ROSA: a high cadence, synchronized multi-camera solar imaging system
Jess, D B; Christian, D J; Keenan, F P; Ryans, R S I; Crockett, P J
2009-01-01
Rapid Oscillations in the Solar Atmosphere (ROSA) is a synchronized, six camera high cadence solar imaging instrument developed by Queen's University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02-15 e/s/pixel), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow multi-wavelength studies of the solar atmosphere at high temporal resolution.
Robust multi-camera view face recognition
Kisku, Dakshina Ranjan; Gupta, Phalguni; Sing, Jamuna Kanta
2010-01-01
This paper presents multi-appearance fusion of Principal Component Analysis (PCA) and generalization of Linear Discriminant Analysis (LDA) for multi-camera view offline face recognition (verification) system. The generalization of LDA has been extended to establish correlations between the face classes in the transformed representation and this is called canonical covariate. The proposed system uses Gabor filter banks for characterization of facial features by spatial frequency, spatial locality and orientation to make compensate to the variations of face instances occurred due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images produces Gabor face representations with high dimensional feature vectors. PCA and canonical covariate are then applied on the Gabor face representations to reduce the high dimensional feature spaces into low dimensional Gabor eigenfaces and Gabor canonical faces. Reduced eigenface vector and canonical face vector are fused together usi...
An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System
Rampinelli, Mariana.; Covre, Vitor Buback.; de Queiroz, Felippe Mendonça.; Vassallo, Raquel Frizera.; Bastos-Filho, Teodiano Freire.; Mazo, Manuel.
2014-01-01
This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization. PMID:25196009
An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System
Directory of Open Access Journals (Sweden)
Mariana Rampinelli
2014-08-01
Full Text Available This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.
Multi-camera system for 3D forensic documentation.
Leipner, Anja; Baumeister, Rilana; Thali, Michael J; Braun, Marcel; Dobler, Erika; Ebert, Lars C
2016-04-01
Three-dimensional (3D) surface documentation is well established in forensic documentation. The most common systems include laser scanners and surface scanners with optical 3D cameras. An additional documentation tool is photogrammetry. This article introduces the botscan© (botspot GmbH, Berlin, Germany) multi-camera system for the forensic markerless photogrammetric whole body 3D surface documentation of living persons in standing posture. We used the botscan© multi-camera system to document a person in 360°. The system has a modular design and works with 64 digital single-lens reflex (DSLR) cameras. The cameras were evenly distributed in a circular chamber. We generated 3D models from the photographs using the PhotoScan© (Agisoft LLC, St. Petersburg, Russia) software. Our results revealed that the botscan© and PhotoScan© produced 360° 3D models with detailed textures. The 3D models had very accurate geometries and could be scaled to full size with the help of scale bars. In conclusion, this multi-camera system provided a rapid and simple method for documenting the whole body of a person to generate 3D data with Photoscan©.
Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots
Directory of Open Access Journals (Sweden)
Cristina Losada
2010-04-01
Full Text Available This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space. The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.
Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.
Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta
2010-01-01
This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.
Computational imaging with multi-camera time-of-flight systems
Shrestha, Shikhar
2016-07-11
Depth cameras are a ubiquitous technology used in a wide range of applications, including robotic and machine vision, human computer interaction, autonomous vehicles as well as augmented and virtual reality. In this paper, we explore the design and applications of phased multi-camera time-of-flight (ToF) systems. We develop a reproducible hardware system that allows for the exposure times and waveforms of up to three cameras to be synchronized. Using this system, we analyze waveform interference between multiple light sources in ToF applications and propose simple solutions to this problem. Building on the concept of orthogonal frequency design, we demonstrate state-of-the-art results for instantaneous radial velocity capture via Doppler time-of-flight imaging and we explore new directions for optically probing global illumination, for example by de-scattering dynamic scenes and by non-line-of-sight motion detection via frequency gating. © 2016 ACM.
Pisani, Francesco; Pavlidis, Elena; Cattani, Luca; Ferrari, Gianluigi; Raheli, Riccardo; Spagnoli, Carlotta
2016-06-01
Objectives We retrospectively analyze the diagnostic accuracy for paroxysmal abnormal facial movements, comparing one camera versus multi-camera approach. Background Polygraphic video-electroencephalogram (vEEG) recording is the current gold standard for brain monitoring in high-risk newborns, especially when neonatal seizures are suspected. One camera synchronized with the EEG is commonly used. Methods Since mid-June 2012, we have started using multiple cameras, one of which point toward newborns' faces. We evaluated vEEGs recorded in newborns in the study period between mid-June 2012 and the end of September 2014 and compared, for each recording, the diagnostic accuracies obtained with one-camera and multi-camera approaches. Results We recorded 147 vEEGs from 87 newborns and found 73 episodes of paroxysmal facial abnormal movements in 18 vEEGs of 11 newborns with the multi-camera approach. By using the single-camera approach, only 28.8% of these events were identified (21/73). Ten positive vEEGs with multicamera with 52 paroxysmal facial abnormal movements (52/73, 71.2%) would have been considered as negative with the single-camera approach. Conclusions The use of one additional facial camera can significantly increase the diagnostic accuracy of vEEGs in the detection of paroxysmal abnormal facial movements in the newborns.
Stability Analysis for a Multi-Camera Photogrammetric System
Directory of Open Access Journals (Sweden)
Ayman Habib
2014-08-01
Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.
Parallel Computational Intelligence-Based Multi-Camera Surveillance System
Directory of Open Access Journals (Sweden)
Sergio Orts-Escolano
2014-04-01
Full Text Available In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units. It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.
Incremental Real-Time Bundle Adjustment for Multi-Camera Systems with Points at Infinity
Schneider, J.; Läbe, T.; Förstner, W.
2013-08-01
This paper presents a concept and first experiments on a keyframe-based incremental bundle adjustment for real-time structure and motion estimation in an unknown scene. In order to avoid periodic batch steps, we use the software iSAM2 for sparse nonlinear incremental optimization, which is highly efficient through incremental variable reordering and fluid relinearization. We adapted the software to allow for (1) multi-view cameras by taking the rigid transformation between the cameras into account, (2) omnidirectional cameras as it can handle arbitrary bundles of rays and (3) scene points at infinity, which improve the estimation of the camera orientation as points at the horizon can be observed over long periods of time. The real-time bundle adjustment refers to sets of keyframes, consisting of frames, one per camera, taken in a synchronized way, that are initiated if a minimal geometric distance to the last keyframe set is exceeded. It uses interest points in the keyframes as observations, which are tracked in the synchronized video streams of the individual cameras and matched across the cameras, if possible. First experiments show the potential of the incremental bundle adjustment w.r.t. time requirements. Our experiments are based on a multi-camera system with four fisheye cameras, which are mounted on a UAV as two stereo pairs, one looking ahead and one looking backwards, providing a large field of view.
Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System
Directory of Open Access Journals (Sweden)
Yu Lu
2016-04-01
Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.
Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System.
Lu, Yu; Wang, Keyi; Fan, Gongshu
2016-04-11
A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.
Factors affecting cadence choice during submaximal cycling and cadence influence on performance.
Hansen, Ernst A; Smith, Gerald
2009-03-01
Cadence choice during cycling has been of considerable interest among cyclists, coaches, and researchers for nearly 100 years. The present review examines and summarizes the current knowledge of factors affecting the freely chosen cadence during submaximal cycling and of the influence of cadence choice on performance. In addition, suggestions for future research are given along with scientifically based, practical recommendations for those involved in cycling. Within the past 10 years, a number of papers have been published that have brought novel insight into the subject. For example, under the influence of spinal central pattern generators, a robust innate voluntary motor rhythm has been suggested as the primary basis for freely chosen cadence in cycling. This might clarify the cadence paradox in which the freely chosen cadence during low-to-moderate submaximal cycling is considerably higher and thereby less economical than the energetically optimal cadence. A number of factors, including age, power output, and road gradient, have been shown to affect the choice of cadence to some extent. During high-intensity cycling, close to the maximal aerobic power output, cyclists choose an energetically economical cadence that is also favorable for performance. In contrast, the choice of a relatively high cadence during cycling at low-to-moderate intensity is uneconomical and could compromise performance during prolonged cycling.
Effects of cycling training at imposed low cadences
DEFF Research Database (Denmark)
Hansen, Ernst A.; Rønnestad, Bent R.
2017-01-01
cadence. Eighty rpm can for example be considered a low cadence if effort is maximal. On the other hand, the cadence has to be lower than 80 rpm (e.g. 40-70 rpm) to be considered low if cycling is performed at low power output. The reason is that the choice of cadence is dependent on power output...
OBLIQUE MULTI-CAMERA SYSTEMS – ORIENTATION AND DENSE MATCHING ISSUES
Directory of Open Access Journals (Sweden)
E. Rupnik
2014-03-01
Full Text Available The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.. The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.
A Cadence layout wrapper for MATLAB
Tsirepli, Ismini
2006-01-01
In this thesis, the focus is on creating a wrapper between MATLAB and the Cadence Virtuoso design environment. The central idea is to use the wrapper and write the code for an entire analog layout as scripts in MATLAB. Basically, we will implement a set of necessary commands for performing the most fundamental tasks in layout generation from within MATLAB.
Lu, Yu; Tao, Jiayuan; Wang, Keyi
2014-09-01
Advanced image sensor and powerful parallel data acquisition chip can be used to collect more detailed and comprehensive light field information. Using multiple single aperture and high resolution sensor record light field data, and processing the light field data real time, we can obtain wide field-of-view (FOV) and high resolution image. Wide FOV and high-resolution imaging has promising application in areas of navigation, surveillance and robotics. Qualityenhanced 3D rending, very high resolution depth map estimation, high dynamic-range and other applications we can obtained when we post-process these large light field data. The FOV and resolution are contradictions in traditional single aperture optic imaging system, and can't be solved very well. We have designed a multi-camera light field data acquisition system, and optimized each sensor's spatial location and relations. It can be used to wide FOV and high resolution real-time image. Using 5 megapixel CMOS sensors, and field programmable Gate Array (FPGA) acquisition light field data, paralleled processing and transmission to PC. A common clock signal is distributed to all of the cameras, and the precision of synchronization each camera achieved 40ns. Using 9 CMOSs build an initial system and obtained high resolution 360°×60° FOV image. It is intended to be flexible, modular and scalable, with much visibility and control over the cameras. In the system we used high speed dedicated camera interface CameraLink for system data transfer. The detail of the hardware architecture, its internal blocks, the algorithms, and the device calibration procedure are presented, along with imaging results.
The DECam Minute Cadence Survey I
Belardi, Claudia; Munn, Jeffrey A; Gianninas, A; Barber, Sara D; Dey, Arjun; Stetson, Peter B
2016-01-01
We present the first results from a minute cadence survey of a three square degree field obtained with the Dark Energy Camera. We imaged part of the Canada-France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g $\\leq24.5$ mag and search for eclipse-like events and other sources of variability. We find a new g = 20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.
Interaction Control Protocols for Distributed Multi-user Multi-camera Environments
Directory of Open Access Journals (Sweden)
Gareth W Daniel
2003-10-01
Full Text Available Video-centred communication (e.g., video conferencing, multimedia online learning, traffic monitoring, and surveillance is becoming a customary activity in our lives. The management of interactions in such an environment is a complicated HCI issue. In this paper, we present our study on a collection of interaction control protocols for distributed multiuser multi-camera environments. These protocols facilitate different approaches to managing a user's entitlement for controlling a particular camera. We describe a web-based system that allows multiple users to manipulate multiple cameras in varying remote locations. The system was developed using the Java framework, and all protocols discussed have been incorporated into the system. Experiments were designed and conducted to evaluate the effectiveness of these protocols, and to enable the identification of various human factors in a distributed multi-user and multi-camera environment. This work provides an insight into the complexity associated with the interaction management in video-centred communication. It can also serve as a conceptual and experimental framework for further research in this area.
Multi-camera calibration based on openCV and multi-view registration
Deng, Xiao-ming; Wan, Xiong; Zhang, Zhi-min; Leng, Bi-yan; Lou, Ning-ning; He, Shuai
2010-10-01
For multi-camera calibration systems, a method based on OpenCV and multi-view registration combining calibration algorithm is proposed. First of all, using a Zhang's calibration plate (8X8 chessboard diagram) and a number of cameras (with three industrial-grade CCD) to be 9 group images shooting from different angles, using OpenCV to calibrate the parameters fast in the camera. Secondly, based on the corresponding relationship between each camera view, the computation of the rotation matrix and translation matrix is formulated as a constrained optimization problem. According to the Kuhn-Tucker theorem and the properties on the derivative of the matrix-valued function, the formulae of rotation matrix and translation matrix are deduced by using singular value decomposition algorithm. Afterwards an iterative method is utilized to get the entire coordinate transformation of pair-wise views, thus the precise multi-view registration can be conveniently achieved and then can get the relative positions in them(the camera outside the parameters).Experimental results show that the method is practical in multi-camera calibration .
Calibration of the Multi-camera Registration System for Visual Navigation Benchmarking
Directory of Open Access Journals (Sweden)
Adam Schmidt
2014-06-01
Full Text Available This paper presents the complete calibration procedure of a multi-camera system for mobile robot motion registration. Optimization-based, purely visual methods for the estimation of the relative poses of the motion registration system cameras, as well as the relative poses of the cameras and markers placed on the mobile robot were proposed. The introduced methods were applied to the calibration of the system and the quality of the obtained results was evaluated. The obtained results compare favourably with the state of the art solutions, allowing the use of the considered motion registration system for the accurate reconstruction of the mobile robot trajectory and to register new datasets suitable for the benchmarking of indoor, visual-based navigation algorithms.
New multi-camera calibration algorithm based on 1D objects
Institute of Scientific and Technical Information of China (English)
Zi-jian ZHAO; Yun-cai LIU
2008-01-01
A new calibration algorithm for multi-camera systems using 1D calibration objects is proposed. The algorithm integrates the rank-4 factorization with Zhang (2004)'s method. The intrinsic parameters as well as the extrinsic parameters are recovered by capturing with cameras the 1D object's rotations around a fixed point. The algorithm is based on factorization of the scaled measurement matrix, the projective depth of which is estimated in an analytical equation instead of a recursive form. For more than three points on a 1D object, the approach of our algorithm is to extend the scaled measurement matrix. The obtained parameters are finally refined through the maximum likelihood inference. Simulations and experiments with real images verify that the proposed technique achieves a good trade-off between the intrinsic and extrinsic camera parameters.
A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology.
Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang
2016-08-25
Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40-50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production.
VideoWeb Dataset for Multi-camera Activities and Non-verbal Communication
Denina, Giovanni; Bhanu, Bir; Nguyen, Hoang Thanh; Ding, Chong; Kamal, Ahmed; Ravishankar, Chinya; Roy-Chowdhury, Amit; Ivers, Allen; Varda, Brenda
Human-activity recognition is one of the most challenging problems in computer vision. Researchers from around the world have tried to solve this problem and have come a long way in recognizing simple motions and atomic activities. As the computer vision community heads toward fully recognizing human activities, a challenging and labeled dataset is needed. To respond to that need, we collected a dataset of realistic scenarios in a multi-camera network environment (VideoWeb) involving multiple persons performing dozens of different repetitive and non-repetitive activities. This chapter describes the details of the dataset. We believe that this VideoWeb Activities dataset is unique and it is one of the most challenging datasets available today. The dataset is publicly available online at http://vwdata.ee.ucr.edu/ along with the data annotation.
Efficient Orientation and Calibration of Large Aerial Blocks of Multi-Camera Platforms
Karel, W.; Ressl, C.; Pfeifer, N.
2016-06-01
Aerial multi-camera platforms typically incorporate a nadir-looking camera accompanied by further cameras that provide oblique views, potentially resulting in utmost coverage, redundancy, and accuracy even on vertical surfaces. However, issues have remained unresolved with the orientation and calibration of the resulting imagery, to two of which we present feasible solutions. First, as standard feature point descriptors used for the automated matching of homologous points are only invariant to the geometric variations of translation, rotation, and scale, they are not invariant to general changes in perspective. While the deviations from local 2D-similarity transforms may be negligible for corresponding surface patches in vertical views of flat land, they become evident at vertical surfaces, and in oblique views in general. Usage of such similarity-invariant descriptors thus limits the amount of tie points that stabilize the orientation and calibration of oblique views and cameras. To alleviate this problem, we present the positive impact on image connectivity of using a quasi affine-invariant descriptor. Second, no matter which hard- and software are used, at some point, the number of unknowns of a bundle block may be too large to be handled. With multi-camera platforms, these limits are reached even sooner. Adjustment of sub-blocks is sub-optimal, as it complicates data management, and hinders self-calibration. Simply discarding unreliable tie points of low manifold is not an option either, because these points are needed at the block borders and in poorly textured areas. As a remedy, we present a straight-forward method how to considerably reduce the number of tie points and hence unknowns before bundle block adjustment, while preserving orientation and calibration quality.
A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS
Directory of Open Access Journals (Sweden)
M. Hassanein
2016-06-01
Full Text Available In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated
a New Automatic System Calibration of Multi-Cameras and LIDAR Sensors
Hassanein, M.; Moussa, A.; El-Sheimy, N.
2016-06-01
In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated calibration without
Registration of Sub-Sequence and Multi-Camera Reconstructions for Camera Motion Estimation
Directory of Open Access Journals (Sweden)
Michael Wand
2010-08-01
Full Text Available This paper presents different application scenarios for which the registration of sub-sequence reconstructions or multi-camera reconstructions is essential for successful camera motion estimation and 3D reconstruction from video. The registration is achieved by merging unconnected feature point tracks between the reconstructions. One application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. In the third scenario image sequences of the same scene, which are captured under different illuminations, are registered. Several experiments with challenging real video sequences demonstrate that the presented techniques work in practice.
Kinematic correlates of walking cadence in the foot.
Caravaggi, Paolo; Leardini, Alberto; Crompton, Robin
2010-08-26
Evidence has frequently been reported of modifications in gait patterns within the lower limb related to the cadence of walking. Most reports have concerned relationships between cadence and kinematic and the kinetic changes occurring in the main joints and muscles of the lower limb as a whole. The aim of the present study was to assess whether significant changes are also measurable in kinematics of the foot segments. An existing 15 marker-set protocol allowed a four-segment foot and shank model to be defined for relative rotations between the segments to be calculated. Stereophotogrammetry was employed to record marker position data from ten subjects walking at three cadences. The slow- and normal cadence datasets showed similar profiles of joint rotation in three anatomical planes, but significant differences were found between these and the fast cadence. At all joints, frame-by-frame statistical analysis revealed increased dorsiflexion from heel-strike to midstance (p walking.
A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.
A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration
Directory of Open Access Journals (Sweden)
Po-Chia Yeh
2012-08-01
Full Text Available The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.
Using cadence to study free-living ambulatory behaviour.
Tudor-Locke, Catrine; Rowe, David A
2012-05-01
The health benefits of a physically active lifestyle across a person's lifespan have been established. If there is any single physical activity behaviour that we should measure well and promote effectively, it is ambulatory activity and, more specifically, walking. Since public health physical activity guidelines include statements related to intensity of activity, it follows that we need to measure and promote free-living patterns of ambulatory activity that are congruent with this intent. The purpose of this review article is to present and summarize the potential for using cadence (steps/minute) to represent such behavioural patterns of ambulatory activity in free-living. Cadence is one of the spatio-temporal parameters of gait or walking speed. It is typically assessed using short-distance walks in clinical research and practice, but free-living cadence can be captured with a number of commercially available accelerometers that possess time-stamping technology. This presents a unique opportunity to use the same metric to communicate both ambulatory performance (assessed under testing conditions) and behaviour (assessed in the real world). Ranges for normal walking cadence assessed under laboratory conditions are 96-138 steps/minute for women and 81-135 steps/minute for men across their lifespan. The correlation between mean cadence and intensity (assessed with indirect calorimetry and expressed as metabolic equivalents [METs]) based on five treadmill/overground walking studies, is r = 0.93 and 100 steps/minute is considered to be a reasonable heuristic value indicative of walking at least at absolutely-defined moderate intensity (i.e. minimally, 3 METs) in adults. The weighted mean cadence derived from eight studies that have observed pedestrian cadence under natural conditions was 115.2 steps/minute, demonstrating that achieving 100 steps/minute is realistic in specific settings that occur in real life. However, accelerometer data collected in a large
Cadence, Stride Rate and Stride Length during Triathlon Competition.
Landers, Grant J; Blanksby, Brian A; Rackland, Timothy
Triathlon research shows cycling alters the physiological response of subsequent running but, at present, biomechanical changes are unresolved. This study examined cycling cadence and running stride rate (SR) and length (SL) used by senior elite triathletes during competition. These variables were then compared to running and triathlon performance. Data from 51 elite male World Championships triathletes were analyzed via video recordings and Video Expert II Coach. Triathletes revealed consistent cadences throughout the majority of the cycle (96.8 +2.7 rpm) and run (90.9 +2.4 rpm) disciplines. However, a cadence increase (99.6 +5.7 rpm) was recorded at the completion of the cycle prior to running. Running SR and SL was significantly lower at the end of the run indicating a level of fatigue (ptriathlon performance (p<0.01) suggesting those that could maintain a longer SL had a faster run and better final finishing position.
High-Cadence Transit Timing Variation Monitoring of Extrasolar Planets
Directory of Open Access Journals (Sweden)
Naef D.
2011-02-01
Full Text Available We report ground-based high-cadence transit timing observations of the extrasolar planet WASP-2b. We achieve a typical timing error of 15-30 sec. The data show no signiﬁcant deviations from the predicted ephemeris.
Parnian, Neda; Golnaraghi, Farid
2010-01-01
This paper describes the development of a modified Kalman filter to integrate a multi-camera vision system and strapdown inertial navigation system (SDINS) for tracking a hand-held moving device for slow or nearly static applications over extended periods of time. In this algorithm, the magnitude of the changes in position and velocity are estimated and then added to the previous estimation of the position and velocity, respectively. The experimental results of the hybrid vision/SDINS design show that the position error of the tool tip in all directions is about one millimeter RMS. The proposed Kalman filter removes the effect of the gravitational force in the state-space model. As a result, the resulting error is eliminated and the resulting position is smoother and ripple-free.
Determining optimal cadence for an individual road cyclist from field data.
Reed, Robert; Scarf, Philip; Jobson, Simon Adrian; Passfield, Louis
2016-11-01
The cadence that maximises power output developed at the crank by an individual cyclist is conventionally determined using a laboratory test. The purpose of this study was two-fold: (i) to show that such a cadence, which we call the optimal cadence, can be determined using power output, heart-rate, and cadence measured in the field and (ii) to describe methodology to do so. For an individual cyclist's sessions, power output is related to cadence and the elicited heart-rate using a non-linear regression model. Optimal cadences are found for two riders (83 and 70 revolutions per minute, respectively); these cadences are similar to the riders' preferred cadences (82-92 rpm and 65-75 rpm). Power output reduces by approximately 6% for cadences 20 rpm above or below optimum. Our methodology can be used by a rider to determine an optimal cadence without laboratory testing intervention: the rider will need to collect power output, heart-rate, and cadence measurements from training and racing sessions over an extended period (>6 months); ride at a range of cadences within those sessions; and calculate his/her optimal cadence using the methodology described or a software tool that implements it.
Rannama, Indrek; Port, Kristjan; Bazanov, Boriss
2012-01-01
Maximum gears for youth category riders are limited. As a result, youth category riders are regularly compelled to ride in a high cadence regime. The aim of this study was to investigate if regular work at high cadence regime due to limited transmission in youth category riders reflects in effectual cadence at the point of maximal power generation during the 10 second sprint effort. 24 junior and youth national team cyclist’s average maximal peak power at various cadence regimes was registere...
Synchronicity from Synchronized Chaos
Directory of Open Access Journals (Sweden)
Gregory S. Duane
2015-03-01
Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.
Multi-Camera Reconstruction of Fine Scale High Speed Auroral Dynamics
Hirsch, M.; Semeter, J. L.; Zettergren, M. D.; Dahlgren, H.; Goenka, C.; Akbari, H.
2014-12-01
The fine spatial structure of dispersive aurora is known to have ground-observable scales of less than 100 meters. The lifetime of prompt emissions is much less than 1 millisecond, and high-speed cameras have observed auroral forms with millisecond scale morphology. Satellite observations have corroborated these spatial and temporal findings. Satellite observation platforms give a very valuable yet passing glance at the auroral region and the precipitation driving the aurora. To gain further insight into the fine structure of accelerated particles driven into the ionosphere, ground-based optical instruments staring at the same region of sky can capture the evolution of processes evolving on time scales from milliseconds to many hours, with continuous sample rates of 100Hz or more. Legacy auroral tomography systems have used baselines of hundreds of kilometers, capturing a "side view" of the field-aligned auroral structure. We show that short baseline (less than 10 km), high speed optical observations fill a measurement gap between legacy long baseline optical observations and incoherent scatter radar. The ill-conditioned inverse problem typical of auroral tomography, accentuated by short baseline optical ground stations is tackled with contemporary data inversion algorithms. We leverage the disruptive electron multiplying charge coupled device (EMCCD) imaging technology and solve the inverse problem via eigenfunctions obtained from a first-principles 1-D electron penetration ionospheric model. We present the latest analysis of observed auroral events from the Poker Flat Research Range near Fairbanks, Alaska. We discuss the system-level design and performance verification measures needed to ensure consistent performance for nightly multi-terabyte data acquisition synchronized between stations to better than 1 millisecond.
THE INFLUENCE OF MUSICAL CADENCE INTO AQUATIC JUMPING JACKS KINEMATICS
Directory of Open Access Journals (Sweden)
Mário J. Costa
2011-12-01
Full Text Available The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface. Subjects performed an incremental protocol of five bouts (120 b·min-1, 135 b·min-1, 150 b·min-1, 165 b·min-1 and 180 b·min-1 with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands, lower limbs' (i.e. feet and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence.
K2 C12 Raw Cadence TPFs for EVEREST TRAPPIST-1 De-trending
Luger, Rodrigo
2017-01-01
Raw data used by EVEREST to de-trend the TRAPPIST-1 K2 Campaign 12 raw cadence light curve. Check out the links below to read up on how to use this data. NOTE: The TRAPPIST-1 long cadence and short cadence TPFs have been updated to reflect the correct BJD times for every cadence. Previously, the timestamps were in geocentric time, yielding an offset of ~8 minutes, which primarily affected the precision of transit analyses in the short cadence data. HOWEVER, the timestamps in the auxiliary...
Target Location Based on Multi-camera%基于多摄像头的目标定位
Institute of Scientific and Technical Information of China (English)
金璐; 费树岷; 童源
2016-01-01
In the multi-camera monitoring system,how to carry on the data fusion between multiple cameras is a difficult task.This paper develops a planar homographic occupancy constraint that fuses foreground likelihood information from multi-ple views to resolve occlusions and localize people on a reference scene plane instead of camera calibration.%在多摄像头的监控系统中，如何进行多摄像头之间的数据融合是一项艰巨的任务，介绍了一种不需要进行复杂的多摄像头标定的方法，利用求取的不同视野对应参考视野的单应性矩阵，将多摄像头的视图进行融合，从而对出现在不同摄像机中的同一个目标进行定位。实验证明，该方法在多摄像头目标定位中可靠性良好。
Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji
2016-06-14
For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R² = 0.98) and 0.57 mm (R² = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency.
Introduction à la CAO CADENCE - French version only
Davide Vitè
2002-01-01
CERN Technical Training Programme: Learning for the LHC ! Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE : de la saisie de schéma Concept-HDL au PCB est programmée pour les 10 et 11 décembre prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. L'objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Si vous désirez partic...
Cadence and cause of lake-forming climates on Mars
Kite, Edwin; Goldblatt, Colin; Gao, Peter; Mayer, David; Sneed, Jonathan
2016-10-01
Paleolakes on Mars record a sustained hydrologic cycle, but soils upstream record a largely dry past, so lake-forming climates were intermittent. The cadence of lakes on Mars is constrained by relatively young (~3 Ga) deltas and alluvial fans. Deposit build-up required lakes to persist for >2 Kyr (assuming dilute flow), but the watersheds' little-weathered soils indicate a swift return to dry conditions. The lake-forming climates' duty cycle and trigger mechanism remain unknown. Here we show that these data are inconsistent with many previously-proposed triggers for lake-forming climates, but consistent with a novel CH4-burst mechanism. Assuming runoff was sourced from snowmelt, SO2- and impact-triggered warming are too brief, and H2-enabled warming too persistent, to match data. However, chaotic transitions in mean obliquity are a potential trigger with suitable cadence. Mean-obliquity transitions drive latitudinal shifts in temperature and ice loading that destabilize CH4 clathrate. For achievable hydrate stability zone occupancy fractions, CH4 builds up to levels whose direct radiative forcing is comparable to a quadrupling of CO2 (20 W/m2), and sufficient to modulate lake-forming climates. Sub-lake CH4 destabilization provides positive feedback. Photolysis of CH4 curtails individual lake-forming climates to 105-106 yr duration, and depletion of CH4-clathrate limits lake-forming climates to 1-3 in number, consistent with intermittency data. We further propose that Mars' first atmospheric collapse could drive ice sheets from highlands to poles, destabilizing sub-ice clathrate and triggering the formation of the ~4 Ga-old valley networks. Our results show how a warmer early Mars can undergo intermittent orbitally-triggered excursions to a warm, wet climate state.
The effect of a cadence retraining protocol on running biomechanics and efficiency: a pilot study.
Hafer, Jocelyn F; Brown, Allison M; deMille, Polly; Hillstrom, Howard J; Garber, Carol Ewing
2015-01-01
Many studies have documented the association between mechanical deviations from normal and the presence or risk of injury. Some runners attempt to change mechanics by increasing running cadence. Previous work documented that increasing running cadence reduces deviations in mechanics tied to injury. The long-term effect of a cadence retraining intervention on running mechanics and energy expenditure is unknown. This study aimed to determine if increasing running cadence by 10% decreases running efficiency and changes kinematics and kinetics to make them less similar to those associated with injury. Additionally, this study aimed to determine if, after 6 weeks of cadence retraining, there would be carryover in kinematic and kinetic changes from an increased cadence state to a runner's preferred running cadence without decreased running efficiency. We measured oxygen uptake, kinematic and kinetic data on six uninjured participants before and after a 6-week intervention. Increasing cadence did not result in decreased running efficiency but did result in decreases in stride length, hip adduction angle and hip abductor moment. Carryover was observed in runners' post-intervention preferred running form as decreased hip adduction angle and vertical loading rate.
Effect of starting cadence on sprint-performance indices in friction-loaded cycle ergometry.
Wright, Rachel L; Wood, Dan M; James, David V B
2007-03-01
The aims of the study were to investigate whether starting cadence had an effect on 10-s sprint-performance indices in friction-loaded cycle ergometry and to investigate the influence of method of power determination. In a counterbalanced order, 12 men and 12 women performed three 10-s sprints using a stationary (0 rev/min), moderate (60 rev/min), and high (120 rev/min) starting cadence. Calculated performance indices were peak power, cadence at peak power, time to peak power, and work to peak power. When the uncorrected method of power determination was applied, there was a main effect for starting cadence in female participants for peak power (stationary 635 +/- 183.7 W, moderate 615.4 +/- 168.9 W, and high 798.4 +/- 120.1 W) and cadence at peak power (89.8 +/- 2.3 rev/min, 87.9 +/- 21.5 rev/min, and 113.1 +/- 12.5 rev/min). For both the uncorrected and directly measured methods of power determination in men and women, there was a main effect for starting cadence for time to peak power and work to peak power. In women, for an uncorrected method of power determination, it can be concluded that starting cadence does affect peak power and cadence at peak power. This effect is, however, negated by a direct-measurement method of power determination. In men and women, for both uncorrected and directly measured methods of power determination, time to peak power and work to peak power were affected by starting cadence. Therefore, a higher-cadence start is unsuitable, particularly when sprint-performance indices are determined from an uncorrected method.
THE EFFECT OF CYCLING CADENCE ON SUBSEQUENT 10KM RUNNING PERFORMANCE IN WELL-TRAINED TRIATHLETES
Directory of Open Access Journals (Sweden)
Garry A. Tew
2005-09-01
Full Text Available The aim of this study was to examine the effects of different pedalling cadences on the performance of a subsequent 10km treadmill run. Eight male triathletes (age 38.9 ± 15.4 years, body mass 72.2 ± 5.2 kg, and stature 176 ± 6 cm; mean ± SD completed a maximal cycling test, one isolated run (10km, and then three randomly ordered cycle-run sessions (65 minutes cycling + 10km run. During the cycling bout of the cycle-run sessions, subjects cycled at an intensity corresponding to 70% Pmax while maintaining one of three cadences, corresponding to preferred cadence (PC, PC+15% (fast cadence and PC-15% (slow cadence. Slow, preferred and fast cadences were 71.8 ± 3.0, 84.5 ± 3.6, and 97.3 ± 4.3 rpm, respectively (mean ± SD. Physiological variables measured during the cycle-run and isolated run sessions were VO2, VE, RER, HR, RPE, and blood lactate. Biomechanical variables measured during the cycle-run and isolated run sessions were running velocity, stride length, stride frequency, and hip and knee angles at foot-strike and toe-off. Running performance times were also recorded. A significant effect of prior cycling exercise was found on 10km running time (p = 0.001 without any cadence effect (p = 0.801, ω2 = 0.006 (49:58 ± 8:20, 49:09 ± 8:26, 49:28 ± 8:09, and 44:45 ± 6:27 min·s-1 for the slow, preferred, fast, and isolated run conditions, respectively; mean ± SD. However, during the first 500 m of the run, running velocity was significantly higher after cycling at the preferred and fast cadences than after the slow cadence (p < 0.05. Furthermore, the slow cadence condition was associated with a significantly lower HR (p = 0.012 and VE (p = 0.026 during cycling than in the fast cadence condition. The results confirm the deterioration in running performance completed after the cycling event compared with the isolated run. However, no significant effect of cycling cadence on running performance was observed within the cadence ranges
Changes in coordination and its variability with an increase in running cadence.
Hafer, Jocelyn F; Freedman Silvernail, Julia; Hillstrom, Howard J; Boyer, Katherine A
2016-08-01
Alterations in joint mechanics have been associated with common overuse injuries. An increase in running cadence in healthy runners has been shown to improve several parameters that have been tied to injury, but the reorganisation of motion that produces these changes has not been examined. The purpose of this study was to determine if runners change their segment coordination and coordination variability with an acute increase in cadence. Data were collected as ten uninjured runners ran overground at their preferred cadence as well as a cadence 10% higher than preferred. Segment coordination and coordination variability were calculated for select thigh-shank and shank-foot couples and selected knee mechanics were also calculated. Paired t-tests were used to examine differences between the preferred and increased cadence conditions. With increased cadence, there was a decrease in peak knee flexion and a later occurrence of peak knee flexion and internal rotation and shank internal rotation. Segment coordination was altered with most changes occurring in mid-late stance. Coordination variability decreased with an increase in cadence across all couples and phases of gait. These results suggest examination of coordination and its variability could give insight into the risk of intervention-induced injury.
Effects of low- vs. high-cadence interval training on cycling performance.
