WorldWideScience

Sample records for cadence synchronized multi-camera

  1. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Directory of Open Access Journals (Sweden)

    Robert Jan Bood

    Full Text Available Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1 a control condition without acoustic stimuli, 2 a metronome condition with a sequence of beeps matching participants' cadence (synchronization, and 3 a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation. Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps. These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  2. Calibration of multi-camera photogrammetric systems

    OpenAIRE

    I. Detchev; M. Mazaheri; Rondeel, S.; Habib, A

    2014-01-01

    Due to the low-cost and off-the-shelf availability of consumer grade cameras, multi-camera photogrammetric systems have become a popular means for 3D reconstruction. These systems can be used in a variety of applications such as infrastructure monitoring, cultural heritage documentation, biomedicine, mobile mapping, as-built architectural surveys, etc. In order to ensure that the required precision is met, a system calibration must be performed prior to the data collection campaign. ...

  3. Multi-Camera Calibration Using a Globe

    OpenAIRE

    Shen, Rui; Cheng, Irene; Basu, Anup

    2008-01-01

    The need for calibration of multiple cameras working together in a network, or for the acquisition of free viewpoint video for 3D TV, is becoming increasingly important in recent years. In this paper we present a novel approach for calibrating multiple cameras using an ordinary globe that is usually available in every household. This method makes it possible to reduce multi-camera calibration to a level that is attainable by non-technical users. Our technique requires only one view of the glo...

  4. Robust multi-camera view face recognition

    CERN Document Server

    Kisku, Dakshina Ranjan; Gupta, Phalguni; Sing, Jamuna Kanta

    2010-01-01

    This paper presents multi-appearance fusion of Principal Component Analysis (PCA) and generalization of Linear Discriminant Analysis (LDA) for multi-camera view offline face recognition (verification) system. The generalization of LDA has been extended to establish correlations between the face classes in the transformed representation and this is called canonical covariate. The proposed system uses Gabor filter banks for characterization of facial features by spatial frequency, spatial locality and orientation to make compensate to the variations of face instances occurred due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images produces Gabor face representations with high dimensional feature vectors. PCA and canonical covariate are then applied on the Gabor face representations to reduce the high dimensional feature spaces into low dimensional Gabor eigenfaces and Gabor canonical faces. Reduced eigenface vector and canonical face vector are fused together usi...

  5. An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Mariana Rampinelli

    2014-08-01

    Full Text Available This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.

  6. A multi-camera framework for interactive video games

    OpenAIRE

    Cuypers, Tom; VANAKEN, Cedric; FRANCKEN, Yannick; Van Reeth, Frank; Bekaert, Philippe

    2008-01-01

    We present a framework that allows for a straightforward development of multi-camera controlled interactive video games. Compared to traditional gaming input devices, cameras provide players with many degrees of freedom and a natural kind of interaction. The use of cameras can even obsolete the need for special clothing or other tracking devices. This partly accounted for the success of the currently popular single-camera video games like the Sony Eyetoy. However, these games are fairly limit...

  7. Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots

    Directory of Open Access Journals (Sweden)

    Cristina Losada

    2010-04-01

    Full Text Available This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space. The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  8. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  9. Aerial multi-camera systems: Accuracy and block triangulation issues

    Science.gov (United States)

    Rupnik, Ewelina; Nex, Francesco; Toschi, Isabella; Remondino, Fabio

    2015-03-01

    Oblique photography has reached its maturity and has now been adopted for several applications. The number and variety of multi-camera oblique platforms available on the market is continuously growing. So far, few attempts have been made to study the influence of the additional cameras on the behaviour of the image block and comprehensive revisions to existing flight patterns are yet to be formulated. This paper looks into the precision and accuracy of 3D points triangulated from diverse multi-camera oblique platforms. Its coverage is divided into simulated and real case studies. Within the simulations, different imaging platform parameters and flight patterns are varied, reflecting both current market offerings and common flight practices. Attention is paid to the aspect of completeness in terms of dense matching algorithms and 3D city modelling - the most promising application of such systems. The experimental part demonstrates the behaviour of two oblique imaging platforms in real-world conditions. A number of Ground Control Point (GCP) configurations are adopted in order to point out the sensitivity of tested imaging networks and arising block deformations. To stress the contribution of slanted views, all scenarios are compared against a scenario in which exclusively nadir images are used for evaluation.

  10. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    Directory of Open Access Journals (Sweden)

    Sergio Orts-Escolano

    2014-04-01

    Full Text Available In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units. It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.

  11. Research on calibration method of axis-shift multi-camera for aerial photogrammetry

    Science.gov (United States)

    Wang, Xiao; Fang, Junyong; Ma, Jingyu; Zhang, Xiaohong; Zhao, Dong; Liu, Xue

    2015-12-01

    Axis-shift multi-camera has been gradually applied in the aerial photogrammetry because of its advantages on structure design. In this paper, the basic axis-shift theory is analyzed, and an improved calibration method is described. A prototype system, including two axis-shift cameras, is developed to validate the feasibility and correctness of the proposed method. With the help of a high-precision indoor control field, the parameters of single camera and the relative orientation parameters of the dual camera system are calculated respectively. Experiment result indicates that this calibration method is suitable for the axis-shift multi camera system.

  12. User-assisted visual search and tracking across distributed multi-camera networks

    Science.gov (United States)

    Raja, Yogesh; Gong, Shaogang; Xiang, Tao

    2011-11-01

    Human CCTV operators face several challenges in their task which can lead to missed events, people or associations, including: (a) data overload in large distributed multi-camera environments; (b) short attention span; (c) limited knowledge of what to look for; and (d) lack of access to non-visual contextual intelligence to aid search. Developing a system to aid human operators and alleviate such burdens requires addressing the problem of automatic re-identification of people across disjoint camera views, a matching task made difficult by factors such as lighting, viewpoint and pose changes and for which absolute scoring approaches are not best suited. Accordingly, we describe a distributed multi-camera tracking (MCT) system to visually aid human operators in associating people and objects effectively over multiple disjoint camera views in a large public space. The system comprises three key novel components: (1) relative measures of ranking rather than absolute scoring to learn the best features for matching; (2) multi-camera behaviour profiling as higher-level knowledge to reduce the search space and increase the chance of finding correct matches; and (3) human-assisted data mining to interactively guide search and in the process recover missing detections and discover previously unknown associations. We provide an extensive evaluation of the greater effectiveness of the system as compared to existing approaches on industry-standard i-LIDS multi-camera data.

  13. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System.

    Science.gov (United States)

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857

  14. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  15. Cycling cadence affects heart rate variability

    International Nuclear Information System (INIS)

    The purpose of this study was to examine the effect different cycling cadences have on heart rate variability (HRV) when exercising at constant power outputs. Sixteen males had ECG and respiratory measurements recorded at rest and during 8, 10 min periods of cycling at four different cadences (40, 60, 80 and 100 revs min−1) and two power outputs (0 W (unloaded) and 100 W (loaded)). The cycling periods were performed following a Latin square design. Spectral analyses of R–R intervals by fast Fourier transforms were used to quantify absolute frequency domain HRV indices (ms2) during the final 5 min of each bout, which were then log transformed using the natural logarithm (Ln). HRV indices of high frequency (HF) power were reduced when cadence was increased (during unloaded cycling (0 W) log transformed HF power decreased from a mean [SD] of 6.3 [1.4] Ln ms2 at 40 revs min−1 to 3.9 [1.3] Ln ms2 at 100 revs min−1). During loaded cycling (at 100 W), the low to high frequency (LF:HF) ratio formed a 'J' shaped curve as cadence increased from 40 revs min−1 (1.4 [0.4]) to 100 revs min−1 (1.9 [0.7]), but dipped below the 40 revs min−1 values during the 60 revs min−1 1.1 (0.3) and 80 revs min−1 1.2 (0.6) cadence conditions. Cardiac frequency (fC) and ventilatory variables were strongly correlated with frequency domain HRV indices (r = −0.80 to −0.95). It is concluded that HRV indices are influenced by both cycling cadence and power output; this is mediated by the fC and ventilatory changes that occur as cadence or exercise intensity is increased. Consequently, if HRV is assessed during exercise, both power output/exercise intensity and cadence should be standardized

  16. Factors affecting cadence choice during submaximal cycling and cadence influence on performance

    OpenAIRE

    Hansen, Ernst Albin; Smith, Gerald

    2009-01-01

    Cadence choice during cycling has been of considerable interest among cyclists, coaches, and researchers for nearly 100 years. The present review examines and summarizes the current knowledge of factors affecting the freely chosen cadence during submaximal cycling and of the influence of cadence choice on performance. In addition, suggestions for future research are given along with scientifically based, practical recommendations for those involved in cycling. Within the past 10 years, a numb...

  17. Interaction Control Protocols for Distributed Multi-user Multi-camera Environments

    OpenAIRE

    Gareth W Daniel; Min Chen

    2003-01-01

    Video-centred communication (e.g., video conferencing, multimedia online learning, traffic monitoring, and surveillance) is becoming a customary activity in our lives. The management of interactions in such an environment is a complicated HCI issue. In this paper, we present our study on a collection of interaction control protocols for distributed multiuser multi-camera environments. These protocols facilitate different approaches to managing a user's entitlement for controlling a particular...

  18. Calibration of the Multi-camera Registration System for Visual Navigation Benchmarking

    OpenAIRE

    Adam Schmidt; Andrzej Kasiński; Marek Kraft; Michał Fularz; Zuzanna Domagała

    2014-01-01

    This paper presents the complete calibration procedure of a multi-camera system for mobile robot motion registration. Optimization-based, purely visual methods for the estimation of the relative poses of the motion registration system cameras, as well as the relative poses of the cameras and markers placed on the mobile robot were proposed. The introduced methods were applied to the calibration of the system and the quality of the obtained results was evaluated. The obtained results compare f...

  19. Multi-Camera Visual Surveillance for Motion Detection, Occlusion Handling, Tracking and Event Recognition

    OpenAIRE

    Akman, Oytun; Alatan, A. Aydin; Çiloglu, Tolga

    2008-01-01

    This paper presents novel approaches for background modeling, occlusion handling and event recognition by using multi-camera configurations that can be used to overcome the limitations of the single camera configurations. The main novelty in proposed background modeling approach is building multivariate Gaussians background model for each pixel of the reference camera by utilizing homography-related positions. Also, occlusion handling is achieved by generation of the top-view via trifocal ten...

  20. Light field sensor and real-time panorama imaging multi-camera system and the design of data acquisition

    Science.gov (United States)

    Lu, Yu; Tao, Jiayuan; Wang, Keyi

    2014-09-01

    Advanced image sensor and powerful parallel data acquisition chip can be used to collect more detailed and comprehensive light field information. Using multiple single aperture and high resolution sensor record light field data, and processing the light field data real time, we can obtain wide field-of-view (FOV) and high resolution image. Wide FOV and high-resolution imaging has promising application in areas of navigation, surveillance and robotics. Qualityenhanced 3D rending, very high resolution depth map estimation, high dynamic-range and other applications we can obtained when we post-process these large light field data. The FOV and resolution are contradictions in traditional single aperture optic imaging system, and can't be solved very well. We have designed a multi-camera light field data acquisition system, and optimized each sensor's spatial location and relations. It can be used to wide FOV and high resolution real-time image. Using 5 megapixel CMOS sensors, and field programmable Gate Array (FPGA) acquisition light field data, paralleled processing and transmission to PC. A common clock signal is distributed to all of the cameras, and the precision of synchronization each camera achieved 40ns. Using 9 CMOSs build an initial system and obtained high resolution 360°×60° FOV image. It is intended to be flexible, modular and scalable, with much visibility and control over the cameras. In the system we used high speed dedicated camera interface CameraLink for system data transfer. The detail of the hardware architecture, its internal blocks, the algorithms, and the device calibration procedure are presented, along with imaging results.

  1. The DECam Minute Cadence Survey I

    CERN Document Server

    Belardi, Claudia; Munn, Jeffrey A; Gianninas, A; Barber, Sara D; Dey, Arjun; Stetson, Peter B

    2016-01-01

    We present the first results from a minute cadence survey of a three square degree field obtained with the Dark Energy Camera. We imaged part of the Canada-France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g $\\leq24.5$ mag and search for eclipse-like events and other sources of variability. We find a new g = 20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.

  2. Multi-camera calibration based on openCV and multi-view registration

    Science.gov (United States)

    Deng, Xiao-ming; Wan, Xiong; Zhang, Zhi-min; Leng, Bi-yan; Lou, Ning-ning; He, Shuai

    2010-10-01

    For multi-camera calibration systems, a method based on OpenCV and multi-view registration combining calibration algorithm is proposed. First of all, using a Zhang's calibration plate (8X8 chessboard diagram) and a number of cameras (with three industrial-grade CCD) to be 9 group images shooting from different angles, using OpenCV to calibrate the parameters fast in the camera. Secondly, based on the corresponding relationship between each camera view, the computation of the rotation matrix and translation matrix is formulated as a constrained optimization problem. According to the Kuhn-Tucker theorem and the properties on the derivative of the matrix-valued function, the formulae of rotation matrix and translation matrix are deduced by using singular value decomposition algorithm. Afterwards an iterative method is utilized to get the entire coordinate transformation of pair-wise views, thus the precise multi-view registration can be conveniently achieved and then can get the relative positions in them(the camera outside the parameters).Experimental results show that the method is practical in multi-camera calibration .

  3. VideoWeb Dataset for Multi-camera Activities and Non-verbal Communication

    Science.gov (United States)

    Denina, Giovanni; Bhanu, Bir; Nguyen, Hoang Thanh; Ding, Chong; Kamal, Ahmed; Ravishankar, Chinya; Roy-Chowdhury, Amit; Ivers, Allen; Varda, Brenda

    Human-activity recognition is one of the most challenging problems in computer vision. Researchers from around the world have tried to solve this problem and have come a long way in recognizing simple motions and atomic activities. As the computer vision community heads toward fully recognizing human activities, a challenging and labeled dataset is needed. To respond to that need, we collected a dataset of realistic scenarios in a multi-camera network environment (VideoWeb) involving multiple persons performing dozens of different repetitive and non-repetitive activities. This chapter describes the details of the dataset. We believe that this VideoWeb Activities dataset is unique and it is one of the most challenging datasets available today. The dataset is publicly available online at http://vwdata.ee.ucr.edu/ along with the data annotation.

  4. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology.

    Science.gov (United States)

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-01-01

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40-50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078

  5. Scaling up multi-camera tracking for real-world deployment

    Science.gov (United States)

    Raja, Yogesh; Gong, Shaogang

    2012-10-01

    A user-assisted multi-camera tracking system employing several key novel methodologies has previously been shown to be highly effective in assisting human users in tracking targets of interest through industry-standard-LIDS multi-camera benchmark data.1 A prototype system was developed in order to test and evaluate the effectiveness of this approach. In this paper, we develop this system further in order to improve tracking accuracy and further facilitate scalability to arbitrary numbers of camera views across much larger spatial areas and different locations. Specifically, we describe the following three areas of improvement: (1) dynamic learning mechanisms apply user feedback in adapting internal models to improve performance over time; (2) modular design and hardware acceleration techniques are explored with a view to real-time performance, extensive configurability to leverage available hardware and scalability to larger datasets; and (3) re-design of the user interface for deployment as a secure asynchronous remote web-based service. We conduct an extensive evaluation of the system in terms of: (1) tracking performance; and (2) the speed of the system in computation and in usage over a network. We use a newly collected real-world dataset significantly more challenging than i-LIDS, which comprises six cameras covering two London Underground stations. We show that: (1) dynamic learning is effective; (2) the user-assisted paradigm retains its effectiveness with this significantly more challenging dataset; (3) large-scale deployment and real-time computation is feasible due to linear scalability; (4) context-aware user search strategies and external non-visual information can aid search convergence; and (5) storage and querying of meta-data is a bottleneck to be overcome.

  6. Efficient Orientation and Calibration of Large Aerial Blocks of Multi-Camera Platforms

    Science.gov (United States)

    Karel, W.; Ressl, C.; Pfeifer, N.

    2016-06-01

    Aerial multi-camera platforms typically incorporate a nadir-looking camera accompanied by further cameras that provide oblique views, potentially resulting in utmost coverage, redundancy, and accuracy even on vertical surfaces. However, issues have remained unresolved with the orientation and calibration of the resulting imagery, to two of which we present feasible solutions. First, as standard feature point descriptors used for the automated matching of homologous points are only invariant to the geometric variations of translation, rotation, and scale, they are not invariant to general changes in perspective. While the deviations from local 2D-similarity transforms may be negligible for corresponding surface patches in vertical views of flat land, they become evident at vertical surfaces, and in oblique views in general. Usage of such similarity-invariant descriptors thus limits the amount of tie points that stabilize the orientation and calibration of oblique views and cameras. To alleviate this problem, we present the positive impact on image connectivity of using a quasi affine-invariant descriptor. Second, no matter which hard- and software are used, at some point, the number of unknowns of a bundle block may be too large to be handled. With multi-camera platforms, these limits are reached even sooner. Adjustment of sub-blocks is sub-optimal, as it complicates data management, and hinders self-calibration. Simply discarding unreliable tie points of low manifold is not an option either, because these points are needed at the block borders and in poorly textured areas. As a remedy, we present a straight-forward method how to considerably reduce the number of tie points and hence unknowns before bundle block adjustment, while preserving orientation and calibration quality.

  7. Spontaneous Entrainment of Running Cadence to Music Tempo

    OpenAIRE

    Van Dyck, Edith; Moens, Bart; Buhmann, Jeska; Demey, Michiel; Coorevits, Esther; Dalla Bella, Simone; Leman, Marc

    2015-01-01

    Background Since accumulating evidence suggests that step rate is strongly associated with running-related injuries, it is important for runners to exercise at an appropriate running cadence. As music tempo has been shown to be capable of impacting exercise performance of repetitive endurance activities, it might also serve as a means to (re)shape running cadence. The aim of this study was to validate the impact of music tempo on running cadence. Methods Sixteen recreational runners ran four ...

  8. a New Automatic System Calibration of Multi-Cameras and LIDAR Sensors

    Science.gov (United States)

    Hassanein, M.; Moussa, A.; El-Sheimy, N.

    2016-06-01

    In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated calibration without

  9. A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS

    Directory of Open Access Journals (Sweden)

    M. Hassanein

    2016-06-01

    Full Text Available In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated

  10. Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system.

    Science.gov (United States)

    Shieh, Wann-Yun; Huang, Ju-Chin

    2012-09-01

    For most elderly, unpredictable falling incidents may occur at the corner of stairs or a long corridor due to body frailty. If we delay to rescue a falling elder who is likely fainting, more serious consequent injury may occur. Traditional secure or video surveillance systems need caregivers to monitor a centralized screen continuously, or need an elder to wear sensors to detect falling incidents, which explicitly waste much human power or cause inconvenience for elders. In this paper, we propose an automatic falling-detection algorithm and implement this algorithm in a multi-camera video surveillance system. The algorithm uses each camera to fetch the images from the regions required to be monitored. It then uses a falling-pattern recognition algorithm to determine if a falling incident has occurred. If yes, system will send short messages to someone needs to be noticed. The algorithm has been implemented in a DSP-based hardware acceleration board for functionality proof. Simulation results show that the accuracy of falling detection can achieve at least 90% and the throughput of a four-camera surveillance system can be improved by about 2.1 times. PMID:22154761

  11. A multi-camera system for real-time pose estimation

    Science.gov (United States)

    Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin

    2007-04-01

    This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.

  12. Integration of a Multi-Camera Vision System and Strapdown Inertial Navigation System (SDINS) with a Modified Kalman Filter

    OpenAIRE

    Neda Parnian; Farid Golnaraghi

    2010-01-01

    This paper describes the development of a modified Kalman filter to integrate a multi-camera vision system and strapdown inertial navigation system (SDINS) for tracking a hand-held moving device for slow or nearly static applications over extended periods of time. In this algorithm, the magnitude of the changes in position and velocity are estimated and then added to the previous estimation of the position and velocity, respectively. The experimental results of the hybrid vision/SDINS design ...

  13. True cadence and step accumulation are not equivalent: the effect of intermittent claudication on free-living cadence.

    Science.gov (United States)

    Stansfield, B; Clarke, C; Dall, P; Godwin, J; Holdsworth, R; Granat, M

    2015-02-01

    'True cadence' is the rate of stepping during the period of stepping. 'Step accumulation' is the steps within an epoch of time (e.g. 1min). These terms have been used interchangeably in the literature. These outcomes are compared within a population with intermittent claudication (IC). Multiday, 24h stepping activity of those with IC (30) and controls (30) was measured objectively using the activPAL physical activity monitor. 'True cadence' and 'step accumulation' outcomes were calculated. Those with IC took fewer steps/d 6531±2712 than controls 8692±2945 (P=0.003). However, these steps were taken within approximately the same number of minute epochs (IC 301±100min/d; controls 300±70min/d, P=0.894) with only slightly lower true cadence (IC 69 (IQ 66,72) steps/min; controls 72 (IQ 68,76) steps/min, P=0.026), giving substantially lower step accumulation (IC 22 (IQ 19,24) steps/min; controls 30 (IQ 23,34) steps/min) (P<0.001). However, the true cadence of stepping within the blocks of the 1, 5, 20, 30 and 60min with the maximum number of steps accumulated was lower for those with IC than controls (P<0.05). Those with IC took 1300 steps fewer per day above a true cadence of 90 steps/min. True cadence and step accumulation outcomes were radically different for the outcomes examined. 'True cadence' and 'step accumulation' were not equivalent in those with IC or controls. The measurement of true cadence in the population of people with IC provides information about their stepping rate during the time they are stepping. True cadence should be used to correctly describe the rate of stepping as performed. PMID:25480164

  14. A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration

    Directory of Open Access Journals (Sweden)

    Po-Chia Yeh

    2012-08-01

    Full Text Available The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.

  15. Multi-sensor data fusion in sensor-based control: application to multi-camera visual servoing

    OpenAIRE

    Kermorgant, Olivier; Chaumette, F.

    2011-01-01

    A low-level sensor fusion scheme is presented for the positioning of a multi-sensor robot. This non-hierarchical framework can be used for robot arms or other velocity- controlled robots, and is part of the task function approach. A stability analysis is presented for the general case, then several control laws illustrate the versatility of the framework. This approach is applied to the multi-camera eye-in-hand/eye- to-hand configuration in visual servoing. Experimental results point out the ...

  16. High-Cadence Transit Timing Variation Monitoring of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Naef D.

    2011-02-01

    Full Text Available We report ground-based high-cadence transit timing observations of the extrasolar planet WASP-2b. We achieve a typical timing error of 15-30 sec. The data show no significant deviations from the predicted ephemeris.

  17. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  18. Integration of a multi-camera vision system and strapdown inertial navigation system (SDINS) with a modified Kalman filter.

    Science.gov (United States)

    Parnian, Neda; Golnaraghi, Farid

    2010-01-01

    This paper describes the development of a modified Kalman filter to integrate a multi-camera vision system and strapdown inertial navigation system (SDINS) for tracking a hand-held moving device for slow or nearly static applications over extended periods of time. In this algorithm, the magnitude of the changes in position and velocity are estimated and then added to the previous estimation of the position and velocity, respectively. The experimental results of the hybrid vision/SDINS design show that the position error of the tool tip in all directions is about one millimeter RMS. The proposed Kalman filter removes the effect of the gravitational force in the state-space model. As a result, the resulting error is eliminated and the resulting position is smoother and ripple-free. PMID:22219667

  19. Integration of a Multi-Camera Vision System and Strapdown Inertial Navigation System (SDINS with a Modified Kalman Filter

    Directory of Open Access Journals (Sweden)

    Neda Parnian

    2010-05-01

    Full Text Available This paper describes the development of a modified Kalman filter to integrate a multi-camera vision system and strapdown inertial navigation system (SDINS for tracking a hand-held moving device for slow or nearly static applications over extended periods of time. In this algorithm, the magnitude of the changes in position and velocity are estimated and then added to the previous estimation of the position and velocity, respectively. The experimental results of the hybrid vision/SDINS design show that the position error of the tool tip in all directions is about one millimeter RMS. The proposed Kalman filter removes the effect of the gravitational force in the state-space model. As a result, the resulting error is eliminated and the resulting position is smoother and ripple-free.

  20. Field test of the multi-camera optical surveillance (MOS) system in the Siemens BW facility at Hanau

    International Nuclear Information System (INIS)

    Under the German Support Programme to the International Atomic Energy Agency the Multi-Camera Optical Surveillance (MOS) System was developed. It was agreed to perform a field test at the Siemens fuel fabrication plant in Hanau using a four-channel MOS System. The purpose of the field test was to establish the system's operational reliability under field conditions including the human error factor. Safeguards inspectors carried out on-site activities. Data were gathered from the system during regular visits made by Agency and Euratom representatives. The test results were used to improve and/or modify the MOS System where necessary to be incorporated into the production model. The paper describes the field test, its results, and the conclusions drawn for safeguards implementation

  1. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System.

    Science.gov (United States)

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R² = 0.98) and 0.57 mm (R² = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  2. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    Science.gov (United States)

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  3. Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios

    International Nuclear Information System (INIS)

    Intra-operative electron radiation therapy (IOERT) combines surgery and ionizing radiation applied directly to an exposed unresected tumour mass or to a post-resection tumour bed. The radiation is collimated and conducted by a specific applicator docked to the linear accelerator. The dose distribution in tissues to be irradiated and in organs at risk can be planned through a pre-operative computed tomography (CT) study. However, surgical retraction of structures and resection of a tumour affecting normal tissues significantly modify the patient's geometry. Therefore, the treatment parameters (applicator dimension, pose (position and orientation), bevel angle, and beam energy) may require the original IOERT treatment plan to be modified depending on the actual surgical scenario. We propose the use of a multi-camera optical tracking system to reliably record the actual pose of the IOERT applicator in relation to the patient's anatomy in an environment prone to occlusion problems. This information can be integrated in the radio-surgical treatment planning system in order to generate a real-time accurate description of the IOERT scenario. We assessed the accuracy of the applicator pose by performing a phantom-based study that resembled three real clinical IOERT scenarios. The error obtained (2 mm) was below the acceptance threshold for external radiotherapy practice, thus encouraging future implementation of this approach in real clinical IOERT scenarios. (paper)

  4. Cadence Requirements for AGN Accretion Studies with LSST

    Science.gov (United States)

    Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2016-01-01

    We test various samplings of mock AGN lightcurves to determine minimum cadence requirements for future technologies like the Large Synoptic Survey Telescope (LSST). AGN lightcurves exhibit stochastic behavior, with variability seen in ground-based optical surveys on timescales from days to years. Significant variability structure on timescales up to a few days was revealed by the high time resolution (~30 minutes) of Kepler Satellite. Now it is apparent that under-sampling by ground based instruments may be leaving out a big chunk of the AGN accretion picture. To probe Kepler AGN, recent studies have investigated the suitability of sophisticated models like CARMA processes to better understand dominant mechanisms driving observed variability across these timescales. By testing models against AGN photometry, we gain insights about accretion physics, intrinsic differences between AGN sub-types, and physical scales pertaining to orbits or casually connected matter flows. We investigate cadence, time window, and regularity requirements that accurately recover parameters of our model lightcurves constructed with a CARMA process and observations such that ground based telescopes can optimally collect data for AGN science.

  5. The Effect of Kettlebell Swing Load and Cadence on Physiological, Perceptual and Mechanical Variables

    Directory of Open Access Journals (Sweden)

    Michael J. Duncan

    2015-08-01

    Full Text Available This study compared the physiological, perceptual and mechanical responses to kettlebell swings at different loads and swing speeds. Following familiarization 16 strength trained participants (10 males, six females, mean age ± SD = 23 ± 2.9 performed four trials: 2 min kettlebell swings with an 8 kg kettlebell at a fast cadence; 2 min kettlebell swings with an 8 kg kettlebell at a slow cadence; 4 min kettlebell swings with a 4 kg kettlebell at a fast cadence; 4 min kettlebell swings with a 4 kg kettlebell at a slow cadence. Repeated measured analysis of variance indicated no significant differences in peak blood lactate or peak net vertical force across loads and cadences (P > 0.05. Significant main effect for time for heart rate indicated that heart rate was higher at the end of each bout than at mid-point (P = 0.001. A significant Load X cadence interaction for rating of perceived exertion (RPE (P = 0.030 revealed that RPE values were significantly higher in the 8 kg slow cadence condition compared to the 4 kg slow (P = 0.002 and 4 kg fast (P = 0.016 conditions. In summary, this study indicates that the physiological and mechanical responses to kettlebell swings at 4 kg and 8 kg loads and at fast and slow cadence were similar, whereas the perceptual response is greater when swinging an 8 kg kettlebell at slow cadence.

  6. The effect of a cadence retraining protocol on running biomechanics and efficiency: a pilot study.

    Science.gov (United States)

    Hafer, Jocelyn F; Brown, Allison M; deMille, Polly; Hillstrom, Howard J; Garber, Carol Ewing

    2015-01-01

    Many studies have documented the association between mechanical deviations from normal and the presence or risk of injury. Some runners attempt to change mechanics by increasing running cadence. Previous work documented that increasing running cadence reduces deviations in mechanics tied to injury. The long-term effect of a cadence retraining intervention on running mechanics and energy expenditure is unknown. This study aimed to determine if increasing running cadence by 10% decreases running efficiency and changes kinematics and kinetics to make them less similar to those associated with injury. Additionally, this study aimed to determine if, after 6 weeks of cadence retraining, there would be carryover in kinematic and kinetic changes from an increased cadence state to a runner's preferred running cadence without decreased running efficiency. We measured oxygen uptake, kinematic and kinetic data on six uninjured participants before and after a 6-week intervention. Increasing cadence did not result in decreased running efficiency but did result in decreases in stride length, hip adduction angle and hip abductor moment. Carryover was observed in runners' post-intervention preferred running form as decreased hip adduction angle and vertical loading rate. PMID:25369525

  7. The effect of low- vs high-cadence interval training on the freely chosen cadence and performance in endurance-trained cyclists.

    Science.gov (United States)

    Whitty, Anthony G; Murphy, Aron J; Coutts, Aaron J; Watsford, Mark L

    2016-06-01

    The aim of this study was to determine the effects of high- and low-cadence interval training on the freely chosen cadence (FCC) and performance in endurance-trained cyclists. Sixteen male endurance-trained cyclists completed a series of submaximal rides at 60% maximal power (Wmax) at cadences of 50, 70, 90, and 110 r·min(-1), and their FCC to determine their preferred cadence, gross efficiency (GE), rating of perceived exertion, and crank torque profile. Performance was measured via a 15-min time trial, which was preloaded with a cycle at 60% Wmax. Following the testing, the participants were randomly assigned to a high-cadence (HC) (20% above FCC) or a low-cadence (LC) (20% below FCC) group for 18 interval-based training sessions over 6 weeks. The HC group increased their FCC from 92 to 101 r·min(-1) after the intervention (p = 0.01), whereas the LC group remained unchanged (93 r·min(-1)). GE increased from 22.7% to 23.6% in the HC group at 90 r·min(-1) (p = 0.05), from 20.0% to 20.9% at 110 r·min(-1) (p = 0.05), and from 22.8% to 23.2% at their FCC. Both groups significantly increased their total distance and average power output following training, with the LC group recording a superior performance measure. There were minimal changes to the crank torque profile in both groups following training. This study demonstrated that the FCC can be altered with HC interval training and that the determinants of the optimal cycling cadence are multifactorial and not completely understood. Furthermore, LC interval training may significantly improve time-trial results of short duration as a result of an increase in strength development or possible neuromuscular adaptations. PMID:27175601

  8. Spurious frequencies in the {\\it Kepler} short cadence data

    CERN Document Server

    Andrzej,

    2013-01-01

    We present our search for artifacts in the {\\it Kepler} short cadence data using a commonly known Fourier technique. We analyzed data on a monthly basis searching for a possible correlation between artifacts and the events attributed to the spacecraft as potential sources of the spurious frequencies. We defined a peak to be an artifact if it shows in at least two, yet preferentially most of the stars, during a given month. Besides the commonly known LC {\\it comb} we found a periodic appearance of another two {\\it combs}, one single artifact and very strange wide artifacts roaming between 10 and 35 c/d. These artifacts evolve on a yearly basis (four of {\\it Kepler's} rolls) and we may only speculate that their sources are in the reaction wheels since they are the only moving parts or temperature variation. The orientation of the spacecraft is likely excluded from the possible sources. More resources are needed to provide a definite explanation of the artifacts.

  9. Changes in coordination and its variability with an increase in running cadence.

    Science.gov (United States)

    Hafer, Jocelyn F; Freedman Silvernail, Julia; Hillstrom, Howard J; Boyer, Katherine A

    2016-08-01

    Alterations in joint mechanics have been associated with common overuse injuries. An increase in running cadence in healthy runners has been shown to improve several parameters that have been tied to injury, but the reorganisation of motion that produces these changes has not been examined. The purpose of this study was to determine if runners change their segment coordination and coordination variability with an acute increase in cadence. Data were collected as ten uninjured runners ran overground at their preferred cadence as well as a cadence 10% higher than preferred. Segment coordination and coordination variability were calculated for select thigh-shank and shank-foot couples and selected knee mechanics were also calculated. Paired t-tests were used to examine differences between the preferred and increased cadence conditions. With increased cadence, there was a decrease in peak knee flexion and a later occurrence of peak knee flexion and internal rotation and shank internal rotation. Segment coordination was altered with most changes occurring in mid-late stance. Coordination variability decreased with an increase in cadence across all couples and phases of gait. These results suggest examination of coordination and its variability could give insight into the risk of intervention-induced injury. PMID:26588262

  10. Effects of cadence on aerobic capacity following a prolonged, varied intensity cycling trial.

    Science.gov (United States)

    Stebbins, Charles L; Moore, Jesse L; Casazza, Gretchen A

    2014-01-01

    We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations) decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr) cycled for 180 min at either 80 or 100 rpm (randomized) with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm). There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min(-1), respectively) were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min(-1), respectively) (p cadences (i.e., 100 vs. 80 rpm) are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance. Key PointsWhen competitive cyclists perform prolonged exercise that simulates racing conditions (i.e., variable, low-moderate submaximal cycling), a higher cadence results in excess energy expenditure and lower gross efficiency compared to a lower cadence at the same power output.Consequently, maximal power output is reduced during a subsequent exercise bout to exhaustion after using a higher cadence.Selection of a lower, more energetically optimal cadence during prolonged cycling exercise may allow competitive cyclists to enhance maximal performance later in a race. PMID:24570614

  11. The Effect of Kettlebell Swing Load and Cadence on Physiological, Perceptual and Mechanical Variables

    OpenAIRE

    Duncan, Michael J.; Rosanna Gibbard; Leanne M. Raymond; Peter Mundy

    2015-01-01

    This study compared the physiological, perceptual and mechanical responses to kettlebell swings at different loads and swing speeds. Following familiarization 16 strength trained participants (10 males, six females, mean age ± SD = 23 ± 2.9) performed four trials: 2 min kettlebell swings with an 8 kg kettlebell at a fast cadence; 2 min kettlebell swings with an 8 kg kettlebell at a slow cadence; 4 min kettlebell swings with a 4 kg kettlebell at a fast cadence; 4 min kettlebell swings with a 4...

