WorldWideScience

Sample records for cadarache nuclear research

  1. The IRSN Institute of radiation protection and nuclear safety Cadarache Center; L'IRSN Institut de Radioprotection et de Surete Nucleaire Centre de Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The research programs of the IRSN in the Cadarache Center concern the nuclear safety (reactor safety, nuclear fuels behavior during accidents, fires in nuclear installations), the protection and the control of radioactive materials, the human and the environment protection. The programs are presented and discussed. This presentation includes also the regional impact of the Institute at Cadarache (economical impact, relations with the universities and international meetings). (A.L.B.)

  2. Report transparency and nuclear safety 2007 CEA Cadarache; Rapport transparence et securite nucleaire 2007 CEA Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This report presents the activities of the CEA Center of Cadarache for the year 2007. The actions concerning the safety, the radiation protection, the significant events, the release control and the environmental impacts and the wastes stored on the center are discussed. More especially the report discusses the beginning of the RJH reactor construction, the fourth generation reactors research programs, the implementing of la Rotonde the new radioactive wastes management installation, the renovation of the LECA. (A.L.B.)

  3. ITER at Cadarache; ITER a Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)

  4. Results of a large scale neutron spectrometry and dosimetry comparison exercise at the Cadarache moderator assembly

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.J.; Naismith, O.F.; Taylor, G.C. [National Physical Lab., Teddington (United Kingdom); Chartier, J.-L.; Posny, F. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Klein, H. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1997-09-01

    Eurados Working Group 7 recently organised a large-scale comparison of neutron spectrometry and dosimetry measurements at the IPSN/SDOS laboratory of the CEA Cadarache Research Centre in France. A large number of participants took part with a range of instruments including spectrometers, tissue-equivalent proportional counters, personal dosemeters, and survey instruments. The neutron field used for the exercise was a primarily low energy neutron spectrum similar to those which have been measured recently around nuclear facilities. This paper presents the results of the measurements and attempts to draw conclusions about the accuracy attainable with the various devices, their advantages and drawbacks, and potential problems. (author).

  5. Radioactivity and radioprotection: the every day life in a nuclear installation. Press tour at CEA/GRENOBLE 18 november 1999; Radioactivite et radioprotection: la vie quotidienne dans une installation nucleaire. Voyage de presse au Centre CEA/CADARACHE 18 novembre 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    In the framework of the public information, this paper gives a general information on the radioactivity and the radioprotection at the CEA/Cadarache center. A first part is devoted to a presentation of the radioactivity with definitions and radiation effects on the human being and the environment. An other part presents the radioprotection activities and regulations. The last part deals with specific activities of the CEA/Cadarache: the CASCAD installations for spent fuels storage, the LECA Laboratory for the Examination of Active Fuels and a dismantling installation for big irradiated objects. Historical aspects of the CEA/Cadarache are also provided. (A.L.B.)

  6. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  7. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  8. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  9. KROTOS FCI experimental programme at CEA Cadarache: new features and status

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, J.M.; Bullado, Y.; Journeau, C.; Fouquart, P.; Piluso, P.; Sergeant, C.; Magallon, D. [CEA-Cadarache, DTN/STRI/LMA, Bat 708, BP1, 13108 Saint Paul lez Durance cedex (France)

    2005-07-01

    Full text of publication follows: KROTOS facility has been operated by the European Commission at JRC-Ispra for many years until 1999 as part of the FARO/KROTOS programme. The programme had to be stopped at JRC due to new EC priorities, and an agreement was concluded with CEA to transfer the KROTOS facility and know-how to Cadarache to continue investigating the pending FCI issues. By this agreement, CEA became owner of the facility. The main objective of the KROTOS programme at CEA Cadarache is understanding the role of melt properties in steam explosion propagation and energetics and, in particular, steam explosion behaviour of prototypical corium melts. Possible influence of physicochemical processes on explosiveness will also be explored. Actually, analysis of alumina debris produced at Ispra have shown that formation of metastable phases and chemical reaction with water at high temperature may play a significant role in enhancing heat transfer to water in the explosion phase. In order to reach the objective, steam explosion experiments are performed in well characterised conditions for a large spectrum of conditions and melt compositions of interest for both in- and ex-vessel situations. A trigger is applied as a rule. Advanced technology and instrumentation is used to reduce uncertainties on initial conditions and characterise the various phases of an explosion, with emphasis on high energy X-ray cinematography to qualify pre-mixing. This advanced instrumentation will enable the measurement of detailed variables to consolidate the qualification of the FCI codes. The use of high energy X-rays made it necessary to construct a new building to house the facility and its components. The facility should newly become operative early 2005. Main improvements with respect to Ispra concern melt delivery, hydrogen measurement and X-ray imaging. Preliminary studies have demonstrated that identification of the pre-mixture-water interface and coherent melt jet core, and

  10. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  11. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  12. Minimum Nuclear Deterrence Research

    Science.gov (United States)

    2003-05-15

    délivrer une frappe d’ultime avertissement sur des objectifs navals ou terrestres ." The translation is the SAIC author’s. Projet de loi de finances... orbit .”75 As China’s nuclear force posture has changed, so too have the assigned targets. For example, the DF-2 was initially based to target Japan

  13. 25 years Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Harde, R.

    1981-07-01

    On June 12, the Karlsruhe Nuclear Research Centre celebrated its 25th anniversary. The Centre was founded on July 19, 1956. The importance of this institution became apparent by the large number of prominent guests, at the head, the Federal President, Karl Carstens. Minister President Spaeth and the Federal Minister for Research and Technology, von Buelow, appreciated the achievements obtained by this big science centre of nuclear technology. The ceremony held in the State theatre of Baden-Wuerttemberg gave testimony of an impressing confession in favour of nuclear energy. Excerpts from the speech of the Chairman of the Managing Board, Prof. Harde, are quoted.

  14. Nuclear Stewardship Research

    Energy Technology Data Exchange (ETDEWEB)

    C.W. Beausang

    2005-06-10

    The second year of our research program has been marked by significant success and progress. It has also been marked by significant changes both in the personnel and location of the major experimental research program. This report covers the period roughly from August 2004 through May 2005. During this period our research has focused mainly on applying the surrogate reaction technique and the ''ratio'' method to deduce neutron induced fission cross sections on uranium nuclei.

  15. LAMPF: a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies.

  16. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  17. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  18. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  19. Human Factors Research and Nuclear Safety.

    Science.gov (United States)

    Moray, Neville P., Ed.; Huey, Beverly M., Ed.

    The Panel on Human Factors Research Needs in Nuclear Regulatory Research was formed by the National Research Council in response to a request from the Nuclear Regulatory Commission (NRC). The NRC asked the research council to conduct an 18-month study of human factors research needs for the safe operation of nuclear power plants. This report…

  20. Basic Nuclear Physics Research Needs for Nuclear Energy

    Science.gov (United States)

    Hill, Tony

    2008-10-01

    Basic nuclear physics research will play a central role in the development of the future nuclear facilities. Federal requirements for higher efficiencies, lower operating and construction costs, and advanced safeguards can all be impacted by the quality of nuclear data used in the fuel cycle calculations for design and licensing. Uncertainties in the underlying nuclear data propagate to uncertainties in integral and operational parameters, which drive margins and cost. Department of Energy (DOE) programs are underway to help develop the necessary nuclear research infrastructure. The Nuclear Energy office of DOE leads the development of new nuclear energy generation technologies to meet energy and climate change goals and advanced, proliferation resistant nuclear fuel technologies that maximize energy from nuclear fuel, while maintaining and enhancing the national nuclear infrastructure. These activities build on important work started over the last three years to deploy new nuclear plants in the United States by early in the next decade, and to develop advanced, next-generation nuclear technology. In this talk, I will discuss some of the foreseen opportunities and needs for basic nuclear research in nuclear energy.