Paton, Carl D; Hopkins, Will G; Cook, Christian
2009-09-01
High-resistance interval training produces substantial gains in sprint and endurance performance of cyclists in the competitive phase of a season. Here, we report the effect of changing the cadence of the intervals. We randomized 18 road cyclists to 2 groups for 4 weeks of training. Both groups replaced part of their usual training with 8 30-minute sessions consisting of sets of explosive single-leg jumps alternating with sets of high-intensity cycling sprints performed at either low cadence (60-70 min(-1)) or high cadence (110-120 min(-1)) on a training ergometer. Testosterone concentration was assayed in saliva samples collected before and after each session. Cycle ergometry before and after the intervention provided measures of performance (mean power in a 60-s time trial, incremental peak power, 4-mM lactate power) and physiologic indices of endurance performance (maximum oxygen uptake, exercise economy, fractional utilization of maximum oxygen uptake). Testosterone concentration in each session increased by 97% +/- 39% (mean +/- between-subject SD) in the low-cadence group but by only 62% +/- 23% in the high-cadence group. Performance in the low-cadence group improved more than in the high-cadence group, with mean differences of 2.5% (90% confidence limits, +/-4.8%) for 60-second mean power, 3.6% (+/-3.7%) for peak power, and 7.0% (+/-5.9%) for 4-mM lactate power. Maximum oxygen uptake showed a corresponding mean difference of 3.2% (+/-4.2%), but differences for other physiologic indices were unclear. Correlations between changes in performance and physiology were also unclear. Low-cadence interval training is probably more effective than high-cadence training in improving performance of well-trained competitive cyclists. The effects on performance may be related to training-associated effects on testosterone and to effects on maximum oxygen uptake.
Effects of cadence on aerobic capacity following a prolonged, varied intensity cycling trial.
Stebbins, Charles L; Moore, Jesse L; Casazza, Gretchen A
2014-01-01
We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations) decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr) cycled for 180 min at either 80 or 100 rpm (randomized) with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm). There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min(-1), respectively) were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min(-1), respectively) (p cycling, higher cadences (i.e., 100 vs. 80 rpm) are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance. Key PointsWhen competitive cyclists perform prolonged exercise that simulates racing conditions (i.e., variable, low-moderate submaximal cycling), a higher cadence results in excess energy expenditure and lower gross efficiency compared to a lower cadence at the same power output.Consequently, maximal power output is reduced during a subsequent exercise bout to exhaustion after using a higher cadence.Selection of a lower, more energetically optimal cadence during prolonged cycling exercise may allow competitive cyclists to enhance maximal performance later in a race.
Cadências escolares, ritmos docentes School cadences, teaching rhythms
Directory of Open Access Journals (Sweden)
Inês Assunção de Castro Teixeira
1999-07-01
Full Text Available O artigo analisa alguns dos eixos que estruturam os ritmos cotidianos dos professores, próprios às temporalidades da vida social na escola. Parte do pressuposto de que o tempo é uma "categoria do pensamento lógico", originada no ritmo da vida social (Dukheim, e que essa rítmica é uma "modalidade concreta do tempo social" (Lefebvre e Régulier. O estudo é parte de uma pesquisa que busca tematizar a experiência do tempo de sujeitos que se encontram na condição de professores - docentes de quinta à oitava séries do ensino fundamental e do ensino médio -, levando em conta seus vínculos com a construção de identidades docentes. O texto se desenvolve em torno de três eixos: as cadências das interações entre educandos e educadores, os ritmos dos calendários e os compassos dos horários escolares. Conclui-se que os ritmos docentes, embora circunscritos à rítmica da vida moderna, têm particularidades associadas às cadências da escola, aos processos pedagógicos e àqueles relacionados à formação humana. Trata-se, pois, de analisar a polirritmia dos tempos da escola em sua complexidade e peculiaridades, de forma a se compreenderem as modulações e significações da experiência do tempo na condição de professor, vivência constitutiva das identidades docentes.This paper analyzes some of the concepts peculiar to the temporality of the school social life that structure the everyday rhythm of teachers. It assumes that time is a "category of logical thinking" originated in the rhythm of social life (Durkheim, and that such rhythmic character is a "concrete modality of social time" (Lefebvre and Régulier. This study is part of a research that seeks to discuss the experience of time for teachers of the 5th to 8th grades of the Primary Education and of the Secondary Education, taking into account the teachers’ links with the construction of their own teaching identities. The text is developed around three themes: the cadences
Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity
Ardic, Fusun; Göcer, Esra
2016-01-01
Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed. PMID:26962822
National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...
Directory of Open Access Journals (Sweden)
A.C. Kanitz
2014-12-01
Conclusions: The results indicate that the increase in both cadence and displacement results in significant cardiorespiratory responses as a result of deep water running. This finding is important for adapting exercise prescription to the goals of participants.
Timofeev, Igor; Bazhenov, Maksim; Seigneur, Joseé; Sejnowski, Terrence
2011-01-01
Summary Neuronal synchronization occurs when two or more neuronal events are coordinated across time. Local synchronization produces field potentials. Long-range synchronization between distant brain sites contributes to the electroencephalogram. Neuronal synchronization depends on synaptic (chemical/electrical), ephaptic, and extracellular interactions. For an expanded treatment of this topic see Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at www.ncbi.nlm.nih.gov/books). PMID:24850952
A synthetic high fidelity, high cadence spectral Earth database
Schwieterman, Edward; Meadows, Victoria; Robinson, Tyler D.; Lustig-Yaeger, Jacob; Sparks, William B.; Cracraft, Misty
2016-10-01
Earth is currently our only, and will always be our best, example of a living planet. While Earth data model comparisons have been effectively used in recent years to validate spectral models, observations by interplanetary spacecraft are limited to "snapshots" in terms of viewing geometry and Earth's dynamic surface and atmosphere state. We use the well-validated Virtual Planetary Laboratory 3D spectral Earth model to generate both simulated disk-averaged spectra and high resolution, spatially resolved spectral data cubes of Earth at a viewing geometry consistent with Lunar viewing angles at wavelengths from the far UV (0.1 μm) the to the far IR (200 μm). The database includes disk-averaged spectra from dates 03/19/2008 to 04/23/2008 at one-hour cadence and fully spectral data cubes for a subset of those times. These spectral products have a wide range of applications including calibration of spacecraft instrumentation (Robinson et al. 2014), modeling the radiation environment of permanently shadowed Lunar craters due to Earthshine (Glenar et al., in prep), and testing the detectability of atmospheric and surface features of an Earth-like planet orbiting a distant star with a large space-based telescope mission concepts such as LUVOIR. These data include the phase and time-dependent changes in spectral biosignatures (O2, O3, CH4, VRE) and habitability markers (N2, H2O, CO2, ocean glint). The advantages of the VPL Earth model data products over 1D spectra traditionally used for testing instrument architectures include accurate modeling of Earth's surface inhomogeneity (continental distribution and ice caps), cloud cover and variability, pole to equator temperature gradients, obliquity, phase-dependent scattering effects, and rotation. We present a subset of this spectral data including anticipated signal-to-noise calculations of an exoEarth twin at different phases using a coronagraph instrument model (Robinson et al. 2015). We also calculate time
Castro, Marcelo P; Figueiredo, Maria Cristina; Abreu, Sofia; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo
2015-07-01
Biomechanical gait parameters--ground reaction forces (GRFs) and plantar pressures--during load carriage of young adults were compared at a low gait cadence and a high gait cadence. Differences between load carriage and normal walking during both gait cadences were also assessed. A force plate and an in-shoe plantar pressure system were used to assess 60 adults while they were walking either normally (unloaded condition) or wearing a backpack (loaded condition) at low (70 steps per minute) and high gait cadences (120 steps per minute). GRF and plantar pressure peaks were scaled to body weight (or body weight plus backpack weight). With medium to high effect sizes we found greater anterior-posterior and vertical GRFs and greater plantar pressure peaks in the rearfoot, forefoot and hallux when the participants walked carrying a backpack at high gait cadences compared to walking at low gait cadences. Differences between loaded and unloaded conditions in both gait cadences were also observed.
Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K
2013-03-01
Cadence or stride frequency is an important parameter being controlled in gait training of neurologically impaired subjects. The aim of this study was to examine the effects of cadence variation on muscle activation patterns during robot assisted unimpaired gait using dynamic simulations. A twodimensional (2-D) musculoskeletal model of human gait was developed considering eight major muscle groups along with existing ground contact force (GCF) model. A 2-D model of a robotic orthosis was also developed which provides actuation to the hip, knee and ankle joints in the sagittal plane to guide subjects limbs on reference trajectories. A custom inverse dynamics algorithm was used along with a quadratic minimization algorithm to obtain a feasible set of muscle activation patterns. Predicted patterns of muscle activations during slow, natural and fast cadence were compared and the mean muscle activations were found to be increasing with an increase in cadence. The proposed dynamic simulation provide important insight into the muscle activation variations with change in cadence during robot assisted gait and provide the basis for investigating the influence of cadence regulation on neuromuscular parameters of interest during robot assisted gait.
Effect of Cadence on Respiratory Response During Unloaded Cycling in Healthy Individuals
Directory of Open Access Journals (Sweden)
Jastrzębska Agnieszka D.
2015-03-01
Full Text Available Purpose. The aim of the study was to establish the respiratory response to unloaded cycling at different cadences. Methods. Eleven healthy participants performed a maximal graded exercise test on a cycle ergometer to assess aerobic fitness (maximal oxygen consumption: 46.27 ± 5.41 ml · min-1 · kg-1 and eight 10-min unloaded pedaling (0 W bouts at a constant cadence (from 40 to 110 rpm. Respiratory data were measured continuously during each effort and then averaged over 30 s. Blood samples were collected before and 2 min after each effort to monitor changes in acid-base balance. Results. The efforts were performed at an intensity of 16.5-37.5% VO2peak. Respiratory response was not differentiated in cadences of 40, 50, 60 rpm. From 70 rpm, an increase in cadence was significantly associated with increased minute ventilation (F = 168.11, p < 0.000 and oxygen consumption (F = 214.86 p < 0.000 and, from 80 rpm, respiratory frequency (F = 16.06, p < 0.001 and tidal volume (F = 54.67, p < 0.000. No significant changes in acid-base balance were observed as a result of difference cadences. Conclusions. Unloaded cycling at a cadence of 70 rpm or above has a significant effect on respiratory function and may be associated with the involvement of large muscle ergoreceptors (mechanoreceptors stimulated by the frequency of muscle contractions.
Directory of Open Access Journals (Sweden)
Dong Zhan
2015-04-01
Full Text Available Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS. First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.
Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong
2015-04-14
Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.
Effects of musical cadence in the acute physiologic adaptations to head-out aquatic exercises.
Barbosa, Tiago M; Sousa, Vítor F; Silva, António J; Reis, Vítor M; Marinho, Daniel A; Bragada, José A
2010-01-01
The purpose of this study was to analyze the relationships between musical cadence and the physiologic adaptations to basic head-out aquatic exercises. Fifteen young and clinically healthy women performed, immersed to the breast, a cardiovascular aquatic exercise called the "rocking horse." The study design included an intermittent and progressive protocol starting at a 90 b.min(-1) rhythm and increasing every 6 minutes, by 15 b.min(-1), up to 195 b.min(-1) or exhaustion. The rating of perceived effort (RPE) at the maximal heart rate achieved during each bout (HRmax), the percentage of the maximal theoretical heart rate estimated (%HRmax), and the blood lactate concentration ([La-]) were evaluated. The musical cadence was also calculated at 4 mmol.L(-1) of blood lactate (R4), the RPE at R4 (RPE@R4), the HR at R4 (HR@R4), and the %HRmax at R4 (%HRmax@R4). Strong relationships were verified between the musical cadence and the RPE (R2 = 0.85; p musical cadence created an increase in the physiologic response. Therefore, instructors must choose musical cadences according to the goals of the session they are conducting to achieve the desired intensity.
Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease
Directory of Open Access Journals (Sweden)
Angela eRidgel
2015-09-01
Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.
Yang, Chao-Yang; Wu, Cheng-Tse
2017-03-01
This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards.
Influence of road incline and body position on power-cadence relationship in endurance cycling.
Emanuele, Umberto; Denoth, Jachen
2012-07-01
In race cycling, the external power-cadence relationship at the performance level, that is sustainable for the given race distance, plays a key role. The two variables of interest from this relationship are the maximal external power output (P (max)) and the corresponding optimal cadence (C (opt)). Experimental studies and field observations of cyclists have revealed that when cycling uphill is compared to cycling on level ground, the freely chosen cadence is lower and a more upright body position seems to be advantageous. To date, no study has addressed whether P (max) or C (opt) is influenced by road incline or body position. Thus, the main aim of this study was to examine the effect of road incline (0 vs. 7%) and racing position (upright posture vs. dropped posture) on P (max) and C (opt). Eighteen experienced cyclists participated in this study. Experiment I tested the hypothesis that road incline influenced P (max) and C (opt) at the second ventilatory threshold ([Formula: see text] and [Formula: see text]). Experiment II tested the hypothesis that the racing position influenced [Formula: see text], but not [Formula: see text]. The results of experiment I showed that [Formula: see text] and [Formula: see text] were significantly lower when cycling uphill compared to cycling on level ground (P cycling uphill, it is reasonable to choose (1) a lower cadence and (2) a more upright body position.
Body size and walking cadence affect lower extremity joint power in children's gait.
Shultz, Sarah P; Hills, Andrew P; Sitler, Michael R; Hillstrom, Howard J
2010-06-01
Obese children move less and with greater difficulty than normal-weight counterparts but expend comparable energy. Increased metabolic costs have been attributed to poor biomechanics but few studies have investigated the influence of obesity on mechanical demands of gait. This study sought to assess three-dimensional lower extremity joint powers in two walking cadences in 28 obese and normal-weight children. 3D-motion analysis was conducted for five trials of barefoot walking at self-selected and 30% greater than self-selected cadences. Mechanical power was calculated at the hip, knee, and ankle in sagittal, frontal and transverse planes. Significant group differences were seen for all power phases in the sagittal plane, hip and knee power at weight acceptance and hip power at propulsion in the frontal plane, and knee power during mid-stance in the transverse plane. After adjusting for body weight, group differences existed in hip and knee power phases at weight acceptance in sagittal and frontal planes, respectively. Differences in cadence existed for all hip joint powers in the sagittal plane and frontal plane hip power at propulsion. Frontal plane knee power at weight acceptance and sagittal plane knee power at propulsion were significantly different between cadences. Larger joint powers in obese children contribute to difficulty performing locomotor tasks, potentially decreasing motivation to exercise.
Boldea, Ion
2005-01-01
This work begins with an introduction to energy resources and the main electric energy conversion solutions, along with efficiency and environmental merits and demerits. The classification and principles of various electric generator topologies are covered alongside their power ratings and main applications including constant-speed synchronous gene
Effects Of Cadence on Aerobic Capacity Following a Prolonged, Varied Intensity Cycling Trial
Directory of Open Access Journals (Sweden)
Charles L. Stebbins
2014-03-01
Full Text Available We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr cycled for 180 min at either 80 or 100 rpm (randomized with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm. There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min-1, respectively were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min-1, respectively (p < 0.05. Gross efficiency was higher at 80 rpm vs. 100 rpm during both the 65% (22.8 ± 1.0 vs. 21.3 ± 4.5% and the 80% (23.1 vs. 22.1 ± 0.9% exercise intensities (P< 0.05. Maximal power during the performance test (362 ± 38 watts was greater at 80 rpm than 100 rpm (327 ± 27 watts (p < 0.05. Findings suggest that in conditions simulating those seen during prolonged competitive cycling, higher cadences (i.e., 100 vs. 80 rpm are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance.
Directory of Open Access Journals (Sweden)
Morten eKristoffersen
2014-01-01
Full Text Available Purpose: The aim of the present study was to investigate effects of low cadence training at moderate intensity on aerobic capacity, cycling performance, gross efficiency, freely chosen cadence and leg strength in veteran cyclists. Method: Twenty-two well trained veteran cyclists (age: 47 ±6 years, maximal oxygen consumption (VO2max: 57.9 ±3.7 ml. kg-1. min-1 were randomized into two groups, a low cadence training group and a freely chose cadence training group. Respiratory variables, power output, cadence and leg strength were tested before and after a 12 weeks training intervention period. The low cadence training group performed 12 weeks of moderate (73-82 % of maximal heart rate (HRmax interval training (5 x 6 min with a cadence of 40 revolutions per minute (rpm two times a week, in addition to their usual training. The freely chosen cadence group added 90 minutes of training at freely chosen cadence at moderate intensity. Results: No significant effects of the low cadence training on aerobic capacity, cycling performance, power output, cadence, gross efficiency or leg strength was found. The freely chosen cadence group significantly improved both VO2max (58.9±2.4 vs. 62.2±3.2 ml. kg-1. min-1, VO2 consumption at lactate threshold (49.4 ±3.8 vs. 51.8±3.5 ml. kg-1. min-1 and during the 30 min performance test (52.8±3.0 vs. 54.7±3.5 ml. kg-1. min-1, and power output at lactate threshold (284 ±47 vs. 294 ±48 W and during the 30 min performance test (284±42 vs. 297±50 W. Conclusion: Twelve weeks of low cadence (40 rpm interval training at moderate intensity (73-82 % of HRmax twice a week does not improve aerobic capacity, cycling performance or leg strength in highly trained veteran cyclists. However, adding training at same intensity (% of HRmax and duration (90 minutes weekly at freely chosen cadence seems beneficial for performance and physiological adaptations.
AGV Global Navigation Mapping Based on Multi-camera%基于多摄像头的AGV全局导航地图创建
Institute of Scientific and Technical Information of China (English)
刘涛; 何卫平; 雷蕾
2013-01-01
为了创建AGV大范围全局导航地图,论文提出一种基于多摄像头的全局导航地图创建方法.首先,在AGV活动区域上方垂直安装多个摄像头采集大范围区域的局部图像；其次,通过相位相关法和改进的SURF特征匹配相结合的算法对四幅局部图像进行拼接；最后,采用基于粒子群的模糊C均值聚类算法对全局图像进行分割提取障碍物信息,并建立室内环境全局导航地图.实验表明该方法与现有算法相比具有更好的实时性,能够快速建立全局导航地图.%In order to create wide-range of AGV global navigation map, a map building method for global navigation which is based on multi-camera is proposed. Firstly, multiple cameras are installed vertically above the AGV activity area to acquisition wide-range area of local images. Then, splice the four local images by the way of the phase correlation method and improved SURF feature matching algorithm. Finally, using Fuzzy C-Means clustering algorithm based on particle swarm for global image segmentation to extract obstacle information, and to establish a global navigation map of the indoor environment. The experimental results indicate that the proposed algorithm not only has better real-time compared with the existing algorithms but also can establish global navigation map effectively.
基于SIFT及射影变换的多摄像机目标交接%Object handoff in multi-cameras based on SIFT and homograph
Institute of Scientific and Technical Information of China (English)
杨俊; 战荫伟
2011-01-01
To establish the correspondence between moving objects is a key problem in multi-camera surveillance, and field of view (FOV) line is an efficient tool to resolve the consistency in labeling objects.In this paper, we propose an algorithm that realizes object handoff by using scale-invariant features transform (SIFT) and homograph, without knowing the camera calibration information. Firstly, by using SIFT algorithm, matching points are automatically generated between two images sharing a joint region. We chose the matching points which are coplanar in space. These points are then used to compute the homography matrix of the two images. Then, the camera FOV lines are obtained by using the homography matrixand boundary points of the images. Finally, we realize the object handoff using the position of object and homograph. Experimental results show the accuracy and robustness of our method.%运动目标正确交接是多摄像机视频监控中的关键,视野分界线是解决目标交接的有效工具.不需标定摄像机参数,提出了一种利用尺度不变特征变换(SIFT:seale-invariant freatures transform)及射影变换实现目标交接的算法.首先使用SIFT算法在不同视角拍摄的图像间自动生成匹配的特征点,由空间共面的特征点及其相应匹配点生成图像间的单应变换矩阵.然后由图像边界点及单应矩阵计算摄像机视野(FOV:field of view)分界线.最后利用目标位置信息及射影变换实现目标正确交接.实验结果表明本文的方法具有有效性和鲁棒性.
基于多相机的空间机械臂视觉系统%Multi-camera Based Space Manipulator Vision System
Institute of Scientific and Technical Information of China (English)
陈磊; 高升; 袁宝峰; 谭启蒙; 杜晓东; 齐哲
2014-01-01
Space manipulator is an essential tool for space mission. Vision system is the key part of a space manipulator system, and the normal operation of a space manipulator heavily depends on the guidance and assistance of a vision system except for open-loop control. In this paper, we describe a vision system which meets the practical needs of a space manipulator system. This vision system, which consists of multiple cam-eras located at different positions in space, uses a multi-camera collaboration technique to extend and enhance its capability of the visual surveillance and measurement. The paper focuses on some key aspects of the vision system design including system configuration, operation mode and measurement method. The experiments conducted in a simulation environment show that the measurement error of target 3D pose is approximately linearly proportional to the detection error of visual dots on target, and the detection accuracy of visual dots has great effect on the target pose measurement accuracy. The experiments conducted indoor environment demon-strate that the manipulator is able to locate and capture the target autonomously under the guide of the vision system, which can satisfy the needs of a manipulator for large range movement and precise operation.%视觉系统是空间机械臂的重要组成部分，空间机械臂除开环控制外的所有工作模式都不能离开视觉系统的引导和辅助而独立实现。文章以建立满足空间机械臂实际应用需求的视觉系统为目标，提出通过分布在不同空间位置的多个相机的协同工作扩展并增强视觉系统的监视和测量能力，并从系统组成、工作模式、测量方式等多方面完成空间机械臂视觉系统方案设计。仿真试验结果表明，目标三维位姿的测量误差与视觉标记点检测结果的误差近似成线性关系，视觉标记点检测的准确性对目标位姿测量的精度具有重要影响。室内环境试验结果
Directory of Open Access Journals (Sweden)
April J. Williams
2013-01-01
Full Text Available Purpose. Motor freezing, the inability to produce effective movement, is associated with decreasing amplitude, hastening of movement, and poor coordination. We investigated how manipulations of movement amplitude and cadence affect upper extremity (UE coordination as measured by the phase coordination index (PCI—only previously measured in gait—and freezing of the upper extremity (FO-UE in people with Parkinson's disease (PD who experience freezing of gait (PD + FOG, do not experience FOG (PD-FOG, and healthy controls. Methods. Twenty-seven participants with PD and 18 healthy older adults made alternating bimanual movements between targets under four conditions: Baseline; Fast; Small; SmallFast. Kinematic data were recorded and analyzed for PCI and FO-UE events. PCI and FO-UE were compared across groups and conditions. Correlations between UE PCI, gait PCI, FO-UE, and Freezing of Gait Questionnaire (FOG-Q were determined. Results. PD + FOG had poorer coordination than healthy old during SmallFast. UE coordination correlated with number of FO-UE episodes in two conditions and FOG-Q score in one. No differences existed between PD−/+FOG in coordination or number of FO-UE episodes. Conclusions. Dyscoordination and FO-UE can be elicited by manipulating cadence and amplitude of an alternating bimanual task. It remains unclear whether FO-UE and FOG share common mechanisms.
Davide Vitè
2002-01-01
Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE. De la saisie de schéma Concept-HDL au PCB est programmée pour le 4 et 5 juin prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. Objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Plus d'information, et possibilité d'inscription par EDH sont accessibles depuis les pages «...
Heart rate variability and surface electromyography of trained cyclists at different cadences
Directory of Open Access Journals (Sweden)
Bruno Saraiva
2016-06-01
Full Text Available The heart rate variability (HRV and surface electromyography (sEMG are important tools in the evaluation of cardiac autonomic system and neuromuscular parameters, respectively. The aim of the study was to evaluate the behavior of HRV and sEMG of the vastus lateralis in two exercise protocols on a cycle ergometer at 60 and 80 rpm. Eight healthy men cyclists who have trained for at least two years were evaluated. Reduction was observed followed by stabilization of RMSSD and SDNN indices of HRV (p<0.05 along with increases in the amplitude of the sEMG signal (p<0.05 in both protocols. Significant correlations were observed between the responses of HRV and sEMG in the cadence of 60 rpm (RMSSD and sEMG: r = -0.42, p=0.03; SDNN and sEMG: r = -0.45, p=0.01 and 80 rpm (RMSSD and sEMG: r = -0.47, p=0.02; SDNN and sEMG: r = -0.49, p=0.01, yet no difference was observed for these variables between the two protocols. We concluded that the parasympathetic cardiac responses and sEMG are independent of cadences applied at the same power output.
Bertucci, William; Grappe, Frederic; Girard, Amaury; Betik, Andrew; Rouillon, Jean Denis
2005-05-01
Despite the importance of uphill cycling performance during cycling competitions, there is very little research investigating uphill cycling, particularly concerning field studies. The lack of research is partly due to the difficulties in obtaining data in the field. The aim of this study was to analyse the crank torque in road cycling on level and uphill using different pedalling cadences in the seated position. Seven male cyclists performed four tests in the seated position (1) on level ground at 80 and 100 rpm, and (2) on uphill road cycling (9.25% grade) at 60 and 80 rpm.The cyclists exercised for 1 min at their maximal aerobic power. The bicycle was equipped with the SRM Training System (Schoberer, Germany) for the measurement of power output (W), torque (Nm), pedalling cadence (rpm), and cycling velocity (km h(-1)). The most important finding of this study indicated that at maximal aerobic power the crank torque profile (relationship between torque and crank angle) varied substantially according to the pedalling cadence and with a minor effect according to the terrain. At the same power output and pedalling cadence (80 rpm) the torque at a 45 degrees crank angle tended (p cycling compared to level cycling. During uphill cycling at 60 rpm the peak torque was increased by 42% compared with level ground cycling at 100 rpm. When the pedalling cadence was modified, most of the variations in the crank torque profile were localised in the power output sector (45 degrees to 135 degrees).
Dynamical system synchronization
Luo, Albert C J
2013-01-01
Dynamical System Synchronization (DSS) meticulously presents for the first time the theory of dynamical systems synchronization based on the local singularity theory of discontinuous dynamical systems. The book details the sufficient and necessary conditions for dynamical systems synchronizations, through extensive mathematical expression. Techniques for engineering implementation of DSS are clearly presented compared with the existing techniques. This book also: Presents novel concepts and methods for dynamical system synchronization Extends beyond the Lyapunov theory for dynamical system synchronization Introduces companion and synchronization of discrete dynamical systems Includes local singularity theory for discontinuous dynamical systems Covers the invariant domains of synchronization Features more than 75 illustrations Dynamical System Synchronization is an ideal book for those interested in better understanding new concepts and methodology for dynamical system synchronization, local singularity...
Modeling and simulation of nanomagnetic logic with cadence virtuoso using Verilog-A
Žiemys, Gražvydas; Giebfried, Andrew; Becherer, Markus; Eichwald, Irina; Schmitt-Landsiedel, Doris; Breitkreutz-v. Gamm, Stephan
2016-11-01
This paper presents a novel approach to model and simulate the Nanomagnetic Logic with perpendicular magnetic anisotropy (pNML) using industry standard Cadence Virtuoso software tool. The implementation of an efficient compact model of a single nanomagnet in Verilog-A is introduced. A single magnet is the key element of Nanomagnetic logic systems. Two field coupled nanomagnets act as a magnetic inverter. Furthermore, the majority gate model is introduced. To verify the model, a circuit consisting of five such single magnets in a loop is simulated and the results are compared to an experiment on a fabricated inverter chain. To reproduce the variations in a manufacturing process the Monte Carlo simulation method is applied and the magnetization direction of the last magnet in a chain is evaluated for one hundred clocking cycles. The results are compared to the experimental data.
High Cadence Digital Full Disk Hα Patrol Device at Kanzelhöhe
Otruba, W.
1999-09-01
The need for monitoring the sun in the prominent Hα-line is evident. For a long time this recording was done on photographic film at Kanzelhöhe Solar Observatory. Now with the evolution of CCDs and digital mass storage devices it is possible and even more economical to do this job digitally. A 1kx1k CCD camera and a standard frame grabbing system on a conventional PC are attached to the established Kanzelhöhe Patrol Instrument with a narrow band Hα filter. At the present state a very simple frame selection mechanism is installed to improve the image quality. The data are archived on CDs. The development of a standard image processing and evaluation system is in progress. Low cadence synoptic images are currently fed into the SOHO synoptic database. Instant data access from the Kanzelhöhe database via WWW is planned.
Cluster Synchronization Algorithms
Xia, Weiguo; Cao, Ming
2010-01-01
This paper presents two approaches to achieving cluster synchronization in dynamical multi-agent systems. In contrast to the widely studied synchronization behavior, where all the coupled agents converge to the same value asymptotically, in the cluster synchronization problem studied in this paper,
Inverse anticipating chaos synchronization.
Shahverdiev, E M; Sivaprakasam, S; Shore, K A
2002-07-01
We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded time-delay systems.
Lang, S.G.M.
2014-01-01
Focussing on the continuity of French décadence on the Iberian Peninsula, the doctoral thesis proposes an analysis of narrative literatures in Spanish, Catalan and Portuguese from 1895 to 1914. Between the literary negotiation of aesthetic patterns and an ideological quest for national identity, it
Varsamis, Panagiotis; Staikopoulos, Konstantinos; Kartasidou, Lefkothea
2012-01-01
One of the purposes of Rhythmic Auditory Stimulation (RAS) is to improve the control of dysfunctional movement patterns. This study aimed to extend the line of research by focussing on secondary students with mental retardation and cerebral palsy. According to the study's assumption, cadence can be controlled through a stable and low signal…
Synchronization of chaotic systems.
Pecora, Louis M; Carroll, Thomas L
2015-09-01
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.
Synchronization of chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Pecora, Louis M.; Carroll, Thomas L. [U.S. Naval Research Laboratory, Washington, District of Columbia 20375 (United States)
2015-09-15
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.
Precise High-Cadence Time Series of Five Variable Young Stars in Auriga with MOST
Cody, Ann Marie; Hillenbrand, Lynne A; Matthews, Jaymie M; Kallinger, Thomas
2013-01-01
To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTS) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power law trends consistent with those seen for other y...
Transit Timing Observations from Kepler. IX. Catalog of the Full Long-Cadence Data Set
Holczer, Tomer; Nachmani, Gil; Jontof-Hutter, Daniel; Ford, Eric B; Fabrycky, Daniel; Ragozzine, Darin; Kane, Mackenzie; Steffen, Jason H
2016-01-01
We present a new transit timing catalog of 2599 Kepler Objects of Interest (=KOIs), using the PDC-MAP long-cadence light curves that include the full seventeen quarters of the mission (ftp://wise- ftp.tau.ac.il/pub/tauttv/TTV/ver_112). The goal is to produce an easy-to-use catalog that can stimulate further analyses of interesting systems. For 779 KOIs with high enough SNRs, we derived the timing, duration and depth of 69,914 transits. For 1820 KOIs with lower SNR, we derived only the timing of 225,273 transits. After removal of outlier timings, we derived various statistics for each KOI that were used to indicate significant variations. Including systems found by previous works, we have detected 260 KOIs which showed significant TTVs with long-term variations (>100 day), and another fourteen KOIs with periodic modulations shorter than 100 day and small amplitudes. For five of those, the periodicity is probably due to the crossing of rotating stellar spots by the transiting planets.
High--cadence observations of spicular-type events on the Sun
Shetye, J; Scullion, E; Nelson, C J; Kuridze, D; Henriques, V; Woeger, F; Ray, T
2016-01-01
Chromospheric observations taken at high cadence and high spatial resolution show a range of spicule like features, including Type I, Type II (as well as RBEs and RREs) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km/s. This article seeks to quantify and study rapidly appearing spicular type events. We also compare the MOMFBD and speckle reconstruction techniques in order to understand if such spicules are more favourably observed using a particular technique. We use spectral imaging observations taken with the CRISP on the Swedish 1 m Solar Telescope. Data was sampled at multiple positions within the Halpha line profile for both an ondisk and limb location. The data is host to numerous rapidly appearing features which are observed at different locations within the Halpha line profile. The feature's durations vary between 10 and 20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue ...
RATS-Kepler -- a deep high cadence survey of the Kepler field
Ramsay, Gavin; Hakala, Pasi; Barclay, Thomas; Garcia-Alvarez, David; Antoci, Victoria; Greiss, Sandra; Still, Martin; Steeghs, Danny; Gansicke, Boris; Reynolds, Mark
2013-01-01
We outline the purpose, strategy and first results of a deep, high cadence, photometric survey of the Kepler field using the Isaac Newton Telescope on La Palma and the MDM 1.3m Telescope on Kitt Peak. Our goal was to identify sources located in the Kepler field of view which are variable on a timescale of a few mins to 1 hour. The astrophysically most interesting sources would then have been candidates for observation using Kepler using 1 min sampling. Our survey covered ~42% of the Kepler field of view and we have obtained light curves for 7.1x10^5 objects in the range 13
Plasma dynamics in solar macrospicules from high-cadence EUV observations
Loboda, I P
2016-01-01
Macrospicules are relatively large spicule-like formations found mainly over the polar coronal holes when observing in the transition region spectral lines. In this study, we took advantage of the two short series of observations in the He II 304 \\r{A} line obtained by the TESIS solar observatory with a cadence of up to 3.5 s to study the dynamics of macrospicules in unprecedented detail. We used a one-dimensional hydrodynamic method based on the assumption of their axial symmetry and on a simple radiative transfer model to reconstruct the evolution of the internal velocity field of 18 macrospicules from this dataset. Besides the internal dynamics, we studied the motion of the apparent end points of the same 18 macrospicules and found 15 of them to follow parabolic trajectories with high precision which correspond closely to the obtained velocity fields. We found that in a clear, unperturbed case these macrospicules move with a constant deceleration inconsistent with a purely ballistic motion and have roughly...
Cadence Design of clock/calendar using 240*8 bit RAM using Verilog HDL
Directory of Open Access Journals (Sweden)
K.R.N.Karthik
2013-06-01
Full Text Available In the contrast of the modern day technology evolution the number of electronic components increasing on a system. New electronic control units (ECUs are not only dedicated to entertainment, but alsofor increasing safety and comfort. More and more mechanical connections are replaced by electronic ones to save energy and increase comfort and security. All these electronic devices need a way of exchanging information on a fast, reliable and robust way. As there was a tremendous change in the technology day by day mainly in the field of chip designing and the automation technology as due to this the clock speeds are also rapidly increasing along with this power measures are also increasing so to manage this situation we are moving towards the clock/calendar. The clock/calendar circuit based on 2048-bit static RAM organized as 256 words by 8 bits .Address and data are transferred serially via the two-line bidirectional I2C-bus The built in word address register is incremented automatically after each written of read data byte .Addressing pin A0 is used forprogramming the hard ware address .allowing the connection of two device to bus without additional hardware This total module can be used as a real time clock of adjustable frequencies and can also replace the purpose of the counters on the digital based applications This is designed in verilog using Xilinx and cadence 90nm inLINUX environment
The High Cadence Transient Survey (HiTS) - I. Survey design and supernova shock breakout constraints
Förster, Francisco; Martín, Jaime San; Hamuy, Mario; Martínez, Jorge; Huijse, Pablo; Cabrera, Guillermo; Galbany, Lluís; de Jaeger, Thomas; González-Gaitán, Santiago; Anderson, Joseph P; Kuncarayakti, Hanindyo; Pignata, Giuliano; Bufano, Filomena; Littín, Jorge; Olivares, Felipe; Medina, Gustavo; Smith, R Chris; Vivas, A Katherina; Estévez, Pablo A; Muñoz, Ricardo; Vera, Eduardo
2016-01-01
We present the first results of the High cadence Transient Survey (HiTS), a survey whose objective is to detect and follow up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera (DECam) and a custom made pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014 and 2015 campaigns we have detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting-magnitudes from our observational campaigns we measured the expected recove...