  12. Cadências escolares, ritmos docentes School cadences, teaching rhythms

    Directory of Open Access Journals (Sweden)

    Inês Assunção de Castro Teixeira

    1999-07-01

    Full Text Available O artigo analisa alguns dos eixos que estruturam os ritmos cotidianos dos professores, próprios às temporalidades da vida social na escola. Parte do pressuposto de que o tempo é uma "categoria do pensamento lógico", originada no ritmo da vida social (Dukheim, e que essa rítmica é uma "modalidade concreta do tempo social" (Lefebvre e Régulier. O estudo é parte de uma pesquisa que busca tematizar a experiência do tempo de sujeitos que se encontram na condição de professores - docentes de quinta à oitava séries do ensino fundamental e do ensino médio -, levando em conta seus vínculos com a construção de identidades docentes. O texto se desenvolve em torno de três eixos: as cadências das interações entre educandos e educadores, os ritmos dos calendários e os compassos dos horários escolares. Conclui-se que os ritmos docentes, embora circunscritos à rítmica da vida moderna, têm particularidades associadas às cadências da escola, aos processos pedagógicos e àqueles relacionados à formação humana. Trata-se, pois, de analisar a polirritmia dos tempos da escola em sua complexidade e peculiaridades, de forma a se compreenderem as modulações e significações da experiência do tempo na condição de professor, vivência constitutiva das identidades docentes.This paper analyzes some of the concepts peculiar to the temporality of the school social life that structure the everyday rhythm of teachers. It assumes that time is a "category of logical thinking" originated in the rhythm of social life (Durkheim, and that such rhythmic character is a "concrete modality of social time" (Lefebvre and Régulier. This study is part of a research that seeks to discuss the experience of time for teachers of the 5th to 8th grades of the Primary Education and of the Secondary Education, taking into account the teachers’ links with the construction of their own teaching identities. The text is developed around three themes: the cadences

  13. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  14. Cardiorespiratory responses during deep water running with and without horizontal displacement at different cadences

    Directory of Open Access Journals (Sweden)

    A.C. Kanitz

    2014-12-01

    Conclusions: The results indicate that the increase in both cadence and displacement results in significant cardiorespiratory responses as a result of deep water running. This finding is important for adapting exercise prescription to the goals of participants.

  15. Effects Of Cadence on Aerobic Capacity Following a Prolonged, Varied Intensity Cycling Trial

    OpenAIRE

    Stebbins, Charles L.; Moore, Jesse L.; Casazza, Gretchen A.

    2014-01-01

    We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations) decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr) cycled for 180 min at either 80 or 100 rpm (randomized) with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to ex...

  16. Metabolic cost of aerobic dance bench stepping at varying cadences and bench heights.

    Science.gov (United States)

    Grier, Tamara D; Lloyd, Lisa K; Walker, John L; Murray, Tinker D

    2002-05-01

    To determine the metabolic and cardiovascular responses of aerobic dance bench stepping (ADBS) at commonly used cadences and bench heights, 30 women (19-47 years of age) performed a graded maximal treadmill test and four 8-minute submaximal ADBS routines. Subjects followed identical videotape sequences of basic ADBS movements at cadences of 125 and 130 beats.min(-1) at bench heights of 6 and 8 in. Physiological measurements were taken during each minute of each test. Mean values calculated from the last 3 minutes were used for data analysis. Although there were no physiological differences between ADBS at the 2 cadences, there were significant physiological differences between ADBS at the 2 bench heights. On average, a 2-in. increase in bench height, increased heart rate, VO2, and rating of perceived exertion by 10 beats.min(-1), 3.09 ml.kg(-1) min(-1), and 1.53, respectively. In conclusion, it appears that bench height is more of a factor than cadence in increasing metabolic cost of ADBS. Results from this study provide information about the energy cost of ADBS at the common bench heights and cadences used in this study and, therefore, may be used to help aerobic participants select the proper bench height and cadence combination to control body weight and develop cardiorespiratory fitness safely and effectively. PMID:11991777

  17. Effect of Cadence on Respiratory Response During Unloaded Cycling in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Jastrzębska Agnieszka D.

    2015-03-01

    Full Text Available Purpose. The aim of the study was to establish the respiratory response to unloaded cycling at different cadences. Methods. Eleven healthy participants performed a maximal graded exercise test on a cycle ergometer to assess aerobic fitness (maximal oxygen consumption: 46.27 ± 5.41 ml · min-1 · kg-1 and eight 10-min unloaded pedaling (0 W bouts at a constant cadence (from 40 to 110 rpm. Respiratory data were measured continuously during each effort and then averaged over 30 s. Blood samples were collected before and 2 min after each effort to monitor changes in acid-base balance. Results. The efforts were performed at an intensity of 16.5-37.5% VO2peak. Respiratory response was not differentiated in cadences of 40, 50, 60 rpm. From 70 rpm, an increase in cadence was significantly associated with increased minute ventilation (F = 168.11, p < 0.000 and oxygen consumption (F = 214.86 p < 0.000 and, from 80 rpm, respiratory frequency (F = 16.06, p < 0.001 and tidal volume (F = 54.67, p < 0.000. No significant changes in acid-base balance were observed as a result of difference cadences. Conclusions. Unloaded cycling at a cadence of 70 rpm or above has a significant effect on respiratory function and may be associated with the involvement of large muscle ergoreceptors (mechanoreceptors stimulated by the frequency of muscle contractions.

  18. Multi-Camera and Structured-Light Vision System (MSVS for Dynamic High-Accuracy 3D Measurements of Railway Tunnels

    Directory of Open Access Journals (Sweden)

    Dong Zhan

    2015-04-01

    Full Text Available Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS. First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  19. Effects Of Cadence on Aerobic Capacity Following a Prolonged, Varied Intensity Cycling Trial

    Science.gov (United States)

    Stebbins, Charles L.; Moore, Jesse L.; Casazza, Gretchen A.

    2014-01-01

    We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations) decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr) cycled for 180 min at either 80 or 100 rpm (randomized) with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm). There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min-1, respectively) were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min-1, respectively) (p < 0.05). Gross efficiency was higher at 80 rpm vs. 100 rpm during both the 65% (22.8 ± 1.0 vs. 21.3 ± 4.5%) and the 80% (23.1 vs. 22.1 ± 0.9%) exercise intensities (P< 0.05). Maximal power during the performance test (362 ± 38 watts) was greater at 80 rpm than 100 rpm (327 ± 27 watts) (p < 0.05). Findings suggest that in conditions simulating those seen during prolonged competitive cycling, higher cadences (i.e., 100 vs. 80 rpm) are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance. Key Points When competitive cyclists perform prolonged exercise that simulates racing conditions (i.e., variable, low-moderate submaximal cycling), a higher cadence results in excess energy expenditure and lower gross efficiency compared to a lower cadence at the same power output. Consequently, maximal power output is reduced during a subsequent exercise bout to exhaustion after using a higher cadence. Selection of a lower, more energetically optimal cadence during prolonged

  20. Relative variances of the cadence frequency of cycling under two differential saddle heights

    OpenAIRE

    Chang, Wen-Dien; Fan Chiang, Chin-Yun; Lai, Ping-Tung; Lee, Chia-Lun; Fang, Sz-Ming

    2016-01-01

    [Purpose] Bicycle saddle height is a critical factor for cycling performance and injury prevention. The present study compared the variance in cadence frequency after exercise fatigue between saddle heights with 25° and 35° knee flexion. [Methods] Two saddle heights, which were determined by setting the pedal at the bottom dead point with 35° and 25° knee flexion, were used for testing. The relative variances of the cadence frequency were calculated at the end of a 5-minute warm-up period and...

  1. Relative variances of the cadence frequency of cycling under two differential saddle heights.

    Science.gov (United States)

    Chang, Wen-Dien; Fan Chiang, Chin-Yun; Lai, Ping-Tung; Lee, Chia-Lun; Fang, Sz-Ming

    2016-01-01

    [Purpose] Bicycle saddle height is a critical factor for cycling performance and injury prevention. The present study compared the variance in cadence frequency after exercise fatigue between saddle heights with 25° and 35° knee flexion. [Methods] Two saddle heights, which were determined by setting the pedal at the bottom dead point with 35° and 25° knee flexion, were used for testing. The relative variances of the cadence frequency were calculated at the end of a 5-minute warm-up period and 5 minutes after inducing exercise fatigue. Comparison of the absolute values of the cadence frequency under the two saddle heights revealed a difference in pedaling efficiency. [Results] Five minutes after inducing exercise fatigue, the relative variances of the cadence frequency for the saddle height with 35° knee flexion was higher than that for the saddle height with 25° knee flexion. [Conclusion] The current finding demonstrated that a saddle height with 25° knee flexion is more appropriate for cyclists than a saddle height with 35° knee flexion. PMID:27065522

  2. Influence of road incline and body position on power-cadence relationship in endurance cycling.

    Science.gov (United States)

    Emanuele, Umberto; Denoth, Jachen

    2012-07-01

    In race cycling, the external power-cadence relationship at the performance level, that is sustainable for the given race distance, plays a key role. The two variables of interest from this relationship are the maximal external power output (P (max)) and the corresponding optimal cadence (C (opt)). Experimental studies and field observations of cyclists have revealed that when cycling uphill is compared to cycling on level ground, the freely chosen cadence is lower and a more upright body position seems to be advantageous. To date, no study has addressed whether P (max) or C (opt) is influenced by road incline or body position. Thus, the main aim of this study was to examine the effect of road incline (0 vs. 7%) and racing position (upright posture vs. dropped posture) on P (max) and C (opt). Eighteen experienced cyclists participated in this study. Experiment I tested the hypothesis that road incline influenced P (max) and C (opt) at the second ventilatory threshold ([Formula: see text] and [Formula: see text]). Experiment II tested the hypothesis that the racing position influenced [Formula: see text], but not [Formula: see text]. The results of experiment I showed that [Formula: see text] and [Formula: see text] were significantly lower when cycling uphill compared to cycling on level ground (P cadence and (2) a more upright body position. PMID:22045414

  3. Effects Of Cadence on Aerobic Capacity Following a Prolonged, Varied Intensity Cycling Trial

    Directory of Open Access Journals (Sweden)

    Charles L. Stebbins

    2014-03-01

    Full Text Available We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr cycled for 180 min at either 80 or 100 rpm (randomized with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm. There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min-1, respectively were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min-1, respectively (p < 0.05. Gross efficiency was higher at 80 rpm vs. 100 rpm during both the 65% (22.8 ± 1.0 vs. 21.3 ± 4.5% and the 80% (23.1 vs. 22.1 ± 0.9% exercise intensities (P< 0.05. Maximal power during the performance test (362 ± 38 watts was greater at 80 rpm than 100 rpm (327 ± 27 watts (p < 0.05. Findings suggest that in conditions simulating those seen during prolonged competitive cycling, higher cadences (i.e., 100 vs. 80 rpm are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance.

  4. A Super-Jupiter Microlens Planet Characterized by High-Cadence KMTNet Microlensing Survey Observations

    CERN Document Server

    Shin, I -G; Albrow, M; Cha, S -M; Choi, J -Y; Chung, S -J; Han, C; Hwang, K -H; Jung, Y K; Kim, D -J; Kim, S -L; Lee, C -U; Lee, Y -S; Park, B -G; Park, H; Pogge, R W; Yee, J C; Gould, A

    2016-01-01

    We report the characterization of a massive planet m_p=4.4 +- 1.6 M_jup orbiting an M dwarf host M=0.37 +- 0.14 M_sun at a distance of 0.6 +- 0.3 kpc toward the Galactic bulge, with planet host projected separation a_perp ~ 1.2 AU. The characterization was made possible by the wide-field (4 deg^2) high cadence (6/hr) monitoring of the Korea Microlensing Telescope Network (KMTNet), which had two of its three telescopes in commissioning operations at the time of the planetary anomaly. The source crossing time, t_* ~ 16 min, is among the shortest ever published. The high-cadence, wide-field observations that are the hallmark of KMTNet are the only way to routinely capture such short crossings. High-cadence resolution of short caustic crossings will preferentially lead to mass and distance measurements for the lens. This is because the short crossing time typically implies a nearby lens, which enables the measurement of additional effects (bright lens and/or microlens parallax). When combined with the measured cr...

  5. 基于FPGA的火炮实验场多相机触发控制系统%Multi-Camera Triggering and Controlling System of Gun Test Field Based on FPGA

    Institute of Scientific and Technical Information of China (English)

    戴劲松; 董永明; 王茂森

    2014-01-01

    To capture the real-time image of experiment by multi-camera in gun shooting test field, design a multi-camera triggering and controlling system of gun test field based on FPGA. The system takes FPGA as the control core, use the keyboard to input, and RS-485 telecommunication of the upper computer to lower computer as control method. The article describes the software and hardware design of the system in detail and verifies it’s feasibility with on line real-time simulation at last. It shows that this system has the following characteristics:simple in principle, compact structure, multi-methods in controlling, high reliability. And it can overcome the shortage in traditional trigger circuit, and meet the controlling of the multi-camera in gun shooting test field.%为实现火炮射击实验场多相机实时采集实验图像,设计基于 FPGA 的火炮试验场多相机触发控制系统。系统以 FPGA 为控制核心,以键盘的输入以及上位机和下位机的 RS-485通信作为控制手段。详细介绍系统的软硬件设计,并通过 FPGA 逻辑分析仪实时在线仿真。仿真结果表明:该系统原理简单、结构紧凑、控制手段多、可靠性高,能克服传统触发电路的缺陷,满足火炮发射场多相机触发控制的要求。

  6. Transit Timing Observations from Kepler. IX. Catalog of the Full Long-Cadence Data Set

    OpenAIRE

    Holczer, Tomer; Mazeh, Tsevi; Nachmani, Gil; Jontof-Hutter, Daniel; Ford, Eric B.; Fabrycky, Daniel; Ragozzine, Darin; Kane, Mackenzie; Steffen, Jason H.

    2016-01-01

    We present a new transit timing catalog of 2599 Kepler Objects of Interest (=KOIs), using the PDC-MAP long-cadence light curves that include the full seventeen quarters of the mission (ftp://wise- ftp.tau.ac.il/pub/tauttv/TTV/ver_112). The goal is to produce an easy-to-use catalog that can stimulate further analyses of interesting systems. For 779 KOIs with high enough SNRs, we derived the timing, duration and depth of 69,914 transits. For 1820 KOIs with lower SNR, we derived only the timing ...

  7. The Effect of Cycling Cadence on Subsequent 10km Running Performance in Well-Trained Triathletes

    OpenAIRE

    Tew, Garry A.

    2005-01-01

    The aim of this study was to examine the effects of different pedalling cadences on the performance of a subsequent 10km treadmill run. Eight male triathletes (age 38.9 ± 15.4 years, body mass 72.2 ± 5.2 kg, and stature 176 ± 6 cm; mean ± SD) completed a maximal cycling test, one isolated run (10km), and then three randomly ordered cycle-run sessions (65 minutes cycling + 10km run). During the cycling bout of the cycle-run sessions, subjects cycled at an intensity corresponding to 70% Pmax wh...

  8. CERN Technical Training 2002: Learning for the LHC! Introduction à la CAO CADENCE - French version only

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE. De la saisie de schéma Concept-HDL au PCB est programmée pour le 4 et 5 juin prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. Objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Plus d'information, et possibilité d'inscription par EDH sont accessibles depuis les pages «...

  9. High Cadence Photometry of the Tumbling Hitomi X-ray Satellite

    Science.gov (United States)

    Gasdia, Forrest; Bilardi, Sergei; Barjatya, Aroh

    2016-06-01

    Hitomi was a Japanese X-ray astronomy satellite launched February 17, 2016. The space observatory was designed to perform imaging and spectroscopy in the hard X-ray band above 10 keV. It was hoped these measurements could provide insight into the evolution of galaxy clusters and the large-scale structure of the universe. On March 26, 2016, contact was lost with Hitomi. That same day, the United States Joint Space Operations Center (JSpOC) reported the breakup of the satellite into a total of 6 pieces. When clear weather was available beginning March 31, 2016, the satellite and several of its debris pieces were optically tracked and observed from Daytona Beach, Florida using the OSCOM system---designed for observation of small satellites and debris using commercial-of-the-shelf (COTS) equipment. The brightness of the main piece, peaking between magnitude 2 and 3 in the SDSS r' band, allowed photometric measurements to be made at over 100 Hz for several passes of the satellite and its debris over several nights. These high cadence measurements show a clear and consistent flash pattern with a primary period of 2.66 seconds. We present reduced photometric observations and discuss how high cadence data can be used to understand the cause of failure for future satellite missions or for shape modeling of debris and near-Earth asteroids.

  10. Small-scale flows in SUMER and TRACE high-cadence co-observations

    CERN Document Server

    Madjarska, M S

    2008-01-01

    We report on the physical properties of small-scale transient flows observed simultaneously at high cadence with the SUMER spectrometer and the TRACE imager in the plage area of an active region. Our major objective is to provide a better understanding of the nature of transient phenomena in the solar atmosphere by using high-cadence imager and spectrometer co-observations at similar spatial and temporal resolution. A sequence of TRACE Fe IX/X 171 A and high-resolution MDI images were analysed together with simultaneously obtained SUMER observations in spectral lines covering a temperature range from 10 000 K to 1 MK. We reveal the existence of numerous transient flows in small-scale loops (up to 30 Mm) observed in the plage area of an active region. These flows have temperatures from 10 000 K (the low temperature limit of our observations) to 250 000 K. The coronal response of these features is uncertain due to a blending of the observed coronal line Mg X 624.85 A. The duration of the events ranges from 60 s...

  11. Heart rate variability and surface electromyography of trained cyclists at different cadences

    Directory of Open Access Journals (Sweden)

    Bruno Saraiva

    2016-06-01

    Full Text Available The heart rate variability (HRV and surface electromyography (sEMG are important tools in the evaluation of cardiac autonomic system and neuromuscular parameters, respectively. The aim of the study was to evaluate the behavior of HRV and sEMG of the vastus lateralis in two exercise protocols on a cycle ergometer at 60 and 80 rpm. Eight healthy men cyclists who have trained for at least two years were evaluated. Reduction was observed followed by stabilization of RMSSD and SDNN indices of HRV (p<0.05 along with increases in the amplitude of the sEMG signal (p<0.05 in both protocols. Significant correlations were observed between the responses of HRV and sEMG in the cadence of 60 rpm (RMSSD and sEMG: r = -0.42, p=0.03; SDNN and sEMG: r = -0.45, p=0.01 and 80 rpm (RMSSD and sEMG: r = -0.47, p=0.02; SDNN and sEMG: r = -0.49, p=0.01, yet no difference was observed for these variables between the two protocols. We concluded that the parasympathetic cardiac responses and sEMG are independent of cadences applied at the same power output.

  12. The combined effect of cycling cadence and crank resistance on hamstrings and quadriceps muscle activities during cycling.

    Science.gov (United States)

    Katona, P; Pilissy, T; Tihanyi, A; Laczkó, József

    2014-12-01

    The effect of cycling cadence and crank resistance on the activity of hamstrings and quadriceps muscles was investigated during cycling movements of able-bodied subjects on a stationary bike with slow and fast speed against different resistance conditions. The ratio of average EMG amplitudes obtained in the two speed conditions (fast/slow) was computed in each resistance condition. This ratio is higher for both muscles if cycling against higher resistance. This shows that in higher resistance condition muscle activities are not only increased but the change of muscle activities with respect to cadence change varied according to resistance condition. Average EMG amplitudes increased at a higher rate with respect to change of cadence when cycling was performed in higher resistance condition. Besides, when cycling faster, hamstrings activity increased generally at a higher rate than that of quadriceps. The correlation between cadence and EMG amplitudes were also investigated. Considering hamstrings, this correlation was low and decreased as resistance increased. The correlation between the time required to drive one cycle and EMG amplitude is negative but in absolute value it is larger than the correlation of cadence and EMG amplitude. PMID:25532958

  13. Synchronization in active networks

    OpenAIRE

    Pereira da Silva, Tiago

    2007-01-01

    In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear oscillators. Synchronization can be enhanced at different levels, that is, the constraints on which the synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes of both...

  14. The effects of cadence, impact, and step on physiological responses to aerobic dance exercise.

    Science.gov (United States)

    Darby, L A; Browder, K D; Reeves, B D

    1995-09-01

    The physiological responses to aerobic dance exercise of varied impact (high, low), step (less arm movement vs. more arm movement), and cadence (124 vs. 138 beats.min-1) were investigated. Experienced, female aerobic dancers (N = 16) performed activities that combined the levels of impact and step for 3 trials of 8-min each. Dependent variables included heart rate, percentage of maximal heart rate, oxygen consumption, percentage of maximal oxygen consumption, and respiratory exchange ratio. Repeated measures analyses of variance indicated a significant Impact x Step interaction whereby oxygen consumption was greater for the high impact-less arm movement activity (jog), while the low impact-more arm movement activity (power jack) was greater for heart rate. The interaction of aerobic dance characteristics (e.g., impact, arm movement) that may alter physiological responses to aerobic dance exercise should be identified in future aerobic dance routines and studies. PMID:7481084

  15. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  16. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  17. Synchronization of clocks

    International Nuclear Information System (INIS)

    In this report we recall the famous Huygens’ experiment which gave the first evidence of the synchronization phenomenon. We consider the synchronization of two clocks which are accurate (show the same time) but have pendula with different masses. It has been shown that such clocks hanging on the same beam can show the almost complete (in-phase) and almost antiphase synchronizations. By almost complete and almost antiphase synchronization we defined the periodic motion of the pendula in which the phase shift between the displacements of the pendula is respectively close (but not equal) to 0 or π. We give evidence that almost antiphase synchronization was the phenomenon observed by Huygens in XVII century. We support our numerical studies by considering the energy balance in the system and showing how the energy is transferred between the pendula via oscillating beam allowing the pendula’s synchronization. Additionally we discuss the synchronization of a number of different pendulum clocks hanging from a horizontal beam which can roll on the parallel surface. It has been shown that after a transient, different types of synchronization between pendula can be observed; (i) the complete synchronization in which all pendula behave identically, (ii) pendula create three or five clusters of synchronized pendula. We derive the equations for the estimation of the phase differences between phase synchronized clusters. The evidence, why other configurations with a different number of clusters are not observed, is given.

  18. Synchronization of chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Pecora, Louis M.; Carroll, Thomas L. [U.S. Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-09-15

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

  19. Synchronization of chaotic systems

    Science.gov (United States)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

  20. Effect of Rhythmic Auditory Stimulation on Controlling Stepping Cadence of Individuals with Mental Retardation and Cerebral Palsy

    Science.gov (United States)

    Varsamis, Panagiotis; Staikopoulos, Konstantinos; Kartasidou, Lefkothea

    2012-01-01

    One of the purposes of Rhythmic Auditory Stimulation (RAS) is to improve the control of dysfunctional movement patterns. This study aimed to extend the line of research by focussing on secondary students with mental retardation and cerebral palsy. According to the study's assumption, cadence can be controlled through a stable and low signal…

  1. Translationen der Décadence : (Anti)Dekadenz und Regeneration in den iberischen Literaturen, Spanien - Katalonien - Portugal (1895-1914)

    NARCIS (Netherlands)

    Lang, S.G.M.

    2014-01-01

    Focussing on the continuity of French décadence on the Iberian Peninsula, the doctoral thesis proposes an analysis of narrative literatures in Spanish, Catalan and Portuguese from 1895 to 1914. Between the literary negotiation of aesthetic patterns and an ideological quest for national identity, it

  2. High--cadence observations of spicular-type events on the Sun

    CERN Document Server

    Shetye, J; Scullion, E; Nelson, C J; Kuridze, D; Henriques, V; Woeger, F; Ray, T

    2016-01-01

    Chromospheric observations taken at high cadence and high spatial resolution show a range of spicule like features, including Type I, Type II (as well as RBEs and RREs) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km/s. This article seeks to quantify and study rapidly appearing spicular type events. We also compare the MOMFBD and speckle reconstruction techniques in order to understand if such spicules are more favourably observed using a particular technique. We use spectral imaging observations taken with the CRISP on the Swedish 1 m Solar Telescope. Data was sampled at multiple positions within the Halpha line profile for both an ondisk and limb location. The data is host to numerous rapidly appearing features which are observed at different locations within the Halpha line profile. The feature's durations vary between 10 and 20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue ...

  3. INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS

    International Nuclear Information System (INIS)

    The Kepler Mission seeks to detect Earth-size planets transiting solar-like stars in its ∼115 deg2 field of view over the course of its 3.5 year primary mission by monitoring the brightness of each of ∼156,000 Long Cadence stellar targets with a time resolution of 29.4 minutes. We discuss the photometric precision achieved on timescales relevant to transit detection for data obtained in the 33.5 day long Quarter 1 (Q1) observations that ended 2009 June 15. The lower envelope of the photometric precision obtained at various timescales is consistent with expected random noise sources, indicating that Kepler has the capability to fulfill its mission. The Kepler light curves exhibit high precision over a large dynamic range, which will surely permit their use for a large variety of investigations in addition to finding and characterizing planets. We discuss the temporal characteristics of both the raw flux time series and the systematic error-corrected flux time series produced by the Kepler Science Pipeline, and give examples illustrating Kepler's large dynamic range and the variety of light curves obtained from the Q1 observations.

  4. Transit Timing Observations from Kepler. IX. Catalog of the Full Long-Cadence Data Set

    CERN Document Server

    Holczer, Tomer; Nachmani, Gil; Jontof-Hutter, Daniel; Ford, Eric B; Fabrycky, Daniel; Ragozzine, Darin; Kane, Mackenzie; Steffen, Jason H

    2016-01-01

    We present a new transit timing catalog of 2599 Kepler Objects of Interest (=KOIs), using the PDC-MAP long-cadence light curves that include the full seventeen quarters of the mission (ftp://wise- ftp.tau.ac.il/pub/tauttv/TTV/ver_112). The goal is to produce an easy-to-use catalog that can stimulate further analyses of interesting systems. For 779 KOIs with high enough SNRs, we derived the timing, duration and depth of 69,914 transits. For 1820 KOIs with lower SNR, we derived only the timing of 225,273 transits. After removal of outlier timings, we derived various statistics for each KOI that were used to indicate significant variations. Including systems found by previous works, we have detected 260 KOIs which showed significant TTVs with long-term variations (>100 day), and another fourteen KOIs with periodic modulations shorter than 100 day and small amplitudes. For five of those, the periodicity is probably due to the crossing of rotating stellar spots by the transiting planets.

  5. Initial Characteristics of Kepler Long Cadence Data For Detecting Transiting Planets

    CERN Document Server

    Jenkins, Jon M; Chandrasekaran, Hema; Twicken, Joseph D; Bryson, Stephen T; Quintana, Elisa V; Clarke, Bruce D; Li, Jie; Allen, Christopher; Tenenbaum, Peter; Wu, Hayley; Klaus, Todd C; Van Cleve, Jeffrey; Dotson, Jessie A; Haas, Michael R; Gilliland, Ronald L; Koch, David G; Borucki, William J

    2010-01-01

    The Kepler Mission seeks to detect Earth-size planets transiting solar-like stars in its ~115 deg^2 field of view over the course of its 3.5 year primary mission by monitoring the brightness of each of ~156,000 Long Cadence stellar targets with a time resolution of 29.4 minutes. We discuss the photometric precision achieved on timescales relevant to transit detection for data obtained in the 33.5-day long Quarter 1 (Q1) observations that ended 2009 June 15. The lower envelope of the photometric precision obtained at various timescales is consistent with expected random noise sources, indicating that Kepler has the capability to fulfill its mission. The Kepler light curves exhibit high precision over a large dynamic range, which will surely permit their use for a large variety of investigations in addition to finding and characterizing planets. We discuss the temporal characteristics of both the raw flux time series and the systematic error-corrected flux time series produced by the Kepler Science Pipeline, an...

  6. Jets or high velocity flows revealed in high-cadence spectrometer and imager co-observations?

    CERN Document Server

    Madjarska, M S; Innes, D; Curdt, W

    2007-01-01

    We report on active region EUV dynamic events observed simultaneously at high-cadence with SUMER/SoHO and TRACE. Although the features appear in the TRACE Fe ix/x 171A images as jets seen in projection on the solar disk, the SUMER spectral line profiles suggest that the plasma has been driven along a curved large scale magnetic structure, a pre-existing loop. The SUMER observations were carried out in spectral lines covering a large temperature range from 10^4 K to 10^6 K. The spectral analysis revealed that a sudden heating from an energy deposition is followed by a high velocity plasma flow. The Doppler velocities were found to be in the range from 90 to 160 km/s. The heating process has a duration which is below the SUMER exposure time of 25 s while the lifetime of the events is from 5 to 15 min. The additional check on soft X-ray Yohkoh images shows that the features most probably reach 3 MK (X-ray) temperatures. The spectroscopic analysis showed no existence of cold material during the events.

  7. RATS-Kepler -- a deep high cadence survey of the Kepler field

    CERN Document Server

    Ramsay, Gavin; Hakala, Pasi; Barclay, Thomas; Garcia-Alvarez, David; Antoci, Victoria; Greiss, Sandra; Still, Martin; Steeghs, Danny; Gansicke, Boris; Reynolds, Mark

    2013-01-01

    We outline the purpose, strategy and first results of a deep, high cadence, photometric survey of the Kepler field using the Isaac Newton Telescope on La Palma and the MDM 1.3m Telescope on Kitt Peak. Our goal was to identify sources located in the Kepler field of view which are variable on a timescale of a few mins to 1 hour. The astrophysically most interesting sources would then have been candidates for observation using Kepler using 1 min sampling. Our survey covered ~42% of the Kepler field of view and we have obtained light curves for 7.1x10^5 objects in the range 13

  8. Montesquieu e la "décadence". Alcune annotazioni intorno ai "Romains"

    Directory of Open Access Journals (Sweden)

    Dileo Lucia

    2012-01-01

    Full Text Available Here I examine the issue of "décadence" in Montesquieu’s political philosophy, as it raises especially from "Considérations sur les Romains", as well as from some significant parts of L’Esprit des lois devoted to ancient Romans. The Roman case is important as it may offer an account of the author’s view of philosophy of history and of his conception of “general causes” that determine the progress, the preservation or the decline of societies and political institutions. It is also important as it involves Montesquieu’s theory of “good government”, that is both the ethical principles which the life of nations and institutions should be founded on, and the political argument of “mixed government”, a government in which political liberty is granted by a system of balance of powers that ensures the participation of each social and political force. The ancient Roman republic is an example of this kind of political system, and Roman imperialism was one of the main causes of its corruption. Even if the fate of the Roman empire cannot be easily explained – due to the role played by a complexity of different causes – following Montesquieu, we might say that its history especially tells us something extremely important about the necessity (and difficulty of equity in governing and, consequently, about the infinite dialectic of liberty and oppression.

  9. Search for pulsations in M dwarfs in the Kepler short-cadence data base

    Science.gov (United States)

    Rodríguez, E.; Rodríguez-López, C.; López-González, M. J.; Amado, P. J.; Ocando, S.; Berdiñas, Z. M.

    2016-04-01

    The results of a search for stellar pulsations in M dwarf stars in the Kepler short-cadence (SC) data base are presented. This investigation covers all the cool and dwarf stars in the list of Dressing & Charbonneau, which were also observed in SC mode by the Kepler satellite. The sample has been enlarged via selection of stellar parameters (temperature, surface gravity and radius) with available Kepler Input Catalogue values together with JHK and riz photometry. In total, 87 objects observed by the Kepler mission in SC mode were selected and analysed using Fourier techniques. The detection threshold is below 10 μmag for the brightest objects and below 20 μmag for about 40 per cent of the stars in the sample. However, no significant signal in the [˜10,100] cd-1 frequency domain that can be reliably attributable to stellar pulsations has been detected. The periodograms have also been investigated for solar-like oscillations in the >100 cd-1 region, but with unsuccessful results too. Despite these inconclusive photometric results, M dwarfs pulsation amplitudes may still be detected in radial velocity searches. State-of-the-art coming instruments, like CARMENES near-infrared high-precision spectrograph, will play a key role in the possible detection.

  10. The High Cadence Transient Survey (HiTS) - I. Survey design and supernova shock breakout constraints

    CERN Document Server

    Förster, Francisco; Martín, Jaime San; Hamuy, Mario; Martínez, Jorge; Huijse, Pablo; Cabrera, Guillermo; Galbany, Lluís; de Jaeger, Thomas; González-Gaitán, Santiago; Anderson, Joseph P; Kuncarayakti, Hanindyo; Pignata, Giuliano; Bufano, Filomena; Littín, Jorge; Olivares, Felipe; Medina, Gustavo; Smith, R Chris; Vivas, A Katherina; Estévez, Pablo A; Muñoz, Ricardo; Vera, Eduardo

    2016-01-01

    We present the first results of the High cadence Transient Survey (HiTS), a survey whose objective is to detect and follow up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera (DECam) and a custom made pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014 and 2015 campaigns we have detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting-magnitudes from our observational campaigns we measured the expected recove...

  11. Synchronization of networks

    Indian Academy of Sciences (India)

    R E Amritkar

    2008-08-01

    We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster synchronization. For networks with time-varying topology we compare the synchronization properties of these networks with the corresponding time-average network. We find that if the different coupling matrices corresponding to the time-varying networks commute with each other then the stability of the synchronized state for both the time-varying and the time-average topologies are approximately the same. On the other hand, for non-commuting coupling matrices the stability of the synchronized state for the time-varying topology is in general better than the time-average topology.

  12. Directed follow-up strategy of low-cadence photometric surveys in Search of Transiting Exoplanets - II. application to Gaia

    CERN Document Server

    Dzigan, Yifat

    2012-01-01

    In a previous paper we presented the Directed Follow-Up (DFU) approach, which we suggested can be used to efficiently augment low-cadence photometric surveys in a way that will optimize the chances to detect transiting exoplanets. In this paper we present preliminary tests of applying the DFU approach to the future ESA space mission Gaia. We demonstrate the strategy application to Gaia photometry through a few simulated cases of known transiting planets, using Gaia expected performance and current design. We show that despite the low cadence observations DFU, when tailored for Gaia's scanning law, can facilitate detection of transiting planets with ground-based observations, even during the lifetime of the mission. We conclude that Gaia photometry, although not optimized for transit detection, should not be ignored in the search of transiting planets. With a suitable ground-based follow-up network it can make an important contribution to this search.

  13. Translationen der Décadence : (Anti)Dekadenz und Regeneration in den iberischen Literaturen, Spanien - Katalonien - Portugal (1895-1914)

    OpenAIRE

    Lang, S.G.M.

    2014-01-01

    Focussing on the continuity of French décadence on the Iberian Peninsula, the doctoral thesis proposes an analysis of narrative literatures in Spanish, Catalan and Portuguese from 1895 to 1914. Between the literary negotiation of aesthetic patterns and an ideological quest for national identity, it concentrates on narrative versions that aim at surmounting the “decadent” period and style and finding new vitalistic or optimistic fictional counterparts, but without abandoning the decadent set o...

  14. Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis

    Science.gov (United States)

    Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi

    2011-01-01

    In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…

  15. Motor ability of forelimb both on- and off-riding during walk and trot cadence of horse

    Science.gov (United States)

    Hyun, Seung-Hyun; Ryew, Che-Cheong

    2016-01-01

    The aim of this study was to investigate the motor ability of forelimb according to on- or off-riding during cadences (walk and trot) of horse. Horses and rider selected as subject consisted of total 37 heads of Jeju native horse and 1 female rider. The variables analyzed composed of 1 stride length, 1 step length, elapsed time of stance, elapsed time of swing, elapsed time of 1 step, and forward velocity (x-axis). Two-way analysis of variance of variables was employed for the statistical analysis with the level of significance set at 5% (P<0.05). Trot cadence showed significant difference with the faster and shorter during trot than that of walk in velocity and elapsed time. When analyzed interaction effect in stance and swing phase, the locomotion showed the shorter elapsed time in trot than that of walk, but more delayed in case of on-riding during stance phase, whereas the case of on-riding showed with the shorter during swing phase than that of the case of off-riding These result of horse’s analysis meant that there was very close relation among variables of rider’s weight-velocity-stride length-stride elapsed time. Next study will be necessary to analyze cadence variables added both stride length and rider’s weight for riding activity and rehabilitation during horse riding using Jeju native horse. PMID:26933662

  16. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  17. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    Science.gov (United States)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, Jack E.; Smith, Stephen J.; Smith, Randall K.