  1. Gordon Conference on Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei.

  2. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D.; Radulovic, V.; Barbot, L.; Villard, J-F. [Alternative Energies and Atomic Energy Commission, CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, 13108 Saint- Paul-Lez-Durance (France); Zerovnik, G.; Snoj, L. [Reactor Physics Department, Jozef Stefan Institute, SI-1000 Ljubljana (Slovenia); Tarchalski, M.; Pytel, K. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Malouch, F. [Alternative Energies and Atomic Energy Commission - CEA, DEN, DM2S, Saclay, 91191, Gif-sur-Yvette (France)

    2015-07-01

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development at the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to

  3. Influence of high permeability disks in an axisymmetric model of the Cadarache dynamo experiment

    CERN Document Server

    Giesecke, A; Stefani, F; Gerbeth, G; Léorat, J; Herreman, W; Luddens, F; Guermond, J -L

    2011-01-01

    Numerical simulations of the kinematic induction equation are performed on a model configuration of the Cadarache von-K\\'arm\\'an-Sodium dynamo experiment. The effect of a localized axisymmetric distribution of relative permeability {\\mu} that represents soft iron material within the conducting fluid flow is investigated. The critical magnetic Reynolds number Rm^c for dynamo action of the first non-axisymmetric mode roughly scales like Rm^c({\\mu})-Rm^c({\\mu}->infinity) ~ {\\mu}^(-1/2) i.e. the threshold decreases as {\\mu} increases. This scaling law suggests a skin effect mechanism in the soft iron disks. More important with regard to the Cadarache dynamo experiment, we observe a purely toroidal axisymmetric mode localized in the high permeability disks which becomes dominant for large {\\mu}. In this limit, the toroidal mode is close to the onset of dynamo action with a (negative) growth-rate that is rather independent of the magnetic Reynolds number. We qualitatively explain this effect by paramagnetic pumping...

  4. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  5. Nuclear Fusion Fuel Cycle Research Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin [KAERI, Daejeon (Korea, Republic of); Yun, Sei-Hun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants.

  6. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  7. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  8. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  9. Web application for the control and management of radioprotection equipment in the Cadarache centre; Application WEB pour le controle et la gestion des appareils de radioprotection sur le centre de Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-01

    The author describes a web 2-type application which has been developed for the periodic calibration controls of radioprotection equipment in Cadarache. This application aims at offering an easy and immediate and even remote access to information, at selecting information with respect to uses (radioprotection department, administrator, and so on), at securing and safeguarding homogeneous data, at editing control statistics. The different functionalities are briefly presented with their displayed interface

  10. Advanced research workshop: nuclear materials safety

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  11. Inquiry in the public interest, held at Cadarache into the construction of the reactor 'Jules Horowitz' and the problems related to the public dialogue; L'enquete d'utilite publique sur la creation du 'reacteur Jules Horowitz' a Cadarache et la participation locale

    Energy Technology Data Exchange (ETDEWEB)

    Bottiglioni, F

    2007-07-15

    In this paper are presented the main points of the inquiry taken by an official board into the demand of the Cea to create a new research tool, the 'Jules Horowitz Reactor', in its research center of Cadarache. The increasing involvement of the people in the decision-making procedures dealing with important projects is summed up, so as the distinctive features of the different regulations that frame the public participation are stressed. Some improvements are suggested to carry through next inquiries faster and more easily. The participation of the public has been low: only 11 people or associations have left their remarks to the inquiry members despite the large audience that attended the different meetings and debates organized on the issue by the CNDP (national board for public debate)

  12. Nuclear fusion research in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Cheetham, A.D. [Australian National Univ., Canberra, ACT (Australia). Plasma Research Lab

    1997-12-31

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development. 4 refs., 2 tabs., 5 figs.

  13. Introduction of nuclear medicine research in Japan.

    Science.gov (United States)

    Inubushi, Masayuki; Higashi, Tatsuya; Kuji, Ichiei; Sakamoto, Setsu; Tashiro, Manabu; Momose, Mitsuru

    2016-12-01

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan.

  14. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  15. History of Nuclear Fusion Research in Japan

    Science.gov (United States)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  16. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  17. Rapport d'étude : La perception des risques majeurs par les riverains du CEA de Cadarache

    OpenAIRE

    Lopez, Alexia; Régner, Isabelle; Schleyer-Lindenmann, Alexandra

    2015-01-01

    Ce rapport d'étude vient répondre aux interrogations de son commanditaire, la CLI (Commission Local d'Information) du CEA (Commissariat à l'énergie Atomique) de Cadarache. Il s'organise en trois partie : une première partie établit un état des lieux des connaissances des risques majeurs par les habitants. Les risques majeurs officiellement recensés sont : le risque feu de forêt, le risque inondation, le risque sismique, le risque de mouvement de terrain, le risque de rupture de barrage, et le...

  18. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  19. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  20. Inside CERN European Organization for Nuclear Research

    CERN Document Server

    Pol, Andri; Heuer, Rolf

    2013-01-01

    For most people locations that hold a particular importance for the development of our society and for the advancement of science and technology remain hidden from view. CERN, the European Organization for Nuclear Research, is best known for its giant particle accelerator. Here researchers take part in a diverse array of fundamental physical research, in the pursuit of knowledge that will perhaps one dayrevolutionize our understanding of the universe and life on our planet. The Swiss photographer Andri Pol mixed with this multicultural community of researchers and followed their work over an extended period of time. In doing so he created a unique portrait of this fascinating “underworld.” The cutting-edge research is given a human face and the pictures allow us to perceive how in this world of the tiniest particles the biggest connections are searched for. With an essay by Peter Stamm.

  1. French research in the field of nuclear agronomy; Les recherches francaises en agronomie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Guerin De Montgareuil, P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents a survey of the most important work in the field of nuclear agronomy carried out in France since the second international conference, ranging from pure research to the most direct application. As the programmes develop, so to an ever decreasing degree does this differentiation cover the distinction made in the report between the biological radiations effects and the other uses of nuclear techniques. Thus research on agricultural radio-genetics is carried on in two directions: from the theoretical and methodological angle, with comparative studies of the action of various types of radiation, the influence of dose rate and temperature, the action of chemical mutation agents, the production of chimera by gamma irradiation; and on the practical side, leading to the creation of new, hardier or earlier varieties (rice, millet, ground-nuts). Problems of pest destruction (eradication) and the preservation of foodstuffs by irradiation are also tackled by widely varied means and for totally different purposes. One operation consisting of a simple irradiation (moist seeds, potatoes...) will sometimes be associated with original studies of a biochemical or microbiological nature (for example: decomposition of starch, glucide metabolism of irradiated tubers, radiation resistance of yeasts). The nuclear technique side is represented mainly by radioisotopes (carbon 14, phosphorus 32, sulphur 35, calcium 45, potassium 42, copper 64, gold 198) and stable isotopes analysed by mass spectrometer (nitrogen 15, oxygen 18) or by neutron activation (boron 10). The studies mentioned refer to problems on different levels concerning plant physiology, agrology, agricultural entomology and zootechny. Results obtained from measurements of the humidity (neutron thermalization) and density (gamma diffusion) of a soil are also given. Numerous organisations take part in these various research programmes, each according to its speciality: cooperative private enterprise

