dienerowitz, M.; Kelleher, P.A.; Harvey, A.R.; Padgett, M.J.

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the ...

  3. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  4. Multi-dimensional quasitoeplitz Markov chains

    Directory of Open Access Journals (Sweden)

    Alexander N. Dudin

    1999-01-01

    Full Text Available This paper deals with multi-dimensional quasitoeplitz Markov chains. We establish a sufficient equilibrium condition and derive a functional matrix equation for the corresponding vector-generating function, whose solution is given algorithmically. The results are demonstrated in the form of examples and applications in queues with BMAP-input, which operate in synchronous random environment.

  5. Synchronous adenocarcinomas of the colon presenting as synchronous colocolic intussusceptions in an adult

    Directory of Open Access Journals (Sweden)

    Chen Chuang-Wei

    2012-12-01

    Full Text Available Abstract Intussusception is uncommon in adults. To our knowledge, synchronous colocolic intussusceptions have never been reported in the literature. Here we described the case of a 59-year-old female of synchronous colocolic intussusceptions presenting as acute abdomen that was diagnosed by CT preoperatively. Laparotomy with radical right hemicolectomy and sigmoidectomy was undertaken without reduction of the invagination due to a significant risk of associated malignancy. The final diagnosis was synchronous adenocarcinoma of proximal transverse colon and sigmoid colon without lymph nodes or distant metastasis. The patient had an uneventful recovery. The case also emphasizes the importance of thorough exploration during surgery for bowel invagination since synchronous events may occur.

  6. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  7. Multi-frequency GNSS robust carrier tracking for ionospheric scintillation mitigation

    Science.gov (United States)

    Vilà-Valls, Jordi; Closas, Pau; Curran, James T.

    2017-10-01

    Ionospheric scintillation is the physical phenomena affecting radio waves propagating from the space through the ionosphere to earth. The signal distortion induced by scintillation can pose a major threat to some GNSS application. Scintillation is one of the more challenging propagation scenarios, particularly affecting high-precision GNSS receivers which require high quality carrier phase measurements; and safety critical applications which have strict accuracy, availability and integrity requirements. Under ionospheric scintillation conditions, GNSS signals are affected by fast amplitude and phase variations, which can compromise the receiver synchronization. To take into account the underlying correlation among different frequency bands, we propose a new multivariate autoregressive model (MAR) for the multi-frequency ionospheric scintillation process. Multi-frequency GNSS observations and the scintillation MAR are modeled in state-space, allowing independent tracking of both line-of-sight phase variations and complex gain scintillation components. The resulting joint synchronization and scintillation mitigation problem is solved using a robust nonlinear Kalman filter, validated using real multi-frequency scintillation data with encouraging results.

  8. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization

    International Nuclear Information System (INIS)

    Alvarez, G.; Li Shujun; Montoya, F.; Pastor, G.; Romera, M.

    2005-01-01

    This paper describes the security weaknesses of a recently proposed secure communication method based on chaotic masking using projective synchronization of two chaotic systems. We show that the system is insecure and how to break it in two different ways, by high-pass filtering and by generalized synchronization

  9. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  10. Multi-soliton management by the integrable nonautonomous nonlinear integro-differential Schrödinger equation

    International Nuclear Information System (INIS)

    Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang

    2014-01-01

    We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton. - Highlights: • We consider a unified model for soliton management by an integrable integro-differential Schrödinger equation. • Using Lax pair, the N-fold Darboux transformation for the equation is presented. • The multi-soliton management is considered. • The synchronized dispersive and nonlinear management is suggested

  11. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  12. Medical issues in synchronized skating.

    Science.gov (United States)

    Abbott, Kristin; Hecht, Suzanne

    2013-01-01

    Synchronized skating is a unique sport of team skating and currently represents the largest competitive discipline in U.S. Figure Skating. Synchronized skating allows skaters to compete as part of a team with opportunities to represent their country in international competitions. As the popularity of the sport continues to grow, more of these athletes will present to sports medicine clinics with injuries and illnesses related to participation in synchronized skating. The purpose of this article is to review the common injuries and medical conditions affecting synchronized skaters.

  13. Secure communication based on multi-input multi-output chaotic system with large message amplitude

    International Nuclear Information System (INIS)

    Zheng, G.; Boutat, D.; Floquet, T.; Barbot, J.P.