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  18. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity: A Pilot Study.

    Science.gov (United States)

    Ardic, Fusun; Göcer, Esra

    2016-03-01

    The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer.A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland-Altman analyses were performed to show the relationship and agreement between the results of 2 devices.Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland-Altman analysis.Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed. PMID:26962822

  19. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  20. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.; Namajunas, A.; Lindberg, Erik

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...

  1. Synchronization in complex networks

    Science.gov (United States)

    Arenas, Alex; Díaz-Guilera, Albert; Kurths, Jurgen; Moreno, Yamir; Zhou, Changsong

    2008-12-01

    Synchronization processes in populations of locally interacting elements are the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understanding synchronization phenomena in natural systems now take advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also take an overview of the new emergent features coming out from the interplay between the structure and the function of the underlying patterns of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  2. Synchronization and temporal processing

    OpenAIRE

    Iversen, John Rehner; Balasubramaniam, Ramesh

    2016-01-01

    Humans have the ability to flexibly synchronize motor output with sensory input, such as when dancing, performing, walking in step with a partner, or just tapping a foot along with music. The study of these behaviors, collectively called sensory-motor synchronization (SMS) offers an important window into human timing behavior and the neural mechanisms that support it. The study of SMS also provides insight into how the brain actively shapes our perception, general cognitive functions and our ...

  3. Complex regimes of synchronization

    OpenAIRE

    Yeldesbay, Azamat

    2014-01-01

    Synchronization is a fundamental phenomenon in nature. It can be considered as a general property of self-sustained oscillators to adjust their rhythm in the presence of an interaction. In this work we investigate complex regimes of synchronization phenomena by means of theoretical analysis, numerical modeling, as well as practical analysis of experimental data. As a subject of our investigation we consider chimera state, where due to spontaneous symmetry-breaking of an initially ho...

  4. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  5. High-cadence observations of spicular-type events on the Sun

    Science.gov (United States)

    Shetye, J.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Kuridze, D.; Henriques, V.; Woeger, F.; Ray, T.

    2016-05-01

    Context. Chromospheric observations taken at high-cadence and high-spatial resolution show a range of spicule-like features, including Type-I, Type-II (as well as rapid blue-shifted excursions (RBEs) and rapid red-shifted excursions (RREs) which are thought to be on-disk counterparts of Type-II spicules) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km s-1. Aims: This article seeks to quantify and study rapidly appearing spicular-type events. We also compare the multi-object multi-frame blind deconvolution (MOMFBD) and speckle reconstruction techniques to understand if these spicules are more favourably observed using a particular technique. Methods: We use spectral imaging observations taken with the CRisp Imaging SpectroPolarimeter (CRISP) on the Swedish 1-m Solar Telescope. Data was sampled at multiple positions within the Hα line profile for both an on-disk and limb location. Results: The data is host to numerous rapidly appearing features which are observed at different locations within the Hα line profile. The feature's durations vary between 10-20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue and red wings of 3-5 s is evident, whereas, sometimes they are near simultaneous. In some instances, features are observed to fade and then re-emerge at the same location several tens of seconds later. Conclusions: We provide the first statistical analysis of these spicules and suggest that these observations can be interpreted as the line-of-sight (LOS) movement of highly dynamic spicules moving in and out of the narrow 60 mÅ transmission filter that is used to observe in different parts of the Hα line profile. The LOS velocity component of the observed fast chromospheric features, manifested as Doppler shifts, are responsible for their appearance in the red and blue wings of Hα line. Additional work involving data at other

  6. Synchronization of Sound Sources

    CERN Document Server

    Abel, Markus; Bergweiler, Steffen

    2009-01-01

    Sound generation and -interaction is highly complex, nonlinear and self-organized. Already 150 years ago Lord Rayleigh raised the following problem: Two nearby organ pipes of different fundamental frequencies sound together almost inaudibly with identical pitch. This effect is now understood qualitatively by modern synchronization theory (M. Abel et al., J. Acoust. Soc. Am., 119(4), 2006). For a detailed, quantitative investigation, we substituted one pipe by an electric speaker. We observe that even minute driving signals force the pipe to synchronization, thus yielding three decades of synchronization -- the largest range ever measured to our knowledge. Furthermore, a mutual silencing of the pipe is found, which can be explained by self-organized oscillations, of use for novel methods of noise abatement. Finally, we develop a specific nonlinear reconstruction method which yields a perfect quantitative match of experiment and theory.

  7. Synchronization of flexible sheets

    CERN Document Server

    Elfring, Gwynn J; 10.1017/S0022112011000814

    2011-01-01

    When swimming in close proximity, some microorganisms such as spermatozoa synchronize their flagella. Previous work on swimming sheets showed that such synchronization requires a geometrical asymmetry in the flagellar waveforms. Here we inquire about a physical mechanism responsible for such symmetry-breaking in nature. Using a two-dimensional model, we demonstrate that flexible sheets with symmetric internal forcing, deform when interacting with each other via a thin fluid layer in such a way as to systematically break the overall waveform symmetry, thereby always evolving to an in-phase conformation where energy dissipation is minimized. This dynamics is shown to be mathematically equivalent to that obtained for prescribed waveforms in viscoelastic fluids, emphasizing the crucial role of elasticity in symmetry-breaking and synchronization.

  8. Analysis of synchronous machines

    CERN Document Server

    Lipo, TA

    2012-01-01

    Analysis of Synchronous Machines, Second Edition is a thoroughly modern treatment of an old subject. Courses generally teach about synchronous machines by introducing the steady-state per phase equivalent circuit without a clear, thorough presentation of the source of this circuit representation, which is a crucial aspect. Taking a different approach, this book provides a deeper understanding of complex electromechanical drives. Focusing on the terminal rather than on the internal characteristics of machines, the book begins with the general concept of winding functions, describing the placeme

  9. Synchronization and Inertial Frames

    CERN Document Server

    Viazminsky, C P

    1999-01-01

    In classical mechanics, a procedure for simultaneous synchronization in all inertial frames is consistent with the Galilean transformation. However, if one attempts to achieve such a synchronization utilizing light signals, he will be facing in the first place the break down of simultaneity, and secondly, a self-contradictory transformation that has the Lorentz transformation, or its confinement to the velocity of light, as the only possible ways that resolve the contradiction. The current work constitutes a smooth transition from traditional to relativistic vision of mechanics, and therefore is quite appealing from pedagogical point of view.

  10. Limits on the strength of individual gravitational wave sources using high-cadence observations of PSR B1937+21

    CERN Document Server

    Yi, Shuxu; Sanidas, Sotirios A; Bassa, Cees G; Janssen, Gemma H; Lyne, Andrew G; Kramer, Michael; Zhang, Shuang-Nan

    2014-01-01

    We present the results of a search for gravitational waves (GWs) from individual sources using high cadence observations of PSR B1937+21. The data were acquired from an intensive observation campaign with the Lovell telescope at Jodrell Bank, between June 2011 and May 2013. The almost daily cadence achieved, allowed us to be sensitive to GWs with frequencies up to $4.98\\times10^{-6}\\,\\rm {Hz}$, extending the upper bound of the typical frequency range probed by Pulsar Timing Arrays. We used observations taken at three different radio frequencies with the Westerbork Synthesis Radio Telescope in order to correct for dispersion measure effects and scattering variances. The corrected timing residuals exhibited an unmodeled periodic noise with an amplitude $~150\\,\\rm {ns}$ and a frequency of $3.4\\rm {yr}^{-1}$. As the signal is not present in the entire data set, we attributed it to the rotational behaviour of the pulsar, ruling out the possibilities of being either due to a GW or an asteroid as the cause. After re...

  11. Synchronizing Hyperchaotic Circuits

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius;

    1997-01-01

    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...

  12. Synchronizing Hyperchaotic Circuits

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius; Mykolaitis, Gytis; Lindberg, Erik

    1997-01-01

    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...... characterized by multiple positive Lyapunov exponents are reviewd....

  13. MASS ESTIMATES OF RAPIDLY MOVING PROMINENCE MATERIAL FROM HIGH-CADENCE EUV IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David R.; Baker, Deborah [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH5 6NT (United Kingdom); Van Driel-Gesztelyi, Lidia, E-mail: d.r.williams@ucl.ac.uk [LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 92195 Meudon (France)

    2013-02-20

    We present a new method for determining the column density of erupting filament material using state-of-the-art multi-wavelength imaging data. Much of the prior work on filament/prominence structure can be divided between studies that use a polychromatic approach with targeted campaign observations and those that use synoptic observations, frequently in only one or two wavelengths. The superior time resolution, sensitivity, and near-synchronicity of data from the Solar Dynamics Observatory's Advanced Imaging Assembly allow us to combine these two techniques using photoionization continuum opacity to determine the spatial distribution of hydrogen in filament material. We apply the combined techniques to SDO/AIA observations of a filament that erupted during the spectacular coronal mass ejection on 2011 June 7. The resulting 'polychromatic opacity imaging' method offers a powerful way to track partially ionized gas as it erupts through the solar atmosphere on a regular basis, without the need for coordinated observations, thereby readily offering regular, realistic mass-distribution estimates for models of these erupting structures.

  14. MASS ESTIMATES OF RAPIDLY MOVING PROMINENCE MATERIAL FROM HIGH-CADENCE EUV IMAGES

    International Nuclear Information System (INIS)

    We present a new method for determining the column density of erupting filament material using state-of-the-art multi-wavelength imaging data. Much of the prior work on filament/prominence structure can be divided between studies that use a polychromatic approach with targeted campaign observations and those that use synoptic observations, frequently in only one or two wavelengths. The superior time resolution, sensitivity, and near-synchronicity of data from the Solar Dynamics Observatory's Advanced Imaging Assembly allow us to combine these two techniques using photoionization continuum opacity to determine the spatial distribution of hydrogen in filament material. We apply the combined techniques to SDO/AIA observations of a filament that erupted during the spectacular coronal mass ejection on 2011 June 7. The resulting 'polychromatic opacity imaging' method offers a powerful way to track partially ionized gas as it erupts through the solar atmosphere on a regular basis, without the need for coordinated observations, thereby readily offering regular, realistic mass-distribution estimates for models of these erupting structures.

  15. Synchronization: The ratchet phenomenon

    International Nuclear Information System (INIS)

    In this paper some simple models of coupled oscillators are defined. They are used as tools to analyze properties of synchronization domains. It is possible to get the general organization of these domains (generally known as tongues), particularly when the coupling or the forcing signal is 'square'. At large forcing a phenomenon, very similar to the ratchet wheel mechanism, takes place and many synchronization domains disappear. Generally the tongue associated with the relative winding number 1/1 becomes predominant and only tongues with relative winding number p/q < 1 remain. This phenomenon is rather general and appears in many real situations. It is related with motion and transport in physical and biological sciences.

  16. LHC synchronization test successful

    CERN Multimedia

    The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/

  17. Synchronously deployable truss structure

    Science.gov (United States)

    Bush, H. G. (Inventor); Mikulas, M., Jr. (Inventor); Wallsom, E. (Inventor)

    1986-01-01

    A collapsible-expandable truss structure, including first and second spaced surface truss layers having an attached core layer is described. The surface truss layers are composed of a plurality of linear struts arranged in multiple triangular configurations. Each linear strut is hinged at the center and hinge connected at each end to a nodular joint. A passive spring serves as the expansion force to move the folded struts from a stowed collapsed position to a deployed operative final truss configuration. A damper controls the rate of spring expansion for the synchronized deployment of the truss as the folded configuration is released for deployment by the restrain belts. The truss is synchronously extended under the control of motor driven spools.

  18. Direct fire synchronization.

    OpenAIRE

    Lamont, Robert W.

    1992-01-01

    Approved for public release; distribution is unlimited This thesis analyzes defense in sector missions adapted from the National Training Center and conducted with the Janus(A) high resolution combat model to check for relationships which influence direct fire synchronization. This analysis should enhance the monitoring of unit performances in the area of concentration of massing of fires consistent with the commander's intent. The combat fighting vehicle, which combines the characterist...

  19. Symmetric Synchronous Collaborative Navigation

    OpenAIRE

    Gerosa, Luca; Giordani, Alessandra; Ronchetti, Marco

    2004-01-01

    Synchronous collaborative navigation is a form of social navigation where users virtually share a web browser. In this paper, we present a symmetric, proxy-based architecture where each user can take the lead and guide others in visiting web sites, without the need for a special browser or other software. We show how we have applied this scheme to a problem-solving-oriented e-learning system.

  20. Conveyor belt clock synchronization

    CERN Document Server

    Giovannetti, V; Maccone, L; Shapiro, J H; Wong, F N C; Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Shapiro, Jeffrey H.; Wong, Franco N. C.

    2004-01-01

    A protocol for synchronizing distant clocks is proposed that does not rely on the arrival times of the signals which are exchanged, and an optical implementation based on coherent-state pulses is described. This protocol is not limited by any dispersion that may be present in the propagation medium through which the light signals are exchanged. Possible improvements deriving from the use of quantum-mechanical effects are also addressed.

  1. Synchronization of Eukaryotic Flagella

    Science.gov (United States)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  2. High-cadence observations of CME initiation and plasma dynamics in the corona with TESIS on board CORONAS-Photon

    Science.gov (United States)

    Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.

    The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.

  3. The Synchronic Fallacy

    DEFF Research Database (Denmark)

    Hansen, Erik W.

    , to exist, in order to underline the cognitive basis of man's (comprehension of) existence. A theory of history (existence) is set up on the basis of the traditional dualistic sign function, and the traditional sound-law concept and sound development are reinterpreted in terms of the theory's system...... of definitions. Historical linguistics ('change') is not dependent on an arbitrary synchronic theory. The two language universals polysemy and synonymy are reinterpreted and defined in accordance with the advanced definitions. Louis Hjelmslev's glossematic theory is the general horizon of the argument...

  4. Time Synchronization Model

    OpenAIRE

    Malyshev, Vadim A.; Manita, A.

    2004-01-01

    There are two types i=1,2 of particles on the line R, with N_i particles of type i¸. Each particle of type i moves with constant velocity v_i. Moreover, any particle of type i=1,2 jumps to any particle of type j=1,2 with rates N_j^-1_ij. We find phase transitions in the clusterization (synchronization) behaviour of this system of particles on different time scales t=t(N) relative to N=N_1+N_2.

  5. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  6. Synchronous Programming (Dagstuhl Seminar 13471)

    OpenAIRE

    Edwards, Stephen A.; Girault, Alain; Schneider, Klaus

    2014-01-01

    Synchronous programming languages are programming languages with an abstract (logical) notion of time: The execution of such programs is divided into discrete reaction steps, and in each of these reactions steps, the program reads new inputs and reacts by computing corresponding outputs of the considered reaction step. The programs are called synchronous because all outputs are computed together in zero time within a step and because parallel components synchronize their reaction steps by the...

  7. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination...... with a Markovian mobility model the synchronization process yields overall evolutionary dynamics for first and second conditional moments of synchronization error given geographical position. The established dynamics assume the shape of partial integro-differential equations and the swarm is subsequently studied...

  8. Controlled Synchronization Under Information Constraints

    OpenAIRE

    Fradkov, Alexander L.; Andrievsky, Boris; Evans, Robin J.

    2007-01-01

    The class of controlled synchronization systems under information constraints imposed by limited information capacity of the coupling channel is analyzed. It is shown that the framework proposed in A. L. Fradkov, B. Andrievsky, R. J. Evans, Physical Review E 73, 066209 (2006) is suitable not only for observer-based synchronization but also for controlled master-slave synchronization via communication channel with limited information capacity. A simple first order coder-decoder scheme is propo...

  9. Remote Synchronization in Complex Networks

    CERN Document Server

    Gambuzza, Lucia Valentina; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesús; Frasca, Mattia

    2013-01-01

    We show the existence of a novel dynamical state called remote synchronization in general networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon cannot be observed in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  10. Digital synchronization and communication techniques

    Science.gov (United States)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  11. Exploiting Schemas in Data Synchronization

    DEFF Research Database (Denmark)

    Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian; Pierce, Benjamin C.; Schmitt, Alan

    Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety of t...

  12. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  13. Digital Chaotic Synchronized Communication System

    Directory of Open Access Journals (Sweden)

    L. Magafas

    2009-01-01

    Full Text Available The experimental study of a secure chaotic synchronized communication system is presented. The synchronization betweentwo digital chaotic oscillators, serving as a transmitter-receiver scheme, is studied. The oscillators exhibit rich chaotic behaviorand are unidirectionally coupled, forming a master-slave topology. Both the input information signal and the transmittedchaotic signal are digital ones.

  14. Noise-immune oscilloscope synchronizer

    International Nuclear Information System (INIS)

    A simple synchronizer for a high-speed oscilloscope is described that replaces the internal synchronizer for work with powerful electromagnetic fields. Use of the unit makes it unnecessary to shield the oscilloscope. The time instability of sweep triggering is < 1 nsec. An S7-10B high-speed oscilloscope was used in the experiments

  15. Controlled synchronization under information constraints

    Science.gov (United States)

    Fradkov, Alexander L.; Andrievsky, Boris; Evans, Robin J.

    2008-09-01

    A class of controlled synchronization systems under information constraints imposed by limited information capacity of the coupling channel is analyzed. It is shown that the framework proposed by Fradkov , [Phys. Rev. E 73, 066209 (2006)] is suitable not only for observer-based synchronization but also for controlled master-slave synchronization via a communication channel with limited information capacity. A simple first-order coder-decoder scheme is proposed and a theoretical analysis for multidimensional master-slave systems represented in the Lurie form (linear part plus nonlinearity depending only on measurable outputs) is provided. An output feedback control law is proposed based on the passification method. It is shown that for systems with passifiable linear part (satisfying the hyperminimum phase condition) the upper bound of the limiting synchronization error is proportional to the upper bound of the transmission error. As a consequence, both upper and lower bounds of the limiting synchronization error are proportional to the maximum rate of the coupling signal and inversely proportional to the information transmission rate (channel capacity). The results are applied to controlled synchronization of two chaotic Chua systems coupled via a controller and a channel with limited capacity. It is shown by computer simulation that, unlike for the case of observer-based synchronization, the hyperminimum phase property cannot be violated for controlled synchronization.

  16. Fragments de machines synchrones

    OpenAIRE

    Hoang, Emmanuel

    2012-01-01

    Dans ce mémoire, je présente essentiellement des travaux de recherche sur les machines à commutation de flux, à simple et à double excitation. A l'origine de ces travaux, il y a eu l'étude des pertes magnétiques dans les machines à réluctance variable à double saillance. Et en parallèle de ces travaux, il y a eu l'étude des limites thermiques et électroniques dans la conversion d'énergie d'une machine synchrone associée à son convertisseur et l'étude de l'optimisation sur cycles de fonctionne...

  17. Dual-scale multimedia dynamic synchronization model

    Institute of Scientific and Technical Information of China (English)

    李乃祥

    2009-01-01

    Multimedia synchronization is the key technology in application of distributed multimedia.Solution of synchronization conflicts insides and among streams as well as that of user interaction,synchronization granularity refinement and synchronization precision improvement remain great challenges although great efforts have been invested by the academic circle.The construction method of a dual-scale dynamic synchronous model of multimedia presented in this article realizes multimedia synchronization on two sca...

  18. Statistical properties of superflares on solar-type stars based on the Kepler 1-min cadence data

    CERN Document Server

    Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Nogami, Daisaku; Shibata, Kazunari

    2016-01-01

    We searched for superflares on solar-type stars using the Kepler short-cadence (1-min sampling) data in order to detect superflares with short duration. We found 187 superflares on 23 solar-type stars whose bolometric energy ranges from the order of $10^{32}$ erg to $10^{36}$ erg. Using these new data combined with the results from the data with 30-min sampling, we found the occurrence frequency ($dN/dE$) of superflares as a function of flare energy ($E$) shows the power-law distribution ($dN/dE \\propto E ^{-\\alpha}$) with $\\alpha=1.5$ for $10^{33}

  19. Transition to complete synchronization via near-synchronization in two coupled chaotic neurons

    Institute of Scientific and Technical Information of China (English)

    Wang Qing-Yun; Lu Qi-Shao; Wang Hai-Xia

    2005-01-01

    The synchronization transition in two coupled chaotic Morris-Lecar (ML) neurons with gap junction is studied with the coupling strength increasing. The conditional Lyapunov exponents, along with the synchronization errors are calculated to diagnose synchronization of two coupled chaotic ML neurons. As a result, it is shown that the increase in the coupling strength leads to incoherence, then induces a transition process consisting of three different synchronization states in succession, namely, burst synchronization, near-synchronization and embedded burst synchronization, and achieves complete synchronization of two coupled neurons finally. These sequential transitions to synchronization reveal a new transition route from incoherence to complete synchronization in coupled systems with multi-time scales.

  20. Nutritional recommendations for synchronized swimming.

    Science.gov (United States)

    Robertson, Sherry; Benardot, Dan; Mountjoy, Margo

    2014-08-01

    The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers. PMID:24667278

  1. TGV Rhin-Rhône et TER Alsace, une cohabitation complexe dans le cadre du cadencement. Proposition d'une desserte régionale à l'horizon 2012

    OpenAIRE

    Philippe Wolff

    2009-01-01

    La mise en service du TGV Rhin-Rhône, à l'horizon 2012, est l'occasion pour Réseau Ferré de France de structurer la trame horaire nationale (TGV et Grandes Lignes) sur les principes du cadencement. Invitée à cadencer les horaires de ses lignes TER, la Région Alsace est fortement contrainte par la circulation du TGV Rhin-Rhône sur les lignes classiques du réseau. Aussi s'interroge-t-elle sur la faisabilité du projet de cadencement pour le TER Alsace. Ce rapport analyse la compatibilité des des...

  2. A Super-Jupiter Microlens Planet Characterized by High-Cadence KMTNeT Micorlensing Survey Observations of OGLE-2015-BLG-0954

    Science.gov (United States)

    Shin, I.-G.; Ryu, Y.-H.; Udalski, A.; Albrow, M.; Cha, S.-M.; Choi, J.-Y.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y. K.; Kim, D.-J.; Kim, S.-L.; Lee, C.-U.; Lee, Y.; Park, B.-G.; Park, H.; Pogge, R. W.; Yee, J. C.; Pietrukowicz, P.; Mroz, P.; Kozlowski, S.; Poleski, R.; Skowron, J.; Soszynski, I.; Szymanski, M. K.; Ulaczyk, K.; Wyrzykowski, L.; Pawlak, M.; Gould, A.

    2016-06-01

    We report the characterization of a massive (m_p=3.9± 1.4 M_{jup}) microlensing planet (OGLE-2015-BLG-0954Lb) orbiting an M dwarf host (M=0.33 ± 0.12 M_⊙) at a distance toward the Galactic bulge of 0.6^{+0.4}_{-0.2} kpc, which is extremely nearby by microlensing standards. The planet-host projected separation is a_perp ˜ 1.2 au. The characterization was made possible by the wide-field (4 deg^2) high cadence (Γ = 6 hr^{-1}) monitoring of the Korea Microlensing Telescope Network (KMTNet), which had two of its three telescopes in commissioning operations at the time of the planetary anomaly. The source crossing time t_*=16 min is among the shortest ever published. The high-cadence, wide-field observations that are the hallmark of KMTNet are the only way to routinely capture such short crossings. High-cadence resolution of short caustic crossings will preferentially lead to mass and distance measurements for the lens. This is because the short crossing time typically implies a nearby lens, which enables the measurement of additional effects (bright lens and/or microlens parallax). When combined with the measured crossing time, these effects can yield planet/host masses and distance.}

  3. ANALYSIS OF HIGH CADENCE IN SITU SOLAR WIND IONIC COMPOSITION DATA USING WAVELET POWER SPECTRA CONFIDENCE LEVELS

    International Nuclear Information System (INIS)

    The variability inherent in solar wind composition has implications for the variability of the physical conditions in its coronal source regions, providing constraints on models of coronal heating and solar wind generation. We present a generalized prescription for constructing a wavelet power significance measure (confidence level) for the purpose of characterizing the effects of missing data in high cadence solar wind ionic composition measurements. We describe the data gaps present in the 12 minute Advanced Composition Explorer/Solar Wind Ionic Composition Spectrometer observations of O7+/O6+ during 2008. The decomposition of the in situ observations into 'good measurement' and 'no-measurement' signals allows us to evaluate the performance of a filler signal, i.e., various prescriptions for filling the data gaps. We construct Monte Carlo simulations of synthetic O7+/O6+ composition data and impose the actual data gaps that exist in the observations in order to investigate two different filler signals: one, a linear interpolation between neighboring good data points, and two, the constant mean value of the measured data. Applied to these synthetic data plus filler signal combinations, we quantify the ability of the power spectra significance level procedure to reproduce the ensemble-averaged time-integrated wavelet power per scale of an ideal case, i.e., the synthetic data without imposed data gaps. Finally, we present the wavelet power spectra for the O7+/O6+ data using the confidence levels derived from both the mean value and linear interpolation data gap filling signals and discuss the results

  4. Business Cycle Synchronization in Croatia

    OpenAIRE

    Šergo Zdravko; Poropat Amorino; Gržinić Jasmina

    2012-01-01

    The purpose of this paper is to analyze business cycle synchronization in the Croatian economy using various annualized growth rate variables over a period of eighteen years (1992-2010), de-trended by a Hodrick-Prescott filter, and following the Harding and Pagan methodological procedure in the determination of its turning points. Our conceptual analysis of synchronization is based on the technique of concordance indexes and correlation coefficients obtained by the HAC estimators. The main re...

  5. Synchronized Swimming of Two Fish

    Science.gov (United States)

    Koumoutsakos, Petros; Novati, Guido; Abbati, Gabriele; Hejazialhosseini, Babak; van Rees, Wim

    2015-11-01

    We present simulations of two, self-propelled, fish-like swimmers that perform synchronized moves in a two-dimensional, viscous fluid. The swimmers learn to coordinate by receiving a reward for their synchronized actions. We analyze the swimming patterns emerging for different rewards in terms of their hydrodynamic efficiency and artistic impression. European Research Council (ERC) Advanced Investigator Award (No. 2-73985-14).

  6. Synchronizing Rotation Of A Heavy Load

    Science.gov (United States)

    Ratliff, Roger

    1991-01-01

    Drive system rotates large-inertia load at constant low speed. Simple setup of motors, pulleys, and belts provides both torque and synchronism. Induction motor drives two loads: rotating instrument and slightly lagging synchronous motor. Provides ample torque to start and maintain rotation, and synchronous motor ensures rotation synchronized with ac power supply.

  7. VOLTAGE REGULATORS OF SYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2015-06-01

    Full Text Available Synchronous generators are the primary source of electrical power autonomous electrosupply systems, including backup systems. They are also used in a structure of rotating electricity converters and are widely used in renewable energy as part of wind power plants of small, mini and micro hydroelectric plants. Increasing the speed and the accuracy of the system of the voltage regulation of synchronous generators is possible due to the development of combined systems containing more stabilizers. The article illustrates the functional schemes of circuit voltage stabilizers and frequency synchronous generators (with electromagnetic excitation and permanent magnet excitation and describes the features of their work, including two and three-aggregate rotating converters of electricity used in uninterruptible power supply systems. To improve the technical characteristics of the system of stabilization we have proposed functional solutions for stabilizers of synchronous generators made on the base of direct frequency converters and using a transformer with a rotating magnetic field. To improve the reliability of and to improve the operational characteristics of the autonomous independent sources of electricity we suggest creating the main functional blocks and the elements of the stabilization system in a modular way. The functional circuit solutions of voltage regulators of synchronous generators and the characteristics of their work considered in the article, are able to improve the efficiency of pre-design work in the development of new technical solutions for stabilizing the voltage and the frequency in synchronous generators of electrosupply autonomous systems

  8. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    Science.gov (United States)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential

  9. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    K Sebastian Sudheer; M Sabir

    2009-10-01

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid synchronization between drive and response systems using the sum and difference of relevant variables of the chaotic systems. Numerical simulations are presented to evaluate the analysis and effectiveness of the controllers.

  10. Pinning Synchronization of Switched Complex Dynamical Networks

    OpenAIRE

    Liming Du; Feng Qiao; Fengying Wang

    2015-01-01

    Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synch...

  11. Symplectic synchronization of different chaotic systems

    International Nuclear Information System (INIS)

    In this paper, a new symplectic synchronization of chaotic systems is studied. Traditional generalized synchronizations are special cases of the symplectic synchronization. A sufficient condition is given for the asymptotical stability of the null solution of an error dynamics. The symplectic synchronization may be applied to the design of secure communication. Finally, numerical results are studied for a Quantum-CNN oscillators synchronized with a Roessler system in three different cases.

  12. Bodily Synchronization Underlying Joke Telling

    Directory of Open Access Journals (Sweden)

    R. C. Schmidt

    2014-08-01

    Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.

  13. High-cadence and High-resolution Hα Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS

    Science.gov (United States)

    Deng, Na; Tritschler, Alexandra; Jing, Ju; Chen, Xin; Liu, Chang; Reardon, Kevin; Denker, Carsten; Xu, Yan; Wang, Haimin

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel-1 image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define "core" and "halo" structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (~30 s) and cooling (~14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s-1) between discrete

  14. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  15. Phase Synchronization in Railway Timetables

    CERN Document Server

    Fretter, Christoph; Weihe, Karsten; Müller-Hannemann, Matthias; Hütt, Marc-Thorsten

    2010-01-01

    Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of t...

  16. Remote synchronization in star networks

    Science.gov (United States)

    Bergner, A.; Frasca, M.; Sciuto, G.; Buscarino, A.; Ngamga, E. J.; Fortuna, L.; Kurths, J.

    2012-02-01

    We study phase synchronization in a network motif with a starlike structure in which the central node's (the hub's) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we derive an analytic expression which supports our explanation of the mechanism.

  17. Breathing synchronization in interconnected networks

    CERN Document Server

    Louzada, V H P; Andrade, J S; Herrmann, H J

    2013-01-01

    The harmony of an orchestra emerges from the individual effort of musicians towards mutual synchronization of their tempi. When the orchestra is split between two concert halls communicating via Internet, a time delay is imposed which might hinder synchronization. We describe this type of system as two interconnected networks of oscillators with a time delay and analyze its dynamics as a function of the couplings and communication lag. We discover a breathing synchronization regime, namely, for a wide range of parameters, two groups emerge in the orchestra within the same concert hall playing at different tempi. Each group has a mirror in the other hall, one group is in phase and the other in anti-phase with their mirrors. For strong couplings, a phase shift between halls might occur. The implications of our findings on several socio-technical and biological systems are discussed.

  18. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  19. Business cycle synchronization in Europe

    DEFF Research Database (Denmark)

    Bergman, Ulf Michael; Jonung, Lars

    2011-01-01

    In this paper we study business cycle synchronization in the three Scandinavian countries Denmark, Norway and Sweden prior to, during and after the Scandinavian Currency Union 1873–1913. We find that the degree of synchronization tended to increase during the currency union, thus supporting earlier...... empirical evidence. Estimates of factor models suggest that common Scandinavian shocks are important for these three countries. At the same time we find evidence suggesting that the importance of these shocks does not depend on the monetary regime....

  20. Synchronization in an optomechanical cavity.

    Science.gov (United States)

    Shlomi, Keren; Yuvaraj, D; Baskin, Ilya; Suchoi, Oren; Winik, Roni; Buks, Eyal

    2015-03-01

    We study self-excited oscillations (SEO) in an on-fiber optomechanical cavity. Synchronization is observed when the optical power that is injected into the cavity is periodically modulated. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution (PSD) of the self-oscillating mechanical resonator. A tomography technique is employed for extracting PSD from the measured reflected optical power. Time-resolved state tomography measurements are performed to study phase diffusion and phase locking of the SEO. The detuning region inside which synchronization occurs is experimentally determined and the results are compared with the theoretical prediction. PMID:25871175

  1. Simulating synchronization in neuronal networks

    Science.gov (United States)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

  2. Timing of synchronization in intermittent irradiation synchronized with respiratory motion

    International Nuclear Information System (INIS)

    In order to reduce the increase in the irradiated volume caused by respiratory motion, a system which intermittently emits radiation synchronized with respiration was developed. A phantom of oscillating motion was made, and the effect of the motion on the penumbra of the dose profile was investigated by changing the distance of the motion and the timing of the synchronization. Irradiation was carried out by a 10-MV linear accelerator. Decreasing the irradiated time per motion cycle reduced the width of the penumbra. With a synchronized irradiation gated at end-of-inspiration or end-of-expiration, an intermittent irradiation ratio 47% kept the extension of the penumbra width to 2.2 times of the value measured in the phantom without motion when the motion distance was 4 cm. Investigation of the patients' diaphragmatic motion was done by reading the IBS (Image Brightness Stabilizer) circuit during fluoroscopic examination. A quiescent period was often observed at end-of-expiration. Synchronized irradiation gated at end-of-expiration was considered suitable for clinical application. (author)

  3. Automatic calculation of individual time slots within a cadenced timetable; Automatische Berechnung von Einzelfahrlagen in Taktfahrplaenen. Integration von nicht vertakteten Zuegen sowie Zuegen des Gelegenheitsverkehrs in bestehende Taktfahrplaaene

    Energy Technology Data Exchange (ETDEWEB)

    Streitzig, Constanze [TU Darmstadt (Germany). FG Bahnsysteme und Bahntechnik; Opitz, Jens; Nachtigall, Karl [TU Dresden (Germany). Lehrstuhl fuer Verkehrsstroemungslehre

    2010-07-01

    In collaboration with DB Netz AG, the Dresen University of Technology has developed the TAKT program system for generating and optimising conflict-free periodic train paths. In the rail freight sector, periodic train paths are not always available; in some cases paths are requested from the infrastructure manager at short notice. To integrate these so-called individual time slots into pre-existing cadenced timetables, a shortest-path algorithm was developed on the basis of Dijkstra's algorithm. Using this algorithm enables calculation of the fastest and at the same time conflict-free paths for trains in individual time slots. (orig.)

  4. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  5. Synchronization limit of weakly forced nonlinear oscillators

    International Nuclear Information System (INIS)

    Nonlinear oscillators exhibit synchronization (injection-locking) to external periodic forcings, which underlies the mutual synchronization in networks of nonlinear oscillators. Despite its history of synchronization and the practical importance of injection-locking to date, there are many important open problems of an efficient injection-locking for a given oscillator. In this work, I elucidate a hidden mechanism governing the synchronization limit under weak forcings, which is related to a widely known inequality; Hölder's inequality. This mechanism enables us to understand how and why the efficient injection-locking is realized; a general theory of synchronization limit is constructed where the maximization of the synchronization range or the stability of synchronization for general forcings including pulse trains, and a fundamental limit of general m : n phase locking, are clarified systematically. These synchronization limits and their utility are systematically verified in the Hodgkin–Huxley neuron model as an example. (fast track communication)

  6. Wireless Networks Effective Time Power Synchronization

    Directory of Open Access Journals (Sweden)

    Kamalakannan

    2012-06-01

    Full Text Available Time synchronization is a critical piece of infrastructure for any distributed system. Distributed, wireless sensor net-works make extensive use of synchronized time, but often have unique requirements in the scope, lifetime and precision of the synchronization achieved, as well as the time and energy required to achieve it. Existing time synchronization methods need to be extended to meet these new needs. We outline the synchronization requirements of future sensor networks and present an implementation of our own low-power synchronization scheme, post-facto synchronization. We also describe an experiment that characterizes its performance for creating short-lived and localized but high-precision synchronization using very little energy.