  2. French research in the field of nuclear agronomy; Les recherches francaises en agronomie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Guerin De Montgareuil, P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents a survey of the most important work in the field of nuclear agronomy carried out in France since the second international conference, ranging from pure research to the most direct application. As the programmes develop, so to an ever decreasing degree does this differentiation cover the distinction made in the report between the biological radiations effects and the other uses of nuclear techniques. Thus research on agricultural radio-genetics is carried on in two directions: from the theoretical and methodological angle, with comparative studies of the action of various types of radiation, the influence of dose rate and temperature, the action of chemical mutation agents, the production of chimera by gamma irradiation; and on the practical side, leading to the creation of new, hardier or earlier varieties (rice, millet, ground-nuts). Problems of pest destruction (eradication) and the preservation of foodstuffs by irradiation are also tackled by widely varied means and for totally different purposes. One operation consisting of a simple irradiation (moist seeds, potatoes...) will sometimes be associated with original studies of a biochemical or microbiological nature (for example: decomposition of starch, glucide metabolism of irradiated tubers, radiation resistance of yeasts). The nuclear technique side is represented mainly by radioisotopes (carbon 14, phosphorus 32, sulphur 35, calcium 45, potassium 42, copper 64, gold 198) and stable isotopes analysed by mass spectrometer (nitrogen 15, oxygen 18) or by neutron activation (boron 10). The studies mentioned refer to problems on different levels concerning plant physiology, agrology, agricultural entomology and zootechny. Results obtained from measurements of the humidity (neutron thermalization) and density (gamma diffusion) of a soil are also given. Numerous organisations take part in these various research programmes, each according to its speciality: cooperative private enterprise

  3. Web software for the control and management of radiation protection devices in the Cadarache site; Application WEB pour le controle et la gestion des appareils de radioprotection sur le centre de Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    Beltritti, F. [CEA Cadarache 13108 St Paul lez Durance Cedex (France)

    2010-07-01

    This series of slides presents how to use a new software dedicated to the management of the periodical controls that have to be performed on the equipment involved in radiation protection. This software is ready to be dispatched on the CEA site of Cadarache. This software gives information on: the device to be controlled, the controls that have to be performed, the procedures to follow to make the test, the equipment necessary for the test particularly the need for radioactive sources, the maintenance of the device, the previous measurements and in the end the device's conformity. An evaluation of the conformity of all the devices present in a building or an area or of a particular type can be easily obtained. (A.C.)

  4. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  5. Current status of nuclear physics research

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Department of Physics and Astronomy, Texas A and M University-Commerce (United States); Hussein, Mahir S., E-mail: hussein@if.usp.br [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil). Dept. de Fisica

    2015-12-15

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as {sup 4}He, {sup 7}Li, {sup 9}Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate

  6. Current Status of Nuclear Physics Research

    Science.gov (United States)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-12-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in

  7. Research plans of heavy element nuclear chemistry in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    Research in nuclear chemistry of heavy elements in JAERI is briefly introduced. Status and future prospects for studies of chemical and nuclear properties of the transactinide elements with the JAERI tandem accelerator are presented. (author)

  8. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  9. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  10. Sheep: The First Large Animal Model in Nuclear Transfer Research

    OpenAIRE

    Loi, Pasqualino; Czernik, Marta; Zacchini, Federica; Iuso, Domenico; Scapolo, Pier Augusto; Ptak, Grazyna

    2013-01-01

    The scope of this article is not to provide an exhaustive review of nuclear transfer research, because many authoritative reviews exist on the biological issues related to somatic and embryonic cell nuclear transfer. We shall instead provide an overview on the work done specifically on sheep and the value of this work on the greater nuclear transfer landscape.

  11. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  12. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  13. The Swiss Institute for Nuclear Research SIN

    CERN Document Server

    Pritzker, Andreas

    2014-01-01

    This book tells the story of the Swiss Institute for Nuclear Research (SIN). The institute was founded in 1968 and became part of the Paul Scherrer Institute (PSI) in 1988. Its founding occurred at a time when physics was generally considered the key discipline for technological and social development. This step was unusual for a small country like Switzerland and showed courage and foresight. Equally unusual were the accomplishments of SIN, compared with similar institutes in the rest of the world, as well as its influence on Swiss, and partially also on international politics of science. That this story is now available in a widely understandable form is due to the efforts of some physicists, who took the initiative as long as contemporary witnesses could still be questioned. As is usually the case, official documents always show just an excerpt of what really happened. An intimate portrayal of people who contributed to success requires personal memories. This text relies on both sources. In addition, the e...

  14. Meteodiffusive Characterization of Algiers' Nuclear Research Reactor

    Directory of Open Access Journals (Sweden)

    Mourad Messaci

    2007-01-01

    Full Text Available In the framework of the environmental impact studies of the nuclear research reactor of Algiers, we will present the work related to the atmospheric dispersion of releases due to the installation in normal operation, which dealt with the assessment of spatial distribution of yearly average values of atmospheric dilution factor. The aim of this work is a characterization of the site in terms of diffusivity, which is basic for the radiological impact evaluation of the reactor. The meteorological statistics result from the National Office of Meteorology and concern 15 years of hourly records. According to the nature and features of these data, a Gaussian-type model with wind direction sectors was used. Values of wind speed at release height were estimated from measurement values at 10 m from ground. For the assessment of vertical dispersion coefficient, we used Briggs' formulas related to a sampling time of one hour. Areas of maximum impact were delimited and points of highest concentration within these zones were identified.

  15. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  16. Bolivia. The new nuclear research center in El Alto

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2016-05-15

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  17. Anti-seismic research on nuclear engineering siting

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Lei NIE; Jijiang LI; Delong WANG; Xiangyu REN

    2006-01-01

    Nuclear engineering belongs to significant project; there is higher requirement on sitings. The study has discussed basic factors of selecting sites, anti-seismic research on sitings including the seismic ground motion, probability methods of seismic hazard analysis as well as interaction about structure and foundation, meanwhile provide the reason for nuclear engineering selecting sites.

  18. Nuclear Safety research in CIEMAT; Quince anos de investigacion en Seguridad Nuclear en el Ciemat

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J.

    2003-07-01

    A review was done on the main activities performed and achievements managed by the Project of Nuclear Safety Research (Department of Nuclear Fission) of Ciemat in the last fifteen years on the areas of: severe accident, advanced reactors and containment analysis. It was emphasised Ciemat's participation in national and international projects, mainly promoted by The Spanish Nuclear Sector, the CSN the OECD, EPRI and the European Union. The experimental and analytical capabilities on reactor nuclear safety set up in Ciemat along this period of time were also described. (Author) 23 refs.

  19. Nuclear research center transformation experience; Experiencia de transformacion de un centro de investigacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, J. L.; Jimenez, J. M.

    2001-07-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  20. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien

    2001-09-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  1. Application Research of Developed Drummed Nuclear Waste Neutron Counting System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The application researches such as variety of factors affecting the measurement, calibrating etc. are need before the drummed nuclear waste neutron counting system (WNC) can be really put into use after installed at the site.

  2. Decommissioning of nuclear facilities at the Nuclear Research Institute Rez plc

    Directory of Open Access Journals (Sweden)

    Podlaha Josef

    2010-01-01

    Full Text Available The Nuclear Research Institute Rez has been a leading institution in all areas of nuclear R&D in the Czech Republic since it was established in 1955. After more than 50 years of activities in the field, there are some environmental liabilities that need to be remedied. The remediation of old environmental liabilities concerning the Nuclear Research Institute is the only ongoing decommissioning project in the Czech Republic. The nature of these environmental liabilities is very specific and requires special remediation procedures. The process begun in 2003 and is expected to be finished by 2014.

  3. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  4. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  5. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  6. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  7. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  8. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C.; Kanyukt, R.; Pongpat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  9. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    Science.gov (United States)

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and

  10. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  11. Advanced Research Workshop on Preparedness for Nuclear and Radiological Threats

    CERN Document Server

    Diamond, David; Nuclear Threats and Security Challenges

    2015-01-01

    With the dissolution of the Soviet Union the nuclear threats facing the world are constantly evolving and have grown more complex since the end of the Cold War. The diversion of complete weapon systems or nuclear material to rogue nations and terrorist organizations has increased. The events of the past years have proved the necessity to reevaluate these threats on a level never before considered.  In recognition that no single country possesses all of the answers to the critical scientific, institutional and legal questions associated with combating nuclear and radiological terrorism, the NATO Advanced Research Workshop on “Preparedness for Nuclear and Radiological Threats” and this proceeding was structured to promote wide-ranging, multi-national exploration of critical technology needs and underlying scientific challenges to reducing the threat of nuclear/radiological terrorism; to illustrate through country-specific presentations how resulting technologies were used in national programs; and to outli...