Motor ability of forelimb both on- and off-riding during walk and trot cadence of horse
Hyun, Seung-Hyun; Ryew, Che-Cheong
2016-01-01
The aim of this study was to investigate the motor ability of forelimb according to on- or off-riding during cadences (walk and trot) of horse. Horses and rider selected as subject consisted of total 37 heads of Jeju native horse and 1 female rider. The variables analyzed composed of 1 stride length, 1 step length, elapsed time of stance, elapsed time of swing, elapsed time of 1 step, and forward velocity (x-axis). Two-way analysis of variance of variables was employed for the statistical analysis with the level of significance set at 5% (Phorse’s analysis meant that there was very close relation among variables of rider’s weight-velocity-stride length-stride elapsed time. Next study will be necessary to analyze cadence variables added both stride length and rider’s weight for riding activity and rehabilitation during horse riding using Jeju native horse. PMID:26933662
Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi
2011-01-01
In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…
Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity: A Pilot Study.
Ardic, Fusun; Göcer, Esra
2016-03-01
The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer.A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland-Altman analyses were performed to show the relationship and agreement between the results of 2 devices.Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland-Altman analysis.Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed.
Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations
Loboda, I. P.; Bogachev, S. A.
2017-01-01
Macrospicules are relatively large spicule-like formations found mainly over the polar coronal holes when observing in the transition region spectral lines. In this study, we took advantage of the two short series of observations in the He ii 304 Å line obtained by the TESIS solar observatory with a cadence of up to 3.5 s to study the dynamics of macrospicules in unprecedented detail. We used a one-dimensional hydrodynamic method based on the assumption of their axial symmetry and on a simple radiative transfer model to reconstruct the evolution of the internal velocity field of 18 macrospicules from this dataset. Besides the internal dynamics, we studied the motion of the apparent end points of the same 18 macrospicules and found 15 of them to follow parabolic trajectories with high precision which correspond closely to the obtained velocity fields. We found that in a clear, unperturbed case these macrospicules move with a constant deceleration inconsistent with a purely ballistic motion and have roughly the same velocity along their entire axis, with the obtained decelerations typically ranging from 160 to 230 m s-2, and initial velocities from 80 to 130 km s-1. We also found a propagating acoustic wave for one of the macrospicules and a clear linear correlation between the initial velocities of the macrospicules and their decelerations, which indicates that they may be driven by magneto-acoustic shocks. Finally, we inverted our previous method by taking velocities from the parabolic fits to give rough estimates of the percentage of mass lost by 12 of the macrospicules. We found that typically from 10 to 30% of their observed mass fades out of the line (presumably being heated to higher coronal temperatures) with three exceptions of 50% and one of 80%.
High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics
Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, Jack E.; Smith, Stephen J.; Smith, Randall K.
2010-01-01
High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.
Indian Academy of Sciences (India)
R E Amritkar
2008-08-01
We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster synchronization. For networks with time-varying topology we compare the synchronization properties of these networks with the corresponding time-average network. We find that if the different coupling matrices corresponding to the time-varying networks commute with each other then the stability of the synchronized state for both the time-varying and the time-average topologies are approximately the same. On the other hand, for non-commuting coupling matrices the stability of the synchronized state for the time-varying topology is in general better than the time-average topology.
High-cadence observations of spicular-type events on the Sun
Shetye, J.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Kuridze, D.; Henriques, V.; Woeger, F.; Ray, T.
2016-05-01
Context. Chromospheric observations taken at high-cadence and high-spatial resolution show a range of spicule-like features, including Type-I, Type-II (as well as rapid blue-shifted excursions (RBEs) and rapid red-shifted excursions (RREs) which are thought to be on-disk counterparts of Type-II spicules) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km s-1. Aims: This article seeks to quantify and study rapidly appearing spicular-type events. We also compare the multi-object multi-frame blind deconvolution (MOMFBD) and speckle reconstruction techniques to understand if these spicules are more favourably observed using a particular technique. Methods: We use spectral imaging observations taken with the CRisp Imaging SpectroPolarimeter (CRISP) on the Swedish 1-m Solar Telescope. Data was sampled at multiple positions within the Hα line profile for both an on-disk and limb location. Results: The data is host to numerous rapidly appearing features which are observed at different locations within the Hα line profile. The feature's durations vary between 10-20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue and red wings of 3-5 s is evident, whereas, sometimes they are near simultaneous. In some instances, features are observed to fade and then re-emerge at the same location several tens of seconds later. Conclusions: We provide the first statistical analysis of these spicules and suggest that these observations can be interpreted as the line-of-sight (LOS) movement of highly dynamic spicules moving in and out of the narrow 60 mÅ transmission filter that is used to observe in different parts of the Hα line profile. The LOS velocity component of the observed fast chromospheric features, manifested as Doppler shifts, are responsible for their appearance in the red and blue wings of Hα line. Additional work involving data at other
Asynchronized synchronous machines
Botvinnik, M M
1964-01-01
Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv
Synchronization of hyperchaotic oscillators
DEFF Research Database (Denmark)
Tamasevicius, A.; Cenys, A.; Mykolaitis, G.;
1997-01-01
Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...
Beam Synchronous Timing Systems
Peters, A
2003-01-01
For many beam diagnostics purposes beam synchronous timing systems are needed in addition to the timing systems supplied by the control systems of the different accelerators. The demands and techniques of different accelerator facilities will be discussed along the following aspects: Bunch and macro pulse synchronous timing systems Solutions for different time scales from ps to ms Coupling to the RF and control systems of the different accelerators Electronics for the beam synchronous timing systems: parameters, techniques, controlling Use of industrial products for bunch synchronous timing systems, e.g. function generators Distribution of the timing signals: electronically via cables, optically via fibres or wireless Coupling to and use of timing standards: IRIG-B, GPS, ? The participants should present and describe solutions from their facilities with some transparencies as a starting point for the discussion.
Synchronization in complex networks
Energy Technology Data Exchange (ETDEWEB)
Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.
2007-12-12
Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.
Cadence Xtreme Ⅲ Systems助设计团队采用硬件辅助验证
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Cadence设计系统公司目前宣布推出Cadence Incisive DesignTeam Xtreme Ⅲ Systems，这是Incisive功能验证平台中的Incisive Xtreme系列加速器／仿真器的新一代产品。充分考虑设计工程师需求，Xtreme Ⅲ Systems为精明的模拟设计师提供将硬件辅助验证的强大功能、速度与易用性相结合的系统。
TENTACLE: Multi-Camera Immersive Surveillance System
2011-12-01
standard format by which blog entries, news headlines, audio, and video is disseminated via the web . SAR Synthetic Aperture Radar SBIR Small Business...Thru. TIGR Tactical Ground Reporting System, a web -based information sharing system available to the United States Army TIPL Tentacle IPL TM...Earth for development due to our past experience developing with it, and the maturity of the Tentacle user interface mockup we created (located at
Measure Synchronization on Symplectic Map
Institute of Scientific and Technical Information of China (English)
CHEN Shao-Ying; XU Hai-Bo; WANG Guang-Rui; CHEN Shi-Gang
2004-01-01
Measure synchronization in coupled Hamiltonian systems is a novel synchronization phenomenon. The measure synchronization on symplectic map is observed numerically, for identical coupled systems with different parameters. We have found the properties of the characteristic frequency and the amplitude of phase locking in regular motion when the measure synchronization of coupled systems is obtained. The relations between the change of the largest Lyapunov exponent and the course of phase desynchronization are also discussed in coupled systems, some useful results are obtained. A new approach is proposed for describing the measure synchronization of coupled systems numerically,which is advantage in judging the measure synchronization, especially for the coupled systems in nonregular region.
Synchronization and Inertial Frames
Viazminsky, C P
1999-01-01
In classical mechanics, a procedure for simultaneous synchronization in all inertial frames is consistent with the Galilean transformation. However, if one attempts to achieve such a synchronization utilizing light signals, he will be facing in the first place the break down of simultaneity, and secondly, a self-contradictory transformation that has the Lorentz transformation, or its confinement to the velocity of light, as the only possible ways that resolve the contradiction. The current work constitutes a smooth transition from traditional to relativistic vision of mechanics, and therefore is quite appealing from pedagogical point of view.
Analysis of synchronous machines
Lipo, TA
2012-01-01
Analysis of Synchronous Machines, Second Edition is a thoroughly modern treatment of an old subject. Courses generally teach about synchronous machines by introducing the steady-state per phase equivalent circuit without a clear, thorough presentation of the source of this circuit representation, which is a crucial aspect. Taking a different approach, this book provides a deeper understanding of complex electromechanical drives. Focusing on the terminal rather than on the internal characteristics of machines, the book begins with the general concept of winding functions, describing the placeme
DEFF Research Database (Denmark)
Pedersen, Dennis; Pedersen, Torben Bach
2004-01-01
. However, the XML data sources are often independent of the data consumers and may change their schemas without notification, invalidating the XML views defined by the data consumers. This requires the view definitions to be updated to reflect the new structure of the data sources, a process termed view...... synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...
Nimmerichter, Alfred; Eston, Roger; Bachl, Norbert; Williams, Craig
2012-01-01
This study tested the effects of low-cadence (60 rev min(-1)) uphill (Int(60)) or high-cadence (100 rev min(-1)) level-ground (Int(100)) interval training on power output (PO) during 20-min uphill (TT(up)) and flat (TT(flat)) time-trials. Eighteen male cyclists ([Formula: see text]: 58.6 ± 5.4 mL min(-1) kg(-1)) were randomly assigned to Int(60), Int(100) or a control group (Con). The interval training comprised two training sessions per week over 4 weeks, which consisted of six bouts of 5 min at the PO corresponding to the respiratory compensation point (RCP). For the control group, no interval training was conducted. A two-factor ANOVA revealed significant increases on performance measures obtained from a laboratory-graded exercise test (GXT) (P (max): 2.8 ± 3.0%; p < 0.01; PO and [Formula: see text] at RCP: 3.6 ± 6.3% and 4.7 ± 8.2%, respectively; p < 0.05; and [Formula: see text] at ventilatory threshold: 4.9 ± 5.6%; p < 0.01), with no significant group effects. Significant interactions between group and uphill and flat time-trial, pre- versus post-training on PO were observed (p < 0.05). Int(60) increased PO during both TT(up) (4.4 ± 5.3%) and TT(flat) (1.5 ± 4.5%). The changes were -1.3 ± 3.6, 2.6 ± 6.0% for Int(100) and 4.0 ± 4.6%, -3.5 ± 5.4% for Con during TT(up) and TT(flat), respectively. PO was significantly higher during TT(up) than TT(flat) (4.4 ± 6.0; 6.3 ± 5.6%; pre and post-training, respectively; p < 0.001). These findings suggest that higher forces during the low-cadence intervals are potentially beneficial to improve performance. In contrast to the GXT, the time-trials are ecologically valid to detect specific performance adaptations.
Synchronizing Hyperchaotic Circuits
DEFF Research Database (Denmark)
Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius;
1997-01-01
Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...
Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.
The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.
LHC synchronization test successful
The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/
Synchronously deployable truss structure
Bush, H. G. (Inventor); Mikulas, M., Jr. (Inventor); Wallsom, E. (Inventor)
1986-01-01
A collapsible-expandable truss structure, including first and second spaced surface truss layers having an attached core layer is described. The surface truss layers are composed of a plurality of linear struts arranged in multiple triangular configurations. Each linear strut is hinged at the center and hinge connected at each end to a nodular joint. A passive spring serves as the expansion force to move the folded struts from a stowed collapsed position to a deployed operative final truss configuration. A damper controls the rate of spring expansion for the synchronized deployment of the truss as the folded configuration is released for deployment by the restrain belts. The truss is synchronously extended under the control of motor driven spools.
Synchronization of micromasers
Davis-Tilley, C.; Armour, A. D.
2016-12-01
We investigate synchronization effects in quantum self-sustained oscillators theoretically using the micromaser as a model system. We use the probability distribution for the relative phase as a tool for quantifying the emergence of preferred phases when two micromasers are coupled together. Using perturbation theory, we show that the behavior of the phase distribution is strongly dependent on exactly how the oscillators are coupled. In the quantum regime where photon occupation numbers are low we find that, although synchronization effects are rather weak, they are nevertheless significantly stronger than expected from a semiclassical description of the phase dynamics. We also compare the behavior of the phase distribution with the mutual information of the two oscillators and show that they can behave in rather different ways.
Sanderson, D J; Hennig, E M; Black, A H
2000-03-01
The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.
Institute of Scientific and Technical Information of China (English)
张锐; 黄燕
2012-01-01
摄制高质量的教学影片是各高校追求的重要目标，部分题材的影片摄制要实现高质量，必须以多台摄影机、多景别、多视角拍摄来实现，然而，部分高校由于经费的原因，不具备这样的条件，这是个矛盾。本文以摄、编、导等多个环节较为详细的阐述了运用有限的摄编媒体资源来实现多机位（15机位）摄制高质量教学影片的思路、方法与技巧，并以实例佐证，以求与同行们切磋。%Manufacturing high - quality instructional videos is an important goal by all colleges and universities, and to achieve high quality video, some subject matter of the film must be based on multi- cameras, multi- scenes, multi -angle shooting. However, owing to financial reasons some colleges and universities can not have these conditions. This is a contradiction. This paper expounds ideas, methods and techniques of manufacturing high - quality instructional videos with multi - camera （ 15 angles） by limited video editing resources.
The transient ladder synchronization of chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Chen, H.-K. [Department of Industrial Engineering and Management, Hsiuping Institute of Technology, No. 11, Gungye Rd., Dali City, Taichung, Taiwan (China)]. E-mail: kanechen@giga.net.tw; Sheu, L.-J. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (China)]. E-mail: ljsheu@chu.edu.tw
2006-07-03
A new type for chaotically synchronizing systems, transient ladder chaos synchronization, is proposed in this Letter. For some physical systems, chaotic synchronization is possible in only some of the variables. It is shown that, for the non-synchronizing variable, synchronization up to a constant difference for t{sub 1}=
Louis, Jean-Paul
2013-01-01
Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in
Statistical properties of superflares on solar-type stars based on the Kepler 1-min cadence data
Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Nogami, Daisaku; Shibata, Kazunari
2016-01-01
We searched for superflares on solar-type stars using the Kepler short-cadence (1-min sampling) data in order to detect superflares with short duration. We found 187 superflares on 23 solar-type stars whose bolometric energy ranges from the order of $10^{32}$ erg to $10^{36}$ erg. Using these new data combined with the results from the data with 30-min sampling, we found the occurrence frequency ($dN/dE$) of superflares as a function of flare energy ($E$) shows the power-law distribution ($dN/dE \\propto E ^{-\\alpha}$) with $\\alpha=1.5$ for $10^{33}
Cody, Ann Marie
2011-01-01
The continuous temporal coverage and high photometric precision afforded by space observatories has opened up new opportunities for the study of variability processes in young stellar cluster members. Of particular interest is the phenomenon of deuterium-burning pulsation in brown dwarfs and very-low-mass stars, whose existence on 1-4 hours timescales has been proposed but not yet borne out by observations. To investigate short-timescale variability in young, low-mass objects, we carried out high-precision, high-cadence time series monitoring with the Warm Spitzer mission on 14 low mass stars and brown dwarfs in the ~3 Myr Sigma Orionis cluster. The flux in many of our raw light curves is strongly correlated with sub-pixel position and can vary systematically as much as 10%. We present a new approach to disentangle true stellar variability from this "pixel-phase effect," which is more pronounced in Warm Spitzer observations as compared to the cryogenic mission. The light curves after correction reveal that mo...
Remote Synchronization in Complex Networks
Gambuzza, Lucia Valentina; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesús; Frasca, Mattia
2013-01-01
We show the existence of a novel dynamical state called remote synchronization in general networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon cannot be observed in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.
PARTIAL SYNCHRONIZATION BETWEEN DIFFERENT SYSTEMS
Institute of Scientific and Technical Information of China (English)
CHEN Jun; LIU Zeng-rong
2005-01-01
A new method for partial synchronization between different systems was obtained. The definition of partial synchronization under which the problem works is given. The stability of the method is analyzed by the Liapunov function method and the condition of choosing the control term is derived. The reliability of this method is proved by some numerical examples, in which the dynamical behaviors of the synchronized systems are observed and it is found that whatever state the response system is partial synchronization can be always achieved by adding some proper control term.
FPGA based fast synchronous serial multi-wire links synchronization
Pozniak, Krzysztof T.
2013-10-01
The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.
Mondrik, Nicholas; Marshall, Jennifer L
2015-01-01
We present a new method of extending the single band Analysis of Variance period estimation algorithm to multiple bands. We use SDSS Stripe 82 RR Lyrae to show that in the case of low number of observations per band and non-simultaneous observations, improvements in period recovery rates of up to $\\approx$60\\% are observed. We also investigate the effect of inter-band observing cadence on period recovery rates. We find that using non-simultaneous observation times between bands is ideal for the multiband method, and using simultaneous multiband data is only marginally better than using single band data. These results will be particularly useful in planning observing cadences for wide-field astronomical imaging surveys such as LSST. They also have the potential to improve the extraction of transient data from surveys with few ($\\lesssim 30$) observations per band across several bands, such as the Dark Energy Survey.
Global Exponential Projective Synchronization and Lag Synchronization of Hyperchaotic Lü System
Institute of Scientific and Technical Information of China (English)
ZHANG Qun-Jiao; LU Jun-An; JIA Zhen
2009-01-01
This paper investigates the projective synchronization and lag synchronization of a new hyperchaotic system[Physica A 364 (2006) 103]. On the basis of Lyapunov stability theory, two novel nonlinear controllers are respectively designed to guarantee the global exponential projective synchronization (including complete synchronization and anti-synchronization) and lag synchronization. Finally, numerical simulations are given to show the effectiveness of the main results.
Digital synchronization and communication techniques
Lindsey, William C.
1992-01-01
Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.
Order release in synchronous manufacturing
Riezebos, J.
2010-01-01
Synchronous manufacturing aims at achieving the benefits of intermittent production lines in production situations that operate without lines. Benefits such as short and constant throughput times and predictable capacity loading can be acquired through an appropriate design of the synchronous manufa
Biologically Inspired Intercellular Slot Synchronization
Directory of Open Access Journals (Sweden)
Alexander Tyrrell
2009-01-01
Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.
Eidsheim, Hedda Øyeflaten
2016-01-01
Background: Recent studies have shown a positive effect of concurrent strength and endurance training on performance in cycling. Still, few studies have investigated the effect of eccentric cycling (ECC) and low cadence cycling (LCC) on muscle strength and determinants of cycling performance. Aim: Compare the effect of concurrent ECC and endurance training with concurrent LCC and endurance training on strength development, muscle thickness, and cycling performance in trained...
Chua's Circuit: Control and Synchronization
Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe
Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.
DEFF Research Database (Denmark)
Hansen, Erik W.
, to exist, in order to underline the cognitive basis of man's (comprehension of) existence. A theory of history (existence) is set up on the basis of the traditional dualistic sign function, and the traditional sound-law concept and sound development are reinterpreted in terms of the theory's system...... of definitions. Historical linguistics ('change') is not dependent on an arbitrary synchronic theory. The two language universals polysemy and synonymy are reinterpreted and defined in accordance with the advanced definitions. Louis Hjelmslev's glossematic theory is the general horizon of the argument...... and is criticized for being based on a dated metaphysics. Two epistemological principles are introduced, The Phenomenal Error and The Critico-Philological Method. Conclusion: Historical linguistics is an autonomous scientific discipline. ...
Synchronous anorectal melanoma
Institute of Scientific and Technical Information of China (English)
Drinko Balicevic; Karla Tomic; Miroslav Bekavac-Beslin; Igor Kovacevic; August Mijic; Mladen Belicza; Bozo Kruslin
2006-01-01
Anorectal melanoma is a very rare tumor with poor prognosis. Rectal bleeding is the most frequent symptom and surgical treatment ranges from local excision to radical abdominoperineal resection. We report a case of a 75-years-old male patient who presented with a history of recurrent rectal bleeding, and whose histopathological diagnosis was melanoma. Macroscopically, we found two distinct tumors in anorectal region, 0.5 cm and 1.5 cm from dentate line. The first one was pedunculated, on a thin stalk, measuring 1 cm in greatest diameter, and the second one was sessile and nodular measuring up to 2.8 cm in largest diameter. Microscopic examination and immunohistochemical analysis of both tumors confirmed the diagnosis of melanoma. This case represents multiple synchronous primary melanoma of the anorectal region, with a possibility that one of the lesions is primary melanoma and the second one is a satellite lesion.
Effects of Synchronization between Cardiac and Locomotor Rhythms on Oxygen Pulse during Walking.
Takeuchi, Shinta; Nishida, Yusuke; Mizushima, Takashi
2014-12-01
The oObjective of the study was to investigate whether the occurrence of cardiac-locomotor synchronization (CLS) affects oxygen pulse (O2 pulse, mL/beat) during walking. Twelve healthy men were studied under two treadmill protocols. The CLS protocol involved subjects walking at a frequency of their heart rate (HR) to induce CLS. The free protocol (reference) involved subjects walking at a self-selected cadence. The treadmill load was equal between the two protocols and was adjusted so that the subject's HR was maintained at approximately 120 bpm. Electrocardiographic signals, foot switch signals, and oxygen consumption (VO2) were measured continuously for 10 min after the heart rate reached a steady state. VO2, O2 pulse, and mean HR were calculated. VO2 and O2 pulse were significantly higher in subjects in the CLS protocol compared to those in the free protocol. However, mean HR was not different between the two groups. The synchronization strength was significantly related to the increase in O2 pulse in subjects in the CLS protocol compared with those in the free protocol. These results suggest that the occurrence of CLS enhances O2 pulse by increasing the strength of CLS during walking. Key PointsTwelve healthy men walked at a frequency of their heart rate (CLS protocol) and at a self-selected cadence (free protocol).Walking at the frequency of heart rate would induce the CLS by entrainment.Oxygen pulse was significantly higher in subjects in the CLS protocol compared to those in the free protocol.The occurrence of CLS enhances oxygen pulse by increasing the strength of CLS during walking.
Dual-scale multimedia dynamic synchronization model
Institute of Scientific and Technical Information of China (English)
李乃祥
2009-01-01
Multimedia synchronization is the key technology in application of distributed multimedia.Solution of synchronization conflicts insides and among streams as well as that of user interaction,synchronization granularity refinement and synchronization precision improvement remain great challenges although great efforts have been invested by the academic circle.The construction method of a dual-scale dynamic synchronous model of multimedia presented in this article realizes multimedia synchronization on two sca...
Transition to complete synchronization via near-synchronization in two coupled chaotic neurons
Institute of Scientific and Technical Information of China (English)
Wang Qing-Yun; Lu Qi-Shao; Wang Hai-Xia
2005-01-01
The synchronization transition in two coupled chaotic Morris-Lecar (ML) neurons with gap junction is studied with the coupling strength increasing. The conditional Lyapunov exponents, along with the synchronization errors are calculated to diagnose synchronization of two coupled chaotic ML neurons. As a result, it is shown that the increase in the coupling strength leads to incoherence, then induces a transition process consisting of three different synchronization states in succession, namely, burst synchronization, near-synchronization and embedded burst synchronization, and achieves complete synchronization of two coupled neurons finally. These sequential transitions to synchronization reveal a new transition route from incoherence to complete synchronization in coupled systems with multi-time scales.
Nutritional recommendations for synchronized swimming.
Robertson, Sherry; Benardot, Dan; Mountjoy, Margo
2014-08-01
The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers.
Synchronization in an evolving network
Singh, R K
2015-01-01
In this work we study the dynamics of Kuramoto oscillators on a stochastically evolving network whose evolution is governed by the phases of the individual oscillators and degree distribution. Synchronization is achieved after a threshold connection density is reached. This cumulative effect of topology and dynamics has many real-world implications, where synchronization in a system emerges as a collective property of its components in a self-organizing manner. The synchronous state remains stable as long as the connection density remains above the threshold value, with additional links providing resilience against network fluctuations.
How to suppress undesired synchronization
Louzada, V H P; Andrade, J S; Herrmann, H J
2012-01-01
It is delightful to observe the emergence of synchronization in the blinking of fireflies to attract partners and preys. Other charming examples of synchronization can also be found in a wide range of phenomena such as, e.g., neurons firing, lasers cascades, chemical reactions, and opinion formation. However, in many situations the formation of a coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the root of epileptic seizures, traffic congestion in communication networks, and the collapse of constructions. Here we propose the use of contrarians to suppress undesired synchronization. We perform a comparative study of different strategies, either requiring local or total knowledge of the system, and show that the most efficient one solely requires local information. Our results also reveal that, even when the distribution of neighboring interactions is narrow, significant improvement in mitigation is observed when contrarians sit at the highly connected ele...
Synchronous identification of friendly targets
Telle, John M.; Roger, Stutz A.
1998-01-01
A synchronous communication targeting system for use in battle. The present invention includes a transceiver having a stabilizing oscillator, a synchronous amplifier and an omnidirectional receiver, all in electrical communication with each other. A remotely located beacon is attached to a blackbody radiation source and has an amplitude modulator in electrical communication with a optical source. The beacon's amplitude modulator is set so that the optical source transmits radiation frequency at approximately the same or lower amplitude than that of the blackbody radiation source to which the beacon is attached. The receiver from the transceiver is adapted to receive frequencies approximately at or below blackbody radiation signals and sends such signals to the synchronous amplifier. The synchronous amplifier then rectifies and amplifies those signals which correspond to the predetermined frequency to therefore identify whether the blackbody radiation source is friendly or not.
Synchronized Swimming of Two Fish
Koumoutsakos, Petros; Novati, Guido; Abbati, Gabriele; Hejazialhosseini, Babak; van Rees, Wim
2015-11-01
We present simulations of two, self-propelled, fish-like swimmers that perform synchronized moves in a two-dimensional, viscous fluid. The swimmers learn to coordinate by receiving a reward for their synchronized actions. We analyze the swimming patterns emerging for different rewards in terms of their hydrodynamic efficiency and artistic impression. European Research Council (ERC) Advanced Investigator Award (No. 2-73985-14).
Chaotic synchronization via linear controller
Institute of Scientific and Technical Information of China (English)
Chen Feng-Xiang; Zhang Wei-Dong
2007-01-01
A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively.This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.
Principles of synchronous digital hierarchy
Jain, Rajesh Kumar
2012-01-01
The book presents the current standards of digital multiplexing, called synchronous digital hierarchy, including analog multiplexing technologies. It is aimed at telecommunication professionals who want to develop an understanding of digital multiplexing and synchronous digital hierarchy in particular and the functioning of practical telecommunication systems in general. The text includes all relevant fundamentals and provides a handy reference for problem solving or defining operations and maintenance strategies. The author covers digital conversion and TDM principles, line coding and digital
Photonic Cavity Synchronization of Nanomechanical Oscillators
Bagheri, Mahmood; Poot, Menno; Fan, Linran; Marquardt, Florian; Tang, Hong X.
2013-01-01
Synchronization in oscillatory systems is a frequent natural phenomenon and is becoming an important concept in modern physics. Nanomechanical resonators are ideal systems for studying synchronization due to their controllable oscillation properties and engineerable nonlinearities. Here we demonstrate synchronization of two nanomechanical oscillators via a photonic resonator, enabling optomechanical synchronization between mechanically isolated nanomechanical resonators. Optical backaction gi...
Hybrid synchronization of hyperchaotic Lu system
Indian Academy of Sciences (India)
K Sebastian Sudheer; M Sabir
2009-10-01
In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid synchronization between drive and response systems using the sum and difference of relevant variables of the chaotic systems. Numerical simulations are presented to evaluate the analysis and effectiveness of the controllers.
Unidirectional synchronization of Hodgkin-Huxley neurons
Energy Technology Data Exchange (ETDEWEB)
Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx
2005-07-01
Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.
Impulsive Synchronization of Discrete Chaotic Systems
Institute of Scientific and Technical Information of China (English)
郑永爱; 年漪蓓; 刘曾荣
2003-01-01
Impulsive synchronization of two chaotic maps is reformulated as impulsive control of the synchronization error system. We then present a theorem on the asymptotic synchronization of two chaotic maps by using synchronization impulses with varying impulsive intervals. As an example and application of the theorem, we derives some sufficient conditions for the synchronization of two chaotic Lozi maps via impulsive control. The effectiveness of this approach has been demonstrated with chaotic Lozi map.
Impulsive Synchronization of Laser Plasma System
Institute of Scientific and Technical Information of China (English)
LI Yang; LIAO Xiao-Feng; LI Chuan-Dong; CHEN Guo
2007-01-01
The issue of impulsive synchronization of the coupled chaotic laser plasma system is investigated. A new framework for impulsive synchronization of such chaotic systems is presented, which makes the synchronization error system a linear impulsive control system. We derive some sufficient conditions for the synchronization of a laser plasma system via impulsive control with the varying impulsive intervals, which allows us to derive the impulsive synchronization law easily. To illustrate the effectiveness of the proposed results, two numerical examples are given.
Outer Synchronization of Complex Networks by Impulse
Institute of Scientific and Technical Information of China (English)
孙文; 燕子宗; 陈士华; 吕金虎
2011-01-01
This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme.
Bodily Synchronization Underlying Joke Telling
Directory of Open Access Journals (Sweden)
R. C. Schmidt
2014-08-01
Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.
Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems
Institute of Scientific and Technical Information of China (English)
GUO Rong-Wei
2011-01-01
We investigate the synchronization and anti-synchronization of the new 4D chaotic system and propose a same adaptive controller in the form which not only synchronizes, but also anti-synchronizes two identical new 4D chaotic systems. Numerical simulations verify the correctness and the effectiveness of the proposed theoretical results.%@@ We investigate the synchronization and anti-synchronization of the new 4D chaotic system and propose a same adaptive controller in the form which not only synchronizes, but also anti-synchronizes two identical new 4D chaotic systems.Numerical simulations verify the correctness and the effectiveness of the proposed theoretical results.
Effects of Synchronization between Cardiac and Locomotor Rhythms on Oxygen Pulse during Walking
Directory of Open Access Journals (Sweden)
Shinta Takeuchi
2014-12-01
Full Text Available The oObjective of the study was to investigate whether the occurrence of cardiac–locomotor synchronization (CLS affects oxygen pulse (O2 pulse, mL/beat during walking. Twelve healthy men were studied under two treadmill protocols. The CLS protocol involved subjects walking at a frequency of their heart rate (HR to induce CLS. The free protocol (reference involved subjects walking at a self-selected cadence. The treadmill load was equal between the two protocols and was adjusted so that the subject’s HR was maintained at approximately 120 bpm. Electrocardiographic signals, foot switch signals, and oxygen consumption (VO2 were measured continuously for 10 min after the heart rate reached a steady state. VO2, O2 pulse, and mean HR were calculated. VO2 and O2 pulse were significantly higher in subjects in the CLS protocol compared to those in the free protocol. However, mean HR was not different between the two groups. The synchronization strength was significantly related to the increase in O2 pulse in subjects in the CLS protocol compared with those in the free protocol. These results suggest that the occurrence of CLS enhances O2 pulse by increasing the strength of CLS during walking.
Phase Synchronization in Railway Timetables
Fretter, Christoph; Weihe, Karsten; Müller-Hannemann, Matthias; Hütt, Marc-Thorsten
2010-01-01
Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of t...
How to suppress undesired synchronization.
Louzada, V H P; Araújo, N A M; Andrade, J S; Herrmann, H J
2012-01-01
Examples of synchronization can be found in a wide range of phenomena such as neurons firing, lasers cascades, chemical reactions, and opinion formation. However, in many situations the formation of a coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the root of epileptic seizures, traffic congestion in networks, and the collapse of constructions. Here we propose the use of contrarians to suppress undesired synchronization. We perform a comparative study of different strategies, either requiring local or total knowledge, and show that the most efficient one solely requires local information. Our results also reveal that, even when the distribution of neighboring interactions is narrow, significant improvement is observed when contrarians sit at the highly connected elements. The same qualitative results are obtained for artificially generated networks and two real ones, namely, the Routers of the Internet and a neuronal network.
Cluster synchronization in oscillatory networks
Belykh, Vladimir N.; Osipov, Grigory V.; Petrov, Valentin S.; Suykens, Johan A. K.; Vandewalle, Joos
2008-09-01
Synchronous behavior in networks of coupled oscillators is a commonly observed phenomenon attracting a growing interest in physics, biology, communication, and other fields of science and technology. Besides global synchronization, one can also observe splitting of the full network into several clusters of mutually synchronized oscillators. In this paper, we study the conditions for such cluster partitioning into ensembles for the case of identical chaotic systems. We focus mainly on the existence and the stability of unique unconditional clusters whose rise does not depend on the origin of the other clusters. Also, conditional clusters in arrays of globally nonsymmetrically coupled identical chaotic oscillators are investigated. The design problem of organizing clusters into a given configuration is discussed.
SENSITIVE ERROR ANALYSIS OF CHAOS SYNCHRONIZATION
Institute of Scientific and Technical Information of China (English)
HUANG XIAN-GAO; XU JIAN-XUE; HUANG WEI; L(U) ZE-JUN
2001-01-01
We study the synchronizing sensitive errors of chaotic systems for adding other signals to the synchronizing signal.Based on the model of the Henon map masking, we examine the cause of the sensitive errors of chaos synchronization.The modulation ratio and the mean square error are defined to measure the synchronizing sensitive errors by quality.Numerical simulation results of the synchronizing sensitive errors are given for masking direct current, sinusoidal and speech signals, separately. Finally, we give the mean square error curves of chaos synchronizing sensitivity and threedimensional phase plots of the drive system and the response system for masking the three kinds of signals.
Control of non-conventional synchronous motors
Louis, Jean-Paul
2013-01-01
Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,
Forced synchronization of quasiperiodic oscillations
Stankevich, N. V.; Kurths, J.; Kuznetsov, A. P.
2015-01-01
A model of a generator of quasiperiodic oscillations forced by a periodic pulse sequence is studied. We analyze synchronization when the autonomous generator demonstrates periodic, quasiperiodic, respective weakly chaotic oscillations. For the forced quasiperiodic oscillations a picture of synchronization, consisting of small-scale and large-scale structures was uncovered. It even includes the existence of stable the three-frequency tori. For the regime of weak chaos a partial destruction of this features and of the regime of three-frequency tori are found.
Synchronizing Web Documents with Style
Guimarães, R.L.; Bulterman, D.C.A.; Cesar Garcia, P.S.; Jansen, A.J.
2014-01-01
In this paper we report on our efforts to define a set of document extensions to Cascading Style Sheets (CSS) that allow for structured timing and synchronization of elements within a Web page. Our work considers the scenario in which the temporal structure can be decoupled from the content of the W
Synchronizing Strategies under Partial Observability
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri
2014-01-01
Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, h...
Neural synchronization via potassium signaling
DEFF Research Database (Denmark)
Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik
2006-01-01
Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...
Learning through synchronous electronic discussion
Kanselaar, G.; Veerman, A.L.; Andriessen, J.E.B.
2000-01-01
This article reports a study examining university student pairs carrying out an electronic discussion task in a synchronous computer mediated communication (CMC) system (NetMeeting). The purpose of the assignment was to raise students' awareness concerning conceptions that characterise effective ped
Synchronization in Triangled Complex Networks
Institute of Scientific and Technical Information of China (English)
LU Xin-Biao; LI Xiang; WANG Xiao-Fan
2006-01-01
Using a tunable clustering coefficient model withoutchanging the degree distribution, we investigate the effect of clustering coefficient on synchronization of networks with both unweighted and weighted couplings. For several typical categories of complex networks, the more triangles are in the networks, the worse the synchronizability of the networks is.
Sports Medicine Meets Synchronized Swimming.
Wenz, Betty J.; And Others
This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…
Epidemic Synchronization in Robotic Swarms
DEFF Research Database (Denmark)
Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung
2009-01-01
Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination wit...
Fermi Timing and Synchronization System
Energy Technology Data Exchange (ETDEWEB)
Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.
2006-07-19
The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.