  7. Synchronization by elastic neuronal latencies

    Science.gov (United States)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  8. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  9. Synchronizing Web Documents with Style

    NARCIS (Netherlands)

    Guimarães, R.L.; Bulterman, D.C.A.; Cesar Garcia, P.S.; Jansen, A.J.

    2014-01-01

    In this paper we report on our efforts to define a set of document extensions to Cascading Style Sheets (CSS) that allow for structured timing and synchronization of elements within a Web page. Our work considers the scenario in which the temporal structure can be decoupled from the content of the W

  10. Sports Medicine Meets Synchronized Swimming.

    Science.gov (United States)

    Wenz, Betty J.; And Others

    This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…

  11. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  12. Tweaking synchronization by connectivity modifications

    Science.gov (United States)

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A.; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  13. Fermi Timing and Synchronization System

    International Nuclear Information System (INIS)

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed

  14. Synchronized whistlers recorded at Varanasi

    Indian Academy of Sciences (India)

    Rajesh Singh; Ashok K Singh; R P Singh

    2003-06-01

    Some interesting events of synchronized whistlers recorded at low latitude station Varanasi during magnetic storm period of the year 1977 are presented. The dynamic spectrum analysis shows that the component whistlers are Eckersley whistlers having dispersion 10 s1/2 and 30 s1/2. An attempt has been made to explain the dynamic spectra using lightning discharge generated from magnetospheric sources.

  15. Memory formation by neuronal synchronization.

    NARCIS (Netherlands)

    Axmacher, N.; Mormann, F.; Fernandez, G.; Elger, C.E.; Fell, J.

    2006-01-01

    Cognitive functions not only depend on the localization of neural activity, but also on the precise temporal pattern of activity in neural assemblies. Synchronization of action potential discharges provides a link between large-scale EEG recordings and cellular plasticity mechanisms. Here, we focus

  16. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik;

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  17. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  18. Synchronization in counter-rotating oscillators

    OpenAIRE

    Bhowmick, S. K.; Ghosh, Dibakar; Dana, Syamal K.

    2011-01-01

    An oscillatory system can have clockwise and anticlockwise senses of rotation. We propose a general rule how to obtain counter-rotating oscillators from the definition of a dynamical system and then investigate synchronization. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. Stability conditions of mixed synchronization are obtained analytically i...

  19. Noise-induced transitions in optomechanical synchronization

    OpenAIRE

    Weiss, Talitha; Kronwald, Andreas; Marquardt, Florian

    2016-01-01

    We study how quantum and thermal noise affects synchronization of two optomechanical limit-cycle oscillators. Classically, in the absence of noise, optomechanical systems tend to synchronize either in-phase or anti-phase. Taking into account the fundamental quantum noise, we find a regime where fluctuations drive transitions between these classical synchronization states. We investigate how this 'mixed' synchronization regime emerges from the noiseless system by studying the classical-to-quan...

  20. Noise-Induced Transitions in Optomechanical Synchronization

    OpenAIRE

    Weiss, Talitha; Kronwald, Andreas; Marquardt, Florian

    2015-01-01

    We study how quantum and thermal noise affects synchronization of two optomechanical limit-cycle oscillators. Classically, in the absence of noise, optomechanical systems tend to synchronize either in-phase or anti-phase. Taking into account the fundamental quantum noise, we find a regime where fluctuations drive transitions between these classical synchronization states. We investigate how this "mixed" synchronization regime emerges from the noiseless system by studying the classical-to-quan...

  1. Noise-induced transitions in optomechanical synchronization

    OpenAIRE

    Weiss, Talitha; Kronwald, Andreas; Marquardt, Florian

    2016-01-01

    We study how quantum and thermal noise affects synchronization of two optomechanical limit-cycle oscillators. Classically, in the absence of noise, optomechanical systems tend to synchronize either in-phase or anti-phase. Taking into account the fundamental quantum noise, we find a regime where fluctuations drive transitions between these classical synchronization states. We investigate how this "mixed" synchronization regime emerges from the noiseless system by studying the classical-to-quan...

  2. Observer Based Projective Synchronization Method for a Class of Chaotic System Part I: Linear Synchronization Subsystem

    Institute of Scientific and Technical Information of China (English)

    Chun-Fu Li; Jue-Bang Yu

    2008-01-01

    In this three-part paper, an observerbased projective synchronization method for a class ofchaotic system is proposed. At the transmitter, a generalobserver is used to create the scalar signal forsynchronizing. In this part, the structure of theprojective synchronization method is presented. And thecondition of projection synchronization is theoreticallyanalyzed when the synchronization subsystem is linear.

  3. Two novel synchronization criterions for a unified chaotic system

    International Nuclear Information System (INIS)

    Two novel synchronization criterions are proposed in this paper. It includes drive-response synchronization and adaptive synchronization schemes. Moreover, these synchronization criterions can be applied to a large class of chaotic systems and are very useful for secure communication

  4. Timing and Synchronization (Tutorial/Overview)

    CERN Document Server

    Krzysztof, Czuba

    2009-01-01

    Give an overview of techniques used for synchronization systems Create some order in basic concepts of synchronization (practice shows that they are often confused even by LLRF team people) Indicate the most important issues of synchronization subsystems (without going into details)

  5. Inhomogeneity induces relay synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Frasca, Mattia; Fortuna, Luigi; Boccaletti, Stefano

    2016-04-01

    Relay synchronization is a collective state, originally found in chains of interacting oscillators, in which uncoupled dynamical units synchronize through the action of mismatched inner nodes that relay the information but do not synchronize with them. It is demonstrated herein that relay synchronization is not limited to such simple motifs, rather it can emerge in larger and arbitrary network topologies. In particular, we show how this phenomenon can be observed in networks of chaotic systems in the presence of some mismatched units, the relay nodes, and how it is actually responsible for an enhancement of synchronization in the network.

  6. Energetics of Synchronization in Coupled Oscillators

    CERN Document Server

    Izumida, Yuki; Seifert, Udo

    2016-01-01

    We formulate the energetics of synchronization in coupled oscillators by unifying the nonequilibrium aspects with the nonlinear dynamics via stochastic thermodynamics. We derive a concise and universal expression of the energy dissipation rate using nonlinear-dynamics quantities characterizing synchronization, and elucidate how synchronization/desynchronization between the oscillators affects it. We apply our theory to hydrodynamically-coupled Stokes spheres rotating on circular trajectories that may be interpreted as the simplest model of synchronization of coupled oscillators in a biological system, revealing that the oscillators gain the ability to do more work on the surrounding fluid as the degree of phase synchronization increases.

  7. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  8. Detecting synchronization in coupled stochastic ecosystem networks

    Energy Technology Data Exchange (ETDEWEB)

    Kouvaris, N. [Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , 15310 Athens (Greece); Department of Mathematical, Physical and Computational Science, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Provata, A. [Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , 15310 Athens (Greece); Kugiumtzis, D., E-mail: dkugiu@gen.auth.g [Department of Mathematical, Physical and Computational Science, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2010-01-11

    Instantaneous phase difference, synchronization index and mutual information are considered in order to detect phase transitions, collective behaviours and synchronization phenomena that emerge for different levels of diffusive and reactive activity in stochastic networks. The network under investigation is a spatial 2D lattice which serves as a substrate for Lotka-Volterra dynamics with 3rd order nonlinearities. Kinetic Monte Carlo simulations demonstrate that the system spontaneously organizes into a number of asynchronous local oscillators, when only nearest neighbour interactions are considered. In contrast, the oscillators can be correlated, phase synchronized and completely synchronized when introducing different interactivity rules (diffusive or reactive) for nearby and distant species. The quantitative measures of synchronization show that long distance diffusion coupling induces phase synchronization after a well defined transition point, while long distance reaction coupling induces smeared phase synchronization.

  9. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  10. Solidarity, synchronization and collective action

    CERN Document Server

    Bruggeman, Jeroen

    2013-01-01

    For people to act collectively in actual situations -- in contrast to public goods experiments -- goal ambiguity, diversity of interests, and uncertain costs and benefits stand in their way. Under such conditions, people seem to have few reasons to cooperate, yet the Arab revolutions, as conspicuous examples, show that collective action can take place despite the odds. I use the Kuramoto model to show how people in a cohesive network topology can synchronize their salient traits (emotions, interests, or other), and that synchronization happens in a phase transition, when group solidarity passes a critical threshold. This yields more precise predictions of outbursts of collective action under adverse conditions, and casts a new light on different measures of social cohesion.

  11. Rate limits of sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Bruno H. Repp

    2006-01-01

    Full Text Available Empirical evidence for upper and lower rate li-mits of sensorimotor synchronization (typically, finger tapping with anauditory or visual event sequence is reviewed. If biomechanical constraints are avoided, the upper rate limit can be as high as 8-10 Hz (sequence event inter-onset intervals of 100-125 ms with auditory stimuli, but has been found to be less than 2.5 Hz (> 400 ms with simple visual stimuli (flashesof light. The upper rate limit for auditory stimuli varies with task difficulty and musical experience; that for visual stimuli requires further investigation. The lower rate limit, according to one definition,tend stobe at about 0.56 Hz (1800 ms, regardless of modality. Attentional, perceptual, and sensorimotor explanations of these limits are considered. Rate limits of sensorimotor synchronization place important constraints on musical ensemble performance and other forms of rhythmic coordination.

  12. Research on synchronous gear pump

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhen-hui

    2010-01-01

    Based on a comprehensive analysis of the structure and existing problems of the gear pump, provided a structure principle of a synchronous gear pump. The discussions focused on the working principle, construction features and finite element analysis of the hydraulic gear. The research indicates that the new pump has such advantages as lower noise, better distributed flow and a high work pressure, and it can be widely used in hydraulic systems.

  13. Gait synchronization in Caenorhabditis elegans

    OpenAIRE

    Yuan, Jinzhou; Raizen, David M.; Haim H. Bau

    2014-01-01

    How independent agents interact to form collective behavior is of interest in diverse disciplines. Larger animals coordinate their motions via their nervous systems. However, little is known regarding the mechanisms by which microscopic animals coordinate their gaits. We observed that, when in a swarm, clusters of Caenorhabditis elegans synchronize their swimming gait. To identify the mechanism responsible for this behavior, we devised controlled experiments to examine the interactions betwee...

  14. Synchronization in Music Group Playing

    OpenAIRE

    Yuping Ren, Iris; Doursat, René; Giavitto, Jean-Louis

    2015-01-01

    - electronic proceedings available at http://cmr.soc.plymouth.ac.uk/cmmr2015/proceedings.pdf-- paper proceedings published by Springer in the LNCS series, in 2016- the article win the best student presentation International audience In this project, we created an agent-based model of music group playing under four di↵erent interaction mechanisms. Based on real music data, added randomness and simplifying assumptions, we examine how agents synchronize and deviate from the original score....

  15. Synchronization technics for OFDM systems

    OpenAIRE

    Fusco, Tilde

    2006-01-01

    [ENGLISH] The thesis deals with the problem of synchronization in Orthogonal Frequency Division Multiplexing (OFDM) systems. This modulation technique has been in existence since 1960, however, in the last years OFDM modulation is emerged as a key modulation technique of commercial high speed communication systems. The principal reason of this increasing interest is due to its capability to provide high-speed data rate transmissions with low complexity and to counteract the intersymbol inter...

  16. Estimation of Synchronous Machine Parameters

    OpenAIRE

    Oddvar Hallingstad

    1980-01-01

    The present paper gives a short description of an interactive estimation program based on the maximum likelihood (ML) method. The program may also perform identifiability analysis by calculating sensitivity functions and the Hessian matrix. For the short circuit test the ML method is able to estimate the q-axis subtransient reactance x''q, which is not possible by means of the conventional graphical method (another set of measurements has to be used). By means of the synchronization and close...

  17. Process algebra for synchronous communication

    OpenAIRE

    Bergstra, J. A.; Klop, Jan Willem

    1984-01-01

    Within the context of an algebraic theory of processes, an equational specification of process cooperation is provided. Four cases are considered: free merge or interleaving, merging with communication, merging with mutual exclusion of tight regions, and synchronous process cooperation. The rewrite system behind the communication algebra is shown to be confluent and terminating (modulo its permutative reductions). Further, some relationships are shown to hold between the four concepts of merg...

  18. Intonation contour in synchronous speech

    Science.gov (United States)

    Wang, Bei; Cummins, Fred

    2003-10-01

    Synchronous Speech (Syn-S), obtained by having pairs of speakers read a prepared text together, has been shown to result in interesting properties in the temporal domain, especially in the reduction of inter-speaker variability in supersegmental timing [F. Cummins, ARLO 3, 7-11 (2002)]. Here we investigate the effect of synchronization among speakers on the intonation contour, with a view to informing models of intonation. Six pairs of speakers (all females) read a short text (176 words) both synchronously and solo. Results show that (1) the pitch accent height above a declining baseline is reduced in Syn-S, compared with solo speech, while the pitch accent location is consistent across speakers in both conditions; (2) in contrast to previous findings on duration matching, there is an asymmetry between speakers, with one speaker exerting a stronger influence on the observed intonation contour than the other; (3) agreement on the boundaries of intonational phrases is greater in Syn-S and intonation contours are well matched from the first syllable of the phrase and throughout.

  19. Phase synchronization and synchronization frequency of two-coupled van der Pol oscillators with delayed coupling

    International Nuclear Information System (INIS)

    In this paper, phase synchronization and the frequency of two synchronized van der Pol oscillators with delay coupling are studied. The dynamics of such a system are obtained using the describing function method, and the necessary conditions for phase synchronization are also achieved. Finding the vicinity of the synchronization frequency is the major advantage of the describing function method over other traditional methods. The equations obtained based on this method justify the phenomenon of the synchronization of coupled oscillators on a frequency either higher, between, or lower than the highest, in between, or lowest natural frequency of the aggregate oscillators. Several numerical examples simulate the different cases versus the various synchronization frequency delays

  20. Technical training: Comprehensive VHDL for FPGA Design' and 'Introduction au VHDL et utilisation du simulateur NCVHDL de CADENCE' course sessions, May-June 2006

    CERN Multimedia

    Davide Vitè

    2006-01-01

    The next session of the course 'Comprehensive VHDL for FPGA Design'given in English by Doulos Ltd (UK) will take place at CERN from May 29 through June 2nd (5 days), for a maximum of 14 participants. It will be preceded by an optional, refresher session of the two-day course 'Introduction au VHDL et utilisation du simulateur NCVHDL de CADENCE', given on 23-24 May, in French, by Serge Brobecker of IT/DES. For more information, please visit the Technical Training CTA website, http://cta.cern.ch/cta2/f?p=300, to consult the detailed course descriptions and to apply via EDH. Organiser: Davide Vitè / HR-PMD / 75141 Davide.Vite@cern.ch ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING technical.training@cern.ch

  1. CERN Technical Training 2006: 'Comprehensive VHDL for FPGA Design' and 'Introduction au VHDL et utilisation du simulateur NCVHDL de CADENCE' course sessions, May-June 2006

    CERN Multimedia

    2006-01-01

    Learning for the LHC! The next session of the course 'Comprehensive VHDL for FPGA Design' given in English by Doulos Ltd (UK) will take place at CERN from May 29 through June 2nd (5 days), for a maximum of 14 participants. It will be preceded by an optional, refresher session of the two-day course 'Introduction au VHDL et utilisation du simulateur NCVHDL de CADENCE', given on 23-24 May, in French, by Serge Brobecker of IT/DES. For more information, please visit the Technical Training CTA website, http://cta.cern.ch/cta2/f?p=300, to consult the detailed course descriptions and to apply via EDH. Organiser: Davide Vitè / HR-PMD / 75141 Davide.Vite@cern.ch ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING technical.training@cern.ch

  2. Directed follow-up strategy of low-cadence photometric surveys in Search of transiting exoplanets - I. Bayesian approach for adaptive scheduling

    CERN Document Server

    Dzigan, Yifat

    2011-01-01

    We propose a novel approach to utilize low-cadence photometric surveys for exoplanetary transit search. Even if transits are undetectable in the survey database alone, it can still be useful for finding preferred times for directed follow-up observations that will maximize the chances to detect transits. We demonstrate the approach through a few simulated cases. These simulations are based on the Hipparcos Epoch Photometry data base, and the transiting planets whose transits were already detected there. In principle, the approach we propose will be suitable for the directed follow-up of the photometry from the planned Gaia mission, and it can hopefully significantly increase the yield of exoplanetary transits detected, thanks to Gaia.

  3. Adaptive Increasing-Order Synchronization and Anti-Synchronization of Chaotic Systems with Uncertain Parameters

    Institute of Scientific and Technical Information of China (English)

    M. Mossa Al-sawalha; M. S. M. Noorani

    2011-01-01

    We elaborate the concept of increasing-order synchronization and anti-synchronization of chaotic systems via an adaptive control scheme and modulation parameters. It is shown that the dynamical evolution of a third-order chaotic system can be synchronized and anti-synchronized with a fourth-order chaotic system even though their parameters are unknown. Theoretical analysis and numerical simulations are carried out to verify the results.%We elaborate the concept of increasing-order synchronization and anti-synchronization of chaotic systems via an adaptive control scheme and modulation parameters.It is shown that the dynamical evolution of a third-order chaotic system can be synchronized and anti-synchronized with a fourth-order chaotic system even though their parameters are unknown.Theoretical analysis and numerical simulations are carried out to verify the results.As the problems of synchronization and antisynchronization of chaos are interesting,nontraditional and indeed very challenging,[1] a wide variety of approaches have been proposed for chaos synchronization and anti-synchronization.[2-4] In this Letter,another type of synchronization,namely increasingorder synchronization in different chaotic systems with different orders based on parameter identification,is investigated.Such a problem exists widely in the study of cognitive processes and biological systems.[5

  4. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  5. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  6. Synchronous Phase Shift at LHC

    CERN Document Server

    Esteban-Müller, J F; Iadarola, G; Mastoridis, T; Papotti, G; Rumolo, G; Shaposhnikova, E; Valuch, D

    2013-01-01

    The electron cloud in vacuum pipes of accelerators of positively charged particle beams causes a beam energy loss which could be estimated from the synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns bunch spacing in the LHC for some fills in 2010 and 2011 show that the average energy loss depends on the total beam intensity in the ring. Later measurements during the scrubbing run with 50 ns beams show the reduction of the electron cloud due to scrubbing. Finally, measurements of the individual bunch phase give us information about the electron cloud build-up inside the batch and from batch to batch.

  7. Synchronous Phase Shift at LHC

    OpenAIRE

    Müller, J. F. Esteban; Baudrenghien, P.; Iadarola, G.; Mastoridis, T.; Papotti, G.; Rumolo, G.; Shaposhnikova, E.; Valuch, D.

    2013-01-01

    The electron cloud in vacuum pipes of accelerators of positively charged particle beams causes a beam energy loss which could be estimated from the synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns bunch spacing in the LHC for some fills in 2010 and 2011 show that the average energy loss depends on the total beam intensity in the ring. Later measurements during the scrubbing run with 50 ns beams show the reduction of the electron cloud due to scrubbing. Finally, measu...

  8. Noise-Mediated Generalized Synchronization

    Institute of Scientific and Technical Information of China (English)

    CHEN Yue-Hua; WU Zhi-Yuan; YANG Jun-Zhong

    2007-01-01

    @@ We investigate a drive-response system by considering the impacts of noise on generalized synchronization (GS).It is found that a small amount of noise can turn the system from desynchronization to the GS state in the resonant case no matter how noise is injected into the system. In the non-resonant case, noise with intensity in a certain range is helpful in building GS only when the noise is injected to the driving system. The mechanism behind the observed phenomena is discussed.

  9. Nondestructive synchronous beam current monitor

    International Nuclear Information System (INIS)

    A fast current transformer is mounted after the deflectors of the Berkeley 88-Inch Cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier performs a synchronous detection of the signal at the cyclotron second harmonic frequency. The magnitude of the signal detected is calibrated against a Faraday cup and corresponds to the beam intensity. It has exceptional resolution, long term stability, and can measure the beam current leaving the cyclotron as low as 1 nA

  10. Synchronous Sampling for Distributed Experiments

    Science.gov (United States)

    Wittkamp, M.; Ettl, J.

    2015-09-01

    Sounding Rocket payloads, especially for atmospheric research, often consists of several independent sensors or experiments with different objectives. The data of these sensors can be combined in the post processing to improve the scientific results of the flight. One major requirement for this data-correlation is a common timeline for the measurements of the distributed experiments. Within this paper we present two ways to achieve absolute timing for asynchronously working experiments. The synchronization process is using the Global Positioning System (GPS) and a standard serial communication protocol for transport of timestamps and flight-states.

  11. Desynchronization of stochastically synchronized chemical oscillators

    International Nuclear Information System (INIS)

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed

  12. Synchronization of Micromechanical Oscillators Using Light

    Science.gov (United States)

    Zhang, Mian; Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Barnard, Arthur; McEuen, Paul; Lipson, Michal

    2012-12-01

    Synchronization, the emergence of spontaneous order in coupled systems, is of fundamental importance in both physical and biological systems. We demonstrate the synchronization of two dissimilar silicon nitride micromechanical oscillators, that are spaced apart by a few hundred nanometers and are coupled through an optical cavity radiation field. The tunability of the optical coupling between the oscillators enables one to externally control the dynamics and switch between coupled and individual oscillation states. These results pave a path toward reconfigurable synchronized oscillator networks.

  13. Synchronization analysis of cultured epileptic human astrocytes

    Science.gov (United States)

    Balazsi, Gabor; Cornell-Bell, Ann; Neiman, Alexander; Moss, Frank

    2001-03-01

    Astrocyte cultures from severely epileptic patients were cultured, and the fluctuations of the intracellular calcium ion concentration were visualized using the fluorescent dye Fluo-3. The resulting image sequences were analyzed by methods of stochastic synchronization. Increased synchronization was observed in the epileptic tissues, when compared to normal tissues from rats. The more pathological the tissue, the more synchronized the calcium oscillations. The results might lead to a better understanding of intracellular calcium dynamics and could help drug development.

  14. Adaptive cluster synchronization in complex dynamical networks

    International Nuclear Information System (INIS)

    Cluster synchronization is investigated in different complex dynamical networks. In this Letter, a novel adaptive strategy is proposed to make a complex dynamical network achieve cluster synchronization, where the adaptive strategy of one edge is adjusted only according to its local information. A sufficient condition about the global stability arbitrarily grouped of cluster synchronization is derived. Several numerical simulations show the effectiveness of the adaptive strategy.

  15. Decaying of Phase Synchronization - A Physiological Tool

    OpenAIRE

    Gozolchiani, Avi; Moshel, Shay; Hausdorff, Jeffrey M.; Simon, Ely; Kurths, Jurgen; Havlin, Shlomo

    2004-01-01

    We describe the effects of the asymmetry of cycles and non-stationarity in time series on the phase synchronization method. We develop a modified method that overcomes these effects and apply this method to study parkinsonian tremor. Our results indicate that there is synchronization between two different hands and provide information about the time delay separating their dynamics. These findings suggest that this method may be useful for detecting and quantifying weak synchronization between...

  16. Phase multistability of synchronous chaotic oscillations

    Directory of Open Access Journals (Sweden)

    V. V. Astakhov

    1999-01-01

    Full Text Available The paper describes the sequence of bifurcations leading to multistability of periodic and chaotic synchronous attractors for the coupled Rössler systems which individually demonstrate the Feigenbaum route to chaos. We investigate how a frequency mismatch affects this phenomenon. The role of a set of coexisting synchronous regimes in the transitions to and between different forms of synchronization is studied.

  17. Synchronized Firing in Coupled Inhomogeneous Excitable Neurons

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhi-Gang; WANG Fu-Zhong

    2002-01-01

    We study the firing synchronization behavior of the inhomogeneous excitable media. Phase synchronizationof neuron firings is observed with increasing the coupling, while the phases of neurons are different (out-of-phase synchronization). We found the synchronization of bursts can be greatly enhanced by applying an external forcing (in-phasesynchronization). The external forcing can be either a periodic or just homogeneous thermal noise. The mechanismresponsible for this enhancement is discussed.PACS numbers: 05.45.-a, 87.10.+e

  18. Synchronization of Micromechanical Oscillators Using Light

    CERN Document Server

    Zhang, Mian; Manipatruni, Sasikanth; Barnard, Arthur; McEuen, Paul L; Lipson, Michal

    2011-01-01

    Synchronization, the emergence of spontaneous order in coupled systems, is of fundamental importance in both physical and biological systems. We demonstrate the synchronization of two dissimilar silicon nitride micromechanical oscillators, that are spaced apart by a few hundred nanometers and are coupled through optical radiation field. The tunability of the optical coupling between the oscillators enables one to externally control the dynamics and switch between coupled and individual oscillation states. These results pave a path towards reconfigurable massive synchronized oscillator networks.

  19. Disrupted neural synchronization in toddlers with autism

    OpenAIRE

    Dinstein, Ilan; Pierce, Karen; Eyler, Lisa; Solso, Stephanie; Malach, Rafael; Behrmann, Marlene; Courchesne, Eric

    2011-01-01

    Autism is often described as a disorder of neural synchronization. However, it is unknown how early in development synchronization abnormalities emerge and whether they are related to the development of early autistic behavioral symptoms. Here, we show that disrupted synchronization is evident in the spontaneous cortical activity of naturally sleeping toddlers with autism, but not in toddlers with language delay or typical development. Toddlers with autism exhibited significantly weaker inter...

  20. Desynchronization of stochastically synchronized chemical oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh; Showalter, Kenneth, E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu [C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045 (United States); Wilson, Dan; Moehlis, Jeff [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States); Netoff, Theoden Ivan [Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-12-15

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.

  1. Desynchronization of stochastically synchronized chemical oscillators

    Science.gov (United States)

    Snari, Razan; Tinsley, Mark R.; Wilson, Dan; Faramarzi, Sadegh; Netoff, Theoden Ivan; Moehlis, Jeff; Showalter, Kenneth

    2015-12-01

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.

  2. Performance Evaluation of Clock Synchronization Algorithms

    OpenAIRE

    Anceaume, Emmanuelle; Puaut, Isabelle

    1998-01-01

    Clock synchronization algorithms ensure that physically dispersed processors have a common knowledge of time. This report proposes a survey of software fault-tolerant clock synchronization algorithms: deterministic, probabilistic and statistical ; internal and external ; and resilient from crash to Byzantine failures. Our survey is based on a classification of clock synchronization algorithms (according to their internal structure and to three orthogonal and independent basic building blocks ...

  3. Chaotic Synchronization Via Minimum Information Transmission

    OpenAIRE

    Dmitriev, A. S.; Hasler, M.; Kassian, G.; Khilinsky, A. D.

    2002-01-01

    Chaotic synchronization is generally extremely sensitive to the presence of noise and other inference in the channel. Is this sensitivity a fundamental property of chaotic synchronization or is it related to the choice of synchronization method and can be suppressed by a modification of the method? If the answer is positive, then what are the relationships between the properties of a dynamical system and the level of noise at which the suppression of this sensitivity is still possible? What a...

  4. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Louis M Pecora

    2008-06-01

    Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore and compare three types of semirandom networks for their efficacy in synchronizing oscillators. It is shown that the simplest -cycle augmented by a few random edges or links are the most efficient network that will guarantee good synchronization.

  5. LES MACHINES SYNCHRONES AUTOPILOTÉES

    OpenAIRE

    Multon, Bernard

    2010-01-01

    1- GÉNÉRALITES SUR LA MACHINE À COURANT CONTINU ET SUR LA MACHINE SYNCHRONE1.1 - COMPARAISON MACHINE À COURANT CONTINU – MACHINE SYNCHRONE AUTOPILOTÉE1.2 - TYPES DE MACHINE SYNCHRONE ET MODÈLES1.3 - VISION MACROSCOPIQUE DE LA CONVERSION D’ÉNERGIE. CALCUL DU COUPLE ÉLECTROMAGNÉTIQUE MOYEN ET INSTANTANÉ2- LES MACHINES SYNCHRONES AUTOPILOTÉES ALIMENTÉES EN COURANT SINUSOIDAL2.1-DIAGRAMME DE FRESNEL. EXPRESSION DU COUPLE2.2-PRINCIPE D’ALIMENTATION ET DE CONTRÔLE3- LES MACHINES À COURANT CONTINU S...

  6. Identical Synchronous Criterion for a Coupling System

    Institute of Scientific and Technical Information of China (English)

    HUANGXiangao; ANOWei; LUOXinmin; ZHUFuchen

    2004-01-01

    A new identical synchronous criterion of a coupling system, which is the time average of the derivative of the Lyapunov function, is proposed to determine the synchronous occurrence of any coupling system. Three examples with linear or nonlinear feedback synchronous systems are introduced to test some synchronous parameters that are the conditional Lyapunov exponents, the time average of the derivative of the Lyapunov function,the mean square error of the synchronization. Having obtained the synchronous parameters with the change of the feedback gains, we discover that Pecora and Carroll's criterion and He and Vaidya's reduced criterion are only fit to determine the synchronization of the identical selfsynchronization system which is a special example in the coupling systems, and are not taken as the general identical synchronous criterion of any coupling system. However,no matter whether the largest conditional Lyapunov exponent or the derivative of the Lyapunov function is positive or negative, synchronization of the coupling systems will occur,as long as the average change ratio of the derivative of the Lyapunov function tends to zero.

  7. Generalized Synchronization of Diverse Structure Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    KADIR Abdurahman; WANG Xing-Yuan; ZHAO Yu-Zhang

    2011-01-01

    @@ Generalized synchronization between two diverse structures of chaotic systems possesses significance in the research of synchronization.We propose an approach based on the Lyapunov stability theory to study it.This method can be used widely.Numerical examples are given to demonstrate the effectiveness of this approach.%Generalized synchronization between two diverse structures of chaotic systems possesses significance in the research of synchronization. We propose an approach based on the Lyapunov stability theory to study it. This method can be used widely. Numerical examples are given to demonstrate the effectiveness of this approach.

  8. Global Synchronization of General Delayed Dynamical Networks

    Institute of Scientific and Technical Information of China (English)

    LI Zhi

    2007-01-01

    Global synchronization of general delayed dynamical networks with linear coupling are investigated. A sufficient condition for the global synchronization is obtained by using the linear matrix inequality and introducing a reference state. This condition is simply given based on the maximum nonzero eigenvalue of the network coupling matrix. Moreover, we show how to construct the coupling matrix to guarantee global synchronization of network,which is very convenient to use. A two-dimension system with delay as a dynamical node in network with global coupling is finally presented to verify the theoretical results of the proposed global synchronization scheme.

  9. Synchronization performance of complex oscillator networks

    Science.gov (United States)

    Yan, Gang; Chen, Guanrong; Lü, Jinhu; Fu, Zhong-Qian

    2009-11-01

    Recently, synchronization of complex networks has attracted increasing attention from various research fields. However, most previous works focused on the stability of synchronization manifold. In this paper, we analyze the time-delay tolerance and converging speed of synchronization. Our theoretical analysis and extensive simulations show that the critical value of time delay for network synchronization is inversely proportional to the largest Laplacian eigenvalue, the converging speed without time delay is proportional to the second least Laplacian eigenvalue, and the time delay could increase the converging speed linearly for heterogeneous networks and significantly for homogeneous networks.

  10. Pilotless Frame Synchronization Using LDPC Code Constraints

    Science.gov (United States)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  11. Synchronization Techniques for Chaotic Communication Systems

    CERN Document Server

    Jovic, Branislav

    2011-01-01

    Since the early 1990s, when synchronization of chaotic communication systems became a popular research subject, a vast number of scientific papers have been published. However, most of today's books on chaotic communication systems deal exclusively with the systems where perfect synchronization is assumed, an assumption which separates theoretical from practical, real world, systems. This book is the first of its kind dealing exclusively with the synchronization techniques for chaotic communication systems. It describes a number of novel robust synchronization techniques, which there is a lack

  12. Noise-induced transitions in optomechanical synchronization

    Science.gov (United States)

    Weiss, Talitha; Kronwald, Andreas; Marquardt, Florian

    2016-01-01

    We study how quantum and thermal noise affects synchronization of two optomechanical limit-cycle oscillators. Classically, in the absence of noise, optomechanical systems tend to synchronize either in-phase or anti-phase. Taking into account the fundamental quantum noise, we find a regime where fluctuations drive transitions between these classical synchronization states. We investigate how this ‘mixed’ synchronization regime emerges from the noiseless system by studying the classical-to-quantum crossover and we show how the time scales of the transitions vary with the effective noise strength. In addition, we compare the effects of thermal noise to the effects of quantum noise.

  13. Price synchronization in retailing: some empirical evidence

    Directory of Open Access Journals (Sweden)

    Marcelo Resende

    2014-06-01

    Full Text Available The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.

  14. Solvable Chaotic Synchronization -A New Interpretation of Common Noise-induced Synchronization with Conditional Lyapunov Exponents-

    OpenAIRE

    Shintani, Masaru; Umeno, Ken

    2016-01-01

    We show the first solvable chaotic synchronization model of unidirectionally coupled dynamical systems. We establish a new interpretation of the conditional Lyapunov exponent that characterizes chaotic synchronization completely. Moreover, we newly show how the conditional Lyapunov exponent relates to common noise-induced synchronization phenomena by the new interpretation.

  15. Observer Based Projective Synchronization Method for a Class of Chaotic System——Part Ⅰ: Linear Synchronization Subsystem

    Institute of Scientific and Technical Information of China (English)

    Chun-Fu Li; Jue-Bang Yu

    2008-01-01

    In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In this part, the structure of the projective synchronization method is presented. And the condition of projection synchronization is theoretically analyzed when the synchronization subsystem is linear.

  16. Development of a Synchronous Subset of AADL

    DEFF Research Database (Denmark)

    Filali, Mamoun; Lawall, Julia

    2010-01-01

    We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a  synchronous way. In this paper, we formalize this interpretation and study...

  17. Development of Network Synchronization Predicts Language Abilities.

    Science.gov (United States)

    Doesburg, Sam M; Tingling, Keriann; MacDonald, Matt J; Pang, Elizabeth W

    2016-01-01

    Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities. PMID:26401810

  18. Controlling projective synchronization in coupled chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Zou Yan-Li; Zhu Jie

    2006-01-01

    In this paper, a new method for controlling projective synchronization in coupled chaotic systems is presented.The control method is based on a partially linear decomposition and negative feedback of state errors. Firstly, the synchronizability of the proposed projective synchronization control method is proved mathematically. Then, three different representative examples are discussed to verify the correctness and effectiveness of the proposed control method.

  19. Synchronized Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...

  20. Identical synchronization of coupled Rossler systems

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik

    1999-01-01

    Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...

  1. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each subsy...

  2. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    Fatihcan M Atay

    2011-11-01

    We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for the emergence, namely non-diffusive coupling and time delays. In this way, simple units can synchronize to display complex dynamics, or conversely, simple dynamics may arise from complex constituents.

  3. A simple method to simultaneously achieve synchronization and anti-synchronization in chaotic systems

    International Nuclear Information System (INIS)

    In this paper, a novel adaptive control approach is presented to simultaneously achieve synchronization and anti-synchronization in partially linear chaotic systems. Through appropriately separating state vectors of such systems, synchronization and anti-synchronization could be simultaneously realized in different subspaces, which may be strictly proven theoretically. Simulation results for a Lorenz chaotic system and a new hyper-chaotic system are provided to illustrate the effectiveness of the proposed method. Finally, a new secure communication scheme based on such a synchronization phenomenon of the hyper-chaotic system is demonstrated. Numerical results show success in transmitting a periodic signal with high security. (general)

  4. Interdependencies of Neural Impulse Pattern and Synchronization

    Science.gov (United States)

    Braun, Hans; Postnova, Svetlana; Schneider, Horst

    2008-03-01

    Neuronal synchronization plays a crucial role in many physiological functions such as information binding and wake-sleep transitions as well as in pathophysiological processes like Parkinson's disease and epileptic seizures. The occurrence of synchronized activity is often associated with significant alterations of the neuronal impulse pattern, mostly with a transition from tonic firing to burst discharges. We have used Hodgkin-Huxley type simulations to study how alterations of individual neurons' dynamics influence the synchronization in electrotonic coupled networks. The individual neurons have been tuned from tonic firing to bursting with chaotic dynamics in between. Our results demonstrate that these transitions have significant impact on the neurons' synchronization. Vice versa, the synchronization state can essentially modify the impulse pattern. The most remarkably effects appear when the individual neurons operate in a periodically tonic firing regime close to the transition to chaos.