  12. Progress of experimental research on nuclear safety in NPIC

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Houjun; Zan, Yuanfeng; Peng, Chuanxin; Xi, Zhao; Zhang, Zhen; Wang, Ying; He, Yanqiu; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China)

    2016-05-15

    Two kinds of Generation III commercial nuclear power plants have been developed in CNNC (China National Nuclear Corporation), one is a small modular reactor ACP100 having an equivalent electric power 100 MW, and the other is HPR1000 (once named ACP1000) having an equivalent electric power 1 000 MW. Both NPPs widely adopted the design philosophy of advanced passive safety systems and considered the lessons from Fukushima Daichi nuclear accident. As the backbone of the R and D of ACP100 and HPR1000, NPIC (Nuclear power Institute of China) has finished the engineering verification test of main safety systems, including passive residual heat removal experiments, reactor cavity injection experiments, hydrogen combustion experiments, and passive autocatalytic recombiner experiments. Above experimental work conducted in NPIC and further research plan of nuclear safety are introduced in this paper.

  13. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    Science.gov (United States)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  14. Nuclear emergency preparedness. Final report of the Nordic Nuclear Safety Research Project BOK-1

    DEFF Research Database (Denmark)

    Lauritzen, B.

    2002-01-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, “Nuclear Emergency Preparedness”, was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects:Laboratory measurements and quality assurance (BOK-1.......1); Mobile measurements and measurement strategies (BOK-1.2); Field measurements and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in theNordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project...

  15. Integration of Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, M.; Eggermont, G

    2002-04-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised.

  16. Reaction Rate Parameterization for Nuclear Astrophysics Research

    Science.gov (United States)

    Scott, J. P.; Lingerfelt, E. J.; Smith, M. S.; Hix, W. R.; Bardayan, D. W.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-11-01

    Libraries of thermonuclear reaction rates are used in element synthesis models of a wide variety of astrophysical phenomena, such as exploding stars and the inner workings of our sun. These computationally demanding models are more efficient when libraries, which may contain over 60000 rates and vary by 20 orders of magnitude, have a uniform parameterization for all rates. We have developed an on-line tool, hosted at www.nucastrodata.org, to obtain REACLIB parameters (F.-K. Thielemann et al., Adv. Nucl. Astrophysics 525, 1 (1987)) that represent reaction rates as a function of temperature. This helps to rapidly incorporate the latest nuclear physics results in astrophysics models. The tool uses numerous techniques and algorithms in a modular fashion to improve the quality of the fits to the rates. Features, modules, and additional applications of this tool will be discussed. * Managed by UT-Battelle, LLC, for the U.S. D.O.E. under contract DE-AC05-00OR22725 + Supported by U.S. D.O.E. under Grant No. DE-FG02-96ER40955

  17. Research achievements in Bangladesh agriculture using nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sattar, M.A. [Bangladesh Institute of Nuclear Agriculture, Mymensingh, (Bangladesh)

    1997-10-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN{sub 3}). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using {sup 51}Cr-EDTA and {sup 125}I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come 32 refs., 1 tab.

  18. Basic research on cermet nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshi; Sto, Seichi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Takano, Masahide; Minato, Kazuo; Fukuda, Kosaku

    1998-01-01

    Production of cermet nuclear fuel having fine uranium dioxide (UO{sub 2}) particles dispersed in matrix metal requires basic property data on the compatibility of matrix metal with fission product compounds. It is thermodynamically suggested that, as burnup increases, cesium in oxide fuel reacts with the fuel, other fission products or cladding pipe and produces cesium uranates, cesium molybdate, or cesium chromate in stainless steel cladding pipe. Attempt was made to measure the thermal expansion coefficient and thermal conductivity of cesium uranates (Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}), cesium molybdate (Cs{sub 2}MoO{sub 4}) and cesium chromate (Cs{sub 2}CrO{sub 4}). Thermal expansion was measured by X-ray diffraction and determined by Cohen`s method. Thermal conductivity was obtained by measuring thermal diffusion by laser flash method. The thermal expansion of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} is as low as 1.2% for the former and 1.0% for the latter, up to 1000K. The thermal expansion of Cs{sub 2}MoO{sub 4} is as high as that of Cs{sub 2}CrO{sub 4}, 2.1% for the former and 2.5% for the latter at temperatures from room temperature to 873K. Average thermal expansion in this temperature range is 4.4 x 10{sup -5} K{sup -1} for Cs{sub 2}MoO{sub 4} and 4.2 x 10{sup -5} K{sup -1}. The thermal expansion of Cs{sub 2}CrO{sub 4} is four times higher than that of UO{sub 2} and five times higher than that of Cr{sub 2}O{sub 3}. The thermal conductivity of Cs{sub 2}UO{sub 4} is nearly equal to that of Cs{sub 2}U{sub 2}O{sub 7} in absolute value and temperature dependency. Cs{sub 2}U{sub 2}O{sub 7}, having different thermal conductivity between {alpha} and {beta} phases, shows higher conductivity with {beta} than with {alpha}, about 1/4 of that of UO{sub 2} at 1000K. The thermal conductivity of Cs{sub 2}CrO{sub 4} is nearly equal to that of Cs{sub 2}MoO{sub 4} in absolute value and temperature dependency. (N.H.)

  19. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  20. Nuclear Power Plant Operator Reliability Research Based on Fuzzy Math

    Directory of Open Access Journals (Sweden)

    Fang Xiang

    2011-01-01

    Full Text Available This paper makes use of the concept and theory of fuzzy number in fuzzy mathematics, to research for the response time of operator in accident of Chinese nuclear power plant. Through the quantitative analysis for the performance shape factors (PSFs which influence the response time of operators, the formula of the operator response time is obtained based on the possibilistic fuzzy linear regression model which is used for the first time in this kind of research. The research result shows that the correct research method can be achieved through the analysis of the information from a small sample. This method breaks through the traditional research method and can be used not only for the reference to the safe operation of nuclear power plant, but also in other areas.

  1. The role of research in nuclear regulation: A Korean perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Won-Hyo [Korea Institute of Nuclear Safety, Tajeon (Korea, Republic of)

    1997-01-01

    Korea has carried out a very ambitious nuclear power program since the 1970`s as part of the nation`s industrialization policy. Ever since, Korea has also maintained a strong commitment to nuclear power development as an integral part of the national energy policy which aims at reducing external vulnerability and ensuring against a global fossil fuel shortage. The introduction of nuclear power into Korea has progressed through three stages: the first was a turn-key package supplied by the manufacturer; the second involved a major contractor who was responsible for project management, and design and construction was contracted out, with Korean industry becoming more involved; the third stage has seen Korean industries involved as main contractors based on experience gained from earlier plants. The success of Korea`s nuclear power program depends in large part on how to insure safety. Safety has the highest priority in nuclear energy development. Public acceptance has been the most critical problem faced by the nuclear industry in Korea. The public demands the highest level of safety all through the design, construction, and operation of nuclear power plants. Korea has learned that a nuclear plant designed with well addressed safety, implementation of a well grounded QA program during construction, and operated with a proven record of safety, are the only ways to earn public support. Competent and efficient regulation with a strong safety culture and openness in all issues is the most desirable image for regulators to strive for. Korea established a ten year R & D program to obtain self-reliance in nuclear technology and international competitiveness by the early 2000`s in 1992. It has actively participated in coordinated research programs in safety issues with bodies including the USNRC, AECB of Canada, IAEA, and OECD/NEA.

  2. MYRRHA: A multipurpose nuclear research facility

    Science.gov (United States)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  3. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  4. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. Below is the transcript of his talk.