Process algebra for synchronous communication
Bergstra, J.A.; Klop, J.W.
1984-01-01
Within the context of an algebraic theory of processes, an equational specification of process cooperation is provided. Four cases are considered: free merge or interleaving, merging with communication, merging with mutual exclusion of tight regions, and synchronous process cooperation. The rewrite
Synchronized whistlers recorded at Varanasi
Indian Academy of Sciences (India)
Rajesh Singh; Ashok K Singh; R P Singh
2003-06-01
Some interesting events of synchronized whistlers recorded at low latitude station Varanasi during magnetic storm period of the year 1977 are presented. The dynamic spectrum analysis shows that the component whistlers are Eckersley whistlers having dispersion 10 s1/2 and 30 s1/2. An attempt has been made to explain the dynamic spectra using lightning discharge generated from magnetospheric sources.
Modeling Distributed Multimedia Synchronization with DSPN
Institute of Scientific and Technical Information of China (English)
宋军; 顾冠群
1998-01-01
Multimedia synchronization is the essential technology for the integration of multimedia in distributed multimedia systems.The multimedia synchronization model has been recognized by many researchers as a premise of the implementation of multimedia synchronization.In distributed multimedia systems,the characteristic of multimedia synchronization is dynamic,and the key medium has the priority in multimedia synchronization.The previously proposed multimedia synchronization models cannot meet these requirements.So a new multimedia dynamic synchronization model-DSPN,based on the timed Petri-net has been designed in this paper.This model can not only let the distributed multimedia system keep multimedia synchronization in a more precise and effective manner according to the runtime situation of the system,but also allow the user to interact with the presentation of multimedia.
Pinning Synchronization of Switched Complex Dynamical Networks
Directory of Open Access Journals (Sweden)
Liming Du
2015-01-01
Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.
Robust synchronization of chaotic systems via feedback
Energy Technology Data Exchange (ETDEWEB)
Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion
2008-07-01
This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)
Synchronization effect for uncertain quantum networks
Li, Wenlin; Gebremariam, Tesfay; Li, Chong; Song, Heshan
2017-01-01
We propose a novel technique for investigating the synchronization effect for uncertain networks with quantum chaotic behaviors in this paper. Through designing a special function to construct Lyapunov function of network and the adaptive laws of uncertain parameters, the synchronization between the uncertain network and the synchronization target can be realized, and the uncertain parameters in state equations of the network nodes are perfectly identified. All the theoretical results are verified by numerical simulations to demonstrate the effectiveness of the proposed synchronization technique.
Synchronization in complex clustered networks
Institute of Scientific and Technical Information of China (English)
HUANG Liang; LAI Ying-Cheng; Kwangho PARK; WANG Xingang; LAI Choy Heng; Robert A. GATENBY
2007-01-01
Synchronization in complex networks has been an active area of research in recent years. While much effort has been devoted to networks with the small-world and scale-free topology, structurally they are often assumed to have a single, densely connected component. Recently it has also become apparent that many networks in social, biological, and tech-nological systems are clustered, as characterized by a number (or a hierarchy) of sparsely linked clusters, each with dense and complex internal connections. Synchronization is funda-mental to the dynamics and functions of complex clustered networks, but this problem has just begun to be addressed. This paper reviews some progress in this direction by focus-ing on the interplay between the clustered topology and net-work synchronizability. In particular, there are two parame-ters characterizing a clustered network: the intra-cluster and the inter-cluster link density. Our goal is to clarify the roles of these parameters in shaping network synchronizability. By using theoretical analysis and direct numerical simulations of oscillator networks, it is demonstrated that clustered net-works with random inter-cluster links are more synchroniz-able, and synchronization can be optimized when inter-cluster and intra-cluster links match. The latter result has one coun-terintuitive implication: more links, if placed improperly, can actually lead to destruction of synchronization, even though such links tend to decrease the average network distance. It is hoped that this review will help attract attention to the fun-damental problem of clustered structures/synchronization in network science.
Phase multistability of synchronous chaotic oscillations
Directory of Open Access Journals (Sweden)
T. E. Vadivasova
2000-01-01
Full Text Available The paper describes the sequence of bifurcations leading to multistability of periodic and chaotic synchronous attractors for the coupled Rössler systems which individually demonstrate the Feigenbaum route to chaos. We investigate how a frequency mismatch affects this phenomenon. The role of a set of coexisting synchronous regimes in the transitions to and between different forms of synchronization is studied.
Delay synchronization of temporal Boolean networks
Wei, Qiang; Xie, Cheng-jun; Liang, Yi; Niu, Yu-jun; Lin, Da
2016-01-01
This paper investigates the delay synchronization between two temporal Boolean networks base on semi-tensor product method, which improve complete synchronization. Necessary and sufficient conditions for delay synchronization are drawn base on algebraic expression of temporal Boolean networks. A example is presented to show the effectiveness of theoretical analysis.
Chaotic coupling synchronization of hyperchaotic oscillators
Institute of Scientific and Technical Information of China (English)
Zou Yan-Li; Zhu Jie; Chen Guan-Rong
2005-01-01
In this paper, two kinds of chaotic coupling synchronization schemes are presented. The synchronizability of the coupled hyperchaotic oscillators is proved mathematically and the numerical simulation is also carried out. The numerical calculation of the largest conditional Lyapunov exponent shows that in a given range of coupling strengths,chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization.
Caplan, R. M.; Downs, C.; Linker, J. A.
2016-05-01
We describe a method for the automatic mapping of coronal holes (CHs) using simultaneous multi-instrument EUV imaging data. Synchronized EUV images from STEREO/EUVI A and B 195 Å and SDO/AIA 193 Å are preprocessed, including point-spread function deconvolution and the application of data-derived intensity corrections which account for center-to-limb variations (limb brightening) and inter-instrument intensity normalization. We systematically derive a robust limb-brightening correction that takes advantage of unbiased long-term averages of data and respects the physical nature of the problem. The new preprocessing greatly assists in CH detection, allowing for the use of a simplified variable-connectivity, two-threshold region-growing image segmentation algorithm to obtain consistent detection results. We generate synchronic EUV and CH maps, and show a preliminary analysis of CH evolution. Several data and code products are made available to the community (www.predsci.com/chd): for the period of this study (2010 June 10 to 2014 August 18), we provide synchronic EUV and CH map data at 6 hr cadence, data-derived limb-brightening corrections for STEREO/EUVI A and B 195 Å and SDO/AIA 193 Å, and inter-instrument correction factors to equate their intensities. We also provide the CH image segmentation code module (ezseg) implemented in both FORTRAN-OpenMP and GPU-accelerated C-CUDA. A complete implementation of our CH detection pipeline in the form of a ready-to-use MATLAB driver script euv2chm utilizing ezseg is also made available.
2006-01-01
Learning for the LHC! The next session of the course 'Comprehensive VHDL for FPGA Design' given in English by Doulos Ltd (UK) will take place at CERN from May 29 through June 2nd (5 days), for a maximum of 14 participants. It will be preceded by an optional, refresher session of the two-day course 'Introduction au VHDL et utilisation du simulateur NCVHDL de CADENCE', given on 23-24 May, in French, by Serge Brobecker of IT/DES. For more information, please visit the Technical Training CTA website, http://cta.cern.ch/cta2/f?p=300, to consult the detailed course descriptions and to apply via EDH. Organiser: Davide Vitè / HR-PMD / 75141 Davide.Vite@cern.ch ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING technical.training@cern.ch
Davide Vitè
2006-01-01
The next session of the course 'Comprehensive VHDL for FPGA Design'given in English by Doulos Ltd (UK) will take place at CERN from May 29 through June 2nd (5 days), for a maximum of 14 participants. It will be preceded by an optional, refresher session of the two-day course 'Introduction au VHDL et utilisation du simulateur NCVHDL de CADENCE', given on 23-24 May, in French, by Serge Brobecker of IT/DES. For more information, please visit the Technical Training CTA website, http://cta.cern.ch/cta2/f?p=300, to consult the detailed course descriptions and to apply via EDH. Organiser: Davide Vitè / HR-PMD / 75141 Davide.Vite@cern.ch ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING technical.training@cern.ch
Cellular automata models for synchronized traffic flow
Jiang Rui
2003-01-01
This paper presents a new cellular automata model for describing synchronized traffic flow. The fundamental diagrams, the spacetime plots and the 1 min average data have been analysed in detail. It is shown that the model can describe the outflow from the jams, the light synchronized flow as well as heavy synchronized flow with average speed greater than approximately 24 km h sup - sup 1. As for the synchronized flow with speed lower than 24 km h sup - sup 1 , it is unstable and will evolve into the coexistence of jams, free flow and light synchronized flow. This is consistent with the empirical findings (Kerner B S 1998 Phys. Rev. Lett. 81 3797).
Modified function projective synchronization of chaotic system
Energy Technology Data Exchange (ETDEWEB)
Du Hongyue [School of Automation, Harbin University of Science and Technology, Harbin 150080 (China); Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: du_hong_yue@yahoo.com.cn; Zeng Qingshuang; Wang Changhong [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)
2009-11-30
This paper presents a new type synchronization called modified function projective synchronization, where the drive and response systems could be synchronized up to a desired scale function matrix. It is obvious that the unpredictability of the scaling functions can additionally enhance the security of communication. By active control scheme, we take Lorenz system as an example to illustrate above synchronization phenomenon. Furthermore, based on modified function projective synchronization, a scheme for secure communication is investigated in theory. The corresponding numerical simulations are performed to verify and illustrate the analytical results.
Energetics of Synchronization in Coupled Oscillators
Izumida, Yuki; Seifert, Udo
2016-01-01
We formulate the energetics of synchronization in coupled oscillators by unifying the nonequilibrium aspects with the nonlinear dynamics via stochastic thermodynamics. We derive a concise and universal expression of the energy dissipation rate using nonlinear-dynamics quantities characterizing synchronization, and elucidate how synchronization/desynchronization between the oscillators affects it. We apply our theory to hydrodynamically-coupled Stokes spheres rotating on circular trajectories that may be interpreted as the simplest model of synchronization of coupled oscillators in a biological system, revealing that the oscillators gain the ability to do more work on the surrounding fluid as the degree of phase synchronization increases.
Photonic cavity synchronization of nanomechanical oscillators.
Bagheri, Mahmood; Poot, Menno; Fan, Linran; Marquardt, Florian; Tang, Hong X
2013-11-22
Synchronization in oscillatory systems is a frequent natural phenomenon and is becoming an important concept in modern physics. Nanomechanical resonators are ideal systems for studying synchronization due to their controllable oscillation properties and engineerable nonlinearities. Here we demonstrate synchronization of two nanomechanical oscillators via a photonic resonator, enabling optomechanical synchronization between mechanically isolated nanomechanical resonators. Optical backaction gives rise to both reactive and dissipative coupling of the mechanical resonators, leading to coherent oscillation and mutual locking of resonators with dynamics beyond the widely accepted phase oscillator (Kuramoto) model. In addition to the phase difference between the oscillators, also their amplitudes are coupled, resulting in the emergence of sidebands around the synchronized carrier signal.
Partial Synchronization of Interconnected Boolean Networks.
Chen, Hongwei; Liang, Jinling; Lu, Jianquan
2017-01-01
This paper addresses the partial synchronization problem for the interconnected Boolean networks (BNs) via the semi-tensor product (STP) of matrices. First, based on an algebraic state space representation of BNs, a necessary and sufficient criterion is presented to ensure the partial synchronization of the interconnected BNs. Second, by defining an induced digraph of the partial synchronized states set, an equivalent graphical description for the partial synchronization of the interconnected BNs is established. Consequently, the second partial synchronization criterion is derived in terms of adjacency matrix of the induced digraph. Finally, two examples (including an epigenetic model) are provided to illustrate the efficiency of the obtained results.
Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan
2016-11-01
The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ∼175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.
Detecting synchronization in coupled stochastic ecosystem networks
Energy Technology Data Exchange (ETDEWEB)
Kouvaris, N. [Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , 15310 Athens (Greece); Department of Mathematical, Physical and Computational Science, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Provata, A. [Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , 15310 Athens (Greece); Kugiumtzis, D., E-mail: dkugiu@gen.auth.g [Department of Mathematical, Physical and Computational Science, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)
2010-01-11
Instantaneous phase difference, synchronization index and mutual information are considered in order to detect phase transitions, collective behaviours and synchronization phenomena that emerge for different levels of diffusive and reactive activity in stochastic networks. The network under investigation is a spatial 2D lattice which serves as a substrate for Lotka-Volterra dynamics with 3rd order nonlinearities. Kinetic Monte Carlo simulations demonstrate that the system spontaneously organizes into a number of asynchronous local oscillators, when only nearest neighbour interactions are considered. In contrast, the oscillators can be correlated, phase synchronized and completely synchronized when introducing different interactivity rules (diffusive or reactive) for nearby and distant species. The quantitative measures of synchronization show that long distance diffusion coupling induces phase synchronization after a well defined transition point, while long distance reaction coupling induces smeared phase synchronization.
Solidarity, synchronization and collective action
Bruggeman, Jeroen
2013-01-01
For people to act collectively in actual situations -- in contrast to public goods experiments -- goal ambiguity, diversity of interests, and uncertain costs and benefits stand in their way. Under such conditions, people seem to have few reasons to cooperate, yet the Arab revolutions, as conspicuous examples, show that collective action can take place despite the odds. I use the Kuramoto model to show how people in a cohesive network topology can synchronize their salient traits (emotions, interests, or other), and that synchronization happens in a phase transition, when group solidarity passes a critical threshold. This yields more precise predictions of outbursts of collective action under adverse conditions, and casts a new light on different measures of social cohesion.
Synchronization of Interacting Quantum Dipoles
Zhu, Bihui; Xu, Minghui; Urbina, Felipe H; Restrepo, Juan G; Holland, Murray J; Rey, Ana Maria
2015-01-01
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases. Here we investigate the correspond- ing phenomenon in the quantum regime with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that the dipoles may overcome the decoherence induced by quantum fluctuations and inhomogeneous couplings and evolve to a synchronized steady-state. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quan- tum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.
Synchronization of interacting quantum dipoles
Zhu, B.; Schachenmayer, J.; Xu, M.; Herrera, F.; Restrepo, J. G.; Holland, M. J.; Rey, A. M.
2015-08-01
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases in the presence of nonlinear coupling. Here we investigate the corresponding phenomenon with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that by incoherently driving dense packed arrays of strongly interacting dipoles, the dipoles can overcome the decoherence induced by quantum fluctuations and inhomogeneous coupling and reach a synchronized steady-state characterized by a macroscopic phase coherence. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quantum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.
Evaluating Accessible Synchronous CMC Applications
Lobo, Fernando G; Condado, Paulo A; Romão, Teresa; Godinho, Rui; Moreno, Manuel
2010-01-01
This paper proposes a more general evaluation methodology to measure the usability and user experience qualities of accessible synchronous computer-mediated communication applications. The proposed methodology goes beyond current practices by evaluating how the interaction between a user and a product influences the user experience of those at the other endpoint of the communication. Another contribution of the paper is the proposal of a user test where one of the participants tries to guess whether the other participant has a disability or not. An argument is made suggesting that the ultimate goal when designing real-time communication applications is to design mechanisms that can hide the disabilities of users, so that participants involved in the communication do not perceive the disabilities of each other. The proposed ideas are tested and validated with two examples of synchronous communication applications.
Synchronous clock stopper for microprocessor
Kitchin, David A. (Inventor)
1985-01-01
A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.
Physical Layer Ethernet Clock Synchronization
2010-11-01
42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel , Georg...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Austrian Academy of Sciences Viktor Kaplan StraÃe 2, A-2700 Wiener Neustadt, Austria 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING
Research on synchronous gear pump
Institute of Scientific and Technical Information of China (English)
LUAN Zhen-hui
2010-01-01
Based on a comprehensive analysis of the structure and existing problems of the gear pump, provided a structure principle of a synchronous gear pump. The discussions focused on the working principle, construction features and finite element analysis of the hydraulic gear. The research indicates that the new pump has such advantages as lower noise, better distributed flow and a high work pressure, and it can be widely used in hydraulic systems.
SYNCHRONIZATION IN COMPLEX DYNAMICAL NETWORKS
Institute of Scientific and Technical Information of China (English)
WANG Xiaofan; CHEN Guanrong
2003-01-01
In the past few years, the discovery of small-world and scale-free properties of many natural and artificial complex networks has stimulated increasing interest in further studying the underlying organizing principles of various complex networks. This has led to significant advances in understanding the relationship between the topology and the dynamics of such complex networks. This paper reviews some recent research works on the synchronization phenomenon in various dynamical networks with small-world and scalefree connections.
Synchronization Algorithms on Oriented Chains
Directory of Open Access Journals (Sweden)
D. Bein
2008-01-01
Full Text Available We present a space- and time-optimal self-stabilizing algorithm, SSDS, for a given synchronization problem on asynchronous oriented chains. SSDS is uniform and works under the unfair distributed daemon. From SSDS we derive solutions for the local mutual exclusion and distributed sorting. Algorithm SSDS can also be used to obtain optimal space solutions for other problems such as broadcasting, leader election, and mutual exclusion.
Institute of Scientific and Technical Information of China (English)
Feng Xiu-Qin; Shen Ke
2005-01-01
We have investigated chaotic synchronization in the generalized sense for the degenerate optical parametric oscillator (DOPO). The numerical results show that two unidirectional coupling DOPOs in chaos can be completely phase synchronization or anti-phase synchronization with a suitable coupling coefficient under which the maximum condition Lyapunov exponent (MCLE) is negative. Phase synchronization and anti-phase synchronization of chaos can be realized through positive and negative coupling. On the other hand, the different synchronization states depend on the coupling types used in the DOPO systems.
A chimeric path to neuronal synchronization
Essaki Arumugam, Easwara Moorthy; Spano, Mark L.
2015-01-01
Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).
A chimeric path to neuronal synchronization
Energy Technology Data Exchange (ETDEWEB)
Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)
2015-01-15
Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)
Explosive synchronization coexists with classical synchronization in the Kuramoto model
Danziger, Michael M.; Moskalenko, Olga I.; Kurkin, Semen A.; Zhang, Xiyun; Havlin, Shlomo; Boccaletti, Stefano
2016-06-01
Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ˜ 106) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.
Synchronization in random balanced networks
García del Molino, Luis Carlos; Pakdaman, Khashayar; Touboul, Jonathan; Wainrib, Gilles
2013-10-01
Characterizing the influence of network properties on the global emerging behavior of interacting elements constitutes a central question in many areas, from physical to social sciences. In this article we study a primary model of disordered neuronal networks with excitatory-inhibitory structure and balance constraints. We show how the interplay between structure and disorder in the connectivity leads to a universal transition from trivial to synchronized stationary or periodic states. This transition cannot be explained only through the analysis of the spectral density of the connectivity matrix. We provide a low-dimensional approximation that shows the role of both the structure and disorder in the dynamics.
Noise-Mediated Generalized Synchronization
Institute of Scientific and Technical Information of China (English)
CHEN Yue-Hua; WU Zhi-Yuan; YANG Jun-Zhong
2007-01-01
@@ We investigate a drive-response system by considering the impacts of noise on generalized synchronization (GS).It is found that a small amount of noise can turn the system from desynchronization to the GS state in the resonant case no matter how noise is injected into the system. In the non-resonant case, noise with intensity in a certain range is helpful in building GS only when the noise is injected to the driving system. The mechanism behind the observed phenomena is discussed.
Desynchronization of stochastically synchronized chemical oscillators
Energy Technology Data Exchange (ETDEWEB)
Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh; Showalter, Kenneth, E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu [C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045 (United States); Wilson, Dan; Moehlis, Jeff [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States); Netoff, Theoden Ivan [Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2015-12-15
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.
Complexity and synchronization in stochastic chaotic systems
Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo
2016-02-01
We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.
Synchronized Firing in Coupled Inhomogeneous Excitable Neurons
Institute of Scientific and Technical Information of China (English)
ZHENG Zhi-Gang; WANG Fu-Zhong
2002-01-01
We study the firing synchronization behavior of the inhomogeneous excitable media. Phase synchronizationof neuron firings is observed with increasing the coupling, while the phases of neurons are different (out-of-phase synchronization). We found the synchronization of bursts can be greatly enhanced by applying an external forcing (in-phasesynchronization). The external forcing can be either a periodic or just homogeneous thermal noise. The mechanismresponsible for this enhancement is discussed.PACS numbers: 05.45.-a, 87.10.+e
Towards Emergent Energy Synchronization using Agents
Pournaras, E.; Warnier, M.E.; Brazier, F.M.T.
2010-01-01
Synchronization of energy consumption is a key determinant for the stabilization of smart energy grids. This paper proposes software agents that locally synchronize the energy usage of appliances to minimize the oscillations in global energy consumption. Agents can manage demand-side devices with periodic operation and synchronize their consumption locally resulting in an emerging global stability of energy consumption. The benefits and challenges of such an approach are discussed in this paper.
Variety of synchronous regimes in neuronal ensembles
Komarov, M. A.; Osipov, G. V.; Suykens, J. A. K.
2008-09-01
We consider a Hodgkin-Huxley-type model of oscillatory activity in neurons of the snail Helix pomatia. This model has a distinctive feature: It demonstrates multistability in oscillatory and silent modes that is typical for the thalamocortical neurons. A single neuron cell can demonstrate a variety of oscillatory activity: Regular and chaotic spiking and bursting behavior. We study collective phenomena in small and large arrays of nonidentical cells coupled by models of electrical and chemical synapses. Two single elements coupled by electrical coupling show different types of synchronous behavior, in particular in-phase and antiphase synchronous regimes. In an ensemble of three inhibitory synaptically coupled elements, the phenomenon of sequential synchronous dynamics is observed. We study the synchronization phenomena in the chain of nonidentical neurons at different oscillatory behavior coupled with electrical and chemical synapses. Various regimes of phase synchronization are observed: (i) Synchronous regular and chaotic spiking; (ii) synchronous regular and chaotic bursting; and (iii) synchronous regular and chaotic bursting with different numbers of spikes inside the bursts. We detect and study the effect of collective synchronous burst generation due to the cluster formation and the oscillatory death.
Carrier synchronization for STBC OFDM systems
Institute of Scientific and Technical Information of China (English)
Cai Jueping; Song Wentao; Li Zan; Ge Jianhua
2005-01-01
All-digital carrier synchronization strategies and algorithms for space-time block coding (STBC) orthogonal frequency division multiplexing (OFDM) are proposed in this paper. In our scheme, the continuous pilots (CP) are saved, and the complexity of carrier synchronization is reduced significantly by dividing the process into three steps. The coarse carrier synchronization and the fine carrier synchronization algorithms are investigated and analyzed in detail. Simulations show that the carrier can be locked into tracking mode quickly, and the residual frequency error satisfies the system requirement in both stationary and mobile environments.
Global Synchronization of General Delayed Dynamical Networks
Institute of Scientific and Technical Information of China (English)
LI Zhi
2007-01-01
Global synchronization of general delayed dynamical networks with linear coupling are investigated. A sufficient condition for the global synchronization is obtained by using the linear matrix inequality and introducing a reference state. This condition is simply given based on the maximum nonzero eigenvalue of the network coupling matrix. Moreover, we show how to construct the coupling matrix to guarantee global synchronization of network,which is very convenient to use. A two-dimension system with delay as a dynamical node in network with global coupling is finally presented to verify the theoretical results of the proposed global synchronization scheme.
Synchronization Techniques for Chaotic Communication Systems
Jovic, Branislav
2011-01-01
Since the early 1990s, when synchronization of chaotic communication systems became a popular research subject, a vast number of scientific papers have been published. However, most of today's books on chaotic communication systems deal exclusively with the systems where perfect synchronization is assumed, an assumption which separates theoretical from practical, real world, systems. This book is the first of its kind dealing exclusively with the synchronization techniques for chaotic communication systems. It describes a number of novel robust synchronization techniques, which there is a lack
Generalized Synchronization of Diverse Structure Chaotic Systems
Institute of Scientific and Technical Information of China (English)
KADIR Abdurahman; WANG Xing-Yuan; ZHAO Yu-Zhang
2011-01-01
@@ Generalized synchronization between two diverse structures of chaotic systems possesses significance in the research of synchronization.We propose an approach based on the Lyapunov stability theory to study it.This method can be used widely.Numerical examples are given to demonstrate the effectiveness of this approach.%Generalized synchronization between two diverse structures of chaotic systems possesses significance in the research of synchronization. We propose an approach based on the Lyapunov stability theory to study it. This method can be used widely. Numerical examples are given to demonstrate the effectiveness of this approach.
Fission Yeast Cell Cycle Synchronization Methods.
Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio
2016-01-01
Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.
Coupled lasers: phase versus chaos synchronization.
Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I
2013-10-15
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.
Synchronization of oscillators in complex networks
Indian Academy of Sciences (India)
Louis M Pecora
2008-06-01
Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore and compare three types of semirandom networks for their efficacy in synchronizing oscillators. It is shown that the simplest -cycle augmented by a few random edges or links are the most efficient network that will guarantee good synchronization.
Price synchronization in retailing: some empirical evidence
Directory of Open Access Journals (Sweden)
Marcelo Resende
2014-06-01
Full Text Available The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.
Identical Synchronous Criterion for a Coupling System
Institute of Scientific and Technical Information of China (English)
HUANGXiangao; ANOWei; LUOXinmin; ZHUFuchen
2004-01-01
A new identical synchronous criterion of a coupling system, which is the time average of the derivative of the Lyapunov function, is proposed to determine the synchronous occurrence of any coupling system. Three examples with linear or nonlinear feedback synchronous systems are introduced to test some synchronous parameters that are the conditional Lyapunov exponents, the time average of the derivative of the Lyapunov function,the mean square error of the synchronization. Having obtained the synchronous parameters with the change of the feedback gains, we discover that Pecora and Carroll's criterion and He and Vaidya's reduced criterion are only fit to determine the synchronization of the identical selfsynchronization system which is a special example in the coupling systems, and are not taken as the general identical synchronous criterion of any coupling system. However,no matter whether the largest conditional Lyapunov exponent or the derivative of the Lyapunov function is positive or negative, synchronization of the coupling systems will occur,as long as the average change ratio of the derivative of the Lyapunov function tends to zero.
Synchronization Analysis of the Supermarket Refrigeration System
DEFF Research Database (Denmark)
Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth
2009-01-01
is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...... taken as an indication of the existence of chaos. It is used in the paper as a measure of performance for the tendency of the system to synchronize, that is, the higher value of the maximum Lyapunov exponent the lower risk for synchronization....
Dynamic Camera Positioning and Reconfiguration for Multi-Camera Networks
Konda, Krishna Reddy
2015-01-01
The large availability of different types of cameras and lenses, together with the reduction in price of video sensors, has contributed to a widespread use of video surveillance systems, which have become a widely adopted tool to enforce security and safety, in detecting and preventing crimes and dangerous events. The possibility for personalization of such systems is generally very high, letting the user customize the sensing infrastructure, and deploying ad-hoc solutions based on the curren...
4D ANIMATION RECONSTRUCTION FROM MULTI-CAMERA COORDINATES TRANSFORMATION
Directory of Open Access Journals (Sweden)
J. P. Jhan
2016-06-01
Full Text Available Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australis© coded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.
Effective Calibration and Evaluation of Multi-Camera Robotic Head
Directory of Open Access Journals (Sweden)
Petra Kocmanova
2015-10-01
Full Text Available The paper deals with appropriate calibration of multispectral vision systems and evaluation of the calibration and data-fusion quality in real-world indoor and outdoor conditions. Checkerboard calibration pattern developed by our team for multispectral calibration of intrinsic and extrinsic parameters is described in detail. The circular object for multispectral fusion evaluation is described as well. The objects were used by our team for calibration and evaluation of advanced visual system of Orpheus-X3 robot that is taken as a demonstrator, but their use is much wider, and authors suggest to use them as testbed for visual measurement systems of mobile robots. To make the calibration easy and straightforward, the authors developed MultiSensCalib program in Matlab, containing all the described techniques. The software is provided as publicly available, including source code and testing images.
D Animation Reconstruction from Multi-Camera Coordinates Transformation
Jhan, J. P.; Rau, J. Y.; Chou, C. M.
2016-06-01
Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.
TENTACLE Multi-Camera Immersive Surveillance System Phase 2
2015-04-16
are overlaid onto the original image. All 6 vehicles are correctly detected, there is one false positive for the street light pole and the technique...recommended +/- 30 degrees of in-plane rotation. The match score is generated as the inverse of the False Acceptance Rate for a given match. A score of 0.99...a set of frames. The description indicates it’s a single high-res "google earth " style image. Files are in NITF (National Imagery Transmission
Stereo Calibration and Rectification for Omnidirectional Multi-camera Systems
Directory of Open Access Journals (Sweden)
Yanchang Wang
2012-10-01
Full Text Available Stereo vision has been studied for decades as a fundamental problem in the field of computer vision. In recent years, computer vision and image processing with a large field of view, especially using omnidirectional vision and panoramic images, has been receiving increasing attention. An important problem for stereo vision is calibration. Although various kinds of calibration methods for omnidirectional cameras are proposed, most of them are limited to calibrate catadioptric cameras or fish‐eye cameras and cannot be applied directly to multi‐camera systems. In this work, we propose an easy calibration method with closed‐form initialization and iterative optimization for omnidirectional multi‐camera systems. The method only requires image pairs of the 2D target plane in a few different views. A method based on the spherical camera model is also proposed for rectifying omnidirectional stereo pairs. Using real data captured by Ladybug3, we carry out some experiments, including stereo calibration, rectification and 3D reconstruction. Statistical analyses and comparisons of the experimental results are also presented. As the experimental results show, the calibration results are precise and the effect of rectification is promising.
The JET multi-camera soft X-ray diagnostic
Energy Technology Data Exchange (ETDEWEB)
Alper, B.; Blackler, K.; Dillon, S.F.; Edwards, A.W.; Gill, R.D.; Lyadina, E.; Mulligan, W.; Staunton-Lambert, S.A.B.; Thompson, D.G.; Wilson, D.J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking
1994-07-01
A new soft X-ray detector system has been constructed for the pumped divertor phase of JET which incorporates a number of enhancements over the previous system in both hardware and data acquisition. The hardware improvements include: six independent views of the plasma at one toroidal location (as opposed to two in the old system), spatial resolution improved from 7 cm to 3 cm, frequency response increased from 30 khz to 100 khz and improved toroidal mode resolution. These enhancements will allow the study of MHD activity in finer detail. The tomographic reconstruction of soft X-ray emissivities will be improved to include Fourier terms up to cos(5{theta}) compared with only cos(2{theta}) before. Through the implementation of a fast central acquisition and trigger system, data from a range of diagnostics will be available at high bandwidth to allow processing of plasma phenomena of far greater complexity than was possible before. (authors). 2 refs., 5 figs.
Han, C.; Udalski, A.; Gould, A.; Bozza, V.; Jung, Y. K.; Albrow, M. D.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Shin, I.-G.; KMTNet Collaboration; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration
2016-10-01
We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite the fact that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, and matter and velocity distributions, combined with information on the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass {0.72}-0.07+0.65 {M}{{J}} and it is orbiting a low-mass M-dwarf host with a projected separation {d}\\perp =0.73+/- 0.08 {{au}}. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.
Netzel, H; Moskalik, P
2015-01-01
We analyse the OGLE-IV photometry of the first overtone and double-mode RR Lyrae stars (RRc/RRd) in the two fields towards the Galactic bulge observed with high cadence. In 27 per cent of RRc stars we find additional non-radial mode, with characteristic period ratio, P x /P 1O \\in (0.6, 0.64). It strongly corroborates the conclusion arising from the analysis of space photometry of RRc stars, that this form of pulsation must be common. In the Petersen diagram the stars form three sequences. In 20 stars we find two or three close secondary modes simultaneously. The additional modes are clearly non-stationary. Their amplitude and/or phase vary in time. As a result, the patterns observed in the frequency spectra of these stars may be very complex. In some stars the additional modes split into doublets, triplets or appear as a more complex bands of increased power. Subharmonics of additional modes are detected in 20 per cent of stars. They also display a complex structure. Including our previous study of the OGLE-...
Han, C; Gould, A; Bozza, V; Jung, Y K; Albrow, M D; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Park, B -G; Shin, I -G; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M
2016-01-01
We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, matter and velocity distributions combined with the information of the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass $0.72_{-0.07}^{+0.65}\\ M_{\\rm J}$ and it is orbiting a low-mass M-dwarf host with a projected separation $d_\\perp=0.73 \\pm 0.08$ AU. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.
Institute of Scientific and Technical Information of China (English)
Chun-Fu Li; Jue-Bang Yu
2008-01-01
In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In this part, the structure of the projective synchronization method is presented. And the condition of projection synchronization is theoretically analyzed when the synchronization subsystem is linear.
Development of a synchronous subset of AADL
DEFF Research Database (Denmark)
Filali, Mamoun; Lawall, Julia
2010-01-01
We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a synchronous way. In this paper, we formalize this interpretation and study...
Robust synchronization of uncertain chaotic systems
Institute of Scientific and Technical Information of China (English)
Li Fang; Hu Ai-Hua; Xu Zheng-Yuan
2006-01-01
This paper investigates robust unified (lag, anticipated, and complete) synchronization of two coupled chaotic systems. By introducing the concepts of positive definite symmetrical matrix and Riccati inequality and the theory of robust stability, several criteria on robust synchronization are established. Extensive numerical simulations are also used to confirm the results.
Standardization of Inter-Destination Media Synchronization
Stokking, H.M.; Brandenburg, R. van; Boronat, F.; Montagud, M.
2012-01-01
Inter-Destination Media Synchronization (IDMS) is a process in which various receivers of the same content are synchronized in their playout. Standardization of an IDMS solution helps to enable interoperability between receivers manufactured by different companies. This paper describes the efforts b
Towards Emergent Energy Synchronization using Agents
Pournaras, E.; Warnier, M.E.; Brazier, F.M.T.
2010-01-01
Synchronization of energy consumption is a key determinant for the stabilization of smart energy grids. This paper proposes software agents that locally synchronize the energy usage of appliances to minimize the oscillations in global energy consumption. Agents can manage demand-side devices with pe
Fitness for synchronization of network motifs
DEFF Research Database (Denmark)
Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.
2004-01-01
We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...
Generalized synchronization of two different chaotic systems
Institute of Scientific and Technical Information of China (English)
Li Guo-Hui
2007-01-01
In this paper, generalized synchronization of two different chaotic dynamical systems is investigated. An active control is adopted to construct a response system which synchronizes with a given drive system for a function relation.Based on rigorous analysis, the error system is asymptotically stable at the equilibrium. Numerical simulations illustrate the effectiveness of the proposed theory.
Synchronization and emergence in complex systems
Indian Academy of Sciences (India)
Fatihcan M Atay
2011-11-01
We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for the emergence, namely non-diffusive coupling and time delays. In this way, simple units can synchronize to display complex dynamics, or conversely, simple dynamics may arise from complex constituents.
Development of Network Synchronization Predicts Language Abilities.
Doesburg, Sam M; Tingling, Keriann; MacDonald, Matt J; Pang, Elizabeth W
2016-01-01
Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities.
Complete synchronization and generalized synchronization of one-way coupled time-delay systems.
Zhan, Meng; Wang, Xingang; Gong, Xiaofeng; Wei, G W; Lai, C-H
2003-09-01
The complete synchronization and generalized synchronization (GS) of one-way coupled time-delay systems are studied. We find that GS can be achieved by a single scalar signal, and its synchronization threshold for different delay times shows the parameter resonance effect, i.e., we can obtain stable synchronization at a smaller coupling if the delay time of the driven system is chosen such that it is in resonance with the driving system. Near chaos synchronization, the desynchronization dynamics displays periodic bursts with the period equal to the delay time of the driven system. These features can be easily applied to the recovery of time-delay systems.