    2009-01-01

    This paper deals with the problem of secure communication based on multi-input multi-output (MIMO) chaotic systems. Single input secure communication based on chaos can be easily extended to multiple ones by some combinations technologies, however all the combined inputs possess the same risk to be broken. In order to reduce this risk, a new secure communication scheme based on chaos with MIMO is discussed in this paper. Moreover, since the amplitude of messages in traditional schemes is limited because it would affect the quality of synchronization, the proposed scheme is also improved into an amplitude-independent one.

  14. Distributed Cooperative Control of Nonlinear and Non-identical Multi-agent Systems

    DEFF Research Database (Denmark)

    Bidram, Ali; Lewis, Frank; Davoudi, Ali

    2013-01-01

    This paper exploits input-output feedback linearization technique to implement distributed cooperative control of multi-agent systems with nonlinear and non-identical dynamics. Feedback linearization transforms the synchronization problem for a nonlinear and heterogeneous multi-agent system...... for electric power microgrids. The effectiveness of the proposed control is verified by simulating a microgrid test system....

  15. Popular song and lyrics synchronization and its application to music information retrieval

    Science.gov (United States)

    Chen, Kai; Gao, Sheng; Zhu, Yongwei; Sun, Qibin

    2006-01-01

    An automatic synchronization system of the popular song and its lyrics is presented in the paper. The system includes two main components: a) automatically detecting vocal/non-vocal in the audio signal and b) automatically aligning the acoustic signal of the song with its lyric using speech recognition techniques and positioning the boundaries of the lyrics in its acoustic realization at the multiple levels simultaneously (e.g. the word / syllable level and phrase level). The GMM models and a set of HMM-based acoustic model units are carefully designed and trained for the detection and alignment. To eliminate the severe mismatch due to the diversity of musical signal and sparse training data available, the unsupervised adaptation technique such as maximum likelihood linear regression (MLLR) is exploited for tailoring the models to the real environment, which improves robustness of the synchronization system. To further reduce the effect of the missed non-vocal music on alignment, a novel grammar net is build to direct the alignment. As we know, this is the first automatic synchronization system only based on the low-level acoustic feature such as MFCC. We evaluate the system on a Chinese song dataset collecting from 3 popular singers. We obtain 76.1% for the boundary accuracy at the syllable level (BAS) and 81.5% for the boundary accuracy at the phrase level (BAP) using fully automatic vocal/non-vocal detection and alignment. The synchronization system has many applications such as multi-modality (audio and textual) content-based popular song browsing and retrieval. Through the study, we would like to open up the discussion of some challenging problems when developing a robust synchronization system for largescale database.

  16. Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios

    International Nuclear Information System (INIS)

    García-Vázquez, V; Marinetto, E; Santos-Miranda, J A; Calvo, F A; Desco, M; Pascau, J

    2013-01-01

    Intra-operative electron radiation therapy (IOERT) combines surgery and ionizing radiation applied directly to an exposed unresected tumour mass or to a post-resection tumour bed. The radiation is collimated and conducted by a specific applicator docked to the linear accelerator. The dose distribution in tissues to be irradiated and in organs at risk can be planned through a pre-operative computed tomography (CT) study. However, surgical retraction of structures and resection of a tumour affecting normal tissues significantly modify the patient's geometry. Therefore, the treatment parameters (applicator dimension, pose (position and orientation), bevel angle, and beam energy) may require the original IOERT treatment plan to be modified depending on the actual surgical scenario. We propose the use of a multi-camera optical tracking system to reliably record the actual pose of the IOERT applicator in relation to the patient's anatomy in an environment prone to occlusion problems. This information can be integrated in the radio-surgical treatment planning system in order to generate a real-time accurate description of the IOERT scenario. We assessed the accuracy of the applicator pose by performing a phantom-based study that resembled three real clinical IOERT scenarios. The error obtained (2 mm) was below the acceptance threshold for external radiotherapy practice, thus encouraging future implementation of this approach in real clinical IOERT scenarios. (paper)

  17. STUDYING BUSINESS CYCLES SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    N. Servetnyk

    2014-06-01

    Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.