  5. Research Progress of Nuclear Astrophysics Physics:Study of Key Scientific Problems in Nuclear Synthesis

    Institute of Scientific and Technical Information of China (English)

    GUO; Bing; LIU; Wei-ping; LI; Zhi-hong; WANG; You-bao; HE; Jian-jun; SHI; Jian-rong; TANG; Xiao-dong; YAN; Sheng-quan; SU; Jun; LI; Yun-ju; ZENG; Sheng; LIAN; Gang; BAI; Xi-xiang; CHEN; Yong-shou; PANG; Dan-yang; GU; Jian-zhong; HAN; Zhi-yu; LI; Xin-yue

    2015-01-01

    1 Summary A systematic study of the key scientific problems in nuclear synthesis has been conducted.Significant research achievements from several important subjects such as direct measurement of astrophysical reaction,observation of abundances of elements,studies on decay properties of nuclei and reaction rates of primordial nucleosynthesis have been made utilizing large scientific facilities from China

  6. MYRRHA: A multipurpose nuclear research facility

    Directory of Open Access Journals (Sweden)

    Baeten P.

    2014-01-01

    As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  7. Nuclear Safety Research Department annual progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hoejerup, C.F. [eds.

    1995-03-01

    The report describes the work of the Nuclear Safety Research Department during 1994. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff`s participation in international committees. (au) (1 tab., 12 ills.).

  8. Role of research reactors for nuclear power program in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soentono, S.; Arbie, B. [National Atomic Energy Agency, Batan (Indonesia)

    1994-12-31

    The main objectives of nuclear development program in Indonesia are to master nuclear science and technology, as well as to utilise peaceful uses of nuclear know-how, aiming at stepwisely socioeconomic development. A Triga Mark II, previously of 250 kW, reactor in Bandung has been in operation since 1965 and its design power has been increased to 1000 kW in 1972. Using core grid of the Triga 250 kW, BATAN designed and constructed the Kartini Reactor in Yogyakarta which started its operation in 1979. Both of these Triga reactors have served a wide spectrum of utilisation, such as training of manpower in nuclear engineering as well as radiochemistry, isotope production and beam research activities in solid state physics. In order to support the nuclear power development program in general and to suffice the reactor experiments further, simultaneously meeting the ever increasing demand for radioisotope, the third reactor, a multipurpose reactor of 30 MW called GA. Siwabessy (RSG-GAS) has been in operation since 1987 at Serpong near Jakarta. Each of these reactors has strong cooperation with Universities, namely the Bandung Institute of Technology at Bandung, the Gadjah Mada University at Yogyakarta, and the Indonesia University at Jakarta and has facilitated the man power development required. The role of these reactors, especially the multipurpose GA. Siwabessy reactor, as essential tools in nuclear power program are described including the experience gained during preproject, construction and commissioning, as well as through their operation, maintenance and utilisation.

  9. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Document Server

    2000-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, whose activities are based on the principles of openness for participation to all interested states and of their equal, mutually beneficial collaboration.

  10. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    1999-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, the activities of which are based on the principles of openness for participation to all interested states of their equal, mutually beneficial collaboration.

  11. U.S. Nuclear Regulatory Commission natural analogue research program

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, L.A.; Ott, W.R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.

  12. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  13. An overview of the Nuclear Materials Focus Area research program

    Energy Technology Data Exchange (ETDEWEB)

    ROBERSON,GARY D.; POLANSKY,GARY F.; OSBORNE,KEN K.; RANDALL,VIRGINIA

    2000-02-25

    The Nuclear Material Focus Area (NMFA) is responsible for providing comprehensive needs identification, integration of technology research and development activities, and technology deployment for stabilization, packaging, and interim storage of surplus nuclear materials within the DOE complex. The NMFA was chartered in April 1999 by the Office of Science and Technology (OST), an organizational component of the US Department of Energy's (DOE) Office of Environmental Management (EM). OST manages a national program to conduct basic and applied research, and technology development, demonstration, and deployment assistance that is essential to completing a timely and cost-effective cleanup of the DOE nuclear weapons complex. DOE/EM provides environmental research results, as well as cleanup technologies and systems, to meet high-priority end-user needs, reduce EM's major cost centers and technological risks, and accelerate technology deployments. The NMFA represents the segment of EM that focuses on technological solutions for re-using, transforming, and disposing excess nuclear materials and is jointly managed by the DOE Albuquerque Operations Office and the DOE Idaho Operations Office.

  14. Nuclear emergency preparedness. Final report of the Nordic nuclear safety research project BOK-1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, Bent [Risoe National Lab., Roskilde (Denmark)

    2002-02-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, 'Nuclear Emergency Preparedness', was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects: Laboratory measurements and quality assurance (BOK-1.1); Mobile measurements and measurement strategies (BOK-1.2); Field measurement and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in the Nordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project outline, objectives and organization are described and main results presented. (au)

  15. Nuclear power and the public: an update of collected survey research on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  16. Motivating young students to be part of the global research in nuclear through the Seminar of Nuclear Fusion

    OpenAIRE

    Jimenez Varas, Gonzalo; Ochoa Valero, Raquel; Barbas, A.

    2013-01-01

    Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN) is a non-profit organization that depends on the Spanish Nuclear Society (SNE). The Universidad Politécnica de Madrid (Technical University of Madrid, UPM) was chosen to host the Seminar as it is one of the most prestigious technical universities of Spain, and has a very strong curriculum in nuclear engineering training and research. Both, the UPM and the SNE, supported strongly the seminar: the opening session was c...

  17. The role of research in nuclear regulation: Opening remarks

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.M.

    1997-01-01

    More than 20 years ago, the Energy Reorganization Act of 1974 created the USNRC and that same act provided for an office of nuclear regulatory research. It`s what is called a statutory office within the NRC. In providing for an NRC research program, our Congress had several things to say about the character of the research that would be performed. First, NRC should perform such research as is necessary for the effective performance of the Commission`s licensing and related regulatory functions. Second, the research may be characterized as confirmatory reassessment related to the safe operation and the protection of commercial reactors and other nuclear materials. Third, the NRC should have an independent capability for developing and analyzing technical information related to reactor safety, safeguards, and environmental protection in support of both the licensing and regulatory processes. Fourth, the research should not go beyond the need for confirmatory assessment, because the NRC should never be place in a position of having generated and then having to defend basic design data of its own. This has been and continues to be the role of research at the NRC. Somewhat different purposes might apply for regulatory agencies in other countries. Several regulatory agencies are represented here on this panel, so some of these difference may be discussed.

  18. Research on the climatic effects of nuclear winter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.

    1986-12-03

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project.

  19. Materials research in support of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, J. [Natural Resources Canada, Ottawa, Ontario (Canada)

    2011-07-01

    This presentation outlines the activities of CANMET-MTL in materials research in support of nuclear power generation. CANMET-MTL is a Government of Canada research laboratory specializing in materials (metals and metal-based materials). Its mandate is to improve the competitive, social and environmental performance of Canadian industries in the area of metals. These include the economic benefits from value-added processing and manufacturing, materials for clean energy production and improved energy efficiency in processing and product end-use.

  20. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  1. New trends in nuclear data research for medical radionuclide production

    Energy Technology Data Exchange (ETDEWEB)

    Qaim, S.M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin (INM), Nuklearchemie (INM-5)

    2013-10-01

    Nuclear reaction cross section data are of great significance in optimisation of production routes of radionuclides. This article deals with some newer aspects of data research related to production of both standard and novel radionuclides. The recent work to standardise the known data is discussed and new measurements with regard to further optimisation of production routes of some commonly used radionuclides are mentioned. Attempts to increase the specific activity of some reactor-produced radionuclides through the use of charged-particle induced reactions are outlined. The jeopardy in the supply of {sup 99m}Tc via a fission-produced {sup 99}mo/{sup 99m}Tc generator is considered and its possible direct production at a cyclotron is briefly discussed. Regarding the novel radionuclides, development work is presently focussed on non-standard positron emitters for diagnosis and on low-range highly ionising radiation emitters for internal radiotherapy. Recent nuclear reaction cross section measurements related to the production of the two types of radionuclides are briefly reviewed and some anticipated trends in nuclear data research are considered. (orig.)