  5. Chaos synchronization in networks of semiconductor superlattices

    Science.gov (United States)

    Li, Wen; Aviad, Yaara; Reidler, Igor; Song, Helun; Huang, Yuyang; Biermann, Klaus; Rosenbluh, Michael; Zhang, Yaohui; Grahn, Holger T.; Kanter, Ido

    2015-11-01

    Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we experimentally demonstrate the emergence of several types of chaos synchronization, e.g. leader-laggard, face-to-face and zero-lag synchronization in network motifs of coupled SSLs consisting of unidirectional and mutual coupling as well as self-feedback coupling. Each type of synchronization clearly reflects the symmetry of the topology of its network motif. The emergence of a chaotic SSL without external feedback and synchronization among different structured SSLs open up the possibility for advanced secure multi-user communication methods based on large networks of coupled SSLs.

  6. Synchronization of noisy systems by stochastic signals

    International Nuclear Information System (INIS)

    We study, in terms of synchronization, the nonlinear response of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level emdash this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train. copyright 1999 The American Physical Society

  7. Synchronous Lagrangian variational principles in General Relativity

    CERN Document Server

    Cremaschini, Claudio

    2016-01-01

    The problem of formulating synchronous variational principles in the context of General Relativity is discussed. Based on the analogy with classical relativistic particle dynamics, the existence of variational principles is pointed out in relativistic classical field theory which are either asynchronous or synchronous. The historical Einstein-Hilbert and Palatini variational formulations are found to belong to the first category. Nevertheless, it is shown that an alternative route exists which permits one to cast these principles in terms of equivalent synchronous Lagrangian variational formulations. The advantage is twofold. First, synchronous approaches allow one to overcome the lack of gauge symmetry of the asynchronous principles. Second, the property of manifest covariance of the theory is also restored at all levels, including the symbolic Euler-Lagrange equations, with the variational Lagrangian density being now identified with a $4-$scalar. As an application, a joint synchronous variational principle...

  8. Communicating via robust synchronization of chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2009-10-15

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  9. Communicating via robust synchronization of chaotic lasers

    International Nuclear Information System (INIS)

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  10. Synchronization of nonlinear systems under information constraints

    Science.gov (United States)

    Fradkov, Alexander L.; Andrievsky, Boris; Evans, Robin J.

    2008-09-01

    A brief survey of control and synchronization under information constraints (limited information capacity of the coupling channel) is given. Limit possibilities of nonlinear observer-based synchronization systems with first-order coders or full-order coders are considered in more detail. The existing and new theoretical results for multidimensional drive-response Lurie systems (linear part plus nonlinearity depending only on measurable outputs) are presented. It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum coupling signal rate and inversely proportional to the information transmission rate (channel capacity). The analysis is extended to networks having a "chain," "star," or "star-chain" topology. Adaptive chaotic synchronization under information constraints is analyzed. The results are illustrated by example: master-slave synchronization of two chaotic Chua systems coupled via a channel with limited capacity.

  11. Global Patterns of Human Synchronization

    CERN Document Server

    Morales, Alfredo J; Benito, Rosa M; Bar-Yam, Yaneer

    2016-01-01

    Social media are transforming global communication and coordination and provide unprecedented opportunities for studying socio-technical domains. Here we study global dynamical patterns of communication on Twitter across many scales. Underlying the observed patterns is both the diurnal rotation of the earth, day and night, and the synchrony required for contingency of actions between individuals. We find that urban areas show a cyclic contraction and expansion that resembles heartbeats linked to social rather than natural cycles. Different urban areas have characteristic signatures of daily collective activities. We show that the differences detected are consistent with a new emergent global synchrony that couples behavior in distant regions across the world. Although local synchrony is the major force that shapes the collective behavior in cities, a larger-scale synchronization is beginning to occur.

  12. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  13. Collapse of Synchronization in a Memristive Network

    Science.gov (United States)

    Lü, Mi; Wang, Chun-Ni; Tang, Jun; Ma, Jun

    2015-12-01

    For an oscillating circuit or coupled circuits, damage in electric devices such as inductor, resistance, memristor even capacitor can cause breakdown or collapse of the circuits. These damage could be associated with external attack or aging in electric devices, and then the bifurcation parameters could be deformed from normal values. Resonators or signal generators are often synchronized to produce powerful signal series and this problem could be investigated by using synchronization in network. Complete synchronization could be induced by linear coupling in a two-dimensional network of identical oscillators when the coupling intensity is beyond certain threshold. The collective behavior and synchronization state are much dependent on the bifurcation parameters. Any slight fluctuation in parameter and breakdown in bifurcation parameter can cause transition of synchronization even collapse of synchronization in the network. In this paper, a two-dimensional network composed of the resonators coupled with memristors under nearest-neighbor connection is designed, and the network can reach complete synchronization by carefully selecting coupling intensity. The network keeps synchronization after certain transient period, then a bifurcation parameter in a resonator is switched from the previous value and the adjacent resonators (oscillators) are affected in random. It is found that the synchronization area could be invaded greatly in a diffusive way. The damage area size is much dependent on the selection of diffusive period of damage and deformation degree in the parameter. Indeed, the synchronization area could keep intact at largest size under intermediate deformation degree and coupling intensity. Supported by the National Natural Science of China under Grant Nos. 11265008 and 11365014

  14. Synchronization of indirectly coupled Lorenz oscillators: An experimental study

    Indian Academy of Sciences (India)

    Amit Sharma; Manish Dev Shrimali

    2011-11-01

    The dynamics of indirectly coupled Lorenz circuits is investigated experimentally. The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev. E 81, 046216 (2010) is verified by physical experiments with electronic circuits. Two chaotic systems coupled through a common dynamic environment shows the verity of synchronization behaviours such as anti-phase synchronization, in-phase synchronization, identical synchronization, anti-synchronization, etc.

  15. Stereo Calibration and Rectification for Omnidirectional Multi-camera Systems

    Directory of Open Access Journals (Sweden)

    Yanchang Wang

    2012-10-01

    Full Text Available Stereo vision has been studied for decades as a fundamental problem in the field of computer vision. In recent years, computer vision and image processing with a large field of view, especially using omnidirectional vision and panoramic images, has been receiving increasing attention. An important problem for stereo vision is calibration. Although various kinds of calibration methods for omnidirectional cameras are proposed, most of them are limited to calibrate catadioptric cameras or fish‐eye cameras and cannot be applied directly to multi‐camera systems. In this work, we propose an easy calibration method with closed‐form initialization and iterative optimization for omnidirectional multi‐camera systems. The method only requires image pairs of the 2D target plane in a few different views. A method based on the spherical camera model is also proposed for rectifying omnidirectional stereo pairs. Using real data captured by Ladybug3, we carry out some experiments, including stereo calibration, rectification and 3D reconstruction. Statistical analyses and comparisons of the experimental results are also presented. As the experimental results show, the calibration results are precise and the effect of rectification is promising.

  16. Stereo Calibration and Rectification for Omnidirectional Multi-camera Systems

    OpenAIRE

    Yanchang Wang; Xiaojin Gong; Ying Lin; Jilin Liu

    2012-01-01

    Stereo vision has been studied for decades as a fundamental problem in the field of computer vision. In recent years, computer vision and image processing with a large field of view, especially using omnidirectional vision and panoramic images, has been receiving increasing attention. An important problem for stereo vision is calibration. Although various kinds of calibration methods for omnidirectional cameras are proposed, most of them are limited to calibrate catadioptric cameras or fish‐e...

  17. The JET multi-camera soft X-ray diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Alper, B.; Blackler, K.; Dillon, S.F.; Edwards, A.W.; Gill, R.D.; Lyadina, E.; Mulligan, W.; Staunton-Lambert, S.A.B.; Thompson, D.G.; Wilson, D.J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    A new soft X-ray detector system has been constructed for the pumped divertor phase of JET which incorporates a number of enhancements over the previous system in both hardware and data acquisition. The hardware improvements include: six independent views of the plasma at one toroidal location (as opposed to two in the old system), spatial resolution improved from 7 cm to 3 cm, frequency response increased from 30 khz to 100 khz and improved toroidal mode resolution. These enhancements will allow the study of MHD activity in finer detail. The tomographic reconstruction of soft X-ray emissivities will be improved to include Fourier terms up to cos(5{theta}) compared with only cos(2{theta}) before. Through the implementation of a fast central acquisition and trigger system, data from a range of diagnostics will be available at high bandwidth to allow processing of plasma phenomena of far greater complexity than was possible before. (authors). 2 refs., 5 figs.

  18. Real-Time Computational Gigapixel Multi-Camera Systems

    OpenAIRE

    Popovic, Vladan

    2016-01-01

    The standard cameras are designed to truthfully mimic the human eye and the visual system. In recent years, commercially available cameras are becoming more complex, and offer higher image resolutions than ever before. However, the quality of conventional imaging methods is limited by several parameters, such as the pixel size, lens system, the diffraction limit, etc. The rapid technological advancements, increase in the available computing power, and introduction of Graphics Processing Units...

  19. D Animation Reconstruction from Multi-Camera Coordinates Transformation

    Science.gov (United States)

    Jhan, J. P.; Rau, J. Y.; Chou, C. M.

    2016-06-01

    Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.

  20. Synchronization of Estrus in Cattle: A Review

    Directory of Open Access Journals (Sweden)

    R. Islam

    2011-06-01

    Full Text Available Numbers of estrus synchronization programmes are available in cattle based on the use of various hormones like progesterone, prostaglandin F2a and their various combinations with other hormones like estrogen and Gonadotrophin Releasing hormone (GnRH. Selection of appropriate estrus synchronization protocol should be made on the basis of management capabilities and expectations of the farmer. Synchronization of oestrus can be accomplished with the injection of prostaglandin F2a alone, but it needs proper detection of the ovarian status of the cows as prostaglandin F2a is active in only functional corpus luteum in between 8 to 17 days of estrous cycle. Progesterone may reduce fertility up to 14 percent, but short time progesterone exposure (less than 14 days is beneficial. Addition of GnRH in the Progesterone or Prostaglandin based synchronization programme is helpful for more synchrony in estrus as GnRH may be helpful to synchronize the oestrous cycle in delayed pubertal heifers and post partum cows (Post partum anoestrum and further a single, timed artificial insemination is possible with this method. New methods of synchronizing estrus in which the GnRH-PG protocol is preceded by progesterone treatment offer effective synchronization of estrus with high fertility. [Vet. World 2011; 4(3.000: 136-141

  1. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  2. Periodic and aperiodic synchronization in skilled action

    Directory of Open Access Journals (Sweden)

    Fred Cummins

    2011-12-01

    Full Text Available Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import.

  3. Physiological Synchronization in a Vigilance Dual Task.

    Science.gov (United States)

    Guastello, Stephen J

    2016-01-01

    The synchronization of autonomic arousal levels and other physio-logical responses between people is a potentially important component of work team performance, client-therapist relationships, and other types of human interaction. This study addressed several problems: What statistical models are viable for identifying synchronization for loosely coupled human systems? How is the level of synchronization related to psychosocial variables such as empathy, subjective ratings of workload, and actual performance? Participants were 70 undergraduates who worked in pairs on a vigilance dual task in which they watched a virtual reality security camera, rang a bell when they saw the target intruder, and completed a jig-saw puzzle. Event rates either increased or decreased during the 90 min work period. The average R2 values for each person were .66, .66, .62, and .53 for the linear autoregressive model, linear autoregressive model with a synchronization component, the nonlinear autoregressive model, and the nonlinear autoregressive model with a synchronization component, respectively. All models were more accurate at a lag of 20 sec compared to 50 sec or customized lag lengths. Although the linear models were more accurate overall, the nonlinear synchronization parameters were more often related to psychological variables and performance. In particular, greater synchronization was observed with the nonlinear model when the target event rate increased, compared to when it decreased, which was expected from the general theory of synchronization. Nonlinear models were also more effective for uncovering inhibitory or dampening relationships between the co-workers as well as mutually excitatory relationships. Future research should explore the comparative model results for tasks that induce higher levels of synchronization and involve different types of internal group coordination. PMID:26639921

  4. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: a Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    CERN Document Server

    Han, C; Gould, A; Bozza, V; Jung, Y K; Albrow, M D; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Park, B -G; Shin, I -G; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M

    2016-01-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, matter and velocity distributions combined with the information of the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass $0.72_{-0.07}^{+0.65}\\ M_{\\rm J}$ and it is orbiting a low-mass M-dwarf host with a projected separation $d_\\perp=0.73 \\pm 0.08$ AU. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  5. Double-mode radial-non-radial RR Lyrae stars. OGLE-IV photometry of two high cadence fields in the Galactic bulge

    CERN Document Server

    Netzel, H; Moskalik, P

    2015-01-01

    We analyse the OGLE-IV photometry of the first overtone and double-mode RR Lyrae stars (RRc/RRd) in the two fields towards the Galactic bulge observed with high cadence. In 27 per cent of RRc stars we find additional non-radial mode, with characteristic period ratio, P x /P 1O \\in (0.6, 0.64). It strongly corroborates the conclusion arising from the analysis of space photometry of RRc stars, that this form of pulsation must be common. In the Petersen diagram the stars form three sequences. In 20 stars we find two or three close secondary modes simultaneously. The additional modes are clearly non-stationary. Their amplitude and/or phase vary in time. As a result, the patterns observed in the frequency spectra of these stars may be very complex. In some stars the additional modes split into doublets, triplets or appear as a more complex bands of increased power. Subharmonics of additional modes are detected in 20 per cent of stars. They also display a complex structure. Including our previous study of the OGLE-...

  6. CME Expansion as the Driver of Metric Type II Shock Emission as Revealed by Self-Consistent Analysis of High Cadence EUV Images and Radio Spectrograms

    CERN Document Server

    Kouloumvakos, A; Hillaris, A; Vourlidas, A; Preka-Papadema, P; Moussas, X; Caroubalos, C; Tsitsipis, P; Kontogeorgos, A

    2013-01-01

    On 13 June 2010, an eruptive event occurred near the solar limb. It included a small filament eruption and the onset of a relatively narrow coronal mass ejection (CME) surrounded by an extreme ultraviolet wave front recorded by the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) at high cadence. The ejection was accompanied by a GOES M1.0 soft X-ray flare and a Type-II radio burst; high-resolution dynamic spectra of the latter were obtained by the ARTEMIS IV radio spectrograph. The combined observations enabled a study of the evolution of the ejecta and the EUV wavefront and its relationship with the coronal shock manifesting itself as metric Type-II burst. By introducing a novel technique, which deduces a proxy of the EUV compression ratio from AIA imaging data and compares it with the compression ratio deduced from the band-split of the Type-II metric radio burst, we are able to infer the potential source locations of the radio emission of the shock on that AIA images. Our results indi...

  7. Fuzzy stability and synchronization of hyperchaos systems

    International Nuclear Information System (INIS)

    This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller

  8. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  9. Permutation parity machines for neural synchronization

    International Nuclear Information System (INIS)

    Synchronization of neural networks has been studied in recent years as an alternative to cryptographic applications such as the realization of symmetric key exchange protocols. This paper presents a first view of the so-called permutation parity machine, an artificial neural network proposed as a binary variant of the tree parity machine. The dynamics of the synchronization process by mutual learning between permutation parity machines is analytically studied and the results are compared with those of tree parity machines. It will turn out that for neural synchronization, permutation parity machines form a viable alternative to tree parity machines

  10. Fuzzy adaptive synchronization of uncertain chaotic systems

    International Nuclear Information System (INIS)

    This Letter presents an adaptive approach for synchronization of Takagi-Sugeno (T-S) fuzzy chaotic systems. Since the parameters of chaotic system are assumed unknown, the adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. The control law to be designed consists of two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach

  11. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    Science.gov (United States)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  12. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.; Vazquez-Prada Baillet, Miguel

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed. © 2004 Elsevier B.V. All rights reserved....

  13. On chaos synchronization and secure communication.

    Science.gov (United States)

    Kinzel, W; Englert, A; Kanter, I

    2010-01-28

    Chaos synchronization, in particular isochronal synchronization of two chaotic trajectories to each other, may be used to build a means of secure communication over a public channel. In this paper, we give an overview of coupling schemes of Bernoulli units deduced from chaotic laser systems, different ways to transmit information by chaos synchronization and the advantage of bidirectional over unidirectional coupling with respect to secure communication. We present the protocol for using dynamical private commutative filters for tap-proof transmission of information that maps the task of a passive attacker to the class of non-deterministic polynomial time-complete problems. PMID:20008407

  14. Method for Converter Synchronization with RF Injection

    Directory of Open Access Journals (Sweden)

    Joshua P. Bruckmeyer

    2015-09-01

    Full Text Available This paper presents an injection method for synchronizing analog to digital converters (ADC. This approach can eliminate the need for precision routed discrete synchronization signals of current technologies, such as JESD204. By eliminating the setup and hold time requirements at the conversion (or near conversion clock rate, higher sample rate systems can be synchronized. Measured data from an existing multiple ADC conversion system was used to evaluate the method. Coherent beams were simulated to measure the effectiveness of the method. The results show near theoretical coherent processing gain.

  15. Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks

    CERN Document Server

    2013-01-01

    This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...

  16. Estimation of Synchronous Machine Parameters

    Directory of Open Access Journals (Sweden)

    Oddvar Hallingstad

    1980-01-01

    Full Text Available The present paper gives a short description of an interactive estimation program based on the maximum likelihood (ML method. The program may also perform identifiability analysis by calculating sensitivity functions and the Hessian matrix. For the short circuit test the ML method is able to estimate the q-axis subtransient reactance x''q, which is not possible by means of the conventional graphical method (another set of measurements has to be used. By means of the synchronization and close test, the ML program can estimate the inertial constant (M, the d-axis transient open circuit time constant (T'do, the d-axis subtransient o.c.t.c (T''do and the q-axis subtransient o.c.t.c (T''qo. In particular, T''qo is difficult to estimate by any of the methods at present in use. Parameter identifiability is thoroughly examined both analytically and by numerical methods. Measurements from a small laboratory machine are used.

  17. Contactless superconducting synchronous electrical machine

    International Nuclear Information System (INIS)

    A contactless superconducting synchronous electrical machine comprises a rotor affixed to a rotatable shaft and provided with a superconducting field winding, the superconducting field winding being positioned within a cryostat; an annular stator located in concentrical relation with the rotor; and an exciter for the superconducting field winding provided with an inductor and a superconducting armature winding, the superconducting armature winding being positioned within the cryostat, affixed to the shaft and electrically connected to the superconducting field winding. The superconducting armature winding is implemented in the form of a cylindrical sheating affixed to a cylindrical surface of an annular former which is rigidly fixed to the shaft in concentrical relation therewith. The inductor comprises an immovable annular core with a multiphase winding, positioned in concentrical relation with the armature winding, and also comprises at least one magnetizing superconducting annular coil affixed to the shaft in axial relation to the former, in the vicinity of an end face thereof, and positioned within the cryostat. That portion of the vacuum shell of the cryostat which is within the gap between the annular core and the armature winding is made of dielectric material

  18. Primary synchronous bilateral breast cancer

    Directory of Open Access Journals (Sweden)

    R Krishnappa

    2014-01-01

    Full Text Available Background: Primary synchronous bilateral breast cancer (PSBBC is a rare clinical entity. The reported incidence ranges between 0.3% and 12%. There are several controversial issues regarding PSBBC pertaining to the diagnostic criteria, nomenclature, and management policies. Materials and Methods: Fourteen cases of PSBBC treated between 2001 to 2010 at our institute were retrospectively analysed in regards to demographic data, management and follow up. Results: PSBBC constituted 0.19% of total breast cancer patients at our institute. Age ranged from 28 to 78 years. PSBBC were detected by clinical examination in eight cases and by mammography in six cases. Twelve patients underwent bilateral modified radical mastectomy, one had unilateral mastectomy on one side and breast conservation on the other side and one patient has bilateral breast conservation. Majority of patients belonged to stage 2 and stage 3. All patients were found to have invasive ductal carcinoma. Five cases were ER/PR positive and 8 patients were triple hormone receptor negative. Eight patients received unilateral and six received bilateral adjuvant radiotherapy. Nine patients received adjuvant chemotherapy. 5 patients received adjuvant hormonal therapy. Median follow up of patients was 15.4 months. Conclusion: PSBBC is a rare event warranting awareness and screening of the contralateral breast in patients with unilateral breast cancer. These patients require individualized treatment planning based on the tumor factors of the index lesion. Further multi institutional prospective studies are needed for adequate understanding of management of PSBBC.

  19. Dynamics of desynchronized episodes in intermittent synchronization

    Directory of Open Access Journals (Sweden)

    Leonid L Rubchinsky

    2014-06-01

    Full Text Available Intermittent synchronization is observed in a variety of different experimental settings in physics and beyond and is an established research topic in nonlinear dynamics. When coupled oscillators exhibit relatively weak, intermittent synchrony, the trajectory in the phase space spends a substantial fraction of time away from a vicinity of a synchronized state. Thus to describe and understand the observed dynamics one may consider both synchronized episodes and desynchronized episodes (the episodes when oscillators are not synchronous. This mini-review discusses recent developments in this area. We explain how one can consider variation in synchrony on the very short time-scales, provided that there is some degree of overall synchrony. We show how to implement this approach in the case of intermittent phase locking, review several recent examples of the application of these ideas to experimental data and modeling systems, and discuss when and why these methods may be useful.

  20. Synchronous correlation matrices and Connes' embedding conjecture

    Science.gov (United States)

    Dykema, Kenneth J.; Paulsen, Vern

    2016-01-01

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918">arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes' embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes' embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  1. Controlling synchronous patterns in complex networks

    Science.gov (United States)

    Lin, Weijie; Fan, Huawei; Wang, Ying; Ying, Heping; Wang, Xingang

    2016-04-01

    Although the set of permutation symmetries of a complex network could be very large, few of them give rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to control the large-size complex network by means of pinning coupling. We argue mathematically that for any of the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled chaotic oscillators.

  2. Remote bistatic receiver synchronization using DLL techniques

    Science.gov (United States)

    Aguasca, A.; Broquetas, A.; Fdez de Muniain, J.; Ambros, A.

    An experimental staggered pulse repetition frequency synchronizer, based on a delay-lock loop (DLL) was tested using a transmitter signal simulator that simulates the staggering sequence windowed by the antenna beam. The measured system performance ensures synchronization with a 30-ms direct illumination, with an accumulated delay error in the order of the resolution cell positioning error in range. An artificial time expansion of the received pulses is performed in order to reduce the acquisition time synchronization. A bistatic radar synchronization method based on DLL was is analyzed by linearization of the different parts and signals involved. The parameters that degrade system performance are obtained. And some solutions are represented in order to minimize their effects.

  3. On the Synchronization of Acoustic Gravity Waves

    Science.gov (United States)

    Lonngren, Karl E.; Bai, Er-Wei

    Using the model proposed by Stenflo, we demonstrate that acoustic gravity waves found in one region of space can be synchronized with acoustic gravity waves found in another region of space using techniques from modern control theory.

  4. An Algebra of Synchronous Scheduling Interfaces

    Directory of Open Access Journals (Sweden)

    Michael Mendler

    2011-01-01

    Full Text Available In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle. The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.

  5. An Algebra of Synchronous Scheduling Interfaces

    CERN Document Server

    Mendler, Michael

    2011-01-01

    In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle). The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.

  6. Synchronization of impulsively coupled complex networks

    International Nuclear Information System (INIS)

    We investigate the synchronization of complex networks, which are impulsively coupled only at discrete instants. Based on the comparison theory of impulsive differential systems, a distributed impulsive control scheme is proposed for complex dynamical networks to achieve synchronization. The proposed scheme not only takes into account the influence of all nodes to network synchronization, which depends on the weight of each node in the network, but also provides us with a flexible method to select the synchronized state of the network. In addition, it is unnecessary for the impulsive coupling matrix to be symmetrical. Finally, the proposed control scheme is applied to a chaotic Lorenz network and Chua's circuit network. Numerical simulations are used to illustrate the validity of this control scheme. (general)

  7. Synchronization Analysis of the Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth

    2009-01-01

    analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually......The supermarket refrigeration system typically has a distributed control structure, which neglects interactions between its subsystems. These interactions from time to time lead to a synchronization operation of the display-cases which causes an inferior control performance and increased energy...... consumption. The paper focuses on synchronization dynamics of the refrigeration system modeled as a piecewiseaffine switched system. Stability analysis is performed bygluing the subsystems and polyhedra together to form a single dynamical system defined on a coherent state space. Then, system behavior is...

  8. Synchronous correlation matrices and Connes’ embedding conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  9. Optimal Synchronization of a Memristive Chaotic Circuit

    Science.gov (United States)

    Kountchou, Michaux; Louodop, Patrick; Bowong, Samuel; Fotsin, Hilaire; Kurths, Jurgen

    2016-06-01

    This paper deals with the problem of optimal synchronization of two identical memristive chaotic systems. We first study some basic dynamical properties and behaviors of a memristor oscillator with a simple topology. An electronic circuit (analog simulator) is proposed to investigate the dynamical behavior of the system. An optimal synchronization strategy based on the controllability functions method with a mixed cost functional is investigated. A finite horizon is explicitly computed such that the chaos synchronization is achieved at an established time. Numerical simulations are presented to verify the effectiveness of the proposed synchronization strategy. Pspice analog circuit implementation of the complete master-slave-controller systems is also presented to show the feasibility of the proposed scheme.

  10. Fiscal Adjustment and Business Cycle Synchronization

    OpenAIRE

    Luca Agnello; Guglielmo Maria Caporale; Ricardo M. Sousa

    2013-01-01

    Using a panel of annual data for 20 countries we show that synchronized fiscal consolidation (stimulus) programmes in different countries make their business cycles more closely linked, especially in the case of fiscal adjustments lasting 2 or 3 years. We also find: (i) little evidence of decoupling when an inflation targeting regime is unilaterally adopted; (ii) an increase in business cycle synchronization when countries fix their exchange rates and become members of a monetary union; (iii)...

  11. Fiscal adjustments and business cycle synchronization

    OpenAIRE

    Agnello, Luca; Caporale, Guglielmo Maria; Ricardo M. Sousa

    2013-01-01

    Using a panel of annual data for 20 countries we show that synchronized fiscal consolidation (stimulus) programmes in different countries make their business cycles more closely linked, especially in the case of fiscal adjustments lasting 2 or 3 years. We also find: (i) little evidence of decoupling when an inflation targeting regime is unilaterally adopted; (ii) an increase in business cycle synchronization when countries fix their exchange rates and become members of a monetary union; (iii)...

  12. Stability of Synchronized Motion in Complex Networks

    CERN Document Server

    Pereira, Tiago

    2011-01-01

    We give a succinct and self-contained description of the synchronized motion on networks of mutually coupled oscillators. Usually, the stability criterion for the stability of synchronized motion is obtained in terms of Lyapunov exponents. We consider the fully diffusive case which is amenable to treatment in terms of uniform contractions. This approach provides a rigorous, yet clear and concise, way to the important results.

  13. Information Transmission in Phase Synchronous Chaotic Arrays

    Institute of Scientific and Technical Information of China (English)

    M. S. Baptista; C. Zhou; J. Kurths

    2006-01-01

    @@ We show many versatile phase synchronous configurations that emerge in an array of coupled chaotic elements due to the presence of a periodic stimulus. Then, we explain the relevance of these configurations to the understanding of how information about such a stimulus is transmitted from one side to the other in this array. The stimulus actively creates the ways to be transmitted, by making the chaotic elements to phase synchronize.

  14. Optimal Hydrodynamic Synchronization of Colloidal Rotors

    OpenAIRE

    Kotar, Jurij; Debono, Luke; Bruot, Nicolas; Box, Stuart; Phillips, David; Simpson, Stephen,; Hanna, Simon; Cicuta, Pietro

    2013-01-01

    Synchronization of driven oscillators is a key aspect of flow generation in artificial and biological filaments such as cilia. Previous theoretical and numerical studies have considered the “rotor” model of a cilium in which the filament is coarse grained into a colloidal sphere driven with a given force law along a predefined trajectory to represent the oscillating motion of the cilium. These studies pointed to the importance of two factors in the emergence of synchronization: the modulation...

  15. Delayed Self-Synchronization in Homoclinic Chaos

    OpenAIRE

    Arecchi, F. T.; Meucci, R.; E. Allaria; Di Garbo, A.; Tsimring, L. S.

    2001-01-01

    The chaotic spike train of a homoclinic dynamical system is self-synchronized by re-inserting a small fraction of the delayed output. Due to the sensitive nature of the homoclinic chaos to external perturbations, stabilization of very long periodic orbits is possible. On these orbits, the dynamics appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay time. The effect, called delayed self-synchronization (DSS), displays analogies ...

  16. Synchronous Renal Cell Carcinoma and Gastrointestinal Malignancies

    OpenAIRE

    Dafashy, Tamer J.; Cameron K. Ghaffary; Keyes, Kyle T.; Joseph Sonstein

    2016-01-01

    While renal cell carcinoma is the most commonly diagnosed neoplasm of the kidney, its simultaneous diagnosis with a gastrointestinal malignancy is a rare, but well reported phenomenon. This discussion focuses on three independent cases in which each patient was diagnosed with renal cell carcinoma and a unique synchronous gastrointestinal malignancy. Case 1 explores the diagnosis and surgical intervention of a 66-year-old male patient synchronously diagnosed with clear cell renal cell carcinom...

  17. Synchronization of Micromechanical Oscillators Using Light

    OpenAIRE

    Zhang, Mian; Wiederhecker, Gustavo; Manipatruni, Sasikanth; Barnard, Arthur; McEuen, Paul L.; Lipson, Michal

    2011-01-01

    Synchronization, the emergence of spontaneous order in coupled systems, is of fundamental importance in both physical and biological systems. We demonstrate the synchronization of two dissimilar silicon nitride micromechanical oscillators, that are spaced apart by a few hundred nanometers and are coupled through optical radiation field. The tunability of the optical coupling between the oscillators enables one to externally control the dynamics and switch between coupled and individual oscill...

  18. Synchronous Characterization of Semiconductor Microcavity Laser Beam

    OpenAIRE

    WANG, Tao; Lippi, Gian-Luca

    2015-01-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by si...

  19. The Great Synchronization of International Trade Collapse

    OpenAIRE

    Antonakakis, Nikolaos

    2012-01-01

    In this paper we examine the extent of international trade synchronization during periods of international trade collapses and US recessions. Using dynamic correlations based on monthly trade data for the G7 economies over the period 1961-2011, our results suggest rather idiosyncratic patterns of international trade synchronization during collapses of international trade and US recessions. During the great recession of 2007-2009, however, international trade experienced the most sudden, sever...

  20. Synchronous Squamous Cell Carcinoma in Multiple Digits

    OpenAIRE

    Abner, Sabra; Redstone, Jeremiah; Chowdhry, Saeed; Kasdan, Morton L.; Wilhelmi, Bradon J.

    2011-01-01

    Cancers of the perionychium are relatively rare occurrences and are often related to chronic inflammation associated with trauma, infection, exposure to ultraviolet radiation, or other carcinogens. Squamous cell carcinoma is the most common tumor reported of the nail bed. Synchronous squamous cell carcinomas of the perionychium have been rarely reported. We present a case of a 46-year-old woman with synchronous squamous cell carcinomas involving both hands and multiple digits. Treatment modal...

  1. Elastic symmetry-breaking in synchronizing cells

    Science.gov (United States)

    Elfring, Gwynn; Lauga, Eric

    2010-11-01

    Swimming microorganisms such as spermatozoa have been observed to synchronize their flagella when swimming in close proximity. We showed recently that this can arise passively in part due to an asymmetry in the flagellar waveforms of the cells. Using a simple two dimensional model we investigate here the role of fluid body interactions and flagella elasticity as a source of asymmetry, and whether or not flexibility is sufficient to induce synchronization.

  2. Synchronization of rotating helices by hydrodynamic interactions

    OpenAIRE

    Reichert, M.; H. Stark

    2004-01-01

    Some types of bacteria use rotating helical flagella to swim. The motion of such organisms takes place in the regime of low Reynolds numbers where viscous effects dominate and where the dynamics is governed by hydrodynamic interactions. Typically, rotating flagella form bundles, which means that their rotation is synchronized. The aim of this study is to investigate whether hydrodynamic interactions can be at the origin of such a bundling and synchronization. We consider two stiff helices tha...

  3. SNIPPV vs. NIPPV: DOES SYNCHRONIZATION MATTER?

    OpenAIRE

    Dumpa, Vikramaditya; Katz, Karol; Northrup, Veronika; Bhandari, Vineet

    2011-01-01

    Background Use of nasal intermittent positive pressure ventilation (NIPPV) in the neonatal intensive care unit (NICU) has shown promise with better clinical outcomes in premature neonates. It is not known if synchronization makes a significant clinical impact when using this technique. Objective To compare clinical outcomes of premature infants on synchronized NIPPV (SNIPPV) vs. NIPPV in the NICU. Design/Methods Retrospective data were obtained (1/04 to 12/09) of infants who received NIPPV an...

  4. Adoption dynamics: sequential or synchronous modelling

    OpenAIRE

    Hardouin, Cécile

    2012-01-01

    This paper deals with the choice of dynamics in spatial simulation and modelling. In economical context, N agents choose between two technological standards according to a local assignment rule. The adoption dynamics is sequential if the choices are made one after the other; it is synchronous or partially synchronous if all or some part of the agents choose simultanously. This paper points out differences between the three dynamics, especially in their evolution.

  5. Information Transmission in Phase Synchronous Chaotic Arrays

    Science.gov (United States)

    Baptista S., M.; C., Zhou; Kurths, J.

    2006-03-01

    We show many versatile phase synchronous configurations that emerge in an array of coupled chaotic elements due to the presence of a periodic stimulus. Then, we explain the relevance of these configurations to the understanding of how information about such a stimulus is transmitted from one side to the other in this array. The stimulus actively creates the ways to be transmitted, by making the chaotic elements to phase synchronize.

  6. Synchronization of coupled chaotic dynamics on networks

    Indian Academy of Sciences (India)

    R E Amritkar; Sarika Jalan

    2005-03-01

    We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters and evolving independently. Secondly, two different ways of cluster formation can be identified, namely self-organized clusters which have mostly intra-cluster couplings and driven clusters which have mostly inter-cluster couplings.

  7. Synchronizing sensed data in team sports

    OpenAIRE

    McCann, Dónall; Roantree, Mark; Moyna, Niall; Whelan, Michael

    2009-01-01

    In this article we will be discussing the synchronization of sensor data in team sports. Synchronization allows us to use more expressive queries, to query across all participants in a given activity and to potentially discover new knowledge from the semantically enriched data. A collaborative research effort between groups working on data management and on health and human performance (both at Dublin City University) involved a series of experiments using wearable sensors during team games a...