  18. An evaluation of the effectiveness of observation camera placement within the MeerKAT radio telescope project

    Directory of Open Access Journals (Sweden)

    Heyns, Andries

    2015-08-01

    Full Text Available A recent development within the MeerKAT sub-project of the Square Kilometre Array radio telescope network was the placement of a network of three observation cameras in pursuit of two specific visibility objectives. In this paper, we evaluate the effectiveness of the locations of the MeerKAT observation camera network according to a novel multi-objective geographic information systems-based facility location framework. We find that the configuration chosen and implemented by the MeerKAT decision-makers is of very high quality, although we are able to uncover slightly superior alternative placement configurations. A significant amount of time and effort could, however, have been saved in the process of choosing the appropriate camera sites, had our solutions been available to the decision-makers.

  19. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  20. Gamma camera

    International Nuclear Information System (INIS)

    Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  1. Picosecond camera

    International Nuclear Information System (INIS)

    Decroisette, Michel

    A Kerr cell activated by infrared pulses of a model locked Nd glass laser, acts as an ultra-fast and periodic shutter, with a few p.s. opening time. Associated with a S.T.L. camera, it gives rise to a picosecond camera allowing us to study very fast effects [fr

  2. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  3. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  4. Chaos synchronization of coupled hyperchaotic system

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng

    2009-01-01

    Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.

  5. Reducing the Variance of Intrinsic Camera Calibration Results in the ROS Camera_Calibration Package

    Science.gov (United States)

    Chiou, Geoffrey Nelson

    The intrinsic calibration of a camera is the process in which the internal optical and geometric characteristics of the camera are determined. If accurate intrinsic parameters of a camera are known, the ray in 3D space that every point in the image lies on can be determined. Pairing with another camera allows for the position of the points in the image to be calculated by intersection of the rays. Accurate intrinsics also allow for the position and orientation of a camera relative to some world coordinate system to be calculated. These two reasons for having accurate intrinsic calibration for a camera are especially important in the field of industrial robotics where 3D cameras are frequently mounted on the ends of manipulators. In the ROS (Robot Operating System) ecosystem, the camera_calibration package is the default standard for intrinsic camera calibration. Several researchers from the Industrial Robotics & Automation division at Southwest Research Institute have noted that this package results in large variances in the intrinsic parameters of the camera when calibrating across multiple attempts. There are also open issues on this matter in their public repository that have not been addressed by the developers. In this thesis, we confirm that the camera_calibration package does indeed return different results across multiple attempts, test out several possible hypothesizes as to why, identify the reason, and provide simple solution to fix the cause of the issue.

  6. Commercialization of radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Choi, Young Soo; Kim, Sun Ku; Lee, Jong Min; Cha, Bung Hun; Lee, Nam Ho; Byun, Eiy Gyo; Yoo, Seun Wook; Choi, Bum Ki; Yoon, Sung Up; Kim, Hyun Gun; Sin, Jeong Hun; So, Suk Il

    1999-12-01

    In this project, radiation tolerant camera which tolerates 10{sup 6} - 10{sup 8} rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  7. Commercialization of radiation tolerant camera

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Choi, Young Soo; Kim, Sun Ku; Lee, Jong Min; Cha, Bung Hun; Lee, Nam Ho; Byun, Eiy Gyo; Yoo, Seun Wook; Choi, Bum Ki; Yoon, Sung Up; Kim, Hyun Gun; Sin, Jeong Hun; So, Suk Il

    1999-12-01

    In this project, radiation tolerant camera which tolerates 10 6 - 10 8 rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  8. Synchronized dial-a-ride transportation of disabled passengers at airports

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Clausen, Tommy; Pisinger, David

    2013-01-01

    The largest airports have a daily average throughput of more than 500 passengers with reduced mobility. The problem of transporting these passengers is in some cases a multi-modal transportation problem with synchronization constraints. A description of the problem together with a mathematical...... model is presented. The objective is to schedule as many of the passengers as possible, while ensuring a smooth transport with short waiting times. A simulated annealing based heuristic for solving the problem is presented. The algorithm makes use of an abstract representation of a candidate solution...