Synchronization and anti-synchronization of chaotic systems: A differential and algebraic approach
Energy Technology Data Exchange (ETDEWEB)
Martinez-Guerra, Rafael [Departamento de Control Automatico, Cinvestav-IPN A. P. 14-740, Av. IPN 2508, 07360 Mexico, D.F. (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx; Pasaye, Jose Juan Rincon [Departamento de Control Automatico, Cinvestav-IPN A. P. 14-740, Av. IPN 2508, 07360 Mexico, D.F. (Mexico)], E-mail: jrincon@ctrl.cinvestav.mx
2009-10-30
Chaotic systems synchronization and anti-synchronization problems are tackled by means of differential and algebraic techniques for nonlinear systems. An algebraic observer is proposed for systems satisfying an algebraic observability condition. This observer can be used as a slave system whose states are synchronized with the master (chaotic) system. This approach has the advantages of being independent of the chaotic nature of the master system, it uses a reduced set of measurable signal from the master system and it also solves the anti-synchronization problem as a straightforward extension of the synchronization one. A Colpitts oscillator is given to illustrate the effectiveness of the suggested approach.
Synchronization of noisy systems by stochastic signals
Energy Technology Data Exchange (ETDEWEB)
Neiman, A.; Schimansky-Geier, L.; Moss, F. [Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121 (United States); Schimansky-Geier, L. [Institute of Physics, Humboldt University at Berlin, Invalidenstrasse 110, D-10115 Berlin (Germany); Shulgin, B.; Collins, J.J. [Center for BioDynamics and Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 (United States)
1999-07-01
We study, in terms of synchronization, the {ital nonlinear response} of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level{emdash}this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train. {copyright} {ital 1999} {ital The American Physical Society}
The transition to chaotic phase synchronization
DEFF Research Database (Denmark)
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-01-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system......, this paper describes how these saddle-node bifurcations arise and how their characteristic cyclic organisation develops. We identify the cycles that are involved in the various saddle-node bifurcations and describe how the formation of multi-layered resonance cycles in the synchronization domain is related...... varying arterial blood pressure. The paper finally discusses how an alternative transition to chaotic phase synchronization may occur in the mutual synchronization of two chaotically oscillating period-doubling systems....
Time Synchronization for Mobile Underwater Sensor Networks
Directory of Open Access Journals (Sweden)
Ying Guo
2013-01-01
Full Text Available Time synchronization is very crucial for the implementation of energy constricted underwater wireless sensor networks (UWSN. The purpose of this paper is to present a time synchronization algorithm which is suitable to UWSN. Although several time synchronization protocols have been developed, most of them tend to break down when implemented on mobile underwater sensor networks. In this paper, we analyze the effect of node mobility, and propose a Mobile Counteracted Time Synchronization approach, called “Mc-Sync”, which is a novel time synchronization scheme for mobile underwater acoustic sensor networks. It makes use of two mobile reference nodes to counteract the effect of node mobility. We also analyze and design the optimized trajectories of the two mobile reference nodes in underwater environment. We show through analysis and simulation that Mc-Sync provides much better performance than existing schemes.
A New Design of Clock Synchronization Algorithm
Directory of Open Access Journals (Sweden)
Jingmeng Liu
2014-05-01
Full Text Available The introduction of Ethernet makes the distributed network system more flexible and efficient, but it also makes nodes which are far apart from each other unable to work in the same time basis due to the long distance. This is not allowed for the high performance requirements of the system synchronization, such as high-precision multiaxis machining system. This paper presents a high-precision network clock synchronization algorithm, namely, optimal PI clock servo, which imposes a PI controller in order to compensate for the clock drift of each network node. Then a simulation platform established by the toolbox TrueTime is used to verify the stability of the algorithm and compare it with the clock synchronization algorithm of EtherCAT. The results show that the new synchronization algorithm has higher synchronization precision and faster convergence rate.
Communicating via robust synchronization of chaotic lasers
Energy Technology Data Exchange (ETDEWEB)
Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx
2009-10-15
In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.
Evolution of non-synchronized binary systems
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M⊙ star and a 6 M⊙ star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.
Evolution of non-synchronized binary systems
Institute of Scientific and Technical Information of China (English)
黄润乾; 曾艺蓉
2000-01-01
A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M star and a 6 M star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.
Synchronous Lagrangian variational principles in General Relativity
Cremaschini, Claudio
2016-01-01
The problem of formulating synchronous variational principles in the context of General Relativity is discussed. Based on the analogy with classical relativistic particle dynamics, the existence of variational principles is pointed out in relativistic classical field theory which are either asynchronous or synchronous. The historical Einstein-Hilbert and Palatini variational formulations are found to belong to the first category. Nevertheless, it is shown that an alternative route exists which permits one to cast these principles in terms of equivalent synchronous Lagrangian variational formulations. The advantage is twofold. First, synchronous approaches allow one to overcome the lack of gauge symmetry of the asynchronous principles. Second, the property of manifest covariance of the theory is also restored at all levels, including the symbolic Euler-Lagrange equations, with the variational Lagrangian density being now identified with a $4-$scalar. As an application, a joint synchronous variational principle...
Chaos synchronization based on intermittent state observer
Institute of Scientific and Technical Information of China (English)
Li Guo-Hui; Zhou Shi-Ping; Xu De-Ming
2004-01-01
This paper describes the method of synchronizing slave to the master trajectory using an intermittent state observer by constructing a synchronizer which drives the response system globally tracing the driving system asymptotically. It has been shown from the theory of synchronization error-analysis that a satisfactory result of chaos synchronization is expected under an appropriate intermittent period and state observer. Compared with continuous control method,the proposed intermittent method can target the desired orbit more efficiently. The application of the method is demonstrated on the hyperchaotic Rossler systems. Numerical simulations show that the length of the synchronization interval rs is of crucial importance for our scheme, and the method is robust with respect to parameter mismatch.
Variance based OFDM frame synchronization
Directory of Open Access Journals (Sweden)
Z. Fedra
2012-04-01
Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.
Global Patterns of Human Synchronization
Morales, Alfredo J; Benito, Rosa M; Bar-Yam, Yaneer
2016-01-01
Social media are transforming global communication and coordination and provide unprecedented opportunities for studying socio-technical domains. Here we study global dynamical patterns of communication on Twitter across many scales. Underlying the observed patterns is both the diurnal rotation of the earth, day and night, and the synchrony required for contingency of actions between individuals. We find that urban areas show a cyclic contraction and expansion that resembles heartbeats linked to social rather than natural cycles. Different urban areas have characteristic signatures of daily collective activities. We show that the differences detected are consistent with a new emergent global synchrony that couples behavior in distant regions across the world. Although local synchrony is the major force that shapes the collective behavior in cities, a larger-scale synchronization is beginning to occur.
Synchronization of nonautonomous dynamical systems
Directory of Open Access Journals (Sweden)
Peter E. Kloeden
2003-04-01
Full Text Available The synchronization of two nonautonomous dynamical systems is considered, where the systems are described in terms of a skew-product formalism, i. e., in which an inputed autonomous driving system governs the evolution of the vector field of a differential equation with the passage of time. It is shown that the coupled trajectories converge to each other as time increases for sufficiently large coupling coefficient and also that the component sets of the pullback attractor of the coupled system converges upper semi continuously as the coupling parameter increases to the diagonal of the product of the corresponding component sets of the pullback attractor of a system generated by the average of the vector fields of the original uncoupled systems.
Synchronization of indirectly coupled Lorenz oscillators: An experimental study
Indian Academy of Sciences (India)
Amit Sharma; Manish Dev Shrimali
2011-11-01
The dynamics of indirectly coupled Lorenz circuits is investigated experimentally. The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev. E 81, 046216 (2010) is veriﬁed by physical experiments with electronic circuits. Two chaotic systems coupled through a common dynamic environment shows the verity of synchronization behaviours such as anti-phase synchronization, in-phase synchronization, identical synchronization, anti-synchronization, etc.
Synchronization of Estrus in Cattle: A Review
Directory of Open Access Journals (Sweden)
R. Islam
2011-06-01
Full Text Available Numbers of estrus synchronization programmes are available in cattle based on the use of various hormones like progesterone, prostaglandin F2a and their various combinations with other hormones like estrogen and Gonadotrophin Releasing hormone (GnRH. Selection of appropriate estrus synchronization protocol should be made on the basis of management capabilities and expectations of the farmer. Synchronization of oestrus can be accomplished with the injection of prostaglandin F2a alone, but it needs proper detection of the ovarian status of the cows as prostaglandin F2a is active in only functional corpus luteum in between 8 to 17 days of estrous cycle. Progesterone may reduce fertility up to 14 percent, but short time progesterone exposure (less than 14 days is beneficial. Addition of GnRH in the Progesterone or Prostaglandin based synchronization programme is helpful for more synchrony in estrus as GnRH may be helpful to synchronize the oestrous cycle in delayed pubertal heifers and post partum cows (Post partum anoestrum and further a single, timed artificial insemination is possible with this method. New methods of synchronizing estrus in which the GnRH-PG protocol is preceded by progesterone treatment offer effective synchronization of estrus with high fertility. [Vet. World 2011; 4(3.000: 136-141
Periodic and aperiodic synchronization in skilled action
Directory of Open Access Journals (Sweden)
Fred eCummins
2011-12-01
Full Text Available Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import.
Macronuclear Cytology of Synchronized Tetrahymena pyriformis
Energy Technology Data Exchange (ETDEWEB)
Cameron, I. L.; Padilla, G. M.; Miller, Jr., O. L.
1966-05-01
Elliott, Kennedy and Bak ('62) and Elliott ('63) followed fine structural changes in macronuclei of Tetrahymena pyriformis which were synchronized by the heat shock method of Scherbaum and Zeuthen ('54). Using Elliott's morphological descriptions as a basis, we designed our investigations with two main objectives: First, to again study the. morphological changes which occur in the macronucleus of Tetrahymena synchronized by the heat shock method. The second objective was to compare these observations with Tetrahymena synchronized by an alternate method recently reported by Padilla and Cameron ('64). Therefore, we were able to compare the results from two different synchronization methods and to contrast these findings with the macronuclear cytology of Tetrahymena taken from a logarithmically growing culture. Comparison of cells treated in these three different ways enables us to evaluate the two different synchronization methods and to gain more information on the structural changes taking place in the macronucleus of Tetrahymena as a function of the cell cycle. Our observations were confined primarily to nucleolar morphology. The results indicate that cells synchronized by the Padilla and Cameron method more closely resemble logarithmically growing Tetrahymena in the macronuclear structure than do cells obtained by the Scherbaum and·Zeuthen synchronization method. .
Bursting synchronization in clustered neuronal networks
Institute of Scientific and Technical Information of China (English)
Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le
2013-01-01
Neuronal networks in the brain exhibit the modular (clustered) property,i.e.,they are composed of certain subnetworks with differential internal and external connectivity.We investigate bursting synchronization in a clustered neuronal network.A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons,while on the spiking time scale,they behave asynchronously.This synchronization transition can be induced by the variations of inter-and intracoupling strengths,as well as the probability of random links between different subnetworks.Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain,we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network.Simulation results show a frequency locking tongue in the driving parameter plane,where bursting synchronization is maintained,even in the presence of external driving.Hence,effective synchronization suppression can be realized with the driving parameters outside the frequency locking region.
Institute of Scientific and Technical Information of China (English)
WANG Jian; YANG Xun; LI Dao-ben
2009-01-01
This article proposes a time/frequency synchronization algorithm in the multiple input multiple output (MIMO) systems, in which the perfect complete generalized complementary orthogonal loosely synchronous code groups are used as the synchronization sequence. The synchronization algorithm is divided into four stages: 1) synchronization in time domain by signal autocorrelation; 2) synchronization in frequency domain by fast Fourier transform (FFT); 3) multipath dissociation using coherent detection and fine time synchronization; 4) fine frequency offset estimation by phase rotation. As per the perfect complete generalized complementary orthogonal loosely synchronous code groups, the cross-correlation and out-of-phase auto-correlation for any relative shift between any two codes is always zero. This ideal property makes the time/frequency synchronization algorithm simple and efficient. The simulation results show that even in the multipath fast fading channel with low signal noise ratio (SNR), the MIMO system can get synchronized both in the time domain and frequency domain with high stability and reliability.
Suresh, R.; Senthilkumar, D. V.; Lakshmanan, M.; Kurths, J.
2012-07-01
We report the nature of transitions from the nonsynchronous to a complete synchronization (CS) state in arrays of time-delay systems, where the systems are coupled with instantaneous diffusive coupling. We demonstrate that the transition to CS occurs distinctly for different coupling configurations. In particular, for unidirectional coupling, locally (microscopically) synchronization transition occurs in a very narrow range of coupling strength but for a global one (macroscopically) it occurs sequentially in a broad range of coupling strength preceded by an intermittent synchronization. On the other hand, in the case of mutual coupling, a very large value of coupling strength is required for local synchronization and, consequently, all the local subsystems synchronize immediately for the same value of the coupling strength and, hence, globally, synchronization also occurs in a narrow range of the coupling strength. In the transition regime, we observe a type of synchronization transition where long intervals of high-quality synchronization which are interrupted at irregular times by intermittent chaotic bursts simultaneously in all the systems and which we designate as global intermittent synchronization. We also relate our synchronization transition results to the above specific types using unstable periodic orbit theory. The above studies are carried out in a well-known piecewise linear time-delay system.
Physiological Synchronization in a Vigilance Dual Task.
Guastello, Stephen J
2016-01-01
The synchronization of autonomic arousal levels and other physio-logical responses between people is a potentially important component of work team performance, client-therapist relationships, and other types of human interaction. This study addressed several problems: What statistical models are viable for identifying synchronization for loosely coupled human systems? How is the level of synchronization related to psychosocial variables such as empathy, subjective ratings of workload, and actual performance? Participants were 70 undergraduates who worked in pairs on a vigilance dual task in which they watched a virtual reality security camera, rang a bell when they saw the target intruder, and completed a jig-saw puzzle. Event rates either increased or decreased during the 90 min work period. The average R2 values for each person were .66, .66, .62, and .53 for the linear autoregressive model, linear autoregressive model with a synchronization component, the nonlinear autoregressive model, and the nonlinear autoregressive model with a synchronization component, respectively. All models were more accurate at a lag of 20 sec compared to 50 sec or customized lag lengths. Although the linear models were more accurate overall, the nonlinear synchronization parameters were more often related to psychological variables and performance. In particular, greater synchronization was observed with the nonlinear model when the target event rate increased, compared to when it decreased, which was expected from the general theory of synchronization. Nonlinear models were also more effective for uncovering inhibitory or dampening relationships between the co-workers as well as mutually excitatory relationships. Future research should explore the comparative model results for tasks that induce higher levels of synchronization and involve different types of internal group coordination.
Synchronization of Boolean Networks with Different Update Schemes.
Zhang, Hao; Wang, Xingyuan; Lin, Xiaohui
2014-01-01
In this paper, the synchronizations of Boolean networks with different update schemes (synchronized Boolean networks and asynchronous Boolean networks) are investigated. All nodes in Boolean network are represented in terms of semi-tensor product. First, we give the concept of inner synchronization and observe that all nodes in a Boolean network are synchronized with each other. Second, we investigate the outer synchronization between a driving Boolean network and a corresponding response Boolean network. We provide not only the concept of traditional complete synchronization, but also the anti-synchronization and get the anti-synchronization in simulation. Third, we extend the outer synchronization to asynchronous Boolean network and get the complete synchronization between an asynchronous Boolean network and a response Boolean network. Consequently, theorems for synchronization of Boolean networks and asynchronous Boolean networks are derived. Examples are provided to show the correctness of our theorems.
Acoustophoretic Synchronization of Mammalian Cells in Microchannels
DEFF Research Database (Denmark)
Thévoz, P.; Adams, J.D.; Shea, H.
2010-01-01
We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...... to selectively purify target cells of desired phase from an asynchronous mixture based on cell cycle-dependent fluctuations in size. We show that ultrasonic separation allows for gentle, scalable, and label-free synchronization with high G1 phase synchrony (84%) and throughput (3 × 106 cells/h per microchannel)....
Synchronization Phenomena and Epoch Filter of Electroencephalogram
Matani, Ayumu
Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.
Analysis of Synchronization for Coupled Hybrid Systems
DEFF Research Database (Denmark)
Li, Zheng; Wisniewski, Rafal
2006-01-01
In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...
Fuzzy stability and synchronization of hyperchaos systems
Energy Technology Data Exchange (ETDEWEB)
Wang Junwei [School of Mathematics and Computational Science, Zhongshan University Guangzhou 510275 (China)], E-mail: wangjunweilj@yahoo.com.cn; Xiong Xiaohua [School of Mathematics and Computational Science, Zhongshan University Guangzhou 510275 (China); Department of Computer Science, Jiangxi Normal University, Nanchang 330027 (China); Zhao Meichun [School of Mathematics and Computational Science, Zhongshan University Guangzhou 510275 (China); Department of Mathematics, Guangdong University of Finance, Gunangzhou 510521 (China); Zhang Yanbin [School of Mathematics and Computational Science, Zhongshan University Guangzhou 510275 (China)
2008-03-15
This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller.
Synchronization of Time-Continuous Chaotic Oscillators
DEFF Research Database (Denmark)
Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik
2003-01-01
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...... the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled Rossler oscillators...
Synchronization System for Next Generation Light Sources
Energy Technology Data Exchange (ETDEWEB)
Zavriyev, Anton
2014-03-27
An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.
Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks
2013-01-01
This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...
Senthilkumar, D V; Lakshmanan, M
2005-01-01
The existence of anticipatory, complete, and lag synchronization in a single system having two different time delays, that is, feedback delay tau1 and coupling delay tau2, is identified. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay tau2 with a suitable stability condition is discussed. In particular, it is shown that the stability condition is independent of the delay times tau1 and tau2. Consequently, for a fixed set of parameters, all the three types of synchronizations can be realized. Further, the emergence of exact anticipatory, complete, or lag synchronization from the desynchronized state via approximate synchronization, when one of the system parameters (b2) is varied, is characterized by a minimum of the similarity function and the transition from on-off intermittency via periodic structure in the laminar phase distribution.
Synchronous correlation matrices and Connes’ embedding conjecture
Energy Technology Data Exchange (ETDEWEB)
Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)
2016-01-15
In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.
Bisection technique for designing synchronous parallel algorithms
Institute of Scientific and Technical Information of China (English)
王能超
1995-01-01
A basic technique for designing synchronous parallel algorithms, the so-called bisection technique, is proposed. The basic pattern of designing parallel algorithms is described. The relationship between the designing idea and I Ching (principles of change) is discussed.
Synchronized flow in oversaturated city traffic.
Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael
2013-11-01
Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.
Repeat-PPM Super-Symbol Synchronization
Connelly, J.
2016-11-01
To attain a wider range of data rates in pulse position modulation (PPM) schemes with constrained pulse durations, the sender can repeat a PPM symbol multiple times, forming a super-symbol. In addition to the slot and symbol synchronization typically required for PPM, the receiver must also properly align the noisy super-symbols. We present a low-complexity approximation of the maximum-likelihood method for performing super-symbol synchronization without use of synchronization sequences. We provide simulation results demonstrating performance advantage when PPM symbols are spread by a pseudo-noise sequence, as opposed to simply repeating. Additionally, the results suggest that this super-symbol synchronization technique requires signal levels below those required for reliable communication. This validates that the PPM spreading approach proposed to CCSDS can work properly as part of the overall scheme.
Minimal model for spontaneous quantum synchronization
Benedetti, Claudia; Galve, Fernando; Mandarino, Antonio; Paris, Matteo G. A.; Zambrini, Roberta
2016-11-01
We show the emergence of spontaneous synchronization between a pair of detuned quantum oscillators within a harmonic network. Our model does not involve any nonlinearity, driving, or external dissipation, thus providing the simplest scenario for the occurrence of local coherent dynamics in an extended harmonic system. A sufficient condition for synchronization is established by building upon the Rayleigh normal mode approach to vibrational systems. Our results show that mechanisms favoring synchronization, even between oscillators that are not directly coupled to each other, are transient energy depletion and crosstalk. We also address the possible buildup of quantum correlations during synchronization and show that indeed entanglement may be generated in detuned systems, starting from uncorrelated states and without any direct coupling between the two oscillators.
Synchronization of impulsively coupled complex networks
Institute of Scientific and Technical Information of China (English)
Sun Wen; Chen Zhong; Chen Shi-Hua
2012-01-01
We investigate the synchronization of complex networks,which are impulsively coupled only at discrete instants.Based on the comparison theory of impulsive differential systems,a distributed impulsive control scheme is proposed for complex dynamical networks to achieve synchronization.The proposed scheme not only takes into account the influence of all nodes to network synchronization,which depends on the weight of each node in the network,but also provides us with a flexible method to select the synchronized state of the network.In addition,it is unnecessary for the impulsive coupling matrix to be symmetrical.Finally,the proposed control scheme is applied to a chaotic Lorenz network and Chua's circuit network.Numerical simulations are used to illustrate the validity of this control scheme.
Synchronization of the CMS Cathode Strip Chambers
Raknessa, G; Wang, D
2007-01-01
The synchronization of the trigger and data acquisition systems for the Cathode Strip Chambers (CSCs) in the Compact Muon Solenoid (CMS) detector at CERN is described. The CSC trigger system is designed to trigger CMS on muons with high efficiency (~99% per chamber) and is able to accurately identify its 25ns proton bunch crossing. To date, asynchronous cosmic ray data have been used to define the protocol and to refine timing algorithms, allowing synchronization to be realized within and between chambers to within ±10 ns. Final synchronization of the CSCs requires timing parameters to be accurate to 2 ns. This goal will be readily achieved from the cosmic ray baseline using data taken with the synchronous beam structure of the Large Hadron Collider.
Synchronized Data Aggregation for Wireless Sensor Network
DEFF Research Database (Denmark)
Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee
2014-01-01
Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...... mechanism. It provides network-wide time synchronization for sensor network. In the initial stage algorithm established the hierarchical structure in the network and then perform the pair - wise synchronization. SDA aggregate data with a global time scale throughout the network. The aggregated packets...... are scheduled using TDMA as the MAC layer protocol. Simulation results show that, SDA gives promising result of energy efficiency and delay as compared with state-of-the-art solutions....
Synchronization of Arbitrarily Switched Boolean Networks.
Chen, Hongwei; Liang, Jinling; Huang, Tingwen; Cao, Jinde
2017-03-01
This paper investigates the complete synchronization problem for the drive-response switched Boolean networks (SBNs) under arbitrary switching signals, where the switching signals of the response SBN follow those generated by the drive SBN at each time instant. First, the definition of complete synchronization is introduced for the drive-response SBNs under arbitrary switching signals. Second, the concept of switching reachable set starting from a given initial state set is put forward. Based on it, a necessary and sufficient condition is derived for the complete synchronization of the drive-response SBNs. Last, we give a simple algebraic expression for the switching reachable set in a given number of time steps, and two computable algebraic criteria are obtained for the complete synchronization of the SBNs. A biological example is given to demonstrate the effectiveness of the obtained main results.
An Optimization Synchronization Algorithm for TDDM Signal
Directory of Open Access Journals (Sweden)
Fang Liu
2016-01-01
Full Text Available The time division data modulation (TDDM mechanism is recommended to improve the communications quality and enhance the antijamming capability of the spread spectrum communication system, which will be used in the next generation global navigation satellite (GNSS systems. According to the principle and the characteristics of TDDM signal, an optimization synchronization algorithm is proposed. In the new algorithm, the synchronization accuracy and environmental adaptability have been improved with the special local sequence structure, the multicorrelation processing, and the proportion threshold mechanism. Thus, the inversion estimation formula was established. The simulation results demonstrate that the new algorithm can eliminate the illegibility threat in the synchronization process and can adapt to a lower SNR. In addition, this algorithm is better than the traditional algorithms in terms of synchronization accuracy and adaptability.
High Efficiency Synchronous Rectification in Spacecraft
Krauhamer, S.; Das, R.; Vorperian, V.; White, J.; Bennett, J.; Rogers, D.
1993-01-01
This paper examines the implementaion of MOSFETs as synchronous rectifiers which results in a substantial improvement in power processing efficency and therefore may result in significant reduction of spacecraft mass and volum for the same payload.
Noise-induced synchronization for phase turbulence
Sakaguchi, H.
2003-01-01
Phase turbulence is suppressed by applying common noise additively to the Kuramoto-Sivashinsky type equation, and the noise-induced phase synchronization is realized. The noise strength necessary for the suppression of phase turbulence is evaluated theoretically.
Chaos synchronization of a fractional nonautonomous system
Directory of Open Access Journals (Sweden)
Hammouch Zakia
2014-01-01
Full Text Available In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL analogy we synchronize the same system. The numerical results demonstrate the efiectiveness of the proposed methods
Synchronization of coupled chaotic dynamics on networks
Indian Academy of Sciences (India)
R E Amritkar; Sarika Jalan
2005-03-01
We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters and evolving independently. Secondly, two different ways of cluster formation can be identified, namely self-organized clusters which have mostly intra-cluster couplings and driven clusters which have mostly inter-cluster couplings.
LETTER: Synchronization model for stock market asymmetry
Donangelo, Raul; Jensen, Mogens H.; Simonsen, Ingve; Sneppen, Kim
2006-11-01
The waiting time needed for a stock market index to undergo a given percentage change in its value is found to have an up down asymmetry, which, surprisingly, is not observed for the individual stocks composing that index. To explain this, we introduce a market model consisting of randomly fluctuating stocks that occasionally synchronize their short term draw-downs. These synchronous events are parametrized by a 'fear factor', that reflects the occurrence of dramatic external events which affect the financial market.
Stochastic synchronization in finite size spiking networks
Doiron, Brent; Rinzel, John; Reyes, Alex
2006-09-01
We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.
Empirical synchronized flow in oversaturated city traffic
Kerner, Boris S.; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L.; Rehborn, Hubert; Schreckenberg, Michael
2014-09-01
Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.
SYNCHRONIZATION RECOVERY SCHEME IN WATERMARKING DETECTION
Institute of Scientific and Technical Information of China (English)
Xiao Weiwei; Zhang Li; Ji Zhen; Zhang Jihong
2003-01-01
Most proposed digital watermarking algorithms are sensitive to geometric attacksbecause the synchronization information of watermark embedding and detection is destroyed. Inthis letter a novel synchronization recovery scheme based on image normalization is proposed. Thepresented scheme does not require the original image and can be applied to various watermarksystems. A wavelet-based watermarking scheme is proposed as an example and experimentalresults show that it is robust to geometric attacks.
Stability of Synchronized Motion in Complex Networks
Pereira, Tiago
2011-01-01
We give a succinct and self-contained description of the synchronized motion on networks of mutually coupled oscillators. Usually, the stability criterion for the stability of synchronized motion is obtained in terms of Lyapunov exponents. We consider the fully diffusive case which is amenable to treatment in terms of uniform contractions. This approach provides a rigorous, yet clear and concise, way to the important results.
Analysis of FDDI synchronous traffic delays
Johnson, Marjory J.
1988-01-01
The Fiber Distributed Data Interface (FDDI) high-speed token-ring protocol provides support for two classes of service: synchronous, to support applications which require deterministic access to the channel, and asynchronous, to support applications which do not have such stringent response-time requirements. The purpose of this paper is to determine how to set ring parameters to support synchronous traffic most efficiently. Both theoretical results and results obtained from a simulation study are presented.
Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks
DEFF Research Database (Denmark)
Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio
2015-01-01
Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant reduct...
New Approach to Cluster Synchronization in Complex Dynamical Networks
Institute of Scientific and Technical Information of China (English)
LU Xin-Biao; QIN Bu-Zhi; LU Xin-Yu
2009-01-01
In this paper, a distributed control strategy is proposed to make a complex dynamical network achieve cluster synchronization, which means that nodes in the same group achieve the same synchronization state, while nodes in different groups achieve different synchronization states. The local and global stability of the cluster synchronization state are analyzed. Moreover, simulation results verify the effectiveness of the new approach
Anti-synchronization Between Lorenz and Liu Hyperchaotic Systems
Institute of Scientific and Technical Information of China (English)
ZHENG Qiang; ZHANG Xiao-Ping; REN Zhong-Zhou
2008-01-01
Anti-synchronization between different hyperchaotic systems is presented using Lorenz and Liu systems.When the parameters of two systems are known,one can use active synchronization.When the parameters are unknown or uncertain,the adaptive synchronization is applied.The simulation results verify the effectiveness of the proposed two schemes for anti-synchronization between different hyperehaotic systems.
Synchronization of coupled large-scale Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Li, Fangfei, E-mail: li-fangfei@163.com [Department of Mathematics, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, Shanghai 200237 (China)
2014-03-15
This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.
Synchronization of coupled large-scale Boolean networks
Li, Fangfei
2014-03-01
This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.
New synchronization method for Plasmodium falciparum
Directory of Open Access Journals (Sweden)
Mwangi Jonathan M
2010-06-01
Full Text Available Abstract Background Plasmodium falciparum is usually asynchronous during in vitro culture. Although various synchronization methods are available, they are not able to narrow the range of ages of parasites. A newly developed method is described that allows synchronization of parasites to produce cultures with an age range as low as 30 minutes. Methods Trophozoites and schizonts are enriched using Plasmion. The enriched late stage parasites are immobilized as a monolayer onto plastic Petri dishes using concanavalin A. Uninfected erythrocytes are placed onto the monolayer for a limited time period, during which time schizonts on the monolayer rupture and the released merozoites invade the fresh erythrocytes. The overlay is then taken off into a culture flask, resulting in a highly synchronized population of parasites. Results Plasmion treatment results in a 10- to 13-fold enrichment of late stage parasites. The monolayer method results in highly synchronized cultures of parasites where invasion has occurred within a very limited time window, which can be as low as 30 minutes. The method is simple, requiring no specialized equipment and relatively cheap reagents. Conclusions The new method for parasite synchronization results in highly synchronized populations of parasites, which will be useful for studies of the parasite asexual cell cycle.
The Multi-source Synchronization System of Power System
Directory of Open Access Journals (Sweden)
Gangjun Gong
2013-09-01
Full Text Available Since the power system frequency and time synchronization network are networking alone, which brings a lot of system synchronization, reliability and security issues, this article will merge frequency synchronization network and time synchronization network into one to set up the synchronization system of power grid. In this paper, we present a new generation of power synchronization network program with BDS and GPS timing as the cure. Meanwhile, it presents a three-level power system synchronized demonstration network which is consist of provincial power grid, municipal power grid and substations. And Iin the end, we conduct some research on related technologies of this program.
Rhythm Synchronization of Coupled Neurons with Temporal Coding Scheme
Institute of Scientific and Technical Information of China (English)
SHI Xia; LU Qi-Shao
2007-01-01
Encoding information by firing patterns is one of the basic neural functions, and synchronization is important collective behaviour of a group of coupled neurons. Taking account of two schemes for encoding information (that is, rate coding and temporal coding), rhythm synchronization of coupled neurons is studied. There are two types of rhythm synchronization of neurons: spike and burst synchronizations. Firstly, it is shown that the spike synchronization is equivalent to the phase synchronization for coupled neurons. Secondly, the similarity function of the slow variables of neurons, which have relevant to the bursting process, is proposed to judge the burst synchronization. It is also found that the burst synchronization can be achieved more easily than the spike synchronization, whatever the firing patterns of the neurons are. Hence the temporal encoding scheme, which is closely related to both the spike and burst synchronizations, is more comprehensive than the rate coding scheme in essence.
Quantum synchronization in an optomechanical system based on Lyapunov control.
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
Nonlinear Chemical Dynamics and Synchronization
Li, Ning
Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.
Synchronizing Parallel Tasks Using STM
Directory of Open Access Journals (Sweden)
Ryan Saptarshi Ray
2015-03-01
Full Text Available The past few years have marked the start of a historic transition from sequential to parallel computation. The necessity to write parallel programs is increasing as systems are getting more complex while processor speed increases are slowing down. Current parallel programming uses low-level programming constructs like threads and explicit synchronization using locks to coordinate thread execution. Parallel programs written with these constructs are difficult to design, program and debug. Also locks have many drawbacks which make them a suboptimal solution. One such drawback is that locks should be only used to enclose the critical section of the parallel-processing code. If locks are used to enclose the entire code then the performance of the code drastically decreases. Software Transactional Memory (STM is a promising new approach to programming shared-memory parallel processors. It is a concurrency control mechanism that is widely considered to be easier to use by programmers than locking. It allows portions of a program to execute in isolation, without regard to other, concurrently executing tasks. A programmer can reason about the correctness of code within a transaction and need not worry about complex interactions with other, concurrently executing parts of the program. If STM is used to enclose the entire code then the performance of the code is the same as that of the code in which STM is used to enclose the critical section only and is far better than code in which locks have been used to enclose the entire code. So STM is easier to use than locks as critical section does not need to be identified in case of STM. This paper shows the concept of writing code using Software Transactional Memory (STM and the performance comparison of codes using locks with those using STM. It also shows why the use of STM in parallel-processing code is better than the use of locks.
Synchronization of Coupled Neurons Controlled by a Pacemaker
Institute of Scientific and Technical Information of China (English)
LI Mei-Sheng; ZHANG Hong-Hui; ZHAO Yong; SHI Xia
2011-01-01
We investigate synchronization of Hindmarsh-Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh-Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system.
Synchronous states of slowly rotating pendula
Energy Technology Data Exchange (ETDEWEB)
Kapitaniak, Marcin [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, AB24 3UE Aberdeen, Scotland (United Kingdom); Czolczynski, Krzysztof; Perlikowski, Przemysław; Stefanski, Andrzej [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Kapitaniak, Tomasz, E-mail: tomasz.kapitaniak@p.lodz.pl [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)
2014-08-01
Coupled systems that contain rotating elements are typical in physical, biological and engineering applications and for years have been the subject of intensive studies. One problem of scientific interest, which among others occurs in such systems is the phenomenon of synchronization of different rotating parts. Despite different initial conditions, after a sufficiently long transient, the rotating parts move in the same way — complete synchronization, or a permanent constant shift is established between their displacements, i.e., the angles of rotation — phase synchronization. Synchronization occurs due to dependence of the periods of rotating elements motion and the displacement of the base on which these elements are mounted. We review the studies on the synchronization of rotating pendula and compare them with the results obtained for oscillating pendula. As an example we consider the dynamics of the system consisting of n pendula mounted on the movable beam. The pendula are excited by the external torques which are inversely proportional to the angular velocities of the pendula. As the result of such excitation each pendulum rotates around its axis of rotation. It has been assumed that all pendula rotate in the same direction or in the opposite directions. We consider the case of slowly rotating pendula and estimate the influence of the gravity on their motion. We classify the synchronous states of the identical pendula and observe how the parameters mismatch can influence them. We give evidence that synchronous states are robust as they exist in the wide range of system parameters and can be observed in a simple experiment.
Electrotonic vascular signal conduction and nephron synchronization.
Marsh, Donald J; Toma, Ildiko; Sosnovtseva, Olga V; Peti-Peterdi, Janos; Holstein-Rathlou, Niels-Henrik
2009-04-01
Tubuloglomerular feedback (TGF) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5:1 frequency ratio is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce synchronization. We tested this idea in tubular-vascular preparations from mice. Vascular smooth muscle cells were loaded with a fluorescent voltage-sensitive dye; fluorescence intensity was measured with confocal microscopy. Perfusion of the thick ascending limb activated TGF and depolarized afferent arteriolar smooth muscle cells. The depolarization spread to the cortical radial artery and other afferent arterioles and declined with distance from the perfused juxtaglomerular apparatus, consistent with electrotonic vascular signal propagation. With a mathematical model of two coupled nephrons, we estimated the conductance of nephron coupling by fitting simulated vessel diameters to experimental data. With this value, we simulated nephron pairs to test for synchronization. In single-nephron simulations, the frequency of the TGF oscillation varied with nephron length. Coupling nephrons of different lengths forced TGF frequencies of both pair members to converge to a common value. The myogenic oscillations also synchronized, and the synchronization between the TGF and the myogenic oscillations showed an increased stability against parameter perturbations. Electronic vascular signal propagation is a plausible mechanism for nephron synchronization. Coupling increased the stability of the various oscillations.