  2. DTRA's Nuclear Explosion Monitoring Research and Development Program

    Science.gov (United States)

    Nichols, J.; Dainty, A.; Phillips, J.

    2001-05-01

    The Defense Threat Reduction Agency (DTRA) has a Program in Basic Research and Development for Nuclear Explosion Technology within the Nuclear Treaties Branch of the Arms Control Technology Division. While the funding justification is Arms Control Treaties (i.e., Comprehensive Nuclear-Test-Ban Treaty, CTBT), the results are made available for any user. Funding for the Program has averaged around \\10m per year recently. By Congressional mandate, the program has disbursed money through competitive, peer-reviewed, Program Research and Development Announcements (PRDAs); there is usually (but not always) a PRDA each year. Typical awards have been for about three years at ~\\100,000 per year, currently there are over 60 contracts in place. In addition to the "typical" awards, there was an initiative 2000 to fund seismic location calibration of the International Monitoring System (IMS) of the CTBT; there are three three-year contracts of ~\\$1,000,000 per year to perform such calibration for Eurasia, and North Africa and the Middle East. Scientifically, four technological areas have been funded, corresponding to the four technologies in the IMS: seismic, infrasound, hydroacoustic, and radionuclide, with the lion's share of the funding going to the seismic area. The scientific focus of the Program for all four technologies is detection of signals, locating their origin, and trying to determine of they are unambiguously natural in origin ("event screening"). Location has been a particular and continuing focus within the Program.

  3. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of {sup 3}H and {sup 3}He. Special attention is given to the eta meson, its production using photons, electrons, {pi}{sup {plus_minus}}, and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4{pi} acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us.

  4. 77 FR 9273 - WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute...

    Science.gov (United States)

    2012-02-16

    ... COMMISSION WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute on the Treatment of Probabilistic Risk Assessment Uncertainties: Public Meeting AGENCY: U.S. Nuclear...), Office of Nuclear Regulatory Research (RES), in cooperation with the Electric Power Research...

  5. The role of research in nuclear regulation: An NRC perspective

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, D.L.

    1997-01-01

    The role of research in the US Nuclear Regulatory Commission was broadly defined by the US Congress in the Energy Reorganization Act of 1975. This Act empowered the Commission to do research that it deems necessary for the performance of its licensing and regulatory functions. Congress cited a need for an independent capability that would support the licensing and regulatory process through the development and analysis of technical information related to reactor safety, safeguards and environmental protection. Motivation for establishing such a safety research function within the regulatory agency is the need to address the defects, abnormal occurrences and shutdowns involving light water reactors. Congress further stated that the NRC should limit its research to {open_quotes}confirmatory assessment{close_quotes} and that the Agency {open_quotes}should never be placed in a position to generate, and then have to defend, basic design data of its own.{close_quotes} The author reviews the activities of the research arm as related to regulatory research, performed in the past, today, and projected for the future. NRC`s public health and safety mission demands that its research products be developed independently from its licensees; be credible and of the highest technical quality as established through peer review; and open to the public scrutiny through publication in technical journals as well as NRC documents. A special trust is placed on regulatory research through the products it produces as well as the three dimensions that underlie the processes through which they are produced.

  6. A probabilistic safety analysis of incidents in nuclear research reactors.

    Science.gov (United States)

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  7. UNENE: an update on nuclear education and research

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, B.A.; Snell, V.G.; Rouben, B. [Univ. Network of Excellence in Nuclear Engineering (UNENE), Ontario (Canada)

    2010-06-15

    University Network of Excellence in Nuclear Engineering (known as UNENE) was created in 2002 as a partnership between Industry and universities with the objectives of establishing a nuclear R and D program in universities, train and develop Highly Qualified Personnel (HQP) to address the demographic gap, and to create a sustainable source of expertise for independent industry and public consultation. Seven years into its creation, UNENE is now a well established and fully functional framework with programs mainly focussing on education and research serving the industry at large. The educational component is in the form of an M. Eng. program mainly catering for working professionals by being offered on weekends and using distance-learning tools. It is intended to enhance competencies and build knowledge for students. The R and D programs are led by Industrial Research chairs (IRCs) and other prominent researchers in areas of importance to the industry. This paper examines the above topics and its outcomes as of March 2010. (author)

  8. UNENE: an update on nuclear education and research

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, B.A.; Snell, V.G.; Rouben, B., E-mail: basma.shalaby@rogers.com, E-mail: vgssolutions@rogers.com, E-mail: roubenb@alum.mit.edu [Univ. Network of Excellence in Nuclear Engineering (UNENE), Ontario (Canada)

    2010-07-01

    University Network of Excellence in Nuclear Engineering (known as UNENE) was created in 2002 as a partnership between Industry and universities with the objectives of establishing a nuclear R and D program in universities, train and develop Highly Qualified Personnel (HQP) to address the demographic gap, and to create a sustainable source of expertise for independent industry and public consultation. Seven years into its creation, UNENE is now a well established and fully functional framework with programs mainly focussing on education and research serving the industry at large. The educational component is in the form of an M. Eng. program mainly catering for working professionals by being offered on weekends and using distance-learning tools. It is intended to enhance competencies and build knowledge for students. The R and D programs are led by Industrial Research chairs (IRCs) and other prominent researchers in areas of importance to the industry. This paper examines the above topics and its outcomes as of March 2010. (author)

  9. UNENE: an update on nuclear education and research

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, B.A.; Snell, V.G.; Rouben, B., E-mail: basma.shalaby@rogers.com, E-mail: vgsolutions@rogers.com, E-mail: rouben@alum.mit.edu [University Network for Excellence in Nuclear Engineering (UNENE), Hamilton, Ontario (Canada)

    2011-09-15

    University Network for Excellence in Nuclear Engineering (known as UNENE) was created in 2002 as a partnership between Industry and universities with the objectives of establishing a nuclear R and D program in universities to train and develop Highly Qualified Personnel (HQP) to address the demographic gap and to create a sustainable source of expertise for independent industry and public consultation. Seven years into its creation, UNENE is now a well established and fully functional framework with programs mainly focussing on education and research serving the industry at large. The educational component is in the form of an M. Eng program mainly catering for working profession's by being offered on weekends and using distance learning tools. It is intended to enhance competencies and build knowledge for students. The R and D programs are lead by Industrial Research chairs (IRCs) and other prominent researchers in areas of importance to the industry. This paper examines the above topics and its outcomes as of March 2010. (author)

  10. Research in theoretical nuclear and neutrino physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevic, Ina [Univ. of Arizona, Tucson, AZ (United States). Dept. of Physics

    2014-06-14

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  11. Sample size considerations for clinical research studies in nuclear cardiology.

    Science.gov (United States)

    Chiuzan, Cody; West, Erin A; Duong, Jimmy; Cheung, Ken Y K; Einstein, Andrew J

    2015-12-01

    Sample size calculation is an important element of research design that investigators need to consider in the planning stage of the study. Funding agencies and research review panels request a power analysis, for example, to determine the minimum number of subjects needed for an experiment to be informative. Calculating the right sample size is crucial to gaining accurate information and ensures that research resources are used efficiently and ethically. The simple question "How many subjects do I need?" does not always have a simple answer. Before calculating the sample size requirements, a researcher must address several aspects, such as purpose of the research (descriptive or comparative), type of samples (one or more groups), and data being collected (continuous or categorical). In this article, we describe some of the most frequent methods for calculating the sample size with examples from nuclear cardiology research, including for t tests, analysis of variance (ANOVA), non-parametric tests, correlation, Chi-squared tests, and survival analysis. For the ease of implementation, several examples are also illustrated via user-friendly free statistical software.

  12. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  13. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  14. Disposal of radioactive waste from nuclear research facilities

    CERN Document Server

    Maxeiner, H; Kolbe, E

    2003-01-01

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  15. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  16. Decommissioning of the BR3 PWR[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.