  9. Cameras in mobile phones

    Science.gov (United States)

    Nummela, Ville; Viinikanoja, Jarkko; Alakarhu, Juha

    2006-04-01

    One of the fastest growing markets in consumer markets today are camera phones. During past few years total volume has been growing fast and today millions of mobile phones with camera will be sold. At the same time resolution and functionality of the cameras has been growing from CIF towards DSC level. From camera point of view the mobile world is an extremely challenging field. Cameras should have good image quality but in small size. They also need to be reliable and their construction should be suitable for mass manufacturing. All components of the imaging chain should be well optimized in this environment. Image quality and usability are the most important parameters to user. The current trend of adding more megapixels to cameras and at the same time using smaller pixels is affecting both. On the other hand reliability and miniaturization are key drivers for product development as well as the cost. In optimized solution all parameters are in balance but the process of finding the right trade-offs is not an easy task. In this paper trade-offs related to optics and their effects to image quality and usability of cameras are discussed. Key development areas from mobile phone camera point of view are also listed.

  10. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  11. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications

    Science.gov (United States)

    Olson, Gaylord G.; Walker, Jo N.

    1997-09-01

    Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.

  13. Neural Synchronization and Cryptography

    Science.gov (United States)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  14. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    International Nuclear Information System (INIS)

    Ronald Justin; Terence Davies; Frans Janson; Bruce Marshall; Perry Bell; Daniel Kalantar; Joseph Kimbrough; Stephen Vernon; Oliver Sweningsen

    2008-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called 'comb' pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber

  15. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  16. Divergence-ratio axi-vision camera (Divcam): A distance mapping camera

    International Nuclear Information System (INIS)

    Iizuka, Keigo

    2006-01-01

    A novel distance mapping camera the divergence-ratio axi-vision camera (Divcam) is proposed. The decay rate of the illuminating light with distance due to the divergence of the light is used as means of mapping the distance. Resolutions of 10 mm over a range of meters and 0.5 mm over a range of decimeters were achieved. The special features of this camera are its high resolution real-time operation, simplicity, compactness, light weight, portability, and yet low fabrication cost. The feasibility of various potential applications is also included

  17. Collaborative 3D Target Tracking in Distributed Smart Camera Networks for Wide-Area Surveillance

    Directory of Open Access Journals (Sweden)

    Xenofon Koutsoukos

    2013-05-01

    Full Text Available With the evolution and fusion of wireless sensor network and embedded camera technologies, distributed smart camera networks have emerged as a new class of systems for wide-area surveillance applications. Wireless networks, however, introduce a number of constraints to the system that need to be considered, notably the communication bandwidth constraints. Existing approaches for target tracking using a camera network typically utilize target handover mechanisms between cameras, or combine results from 2D trackers in each camera into 3D target estimation. Such approaches suffer from scale selection, target rotation, and occlusion, drawbacks typically associated with 2D tracking. In this paper, we present an approach for tracking multiple targets directly in 3D space using a network of smart cameras. The approach employs multi-view histograms to characterize targets in 3D space using color and texture as the visual features. The visual features from each camera along with the target models are used in a probabilistic tracker to estimate the target state. We introduce four variations of our base tracker that incur different computational and communication costs on each node and result in different tracking accuracy. We demonstrate the effectiveness of our proposed trackers by comparing their performance to a 3D tracker that fuses the results of independent 2D trackers. We also present performance analysis of the base tracker along Quality-of-Service (QoS and Quality-of-Information (QoI metrics, and study QoS vs. QoI trade-offs between the proposed tracker variations. Finally, we demonstrate our tracker in a real-life scenario using a camera network deployed in a building.

  18. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  19. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  20. Clinical Gait Evaluation of Patients with Lumbar Spine Stenosis.

    Science.gov (United States)

    Sun, Jun; Liu, Yan-Cheng; Yan, Song-Hua; Wang, Sha-Sha; Lester, D Kevin; Zeng, Ji-Zhou; Miao, Jun; Zhang, Kuan

    2018-02-01

    The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3, MiniSun, CA) has been developed for clinical gait evaluation, and this study was designed to evaluate the accuracy and reliability of IDEEA3 for the gait measurement of lumbar spinal stenosis (LSS) patients. Twelve healthy volunteers were recruited to compare gait cycle, cadence, step length, velocity, and number of steps between a motion analysis system and a high-speed video camera. Twenty hospitalized LSS patients were recruited for the comparison of the five parameters between the IDEEA3 and GoPro camera. Paired t-test, intraclass correlation coefficient, concordance correlation coefficient, and Bland-Altman plots were used for the data analysis. The ratios of GoPro camera results to motion analysis system results, and the ratios of IDEEA3 results to GoPro camera results were all around 1.00. All P-values of paired t-tests for gait cycle, cadence, step length, and velocity were greater than 0.05, while all the ICC and CCC results were above 0.950 with P GoPro camera are highly consistent with the measurements with the motion analysis system. The measurements for IDEEA3 are consistent with those for the GoPro camera. IDEEA3 can be effectively used in the gait measurement of LSS patients. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  1. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    Science.gov (United States)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  2. Nonlinear Dynamics of Controlled Synchronizations of Manipulator System