  8. Loss of lag synchronization in coupled chaotic systems

    DEFF Research Database (Denmark)

    Sosnovtseva, O.V.; Balanov, A.G.; Vadivasova, T.E.; Astakhov, V. V.; Mosekilde, Erik

    1999-01-01

    Lag synchronization denotes a particular form of synchronization in which the amplitudes of two interacting, nonidentical chaotic oscillators are correlated but there is a characteristic time delay between them. We study transitions to and between different forms of synchronization for the...... periodic orbits embedded into the synchronized chaotic state become unstable in a transverse direction....

  9. Loss of lag synchronization in coupled chaotic systems

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Balanov, A G; Vadivasova, T E; Astakhov, V V; Mosekilde, Erik

    Lag synchronization denotes a particular form of synchronization in which the amplitudes of two interacting, nonidentical chaotic oscillators are correlated but there is a characteristic time delay between them. We study transitions to and between different forms of synchronization for the...... periodic orbits embedded into the synchronized chaotic state become unstable in a transverse direction....

  10. Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks

    DEFF Research Database (Denmark)

    Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio; Michaelsen, Per Henrik; Frederiksen, Frank; Shah, Ejaz; Baumgartner, Al

    Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant reduct...... link failure probability as a result of faster handover execution....

  11. Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks

    DEFF Research Database (Denmark)

    Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio; Michaelsen, Per Henrik; Frederiksen, Frank; Shah, Ejaz; Baumgartner, Al

    2015-01-01

    Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant reduct...... link failure probability as a result of faster handover execution....

  12. On synchronization of clocks in general space-times

    Directory of Open Access Journals (Sweden)

    M. R. H Khajehpour

    2005-09-01

    Full Text Available   Einstein and transport synchronizations of infinitesimally spaced and distant clocks are considered in a general Riemannian space-time. It is shown that infinitesimally spaced clocks can always be synchronized. In general one can not find observers for whom distant clock are Einstein synchronized but transport synchronized observers do always exit. Whenever both procedures are possible, they are equivalent.

  13. New synchronization method for Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Mwangi Jonathan M

    2010-06-01

    Full Text Available Abstract Background Plasmodium falciparum is usually asynchronous during in vitro culture. Although various synchronization methods are available, they are not able to narrow the range of ages of parasites. A newly developed method is described that allows synchronization of parasites to produce cultures with an age range as low as 30 minutes. Methods Trophozoites and schizonts are enriched using Plasmion. The enriched late stage parasites are immobilized as a monolayer onto plastic Petri dishes using concanavalin A. Uninfected erythrocytes are placed onto the monolayer for a limited time period, during which time schizonts on the monolayer rupture and the released merozoites invade the fresh erythrocytes. The overlay is then taken off into a culture flask, resulting in a highly synchronized population of parasites. Results Plasmion treatment results in a 10- to 13-fold enrichment of late stage parasites. The monolayer method results in highly synchronized cultures of parasites where invasion has occurred within a very limited time window, which can be as low as 30 minutes. The method is simple, requiring no specialized equipment and relatively cheap reagents. Conclusions The new method for parasite synchronization results in highly synchronized populations of parasites, which will be useful for studies of the parasite asexual cell cycle.

  14. Inhomogeneous cortical synchronization and partial epileptic seizures

    Directory of Open Access Journals (Sweden)

    Lorena Carolina Vega

    2014-09-01

    Full Text Available Objective: Interictal synchronization clusters have recently been described in several publications using diverse techniques, including neurophysiological recordings and fMRI, in patients suffering from epilepsy. However, little is known about the role of these hyper-synchronous areas during seizures. In this work, we report an analysis of synchronization clusters jointly with several network measures during seizure activity; we then discuss our findings in the context of prior literature. Methods: Subdural activity was recorded by electrocorticography (with sixty electrodes placed at temporal and parietal lobe locations in a patient with temporal lobe epilepsy with partial seizures with and without secondary generalization. Both interictal and ictal activities (during four seizures were investigated and characterized using local synchronization and complex network methodology. The modularity, density of links, average clustering coefficient and average path lengths were calculated to obtain information about the dynamics of the global network. Functional connectivity changes during the seizures were compared with the time-evolution of highly synchronized areas.Results: Our findings reveal temporal changes in local synchronization areas during seizures and a tight relationship between the cortical locations of these areas and the patterns of their evolution over time. Seizure evolution and secondary generalization appear to be driven by two different underlying mechanisms.

  15. IPNS accelerator system and neutron chopper synchronization

    International Nuclear Information System (INIS)

    Several of the neutron scattering instruments at the Intense Pulsed Neutron Source (IPNS) at Argonne use neutron choppers for monochromatization of the neutron beam. Since the neutron burst is produced by a proton beam extracted from the Rapid Cycling Synchrotron (RCS), precise synchronization must be maintained between the RCS and the chopper aperture to minimize the degradation of energy resolution. The first attempts at synchronization were made in 1978 on the ZING-P' facility with a single chopper. Synchronization was further complicated after IPNS began operating in 1981 when a total of three chopper experiments came on-line. The system in use during that period of time was able to maintain synchronization with typical data collection efficiencies ranging from 20 to 70%. A synchronization system improvement, installed in late 1982, increased the data collection efficiencies of all the IPNS chopper systems to 99+%. The development of the RCS and neutron chopper synchronization system is described together with a detailed description of the present system

  16. The Multi-source Synchronization System of Power System

    Directory of Open Access Journals (Sweden)

    Gangjun Gong

    2013-09-01

    Full Text Available Since the power system frequency and time synchronization network are networking alone, which brings a lot of system synchronization, reliability and security issues, this article will merge frequency synchronization network and time synchronization network into one to set up the synchronization system of power grid. In this paper, we present a new generation of power synchronization network program with BDS and GPS timing as the cure. Meanwhile, it presents a three-level power system synchronized demonstration network which is consist of provincial power grid, municipal power grid and substations. And Iin the end, we conduct some research on related technologies of this program.

  17. Rhythm Synchronization of Coupled Neurons with Temporal Coding Scheme

    Institute of Scientific and Technical Information of China (English)

    SHI Xia; LU Qi-Shao

    2007-01-01

    Encoding information by firing patterns is one of the basic neural functions, and synchronization is important collective behaviour of a group of coupled neurons. Taking account of two schemes for encoding information (that is, rate coding and temporal coding), rhythm synchronization of coupled neurons is studied. There are two types of rhythm synchronization of neurons: spike and burst synchronizations. Firstly, it is shown that the spike synchronization is equivalent to the phase synchronization for coupled neurons. Secondly, the similarity function of the slow variables of neurons, which have relevant to the bursting process, is proposed to judge the burst synchronization. It is also found that the burst synchronization can be achieved more easily than the spike synchronization, whatever the firing patterns of the neurons are. Hence the temporal encoding scheme, which is closely related to both the spike and burst synchronizations, is more comprehensive than the rate coding scheme in essence.

  18. Synchronizing Parallel Tasks Using STM

    Directory of Open Access Journals (Sweden)

    Ryan Saptarshi Ray

    2015-03-01

    Full Text Available The past few years have marked the start of a historic transition from sequential to parallel computation. The necessity to write parallel programs is increasing as systems are getting more complex while processor speed increases are slowing down. Current parallel programming uses low-level programming constructs like threads and explicit synchronization using locks to coordinate thread execution. Parallel programs written with these constructs are difficult to design, program and debug. Also locks have many drawbacks which make them a suboptimal solution. One such drawback is that locks should be only used to enclose the critical section of the parallel-processing code. If locks are used to enclose the entire code then the performance of the code drastically decreases. Software Transactional Memory (STM is a promising new approach to programming shared-memory parallel processors. It is a concurrency control mechanism that is widely considered to be easier to use by programmers than locking. It allows portions of a program to execute in isolation, without regard to other, concurrently executing tasks. A programmer can reason about the correctness of code within a transaction and need not worry about complex interactions with other, concurrently executing parts of the program. If STM is used to enclose the entire code then the performance of the code is the same as that of the code in which STM is used to enclose the critical section only and is far better than code in which locks have been used to enclose the entire code. So STM is easier to use than locks as critical section does not need to be identified in case of STM. This paper shows the concept of writing code using Software Transactional Memory (STM and the performance comparison of codes using locks with those using STM. It also shows why the use of STM in parallel-processing code is better than the use of locks.

  19. Nonlinear Chemical Dynamics and Synchronization

    Science.gov (United States)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  20. Synchronization of Coupled Neurons Controlled by a Pacemaker

    International Nuclear Information System (INIS)

    We investigate synchronization of Hindmarsh—Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh—Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system. (general)

  1. Measures of quantum synchronization in continuous variable systems

    OpenAIRE

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-01-01

    We introduce and characterize two different measures which quantify the level of synchronization of interacting continuous variable quantum systems. The two measures allow to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is in principle unbounded, however in the absence of quantum resources (e.g. squeezing) the synchronization level is bounded bel...

  2. Targeted-mode pipeline for the Evryscope: a minute cadence, 10,000-square-degree FoV, gigapixel-scale telescope

    Science.gov (United States)

    Fors, Octavi; Law, Nicholas M.; Wulfken, Philip J.; Ratzloff, Jeffrey

    2015-01-01

    The Everyscope consists of 27 mass-produced telescopes placed into a dome which mimics the sky's hemisphere. It has a field of view of 10,200 square degrees, a pixel sampling of 13.3 arcsec, 778MPix per exposure, a two-minute imaging cadence, and a limiting magnitude V=16.4 (3-σ) for that exposure time. Among other observational programs, transits surveys around nearby bright, M-dwarfs, and bright white dwarfs hosts stars will be conducted with unprecedented level of efficiency thanks to the unique Evryscope specifications. All data will be stored to be to made available to interested astronomers.Evryscope brings a unique opportunity to tackle challenges in the areas of computation and data analysis, given its sustained 0.76Gb/min data-flow. We have implemented an initial targeted-mode version of the Evryscope pipeline (Evrypipe-I), which delivers to end user science products from a limited list of targets of interest. The pipeline first performs CCD calibration, astrometric reduction, and source extraction, and generates uncalibrated photometry catalogs for all acquired images. Next, image cutouts around the compiled targets are considered. These much smaller images allow us to feasibly compute multi-epoch light curves on the reduced data-sets, including proper systematics analysis which the millimagnitude precision goals require. This last step includes source association, differential photometry, polynomial differential airmass correction, detrending, and phase folding.From end user point of view, Evrypipe-I delivers fully calibrated WCS FITS image cutouts and multi-epoch light curves around the compiled/requested targets. The development of a more complex all-sky every-star analysis pipeline, covering the 10s of millions of targets measured in each Evryscope exposure, is planned to start in the near future.

  3. Synchronization and Lag Synchronization of Hyperchaotic Memristor-Based Chua’s Circuits

    OpenAIRE

    Junjian Huang; Chuandong Li; Tingwen Huang; Hui Wang; Xin Wang

    2014-01-01

    A memristor-based five-dimensional (5D) hyperchaotic Chua’s circuit is proposed. Based on the Lyapunov stability theorem, the controllers are designed to realize the synchronization and lag synchronization between the hyperchaotic memristor-based Chua’s circuits under different initial values, respectively. Numerical simulations are also presented to show the effectiveness and feasibility of the theoretical results.

  4. Blending Online Asynchronous and Synchronous Learning

    Directory of Open Access Journals (Sweden)

    Lisa C. Yamagata-Lynch

    2014-04-01

    Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.

  5. Synchronization of rotating helices by hydrodynamic interactions

    Science.gov (United States)

    Reichert, M.; Stark, H.

    2005-08-01

    Some types of bacteria use rotating helical flagella to swim. The motion of such organisms takes place in the regime of low Reynolds numbers where viscous effects dominate and where the dynamics is governed by hydrodynamic interactions. Typically, rotating flagella form bundles, which means that their rotation is synchronized. The aim of this study is to investigate whether hydrodynamic interactions can be at the origin of such a bundling and synchronization. We consider two stiff helices that are modelled by rigidly connected beads, neglecting any elastic deformations. They are driven by constant and equal torques, and they are fixed in space by anchoring their terminal beads in harmonic traps. We observe that, for finite trap strength, hydrodynamic interactions do indeed synchronize the helix rotations. The speed of phase synchronization decreases with increasing trap stiffness. In the limit of infinite trap stiffness, the speed is zero and the helices do not synchronize. Two movies, comparing the dynamics for strong and weak anchoring, are only available in electronic form at http://dx.doi.org/10.1140/epje/i2004-10152-7 and are accessible for authorised users.

  6. Model bridging chimera state and explosive synchronization

    Science.gov (United States)

    Zhang, Xiyun; Bi, Hongjie; Guan, Shuguang; Liu, Jinming; Liu, Zonghua

    2016-07-01

    Global synchronization and partial synchronization are the two distinctive forms of synchronization in coupled oscillators and have been well studied in recent decades. Recent attention on synchronization is focused on the chimera state (CS) and explosive synchronization (ES), but little attention has been paid to their relationship. Here we study this topic by presenting a model to bridge these two phenomena, which consists of two groups of coupled oscillators, and its coupling strength is adaptively controlled by a local order parameter. We find that this model displays either CS or ES in two limits. In between the two limits, this model exhibits both CS and ES, where CS can be observed for a fixed coupling strength and ES appears when the coupling is increased adiabatically. Moreover, we show both theoretically and numerically that there are a variety of CS basin patterns for the case of identical oscillators, depending on the distributions of both the initial order parameters and the initial average phases. This model suggests a way to easily observe CS, in contrast to other models having some (weak or strong) dependence on initial conditions.

  7. Control of partial synchronization in chaotic oscillators

    Indian Academy of Sciences (India)

    R Banerjee; E Padmanaban; S K Dana

    2015-02-01

    A design of coupling is proposed to control partial synchronization in two chaotic oscillators in a driver–response mode. A control of synchrony between one response variables is made possible (a transition from a complete synchronization to antisynchronization via amplitude death and vice versa without loss of synchrony) keeping the other pairs of variables undisturbed in their pre-desired states of coherence. Further, one of the response variables can be controlled so as to follow the dynamics of an external signal (periodic or chaotic) while keeping the coherent status of other variables unchanged. The stability of synchronization is established using the Hurwitz matrix criterion. Numerical example of an ecological foodweb model is presented. The control scheme is demonstrated in an electronic circuit of the Sprott system.

  8. Synchronization and clustering in electroencephalographic signals

    International Nuclear Information System (INIS)

    Two order parameters introduced in the context of coupled chaotic systems subject to external noise are employed to measure the degrees of synchronization and dynamical cluster formation in electroencephalographic (EEG) signals. These parameters are calculated in EEG signals from a group of healthy subjects and from a group of epileptic patients, including a patient experiencing an epileptic crisis. The evolution of these parameters show the occurrence of intermittent synchronization and clustering in the brain activity during an epileptic crisis. Significantly, the existence of an instantaneous maximum of synchronization previous to the onset of a crisis is revealed by this procedure. The mean values of the order parameters and their standard deviations are compared between both groups of individuals

  9. Brain activities during synchronized tapping task.

    Science.gov (United States)

    Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake

    2015-08-01

    This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670

  10. Unstable attractors induce perpetual synchronization and desynchronization.

    Science.gov (United States)

    Timme, Marc; Wolf, Fred; Geisel, Theo

    2003-03-01

    Common experience suggests that attracting invariant sets in nonlinear dynamical systems are generally stable. Contrary to this intuition, we present a dynamical system, a network of pulse-coupled oscillators, in which unstable attractors arise naturally. From random initial conditions, groups of synchronized oscillators (clusters) are formed that send pulses alternately, resulting in a periodic dynamics of the network. Under the influence of arbitrarily weak noise, this synchronization is followed by a desynchronization of clusters, a phenomenon induced by attractors that are unstable. Perpetual synchronization and desynchronization lead to a switching among attractors. This is explained by the geometrical fact, that these unstable attractors are surrounded by basins of attraction of other attractors, whereas the full measure of their own basin is located remote from the attractor. Unstable attractors do not only exist in these systems, but moreover dominate the dynamics for large networks and a wide range of parameters. PMID:12675444

  11. Synchronous characterization of semiconductor microcavity laser beam.

    Science.gov (United States)

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures. PMID:26133832

  12. Elastic interactions synchronize beating in cardiomyocytes.

    Science.gov (United States)

    Cohen, Ohad; Safran, Samuel A

    2016-07-13

    Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications. PMID:27352146

  13. Synchronous Characterization of Semiconductor Microcavity Laser Beam

    CERN Document Server

    Wang, Tao

    2015-01-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross-section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center and the defects-related spectrum can also be extracted from these high-resolution pictures.

  14. Designing Learning Resources in Synchronous Learning Environments

    DEFF Research Database (Denmark)

    Christiansen, Rene B

    2015-01-01

    Computer-mediated Communication (CMC) and synchronous learning environments offer new solutions for teachers and students that transcend the singular one-way transmission of content knowledge from teacher to student. CMC makes it possible not only to teach computer mediated but also to design and...... create new learning resources targeted to a specific group of learners. This paper addresses the possibilities of designing learning resources within synchronous learning environments. The empirical basis is a cross-country study involving students and teachers in primary schools in three Nordic...... Countries (Denmark, Sweden and Norway). On the basis of these empirical studies a set of design examples is drawn with the purpose of showing how the design fulfills the dual purpose of functioning as a remote, synchronous learning environment and - using the learning materials used and recordings of...

  15. Synchronous gastric neuroendocrine carcinoma and hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Henriksen, Birthe Merete; Hansen, Carsten Palnæs;

    2009-01-01

    UNLABELLED: Gastric neuroendocrine carcinomas (NECs) are rare tumours that are divided into four subtypes depending on tumour characteristics. Patients with NECs are known to have an increased risk of synchronous and metachronous cancers mainly located in the gastrointestinal tract. A case of...... synchronous gastric NEC and hepatocellular carcinoma in a patient with several other precancerous lesions is presented. The patient had anaemia, and a gastric tumour and two duodenal polyps were identified on upper endoscopy. A CT scan of the abdomen revealed several lesions in the liver. The lesions were...... invisible on B-mode sonography and real-time sonography fused with CT was used to identify and biopsy one of the lesions. Histology showed hepatocellular carcinoma. A literature search showed that only one case of a hepatocellular carcinoma synchronous with a gastric NEC has been reported previously. TRIAL...

  16. The Timing Synchronization System At Jefferson Lab

    International Nuclear Information System (INIS)

    This paper will present the requirements and design of the Timing Synchronization System for the Continuous Electron Beam Accelerator Facility control system at Thomas Jefferson National Accelerator Facility. A clock module has been designed to reside in a VME crate with a master front-end computer and communicate with the Data Acquisition VME crates and their front-end computers via a serial fiber optic line. Configuration of the clock modules is jumper and software selectable. The application that motivated the development of the Timing Synchronization System, the Accelerator 30 Hz System, will also be presented. This system needs less than 1ms time differential between the data acquisitions on the various DAQ front-end computers in order to gather correlated information. The development of and our operational experience with this application using the new timing synchronization system will be discussed. *This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150

  17. Synchronizing Objectives for Markov Decision Processes

    CERN Document Server

    Doyen, Laurent; Shirmohammadi, Mahsa; 10.4204/EPTCS.50.5

    2011-01-01

    We introduce synchronizing objectives for Markov decision processes (MDP). Intuitively, a synchronizing objective requires that eventually, at every step there is a state which concentrates almost all the probability mass. In particular, it implies that the probabilistic system behaves in the long run like a deterministic system: eventually, the current state of the MDP can be identified with almost certainty. We study the problem of deciding the existence of a strategy to enforce a synchronizing objective in MDPs. We show that the problem is decidable for general strategies, as well as for blind strategies where the player cannot observe the current state of the MDP. We also show that pure strategies are sufficient, but memory may be necessary.

  18. Driven synchronization in random networks of oscillators

    CERN Document Server

    Hindes, Jason

    2015-01-01

    Synchronization is a universal phenomenon found in many non-equilibrium systems. Much recent interest in this area has overlapped with the study of complex networks, where a major focus is determining how a system's connectivity patterns affect the types of behavior that it can produce. Thus far, modeling efforts have focused on the tendency of networks of oscillators to mutually synchronize themselves, with less emphasis on the effects of external driving. In this work we discuss the interplay between mutual and driven synchronization in networks of phase oscillators of the Kuramoto type, and resolve how the structure and emergence of such states depends on the underlying network topology for simple random networks with a given degree distribution. We provide a partial bifurcation analysis, centering on the appearance of a Takens-Bogdanov-Cusp singularity, which broadly separates homogeneous and heterogeneous network behavior in a weak coupling limit, and from which the number, stability and appearance of dr...

  19. Epileptiform synchronization in the cingulate cortex

    Science.gov (United States)

    Panuccio, Gabriella; Curia, Giulia; Colosimo, Alfredo; Cruccu, Giorgio; Avoli, Massimo

    2016-01-01

    Summary Purpose The anterior cingulate cortex (ACC)— which plays a role in pain, emotions and behavior— can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region. Methods We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation. Results Bath-application of the convulsant 4- aminopyridine (4AP, 50 μM) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N-methyl-D-aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application. Conclusions Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC. PMID:19178556

  20. Measures of quantum synchronization in continuous variable systems.

    Science.gov (United States)

    Mari, A; Farace, A; Didier, N; Giovannetti, V; Fazio, R

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems. PMID:25166668

  1. Measures of Quantum Synchronization in Continuous Variable Systems

    Science.gov (United States)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  2. Long-distance synchronization of unidirectionally cascaded optomechanical systems

    CERN Document Server

    Li, Tan; Zhang, Yan-Lei; Zou, Chang-Ling; Zou, Xu-Bo; Guo, Guang-Can

    2015-01-01

    Synchronization is of great scientific interest due to the abundant applications in a wide range of systems. We propose a scheme to achieve the controllable long-distance synchronization of two dissimilar optomechanical systems, which are unidirectionally coupled through a fiber with light. Synchronization, unsynchronization, and the dependence of the synchronization on driving laser strength and intrinsic frequency mismatch are studied based on the numerical simulation. Taking the fiber attenuation into account, it's shown that two mechanical resonators can be synchronized over a distance of tens of kilometers. In addition, we also analyze the unidirectional synchronization of three optomechanical systems, demonstrating the scalability of our scheme.

  3. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality of...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...

  4. Robust hyperchaotic synchronization via analog transmission line

    Science.gov (United States)

    Sadoudi, S.; Tanougast, C.

    2016-02-01

    In this paper, a novel experimental chaotic synchronization technique via analog transmission is discussed. We demonstrate through Field-Programmable Gate Array (FPGA) implementation design the robust synchronization of two embedded hyperchaotic Lorenz generators interconnected with an analog transmission line. The basic idea of this work consists in combining a numerical generation of chaos and transmitting it with an analog signal. The numerical chaos allows to overcome the callback parameter mismatch problem and the analog transmission offers robust data security. As application, this technique can be applied to all families of chaotic systems including time-delayed chaotic systems.

  5. Delayed self-synchronization in homoclinic chaos

    Science.gov (United States)

    Arecchi, F. T.; Meucci, R.; Allaria, E.; di Garbo, A.; Tsimring, L. S.

    2002-04-01

    The chaotic spike train of a homoclinic dynamical system is self-synchronized by applying a time-delayed correction proportional to the laser output intensity. Due to the sensitive nature of the homoclinic chaos to external perturbations, stabilization of very long-periodic orbits is possible. On these orbits, the dynamics appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay time. The effect, called delayed self-synchronization, displays analogies with neurodynamic events that occur in the buildup of long-term memories.

  6. Compound Synchronization of Four Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Junwei Sun

    2015-01-01

    Full Text Available The chaotic complex system is designed from the start of the chaotic real system. Dynamical properties of a chaotic complex system in complex space are investigated. In this paper, a compound synchronization scheme is achieved for four chaotic complex systems. According to Lyapunov stability theory and the adaptive control method, four chaotic complex systems are considered and the corresponding controllers are designed to realize the compound synchronization scheme. Four novel design chaotic complex systems are given as an example to verify the validity and feasibility of the proposed control scheme.

  7. Iterative quantum algorithm for distributed clock synchronization

    International Nuclear Information System (INIS)

    Clock synchronization is a well-studied problem with many practical and scientific applications. We propose an arbitrary accuracy iterative quantum algorithm for distributed clock synchronization using only three qubits. The n bits of the time difference Δ between two spatially separated clocks can be deterministically extracted by communicating only O(n) messages and executing the quantum iteration process n times based on the classical feedback and measurement operations. Finally, we also give the algorithm using only two qubits and discuss the success probability of the algorithm

  8. Synchronization Phenomena in Nephron-Nephron Interaction

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N.-H.; Yip, K.-P.; Sosnovtseva, Olga; Mosekilde, Erik

    2001-01-01

    Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular...... oscillations in its tubular pressure and flow variations. For such rats, both in-phase and antiphase synchronization can be demonstrated in the experimental data. For spontaneously hypertensive rats, where the pressure variations in the individual nephrons are highly irregular, signs of chaotic phase and...

  9. Characteristics of silent countingin synchronized swimmers

    Directory of Open Access Journals (Sweden)

    Sergey V. Leonov

    2012-01-01

    Full Text Available This article describes the temporal characteristics of silent counting as used duringa competition by the Russian youth team of synchronized swimmers. Theathletes listened to the music that accompanied their performance at the competition.Diff erent indices of silent counting were defi ned, such as the beginningand cessation of diff erent periods of counting, counting frequency, the stabilityof the temporal structure of silent counting, the degree of synchronization of silentcounting at diff erent moments during the sports program. We studied therelationship of these characteristics of counting with expert estimates of the athletes’sense of tempo, coordination of movements, and choreographic abilities.

  10. [Synchronized, oscillatory brain activity in visual perception].

    Science.gov (United States)

    Braunitzer, Gábor

    2008-09-30

    The present study investigates one of the most promising developments of the brain-mind question, namely the possible links between synchronized oscillatory brain activity and certain (visual) perceptual processes. Through a review of the relevant literature, the author introduces the reader to the most important theories of coherent perception ('binding'), and makes an attempt to show how synchronization of EEG-registrable oscillatory activities from various frequency bands might explain binding. Finally, a number of clinical problems are also mentioned, regarding which the presented theoretical framework might deserve further consideration. PMID:18841649

  11. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  12. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  13. Impulsive synchronization of networked nonlinear dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Haibo, E-mail: yctcjhb@gmail.co [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China); School of Mathematics, Yancheng Teachers University, Yancheng 224051 (China); Bi Qinsheng [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2010-06-14

    In this Letter, we investigate the problem of impulsive synchronization of networked multi-agent systems, where each agent can be modeled as an identical nonlinear dynamical system. Firstly, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the synchronization of the networked nonlinear dynamical system by using algebraic graph theory and impulsive control theory. Furthermore, how to select the discrete instants and impulsive constants is discussed. The case that the topologies of the networks are switching is also considered. Numerical simulations show the effectiveness of our theoretical results.

  14. Impulsive synchronization of networked nonlinear dynamical systems

    Science.gov (United States)

    Jiang, Haibo; Bi, Qinsheng

    2010-06-01

    In this Letter, we investigate the problem of impulsive synchronization of networked multi-agent systems, where each agent can be modeled as an identical nonlinear dynamical system. Firstly, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the synchronization of the networked nonlinear dynamical system by using algebraic graph theory and impulsive control theory. Furthermore, how to select the discrete instants and impulsive constants is discussed. The case that the topologies of the networks are switching is also considered. Numerical simulations show the effectiveness of our theoretical results.

  15. Carrying Synchronous Voice Data On Asynchronous Networks

    Science.gov (United States)

    Bergman, Larry A.

    1990-01-01

    Buffers restore synchronism for internal use and permit asynchronism in external transmission. Proposed asynchronous local-area digital communication network (LAN) carries synchronous voice, data, or video signals, or non-real-time asynchronous data signals. Network uses double buffering scheme that reestablishes phase and frequency references at each node in network. Concept demonstrated in token-ring network operating at 80 Mb/s, pending development of equipment operating at planned data rate of 200 Mb/s. Technique generic and used with any LAN as long as protocol offers deterministic (or bonded) access delays and sufficient capacity.

  16. Multiplexing synchronization and its applications in cryptography

    International Nuclear Information System (INIS)

    In this paper, we consider the problem of multiplexing in chaotic synchronization where the transmitter is a delayed dynamical system, and there is more than one receiver represented by the usual nonlinear systems. Sufficient condition of synchronization is derived analytically from the Krasovskii-Lyapunov functional consisting of multidimensional error vectors. These are then substantiated numerically. Later, we show how these results can be used in chaotic cryptography where the communication between the transmitter and the receiver can carry more than one message. Finally, it is demonstrated how the messages can be recovered safely

  17. Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions

    Institute of Scientific and Technical Information of China (English)

    Zou Yan-Li; Chen Guan-Rong

    2009-01-01

    This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchro nized regions.To study a state-feedback pinning-controlled network with N nodes,it first converts the controlled network to an extended network of N+1 nodes without controls.It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded.Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded,but it has a critical value when the synchronized region is bounded.In the former case,therefore,it is possible to control the network to achieve synchronization by pinning only one node.In the latter ease,the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.

  18. Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system

    International Nuclear Information System (INIS)

    Through introducing the concept of complex current and resetting cross-coupling term, this paper proposes a novel complex permanent magnet synchronous motor system and analyzes its properties. Based on a complex permanent magnet synchronous motor system, we design controllers and achieve lag synchronizations both in real part and imaginary part with backstepping method. In our study, we take complex current, time delay, and structure of complex system into consideration. Numerical simulation results demonstrate the validity of controllers. (interdisciplinary physics and related areas of science and technology)

  19. Injuries and medical issues in synchronized Olympic sports.

    Science.gov (United States)

    Mountjoy, Margo

    2009-01-01

    Spectators of the Olympic Games can enjoy a wide variety of sports, including strength, team, timed, endurance, and artistic sports. In the Olympic program, there are two synchronized events: synchronized diving and synchronized swimming. The precision of the synchronization of the athlete's movements and skills is an added feature of entertainment. Synchronized athletes have additional training requirements to perfect the synchronization of their skills. The physical demands on the athlete from the repetition of training required for the perfection of synchronization result in injuries unique to these sports. Although both traumatic and overuse injuries occur, overuse injuries are more common. As these disciplines are artistic, judged sports, these athletes also are susceptible to eating disorders and the female athlete triad. This article reviews the training regimen of these athletes and outlines the injuries and health concerns that are common in the synchronized sports. PMID:19741353

  20. Complete chaotic synchronization in mutually coupled time-delay systems.

    Science.gov (United States)

    Landsman, Alexandra S; Schwartz, Ira B

    2007-02-01

    Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of parameters. The results explain and predict the dependence of synchronization on various parameters, such as time delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized subsystems. PMID:17358399

  1. Synchronous bilateral breast cancer in a male

    OpenAIRE

    Rubio Hernández, María Caridad; Díaz Prado, Yenia Ivet; Pérez, Suanly Rodríguez; Díaz, Ronald Rodríguez; Aleaga, Zaili Gutiérrez

    2013-01-01

    Male breast cancer, which represents only 1% of all breast cancers, is occasionally associated with a family history of breast cancer. Sporadic male breast cancers presenting with another primary breast cancer are extremely rare. In this article, we report on a 70-year-old male patient with bilateral multifocal and synchronous breast cancer and without a family history of breast cancer.

  2. Effects of synchronous coaching in teacher training

    NARCIS (Netherlands)

    Hooreman, Ralph W.; Kommers, Piet A.M.; Jochems, Wim M.G.

    2008-01-01

    Historically, the nature of coaching the teachers is asynchronously: a reflective discussion with the supervisory coach is the follow-up after a lesson has been taught. We expect that synchronous (immediate) coaching may complement and to a certain extent supplant the asynchronous feedback. Nonethel

  3. Synchronous Generator Model with Nonlinear Magnetic Circuit

    Directory of Open Access Journals (Sweden)

    Dariusz Spałek

    2013-12-01

    Full Text Available A synchronous generator with voltage controller is a system whose work describes the ordinary differential equation set for the equivalent circuits. For the nonlinear magnetic circuit of a synchronous generator (stator and rotor saturation the differential set is nonlinear. The solution of such a problem needs to develop the appropriate model for numerical simulations of the generator. First of all, the generator model type e.g. (1,1,(2,2, (3,3 or other should be chosen. Furthermore, the equivalent parameters for the model of synchronous generator should be chosen. The nonlinearity of magnetic circuit leads to changes of some equivalent parameters and additional numerical computations. There is a numerical program developed in C++ for simulations of transients in order to investigate their sensitivity to generator nonlinearity (saturation effect and equivalent parameters values. The described program (available at www.elektr.polsl.pl/dspalek/ enables to decide whether the nonlinearity for d/q axis should be taken into account and which equivalent parameter are of high importance. Subsequently, the presented model leads to conclusions on which parameters should influence significantly synchronous generator work in a power system.

  4. Behavior Matching in Multimodal Communication Is Synchronized

    Science.gov (United States)

    Louwerse, Max M.; Dale, Rick; Bard, Ellen G.; Jeuniaux, Patrick

    2012-01-01

    A variety of theoretical frameworks predict the resemblance of behaviors between two people engaged in communication, in the form of coordination, mimicry, or alignment. However, little is known about the time course of the behavior matching, even though there is evidence that dyads synchronize oscillatory motions (e.g., postural sway). This study…

  5. Control of a superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Jiang, Q; Hong, Z; Coombs, T A [Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    This paper presents a control algorithm for starting up a high temperature superconducting synchronous motor. The mathematical model of the motor has been established in m-file in Matlab and the parameters have been identified by means of the finite-element analysis method. Different starting methods for the motor have been compared and discussed, and eventually a hybrid control algorithm is proposed.

  6. Synchronicity and the meaning-making psyche.

    Science.gov (United States)

    Colman, Warren

    2011-09-01

    This paper contrasts Jung's account of synchronicity as evidence of an objective principle of meaning in Nature with a view that emphasizes human meaning-making. All synchronicities generate indicative signs but only where this becomes a 'living symbol' of a transcendent intentionality at work in a living universe does synchronicity generate the kind of symbolic meaning that led Jung to posit the existence of a Universal Mind. This is regarded as a form of personal, experiential knowledge belonging to the 'imaginal world of meaning' characteristic of the 'primordial mind', as opposed to the 'rational world of knowledge' in which Jung attempted to present his experiences as if they were empirically and publicly verifiable. Whereas rational knowledge depends on a form of meaning in which causal chains and logical links are paramount, imaginal meaning is generated by forms of congruent correspondence-a feature that synchronicity shares with metaphor and symbol-and the creation of narratives by means of retroactive organization of its constituent elements. PMID:21884094

  7. Chaos in nonlinear oscillations controlling and synchronization

    CERN Document Server

    Lakshamanan, M

    1996-01-01

    This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.

  8. Heart Rates of Elite Synchronized Swimmers.

    Science.gov (United States)

    Gemma, Karen Erickson; Wells, Christine L.

    1987-01-01

    Heart rates were recorded by radiotelemetry in ten elite and national-class synchronized swimmers as they performed competitive figures of high degrees of difficulty. The focus was on changes in heart rates and electrocardiogram patterns for each body position, especially those requiring facial immersion and breath-holding. (Author/MT)

  9. Synchronous charge-constrained electroquasistatic generator

    Science.gov (United States)

    Melcher, J. R.

    1969-01-01

    Electroquasistatic generator depends on electroquasistatic interactions to provide synchronous operation. The generator employs a moving insulating belt, with an ac electric potential source to establish positively and negatively charged regions on the belt. The field effect of the charges on the belt creates an ac output voltage.

  10. Synchronization of Time-Continuous Chaotic Oscillators

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik

    2003-01-01

    in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between....... ©2003 American Institute of Physics....

  11. Synchronization of Distributed Systems using GPS

    Czech Academy of Sciences Publication Activity Database

    Breuer, J.; Čemusová, Blanka; Fischer, J.; Roztočil, J.; Vigner, V.