Markers of criticality in phase synchronization.
Botcharova, Maria; Farmer, Simon F; Berthouze, Luc
2014-01-01
The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating
Sun-synchronous satellite orbit determination
Ma, Der-Ming; Zhai, Shen-You
2004-02-01
The linearized dynamic equations used for on-board orbit determination of Sun-synchronous satellite are derived. Sun-synchronous orbits are orbits with the secular rate of the right ascension of the ascending node equal to the right ascension rate of the mean sun. Therefore the orbit is no more a closed circle but a tight helix about the Earth. In the paper, instead of treating the orbit as a closed circle, the actual helix orbit is taken as nominal trajectory. The details of the linearized equations of motion for the satellite in the Sun-synchronous orbit are derived. The linearized equations are obtained by perturbing the Keplerian motion with the J2 correction and the effect of sun's attraction being neglected. Combined with the GPS navigation equations, the Kalman filter formulation is given. The particular application considered is the circular Sun-synchronous orbit with the altitude of 800 km and inclination of 98.6°. The numerical example simulated by MATLAB® shows that only the pseudo-range data used in the algorithm still gives acceptable results. Based on the simulation results, we can use the on-board GPS receivers' signal only as an alternative to determine the orbit of Sun-Synchronous satellite and therefore circumvents the need for extensive ground support.
Chaotic synchronization of two complex nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Mahmoud, Gamal M. [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: gmahmoud@aun.edu.eg; Mahmoud, Emad E. [Department of Mathematics, Faculty of Science, Sohag University (Egypt)], E-mail: emad_eluan@yahoo.com; Farghaly, Ahmed A. [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: ahmed_1_66@yahoo.com; Aly, Shaban A. [Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71511 (Egypt)], E-mail: shhaly12@yahoo.com
2009-12-15
Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.
Blending Online Asynchronous and Synchronous Learning
Directory of Open Access Journals (Sweden)
Lisa C. Yamagata-Lynch
2014-04-01
Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.
Adaptive Control Algorithm of the Synchronous Generator
Directory of Open Access Journals (Sweden)
Shevchenko Victor
2017-01-01
Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.
Elastic interactions synchronize beating in cardiomyocytes.
Cohen, Ohad; Safran, Samuel A
2016-07-13
Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications.
Synthesizing Modular Invariants for Synchronous Code
Directory of Open Access Journals (Sweden)
Pierre-Loic Garoche
2014-12-01
Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.
Synchronous gastric neuroendocrine carcinoma and hepatocellular carcinoma
DEFF Research Database (Denmark)
Ewertsen, Caroline; Henriksen, Birthe Merete; Hansen, Carsten Palnæs
2009-01-01
UNLABELLED: Gastric neuroendocrine carcinomas (NECs) are rare tumours that are divided into four subtypes depending on tumour characteristics. Patients with NECs are known to have an increased risk of synchronous and metachronous cancers mainly located in the gastrointestinal tract. A case...... of synchronous gastric NEC and hepatocellular carcinoma in a patient with several other precancerous lesions is presented. The patient had anaemia, and a gastric tumour and two duodenal polyps were identified on upper endoscopy. A CT scan of the abdomen revealed several lesions in the liver. The lesions were...... invisible on B-mode sonography and real-time sonography fused with CT was used to identify and biopsy one of the lesions. Histology showed hepatocellular carcinoma. A literature search showed that only one case of a hepatocellular carcinoma synchronous with a gastric NEC has been reported previously. TRIAL...
Time Synchronization Module for Automatic Identification System
Institute of Scientific and Technical Information of China (English)
Choi Il-heung; Oh Sang-heon; Choi Dae-soo; Park Chan-sik; Hwang Dong-hwan; Lee Sang-jeong
2003-01-01
This paper proposed a design and implementation procedure of the Time Synchronization Module (TSM) for the Automatic Identification System (AIS). The proposed TSM module uses a Temperature Compensated Crystal Oscillator (TCXO) as a local reference clock, and consists of a Digitally Controlled Oscillator (DCO), a divider, a phase discriminator, and register blocks. The TSM measures time difference between the 1 PPS from the Global Navigation Satellite System (GNSS) receiver and the generated transmitter clock. The measured time difference is compensated by controlling the DCO and the transmit clock is synchronized to the Universal Time Coordinated (UTC). The designed TSM can also be synchronized to the reference time derived from the received message. The proposed module is tested using the experimental AIS transponder set. The experimental results show that the proposed module satisfies the functional and timing specification of the AIS technical standard, ITU-R M.1371.
Synchronous Characterization of Semiconductor Microcavity Laser Beam
Wang, Tao
2015-01-01
We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross-section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center and the defects-related spectrum can also be extracted from these high-resolution pictures.
Control of partial synchronization in chaotic oscillators
Indian Academy of Sciences (India)
R Banerjee; E Padmanaban; S K Dana
2015-02-01
A design of coupling is proposed to control partial synchronization in two chaotic oscillators in a driver–response mode. A control of synchrony between one response variables is made possible (a transition from a complete synchronization to antisynchronization via amplitude death and vice versa without loss of synchrony) keeping the other pairs of variables undisturbed in their pre-desired states of coherence. Further, one of the response variables can be controlled so as to follow the dynamics of an external signal (periodic or chaotic) while keeping the coherent status of other variables unchanged. The stability of synchronization is established using the Hurwitz matrix criterion. Numerical example of an ecological foodweb model is presented. The control scheme is demonstrated in an electronic circuit of the Sprott system.
Designing Learning Resources in Synchronous Learning Environments
DEFF Research Database (Denmark)
Christiansen, Rene B
2015-01-01
Computer-mediated Communication (CMC) and synchronous learning environments offer new solutions for teachers and students that transcend the singular one-way transmission of content knowledge from teacher to student. CMC makes it possible not only to teach computer mediated but also to design...... and create new learning resources targeted to a specific group of learners. This paper addresses the possibilities of designing learning resources within synchronous learning environments. The empirical basis is a cross-country study involving students and teachers in primary schools in three Nordic...... Countries (Denmark, Sweden and Norway). On the basis of these empirical studies a set of design examples is drawn with the purpose of showing how the design fulfills the dual purpose of functioning as a remote, synchronous learning environment and - using the learning materials used and recordings...
Interplay between synchronization, observability, and dynamics
Letellier, Christophe; Aguirre, Luis A.
2010-07-01
Synchronizing nonidentical chaotic oscillators is very often achieved by using various types of couplings. In the practice of synchronization the “right choice” of the coupling variable— y for the Rössler system, x for the Lorenz equations, and so on—is usually stated rather than explained or justified. Using the Rössler and Rucklidge system, in this paper, it is shown that such “optimal” choices are strongly related to observability properties which, in turn, can be quantified. In this paper it will also be shown that synchronizability does not only depend on the observability of the system but it is also a consequence of the dynamical regimes under study. The paper aims at providing important insight into the critical problem of making the “right choice” when it comes to choosing the coupling variable in synchronization schemes.
Method of synchronizing independent functional unit
Energy Technology Data Exchange (ETDEWEB)
Kim, Changhoan
2017-02-14
A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream of program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.
Synchronization in networks with multiple interaction layers
del Genio, Charo I; Bonamassa, Ivan; Boccaletti, Stefano
2016-01-01
The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multi-layered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavour in mathematics and physics, and has potential applications to several societally relevant topics, such as power grids engineering and neural dynamics. We propose a general framework to assess stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the Master Stability Function approach. We validate our method applying it to a network of R\\"ossler oscillators with a double layer of interactions, and show that highly rich phenomenology emerges. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely due to the true multi-layer structure of the interact...
Phase synchronization in time-delay systems.
Senthilkumar, D V; Lakshmanan, M; Kurths, J
2006-09-01
Though the notion of phase synchronization has been well studied in chaotic dynamical systems without delay, it has not been realized yet in chaotic time-delay systems exhibiting non-phase-coherent hyperchaotic attractors. In this paper we report identification of phase synchronization in coupled time-delay systems exhibiting hyperchaotic attractor. We show that there is a transition from nonsynchronized behavior to phase and then to generalized synchronization as a function of coupling strength. These transitions are characterized by recurrence quantification analysis, by phase differences based on a transformation of the attractors, and also by the changes in the Lyapunov exponents. We have found these transitions in coupled piecewise linear and in Mackey-Glass time-delay systems.
Synchronization trigger control system for flow visualization
Chun, K. S.
1987-01-01
The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.
Synchronizing Objectives for Markov Decision Processes
Doyen, Laurent; Shirmohammadi, Mahsa; 10.4204/EPTCS.50.5
2011-01-01
We introduce synchronizing objectives for Markov decision processes (MDP). Intuitively, a synchronizing objective requires that eventually, at every step there is a state which concentrates almost all the probability mass. In particular, it implies that the probabilistic system behaves in the long run like a deterministic system: eventually, the current state of the MDP can be identified with almost certainty. We study the problem of deciding the existence of a strategy to enforce a synchronizing objective in MDPs. We show that the problem is decidable for general strategies, as well as for blind strategies where the player cannot observe the current state of the MDP. We also show that pure strategies are sufficient, but memory may be necessary.
Unstable attractors induce perpetual synchronization and desynchronization.
Timme, Marc; Wolf, Fred; Geisel, Theo
2003-03-01
Common experience suggests that attracting invariant sets in nonlinear dynamical systems are generally stable. Contrary to this intuition, we present a dynamical system, a network of pulse-coupled oscillators, in which unstable attractors arise naturally. From random initial conditions, groups of synchronized oscillators (clusters) are formed that send pulses alternately, resulting in a periodic dynamics of the network. Under the influence of arbitrarily weak noise, this synchronization is followed by a desynchronization of clusters, a phenomenon induced by attractors that are unstable. Perpetual synchronization and desynchronization lead to a switching among attractors. This is explained by the geometrical fact, that these unstable attractors are surrounded by basins of attraction of other attractors, whereas the full measure of their own basin is located remote from the attractor. Unstable attractors do not only exist in these systems, but moreover dominate the dynamics for large networks and a wide range of parameters.
Transient Synchronization in Complex Neuronal Networks
Costa, Luciano da Fontoura
2008-01-01
Transient synchronization in complex neuronal networks as a consequence of activation-conserved dynamics induced by having sources placed at specific neurons is investigated. The basic integrate-and-fire neuron is adopted, and the dynamics is estimated computationally so as to obtain the activation at each node along each instant of time. The dynamics is implemented so as to conserve the total activation entering the system, which is a distinctive feature of the current work. The synchronization of the activation of the network is then quantified along time in terms of its normalized instantaneous entropy. The potential of such concepts and measurements is explored with respect to 6 theoretical models, as well as for the neuronal network of \\emph{C. elegans}. A series of interesting results are obtained and discussed, including the fact that all models led to a transient period of synchronization, whose specific features depend heavily on the topological features of the networks.
Chaotic Synchronization with Filter Based on Wavelet Transformation
Institute of Scientific and Technical Information of China (English)
XiaoanZHOU; JunfengLAN; 等
1999-01-01
A kind of chaotic synchronization method is presented in the paper,In the transmitter,part signals are transformed by wavelet and the detail information is removed.In the receiver.the component with low frequency is reconstructed and discrete feedback is used,we show that synchronization of two identical structure chaotic systems is attained.The effect of feedback on chaotic synchronization is discussed.Using the synchronous method,the transmitting signal is transported in compressible way system resource is saved,the component with high frequency is filtered and the effect of disturbance on synchronization is reduced.The synchronization method is illustrated by numerical simulation experiment.
Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect
Institute of Scientific and Technical Information of China (English)
LI Xiao-Wen; ZHENG Zhi-Gang
2007-01-01
Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored.It is found that depending on parameter mismatches,the synchronization of phases exhibits different manners.The synchronization regime can be divided into three regimes.For small mismatches,the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases,the amplitudes and phases of oscillators are correlated,and the amplitudes will dominate the synchronous dynamics for very large mismatches.The lag time among phases exhibits a power law when phase synchronization is achieved.
A True Open-Loop Synchronization Technique
DEFF Research Database (Denmark)
Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.;
2016-01-01
Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... drawback of most of the available OLS techniques is that their implementation involves the computation of sine and cosine functions, which is undesirable from the computational standpoint, particularly when the implementation with low-cost digital signal processors is intended. The aim of this paper...
Dangerous situations in a synchronized flow model
Jiang, Rui; Wu, Qing-Song
2007-04-01
This paper studies the dangerous situation (DS) in a synchronized flow model. The DS on the two branches of the fundamental diagram are investigated, respectively. It is shown that different relationship between DS probability and the density exists in the synchronized flow and in the jams. Moreover, we prove that there is no DS caused by non-stopped car although the model itself is a non-exclusion process. We classify the DS into four sub-types and study the probability of these four sub-types. The simulation result is consistent with the real traffic.
Iterative quantum algorithm for distributed clock synchronization
Institute of Scientific and Technical Information of China (English)
Wang Hong-Fu; Zhang Shou
2012-01-01
Clock synchronization is a well-studied problem with many practical and scientific applications.We propose an arbitrary accuracy iterative quantum algorithm for distributed clock synchronization using only three qubits.The n bits of the time difference △ between two spatially separated clocks can be deterministically extracted by communicating only O(n) messages and executing the quantum iteration process n times based on the classical feedback and measurement operations.Finally,we also give the algorithm using only two qubits and discuss the success probability of the algorithm.
Chaos Synchronization in Two Coupled Duffing Oscillators
Institute of Scientific and Technical Information of China (English)
方见树; 荣曼生; 方焯; 刘小娟
2001-01-01
We have obtained two general unstable periodic solutions near the homoclinic orbits of two coupled Duffing oscillators with weak periodic perturbations by using the direct perturbation technique. Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractors. The corresponding numerical results show that the phase portraits in the (x, u) and (y, v) planes are identical and are synchronized when the parameters of the two coupled oscillators are identical, but they are different and asynchronized when there is any difference between these parameters. It has been shown that the system parameters play a very important role in chaos control and synchronization.
Characteristics of silent countingin synchronized swimmers
Directory of Open Access Journals (Sweden)
Sergey V. Leonov
2012-01-01
Full Text Available This article describes the temporal characteristics of silent counting as used duringa competition by the Russian youth team of synchronized swimmers. Theathletes listened to the music that accompanied their performance at the competition.Diff erent indices of silent counting were defi ned, such as the beginningand cessation of diff erent periods of counting, counting frequency, the stabilityof the temporal structure of silent counting, the degree of synchronization of silentcounting at diff erent moments during the sports program. We studied therelationship of these characteristics of counting with expert estimates of the athletes’sense of tempo, coordination of movements, and choreographic abilities.
Robust hyperchaotic synchronization via analog transmission line
Sadoudi, S.; Tanougast, C.
2016-02-01
In this paper, a novel experimental chaotic synchronization technique via analog transmission is discussed. We demonstrate through Field-Programmable Gate Array (FPGA) implementation design the robust synchronization of two embedded hyperchaotic Lorenz generators interconnected with an analog transmission line. The basic idea of this work consists in combining a numerical generation of chaos and transmitting it with an analog signal. The numerical chaos allows to overcome the callback parameter mismatch problem and the analog transmission offers robust data security. As application, this technique can be applied to all families of chaotic systems including time-delayed chaotic systems.
Electrotonic vascular signal conduction and nephron synchronization
DEFF Research Database (Denmark)
Marsh, D.J.; Toma, I.; Sosnovtseva, Olga
2009-01-01
Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF) and the ......Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF...
Delayed self-synchronization in homoclinic chaos
Arecchi, F. T.; Meucci, R.; Allaria, E.; di Garbo, A.; Tsimring, L. S.
2002-04-01
The chaotic spike train of a homoclinic dynamical system is self-synchronized by applying a time-delayed correction proportional to the laser output intensity. Due to the sensitive nature of the homoclinic chaos to external perturbations, stabilization of very long-periodic orbits is possible. On these orbits, the dynamics appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay time. The effect, called delayed self-synchronization, displays analogies with neurodynamic events that occur in the buildup of long-term memories.
Synchronization of Asynchronous Switched Boolean Network.
Zhang, Hao; Wang, Xingyuan; Lin, Xiaohui
2015-01-01
In this paper, the complete synchronizations for asynchronous switched Boolean network with free Boolean sequence controllers and close-loop controllers are studied. First, the basic asynchronous switched Boolean network model is provided. With the method of semi-tensor product, the Boolean dynamics is translated into linear representation. Second, necessary and sufficient conditions for ASBN synchronization with free Boolean sequence control and close-loop control are derived, respectively. Third, some illustrative examples are provided to show the efficiency of the proposed methods.
Synchronization and comparison of Lifelog audio recordings
DEFF Research Database (Denmark)
Nielsen, Andreas Brinch; Hansen, Lars Kai
2008-01-01
We investigate concurrent ‘Lifelog’ audio recordings to locate segments from the same environment. We compare two techniques earlier proposed for pattern recognition in extended audio recordings, namely cross-correlation and a fingerprinting technique. If successful, such alignment can be used...... as a preprocessing step to select and synchronize recordings before further processing. The two methods perform similarly in classification, but fingerprinting scales better with the number of recordings, while cross-correlation can offer sample resolution synchronization. We propose and investigate the benefits...
Modulated Field Synchronous Generator for Wind Turbines
Directory of Open Access Journals (Sweden)
Petru Chioncel
2013-01-01
Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.
Cycle slipping in phase synchronization systems
Yang, Ying; Huang, Lin
2007-02-01
Cycle slipping is a characteristically nonlinear phenomenon in phase synchronization systems, which is highly dependent of the initial state of the system. Slipping a cycle means that the phase error is increased to such an extent that the generator to be synchronized slips one complete cycle with respect to the input phase. In this Letter, a linear matrix inequality (LMI) based approach is proposed and the estimation of the number of cycles which slips a solution of the system is obtained by solving a quasi-convex optimization problem of LMI. Applications to phase locked loops demonstrate the validity of the proposed approach.
Synchronous generator wind energy conversion control system
Energy Technology Data Exchange (ETDEWEB)
Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)
1996-12-31
This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.
Synchronization of Olfaction-enhanced multimedia
Ademoye, OA; G. Ghinea
2009-01-01
This paper presents the results of an experimental study carried out to explore, from an end user perspective, the temporal boundaries within which olfactory data can be used to enhance multimedia applications. Results show the presence of two main synchronization regions, and that olfaction ahead of audiovisual content is more tolerable than olfaction behind content.
Synchronous Computer-Mediated Communication and Interaction
Ziegler, Nicole
2016-01-01
The current study reports on a meta-analysis of the relative effectiveness of interaction in synchronous computer-mediated communication (SCMC) and face-to-face (FTF) contexts. The primary studies included in the analysis were journal articles and dissertations completed between 1990 and 2012 (k = 14). Results demonstrate that interaction in SCMC…
Synchronization Phenomena in Nephron-Nephron Interaction
DEFF Research Database (Denmark)
Holstein-Rathlou, N.-H.; Yip, K.-P.; Sosnovtseva, Olga;
2001-01-01
Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular oscilla...
Synchronous transfer circuits for redundant systems
Nagano, S.
1978-01-01
Circuit arrangements for flip-flops, counters, and clock drivers in redundant systems ensure that control is synchronously transferred to surviving components when failure occurs. In addition to original application to spacecraft systems, redundant circuits have terrestrial uses in power generators, solar-energy converters, computers, vehicle controllers, and other systems demanding high reliability.
An Ideal Assortative Network and Synchronization
Institute of Scientific and Technical Information of China (English)
DONG Cheng-Dong; LIU Zeng-Rong
2007-01-01
This paper proposes a novel complex network with assortative property based on multi-center networks. The average path length and clustering coefficient of the network are calculated, and the impact on the network topology is investigated. A simple dynamic system established on the proposed network is used to analyze how the assortative property of the network affects synchronization.
Control of Abnormal Synchronization in Neurological Disorders
Directory of Open Access Journals (Sweden)
Oleksandr V. Popovych
2014-12-01
Full Text Available In the nervous system synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson's disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR neuromodulation we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, nonlinear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP,CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from anabnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved.
Synchronized flow in oversaturated city traffic
Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael
2013-11-01
Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.036110 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.
Active synchronization in nonhyperbolic hyperchaotic systems.
Macau, Elbert E N; Grebogi, Celso; Lai, Ying-Cheng
2002-02-01
We propose a methodology to address the outstanding problem of synchronization in nonhyperbolic hyperchaotic physical systems. Our approach makes use of a controlling-chaos strategy that accomplishes the task by transmitting only one scalar signal even in the presence of noise.
Impulsive generalized synchronization of chaotic system
Institute of Scientific and Technical Information of China (English)
Zhang Rong; Xu Zhen-Yuan; He Xue-Ming
2007-01-01
In this paper, with a given manifold y=H(x), we have constructed a response system for a continuous-time chaotic system as a drive system, and used impulsive control theory to demonstrate theoretically that this response system can achieve impulsive generalized synchronization(GS)with the drive system. Our theoretical result is supported by numerical examples.
A large electrically excited synchronous generator
DEFF Research Database (Denmark)
2014-01-01
adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...
Chaos in nonlinear oscillations controlling and synchronization
Lakshamanan, M
1996-01-01
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
Control and synchronization of spatiotemporal chaos.
Ahlborn, Alexander; Parlitz, Ulrich
2008-01-01
Chaos control methods for the Ginzburg-Landau equation are presented using homogeneously, inhomogeneously, and locally applied multiple delayed feedback signals. In particular, it is shown that a small number of control cells is sufficient for stabilizing plane waves or for trapping spiral waves, and that successful control is closely connected to synchronization of the dynamics in regions close to the control cells.
Noise and determinism in synchronized sheep dynamics
Grenfell, B. T.; Wilson, K.; Finkenstädt, B. F.; Coulson, T. N.; Murray, S.; Albon, S. D.; Pemberton, J. M.; Clutton-Brock, T. H.; Crawley, M. J.
1998-08-01
A major debate in ecology concerns the relative importance of intrinsic factors and extrinsic environmental variations in determining population size fluctuations. Spatial correlation of fluctuations in different populations caused by synchronous environmental shocks,, is a powerful tool for quantifying the impact of environmental variations on population dynamics,. However, interpretation of synchrony is often complicated by migration between populations,. Here we address this issue by using time series from sheep populations on two islands in the St Kilda archipelago. Fluctuations in the sizes of the two populations are remarkably synchronized over a 40-year period. A nonlinear time-series model shows that a high and frequent degree of environmental correlation is required to achieve this level of synchrony. The model indicates that if there were less environmental correlation, population dynamics would be much less synchronous than is observed. This is because of a threshold effect that is dependent on population size; the threshold magnifies random differences between populations. A refined model showsthat part of the required environmental synchronicity can be accounted for by large-scale weather variations. These results underline the importance of understanding the interaction between intrinsic and extrinsic influences on population dynamics.
Clock Synchronization for Multihop Wireless Sensor Networks
Solis Robles, Roberto
2009-01-01
In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…
Synchronization Gauges and the Principles of Special Relativity
Rizzi, G; Serafini, A; Rizzi, Guido; Ruggiero, Matteo Luca; Serafini, Alessio
2004-01-01
The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of `theories' that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl synchronization gauge and, finally, to the even more general Anderson-Vetharaniam-Stedman's synchronization gauge. It...
Complete chaotic synchronization in mutually coupled time-delay systems.
Landsman, Alexandra S; Schwartz, Ira B
2007-02-01
Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of parameters. The results explain and predict the dependence of synchronization on various parameters, such as time delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized subsystems.
Injuries and medical issues in synchronized Olympic sports.
Mountjoy, Margo
2009-01-01
Spectators of the Olympic Games can enjoy a wide variety of sports, including strength, team, timed, endurance, and artistic sports. In the Olympic program, there are two synchronized events: synchronized diving and synchronized swimming. The precision of the synchronization of the athlete's movements and skills is an added feature of entertainment. Synchronized athletes have additional training requirements to perfect the synchronization of their skills. The physical demands on the athlete from the repetition of training required for the perfection of synchronization result in injuries unique to these sports. Although both traumatic and overuse injuries occur, overuse injuries are more common. As these disciplines are artistic, judged sports, these athletes also are susceptible to eating disorders and the female athlete triad. This article reviews the training regimen of these athletes and outlines the injuries and health concerns that are common in the synchronized sports.
Anti-synchronization Between Coupled Networks with Two Active Forms*
Institute of Scientific and Technical Information of China (English)
WU Yong-Qing; SUN Wei-Gang; LI Shan-Shan
2011-01-01
This paper studies anti-synchronization and its control between two coupled networks with nonlinear signal's connection and the inter-network actions. If anti-synchronization does not exist between two such networks, adaptive controllers are designed to anti-synchronize them. Different node dynamics and nonidentical topological structures are considered and useful criteria for anti-synchronization between two networks are given. Numerical examples are presented to show the efficiency of our derived results.
Linearly Coupled Synchronization of the New Chaotic Systems
Institute of Scientific and Technical Information of China (English)
LU Jun-an; ZHOU Jin; LI Yi-tian
2005-01-01
This paper investigates synchronization within the new systems, which we denote as Liu system in this paper. New stability criteria for synchronization of linearly coupled Liu systems are attained using the Lyapunov method. Some sufficient conditions for synchronization are concluded through rigorous mathematical theory, which can be further applied to more chaotic systems. Moreover, numerical simulations are given to show the effectiveness of our synchronization criterions.
CHAOS SYNCHRONIZATION OF MORSE OSCILLATOR VIA BACKSTEPPING DESIGN
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Synchronization and adaptive synchronization of Morse oscillator with periodic forced section is investigated in this paper. Backstepping design is a recursive procedure that combines the choice of Lyapunov function with the design of controller. The proposed approaches offers a syetematic design procedure for synchronization and adaptive synchronization of a large class of continuous-time chaotic systems in the chaos research literature. Simulation results are presented to show the effectiveness of the ...
Interactive Multimedia Synchronization Model Based on Petri Nets
Institute of Scientific and Technical Information of China (English)
WANG Zhiqiang; PENG Xiaogang; JI Zhen
2007-01-01
The multimedia synchronization is used to coordinate the timing of each multimedia object in the multimedia system.After studying different multimedia synchronization systems that have been published, an Interactive Synchronization multimedia based on Petri Nets model (ISPN) is proposed in this paper. The system is capable of describing the dynamic timing actions of multimedia objects vividly as well as controlling them interactively to maintain the system level synchronization balance.
A Common Guideline for Time Synchronization in Wireless Sensor Networks
Institute of Scientific and Technical Information of China (English)
皇甫莹丽; 刘军
2010-01-01
Time synchronization is one of the most fundamental services for numerous wireless sensor network applications.In this article the definition and basic concepts of time synchronization are introduced.Through analyzing the characteristics of the existing typical synchronization pro tocols and making a comprehensive comparison of the performance of various algorithms,we present a common guideline for designing the time synchronization protocol in WSN.
Introduction to Focus Issue: Patterns of Network Synchronization
Abrams, Daniel M; Motter, Adilson E
2016-01-01
The study of synchronization of coupled systems is currently undergoing a major surge fueled by recent discoveries of new forms of collective dynamics and the development of techniques to characterize a myriad of new patterns of network synchronization. This includes chimera states, phenomena determined by symmetry, remote synchronization, and asymmetry-induced synchronization. This Focus Issue presents a selection of contributions at the forefront of these developments, to which this introduction is intended to offer an up-to-date foundation.
Global chaos synchronization of coupled parametrically excited pendula
Indian Academy of Sciences (India)
O I Olusola; U E Vincent; A N Njah
2009-12-01
In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which an estimated critical coupling is determined. Numerical solutions are presented to verify the theoretical analysis. We also examined the transition to stable synchronous state and show that this corresponds to a boundary crisis of the chaotic attractor.
Broadband criticality of human brain network synchronization.
Directory of Open Access Journals (Sweden)
Manfred G Kitzbichler
2009-03-01
Full Text Available Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of (neurophysiological processes, and the lability of global synchronization of a (brain functional network. Using computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions. These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality, characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large rapid changes in the state of global synchronization, analogous to the neuronal "avalanches" previously described in cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems operating at frequency intervals ranging from 0.05-0.11 to 62.5-125 Hz, confirming that criticality is a property of human brain functional network organization at all frequency intervals in the brain's physiological bandwidth.
30 CFR 57.19008 - Friction hoist synchronizing mechanisms.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 57... MINES Personnel Hoisting Hoists § 57.19008 Friction hoist synchronizing mechanisms. Where creep or slip... synchronizing mechanisms that recalibrate the overtravel devices and position indicators....
Inter-destination Media Synchronization for TV broadcasts
Mekuria, R.N.
2011-01-01
This thesis presents a study on the application of inter-destination synchronization for TV-broadcasting. Inter-destination media synchronization implies synchronizing media output at different receivers. This thesis starts by investigating differences in media output between receivers of TV broadca
Preliminary OFDM based acoustic communication for underwater sensor networks synchronization
Pallarés Valls, Oriol; Sarriá Gandul, David; Viñolo Monzoncillo, Carlos; Río Fernandez, Joaquín del; Manuel Lázaro, Antonio
2013-01-01
This work presents a first approach to wireless underwater sensor networks UWSN time synchronization, using OFDM (Orthogonal Frequency Division Multiplexing) acoustic communication and time reference served by a synchronization protocol. This synchronization and type of modulation allows getting a low drift clock on each sensor, on a high efficiency underwater communication network. Peer Reviewed
Synchronization of period-doubling oscillations in vascular coupled nephrons
DEFF Research Database (Denmark)
Laugesen, Jakob Lund; Mosekilde, Erik; Holstein-Rathlou, N. -H.
2011-01-01
between the nephrons produces complicated and time-dependent inter-nephron synchronization patterns. In order to understand the processes by which a pair of vascular coupled nephrons synchronize, the paper presents a detailed analysis of the bifurcations that occur at the threshold of synchronization. We...
Loss of lag synchronization in coupled chaotic systems
DEFF Research Database (Denmark)
Sosnovtseva, O.V.; Balanov, A.G.; Vadivasova, T.E.;
1999-01-01
Lag synchronization denotes a particular form of synchronization in which the amplitudes of two interacting, nonidentical chaotic oscillators are correlated but there is a characteristic time delay between them. We study transitions to and between different forms of synchronization for the attrac...
De-synchronization of the Distributed Refrigeration System
DEFF Research Database (Denmark)
Chen, Liang; Wisniewski, Rafal
2010-01-01
on the compressors and increased energy consumption. The paper focuses on the synchronization analysis and de-synchronization control. The supermarket refrigeration system is modeled as a piecewise-affine switched system. The system behavior is decomposed such that synchronization analysis can be completed by using...... performance and can deal with the large scale refrigeration system with different system parameters in the display cases....
Synchronous Control Method and Realization of Automated Pharmacy Elevator
Liu, Xiang-Quan
Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.
Synchronization in Coupled Oscillators with Two Coexisting Attractors
Institute of Scientific and Technical Information of China (English)
ZHU Han-Han; YANG Jun-Zhong
2008-01-01
Dynamics in coupled Duffing oscillators with two coexisting symmetrical attractors is investigated. For a pair of Dutffng oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions.
Nonlinear Dynamics of Controlled Synchronizations of Manipulator System
Directory of Open Access Journals (Sweden)
Qingkai Han
2014-01-01
Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.
Feedback Controller Design for the Synchronization of Boolean Control Networks.
Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling
2016-09-01
This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.
Synchronization of spatiotemporal chaos using nonlinear feedback functions
Directory of Open Access Journals (Sweden)
M. K. Ali
1997-01-01
Full Text Available Synchronization of spatiotemporal chaos is studied using the method of variable feedback with coupled map lattices as model systems. A variety of feedback functions are introduced and the diversity in their choices for synchronizing any given system is exemplified. Synchronization in the presence of noise and with sporadic feedback is also presented.
Synchronization in driven chaotic systems: Diagnostics and bifurcations
DEFF Research Database (Denmark)
Vadivasova, T.E.; Balanov, A.G.; Sosnovtseva, O.V.;
1999-01-01
We investigate generic aspects of chaos synchronization in an externally forced Rössler system. By comparing different diagnostic methods, we show the existence of a well-defined cut-off of synchronization associated with the transition from weak to fully developed chaos. Two types of chaotic beh...... behavior, differing by the number of vanishing Lyapunov exponents, are observed outside the synchronization regime....
21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...
CAN-based Synchronized Motion Control for Induction Motors
Institute of Scientific and Technical Information of China (English)
Jun Ren; Chun-Wen Li; De-Zong Zhao
2009-01-01
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed.The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results,the multi-motor synchronized motion control system,via the CAN bus,has been successfully implemented.With the employment of the advanced synchronized motion control strategy,the synchronization performance can be significantly improved.
Linear generalized synchronization of chaotic systems with uncertain parameters
Institute of Scientific and Technical Information of China (English)
Jia Zhen
2008-01-01
A more general form of projective synchronization,so called linear generalized synchronization(LGS)is proposed,which includes the generalized projective synchronization(GPS)and the hybrid projective synchronization(HPS)as its special cases.Based on the adaptive technique and Lyapunov stability theory,a general method for achieving the LGS between two chaotic or hyperchaotic systems with uncertain parameters in any scaling matrix is presented.Some numerical simulations are provided to show the effectiveness and feasibility of the proposed synchronization method.
Robust chaos synchronization using input-to-state stable control
Indian Academy of Sciences (India)
Choon Ki Ahn
2010-05-01
In this paper, we propose a new input-to-state stable (ISS) synchronization method for a general class of chaotic systems with disturbances. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented not only to guarantee the asymptotic synchronization but also to achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies are presented to demonstrate the effectiveness of the proposed ISS synchronization scheme.
Ideal synchronizer for marked pairs in fork-join network
Vyshenski, S V; Dubenskaya, Yu Yu
2008-01-01
We introduce a new functional element (synchronizer for marked pairs) meant to join results of parallel processing in two-branch fork-join queueing network. Approximations for distribution of sojourn time at the synchronizer are derived along with a validity domain. Calculations are performed assuming that: arrivals to the network form a Poisson process, each branch operates like an M/M/N queueing system. It is shown that a mean quantity of jobs in the synchronizer is bounded below by the value, defined by parameters of the network (which contains the synchronizer) and does not depend upon performance and particular properties of the synchronizer.
Exponential Synchronization of the Linearly Coupled Dynamical Networks with Delays
Institute of Scientific and Technical Information of China (English)
Xiwei LIU; Tianping CHEN
2007-01-01
In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria ensuring delay-independent and delay-dependent global synchronization are derived respectively. It is shown that if the coupling delay is less than a positive threshold, then the coupled network will be synchronized. On the other hand, with the increase of coupling delay, the synchronization stability of the network will be restrained, even eventually de-synchronized.
Comparison and Regulation of Neuronal Synchronization for Various STDP Rules
Directory of Open Access Journals (Sweden)
Yanhua Ruan
2009-01-01
Full Text Available We discuss effects of various experimentally supported STDP learning rules on frequency synchronization of two unidirectional coupled neurons systematically. First, we show that synchronization windows for all STDP rules cannot be enhanced compared to constant connection under the same model. Then, we explore the influence of learning parameters on synchronization window and find optimal parameters that lead to the widest window. Our findings indicate that synchronization strongly depends on the specific shape and the parameters of the STDP update rules. Thus, we give some explanations by analyzing the synchronization mechanisms for various STDP rules finally.