    Directory of Open Access Journals (Sweden)

    Qingkai Han

    2014-01-01

    Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

  3. Radiation camera exposure control

    International Nuclear Information System (INIS)

    Martone, R.J.; Yarsawich, M.; Wolczek, W.

    1976-01-01

    A system and method for governing the exposure of an image generated by a radiation camera to an image sensing camera is disclosed. The exposure is terminated in response to the accumulation of a predetermined quantity of radiation, defining a radiation density, occurring in a predetermined area. An index is produced which represents the value of that quantity of radiation whose accumulation causes the exposure termination. The value of the predetermined radiation quantity represented by the index is sensed so that the radiation camera image intensity can be calibrated to compensate for changes in exposure amounts due to desired variations in radiation density of the exposure, to maintain the detectability of the image by the image sensing camera notwithstanding such variations. Provision is also made for calibrating the image intensity in accordance with the sensitivity of the image sensing camera, and for locating the index for maintaining its detectability and causing the proper centering of the radiation camera image

  4. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  5. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  6. Design and performance analysis for several new classes of codes for optical synchronous CDMA and for arbitrary-medium time-hopping synchronous CDMA communication systems

    Science.gov (United States)

    Kostic, Zoran; Titlebaum, Edward L.

    1994-08-01

    New families of spread-spectrum codes are constructed, that are applicable to optical synchronous code-division multiple-access (CDMA) communications as well as to arbitrary-medium time-hopping synchronous CDMA communications. Proposed constructions are based on the mappings from integer sequences into binary sequences. We use the concept of number theoretic quadratic congruences and a subset of Reed-Solomon codes similar to the one utilized in the Welch-Costas frequency-hop (FH) patterns. The properties of the codes are as good as or better than the properties of existing codes for synchronous CDMA communications: Both the number of code-sequences within a single code family and the number of code families with good properties are significantly increased when compared to the known code designs. Possible applications are presented. To evaluate the performance of the proposed codes, a new class of hit arrays called cyclical hit arrays is recalled, which give insight into the previously unknown properties of the few classes of number theoretic FH patterns. Cyclical hit arrays and the proposed mappings are used to determine the exact probability distribution functions of random variables that represent interference between users of a time-hopping or optical CDMA system. Expressions for the bit error probability in multi-user CDMA systems are derived as a function of the number of simultaneous CDMA system users, the length of signature sequences and the threshold of a matched filter detector. The performance results are compared with the results for some previously known codes.

  7. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen- er...

  8. Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, J. J.; Vanderbosch, Z.; Montgomery, M. H.; Winget, D. E.; Dennihy, E.; Fuchs, J. T.; Tremblay, P.-E.

    2017-12-01

    With typical periods of the order of 10 minutes, the pulsation signatures of ZZ Ceti variables (pulsating hydrogen-atmosphere white dwarf stars) are severely undersampled by long-cadence (29.42 minutes per exposure) K2 observations. Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling precision asteroseismology. We report the discovery of two new ZZ Cetis in long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by three to four nights of follow-up, high-speed (≤slant 30 s) photometry from the McDonald Observatory, we recover accurate pulsation frequencies for K2 signals that reflected four to five times off the Nyquist with the full precision of over 70 days of monitoring (∼0.01 μHz). In turn, the K2 observations enable us to select the correct peaks from the alias structure of the ground-based signals caused by gaps in the observations. We identify at least seven independent pulsation modes in the light curves of each of these stars. For EPIC 220274129, we detect three complete sets of rotationally split {\\ell }=1 (dipole mode) triplets, which we use to asteroseismically infer the stellar rotation period of 12.7 ± 1.3 hr. We also detect two sub-Nyquist K2 signals that are likely combination (difference) frequencies. We attribute our inability to match some of the K2 signals to the ground-based data to changes in pulsation amplitudes between epochs of observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC 220274129 near the middle of the ZZ Ceti instability strip, with {T}{eff} =11590+/- 200 K and 11810 ± 210 K, and masses 0.57 ± 0.03 M ⊙ and 0.62 ± 0.03 M ⊙, respectively.