    Aalborg: River Publishers, 2012 - (Haasz, V.), s. 95-120. (River publishers series of information science and technology). ISBN 978-87-92329-72-1 Institutional support: RVO:67985882 Keywords : synchronization * timestamping * time scale Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  13. Distributed Probabilistic Synchronization Algorithms for Communication Networks

    OpenAIRE

    AKAR, MEHMET; Shorten, Robert

    2008-01-01

    In this paper, we present a probabilistic synchronization algorithm whose convergence properties are examined using tools of rowstochastic matrices. The proposed algorithm is particularly well suited for wireless sensor network applications, where connectivity is not guaranteed at all times, and energy efficiency is an important design consideration. The tradeoff between the convergence speed and the energy use is studied.

  14. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.;

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also, th...

  15. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.;

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific u...

  16. Composing Multiple-Client-Multiple-Server Synchronizations

    NARCIS (Netherlands)

    Aksit, Mehmet; Bergmans, Lodewijk

    1997-01-01

    A considerable number of language mechanisms have been proposed during the last several years, to specify and implement concurrent object-oriented programs. The major concern of these proposals is to design an expressive language that provides extensible concurrent processing and synchronization fea

  17. Limbic Network Synchronization and Temporal Lobe Epilepsy

    Czech Academy of Sciences Publication Activity Database

    Jefferys, J. G. R.; Jiruška, Přemysl; de Curtis, M.; Avoli, M.

    4. New York : Oxford University Press, 2012 - (Noebels, J.; Avoli, M.; Rogawski, M.; Olsen, R.; Delgado-Escueta, A.), s. 176-189. ISBN 978-0-19-974654-5 Institutional research plan: CEZ:AV0Z50110509 Keywords : synchronization * temporal lobe epilepsy * seizures Subject RIV: FH - Neurology

  18. Global chaos synchronization of coupled parametrically excited pendula

    Indian Academy of Sciences (India)

    O I Olusola; U E Vincent; A N Njah

    2009-12-01

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which an estimated critical coupling is determined. Numerical solutions are presented to verify the theoretical analysis. We also examined the transition to stable synchronous state and show that this corresponds to a boundary crisis of the chaotic attractor.

  19. Impulsive generalized function synchronization of complex dynamical networks

    International Nuclear Information System (INIS)

    This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results

  20. Anti-synchronization Between Coupled Networks with Two Active Forms

    International Nuclear Information System (INIS)

    This paper studies anti-synchronization and its control between two coupled networks with nonlinear signal's connection and the inter-network actions. If anti-synchronization does not exist between two such networks, adaptive controllers are designed to anti-synchronize them. Different node dynamics and nonidentical topological structures are considered and useful criteria for anti-synchronization between two networks are given. Numerical examples are presented to show the efficiency of our derived results. (general)

  1. A Color image encryption scheme based on Generalized Synchronization Theorem

    OpenAIRE

    Han shuangshuang

    2013-01-01

    Base on a generalized synchronization theorem (GCS) for discrete chaotic system, this paper introduces a new 6-dimensional generalized chaos synchronization system based on 3D-Lorenz map. Numerical simulation showed that two pair variables of the synchronization system achieve generalized synchronization via a transform H.Combining with the 2-Dimension non equilateral Arnold transformation, a color image encryption scheme was designed. Analyzing the key sensitivity, key space, histogram, info...

  2. Synchronization in random networks with given expected degree sequences

    OpenAIRE

    Biey, Mario

    2008-01-01

    Synchronization in random networks with given expected degree sequences is studied. We also investigate in details the synchronization in networks whose topology is described by classical random graphs, power-law random graphs and hybrid graphs when N goes to infinity. In particular, we show that random graphs almost surely synchronize. We also show that adding small number of global edges to a local graph makes the corresponding hybrid graph to synchronize

  3. Time synchronization of a commercial seismometer through IEEE-1588

    OpenAIRE

    Pallares, O.; Shariat Panahi, Shahram; del Rio, Joaquin; Manuel Lázaro, Antonio

    2011-01-01

    Seismometers use a GPS signal for time synchronization and the seismic data are collected, time marked and stored. The precision of the time marks is a key parameter for the location and magnitude of an earthquake.Land seismometers are implemented with an internal GPS receiver where only an external antenna is needed for time synchronization. This paper presents the implementation of the time synchronization of a land seismometer through the IEEE-1588 protocol.Time synchronization tests have ...

  4. Synchronization and Lag Synchronization of Hyperchaotic Memristor-Based Chua’s Circuits

    Directory of Open Access Journals (Sweden)

    Junjian Huang

    2014-01-01

    Full Text Available A memristor-based five-dimensional (5D hyperchaotic Chua’s circuit is proposed. Based on the Lyapunov stability theorem, the controllers are designed to realize the synchronization and lag synchronization between the hyperchaotic memristor-based Chua’s circuits under different initial values, respectively. Numerical simulations are also presented to show the effectiveness and feasibility of the theoretical results.

  5. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  6. Role of multistability in the transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Postnov, D.E.; Vadivasova, T.E.; Sosnovtseva, Olga; Balanov, A.G.; Anishchenko, V.S.; Mosekilde, Erik

    1999-01-01

    nonsynchronous behavior is determined by the loss of stability for the most stable synchronous mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to phase synchronization are related to the merging of chaotic attractors from different families. Numerical examples...

  7. Adaptive-impulsive synchronization of uncertain complex dynamical networks

    International Nuclear Information System (INIS)

    This Letter studies adaptive-impulsive synchronization of uncertain complex dynamical networks. Based on the stability analysis of impulsive system, several network synchronization criteria for local and global adaptive-impulsive synchronization are established. Numerical example is also given to illustrate the results

  8. Synchronization in driven chaotic systems: Diagnostics and bifurcations

    DEFF Research Database (Denmark)

    Vadivasova, T.E.; Balanov, A.G.; Sosnovtseva, O.V.; Postnov, D.E.; Mosekilde, Erik

    We investigate generic aspects of chaos synchronization in an externally forced Rössler system. By comparing different diagnostic methods, we show the existence of a well-defined cut-off of synchronization associated with the transition from weak to fully developed chaos. Two types of chaotic beh...... behavior, differing by the number of vanishing Lyapunov exponents, are observed outside the synchronization regime....

  9. Partial synchronization and spontaneous spatial ordering in coupled chaotic systems

    International Nuclear Information System (INIS)

    A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchronizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotemporal structures and some novel dynamical behaviors of these states are discussed both numerically and analytically. (author)

  10. Combination-Combination Hyperchaos Synchronization of Complex Memristor Oscillator System

    OpenAIRE

    Zhang Jin-E

    2014-01-01

    The combination-combination synchronization scheme is based on combination of multidrive systems and combination of multiresponse systems. In this paper, we investigate combination-combination synchronization of hyperchaotic complex memristor oscillator system. Several sufficient conditions are provided to ascertain the combination of two drive hyperchaotic complex memristor oscillator systems to synchronize the combination of two response hyperchaotic complex memristor oscillator systems. Th...

  11. Synchronization of Coupled Nonidentical Fractional-Order Hyperchaotic Systems

    Directory of Open Access Journals (Sweden)

    Zhouchao Wei

    2011-01-01

    Full Text Available Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the active sliding mode method. By designing an active sliding mode controller and choosing proper control parameters, the master and slave systems are synchronized. Furthermore, synchronizing fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is performed to show the effectiveness of the proposed controller.

  12. The physical meaning of synchronization and simultaneity in Special Relativity

    OpenAIRE

    de Abreu, Rodrigo

    2002-01-01

    Based on two previous papers, the physical meaning of synchronization and simultaneity as is presented in Einstein's Special Relativity paper of 1905 is reconsidered. We follow Einstein's argumentation to introduce a criterium of synchronization and for the same arguments we arrive at a different criterium for synchronization. From that we conclude that simultaneity is absolute.

  13. Inter-destination Media Synchronization for TV broadcasts

    NARCIS (Netherlands)

    Mekuria, R.N.

    2011-01-01

    This thesis presents a study on the application of inter-destination synchronization for TV-broadcasting. Inter-destination media synchronization implies synchronizing media output at different receivers. This thesis starts by investigating differences in media output between receivers of TV broadca

  14. Generalized Synchronization of Lorenz Chaotic System with Star Network

    OpenAIRE

    Mohammad Ali Khan

    2012-01-01

    In this paper, we propose the theory for generalized synchronization (GS) of a chaotic star network. We derive sufficient conditions for generalized synchronization of any chaotic system on a star network. The relationship among the state variables at GS are completely known in our method. The effectiveness and feasibility of the synchronization strategy is confirmed and demonstrated by numerical simulation.

  15. Comparison and Regulation of Neuronal Synchronization for Various STDP Rules

    Directory of Open Access Journals (Sweden)

    Yanhua Ruan

    2009-01-01

    Full Text Available We discuss effects of various experimentally supported STDP learning rules on frequency synchronization of two unidirectional coupled neurons systematically. First, we show that synchronization windows for all STDP rules cannot be enhanced compared to constant connection under the same model. Then, we explore the influence of learning parameters on synchronization window and find optimal parameters that lead to the widest window. Our findings indicate that synchronization strongly depends on the specific shape and the parameters of the STDP update rules. Thus, we give some explanations by analyzing the synchronization mechanisms for various STDP rules finally.

  16. Ideal synchronizer for marked pairs in fork-join network

    CERN Document Server

    Vyshenski, S V; Dubenskaya, Yu Yu

    2008-01-01

    We introduce a new functional element (synchronizer for marked pairs) meant to join results of parallel processing in two-branch fork-join queueing network. Approximations for distribution of sojourn time at the synchronizer are derived along with a validity domain. Calculations are performed assuming that: arrivals to the network form a Poisson process, each branch operates like an M/M/N queueing system. It is shown that a mean quantity of jobs in the synchronizer is bounded below by the value, defined by parameters of the network (which contains the synchronizer) and does not depend upon performance and particular properties of the synchronizer.

  17. Linear generalized synchronization of chaotic systems with uncertain parameters

    Institute of Scientific and Technical Information of China (English)

    Jia Zhen

    2008-01-01

    A more general form of projective synchronization,so called linear generalized synchronization(LGS)is proposed,which includes the generalized projective synchronization(GPS)and the hybrid projective synchronization(HPS)as its special cases.Based on the adaptive technique and Lyapunov stability theory,a general method for achieving the LGS between two chaotic or hyperchaotic systems with uncertain parameters in any scaling matrix is presented.Some numerical simulations are provided to show the effectiveness and feasibility of the proposed synchronization method.

  18. Studying synchronization to a musical beat in nonhuman animals.

    Science.gov (United States)

    Patel, Aniruddh D; Iversen, John R; Bregman, Micah R; Schulz, Irena

    2009-07-01

    The recent discovery of spontaneous synchronization to music in a nonhuman animal (the sulphur-crested cockatoo Cacatua galerita eleonora) raises several questions. How does this behavior differ from nonmusical synchronization abilities in other species, such as synchronized frog calls or firefly flashes? What significance does the behavior have for debates over the evolution of human music? What kinds of animals can synchronize to musical rhythms, and what are the key methodological issues for research in this area? This paper addresses these questions and proposes some refinements to the "vocal learning and rhythmic synchronization hypothesis." PMID:19673824

  19. Global exponential synchronization criterion for switched linear coupled dynamic networks

    International Nuclear Information System (INIS)

    We in this paper develop a global exponential synchronization stability criterion for switched linear coupled network. By introducing a switching symmetric matrix, we prove that the stability of global exponential synchronization is governed by the largest eigenvalue of this switching symmetric matrix and the largest switching coupling strength. Meanwhile, we give the threshold of switching coupling strength which can make the switched linear network reach global exponential synchronization. Because the proposed criterion is on the basis of the original synchronization definition and the largest eigenvalue of the switching symmetric matrix, therefore, it is convenient to use in verifying global exponential synchronization of dynamic network with switching linear couplings.

  20. Synchronization in the network of chaotic microwave oscillators

    Science.gov (United States)

    Moskalenko, O.; Phrolov, N.; Koronovskii, A.; Hramov, A.

    2013-10-01

    Time scale synchronization in networks of chaotic microwave oscillators with the different topologies of the links between nodes has been studied. As a node element of the network the one-dimensional distributed model of the low-voltage vircator has been used. To characterize the degree of synchronization in the whole network the synchronization index has been introduced. The transition to the synchronous regime is shown to take place via cluster time scale synchronization. Meanwhile, the spectral structure of the output signals is complicated sufficiently which allows using such devices in a number of practical applications.

  1. Robust chaos synchronization using input-to-state stable control

    Indian Academy of Sciences (India)

    Choon Ki Ahn

    2010-05-01

    In this paper, we propose a new input-to-state stable (ISS) synchronization method for a general class of chaotic systems with disturbances. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented not only to guarantee the asymptotic synchronization but also to achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies are presented to demonstrate the effectiveness of the proposed ISS synchronization scheme.

  2. Layered Workflow Process Model Based on Extended Synchronizer

    Directory of Open Access Journals (Sweden)

    Gang Ni

    2014-07-01

    Full Text Available The layered workflow process model provide a modeling approach and analysis for the key process with Petri Net. It not only describes the relation between the process of business flow and transition nodes clearly, but also limits the rapid increase in the scale of libraries, transition and directed arcs. This paper studies the process like reservation and complaint handling information management system, especially for the multi-mergence and discriminator patterns which can not be directly modeled with existing synchronizers. Petri Net is adopted to provide formalization description for the workflow patterns and the relation between Arcs and weight class are also analyzed. We use the number of in and out arcs to generalize the workflow into three synchronous modes: fully synchronous mode, competition synchronous mode and asynchronous mode. The types and parameters for synchronization are added to extend the modeling ability of the synchronizers and the synchronous distance is also expanded. The extended synchronizers have the ability to terminate branches automatically or activate the next link many times, besides the ability of original synchronizers. By the analyses on cases of the key business, it is verified that the original synchronizers can not model directly, while the extended synchronizers based on Petri Net can provide modeling for multi-mergence and discriminator modes.

  3. Signal processing techniques for synchronization of wireless sensor networks

    Science.gov (United States)

    Lee, Jaehan; Wu, Yik-Chung; Chaudhari, Qasim; Qaraqe, Khalid; Serpedin, Erchin

    2010-11-01

    Clock synchronization is a critical component in wireless sensor networks, as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel sharing, and sleep wake-up scheduling, etc. Early studies on clock synchronization for wireless sensor networks mainly focus on protocol design. However, clock synchronization problem is inherently related to parameter estimation, and recently, studies of clock synchronization from the signal processing viewpoint started to emerge. In this article, a survey of latest advances on clock synchronization is provided by adopting a signal processing viewpoint. We demonstrate that many existing and intuitive clock synchronization protocols can be interpreted by common statistical signal processing methods. Furthermore, the use of advanced signal processing techniques for deriving optimal clock synchronization algorithms under challenging scenarios will be illustrated.

  4. Coevolution of synchronization and cooperation in networks of coupled oscillators

    CERN Document Server

    Antonioni, Alberto

    2016-01-01

    Despite the large number of studies on the framework of synchronization, none of the previous research made the hypothesis that synchronization occurs at a given cost for involved individuals. The introduction of costly interactions leads, instead, to the formulation of a dichotomous scenario in which an individual may decide to cooperate and pay the cost in order to get synchronized with the rest of the population. Alternatively, the same individual can decide to free ride, without incurring in any cost, waiting that others get synchronized to her state. The emergence of synchronization may thus be seen as the byproduct of an evolutionary game in which individuals decide their behavior according to the benefit/cost ratio they receive in the past. We study the onset of cooperation/synchronization in networked populations of Kuramoto oscillators and report how topology is essential in order for cooperation to thrive. We display also how different classes of topology foster differently synchronization both at a...

  5. Chaos Synchronization Via The Transmission Of Symbolic Information

    Science.gov (United States)

    Pethel, Shawn D.; Corron, Ned J.; Underwood, Quitisha; Myneni, Krishna

    2003-08-01

    We report high-quality chaotic synchronization of one-way coupled electronic circuits through a communication channel that transmits only symbolic dynamical information. This is accomplished by converting the synchronization signal into a discrete symbol sequence at the transmitter and then decoding the symbols at the receiver in real time. We find that symbol information is critical in the synchronization process and that an arbitrarily low rms synchronization error can be maintained by only transmitting a single 1-bit symbol per cycle. This indicates that chaotic synchronization is robust to severe band limiting and/or noise in the coupling channel provided symbol information is preserved. The experimental setup also allows us to explore so-called achronal synchronization in which the receiver lags or leads the transmitter by fixed time. We discuss fundamental trade-offs between the accuracy to which the transmitter state can be known, the quality of synchronization, and the delay or anticipation created in the receiver.

  6. Phase transitions and entropies for synchronizing oscillators.

    Science.gov (United States)

    Bier, Martin; Lisowski, Bartosz; Gudowska-Nowak, Ewa

    2016-01-01

    We study a generic model of coupled oscillators. In the model there is competition between phase synchronization and diffusive effects. For a model with a finite number of states we derive how a phase transition occurs when the coupling parameter is varied. The phase transition is characterized by a symmetry breaking and a discontinuity in the first derivative of the order parameter. We quantitatively account for how the synchronized pulse is a low-entropy structure that facilitates the production of more entropy by the system as a whole. For a model with many states we apply a continuum approximation and derive a potential Burgers' equation for a propagating pulse. No phase transition occurs in that case. However, positive entropy production by diffusive effects still exceeds negative entropy production by the shock formation. PMID:26871059

  7. Forced synchronization of autonomous dynamical Boolean networks

    International Nuclear Information System (INIS)

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics

  8. Modular Compilation of a Synchronous Language

    CERN Document Server

    Ressouche, Annie; Roy, Valérie

    2008-01-01

    Synchronous languages rely on formal methods to ease the development of applications in an efficient and reusable way. Formal methods have been advocated as a means of increasing the reliability of systems, especially those which are safety or business critical. It is still difficult to develop automatic specification and verification tools due to limitations like state explosion, undecidability, etc... In this work, we design a new specification model based on a reactive synchronous approach. Then, we benefit from a formal framework well suited to perform compilation and formal validation of systems. In practice, we design and implement a special purpose language (LE) and its two semantics: the ehavioral semantics helps us to define a program by the set of its behaviors and avoid ambiguousness in programs' interpretation; the execution equational semantics allows the modular compilation of programs into software and hardware targets (c code, vhdl code, fpga synthesis, observers). Our approach is pertinent co...

  9. Synchronous motor with HTS-2G wires

    Science.gov (United States)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  10. Electro-hydrodynamic synchronization of piezoelectric flags

    Science.gov (United States)

    Xia, Yifan; Doaré, Olivier; Michelin, Sébastien

    2016-08-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  11. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Abrahamsen, Asger Bech; Mijatovic, Nenad;

    2012-01-01

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other,electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, mechanical...... torque fluctuations, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear...... electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the...

  12. The Synchronous Network of distant Telescopes

    CERN Document Server

    Zhilyaev, B; Verlyuk, I; Andreev, M; Sergeev, A; Lovkaya, M; Antov, S; Konstantinova-Antova, R; Bogdanovski, R; Avgoloupis, S; Seiradakis, J; Contadakis, M

    2011-01-01

    The Synchronous Network of distant Telescopes (SNT) represents an innovative approach in observational astrophysics. Authors present the unique existing realization of the SNT-conception. It was founded within the international collaboration between astronomical observatories of Ukraine, Russia, Bulgaria and Greece. All the telescopes of the Network are equipped with standardized photometric systems (based on photomultipliers). The unified timing systems (based on GPS-receivers) synchronize all the apertures to UTC with an accuracy of 1 microsecond and better. The essential parts of the SNT are the original software for operating and data processing. Described international Network successfully works for more then 10 years. The obtained unique observational data made it possible to discover new fine-scale features and flare-triggered phenomena in flaring red dwarfs, as well as the recently found high-frequency variability in some chromospherically active stars.

  13. Synchronous and Cogged Fan Belt Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  14. Forced synchronization of autonomous dynamical Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  15. Synchronization in interacting Scale Free Networks

    CERN Document Server

    Torres, M F; La Rocca, C E; Braunstein, L A

    2015-01-01

    We study the fluctuations of the interface, in the steady state, of the Surface Relaxation Model (SRM) in two Scale Free interacting Networks where a fraction $q$ of nodes in both networks interact one to one through external connections. We find that as $q$ increases the fluctuations on both networks decrease and thus the synchronization is better than in isolated networks. As a consequence the system is optimal synchronized for $q=1$. The decrease of the fluctuations in both networks is due mainly to the diffusion through external connections which allows to reducing the load in nodes by sending the excess of load mostly to low degree nodes. This effect enhances the matching of the heights of low and high degree nodes as $q$ increases reducing the fluctuations.

  16. Statistical modeling approach for detecting generalized synchronization.

    Science.gov (United States)

    Schumacher, Johannes; Haslinger, Robert; Pipa, Gordon

    2012-05-01

    Detecting nonlinear correlations between time series presents a hard problem for data analysis. We present a generative statistical modeling method for detecting nonlinear generalized synchronization. Truncated Volterra series are used to approximate functional interactions. The Volterra kernels are modeled as linear combinations of basis splines, whose coefficients are estimated via l(1) and l(2) regularized maximum likelihood regression. The regularization manages the high number of kernel coefficients and allows feature selection strategies yielding sparse models. The method's performance is evaluated on different coupled chaotic systems in various synchronization regimes and analytical results for detecting m : n phase synchrony are presented. Experimental applicability is demonstrated by detecting nonlinear interactions between neuronal local field potentials recorded in different parts of macaque visual cortex. PMID:23004851

  17. ESTIMATION OF COMPETITIVE ACTIVITY IN SYNCHRONIZED SWIMMING

    Directory of Open Access Journals (Sweden)

    Shul'ga L.M.

    2013-01-01

    Full Text Available Aim – is to develop the approach to technical complexity estimation of free routine composition in synchronized swimming. Were analyzed and considered free routine compositions of the strongest swimmers in European and World Championships during the period under study (2008-2011. In the research took part 32 qualified athletes different ages. Were determined the options of the constructed of free program and location the combination saturation in those programs. Were established complicated elements distribution by the minutes of the free routine composition performance and developed the approach to technical complexity estimation of free routine composition (solo for using in training and competitive activity for qualified athletes in synchronized swimming. The total time of breath-holding makes up 40% of the time of the whole free routine composition.

  18. Social argumentation in online synchronous communication

    Science.gov (United States)

    Angiono, Ivan

    In education, argumentation has an increasing importance because it can be used to foster learning in various fields including philosophy, history, sciences, and mathematics. Argumentation is also at the heart of scientific inquiry. Many educational technology researchers have been interested in finding out how technologies can be employed to improve students' learning of argumentation. Therefore, many computer-based tools or argumentation systems have been developed to assist students in their acquisition of argumentation skills. While the argumentation systems incorporating online debating tools present a good resource in formal settings, there is limited research revealing what argumentative skills students are portraying in informal online settings without the presence of a moderator. This dissertation investigates the nature of argumentative practices in a massively multiplayer online game where the system successfully incorporates the authentic use of online synchronous communication tools and the patterns that emerge from the interplay between a number of contextual variables including synchronicity, interest, authenticity, and topical knowledge.

  19. Interlanguages and synchronic models of computation

    CERN Document Server

    Berka, Alexander Victor

    2010-01-01

    A novel language system has given rise to promising alternatives to standard formal and processor network models of computation. An interstring linked with a abstract machine environment, shares sub-expressions, transfers data, and spatially allocates resources for the parallel evaluation of dataflow. Formal models called the a-Ram family are introduced, designed to support interstring programming languages (interlanguages). Distinct from dataflow, graph rewriting, and FPGA models, a-Ram instructions are bit level and execute in situ. They support sequential and parallel languages without the space/time overheads associated with the Turing Machine and l-calculus, enabling massive programs to be simulated. The devices of one a-Ram model, called the Synchronic A-Ram, are fully connected and simpler than FPGA LUT's. A compiler for an interlanguage called Space, has been developed for the Synchronic A-Ram. Space is MIMD. strictly typed, and deterministic. Barring memory allocation and compilation, modules are ref...

  20. Electro-hydrodynamic synchronization of piezoelectric flags

    CERN Document Server

    Xia, Yifan; Michelin, Sebastien

    2016-01-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  1. Another look at synchronized neutrino oscillations

    CERN Document Server

    Akhmedov, Evgeny

    2016-01-01

    In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena -- synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.

  2. Synchronous motor with HTS-2G wires

    International Nuclear Information System (INIS)

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based 'Center of Superconducting machines and devices' with the support of 'Rosatom' has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  3. Synchronization of Integrated Systems on a Chip

    Directory of Open Access Journals (Sweden)

    González-Díaz O.

    2012-04-01

    Full Text Available In the present paper, the non-conventional interconnected and coupled ring oscillators approach working as clock distribution networks to synchronize electronic systems on a chip (SoC is proposed. Typical CMOS (Complementary Metal-Oxide Semiconductor N-well 0.35 µm Austria Micro Systems process parameters were used for conventional and non-conventional clock distribution nets design and simulation. Experimental results from local and global clock distribution networks fabricated using a CMOS 0.35 µm process show that the use of interconnected rings arrays, as globally asynchronous locally synchronous (GALS clock distribution networks, represent an appropriate approach due to good performance regarding scalability, low clock-skew, high-speed, faults tolerant and robust under process variations, regularity, and modularity.

  4. The Timing Synchronization System at Jefferson Lab

    CERN Document Server

    Keesee, M; Flood, R; Lebedev, V

    2001-01-01

    This paper presents the requirements and design of a Timing Synchronization System (TSS) for the Continuous Electron Beam Accelerator Facility (CEBAF) control system at Thomas Jefferson National Accelerator Facility. A clock module has been designed which resides in a VME crate. The clock module can be a communications master or a slave depending on its configuration, which is software and jumper selectable. As a master, the clock module sends out messages in response to an external synchronization signal over a serial fiber optic line. As a slave, it receives the messages and interrupts an associated computer in its VME crate. The application that motivated the development of the TSS, the Accelerator 30 Hz Measurement System, will be described. Operational experience with the TSS will also be discussed.

  5. Another look at synchronized neutrino oscillations

    Science.gov (United States)

    Akhmedov, Evgeny; Mirizzi, Alessandro

    2016-07-01

    In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena - synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.

  6. Kinetic characteristic for a synchronal rotary compressor

    Institute of Scientific and Technical Information of China (English)

    Qu Zongchang; Feng Jianmei; Zhou Hui; Yang Hua

    2007-01-01

    An angular speed, acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed. The calculation formulae of revolving speed of cylinder and relative speed between the cylinder and bladed rotor are deduced detailedly in this paper. The variation of tangential speed and cylinder acceleration with angular position is investigated for a complete cycle. And some key parameters affected the relative speed are found out, viz, the relative speed depends on the radius of the cylinder and rotary speed of the axis, and the ratio of the cylinder to bladed rotor has not too much influence. It is the theoretic basis of designing and optimizing of structure characteristic of a synchronal rotary compressor. Also a computing formula of leakage related with rotary speed is deduced. It could supply

  7. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.; Guerrero, Josep M.; Vasquez, Juan C.; Doval-Gandoy, Jesus

    2016-01-01

    Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... to worsen in the presence of frequency drifts. To deal with this problem, two approaches are often recommended in the literature: Adapting OLS techniques to grid frequency variations by feeding back the frequency estimated by them or using the frequency estimated by a secondary frequency detector in...... a parallel manner. In the presence of the frequency feedback loop, nevertheless, the OLS technique may not be truly open-loop, which makes a deep study of stability necessary. Using the secondary frequency detector, on the other hand, increases the computational effort and implementation complexity...

  8. Space and the Synchronic A-Ram

    CERN Document Server

    Berka, Alex V

    2010-01-01

    Space is a circuit oriented, spatial programming language designed to exploit the massive parallelism available in a novel formal model of computation called the Synchronic A-Ram, and physically related FPGA and reconfigurable architectures. Space expresses variable grained MIMD parallelism, is modular, strictly typed, and deterministic. Barring operations associated with memory allocation and compilation, modules cannot access global variables, and are referentially transparent. At a high level of abstraction, modules exhibit a small, sequential state transition system, aiding verification. Space deals with communication, scheduling, and resource contention issues in parallel computing, by resolving them explicitly in an incremental manner, module by module, whilst ascending the ladder of abstraction. Whilst the Synchronic A-Ram model was inspired by linguistic considerations, it is also put forward as a formal model for reconfigurable digital circuits. A programming environment has been developed, that inco...

  9. Pursuit and Synchronization in Hydrodynamic Dipoles

    CERN Document Server

    Kanso, Eva

    2015-01-01

    We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.

  10. Control and Synchronization of Neuron Ensembles

    CERN Document Server

    Li, Jr-Shin; Ruths, Justin

    2011-01-01

    Synchronization of oscillations is a phenomenon prevalent in natural, social, and engineering systems. Controlling synchronization of oscillating systems is motivated by a wide range of applications from neurological treatment of Parkinson's disease to the design of neurocomputers. In this article, we study the control of an ensemble of uncoupled neuron oscillators described by phase models. We examine controllability of such a neuron ensemble for various phase models and, furthermore, study the related optimal control problems. In particular, by employing Pontryagin's maximum principle, we analytically derive optimal controls for spiking single- and two-neuron systems, and analyze the applicability of the latter to an ensemble system. Finally, we present a robust computational method for optimal control of spiking neurons based on pseudospectral approximations. The methodology developed here is universal to the control of general nonlinear phase oscillators.

  11. Synchronization learning of coupled chaotic maps

    OpenAIRE

    Moyano, Luis G.; Abramson, Guillermo; Zanette, Damian H.

    2000-01-01

    We study the dynamics of an ensemble of globally coupled chaotic logistic maps under the action of a learning algorithm aimed at driving the system from incoherent collective evolution to a state of spontaneous full synchronization. Numerical calculations reveal a sharp transition between regimes of unsuccessful and successful learning as the algorithm stiffness grows. In the regime of successful learning, an optimal value of the stiffness is found for which the learning time is minimal.

  12. Spectral Motion Synchronization in SE(3)

    OpenAIRE

    Arrigoni, Federica; Fusiello, Andrea; Rossi, Beatrice

    2015-01-01

    This paper addresses the problem of motion synchronization (or averaging) and describes a simple, closed-form solution based on a spectral decomposition, which does not consider rotation and translation separately but works straight in SE(3), the manifold of rigid motions. Besides its theoretical interest, being the first closed form solution in SE(3), experimental results show that it compares favourably with the state of the art both in terms of precision and speed.

  13. Le produit synchrone des automates (max,+)

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Lahaye, S.; Boimond, J.-L.

    Paris: Lavoisier, 2009 - (Roux, O.; Lime, D.), s. 1033-1047 ISBN 2-7462-2601-4. [7ième Colloque Francophone sur la Modélisation des Systèmes. Nantes (FR), 16.11.2009-18.11.2009] Grant ostatní: EU Projekt(XE) EU. ICT .DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : (max,+) automata * synchronous product * parallelism Subject RIV: BA - General Mathematics

  14. Synchronous counting and computational algorithm design

    OpenAIRE

    Dolev, Danny; Korhonen, Janne H.; Lenzen, Christoph; Rybicki, Joel; Suomela, Jukka

    2013-01-01

    Consider a complete communication network on $n$ nodes, each of which is a state machine. In synchronous 2-counting, the nodes receive a common clock pulse and they have to agree on which pulses are "odd" and which are "even". We require that the solution is self-stabilising (reaching the correct operation from any initial state) and it tolerates $f$ Byzantine failures (nodes that send arbitrary misinformation). Prior algorithms are expensive to implement in hardware: they require a source of...

  15. Data Models’ Synchronization in MUDRlite EHR

    Czech Academy of Sciences Publication Activity Database

    Nagy, Miroslav

    Praha: Ústav informatiky AV ČR & MATFYZPRESS, 2006 - (Hakl, F.), s. 72-77 ISBN 80-86732-87-8. [Doktorandský den '06. Monínec (CZ), 20.09.2006-22.10.2006] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : electronic health record * synchronization of data models * MUDRlite EHR Subject RIV: BD - Theory of Information

  16. Primitives for Contract-based Synchronization

    Directory of Open Access Journals (Sweden)

    Massimo Bartoletti

    2010-10-01

    Full Text Available We investigate how contracts can be used to regulate the interaction between processes. To do that, we study a variant of the concurrent constraints calculus presented in [1], featuring primitives for multi-party synchronization via contracts. We proceed in two directions. First, we exploit our primitives to model some contract-based interactions. Then, we discuss how several models for concurrency can be expressed through our primitives. In particular, we encode the pi-calculus and graph rewriting.

  17. Thalamocortical synchronization and cognition: implications for schizophrenia?

    OpenAIRE

    Uhlhaas, Peter J.; Roux, Frederic; Singer, Wolf

    2013-01-01

    Cognitive deficits are a core dysfunction in schizophrenia. In this issue of Neuron, Parnaudeau et al. (2013) investigated synchronization in thalamocortical pathways in an animal model to address the disconnection between brain regions as a mechanism for working memory impairments in the disorder.implicated dysfunctional neural oscillations in the explanation of cognitive deficits and certain clinical symptoms of schizophrenia. Specifically, we will focus on findings that have examined neura...

  18. Synchronized flutter of two slender flags

    OpenAIRE

    Mougel, Jerome; Doare, Olivier; Michelin, Sebastien

    2016-01-01

    The interactions and synchronization of two parallel and slender flags in a uniform axial flow are studied in the present paper by generalizing Lighthill's Elongated Body Theory (EBT) and Lighthill's Large Amplitude Elongated Body Theory (LAEBT) to account for the hydrodynamic coupling between flags. The proposed method consists in two successive steps, namely the reconstruction of the flow created by a flapping flag within the LAEBT framework and the computation of the fluid force generated ...

  19. Electro-hydrodynamic synchronization of piezoelectric flags

    OpenAIRE

    Xia, Yifan; Doare, Olivier; Michelin, Sebastien

    2016-01-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynam...

  20. Reversible thyristor converters of brushless synchronous compensators

    OpenAIRE

    А.М. Galynovskiy; E.М.Dubchak; E.А. Lenskaya

    2013-01-01

    Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.

  1. Dobutamine Stress Echocardiography and Tissue Synchronization Imaging

    OpenAIRE

    Tas, Hakan; Gundogdu, Fuat; Gurlertop, Yekta; Karakelleoglu, Sule

    2008-01-01

    Dobutamine stress echocardiography has emerged as a reliable method for the diagnosis of coronary artery disease and the management of its treatment. Several studies have shown that that this technique works with 80–85% accuracy in comparison with other imaging methods. There are few studies aimed at developing the clinical utility of dobutamine stress echocardiography for the evaluation of normal and abnormal segments that result from dobutamine stress with Tissue Synchronization Imaging.

  2. The Timing Synchronization System at Jefferson Lab

    OpenAIRE

    Keesee, M.; Dickson, R.; Flood, R.; Lebedev, V.

    2001-01-01

    This paper presents the requirements and design of a Timing Synchronization System (TSS) for the Continuous Electron Beam Accelerator Facility (CEBAF) control system at Thomas Jefferson National Accelerator Facility. A clock module has been designed which resides in a VME crate. The clock module can be a communications master or a slave depending on its configuration, which is software and jumper selectable. As a master, the clock module sends out messages in response to an external synchroni...

  3. Symmetry breaking and synchronization at small scales

    OpenAIRE

    Elfring, Gwynn J.

    2012-01-01

    This thesis is devoted to the theoretical description of two experimentally observed phenomena which occur at small scales. We first address the synchronization of swimming microorganisms. Motile microorganisms swim in a fluid regime where inertia is unimportant and viscous stresses dominate. In this limit the flow field due to a swimmer affects the motility of nearby cells, a fact which is biologically important as microorganisms such as spermatozoa are often found in high-density suspension...