Synchronization of two identical and non-identical Rulkov models
Sun, Huijing; Cao, Hongjun
2016-11-01
In this paper, the synchronization of two chaotic Rulkov map-based neurons is taken into account. Firstly, based on the master stability function (MSF) analysis, the complete synchronization of two electrical coupled chaotic Rulkov neurons is investigated in detail. The two-dimensional parameter-space plot that displays directly the values of the MSF in different colors is numerically obtained. The numerical values of the MSF show that the two electrical coupled Rulkov neurons are likely to achieve the complete synchronization when each single neuron is in a silent state or a period-1 bursting state, while are unable to reach the complete synchronous state when each single neuron is in a chaotic bursting state or a spiking state. Secondly, Pearson's correlation coefficient is employed to measure the synchronization degree, which demonstrates the nonexistence of the complete synchronization for non-identical electrical coupled Rulkov neurons. Importantly, the complete synchronization can not be reached with the increase of the electrical coupling strength, which is different from the continuous-time neuronal models. Finally, based on the active control method, a synchronization scheme is presented to study the complete synchronization for two Rulkov neurons no matter whether they are identical or not. The scheme is also applied to investigate the anticipated synchronization and the lag synchronization for any two Rulkov neurons. Numerical simulations verify the correctness of our analytical results and the effectiveness of our methods.
Layered Workflow Process Model Based on Extended Synchronizer
Directory of Open Access Journals (Sweden)
Gang Ni
2014-07-01
Full Text Available The layered workflow process model provide a modeling approach and analysis for the key process with Petri Net. It not only describes the relation between the process of business flow and transition nodes clearly, but also limits the rapid increase in the scale of libraries, transition and directed arcs. This paper studies the process like reservation and complaint handling information management system, especially for the multi-mergence and discriminator patterns which can not be directly modeled with existing synchronizers. Petri Net is adopted to provide formalization description for the workflow patterns and the relation between Arcs and weight class are also analyzed. We use the number of in and out arcs to generalize the workflow into three synchronous modes: fully synchronous mode, competition synchronous mode and asynchronous mode. The types and parameters for synchronization are added to extend the modeling ability of the synchronizers and the synchronous distance is also expanded. The extended synchronizers have the ability to terminate branches automatically or activate the next link many times, besides the ability of original synchronizers. By the analyses on cases of the key business, it is verified that the original synchronizers can not model directly, while the extended synchronizers based on Petri Net can provide modeling for multi-mergence and discriminator modes.
Coevolution of synchronization and cooperation in networks of coupled oscillators
Antonioni, Alberto
2016-01-01
Despite the large number of studies on the framework of synchronization, none of the previous research made the hypothesis that synchronization occurs at a given cost for involved individuals. The introduction of costly interactions leads, instead, to the formulation of a dichotomous scenario in which an individual may decide to cooperate and pay the cost in order to get synchronized with the rest of the population. Alternatively, the same individual can decide to free ride, without incurring in any cost, waiting that others get synchronized to her state. The emergence of synchronization may thus be seen as the byproduct of an evolutionary game in which individuals decide their behavior according to the benefit/cost ratio they receive in the past. We study the onset of cooperation/synchronization in networked populations of Kuramoto oscillators and report how topology is essential in order for cooperation to thrive. We display also how different classes of topology foster differently synchronization both at a...
Anticipated synchronization in neuronal network motifs
Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.
2013-01-01
Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.
Social argumentation in online synchronous communication
Angiono, Ivan
In education, argumentation has an increasing importance because it can be used to foster learning in various fields including philosophy, history, sciences, and mathematics. Argumentation is also at the heart of scientific inquiry. Many educational technology researchers have been interested in finding out how technologies can be employed to improve students' learning of argumentation. Therefore, many computer-based tools or argumentation systems have been developed to assist students in their acquisition of argumentation skills. While the argumentation systems incorporating online debating tools present a good resource in formal settings, there is limited research revealing what argumentative skills students are portraying in informal online settings without the presence of a moderator. This dissertation investigates the nature of argumentative practices in a massively multiplayer online game where the system successfully incorporates the authentic use of online synchronous communication tools and the patterns that emerge from the interplay between a number of contextual variables including synchronicity, interest, authenticity, and topical knowledge.
Synchronization of Integrated Systems on a Chip
Directory of Open Access Journals (Sweden)
González-Díaz O.
2012-04-01
Full Text Available In the present paper, the non-conventional interconnected and coupled ring oscillators approach working as clock distribution networks to synchronize electronic systems on a chip (SoC is proposed. Typical CMOS (Complementary Metal-Oxide Semiconductor N-well 0.35 µm Austria Micro Systems process parameters were used for conventional and non-conventional clock distribution nets design and simulation. Experimental results from local and global clock distribution networks fabricated using a CMOS 0.35 µm process show that the use of interconnected rings arrays, as globally asynchronous locally synchronous (GALS clock distribution networks, represent an appropriate approach due to good performance regarding scalability, low clock-skew, high-speed, faults tolerant and robust under process variations, regularity, and modularity.
The Timing Synchronization System at Jefferson Lab
Keesee, M; Flood, R; Lebedev, V
2001-01-01
This paper presents the requirements and design of a Timing Synchronization System (TSS) for the Continuous Electron Beam Accelerator Facility (CEBAF) control system at Thomas Jefferson National Accelerator Facility. A clock module has been designed which resides in a VME crate. The clock module can be a communications master or a slave depending on its configuration, which is software and jumper selectable. As a master, the clock module sends out messages in response to an external synchronization signal over a serial fiber optic line. As a slave, it receives the messages and interrupts an associated computer in its VME crate. The application that motivated the development of the TSS, the Accelerator 30 Hz Measurement System, will be described. Operational experience with the TSS will also be discussed.
Determination and analysis of synchronous motor's parameters
Mesņajevs, Aleksandrs; Zviedris, Andrejs
2009-01-01
In this work the parameters of synchronous machines are analyzed- direct-axis reaction Xad and quadrature-axis reaction Xaq. Methods of calculation in view of magnetic system's and its element's saturation are presented. It is shown that definition of these reactances, using as a basis a two-reaction method, is not correct and connected with work demanding chart analyzing calculations. The new approach to the qualitative and quantitative analysis of synchronous machine's operating modes which is based on consecutive use of the magnetic field's theory is offered, without it with two-reaction parameters Xad and Xaq. This approach is realized by means of a magnetic field's modeling using numerical methods with help of modern computers.
Forced synchronization of autonomous dynamical Boolean networks.
Rivera-Durón, R R; Campos-Cantón, E; Campos-Cantón, I; Gauthier, Daniel J
2015-08-01
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.
Pursuit and Synchronization in Hydrodynamic Dipoles
Kanso, Eva
2015-01-01
We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.
Electro-hydrodynamic synchronization of piezoelectric flags
Xia, Yifan; Michelin, Sebastien
2016-01-01
Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.
Control and Synchronization of Neuron Ensembles
Li, Jr-Shin; Ruths, Justin
2011-01-01
Synchronization of oscillations is a phenomenon prevalent in natural, social, and engineering systems. Controlling synchronization of oscillating systems is motivated by a wide range of applications from neurological treatment of Parkinson's disease to the design of neurocomputers. In this article, we study the control of an ensemble of uncoupled neuron oscillators described by phase models. We examine controllability of such a neuron ensemble for various phase models and, furthermore, study the related optimal control problems. In particular, by employing Pontryagin's maximum principle, we analytically derive optimal controls for spiking single- and two-neuron systems, and analyze the applicability of the latter to an ensemble system. Finally, we present a robust computational method for optimal control of spiking neurons based on pseudospectral approximations. The methodology developed here is universal to the control of general nonlinear phase oscillators.
Interlanguages and synchronic models of computation
Berka, Alexander Victor
2010-01-01
A novel language system has given rise to promising alternatives to standard formal and processor network models of computation. An interstring linked with a abstract machine environment, shares sub-expressions, transfers data, and spatially allocates resources for the parallel evaluation of dataflow. Formal models called the a-Ram family are introduced, designed to support interstring programming languages (interlanguages). Distinct from dataflow, graph rewriting, and FPGA models, a-Ram instructions are bit level and execute in situ. They support sequential and parallel languages without the space/time overheads associated with the Turing Machine and l-calculus, enabling massive programs to be simulated. The devices of one a-Ram model, called the Synchronic A-Ram, are fully connected and simpler than FPGA LUT's. A compiler for an interlanguage called Space, has been developed for the Synchronic A-Ram. Space is MIMD. strictly typed, and deterministic. Barring memory allocation and compilation, modules are ref...
Forced synchronization of autonomous dynamical Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)
2015-08-15
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.
Space and the Synchronic A-Ram
Berka, Alex V
2010-01-01
Space is a circuit oriented, spatial programming language designed to exploit the massive parallelism available in a novel formal model of computation called the Synchronic A-Ram, and physically related FPGA and reconfigurable architectures. Space expresses variable grained MIMD parallelism, is modular, strictly typed, and deterministic. Barring operations associated with memory allocation and compilation, modules cannot access global variables, and are referentially transparent. At a high level of abstraction, modules exhibit a small, sequential state transition system, aiding verification. Space deals with communication, scheduling, and resource contention issues in parallel computing, by resolving them explicitly in an incremental manner, module by module, whilst ascending the ladder of abstraction. Whilst the Synchronic A-Ram model was inspired by linguistic considerations, it is also put forward as a formal model for reconfigurable digital circuits. A programming environment has been developed, that inco...
Synchronous rectal adenocarcinoma and anal canal adenocarcinoma
Institute of Scientific and Technical Information of China (English)
GU Jin; LI Jiyou; YAO Yunfeng; LU Aiping; WANG Hongyi
2007-01-01
It is difficult to distinguish a tectal carcinoma with anal metastases from coexistent synchronous anorectal carcinomas.The therapeutic strategy for rectal and anal carcinoma is so different that it should be clearly identified.Here,we report on the case of a 63-year-old man who presented with an upper-third rectal adenocarcinoma.Five months after resection,he developed an adenocarcinoma in the anal canal.The histological slides of both tumors were reviewed and immunohistochemical studies for cytokeratins(CKs)7 and 20 were performed.The index tumor demonstrated CK 7-/CK 20+and the second showed CK7+/CK20+.For this reason,we believe the present case had synchronous adenocarcinomas arising from anal canal and the rectum separately.It is very important to difierentiate the anorectal lesions pathologically because of the impact on the therapeutic options available,especially for the lesion arising in the anal canal.
Development of Time Synchronized Wireless Sensor Network
Uchimura, Yutaka; Takahashi, Motoichi; Nasu, Tadashi
Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. It enables consistency on common clock among different wireless nodes. We describe the accuracy evaluation by simulation studies when the size of nodes increased. The hardware and software specifications of the developed wireless sensing system are shown. The experiments were conducted in a three-street reinforced concrete building and results showed the system performs more than sufficiently.
Synchronous and Cogged Fan Belt Performance Assessment
Energy Technology Data Exchange (ETDEWEB)
Cutler, D.; Dean, J.; Acosta, J.
2014-02-01
The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.
Synchronous imaging of coherent plasma fluctuations
Haskey, S. R.; Thapar, N.; Blackwell, B. D.; Howard, J.
2014-03-01
A new method for imaging high frequency plasma fluctuations is described. A phase locked loop and field programmable gate array are used to generate gating triggers for an intensified CCD camera. A reference signal from another diagnostic such as a magnetic probe ensures that the triggers are synchronous with the fluctuation being imaged. The synchronous imaging technique allows effective frame rates exceeding millions per second, good signal to noise through the accumulation of multiple exposures per frame, and produces high resolution images without generating excessive quantities of data. The technique can be used to image modes in the MHz range opening up the possibility of spectrally filtered high resolution imaging of MHD instabilities that produce sufficient light fluctuations. Some examples of projection images of plasma fluctuations on the H-1NF heliac obtained using this approach are presented here.
Another look at synchronized neutrino oscillations
Akhmedov, Evgeny
2016-01-01
In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena -- synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.
Another look at synchronized neutrino oscillations
Akhmedov, Evgeny; Mirizzi, Alessandro
2016-07-01
In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena - synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.
Synchronization of Intermittently Coupled Dynamical Networks
Directory of Open Access Journals (Sweden)
Gang Zhang
2013-01-01
Full Text Available This paper investigates the synchronization phenomenon of an intermittently coupled dynamical network in which the coupling among nodes can occur only at discrete instants and the coupling configuration of the network is time varying. A model of intermittently coupled dynamical network consisting of identical nodes is introduced. Based on the stability theory for impulsive differential equations, some synchronization criteria for intermittently coupled dynamical networks are derived. The network synchronizability is shown to be related to the second largest and the smallest eigenvalues of the coupling matrix, the coupling strength, and the impulsive intervals. Using the chaotic Chua system and Lorenz system as nodes of a dynamical network for simulation, respectively, the theoretical results are verified and illustrated.
Kinetic characteristic for a synchronal rotary compressor
Institute of Scientific and Technical Information of China (English)
Qu Zongchang; Feng Jianmei; Zhou Hui; Yang Hua
2007-01-01
An angular speed, acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed. The calculation formulae of revolving speed of cylinder and relative speed between the cylinder and bladed rotor are deduced detailedly in this paper. The variation of tangential speed and cylinder acceleration with angular position is investigated for a complete cycle. And some key parameters affected the relative speed are found out, viz, the relative speed depends on the radius of the cylinder and rotary speed of the axis, and the ratio of the cylinder to bladed rotor has not too much influence. It is the theoretic basis of designing and optimizing of structure characteristic of a synchronal rotary compressor. Also a computing formula of leakage related with rotary speed is deduced. It could supply
Efficient Distribution of Triggered Synchronous Block Diagrams
2011-10-21
called a trigger. At a given synchronous step, if the trigger is true , the block fires normally; otherwise, the block stutters , that is, keeps its...outputs have the same value as in the previous step, but they are still transmitted to downstream blocks. In this paper we present an implementation...optimizations that apply to general Triggered SBDs, we also present further optimizations for the case of Timed SBDs. 1.1 Motivating Examples Fig. 1
An Efficient Synchronization Method for Wireless Networks
2013-06-01
at random with which to perform pair-wise synchronizations. Some protocols build routing tables first, using gossip protocols solely to bootstrap to a...Ra, and H. Kim, “Performance study of ad hoc routing protocols with gossip -based approach,” in Proceedings of the 2009 Spring Simulation... Gossip -based ad hoc routing ,” pp. 1707–1716, 2002. 11. J. Wieselthier, G. Nguyen, and A. Ephremides, “On the construction of energy-efficient
Phase synchronization of instrumental music signals
Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Bhattacharya, D. K.
2014-06-01
Signal analysis is one of the finest scientific techniques in communication theory. Some quantitative and qualitative measures describe the pattern of a music signal, vary from one to another. Same musical recital, when played by different instrumentalists, generates different types of music patterns. The reason behind various patterns is the psycho-acoustic measures - Dynamics, Timber, Tonality and Rhythm, varies in each time. However, the psycho-acoustic study of the music signals does not reveal any idea about the similarity between the signals. For such cases, study of synchronization of long-term nonlinear dynamics may provide effective results. In this context, phase synchronization (PS) is one of the measures to show synchronization between two non-identical signals. In fact, it is very critical to investigate any other kind of synchronization for experimental condition, because those are completely non identical signals. Also, there exists equivalence between the phases and the distances of the diagonal line in Recurrence plot (RP) of the signals, which is quantifiable by the recurrence quantification measure τ-recurrence rate. This paper considers two nonlinear music signals based on same raga played by two eminent sitar instrumentalists as two non-identical sources. The psycho-acoustic study shows how the Dynamics, Timber, Tonality and Rhythm vary for the two music signals. Then, long term analysis in the form of phase space reconstruction is performed, which reveals the chaotic phase spaces for both the signals. From the RP of both the phase spaces, τ-recurrence rate is calculated. Finally by the correlation of normalized tau-recurrence rate of their 3D phase spaces and the PS of the two music signals has been established. The numerical results well support the analysis.
Reversible thyristor converters of brushless synchronous compensators
Directory of Open Access Journals (Sweden)
А.М.Galynovskiy
2013-12-01
Full Text Available Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.
Clustering and synchronization with positive Lyapunov exponents
Mendes, R V
1998-01-01
Clustering and correlation effects are frequently observed in chaotic systems in situations where, because of the positivity of the Lyapunov exponents, no dimension reduction is to be expected. In this paper, using a globally coupled network of Bernoulli units, one finds a general mechanism by which strong correlations and slow structures are obtained at the synchronization edge. A structure index is defined, which diverges at the transition points. Some conclusions are drawn concerning the construction of an ergodic theory of self-organization.
Primitives for Contract-based Synchronization
Directory of Open Access Journals (Sweden)
Massimo Bartoletti
2010-10-01
Full Text Available We investigate how contracts can be used to regulate the interaction between processes. To do that, we study a variant of the concurrent constraints calculus presented in [1], featuring primitives for multi-party synchronization via contracts. We proceed in two directions. First, we exploit our primitives to model some contract-based interactions. Then, we discuss how several models for concurrency can be expressed through our primitives. In particular, we encode the pi-calculus and graph rewriting.
Effects of Mismatched Parameter on Chaotic Synchronization
Institute of Scientific and Technical Information of China (English)
PENGJiang-hua; FANGJin-qing
2003-01-01
Chaos-based security communication has become one of the most interesting hot subjects for research of chaotic theory in real world since. In recent years, secure communication via synchronized chaos has been intensely studied. However, in practical application it is difficult to construct two complete identical chaotic systems since there are many reasons to induce parameter mismatch between two systems (response system and drive system).
Primitives for Contract-based Synchronization
Bartoletti, Massimo; 10.4204/EPTCS.38.8
2010-01-01
We investigate how contracts can be used to regulate the interaction between processes. To do that, we study a variant of the concurrent constraints calculus presented in [1], featuring primitives for multi-party synchronization via contracts. We proceed in two directions. First, we exploit our primitives to model some contract-based interactions. Then, we discuss how several models for concurrency can be expressed through our primitives. In particular, we encode the pi-calculus and graph rewriting.
Noise Effects on Synchronized Globally Coupled Oscillators
Moro, Esteban; Sánchez, Angel
1998-01-01
The synchronized phase of globally coupled identical nonlinear oscillators subject to noise fluctuations is studied by means of a new analytical approach able to tackle general couplings, nonlinearities, and noise temporal correlations. Our results show that the interplay between coupling and noise modi es the e ective frequency of the system in a nontrivial way. Whereas for linear couplings the e ect of noise is always to increase the e ective frequency, for nonlinear coupling...
Connectivity and synchronization of Vicsek model
Institute of Scientific and Technical Information of China (English)
LIU ZhiXin; GUO Lei
2008-01-01
The collective behavior of multi-agent systems is an important studying point for the investigation of complex systems,and a basic model of multi-agent systems is the so called Vicsek model,which possesses some key features of complex systems,such as dynamic behavior,local interaction,changing neighborhood,etc.This model looks simple,but the nonlinearly coupled relationship makes the theoretical analysis quite complicated.Jadbabaie et al.analyzed the linearized heading equations in this model and showed that all agents will synchronize eventually,provided that the neighbor graphs associated with the agents' positions satisfy a certain connectivity condition.Much subsequent research effort has been devoted to the analysis of the Vicsek model since the publication of Jadbabaie's work.However,an unresolved key problem is when such a connectivity is satisfied.This paper given a sufficient condition to guarantee the synchronization of the Vicsek model,which is imposed on the model parameters only.Moreover,some counterexamples are given to show that the connectivity of the neighbor graphs is not sufficient for synchronization of the Vicsek model if the initial headings are allowed to be in [0,2π),which reveals some fundamental differences between the Vicsek model and its linearized version.
Interplay of degree correlations and cluster synchronization
Jalan, Sarika; Kumar, Anil; Zaikin, Alexey; Kurths, Jürgen
2016-12-01
We study the evolution of coupled chaotic dynamics on networks and investigate the role of degree-degree correlation in the networks' cluster synchronizability. We find that an increase in the disassortativity can lead to an increase or a decrease in the cluster synchronizability depending on the degree distribution and average connectivity of the network. Networks with heterogeneous degree distribution exhibit significant changes in cluster synchronizability as well as in the phenomena behind cluster synchronization as compared to those of homogeneous networks. Interestingly, cluster synchronizability of a network may be very different from global synchronizability due to the presence of the driven phenomenon behind the cluster formation. Furthermore, we show how degeneracy at the zero eigenvalues provides an understanding of the occurrence of the driven phenomenon behind the synchronization in disassortative networks. The results demonstrate the importance of degree-degree correlations in determining cluster synchronization behavior of complex networks and hence have potential applications in understanding and predicting dynamical behavior of complex systems ranging from brain to social systems.
The synchronous active neutron detection assay system
Energy Technology Data Exchange (ETDEWEB)
Pickrell, M.M.; Kendall, P.K.
1994-08-01
We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.
Synchronization in multicell systems exhibiting dynamic plasticity
Indian Academy of Sciences (India)
C Suguna; Somdatta Sinha
2008-08-01
Collective behaviour in multicell systems arises from exchange of chemicals/signals between cells and may be different from their intrinsic behaviour. These chemicals are products of regulated networks of biochemical pathways that underlie cellular functions, and can exhibit a variety of dynamics arising from the non-linearity of the reaction processes. We have addressed the emergent synchronization properties of a ring of cells, diffusively coupled by the end product of an intracellular model biochemical pathway exhibiting non-robust birhythmic behaviour. The aim is to examine the role of intercellular interaction in stabilizing the non-robust dynamics in the emergent collective behaviour in the ring of cells. We show that, irrespective of the inherent frequencies of individual cells, depending on the coupling strength, the collective behaviour does synchronize to only one type of oscillations above a threshold number of cells. Using two perturbation analyses, we also show that this emergent synchronized dynamical state is fairly robust under external perturbations. Thus, the inherent plasticity in the oscillatory phenotypes in these model cells may get suppressed to exhibit collective dynamics of a single type in a multicell system, but environmental influences can sometimes expose this underlying plasticity in its collective dynamics.
Pulse Ejection Presentation System Synchronized with Breathing
Kadowaki, Ami; Sato, Junta; Ohtsu, Kaori; Bannai, Yuichi; Okada, Kenichi
Trials on transmission of olfactory information together with audio/visual information are currently being conducted in the field of multimedia. However, continuous emission of scents in high concentration creates problems of human adaptation and remnant odors in air. To overcome such problems we developed an olfactory display in conjunction with Canon Inc. This display has high emission control in the ink-jet so that it can provide stable pulse emission of scents. Humans catch a scent when they breathe in and inhale smell molecules in air. Therefore, it is important that the timing of scent presentation is synchronized with human breathing. We also developed a breath sensor which detects human inspiration. In this study, we combined the olfactory display with the breath sensor to make a pulse ejection presentation system synchronized the breath. The experimental evaluation showed that the system had more than 90 percent of detection rate. Another evaluation was held at KEIO TECHNO-MALL 2007. From questionnaire results of the participants, we found that the system made the user feel continuous sense of smell avoiding adaptation. It is expected that our system enables olfactory information to be synchronized with audio/visual information in arbitrary duration at any time.
Synchronization of Two Self-Synchronous Vibrating Machines on an Isolation Frame
Directory of Open Access Journals (Sweden)
Chunyu Zhao
2011-01-01
Full Text Available This paper investigates synchronization of two self-synchronous vibrating machines on an isolation rigid frame. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the disturbance parameters for the angular velocities of the four unbalanced rotors. Then the stability problem of synchronization for the four unbalanced rotors is converted into the stability problems of two generalized systems. One is the generalized system of the angular velocity disturbance parameters for the four unbalanced rotors, and the other is the generalized system of three phase disturbance parameters. The condition of implementing synchronization is that the torque of frequency capture between each pair of the unbalanced rotors on a vibrating machine is greater than the absolute values of the output electromagnetic torque difference between each pair of motors, and that the torque of frequency capture between the two vibrating machines is greater than the absolute value of the output electromagnetic torque difference between the two pairs of motors on the two vibrating machines. The stability condition of synchronization of the two vibrating machines is that the inertia coupling matrix is definite positive, and that all the eigenvalues for the generalized system of three phase disturbance parameters have negative real parts. Computer simulations are carried out to verify the results of the theoretical investigation.
Atypical neural synchronization to speech envelope modulations in dyslexia.
De Vos, Astrid; Vanvooren, Sophie; Vanderauwera, Jolijn; Ghesquière, Pol; Wouters, Jan
2017-01-01
A fundamental deficit in the synchronization of neural oscillations to temporal information in speech could underlie phonological processing problems in dyslexia. In this study, the hypothesis of a neural synchronization impairment is investigated more specifically as a function of different neural oscillatory bands and temporal information rates in speech. Auditory steady-state responses to 4, 10, 20 and 40Hz modulations were recorded in normal reading and dyslexic adolescents to measure neural synchronization of theta, alpha, beta and low-gamma oscillations to syllabic and phonemic rate information. In comparison to normal readers, dyslexic readers showed reduced non-synchronized theta activity, reduced synchronized alpha activity and enhanced synchronized beta activity. Positive correlations between alpha synchronization and phonological skills were found in normal readers, but were absent in dyslexic readers. In contrast, dyslexic readers exhibited positive correlations between beta synchronization and phonological skills. Together, these results suggest that auditory neural synchronization of alpha and beta oscillations is atypical in dyslexia, indicating deviant neural processing of both syllabic and phonemic rate information. Impaired synchronization of alpha oscillations in particular demonstrated to be the most prominent neural anomaly possibly hampering speech and phonological processing in dyslexic readers.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W. C.; Cao, Jinde
2015-01-01
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results. PMID:26315380
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde
2015-01-01
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.
Energy Technology Data Exchange (ETDEWEB)
Melfi, Michael J.
2015-10-20
A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.
Synchronization of magnetic dipole rotation in an ac magnetic field
Energy Technology Data Exchange (ETDEWEB)
Belovs, M; Cebers, A, E-mail: aceb@tesla.sal.lv [University of Latvia, Zellu-8, Riga, LV-1002 (Latvia)
2011-07-22
The synchronization of the rotation of magnetic dipoles due to weak dipolar interactions is studied. The set of equations is analyzed by the time averaging technique. It is found that dipoles synchronously oscillate at low applied fields and rotate synchronously at large applied fields. The mean angular velocity of synchronous rotation increases with the field strength and reaches a constant value equal to the angular frequency of the field above the critical value of the field strength. The critical value of the field strength above which the synchronous rotation takes place can be calculated from dimensionless parameters using a model derived from first principles by others. The values thus obtained are in good agreement with the values we obtain from a numerical simulation. Thus, we may conclude that the liquid flow observed in these systems may be caused by synchronized rotations of the dipoles.
Synchronicity, Instant Messaging and Performance among Financial Traders
Saavedra, Serguei; Uzzi, Brian; 10.1073/pnas.1018462108
2011-01-01
Successful animal systems often manage risk through synchronous behavior that spontaneously arises without leadership. In critical human systems facing risk, such as financial markets or military operations, our understanding of the benefits associated to synchronicity is nascent but promising. Building on previous work illuminating commonalities between ecological and human systems, we compare the activity patterns of individual financial traders with the simultaneous activity of other traders---an individual and spontaneous characteristic we call synchronous trading. Additionally, we examine the association of synchronous trading with individual performance and communication patterns. Analyzing empirical data on day traders' second-to-second trading and instant messaging, we find that the higher the traders' synchronous trading, the less likely they lose money at the end of the day. We also find that the daily instant messaging patterns of traders are closely associated with their level of synchronous tradi...
Fast synchronization scheme for SMCC + system with lower SNR
Institute of Scientific and Technical Information of China (English)
Luo Renze; Wang Ruyan; Cheng Xiantao; Zhu Weile
2005-01-01
Synchronization with lower SNR hadn't been considered by the conventional publications. Based on the Synchronized multi-carrier CDMA plus (SMCC + ) system, which is one of the candidate schemes of digital terrestrial TV broadcasting (DTTB) standard in China, a scheme under lower SNR with one short training sequence and one Barker code group, which were constructed in time domain. Computer simulation results show that the timing estimator here is designed to avoid the ambiguity which occured in Tufvesson's timing synchronization method. The 99.9% correct timing synchronization probability and lower false probability are got in AWGN and Rayleigh fading channels with SNR under -20 dB, and the optimum properties of frequency synchronization are obtained at the same time. It is shown that the proposed scheme is much better than the conventional synchronization methods.
Multiswitching combination–combination synchronization of chaotic systems
Indian Academy of Sciences (India)
AYUB KHAN; DINESH KHATTAR; NITISH PRAJAPATI
2017-03-01
In this paper, a novel synchronization scheme is investigated for a class of chaotic systems. Themultiswitching synchronization scheme is extended to the combination–combination synchronization scheme such that the combination of state variables of two drive systems synchronize with different combination of state variables of two response systems, simultaneously. The new scheme, multiswitching combination–combination synchronization (MSCCS), is a notable extension of the earlier multiswitching schemes concerning only the single drive–response system model. Various multiswitching modified projective synchronization schemes are obtained as special cases of MSCCS, for a suitable choice of scaling factors. Suitable controllers have been designed and using Lyapunov stability theory sufficient condition is obtained to achieve MSCCS between four hyperchaotic systems and the corresponding theoretical proof is given. Numerical simulations are performed to validate the theoretical results.
Exact synchronization bound for coupled time-delay systems
Senthilkumar, D. V.; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J.
2013-04-01
We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.
Phase and Complete Synchronizations in Time-Delay Systems
Senthilkumar, D. V.; Manju Shrii, M.; Kurths, J.
2013-01-01
Synchronization is a fundamental nonlinear phenomenon that has been intensively investigated during a couple of decades. Recently, synchronization of time-delay systems with or without delay coupling and even synchronization of low-dimensional dynamical systems described by ordinary differential equations and maps with delay coupling have become an active area of research in view of its potential applications. In this article, we provide an overview of our recent results on phase synchronization in time-delay systems, which usually exhibits hyperchaotic attractors with complex topological properties, noise-enhanced phase and noise-induced complete synchronizations in time-delay systems. Further, we demonstrate the phenomena of delay-enhanced and delay-induced stable synchronous chaos in a delay coupled network of time continuous dynamical system using the framework of master stability formalism (MSF) for the first time.
Fixed-time synchronization of multi-links complex network
Zhao, Hui; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zheng, Mingwen
2017-01-01
In the paper, the fixed-time and finite-time synchronizations of multi-links complex network are investigated. Compared with finite-time synchronization, the settling time of fixed-time synchronization is independent of initial conditions. For uncertain multi-links complex networks, this paper further analyzes synchronization mechanism and unknown parameters based on the drive-response concept and finite-time stability theory. Novel synchronization control criteria and the result of parameters identification are, respectively, obtained in a finite time by utilizing Lyapunov function and linear matrix inequality (LMI). Besides, we give other two versions of finite-time synchronization and parameters identification for uncertain multi-links complex network with impulsive control input. Finally, numerical examples are given to illustrate the effectiveness of our theoretical results.
Explosive or Continuous: Incoherent state determines the route to synchronization
Xu, Can; Gao, Jian; Sun, Yuting; Huang, Xia; Zheng, Zhigang
2015-07-01
Abrupt and continuous spontaneous emergence of collective synchronization of coupled oscillators have attracted much attention. In this paper, we propose a dynamical ensemble order parameter equation that enables us to grasp the essential low-dimensional dynamical mechanism of synchronization in networks of coupled oscillators. Different solutions of the dynamical ensemble order parameter equation build correspondences with diverse collective states, and different bifurcations reveal various transitions among these collective states. The structural relationship between the incoherent state and the synchronous state leads to different routes of transitions to synchronization, either continuous or discontinuous. The explosive synchronization is determined by the bistable state where the measure of each state and the critical points are obtained analytically by using the dynamical ensemble order parameter equation. Our method and results hold for heterogeneous networks with star graph motifs such as scale-free networks, and hence, provide an effective approach in understanding the routes to synchronization in more general complex networks.
External synchronization of two dynamical systems with uncertain parameters
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
External synchronization is addressed as two or more dynamical systems with synchronous motions,which is also regarded as master-slave system.In this paper,two dynamical systems,one employs a hysteretic term to model the friction phenomenon,the other involves a hardening stiffness component with the third order of displacement due to flexible deformation,are controlled to converge to the same trajectory.The control strategy is extended from feedback control for all parameters known to adaptive control for linear parameters unknown and all parameters unknown.The slave system can keep synchronous motions with the movements of master via the designed control strategy even all the parameters are not known.The stability of synchronization error,the transient process into synchronization and the effects of parameters on the designed controller using different control strategies are investigated.The simulation results unfold the feasibility and effectiveness of this synchronization method.
Synchronous dual malignancy: Successfully treated cases
Directory of Open Access Journals (Sweden)
Agrawal Rashi
2007-01-01
Full Text Available The occurrence of a second malignancy in a patient with a known malignant tumour is not uncommon. Synchronous primary malignancies are still unusual We are presenting two cases treated successfully at our centre. Case report 1-A 70 year old female presented to us with lump in right breast for two years and bleeding per vaginum for two years.Histopathology of cervix showed squamous cell carcinoma (large cell non keratinizing and clinical stage was IIIB. HPE mastectomy specimen showed infiltrating duct carcinoma and stage II. Patient was treated with external beam radiotherapy for carcinoma cervix and breast simultaneously and chemotherapy as required. Patient is on regular follow up and clinically no evidence of disease. Case Report 2 -A 40 year old female presented with mild headache off and on for one year, projectile vomiting for three months and right side facial swelling for three months. HPE brain tissue showed astrocytoma grade II and HPE parotid tumour showed low grade muco-epidermoid carcinoma. Patient was treated with surgery first then radiotherapy. Patient is in regular follow up,having no complain,clinically no neurological dysfunction and no evidence of disease at right parotid and neck region. Thus it was concluded that patients responded well to treatment. Treatment strategies in case of synchronous double malignancy depend on treating the malignancy that is more advanced first or sometimes both could be treated simultaneously. In our case we concluded that synchronous double malignancy may be treated successfully. Both sites should be treated fully as if they were occurring separately considering toxicities.
Leader emergence through interpersonal neural synchronization.
Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming
2015-04-07
The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader-follower (LF) pairs was higher than that for the follower-follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders' communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time.
Synchronous monitoring of muscle dynamics and electromyogram
Zakir Hossain, M.; Grill, Wolfgang
2011-04-01
A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.
Synchronization of P Systems with Simplex Channels
Ipate, Florentin; Niculescu, Ionut-Mihai; Stefan, Cristian
2011-01-01
We solve the Firing Squad Synchronization Problem (FSSP), for P systems based on digraphs with simplex channels, where communication is restricted by the direction of structural arcs. Previous work on FSSP for P systems focused exclusively on P systems with duplex channels, where communication between parents and children is bidirectional. Our P solution, the first for simplex channels, requires cell IDs, strongly connected digraphs and some awareness of the local topology (such as each cell's outdegree)---we argue that these requirements are necessary. Compared to the known solutions for cellular automata, our solution is substantially simpler and faster.
Atmospheric dynamics of tidally synchronized extrasolar planets.
Cho, James Y-K
2008-12-13
Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.
Feedback control and synchronization of Mandelbrot sets
Institute of Scientific and Technical Information of China (English)
Zhang Yong-Ping
2013-01-01
The movement of a particle could be depicted by the Mandelbrot set from the fractal viewpoint.According to the requirement,the movement of the particle needs to show different behaviors.In this paper,the feedback control method is taken on the classical Mandelbrot set.By amending the feedback item in the controller,the control method is applied to the generalized Mandelbrot set and by taking the reference item to be the trajectory of another system,the synchronization of Mandelbrot sets is achieved.