  9. Generalized synchronization between chimera states

    Science.gov (United States)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  10. Outer Synchronization of Complex Networks by Impulse

    International Nuclear Information System (INIS)

    Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu

    2011-01-01

    This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)

  11. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  12. A chimeric path to neuronal synchronization

    Science.gov (United States)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  13. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  14. A chimeric path to neuronal synchronization

    International Nuclear Information System (INIS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  15. Chaos synchronization between Chen system and Genesio system

    International Nuclear Information System (INIS)

    Wu Xianyong; Guan Zhihong; Wu Zhengping; Li Tao

    2007-01-01

    This Letter presents two synchronization schemes between two different chaotic systems. Active control synchronization and adaptive synchronization between Chen system and Genesio system are studied, different controllers are designed to synchronize the drive and response systems, active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes

  16. Multi-frequency GNSS robust carrier tracking for ionospheric scintillation mitigation

    Directory of Open Access Journals (Sweden)

    Vilà-Valls Jordi

    2017-01-01

    Full Text Available Ionospheric scintillation is the physical phenomena affecting radio waves propagating from the space through the ionosphere to earth. The signal distortion induced by scintillation can pose a major threat to some GNSS application. Scintillation is one of the more challenging propagation scenarios, particularly affecting high-precision GNSS receivers which require high quality carrier phase measurements; and safety critical applications which have strict accuracy, availability and integrity requirements. Under ionospheric scintillation conditions, GNSS signals are affected by fast amplitude and phase variations, which can compromise the receiver synchronization. To take into account the underlying correlation among different frequency bands, we propose a new multivariate autoregressive model (MAR for the multi-frequency ionospheric scintillation process. Multi-frequency GNSS observations and the scintillation MAR are modeled in state-space, allowing independent tracking of both line-of-sight phase variations and complex gain scintillation components. The resulting joint synchronization and scintillation mitigation problem is solved using a robust nonlinear Kalman filter, validated using real multi-frequency scintillation data with encouraging results.

  17. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    section unearths what characterizes the literature on camera movement. The second section of the dissertation delineates the history of camera movement itself within narrative cinema. Several organizational principles subtending the on-screen effect of camera movement are revealed in section two...... but they are not organized into a coherent framework. This is the task that section three meets in proposing a functional taxonomy for camera movement in narrative cinema. Two presumptions subtend the taxonomy: That camera movement actively contributes to the way in which we understand the sound and images on the screen......, commentative or valuative manner. 4) Focalization: associating the movement of the camera with the viewpoints of characters or entities in the story world. 5) Reflexive: inviting spectators to engage with the artifice of camera movement. 6) Abstract: visualizing abstract ideas and concepts. In order...

  18. Synchronization of indirectly coupled Lorenz oscillators

    Indian Academy of Sciences (India)

    Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...

  19. Synchronous and Metachronous Malignant Tumours expect the un-expected

    International Nuclear Information System (INIS)

    Mehdi, I.; Shah, A.H.; Moona, M.S.; Verma, K.; Abussa, A.; Elramih, R.; El-Hashmi, H.

    2010-01-01

    Objective: To evaluate occurrence of synchronous and metachronous malignant tumours, to find tumour types, age group, and relationship to treatment received. Methods: Previously diagnosed first primary tumour cases experiencing a synchronous or metachronous tumour, seen at AOI from February 2003 to August 2009 (78 months) were included. The cases were analyzed for morphology/histology of first primary tumour, age and gender of patient, treatment received for first tumour, time interval between the first and second primary tumour, morphology/histology of second tumour, and the treatment conferred for second tumour. Results: The second synchronous and metachronous tumours were 46/4025 (1.14%), in 18 males and 28 females (M:F 1:1.6). The age range was 16-75 years (median 43 years). The follow up time was 24-150 months. The time to second primary tumour was 2-132 months. The first primary tumours were breast, ovary, GIT and urinary bladder. The patients received surgery, radiotherapy, chemotherapy, and hormonal therapy alone or as multi-modality treatment for the first tumours. The frequent second tumours were breast, ovary and Gastro Intestinal tumours. Conclusion: It is imperative that patients with a primary malignant tumour should be thoroughly, closely, and regularly followed. Genetic counseling, risk estimation, cancer screening and hemo prevention must be emphasized. Every subsequent occurring tumour should be biopsied. The effect of first tumour on the second or vice versa are still not fully understood and need exploration. The second primary tumour is usually more aggressive, treatment resistant, and metastasizes early requiring a more aggressive treatment strategy. (author)