  4. ESTIMATION OF COMPETITIVE ACTIVITY IN SYNCHRONIZED SWIMMING

    OpenAIRE

    Shul'ga L.M.; Rudkovskaya T.I.

    2013-01-01

    Aim – is to develop the approach to technical complexity estimation of free routine composition in synchronized swimming. Were analyzed and considered free routine compositions of the strongest swimmers in European and World Championships during the period under study (2008-2011). In the research took part 32 qualified athletes different ages. Were determined the options of the constructed of free program and location the combination saturation in those programs. Were established complicated ...

  5. Synchronization Dynamics of Coupled Chemical Oscillators

    Science.gov (United States)

    Tompkins, Nathan

    The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization

  6. Test de logiciels synchrones avec la PLC

    OpenAIRE

    Seljimi, Besnik

    2009-01-01

    This work deals with functional, specification-based and fully automated testing of synchronous software. We propose an extension of the testing techniques proposed by the Lutess tool in order to consider programs with numerical inputs/outputs. The test data generation is now based on constraint programming techniques.We have redefined the generation methods in order to adapt them in this new context. Thus, we propose, in addition to the random generation with respect to the invariant propert...

  7. WEB Processor for Measuring, Synchronization and Control

    Czech Academy of Sciences Publication Activity Database

    Klán, Petr; Smid, J.

    Las Vegas : CSREA Press, 2007 - (Arabnia, H.; Clincy, G.; Lu, J.; Smid, J.), s. 355-359 ISBN 1-60132-044-2. [ICOMP 2007. Las Vegas (US), 25.06.2007-28.06.2007] R&D Projects: GA MŠk 1N04002; GA MŠk 1P05ME799 Institutional research plan: CEZ:AV0Z10300504 Keywords : webprocessors * network environment * synchronization * measurement * control Subject RIV: JB - Sensors, Measurment, Regulation

  8. Synchronous Counters Implemented in the PLD Devices

    Directory of Open Access Journals (Sweden)

    J. Kolouch

    1999-04-01

    Full Text Available The implementability of synchronous counters in the Programmable Logic Devices (PLD is discussed in this paper. The most commonly used counters are analysed from this point of view. The expressions for their individual bits are given and the number of product terms is derived to allow to estimate the size of the particular counter which can be implemented in the chosen PLD.

  9. Noise Effects on Synchronized Globally Coupled Oscillators

    OpenAIRE

    Moro, Esteban; Sánchez, Angel

    1998-01-01

    The synchronized phase of globally coupled identical nonlinear oscillators subject to noise fluctuations is studied by means of a new analytical approach able to tackle general couplings, nonlinearities, and noise temporal correlations. Our results show that the interplay between coupling and noise modi es the e ective frequency of the system in a nontrivial way. Whereas for linear couplings the e ect of noise is always to increase the e ective frequency, for nonlinear coupling...

  10. Simulation of an HTS Synchronous Superconducting Generator

    OpenAIRE

    Rodriguez Zermeno, Victor Manuel; Abrahamsen, Asger Bech; Mijatovic, Nenad; Sørensen, Mads Peter; Jensen, Bogi Bech; Pedersen, Niels Falsig

    2011-01-01

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superc...

  11. Argos: an Automaton-Based Synchronous Language

    OpenAIRE

    Maraninchi, Florence; Rémond, Yann

    2001-01-01

    International audience Argos belongs to the family of synchronous languages, designed for programming reactive systems (Lustre, Esterel, Signal, ...). Argos is a set of operators that allow to combine Boolean Mealy machines, in a compositional way. It takes its origin in Statecharts, but with the Argos operators, one can build only a subset of Statecharts, roughly those that do not make use of multi-level arrows. We explain the main motivations for the definition of Argos, and the main dif...

  12. Phase synchronization of instrumental music signals

    Science.gov (United States)

    Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Bhattacharya, D. K.

    2014-06-01

    Signal analysis is one of the finest scientific techniques in communication theory. Some quantitative and qualitative measures describe the pattern of a music signal, vary from one to another. Same musical recital, when played by different instrumentalists, generates different types of music patterns. The reason behind various patterns is the psycho-acoustic measures - Dynamics, Timber, Tonality and Rhythm, varies in each time. However, the psycho-acoustic study of the music signals does not reveal any idea about the similarity between the signals. For such cases, study of synchronization of long-term nonlinear dynamics may provide effective results. In this context, phase synchronization (PS) is one of the measures to show synchronization between two non-identical signals. In fact, it is very critical to investigate any other kind of synchronization for experimental condition, because those are completely non identical signals. Also, there exists equivalence between the phases and the distances of the diagonal line in Recurrence plot (RP) of the signals, which is quantifiable by the recurrence quantification measure τ-recurrence rate. This paper considers two nonlinear music signals based on same raga played by two eminent sitar instrumentalists as two non-identical sources. The psycho-acoustic study shows how the Dynamics, Timber, Tonality and Rhythm vary for the two music signals. Then, long term analysis in the form of phase space reconstruction is performed, which reveals the chaotic phase spaces for both the signals. From the RP of both the phase spaces, τ-recurrence rate is calculated. Finally by the correlation of normalized tau-recurrence rate of their 3D phase spaces and the PS of the two music signals has been established. The numerical results well support the analysis.

  13. Effects of Mismatched Parameter on Chaotic Synchronization

    Institute of Scientific and Technical Information of China (English)

    PENGJiang-hua; FANGJin-qing

    2003-01-01

    Chaos-based security communication has become one of the most interesting hot subjects for research of chaotic theory in real world since. In recent years, secure communication via synchronized chaos has been intensely studied. However, in practical application it is difficult to construct two complete identical chaotic systems since there are many reasons to induce parameter mismatch between two systems (response system and drive system).

  14. Bilateral synchronous plasmacytoma of the testis.

    Science.gov (United States)

    Narayanan, Geetha; Joseph, Rona; Soman, Lali V

    2016-04-01

    Extramedullary plasmacytoma (EMP) is usually seen in the head and neck regions and in the upper respiratory, gastrointestinal, and central nervous systems. Testis is a rare site for EMP, and bilateral synchronous testicular plasmacytoma occurring as an isolated event at initial presentation has been reported only once previously. We present herein the second such report in a 70-year-old man who underwent bilateral orchidectomy. PMID:27034568

  15. Reversible thyristor converters of brushless synchronous compensators

    Directory of Open Access Journals (Sweden)

    А.М.Galynovskiy

    2013-12-01

    Full Text Available Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.

  16. Primitives for Contract-based Synchronization

    CERN Document Server

    Bartoletti, Massimo; 10.4204/EPTCS.38.8

    2010-01-01

    We investigate how contracts can be used to regulate the interaction between processes. To do that, we study a variant of the concurrent constraints calculus presented in [1], featuring primitives for multi-party synchronization via contracts. We proceed in two directions. First, we exploit our primitives to model some contract-based interactions. Then, we discuss how several models for concurrency can be expressed through our primitives. In particular, we encode the pi-calculus and graph rewriting.

  17. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  18. Synchronization in multicell systems exhibiting dynamic plasticity

    Indian Academy of Sciences (India)

    C Suguna; Somdatta Sinha

    2008-08-01

    Collective behaviour in multicell systems arises from exchange of chemicals/signals between cells and may be different from their intrinsic behaviour. These chemicals are products of regulated networks of biochemical pathways that underlie cellular functions, and can exhibit a variety of dynamics arising from the non-linearity of the reaction processes. We have addressed the emergent synchronization properties of a ring of cells, diffusively coupled by the end product of an intracellular model biochemical pathway exhibiting non-robust birhythmic behaviour. The aim is to examine the role of intercellular interaction in stabilizing the non-robust dynamics in the emergent collective behaviour in the ring of cells. We show that, irrespective of the inherent frequencies of individual cells, depending on the coupling strength, the collective behaviour does synchronize to only one type of oscillations above a threshold number of cells. Using two perturbation analyses, we also show that this emergent synchronized dynamical state is fairly robust under external perturbations. Thus, the inherent plasticity in the oscillatory phenotypes in these model cells may get suppressed to exhibit collective dynamics of a single type in a multicell system, but environmental influences can sometimes expose this underlying plasticity in its collective dynamics.

  19. Static Deadlock Detection in MPI Synchronization Communication

    CERN Document Server

    Ming-Xue, Liao; Zhi-Hua, Fan

    2007-01-01

    It is very common to use dynamic methods to detect deadlocks in MPI programs for the reason that static methods have some restrictions. To guarantee high reliability of some important MPI-based application software, a model of MPI synchronization communication is abstracted and a type of static method is devised to examine deadlocks in such modes. The model has three forms with different complexity: sequential model, single-loop model and nested-loop model. Sequential model is a base for all models. Single-loop model must be treated with a special type of equation group and nested-loop model extends the methods for the other two models. A standard Java-based software framework originated from these methods is constructed for determining whether MPI programs are free from synchronization communication deadlocks. Our practice shows the software framework is better than those tools using dynamic methods because it can dig out all synchronization communication deadlocks before an MPI-based program goes into runni...

  20. Synchronization of Two Self-Synchronous Vibrating Machines on an Isolation Frame

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2011-01-01

    Full Text Available This paper investigates synchronization of two self-synchronous vibrating machines on an isolation rigid frame. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the disturbance parameters for the angular velocities of the four unbalanced rotors. Then the stability problem of synchronization for the four unbalanced rotors is converted into the stability problems of two generalized systems. One is the generalized system of the angular velocity disturbance parameters for the four unbalanced rotors, and the other is the generalized system of three phase disturbance parameters. The condition of implementing synchronization is that the torque of frequency capture between each pair of the unbalanced rotors on a vibrating machine is greater than the absolute values of the output electromagnetic torque difference between each pair of motors, and that the torque of frequency capture between the two vibrating machines is greater than the absolute value of the output electromagnetic torque difference between the two pairs of motors on the two vibrating machines. The stability condition of synchronization of the two vibrating machines is that the inertia coupling matrix is definite positive, and that all the eigenvalues for the generalized system of three phase disturbance parameters have negative real parts. Computer simulations are carried out to verify the results of the theoretical investigation.

  1. Synchronized slice viewing of similar image series

    Science.gov (United States)

    Ali, Sharib; Foncubierta, Antonio; Depeursinge, Adrien; Meriaudeau, Fabrice; Ratib, Osman; Müller, Henning

    2012-02-01

    Comparing several series of images is not always easy as the corresponding slices often need to be selected manually. In times where series contain an ever-increasing number of slices this can mean manual work when moving several series to the corresponding slice. Particularly two situations were identified in this context: (1) patients with a large number of image series over time (such as patients with cancers that are monitored) frequently need to compare the series, for example to compare tumor growth over time. Manually adapting two series is possible but with four or more series this can mean loosing time. Having automatically the closest slice by comparing visual similarity also in older series with differing slice thickness and inter slice distance can save time and synchronize the viewing instantly. (2) analyzing visually similar image series of several patients can profit from being viewed in a synchronized way to compare the cases, so when sliding through the slices in one volume, the corresponding slices in the other volumes are shown. This application could be employed after content-based 3D image retrieval has found similar series, for example. Synchronized viewing can help finding or confirming the most relevant cases quickly. To allow for synchronized viewing of several image volumes, the test image series are first registered applying affine transformation for the global registration of images followed by diffeomorphic image registration. Then corresponding slices in the two volumes are estimated based on a visual similarity. Once the registration is finished, the user can subsequently move inside the slices of one volume (reference volume) and can view the corresponding slices in the other volumes. These corresponding slices are obtained after a correspondence match in the registration procedure. These volumes are synchronized in that the slice closest to the original reference volume is shown even when the slice thicknesses or inter slice

  2. A Spatiotemporal-Chaos-Based Cryptosystem Taking Advantage of Both Synchronous and Self-Synchronizing Schemes

    Science.gov (United States)

    Lü, Hua-Ping; Wang, Shi-Hong; Li, Xiao-Wen; Tang, Guo-Ning; Kuang, Jin-Yu; Ye, Wei-Ping; Hu, Gang

    2004-06-01

    Two-dimensional one-way coupled map lattices are used for cryptography where multiple space units produce chaotic outputs in parallel. One of the outputs plays the role of driving for synchronization of the decryption system while the others perform the function of information encoding. With this separation of functions the receiver can establish a self-checking and self-correction mechanism, and enjoys the advantages of both synchronous and self-synchronizing schemes. A comparison between the present system with the system of advanced encryption standard (AES) is presented in the aspect of channel noise influence. Numerical investigations show that our system is much stronger than AES against channel noise perturbations, and thus can be better used for secure communications with large channel noise.

  3. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    Energy Technology Data Exchange (ETDEWEB)

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  4. Synchronicity, Instant Messaging and Performance among Financial Traders

    CERN Document Server

    Saavedra, Serguei; Uzzi, Brian; 10.1073/pnas.1018462108

    2011-01-01

    Successful animal systems often manage risk through synchronous behavior that spontaneously arises without leadership. In critical human systems facing risk, such as financial markets or military operations, our understanding of the benefits associated to synchronicity is nascent but promising. Building on previous work illuminating commonalities between ecological and human systems, we compare the activity patterns of individual financial traders with the simultaneous activity of other traders---an individual and spontaneous characteristic we call synchronous trading. Additionally, we examine the association of synchronous trading with individual performance and communication patterns. Analyzing empirical data on day traders' second-to-second trading and instant messaging, we find that the higher the traders' synchronous trading, the less likely they lose money at the end of the day. We also find that the daily instant messaging patterns of traders are closely associated with their level of synchronous tradi...

  5. Precise time frequency synchronization technology for bistatic radar

    Institute of Scientific and Technical Information of China (English)

    Huang Yulin; Yang Jianyu; Wu Junjie; Xiong Jintao

    2008-01-01

    A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented.The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization precision and keep loop locking.A very high time synchronization precision is achieved.Using the modified 1PPS to discipline the local OCXO,the reference frequency signal achieves both high long term stability (LTS) and short term stability (STS) properties.An algorithm,named phase abrupt change CFAR is presented to restrain the 1PPS phase abrupt change and keep loop locking.The experimental results indicate that this time and frequency synchronization method is effective and the time synchronization precision of the synchronization system can be improved from ±100 ns to ±25 ns.In addition,the phase noise is improved to 20 dB.

  6. Synchronized control of spiral CT scan for security inspection device

    International Nuclear Information System (INIS)

    In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)

  7. A three-sphere swimmer for flagellar synchronization

    Science.gov (United States)

    Polotzek, Katja; Friedrich, Benjamin M.

    2013-04-01

    In a recent letter (Friedrich et al 2012 Phys. Rev. Lett. 109 138102), a minimal model swimmer has been proposed that propels itself at low Reynolds numbers by the revolving motion of a pair of spheres. The motion of the two spheres can synchronize by virtue of a hydrodynamic coupling that depends on the motion of the swimmer, but is rather independent of direct hydrodynamic interactions. This novel synchronization mechanism could account for the synchronization of a pair of flagella, e.g. in the green algae Chlamydomonas. In this paper, we discuss in detail how swimming and synchronization depend on the geometry of the model swimmer and compute the swimmer design for optimal synchronization. Our analysis highlights the role of broken symmetries in swimming and synchronization.

  8. A three-sphere swimmer for flagellar synchronization

    International Nuclear Information System (INIS)

    In a recent letter (Friedrich et al 2012 Phys. Rev. Lett. 109 138102), a minimal model swimmer has been proposed that propels itself at low Reynolds numbers by the revolving motion of a pair of spheres. The motion of the two spheres can synchronize by virtue of a hydrodynamic coupling that depends on the motion of the swimmer, but is rather independent of direct hydrodynamic interactions. This novel synchronization mechanism could account for the synchronization of a pair of flagella, e.g. in the green algae Chlamydomonas. In this paper, we discuss in detail how swimming and synchronization depend on the geometry of the model swimmer and compute the swimmer design for optimal synchronization. Our analysis highlights the role of broken symmetries in swimming and synchronization. (paper)

  9. Phase and Complete Synchronizations in Time-Delay Systems

    Science.gov (United States)

    Senthilkumar, D. V.; Manju Shrii, M.; Kurths, J.

    2013-01-01

    Synchronization is a fundamental nonlinear phenomenon that has been intensively investigated during a couple of decades. Recently, synchronization of time-delay systems with or without delay coupling and even synchronization of low-dimensional dynamical systems described by ordinary differential equations and maps with delay coupling have become an active area of research in view of its potential applications. In this article, we provide an overview of our recent results on phase synchronization in time-delay systems, which usually exhibits hyperchaotic attractors with complex topological properties, noise-enhanced phase and noise-induced complete synchronizations in time-delay systems. Further, we demonstrate the phenomena of delay-enhanced and delay-induced stable synchronous chaos in a delay coupled network of time continuous dynamical system using the framework of master stability formalism (MSF) for the first time.

  10. Clock Auto-synchronizing Method for BES III ETOF Upgrade

    CERN Document Server

    Si-Yu, Wang; Shu-Bin, Liu; Qi, An

    2015-01-01

    An automatic clock synchronizing method implemented in field programmable gate array (FPGA) is proposed in this paper. It is developed for the clock system which will be applied in the end-cap time of flight (ETOF) upgrade of the Beijing Spectrometer (BESIII). In this design, an FPGA is used to automatically monitor the synchronization circuit and deal with signals coming from external clock synchronization circuit. By testing different delay time of the detection signal and analyzing state signals returned, the synchronization windows will be found automatically in FPGA. The new clock system not only retains low clock jitter which is less than 20ps root mean square (RMS), but also demonstrates automatic synchronization to the beam bunches. So far, the clock auto-synchronizing function has been working successfully under a series of tests. It will greatly simplify the system initialization and maintenance in the future.

  11. Synchronization transition in gap-junction-coupled leech neurons

    Science.gov (United States)

    Wang, Qingyun; Duan, Zhisheng; Feng, Zhaosheng; Chen, Guanrong; Lu, Qishao

    2008-07-01

    Real neurons can exhibit various types of firings including tonic spiking, bursting as well as silent state, which are frequently observed in neuronal electrophysiological experiments. More interestingly, it is found that neurons can demonstrate the co-existing mode of stable tonic spiking and bursting, which depends on initial conditions. In this paper, synchronization in gap-junction-coupled neurons with co-existing attractors of spiking and bursting firings is investigated as the coupling strength gets increased. Synchronization transitions can be identified by means of the bifurcation diagram and the correlation coefficient. It is illustrated that the coupled neurons can exhibit different types of synchronization transitions between spiking and bursting when the coupling strength increases. In the course of synchronization transitions, an intermittent synchronization can be observed. These results may be instructive to understand synchronization transitions in neuronal systems.

  12. Synchronization of hypernetworks of coupled dynamical systems

    International Nuclear Information System (INIS)

    We consider the synchronization of coupled dynamical systems when different types of interactions are simultaneously present. We assume that a set of dynamical systems is coupled through the connections of two or more distinct networks (each of which corresponds to a distinct type of interaction), and we refer to such a system as a dynamical hypernetwork. Applications include neural networks made up of both electrical gap junctions and chemical synapses, the coordinated motion of shoals of fish communicating through both vision and flow sensing, and hypernetworks of coupled chaotic oscillators. We first analyze the case of a hypernetwork made up of m = 2 networks. We look for the necessary and sufficient conditions for synchronization. We attempt to reduce the linear stability problem to a master stability function (MSF) form, i.e. decoupling the effects of the coupling functions from the structure of the networks. Unfortunately, we are unable to obtain a reduction in an MSF form for the general case. However, we show that such a reduction is possible in three cases of interest: (i) the Laplacian matrices associated with the two networks commute; (ii) one of the two networks is unweighted and fully connected; and (iii) one of the two networks is such that the coupling strength from node i to node j is a function of j but not of i. Furthermore, we define a class of networks such that if either one of the two coupling networks belongs to this class, the reduction can be obtained independently of the other network. As an example of interest, we study synchronization of a neural hypernetwork for which the connections can be either chemical synapses or electrical gap junctions. We propose a generalization of our stability results to the case of hypernetworks formed of m ⩾ 2 networks. (paper)

  13. Radiosensitivity of synchronized Yoshida sarcoma cells

    International Nuclear Information System (INIS)

    Yoshida sarcoma cells were synchronized in vitro, and the cultures were irradiated with the Stabilipan pendulum unit under deep X-ray therapy conditions. Cellular proliferation after irradiation was measured in the cell culture and, after i.p. injection of the cells, in mice. The growth of unsynchronized cultures was inhibited by irradiation, depending on the radiation dose; the LD50 was 380 rad in vivo and 480 rad in vitro. In further investigations, the cultures were irradiated with 150, 300 and 450 rad, and the mitotic behaviour, the rates of proliferation, the incorporation of 3H-thymidine into DNA and of 14C-leucine into cell protein were measured. The mitotic index of unsynchronized cells decreases as a function of the radiation dose, starting 2 h after irradiation and with a peak after periods of different length. Incorporation into DNA of 3H-thymidine is inhibited by 20 to 40%, depending on the radiation dose. Incorporation into the cell proteins of 3H thymidine is inhibited by 10 to 30%, depending on the radiation dose. Synchronized cells were irradiated in the G1/S, S, G2 and G1 phases. As regards incorporation of 3H-thymidine and 14C-lencine and the mitotic index, there was no difference between synchronized cells and unsynchronized control cultures. However, in cultures irradiated in the G2 phase, growth was significantly inhibited in vivo 48 h later. This distinction between cells irradiated in the G2 phase and cells irradiated in other phases was blurred when the cells were cultivated for more than 72 h after irradiation. The higher radiosensitivity of G2 cells can be explained as being due to delayed cell division and does not suggest increased radiosensitivity of this phase. (orig./MG)

  14. Electron cloud observations through synchronous phase measurements

    CERN Document Server

    Esteban Müller, J F; Mastoridis, T; Papotti, G; Shaposhnikova, E; Valuch, D

    2012-01-01

    The electron cloud in vacuum pipes of accelerators of positively charged particle beams causes a beam energy loss which could be estimated from the synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns bunch spacing in the LHC for some fills in 2010 and 2011 show that the average energy loss depends on the total beam intensity in the ring. Later measurements during the scrubbing run with 50 ns beams show the reduction of the electron cloud due to scrubbing. Finally, measurements of the individual bunch phase give us information about the electron cloud build-up inside the batch and from batch to batch.

  15. Synchronous Rectovaginal, Urinary Bladder, and Pulmonary Endometriosis

    OpenAIRE

    Hilaris, Georgios E.; Payne, Christopher K.; Osias, Joelle; Cannon, Walter; Nezhat, Camran R.

    2005-01-01

    Background: Extragenital endometriosis is an uncommon condition that can affect almost any organ system and tissue in the human body. Disease involving multiple distant sites is extremely uncommon. Methods: We report a rare case of synchronous rectovaginal, urinary bladder, and pulmonary endometriosis. We performed a Medline literature search using keywords “endometriosis,” “rectovaginal,” “pulmonary,” “bladder,” “ureteral,” “bowel,” “extrapelvic,” and “extragenital” and were unable to find a...

  16. Synchronous composition of interval weighted automata

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Lahaye, S.; Boimond, J.-L.

    Berlin: The International Federation of Automatic Control, 2010 - (Raisch, J.; Giua, A.; Lafortune, S.; Moor, T.), s. 328-333 ISBN 978-3-902661-79-1. [10th International Workshop on Discrete Event Systems. Berlin (DE), 29.08.2010-01.09.2010] Grant ostatní: EU Projekt(XE) EU. ICT .DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : timed discrete-event systems * product interval automata * T-time Petri nets * synchronous composition Subject RIV: BA - General Mathematics http://www.ifac-papersonline.net/Detailed/42947.html

  17. Synchronization Properties of Slow Cortical Oscillations

    Science.gov (United States)

    Takekawa, T.; Aoyagi, T.; Fukai, T.

    During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.

  18. AN OPTIMIZED GLOBAL SYNCHRONIZATION ON SDDCN

    Directory of Open Access Journals (Sweden)

    M.SHARANYA

    2010-12-01

    Full Text Available The complex networks have been gaining increasing research attention because of their potential applications in many real-worldsystems from a variety of fields such as biology, social systems, linguistic networks, and technological systems. In this paper, the problem of stochastic synchronization analysis is investigated for a new array of coupled discrete time stochastic complex networks with randomly occurred nonlinearities (RONs and time delays. The discrete-time complex networks under consideration are subject to: 1 stochastic nonlinearities that occur according to the Bernoulli distributed white noise sequences; 2 stochastic disturbances that enter the coupling term, the delayed coupling term as well as the overall network; and 3 time delays that include both the discrete and distributed ones. Note that the newly introduced RONsand the multiple stochastic disturbances can better reflect the dynamical behaviors of coupled complex networks whose information transmission process is affected by a noisy environment. By constructing a novel Lyapunov-like matrix functional, the idea of delay fractioning is applied to deal with the addressed synchronization analysis problem. By employing a combination of the linear matrix inequality (LMI techniques, thefree-weighting matrix method and stochastic analysis theories, several delay-dependent sufficient conditions are obtained which ensure the asymptotic synchronization in the mean square sense for the discrete-time stochastic complex networks with time delays. The criteria derived are characterized in terms of LMIs whose solution can be solved by utilizing the standard numerical software. While these solvers are significantly faster than classical convex optimization algorithms, it should be kept in mind that the complexity of LMI computations remains higher than that of solving, say, a Riccati equation. For instance, problems with a thousand design variables typically take over an hour on today

  19. Improved Gene Targeting through Cell Cycle Synchronization.

    Directory of Open Access Journals (Sweden)

    Vasiliki Tsakraklides

    Full Text Available Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.

  20. Synchronous Fibrolamellar Hepatocellular Carcinoma and Auricular Myxoma

    Science.gov (United States)

    González-Cantú, Yessica M.; Rodriguez-Padilla, Cristina; Tena-Suck, Martha Lilia; García de la Fuente, Alberto; Mejía-Bañuelos, Rosa María; Díaz Mendoza, Raymundo; Quintanilla-Garza, Samuel; Batisda-Acuña, Yolaester

    2015-01-01

    Synchronic occurrence of benign and malignant tumors is extremely rare. Fibrolamellar hepatocellular carcinoma represents 1% to 2% of all hepatocarcinomas, while myxomas represent about half of all the cases of primary tumors of the heart. We present the case of a 53-year-old woman with a left atrial myxoma that was surgically removed. Several weeks later, the patient returned to the hospital with abdominal pain. CT scan showed a mass in the left lobe of the liver that was resected and diagnosed as fibrolamellar hepatocellular carcinoma. As of this writing, the patient is healthy. PMID:26509093

  1. Synchronized ion acceleration by ultraintense slow light

    CERN Document Server

    Brantov, A V; Kovalev, V F; Bychenkov, V Yu

    2015-01-01

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D PIC simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.

  2. Synchronized Ion Acceleration by Ultraintense Slow Light

    Science.gov (United States)

    Brantov, A. V.; Govras, E. A.; Kovalev, V. F.; Bychenkov, V. Yu.

    2016-02-01

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.

  3. Lorentz gauge quantization in synchronous coordinates

    CERN Document Server

    Garner, Christopher

    2016-01-01

    It has been shown that the Gupta-Bleuler method of quantization can be used to impose the Lorentz gauge condition in static space-times but not in cosmological space-times. This implies that the Gupta-Bleuler approach fails in general in non-static space-times. More recently, however, the Dirac method of quantizing constrained dynamical systems has been successfully employed to impose the Lorentz gauge in conformally flat space-times. In this paper we generalize this result by using Dirac's method to impose the Lorentz gauge in a general space-time region where the metric is expressed in synchronous coordinates.

  4. Secure communication by generalized chaotic synchronization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chaotic communication is a rather new and active field of research. Although it is expected to have promising advantages,some investigators provide evidences that chaotic communication is not safety. This letter provides a new chaotic secure communi-cation scheme based on a generalized synchronization theory of coupled system. The secret message hidden in the chaotic sourcesignal generated via the scheme is very difficult to be unmasked by so-called nonlinear dynamic forecasting technique. One examplefor Internet communications was presented to illustrate the security of our scheme.

  5. Regional business cycle synchronization through expectations

    Science.gov (United States)

    Onozaki, Tamotsu; Yanagita, Tatsuo; Kaizoji, Taisei; Toyabe, Kazutaka

    2007-09-01

    This paper provides an example in which regional business cycles may synchronize via producers’ expectations, even though there is no interregional trade, by means of a system of globally coupled, noninvertible maps. We concentrate on the dependence of the dynamics on a parameter η which denotes the inverse of price elasticity of demand. Simulation results show that several phases (the short transient, the complete asynchronous, the long transient and the intermediate transient) appear one after another as η increases. In the long transient phase, the intermittent clustering process with a long chaotic transient appears repeatedly.

  6. Method for emulation of synchronous machine

    DEFF Research Database (Denmark)

    2011-01-01

    electronic converters for stabilizing the utility grid during transient conditions and for providing similar stability mechanisms that are inherently present in electric synchronous generators while maintaining the possibility for fast and decoupled following of set points for generated active and......The present invention relates to electric energy sources, such as a single wind power turbine or wind power plant, that are interfaced with the utility grid through power electronic converters. In particular, the present invention relates to specific techniques and methodologies for power....../or reactive powers....

  7. Digital synchronous follow-up system

    International Nuclear Information System (INIS)

    This paper describes a synchronous follow-up system whose dynamic phase error is less than or equal to 200, while its steady-state phase error is less than or equal to 20, with a load torque of 5600 g.cm on the shaft of the servomotor. The digital system ensures a range of regulation of 3.10 and a factor of merit of 1200 sec-1 at a tracking speed of 200 rad/sec. This system is especially applicable to the fabrication of superconducting cables during which a high level of accuracy is required in the pitch of the twist applied to the cores of superconducting cables

  8. Static analysis of synchronism deployable antenna

    Institute of Scientific and Technical Information of China (English)

    GUAN Fu-ling; SHOU Jian-jun; HOU Guo-yong; ZHANG Jing-jie

    2006-01-01

    A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This antenna consists oftetrahedral elements from central element. Because there are springs at the ends of some of the rods, spider joints are applied. For analysis purpose, the structure is simplified and modelled by using 2D beam elements that have no bending stiffness. Displacement vectors are defined to include two translational displacements and one torsional displacement. The stiffness matrix derived by this method is relatively simple and well defined. The analysis results generated by using software developed by our research group agreed very well with available test data.

  9. Bioreactor and methods for producing synchronous cells

    Science.gov (United States)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  10. Comparison On Sensorless Control Of Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Liviu KREINDLER

    2002-12-01

    Full Text Available The paper compares two different methods for speed and position estimation in AC permanent magnet synchronous motors vector control applications. The first method implies two observer blocks — one for the speed, and the other for the electrical position, using the voltage equations in the (d,q reference frames. The second method estimates the same variables starting from the calculation of instantaneous reactive power. The tests have proved excellent behaviour in steady state (method 1 as well as in transient state (method 2. The implementation has been made on the 16 bits fixed-point DSP - TMS320F240 from Texas Instruments.

  11. Compromise and Synchronization in Opinion Dynamics

    CERN Document Server

    Pluchino, A; Rapisarda, A; Pluchino, Alessandro; Latora, Vito; Rapisarda, Andrea

    2006-01-01

    In this paper we discuss two interesting models of opinion dynamics. We present first a brief review of the Hegselmann and Krause compromise model in two dimensions, showing that it is possible to simulate the opinion dynamics in the limit of an infinite number of agents by solving numerically a rate equation for a continuum distribution of opinions. Then we discuss the OCR model, which represents an alternative point of view in opinion dynamics and allows to study under which conditions a group of agents with a different natural tendency (rate) to change opinion can find agreement. Within this model, inspired to the Kuramoto model, consensus is viewed as a synchronization process.

  12. The transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.

    to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a...... paper describes how these saddle-node bifurcations arise and how their characteristic cyclic organisation develops. We identify the cycles that are involved in the various saddle-node bifurcations and describe how the formation of multi-layered resonance cycles in the synchronization domain is related...

  13. Projective synchronization of chaotic systems with bidirectional nonlinear coupling

    Indian Academy of Sciences (India)

    Mohammada Ali Khan; Swarup Poria

    2013-09-01

    This paper presents a new scheme for constructing bidirectional nonlinear coupled chaotic systems which synchronize projectively. Conditions necessary for projective synchronization (PS) of two bidirectionally coupled chaotic systems are derived using Lyapunov stability theory. The proposed PS scheme is discussed by taking as examples the so-called unified chaotic model, the Lorenz–Stenflo system and the nonautonomous chaotic Van der Pol oscillator. Numerical simulation results are presented to show the efficiency of the proposed synchronization scheme.

  14. MODE-EMERGENCE IN THE SYNCHRONIZED SAILING OF CAMPHOR BOATS

    OpenAIRE

    SATOSHI NAKATA; YUKIE DOI

    2003-01-01

    The synchronized self-motion of three camphor boats was investigated on a circular water route as a simple example of mode-emergence. When three camphor boats were floated on the surface of water in a circular route in the same direction, various kinds of synchronization could be produced by changing the inherent velocities of the boats. The essential features of synchronization were reproduced by a numerical calculation regarding the distances among three camphor boats, which changed the dri...

  15. Drift Intermittent Synchronization and Controllability in a Simple Model

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; YU Ming-Young

    2005-01-01

    A simple model of three coupled oscillators as an approximation of main modes behaviors in a spatial extended system is proposed. Multi-looping generalized synchronization and drift intermittent lag phase synchronization phenomena are found in this simple model. For a certain of parameters in which chaotic-like intermittent behavior exhibit the amplitudes and phases of three modes are controlled to be synchronized states via coupling them with an external periodic mode.

  16. Adaptive synchronization of Chua's circuits with fully unknown parameters

    International Nuclear Information System (INIS)

    This study addresses adaptive synchronization of the original Chua's circuit and the modified Chua's circuit with x vertical bar x vertical bar when the parameters of the drive system are fully unknown and different with those of the response system. Based on Lyapunov stability theory, the sufficient conditions for the synchronization have been derived theoretically. Numerical simulations are presented to verify that synchronization can be achieved by using this approach

  17. Synchronous motion of two vertically excited planar elastic pendula

    OpenAIRE

    Kapitaniak, Marcin; Perlikowski, Przemyslaw; Kapitaniak, Tomasz

    2012-01-01

    The dynamics of two planar elastic pendula mounted on the horizontally excited platform have been studied. We give evidence that the pendula can exhibit synchronous oscillatory and rotation motion and show that stable in-phase and anti-phase synchronous states always co-exist. The complete bifurcational scenario leading from synchronous to asynchronous motion is shown. We argue that our results are robust as they exist in the wide range of the system parameters.

  18. Synchronization of networks of oscillators with distributed delay coupling

    OpenAIRE

    Kyrychko, Y. N.; Blyuss, K B; Schoell, E.

    2014-01-01

    This paper studies the stability of synchronized states in networks where couplings between nodes are characterized by some distributed time delay, and develops a generalized master stability function approach. Using a generic example of Stuart-Landau oscillators, it is shown how the stability of synchronized solutions in networks with distributed delay coupling can be determined through a semi-analytic computation of Floquet exponents. The analysis of stability of fully synchronized and of c...

  19. Reactive power compensation using a fuzzy logic controlled synchronous motor

    International Nuclear Information System (INIS)

    This paper introduces the use of a fuzzy logic controlled synchronous motor for reactive power compensation. The fuzzy logic controlled synchronous motor can give a very fast response to the reactive power required by the load. Therefore, the over or under compensation and time delay are eliminated in this system. It is concluded that the reactive power compensation system with a fuzzy logic controlled synchronous motor is reliable, sensitive, economical, faster and more efficient than an other one with capacitor groups

  20. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    Science.gov (United States)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.