Availability Analysis for High Voltage Synchronous Motor
Institute of Scientific and Technical Information of China (English)
DING Jin-hua; Erland Olsson; ZHOU Rong
2004-01-01
The operating experience data for 34 motors running for approximately 15 years in paper plants are collected. According to the data set, the reliability and availability characteristics of a highvoltage synchronous motor are analyzed based on the Markov Model. The unit or subsystem main rotor with windings in the motor system is more important for the motor system's availability, though its failure rate is lower compared to other units. Preventive maintenance is first introduced as a state in the markov Model for the motor system.
AN OPTIMIZED GLOBAL SYNCHRONIZATION ON SDDCN
Directory of Open Access Journals (Sweden)
M.SHARANYA
2010-12-01
Full Text Available The complex networks have been gaining increasing research attention because of their potential applications in many real-worldsystems from a variety of fields such as biology, social systems, linguistic networks, and technological systems. In this paper, the problem of stochastic synchronization analysis is investigated for a new array of coupled discrete time stochastic complex networks with randomly occurred nonlinearities (RONs and time delays. The discrete-time complex networks under consideration are subject to: 1 stochastic nonlinearities that occur according to the Bernoulli distributed white noise sequences; 2 stochastic disturbances that enter the coupling term, the delayed coupling term as well as the overall network; and 3 time delays that include both the discrete and distributed ones. Note that the newly introduced RONsand the multiple stochastic disturbances can better reflect the dynamical behaviors of coupled complex networks whose information transmission process is affected by a noisy environment. By constructing a novel Lyapunov-like matrix functional, the idea of delay fractioning is applied to deal with the addressed synchronization analysis problem. By employing a combination of the linear matrix inequality (LMI techniques, thefree-weighting matrix method and stochastic analysis theories, several delay-dependent sufficient conditions are obtained which ensure the asymptotic synchronization in the mean square sense for the discrete-time stochastic complex networks with time delays. The criteria derived are characterized in terms of LMIs whose solution can be solved by utilizing the standard numerical software. While these solvers are significantly faster than classical convex optimization algorithms, it should be kept in mind that the complexity of LMI computations remains higher than that of solving, say, a Riccati equation. For instance, problems with a thousand design variables typically take over an hour on today
Synchronized ion acceleration by ultraintense slow light
Brantov, A V; Kovalev, V F; Bychenkov, V Yu
2015-01-01
An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D PIC simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.
Static analysis of synchronism deployable antenna
Institute of Scientific and Technical Information of China (English)
GUAN Fu-ling; SHOU Jian-jun; HOU Guo-yong; ZHANG Jing-jie
2006-01-01
A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This antenna consists oftetrahedral elements from central element. Because there are springs at the ends of some of the rods, spider joints are applied. For analysis purpose, the structure is simplified and modelled by using 2D beam elements that have no bending stiffness. Displacement vectors are defined to include two translational displacements and one torsional displacement. The stiffness matrix derived by this method is relatively simple and well defined. The analysis results generated by using software developed by our research group agreed very well with available test data.
Encryption key distribution via chaos synchronization
Keuninckx, Lars; Soriano, Miguel C.; Fischer, Ingo; Mirasso, Claudio R.; Nguimdo, Romain M.; Van der Sande, Guy
2017-01-01
We present a novel encryption scheme, wherein an encryption key is generated by two distant complex nonlinear units, forced into synchronization by a chaotic driver. The concept is sufficiently generic to be implemented on either photonic, optoelectronic or electronic platforms. The method for generating the key bitstream from the chaotic signals is reconfigurable. Although derived from a deterministic process, the obtained bit series fulfill the randomness conditions as defined by the National Institute of Standards test suite. We demonstrate the feasibility of our concept on an electronic delay oscillator circuit and test the robustness against attacks using a state-of-the-art system identification method. PMID:28233876
Automatic Mode Switch (AMS Causes Less Synchronization
Directory of Open Access Journals (Sweden)
Jorat
2016-03-01
Full Text Available Introduction Cardiac resynchronization devices are part of modern heart failure management. After implantation, we analyze and program devices in an attempt to ensure their success. Biventricular pacing should be 98% or more for the lowest mortality and best symptom improvement. Case Presentation In this case series, we present a combination of far field sensing and automatic mode switching (AMS in six patients. It is found that this combination causes ventricular sensing (VS episodes with wide QRS and no synchronization. We turn off the AMS and alleviate the problem. Conclusions Switching AMS off may increase biventricular pacing in some patients.
Bioreactor and methods for producing synchronous cells
Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)
2005-01-01
Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.
High Speed Frame Synchronization and Viterbi Decoding
DEFF Research Database (Denmark)
Paaske, Erik; Justesen, Jørn; Larsen, Knud J.
1996-01-01
The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also, th...... implementation uses a number of commercially available decoders while the the two others are completely new implementations aimed at ASICs, one for a data date of 75 Mbit/s and the second for a data rate of 150 Mbits/s....
Lorentz gauge quantization in synchronous coordinates
Garner, Christopher
2016-01-01
It has been shown that the Gupta-Bleuler method of quantization can be used to impose the Lorentz gauge condition in static space-times but not in cosmological space-times. This implies that the Gupta-Bleuler approach fails in general in non-static space-times. More recently, however, the Dirac method of quantizing constrained dynamical systems has been successfully employed to impose the Lorentz gauge in conformally flat space-times. In this paper we generalize this result by using Dirac's method to impose the Lorentz gauge in a general space-time region where the metric is expressed in synchronous coordinates.
Stabilization and synchronization of networked mechanical systems
Nair, Sujit S.
The main theme of this thesis is coordination and stabilization of a network of mechanical systems or rigid bodies to achieve synchronized behaviour. The idea is to use controls derived from potentials to couple the systems such that the closed-loop system is also a mechanical system with a Lagrangian structure. This permits the closed-loop Hamiltonian to be used as a Lyapunov function for stability analysis. It is a big challenge to develop a provable, systematic methodology to control and coordinate a network of systems to perform a given task. The control law should be robust enough to handle environment uncertainties, avoid obstacles and collisions and keep the system formation going. The fact that these systems may even have unstable dynamics makes the problem even more interesting and exciting both from a theoretical and applied point of view. This work investigates the coordination problem when each individual system has its own (maybe unstable) dynamics; this distinguishes this work from many other recent works on coordination control where the individual system dynamics are assumed to be single/double integrators. We build coordination techniques for three kinds of systems. The first one consists of underactuated Lagrangian systems with Abelian symmetry groups lacking gyroscopic forces. Asymptotic stabilization is proved for two cases, one which yields convergence to synchronized motion restricted to a constant momentum surface and one in which the system converges asymptotically to a relative equilibrium. Next we consider rigid body systems where the configuration space of each individual body is the non Abelian Lie group SO(3) or SE(3). In the SO(3) case, the asymptotically stabilized solution corresponds to each rigid body rotating about its unstable middle axis and all the bodies synchronized and pointing in a particular direction in inertial space. In the SE(3) case, the asymptotically stabilized solution corresponds to each rigid body rotating about
Secure communication by generalized chaotic synchronization
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Chaotic communication is a rather new and active field of research. Although it is expected to have promising advantages,some investigators provide evidences that chaotic communication is not safety. This letter provides a new chaotic secure communi-cation scheme based on a generalized synchronization theory of coupled system. The secret message hidden in the chaotic sourcesignal generated via the scheme is very difficult to be unmasked by so-called nonlinear dynamic forecasting technique. One examplefor Internet communications was presented to illustrate the security of our scheme.
Synchronous Fibrolamellar Hepatocellular Carcinoma and Auricular Myxoma
Directory of Open Access Journals (Sweden)
Yessica M. González-Cantú
2015-01-01
Full Text Available Synchronic occurrence of benign and malignant tumors is extremely rare. Fibrolamellar hepatocellular carcinoma represents 1% to 2% of all hepatocarcinomas, while myxomas represent about half of all the cases of primary tumors of the heart. We present the case of a 53-year-old woman with a left atrial myxoma that was surgically removed. Several weeks later, the patient returned to the hospital with abdominal pain. CT scan showed a mass in the left lobe of the liver that was resected and diagnosed as fibrolamellar hepatocellular carcinoma. As of this writing, the patient is healthy.
Synchronization of chaotic fractional-order systems via linear control
Odibat, Zaid,; Corson, Nathalie; Aziz-Alaoui, Moulay; Bertelle, Cyrille
2010-01-01
International audience; The chaotic dynamics of fractional-order systems has attracted much attention recently. Chaotic synchronization of fractional-order systems is further studied in this paper. We investigate the chaos synchronization of two identical systems via a suitable linear controller applied to the response system. Based on the stability results of linear fractional-order systems, sufficient conditions for chaos synchronization of these systems are given. Control laws are derived ...
Synchronization and coherent combining of two pulsed fiber lasers
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
We demonstrate a scalable architecture for coherent combining of pulsed fiber lasers.A new method for generating synchronous pulsed fiber lasers by direct phase modulation is proposed and investigated.It is shown that phase modulated mutually coupled laser array can be a steady synchronous pulsed fiber laser source.The synchronous pulsed fiber lasers are coherently combined with an invariable phase difference of π in adjacent lasers.Neither active phase control nor polarization control is taken in our experiment.
Drift Intermittent Synchronization and Controllability in a Simple Model
Institute of Scientific and Technical Information of China (English)
XIE Bai-Song; YU Ming-Young
2005-01-01
A simple model of three coupled oscillators as an approximation of main modes behaviors in a spatial extended system is proposed. Multi-looping generalized synchronization and drift intermittent lag phase synchronization phenomena are found in this simple model. For a certain of parameters in which chaotic-like intermittent behavior exhibit the amplitudes and phases of three modes are controlled to be synchronized states via coupling them with an external periodic mode.
An exponential polynomial observer for synchronization of chaotic systems
Mata-Machuca, J. L.; Martínez-Guerra, R.; Aguilar-López, R.
2010-12-01
In this paper, we consider the synchronization problem via nonlinear observer design. A new exponential polynomial observer for a class of nonlinear oscillators is proposed, which is robust against output noises. A sufficient condition for synchronization is derived analytically with the help of Lyapunov stability theory. The proposed technique has been applied to synchronize chaotic systems (Rikitake and Rössler systems) by means of numerical simulation.
Projective synchronization of chaotic systems with bidirectional nonlinear coupling
Indian Academy of Sciences (India)
Mohammada Ali Khan; Swarup Poria
2013-09-01
This paper presents a new scheme for constructing bidirectional nonlinear coupled chaotic systems which synchronize projectively. Conditions necessary for projective synchronization (PS) of two bidirectionally coupled chaotic systems are derived using Lyapunov stability theory. The proposed PS scheme is discussed by taking as examples the so-called unified chaotic model, the Lorenz–Stenflo system and the nonautonomous chaotic Van der Pol oscillator. Numerical simulation results are presented to show the efficiency of the proposed synchronization scheme.
Global synchronization of two parametrically excited systems using active control
Energy Technology Data Exchange (ETDEWEB)
Lei Youming [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: leiyouming@nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: weixu@nwpu.edu.cn; Shen Jianwei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Fang Tong [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)
2006-04-01
In this paper, we apply an active control technique to synchronize a kind of two parametrically excited chaotic systems. Based on Lyapunov stability theory and Routh-Hurwitz criteria, some generic sufficient conditions for global asymptotic synchronization are obtained. Illustrative examples on synchronization of two Duffing systems subject to a harmonic parametric excitation and that of two parametrically excited chaotic pendulums are considered here. Numerical simulations show the validity and feasibility of the proposed method.
Synchronization between uncertain nonidentical networks with quantum chaotic behavior
Li, Wenlin; Li, Chong; Song, Heshan
2016-11-01
Synchronization between uncertain nonidentical networks with quantum chaotic behavior is researched. The identification laws of unknown parameters in state equations of network nodes, the adaptive laws of configuration matrix elements and outer coupling strengths are determined based on Lyapunov theorem. The conditions of realizing synchronization between uncertain nonidentical networks are discussed and obtained. Further, Jaynes-Cummings model in physics are taken as the nodes of two networks and simulation results show that the synchronization performance between networks is very stable.
Synchronization analysis on cascaded multilevel converters with distributed control
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control, multi-functionality, increased reliability and short design cycles. However, the system performance will be affected due to the synchronization errors among each integrated modules. This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance, as well as detailed synchronization implementation. Some valuable conclusions are derived from the theoretical analysis, simulations and experimental results.
Function Projective Synchronization of Two Identical New Hyperchaotic Systems
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.
Fractional-order Systems and Synchronous Generator Voltage Regulator
Directory of Open Access Journals (Sweden)
Wojciech Lubośny
2015-03-01
Full Text Available Modern regulators of synchronous generators, including voltage regulators, are digital systems, in their vast majority with standard structures contained in the IEEE standard. These are systems described with stationary differential equations of integral order. Differential equations of fractional order are not employed in regulators for synchronous generator control. This paper presents an analysis of the possibilities of using a system of fractional differential equations in the voltage regulator of an synchronous generator with a static excitation system.
Adaptive Control and Synchronization of the Shallow Water Model
Directory of Open Access Journals (Sweden)
P. Sangapate
2012-01-01
Full Text Available The shallow water model is one of the important models in dynamical systems. This paper investigates the adaptive chaos control and synchronization of the shallow water model. First, adaptive control laws are designed to stabilize the shallow water model. Then adaptive control laws are derived to chaos synchronization of the shallow water model. The sufficient conditions for the adaptive control and synchronization have been analyzed theoretically, and the results are proved using a Barbalat's Lemma.
Is whole-culture synchronization biology's 'perpetual-motion machine'?
Cooper, Stephen
2004-06-01
Whole-culture or batch synchronization cannot, in theory, produce a synchronized culture because it violates a fundamental law that proposes that no batch treatment can alter the cell-age order of a culture. In analogy with the history of perpetual-motion machines, it is suggested that the study of these whole-culture 'synchronization' methods might lead to an understanding of general biological principles even though these methods cannot be used to study the normal cell cycle.
Phase Synchronization in Small World Chaotic Neural Networks
Institute of Scientific and Technical Information of China (English)
WANG Qing-Yun; LU Qi-Shao
2005-01-01
@@ To understand collective motion of realneural networks very well, we investigate collective phase synchronization of small world chaotic Hindmarsh-Rose (HR) neural networks. By numerical simulations, we conclude that small world chaotic HR neural networks can achieve collective phase synchronization. Furthermore, it is shown that phase synchronization of small world chaotic HR neural networks is dependent on the coupling strength,the connection topology (which is determined by the probability p), as well as the coupling number. These phenomena are important to guide us to understand the synchronization of real neural networks.
On the theoretical gap between synchronous and asynchronous MPC protocols
DEFF Research Database (Denmark)
Beerliová-Trubíniová, Zuzana; Hirt, Martin; Nielsen, Jesper Buus
2010-01-01
that in the cryptographic setting (with setup), the sole reason for it is the distribution of inputs: given an oracle for input distribution, cryptographically-secure asynchronous MPC is possible with the very same condition as synchronous MPC, namely t ..., we show that such an input-distribution oracle can be reduced to an oracle that allows each party to synchronously broadcast one single message. This means that when one single round of synchronous broadcast is available, then asynchronous MPC is possible at the same condition as synchronous MPC...
Synchronization in Complex Networks of Nonlinear Dynamical Systems
Wu, Chai Wah
2007-01-01
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide
Systems and methods for self-synchronized digital sampling
Samson, Jr., John R. (Inventor)
2008-01-01
Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.
Projective Synchronization Between Two Nonidentical Variable Time Delayed Systems
Institute of Scientific and Technical Information of China (English)
FENG Cun-Fang; WANG Ying-Hai
2012-01-01
In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Maekey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.
Synchronization of Modified Chua's Circuit with x|x| Function
Institute of Scientific and Technical Information of China (English)
TANG Fang; WANG Ling
2005-01-01
This paper considers the chaos synchronization of the modified Chua 's circuit with x|x| function. We firstly show that a couple of the modified Chua systems with different parameters and initial conditions can be synchronized using active control when the values of parameters both in drive system and response system are known aforehand.Furthermore, based on Lyapunov stability theory we propose an adaptive active control approach to make the states of two identical Chua systems with unknown constant parameters asymptotically synchronized. Moreover the designed controller is independent of those unknown parameters. Numerical simulations are given to validate the proposed synchronization approach.
Design and control of noise-induced synchronization patterns
Kurebayashi, Wataru; Hasegawa, Mikio; Nakao, Hiroya
2015-01-01
We propose a method for controlling synchronization patterns of limit-cycle oscillators by common noisy inputs, i.e., by utilizing noise-induced synchronization. Various synchronization patterns, including fully synchronized and clustered states, can be realized by using linear filters that generate appropriate common noisy signals from given noise. The optimal linear filter can be determined from the linear phase response property of the oscillators and the power spectrum of the given noise. The validity of the proposed method is confirmed by numerical simulations.
Comparison of Three Schemes for Intermediate Data Rate Frame Synchronization
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Based on the frame structure of intermediate data rate (IDR) modem for satellite communication, a new method for searching frame synchronization called group frame synchronization is proposed. At the same time, a candidate scheme in the classical frame synchronization and two candidate schemes in the group frame synchronization are presented, and the circuits for each scheme are designed in order to abstract the frame alignment signals from received data. Their implementation complexity and performances are also computed and given. Based on the analysis and performance comparison, a reasonable scheme is chosen and then verified through software simulation and hardware impletentation.
Specification and Verification of Multimedia Synchronization in Duration Calculus
Institute of Scientific and Technical Information of China (English)
MA HuaDong(马华东)
2003-01-01
This paper proposes a new method of specifying multimedia synchronization basedon Duration Calculus (DC), a real time interval logic, presents the completeness of the new model,and uses it to specify the temporal relations between multimedia objects. Moreover, the paperprovides a method of constructing a meta-script based on basic synchronization requirements. Someproperties of the formal specifications, including safety and liveness, are stated in DC. Furthermore,the verification of the above properties is discussed in DC semantic. Compared with other methodsfor specifying multimedia synchronization, this method is more powerful and flexible, and it is goodat specifying the quantitative properties of multimedia synchronization.
Study on Proportional Synchronization of Hyperchaotic Circuit System
Institute of Scientific and Technical Information of China (English)
JIANG De-Ping; LUO Xiao-Shu; WANG Bin-Hong; FANG Jin-Qing; JIANG Pin-Qun
2005-01-01
In this paper, the proportional synchronization between drive system and response system is achieved by using the concept of generalized synchronization. The phase space of all variables in response system can be expanded and compressed flexibly. Meanwhile, the 6-D hyperchaotic chua's circuit is considered as an illustrative example to demonstrate the effectiveness of the proposed approach. Furthermore, focusing on the shortcoming of the long transient behavior during the process of synchronization, a feedback method is adopted to shorten the transitional time of synchronization, which will provide an effective way for speeding up the transmitting velocity of code in chaotic multiple access communication.
A Realistic Cellular Automaton Model for Synchronized Traffic Flow
Institute of Scientific and Technical Information of China (English)
ZHAO Bo-Han; HU Mao-Bin; JIANG Rui; WU Qing-Song
2009-01-01
A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phaee traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.
Low Cost Time Synchronization Protocol for Wireless Sensor Network
Kim, Ki-Hyeon; Hong, Won-Kee; Kim, Hie-Cheol
A time synchronization protocol for WSN is required to compensate time discrepancy. Time discrepancy among sensor nodes inevitably happens in WSN due to several internal and external factors. In order to make WSN's own job done effectively, a time synchronization protocol should be designed to achieve low execution time and low network traffic as well as accurate synchronization. Several synchronization protocols have been proposed to provide accurate time synchronization but do not consider execution time and network traffic for time synchronization. This paper proposes MNTP; it provides rapid and accurate time synchronization in multi-hop communication range. It presents a new broadcast scheme and time stamping mechanism to achieve low execution time and low network traffic along with accurate synchronization. Evaluation results show that MNTP improves synchronization accuracy up to 22% in single-hop and 51% in multi-hop respectively. MNTP also has 67 times and 58 times lower execution time and network traffic when 300 nodes are deployed in 20 × 20m2 sensor field.
BEACON SYNCHRONIZATION TECHNOLOGY FOR “BEIDOU” TERRESTRIAL IMPROVEMENT SYSTEM
Institute of Scientific and Technical Information of China (English)
WEIJin-chen; TANGJi-qiang; SHENFeng
2005-01-01
Synchronization is an essential technology in the radio navigation system. The technique for improving the “Beidou” positioning ability is presented through constituting the terrestrial improvement system, and the beacon synchronization of the improvement system with the “Beidou” one-way time transfer model is realized.The direct digital synthesis (DDS) is adopted to generate the pseudo-random code clock having high precision and stability. Meanwhile, the CPLD device is used to design the synchronization pulse picking-up module, the spread spectrum PN code generator and the spread spectrum modulator. Measurement results indicate that the beacon synchronization has the high precision and the stability.
Impulsive Cluster Synchronization in Community Network with Nonidentical Nodes
Institute of Scientific and Technical Information of China (English)
邓丽萍; 吴召艳
2012-01-01
In this paper,cluster synchronization in community network with nonidentical nodes and impulsive effects is investigated.Community networks with two kinds of topological structure are investigated.Positive weighted network is considered first and external pinning controllers are designed for achieving cluster synchronization.Cooperative and competitive network under some assumptions is investigated as well and can achieve cluster synchronization with only impulsive controllers.Based on the stability analysis of impulsive differential equation and the Lyapunov stability theory,several simple and useful synchronization criteria are derived.Finally,numerical simulations are provided to verify the effectiveness of the derived results.
Remote synchronization reveals network symmetries and functional modules
Nicosia, Vincenzo; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito
2012-01-01
We study a Kuramoto model in which the oscillators are associated to the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.
Intermittent lag synchronization in a driven system of coupled oscillators
Indian Academy of Sciences (India)
Alexander N Pisarchik; Rider Jaimes-Reátegui
2005-04-01
We study intermittent lag synchronization in a system of two identical mutually coupled Duffing oscillators with parametric modulation in one of them. This phenomenon in a periodically forced system can be seen as intermittent jump from phase to lag synchronization, during which the chaotic trajectory visits a periodic orbit closely. We demonstrate different types of intermittent lag synchronizations, that occur in the vicinity of saddle-node bifurcations where the system changes its dynamical state, and characterize the simplest case of period-one intermittent lag synchronization.
Projective Synchronization in Time-Delayed Chaotic Systems
Institute of Scientific and Technical Information of China (English)
FENG Cun-Fang; ZHANG Yan; WANG Ying-Hai
2006-01-01
For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous wort, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinite-dimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay-differential equations related to optical bistability. Numerical simulations fully support the analytical approach.
Synchronization of generalized Henon map by using adaptive fuzzy controller
Xue Yue Ju
2003-01-01
In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization.
Partial synchronization of different chaotic oscillators using robust PID feedback
Energy Technology Data Exchange (ETDEWEB)
Aguilar-Lopez, Ricardo [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco, 02200 Mexico, D.F. (Mexico)]. E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)]. E-mail: rguerra@ctrl.cinvestav.mx
2007-07-15
This work deals with the partial synchronization problem of two different chaotic oscillators considering model uncertainties in the slave system via control approach. The slave system is forced to follow the master signal via a linearizing controller based on model uncertainty reconstructor which leads to proportional-integral-derivative (PID) control structure. This reconstructor is related with a proportional-derivative (PD) reduced-order observer, it would be considered as a sub-slave system for the original slave of the synchronization procedure. The asymptotic performance of the synchronization methodology is proven via the dynamic of the synchronization error. Numerical experiment illustrates the closed-loop behavior of the proposed methodology.
Time Optimal Synchronization Procedure and Associated Feedback Loops
Angoletta, Maria Elena; CERN. Geneva. ATS Department
2016-01-01
A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.
Online Dynamic Parameter Estimation of Synchronous Machines
West, Michael R.
Traditionally, synchronous machine parameters are determined through an offline characterization procedure. The IEEE 115 standard suggests a variety of mechanical and electrical tests to capture the fundamental characteristics and behaviors of a given machine. These characteristics and behaviors can be used to develop and understand machine models that accurately reflect the machine's performance. To perform such tests, the machine is required to be removed from service. Characterizing a machine offline can result in economic losses due to down time, labor expenses, etc. Such losses may be mitigated by implementing online characterization procedures. Historically, different approaches have been taken to develop methods of calculating a machine's electrical characteristics, without removing the machine from service. Using a machine's input and response data combined with a numerical algorithm, a machine's characteristics can be determined. This thesis explores such characterization methods and strives to compare the IEEE 115 standard for offline characterization with the least squares approximation iterative approach implemented on a 20 h.p. synchronous machine. This least squares estimation method of online parameter estimation shows encouraging results for steady-state parameters, in comparison with steady-state parameters obtained through the IEEE 115 standard.
Quantum synchronization in disordered superconducting metamaterials
Fistul, M. V.
2017-01-01
I report a theoretical study of collective coherent quantum-mechanical oscillations in disordered superconducting quantum metamaterials (SQMs), i.e. artificial arrays of interacting qubits (two-levels system). An unavoidable disorder in qubits parameters results in a substantial spread of qubits frequencies, and in the absence of electromagnetic interaction between qubits these individual quantum-mechanical oscillations of single qubits manifest themselves by a large number of small resonant dips in the frequency dependent transmission of electromagnetic waves, |S21(ω)|2. We show that even a weak electromagnetic interaction between adjacent qubits can overcome the disorder and establish completely or partially synchronized quantum-mechanical dynamic state in the disordered SQM. In such a state a large amount of qubits displays the collective quantum mechanical oscillations, and this collective behavior manifests itself by a few giant resonant dips in the |S21(ω)|2 dependence. The size of a system r0 showing the collective (synchronized) quantum-mechanical behavior is determined in the one-dimensional SQMs as r0 ≃ a [K/δΔ]2, where K, δΔ, a are the effective energy of nearest-neighbor interaction, the spread of qubits energy splitting, and the distance between qubits, accordingly. We show that this phenomenon is mapped to the Anderson localization of spinon-type excitations arising in the SQM.
Inside black holes with synchronized hair
Directory of Open Access Journals (Sweden)
Yves Brihaye
2016-09-01
Full Text Available Recently, various examples of asymptotically flat, rotating black holes (BHs with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers–Perry hairy BHs. We find that, for non-extremal solutions: (1 the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2 before an inner horizon is reached, the spacetime curvature grows (apparently without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.
Interpreting the librations of a synchronous satellite
Noyelles, Benoît
2016-01-01
Most of the main planetary satellites of our Solar System are expected to be in synchronous rotation, the departures from the strict synchronicity being a signature of the interior. Librations have been measured for the Moon, Phobos, and some satellites of Saturn. I here revisit the theory of the longitudinal librations in considering that part of the interior is not hydrostatic, i.e. has not been shaped by the rotational and tidal deformations, but is fossil. This consideration affects the rotational behavior. For that, I derive the tensor of inertia of the satellite in splitting these two parts, before proposing an analytical solution that I validate with numerical simulations. I apply this new theory on Mimas and Epimetheus, for which librations have been measured from Cassini data. I show that the large measured amplitudes of these bodies can be explained by an excess of triaxiality that would not result from the hydrostatic theory. However, explaining the phase shift observed for Mimas with this theory r...
Nutrition for synchronized swimming: a review.
Lundy, Bronwen
2011-10-01
Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.
Modeling of synchronous machines with magnetic saturation
Energy Technology Data Exchange (ETDEWEB)
Rehaoulia, H. [Universite de Tunis-Ecole Superieure des Sciences et Techniques de Tunis (Unite de Recherche CSSS), 5 Avenue Taha Hussein Tunis 10008 (Tunisia); Henao, H.; Capolino, G.A. [Universite de Picardie Jules Vernes-Centre de Robotique, d' Electrotechnique et d' Automatique (UPRES-EA3299), 33 Rue Saint Leu, 80039 Amiens Cedex 1 (France)
2007-04-15
This paper deals with a method to derive multiple models of saturated round rotor synchronous machines, based on different selections of state-space variables. By considering the machine currents and fluxes as space vectors, possible d-q models are discussed and adequately numbered. As a result several novel models are found and presented. It is shown that the total number of d-q models for a synchronous machine, with basic dampers, is 64 and therefore much higher than known. Found models are classified into three families: current, flux and mixed models. These latter, the mixed ones, constitute the major part (52) and hence offer a large choice. Regarding magnetic saturation, the paper also presents a method to account for whatever the choice of state-space variables. The approach consists of just elaborating the saturation model with winding currents as main variables and deriving all the other models from it, by ordinary mathematical manipulations. The paper emphasizes the ability of the proposed approach to develop any existing model without exception. An application to prove the validity of the method and the equivalence between all developed models is reported. (author)
Synchronous transmission circuit breaker development. Final report
Energy Technology Data Exchange (ETDEWEB)
Garzon, R D
1976-08-01
The need for the development of a synchronous transmission breaker is discussed and the basic preliminary specifications for such a circuit breaker are established and tabulated. The initial exploratory work designed to establish the preferred designs for a synchronous pulse generator, (or current zero predictor), for an operating mechanism and for a suitable interrupter are described in detail. The experimental results obtained with vacuum interrupters and with axial blast interrupters using pure SF/sub 6/, mixtures of SF/sub 6/ and N/sub 2/, and high pressure liquid SF/sub 6/ are reported. The results are then evaluated and the performances obtained with each interrupting media are compared arriving at the end to a choice of a preferred design. This preferred design, an interrupter that uses SF/sub 6/ in the liquid state at pressures of 13.8 megapascals (2000 psi), is completely described. The results obtained in a series of experiments designed to establish limits of performance for this interrupter are also discussed.
Blasting the way to synchronous communications
Energy Technology Data Exchange (ETDEWEB)
Charbonnet, P. Jr.; Smith, G.
1984-01-18
Minicomputer and microcomputer users now have several new options in data communications software. Most of these packages fall into the rapidly growing category of file-transfer utilities-that is, programs that exchange computers. The key factor in the development of these products is that most micros and minis have only asynchronous communications capability. They cannot use mainframe data communications protocols. All of the asynchronous protocols that have emerged use the standard synchronous technique for error detection: the data stream is divided into blocks, and the integrity of each block is monitored by appending a check-sum that is recomputed and compared with the original check-sum when the block is received. Full-duplex protocols such as blocked asynchronous transmission (blast) transmit a continuous stream of data blocks while using the other half of the communications channel to receive block acknowledgements simultaneously. This structure is combined with the use of sliding window or pipelining techniques as employed by sophisticated synchronous protocols such as SNA/SDLC and x.25/HDLC. The end result is that full-duplex asynchronous protocols can endure significant propagation delay without losing efficiency. They are suitable for use in a variety of communications environments.
Inside black holes with synchronized hair
Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen
2016-09-01
Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers-Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers-Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.
Estrus synchronization in sheep with synthetic progestagens.
Awel, Hayatu; Eshetu, Lisanework; Tadesse, Gebrehiwot; Birhanu, Alemselam; Khar, S K
2009-10-01
Sixteen female sheep of Degua breed were assigned to receive either the full dose of norgestomet ear implant and injectable solution containing norgestomet and estradiol valerate (n = 8) or half the dose (n = 8). The ear implants were removed in both groups on day 12. All ewes received an intramuscular administration of 500 IU PMSG at implant withdrawal. Synchronized ewes were individually hand mated twice at 48 and 60 hours after implant removal. One ewe in each group however refused mating on both occasions. Pregnancy diagnosis was conducted by bimanual external palpation 90 to 100 days post mating. The conception rates (3/7, 42.85%) and (5/7, 71.42%) were recorded in the two treatment groups, respectively. All eight ewes lambed between 145 to 153 days post mating. In group I ewes carried only singletons (prolificity rate 1.0) whereas in group II two ewes delivered twins, producing 7 lambs with prolificity rate of 1.4 (N.S). From this preliminary investigation it appears that the lower dose of norgestomet ear implants offers better option for estrus synchronization accompanied by higher fertility.
DEFF Research Database (Denmark)
Teodorescu, Remus; Blaabjerg, Frede; Rodriguez, P.
2008-01-01
This work employs the Double Synchronous Reference Frame PLL (DSRF-PLL) as an effective method for grid synchronization of WT's power converters in the presence of transient faults in the grid. The DSRF-PLL exploits a dual synchronous reference frame voltage characterization, adding a decoupling...... network to a standard SRF-PLL in order to effectively separate the positive- and negative-sequence voltage components in a fast and accurate way. Experimental evaluation of the proposed grid synchronization method and simulations regarding its application to ride through transient faults verify...
Directory of Open Access Journals (Sweden)
Novak Vera
2006-05-01
Full Text Available Abstract Background Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD. Methods This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44–79 years, on medication and 8 age-matched healthy subjects (5 women and 3 men. PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs were embedded in elastic insoles (one below the heel and two below the forefoot areas inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV, a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable. Results The walking speed (p Conclusion Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS.
Detection of Nonverbal Synchronization through Phase Difference in Human Communication.
Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro
2015-01-01
Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These
Nonlinear frequency-dependent synchronization in the developing hippocampus.
Prida, L M; Sanchez-Andres, J V
1999-07-01
Synchronous population activity is present both in normal and pathological conditions such as epilepsy. In the immature hippocampus, synchronous bursting is an electrophysiological conspicuous event. These bursts, known as giant depolarizing potentials (GDPs), are generated by the synchronized activation of interneurons and pyramidal cells via GABAA, N-methyl-D-aspartate, and AMPA receptors. Nevertheless the mechanism leading to this synchronization is still controversial. We have investigated the conditions under which synchronization arises in developing hippocampal networks. By means of simultaneous intracellular recordings, we show that GDPs result from local cooperation of active cells within an integration period prior to their onset. During this time interval, an increase in the number of excitatory postsynaptic potentials (EPSPs) takes place building up full synchronization between cells. These EPSPs are correlated with individual action potentials simultaneously occurring in neighboring cells. We have used EPSP frequency as an indicator of the neuronal activity underlying GDP generation. By comparing EPSP frequency with the occurrence of synchronized GDPs between CA3 and the fascia dentata (FD), we found that GDPs are fired in an all-or-none manner, which is characterized by a specific threshold of EPSP frequency from which synchronous GDPs emerge. In FD, the EPSP frequency-threshold for GDP onset is 17 Hz. GDPs are triggered similarly in CA3 by appropriate periodic stimulation of mossy fibers. The frequency threshold for CA3 GDP onset is 12 Hz. These findings clarify the local mechanism of synchronization underlying bursting in the developing hippocampus, indicating that GDPs are fired when background levels of EPSPs or action potentials have built up full synchronization by firing at specific frequencies (>12 Hz). Our results also demonstrate that spontaneous EPSPs and action potentials are important for the initiation of synchronous bursts in the
Detection of Nonverbal Synchronization through Phase Difference in Human Communication.
Directory of Open Access Journals (Sweden)
Jinhwan Kwon
Full Text Available Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head
Synchronization and Phase Dynamics of Oscillating Foils
Finkel, Cyndee L.
In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is
Insolation patterns on synchronous exoplanets with obliquity
Dobrovolskis, Anthony R.
2009-11-01
A previous paper [Dobrovolskis, A.R., 2007. Icarus 192, 1-23] showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million kilometers of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets. Tides in a planet affect its spin even more than its orbit, and such tidally evolved planets often are assumed to be in synchronous rotation, so that their rotation periods are identical to their orbital periods. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. In comparison, stable Cassini states can exist for practically any obliquity up to ˜90° or more for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits, but arbitrary obliquity β; this affects the distribution of insolation over the planet's surface, particularly near its poles. For β=0, one hemisphere bakes in perpetual sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or