    1998-07-01

    The dismantling and the decommissioning of nuclear installations at the end of their life-cycle is a new challenge to the nuclear industry. Different techniques and procedures for the dismantling of a nuclear power plant on an existing installation, the BR-3 pressurized-water reactor, are described. The scientific program, objectives, achievements in this research area at the Belgian Nuclear Research Centre SCK-CEN for 1997 are summarized.

  17. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  18. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  19. The role of research in nuclear regulation: A French perspective

    Energy Technology Data Exchange (ETDEWEB)

    Livolant, M. [Institut de Prot. et de Surete Nuc., Fontenay Aux Roses (France)

    1997-01-01

    Roughly speaking, the French Nuclear Protection and Safety Institute`s role is similar in the French situation to the NRC administration role but with less authority role, which corresponds to another body in France. They define themselves as a technical support of the safety authorities. On the other hand, they have their own research laboratories. Among them, the most famous are the Phebus reactor and the Cabri reactor about which we have heard a lot these two days. They work on safety but also on protection of man and environment, management of accident conditions, security of transport, and safeguards. They have a relationship with utilities and with government authorities. With the utilities they have two types of technical evaluations. They make detailed technical studies of the safety reports presented to the authorities by the utility. On the research side, they participate in common research programs to resolve issues and to increase knowledge and understanding about safety related questions. With the governmental authorities, their role is to give advice on safety reports of existing or being-built installations and on more general policy questions like, for example, the safety principle to apply to the next generation of power plants. The decisions are left to the safety authorities, but they give a lot of advice and detailed studies about questions of safety.

  20. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  1. Contribution of prototypic material tests on the Plinius platform to the study of nuclear reactor severe accident; Contribution des essais en materiaux prototypiques sur la plate-forme Plinius a l'etude des accidents graves de reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch

    2008-01-15

    The PLINIUS experimental platform at CEA Cadarache is dedicated to the experimental study of nuclear reactor severe accidents thanks to experiments between 2000 and 3500 K with prototypic corium. Corium is the mixture that would be formed by an hypothetical core melting and its mixing with structural materials. Prototypical corium has the same chemical composition as the corium corresponding to a given accident scenario but has a different isotopic composition (use of depleted uranium,...). Research programs and test series have been performed to study corium thermophysical properties, fission product behaviour, corium spreading, solidification and interaction with concrete as well as its coolability. It was the frame of research training of many students and was realized within national, European and international collaborations. (author)

  2. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  3. A new look at low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B; Marwan, Jan

    2009-10-01

    This paper presents a new look at low-energy nuclear reaction research, a field that has developed from one of the most controversial subjects in science, "cold fusion." Early in the history of this controversy, beginning in 1989, a strong polarity existed; many scientists fiercely defended the claim of new physical effects as well as a new process in which like-charged atomic nuclei overcome the Coulomb barrier at normal temperatures and pressures. Many other scientists considered the entire collection of physical observations-along with the hypothesis of a "cold fusion"--entirely a mistake. Twenty years later, some people who had dismissed the field in its entirety are considering the validity of at least some of the reported experimental phenomena. As well, some researchers in the field are wondering whether the underlying phenomena may be not a fusion process but a neutron capture/absorption process. In 2002, a related tabletop form of thermonuclear fusion was discovered in the field of acoustic inertial confinement fusion. We briefly review some of this work, as well.

  4. Radioecology[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, Ch.

    1998-07-01

    Food chains are important contributors to the radiological dose of populations exposed to radionuclides released from the nuclear fuel cycle. A good understanding of the behaviour of radionuclides in the environment and a profound insight in the transfer mechanisms of radioisotopes through the ecosystem component is required in order to assess radiological exposure through the diet, to select appropriate remedial action to limit the contamination levels in food, and to restore contaminated sites. This research project aims to evaluate the mechanisms and dynamics of radionuclide transfers in the biosphere, considering all circumstances affecting the transfer parameters and their variability. The scientific methodology consists of laboratory and field experiments. The results of the research can contribute to the selection of appropriate countermeasures for the reduction of the transfer of radionuclides through the food-chain. The feasibility and effectiveness of these countermeasures are experimentally tested. Another important objective is to provide information to the authorities, enabling to assess the consequences of routine and accidental releases. The main achievements for 1997 are given.

  5. Anomalous radon concentration in a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Pena, P., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m{sup -3}. The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m{sup -3}, manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  6. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  7. A study on the planning for the research and development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byong Chull; Won, B. C.; Bang, J. K.; Jung, Y. H.; Kim, M. R.; Cho, C. Y.; Lee, H. S.; Kim, J. U.; Yeo, J. W.; Hong, Y. P.; Kim, I. C.; Rha, K. H.; Yoon, Y. S.; Park, J. H.; Ko, Y. S.; Kim, S. S.; Kang, W. J.; Lee, Y. H.; Shim, H. W.

    1997-01-01

    This study has performed aiming to provide the government with the basic input to establish `the comprehensive promotion plan for utilization, research and development of nuclear energy` and `the mid- and long-term nuclear research and development program`, thus the government set it up as a national plan after endorsement of Atomic Energy Commission. Next, the feasibility study of the proton accelerators construction which is expected to use for nuclear research and development and industry. And a systematic and integrated research and development management system for the large-scale projects has been studied considering the inherent uncertainty and high risk of research and development. (author). 24 tabs., 6 figs.

  8. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  9. Bibliography of reports on research sponsored by the NRC Office of Nuclear Regulatory Research, July--December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.

    1977-03-01

    A bibliography of 148 reports published by contractors of the NRC Office of Nuclear Regulatory Research during the period July through December 1976 is presented along with abstracts from the Nuclear Safety Information Center computer file. The bibliography has been sorted into the subject categories used by NRC to organize the research program. Within the subject categories, the reports are sorted by contractor organization and then chronologically. A brief description of the NRC research program precedes the bibliography.

  10. Bibliography of reports on research sponsored by the NRC Office of Nuclear Regulatory Research, November 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.

    1976-09-30

    A bibliography of 152 reports published by contractors of the NRC Office of Nuclear Regulatory Research during the period November 1975 through June 1976 is presented along with abstracts from the Nuclear Safety Information Center computer file. The bibliography has been sorted into the subject categories used by NRC to organize the research program. Within the subject categories, the reports are sorted by contractor organization and then chronologically. A brief description of the NRC research program precedes the bibliography.

  11. Bibliography of reports on research sponsored by the NRC office of nuclear regulatory research, July--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.

    1978-04-01

    A bibliography of 198 reports published by contractors of the NRC Office of Nuclear Regulatory Research during the period July through December 1977 is presented along with abstracts from the Nuclear Safety Information Center computer file. The bibliography has been sorted into the subject categories used by NRC to organize the research program. Within the subject categories, the reports are arranged first by contractor organization and then chronologically. A brief description of the NRC research program precedes the bibliography.

  12. Directions for nuclear research in the transplutonium elements

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Chasman, R.R.; Friedman, A.M.; Ahmad, I.