  20. A synchronous game for binary constraint systems

    Science.gov (United States)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  1. GOC-TX: A Reliable Ticket Synchronization Application for the Open Science Grid

    Science.gov (United States)

    Hayashi, Soichi; Gopu, Arvind; Quick, Robert

    2011-12-01

    One of the major operational issues faced by large multi-institutional collaborations is permitting its users and support staff to use their native ticket tracking environment while also exchanging these tickets with collaborators. After several failed attempts at email-parser based ticket exchanges, the OSG Operations Group has designed a comprehensive ticket synchronizing application. The GOC-TX application uses web-service interfaces offered by various commercial, open source and other homegrown ticketing systems, to synchronize tickets between two or more of these systems. GOC-TX operates independently from any ticketing system. It can be triggered by one ticketing system via email, active messaging, or a web-services call to check for current sync-status, pull applicable recent updates since prior synchronizations to the source ticket, and apply the updates to a destination ticket. The currently deployed production version of GOC-TX is able to synchronize tickets between the Numara Footprints ticketing system used by the OSG and the following systems: European Grid Initiative's system Global Grid User Support (GGUS) and the Request Tracker (RT) system used by Brookhaven. Additional interfaces to the BMC Remedy system used by Fermilab, and to other instances of RT used by other OSG partners, are expected to be completed in summer 2010. A fully configurable open source version is expected to be made available by early autumn 2010. This paper will cover the structure of the GOC-TX application, its evolution, and the problems encountered by OSG Operations group with ticket exchange within the OSG Collaboration.

  2. GOC-TX: A Reliable Ticket Synchronization Application for the Open Science Grid

    International Nuclear Information System (INIS)

    Hayashi, Soichi; Gopu, Arvind; Quick, Robert

    2011-01-01

    One of the major operational issues faced by large multi-institutional collaborations is permitting its users and support staff to use their native ticket tracking environment while also exchanging these tickets with collaborators. After several failed attempts at email-parser based ticket exchanges, the OSG Operations Group has designed a comprehensive ticket synchronizing application. The GOC-TX application uses web-service interfaces offered by various commercial, open source and other homegrown ticketing systems, to synchronize tickets between two or more of these systems. GOC-TX operates independently from any ticketing system. It can be triggered by one ticketing system via email, active messaging, or a web-services call to check for current sync-status, pull applicable recent updates since prior synchronizations to the source ticket, and apply the updates to a destination ticket. The currently deployed production version of GOC-TX is able to synchronize tickets between the Numara Footprints ticketing system used by the OSG and the following systems: European Grid Initiative's system Global Grid User Support (GGUS) and the Request Tracker (RT) system used by Brookhaven. Additional interfaces to the BMC Remedy system used by Fermilab, and to other instances of RT used by other OSG partners, are expected to be completed in summer 2010. A fully configurable open source version is expected to be made available by early autumn 2010. This paper will cover the structure of the GOC-TX application, its evolution, and the problems encountered by OSG Operations group with ticket exchange within the OSG Collaboration.

  3. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  4. Frame Synchronization Without Attached Sync Markers

    Science.gov (United States)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  5. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  6. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    Science.gov (United States)

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  7. Online Multi-Spectral Meat Inspection

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...... work is threefold as we 1) investigate the color distributions and construct a model to describe pork loins, 2) classify the different components in pork loins (meat, fat, membrane), and 3) detect foreign objects on the surface of pork loins. Our investigation shows that the color distributions can...

  8. Multi-Robot Assembly Strategies and Metrics

    Science.gov (United States)

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  9. Multi-Robot Assembly Strategies and Metrics.

    Science.gov (United States)

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  10. RUN LENGTH SYNCHRONIZATION TECHNIQUES

    Science.gov (United States)

    An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .

  11. Mechanical design for the Evryscope: a minute cadence, 10,000-square-degree FoV, gigapixel-scale telescope

    Science.gov (United States)

    Ratzloff, Jeff; Law, Nicholas M.; Fors, Octavi; Wulfken, Philip J.

    2015-01-01

    We designed, tested, prototyped and built a compact 27-camera robotic telescope that images 10,000 square degrees in 2-minute exposures. We exploit mass produced interline CCD Cameras with Rokinon consumer lenses to economically build a telescope that covers this large part of the sky simultaneously with a good enough pixel sampling to avoid the confusion limit over most of the sky. We developed the initial concept into a 3-d mechanical design with the aid of computer modeling programs. Significant design components include the camera assembly-mounting modules, the hemispherical support structure, and the instrument base structure. We simulated flexure and material stress in each of the three main components, which helped us optimize the rigidity and materials selection, while reducing weight. The camera mounts are CNC aluminum and the support shell is reinforced fiberglass. Other significant project components include optimizing camera locations, camera alignment, thermal analysis, environmental sealing, wind protection, and ease of access to internal components. The Evryscope will be assembled at UNC Chapel Hill and deployed to the CTIO in 2015.

  12. Complete synchronization of two Chen-Lee systems

    International Nuclear Information System (INIS)

    Sheu, L-J; Chen, J-H; Chen, H-K; Tam, L-M; Lao, S-K; Chen, W-C; Lin, K-T

    2008-01-01

    This study demonstrates that complete synchronization of two Chen-Lee chaotic systems can be easily achieved. The upper bound of the Chen-Lee chaotic system is estimated numerically. A controller is designed to synchronize two chaotic systems. Sufficient conditions for synchronization are obtained using Lyapunov's direct method. Two numerical examples are presented to verify the proposed synchronization approach

  13. A Memory-Based Programmable Logic Device Using Look-Up Table Cascade with Synchronous Static Random Access Memories

    Science.gov (United States)

    Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro

    2006-04-01

    A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).

  14. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    Science.gov (United States)

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Synchronization in Quantum Key Distribution Systems

    Directory of Open Access Journals (Sweden)

    Anton Pljonkin

    2017-10-01

    Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.

  16. Mixel camera--a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging.

    Science.gov (United States)

    Høye, Gudrun; Fridman, Andrei

    2013-05-06

    Current high-resolution push-broom hyperspectral cameras introduce keystone errors to the captured data. Efforts to correct these errors in hardware severely limit the optical design, in particular with respect to light throughput and spatial resolution, while at the same time the residual keystone often remains large. The mixel camera solves this problem by combining a hardware component--an array of light mixing chambers--with a mathematical method that restores the hyperspectral data to its keystone-free form, based on the data that was recorded onto the sensor with large keystone. A Virtual Camera software, that was developed specifically for this purpose, was used to compare the performance of the mixel camera to traditional cameras that correct keystone in hardware. The mixel camera can collect at least four times more light than most current high-resolution hyperspectral cameras, and simulations have shown that the mixel camera will be photon-noise limited--even in bright light--with a significantly improved signal-to-noise ratio compared to traditional cameras. A prototype has been built and is being tested.

  17. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  18. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  19. Collective circular motion in synchronized and balanced formations with second-order rotational dynamics

    Science.gov (United States)

    Jain, Anoop; Ghose, Debasish

    2018-01-01

    This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.

  20. Synchronization of propagating spin-wave modes in a double-contact spin-torque oscillator: A micromagnetic study

    International Nuclear Information System (INIS)

    Puliafito, V.; Consolo, G.; Lopez-Diaz, L.; Azzerboni, B.

    2014-01-01

    This work tackles theoretical investigations on the synchronization of spin-wave modes generated by spin-transfer-torque in a double nano-contact geometry. The interaction mechanisms between the resulting oscillators are analyzed in the case of propagating modes which are excited via a normal-to-plane magnetic bias field. To characterize the underlying physical mechanisms, a multi-domain analysis is performed. It makes use of an equivalent electrical circuit, to deduce the output electrical power, and of micromagnetic simulations, through which information on the frequency spectra and on the spatial distribution of the wavefront of the emitted spin-waves is extracted. This study provides further and intriguing insights into the physical mechanisms giving rise to synchronization of spin-torque oscillators