    1983-01-01

    The study of the heavy nuclides has played a vital role in our understanding of the alpha decay process, nuclear fission, nuclear binding energies and the limits of nuclear stability. This study has led to the understanding of novel shape degrees of freedom, such as the very large quadrupole deformations associated with the fission isomer process, and the very recently discovered octupole deformation. The existence of these unique phenomena in the heavy element region is not accidental. Fission isomerism is due to the delicate balance between nuclear forces holding the nucleus together and Coulomb forces causing nuclear fission. Octupole deformation arises from the increasing strength of matrix elements with increasing oscillator shell. Both illustrate the unique features of the heavy element region. Fission studies have given us information about large collective aspects in nuclei and the importance that nuclear structural effects can play in altering these macro properties. A new class of atomic studies has become possible with the availability of heavy elements. With these isotopes, we are now able to produce electric fields of such magnitude that it becomes possible to spontaneously create positron-electron pairs in the vacuum. We have organized this presentation into three major sections: nuclear structure, fission studies and atomic studies of supercritical systems. In each we will try to emphasize the new directions which can benefit from the continued availability of isotopes supplied by the Trans-plutonium Production Program. 117 references. (WHK)

  13. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  14. Research on Nuclear Reaction Network Equation for Fission Product Nuclides

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear Reaction Network Equation calculation system for fission product nuclides was developed. With the system, the number of the fission product nuclides at different time can be calculated in the different neutron field intensity and neutron energy spectra

  15. Nuclear physics with neutrons - fundamental and applied researches

    CERN Document Server

    Furman, V I

    2001-01-01

    The investigations in the field of the nuclear neutron physics in JINR are discussed briefly. The following problems are considered: realization of the project of a new source of resonance neutrons (IREN); development and testing the new perspective techniques for experiments at IREN; studying the symmetry breaking in fundamental interactions in nuclei and obtaining the actual technological nuclear data. The neutron energy is in the range of 10 sup - sup 9 eV-10 MeV

  16. Feasibility Research of Nuclear-power System for Car

    Institute of Scientific and Technical Information of China (English)

    WU; Xiao-chun; SUN; Zheng; LIU; Xin-ming; LI; Long; XU; Zhi-long; SHAO; Jing

    2013-01-01

    The idea of making nuclear-powered car can dated back to 1950s,and Ford company developed the first nuclear-powered car Nucleon which theoretically based on uranium-235 fission powered engine.Recently,General Motors released its Cadillac"World Thorium Fuel Concept"car at 2009 Chicago Auto Show,which didn’t include a working thorium-powered engine.But it’s claimed that the thorium laser

  17. Nuclear power and the public: analysis of collected survey research

    Energy Technology Data Exchange (ETDEWEB)

    Melber, B.D.; Nealey, S.M.; Hammersla, J.; Rankin, W.L.

    1977-11-01

    This executive summary highlights the major findings of a comprehensive synthesis and analysis of over 100 existing surveys dealing with public attitudes toward nuclear power issues. Questions of immediate policy relevance to the nuclear debate are posed and answered on the basis of these major findings. For each issue area, those sections of the report in which more-detailed discussion and presentation of relevant data may be found are indicated.

  18. NUCLEAR ENERGY COMMISSION, HIGHER COUNCIL OF RESEARCH, AND THE CENTER OF RESEARCH IN PHYSICS IN MADRID, SPAIN.

    Science.gov (United States)

    The report gives an account of a liasion visit to three institutions in Madrid: the Junta de la Energia Nuclear (JEN), Spain’s Nuclear Energy...and controls essentially all aspects of scientific research in Spain, and the Centro de Investigaciones Fisicas (CIF) ’Leonardo Torres Quevedo,’ a

  19. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  20. Nuclear threats in the vicinity of the Nordic countries. Final report of the Nordic Nuclear Safety Research project SBA-1

    Energy Technology Data Exchange (ETDEWEB)

    Eikelmann, I.M.H. [Norwegian Radiation Protection Authority (Norway)

    2002-11-01

    The acute phase of a nuclear accident and the possibility of high exposure of the populations are always the most important threats in the emergency preparedness work. Radioactive contamination from an accident can however also cause long term effects for land use and enhanced doses to special population groups and economic problems for agriculture, reindeer industry, hunting, tourism and recreation. For planning purposes it is always valuable to be aware of surrounding radiation hazards and other potential threats. Thus, mapping such threats in a Nordic context is an important factor in emergency preparedness in the area. This report presents a cross-disciplinary study from the NKS research program 1998-2001.The scope of the project was to prepare a 'base of knowledge' regarding possible nuclear threats in the vicinity of the Nordic countries. This base of knowledge will, by modere information technology as different websites, be made available to authorities, media and the population. The users of the websites can easily get information on different types of nuclear installations and threats. The users can get an overview of the situation and, if they so wish, make their own judgements. The project dealt with a geographical area including North-west Russia and the Baltic states. The results from the different activities in the project were generated in a web based database called the 'the base of knowledge'. Key words Nuclear threats, Nordic countries, nuclear power plants, nuclear ship, nuclear waste, literature database, base of knowledge, webaccessed information, atmospheric transport, decommissioning of submarines, nuclear installations, waste management, radioactive contamination in marine environment, radioactive sources, criticality analysis. (au)

  1. NATO Advanced Research Workshop on Preparedness for Nuclear and Radiological Threats

    CERN Document Server

    Diamond, David

    2015-01-01

    The nuclear crisis in Fukushima and growing threats of nuclear terrorism must serve as a wake-up call, prompting greater action to prepare ourselves for nuclear and radiological disasters. Our strategy to prepare for these threats is multi-layered and the events of these past years have proved the necessity to re-evaluate the national and international preparedness goals on a scale never before considered. The programme of NATO Advanced Research Workshop on “Preparedness for Nuclear and Radiological Threats” has been focused on science and technology challenges associated with our need to improve the national and international capacity and capability to prevent, protect against, mitigate the effects of, respond to, and recover from the nuclear and radiological disasters, including nuclear and radiological accident, terrorist attack by Improvised Nuclear Device (IND) or by “Dirty Bomb”-Radiological Dispersal Device (RDD), that pose the greatest risk to the national and international security and safety...

  2. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lakey, L. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  3. Applied nuclear science research and development progress report, June 1, 1985-November 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, E.D.; Mutschlecner, A.D. (comps.)

    1986-04-01

    This six month progress report reviews activities in nuclear reaction research. Specific content includes theory and evaluation of nuclear cross sections for neutron, proton, and deuteron reactions for a number of isotopes; the processing and testing of nuclear cross section data; studies of neutron activation, fission products and actinides; and short notes on applications. Data are included in graphic and tabular form and include experimental, evaluated, and theoretical calculations and spectra. 136 refs., 81 figs., 17 tabs. (DWL)

  4. Peaceful Nuclear Explosion Datasets for Seismic Research and Nuclear Test Monitoring

    Science.gov (United States)

    Smithson, S. B.; Morozov, I. B.; Morozova, E. A.; Richards, P. G.; Solodilov, L. N.

    2001-12-01

    Within the next four years, IRIS databases will receive from the University of Wyoming and GEON recordings from nine ultra-long range Deep Seismic Sounding (DSS) projects conducted between 1970-1989 in the former Soviet Union: QUARTZ, CRATON, KIMBERLITE, METEORITE, RIFT, RUBY, BATHOLIT, BAZALT, and AGATE. Jointly sponsored by the Department of Defense and National Science Foundation, this effort will bring the unique recordings of 22 Peaceful Nuclear Explosions (PNEs) and hundreds of crustal-scale chemical shots to the broad seismological and monitoring research communities. A grid of reversed PNE profiles (plus fan recording for RUBY) covers the East European Platform, the Ural Mountains, the West Siberian Platform, the Siberian craton, and the Baikal Rift. Dense, 3-component, short-period recordings along these profiles provide a valuable source of seismic information for seismic calibration of these vast aseismic regions. DSS recordings offer unique opportunities to study propagation effects of body waves and regional seismic phases, to examine their correlation with geologic and tectonic features, to develop unusually well constrained models of the structure of the crust and upper mantle to 600-700 km depth, and to explore the variability of explosion discriminants such as spectral ratios of P- and S-waves. Though the data principally concern properties of the crust and upper mantle, some of the profiles also show strong reflections from the core-mantle boundary. We summarize the recent findings from the analysis of PNE datasets in Northern Eurasia. These results include (1) unusually detailed velocity and attenuation structure of the crust and uppermost mantle, (2) characterization of crustal attenuation through coda measurements, (3) constraints on seismic scattering from within the crust and uppermost mantle, (4) detailed imaging of the crustal basement using receiver functions, (5) continuous observations of the regional phases from the PNEs within 0

  5. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.

  6. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. (comp.)

    1989-08-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1988.

  7. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  8. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J [comp.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  9. Nuclear microscopy in medical research. Investigations into degenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Makjanic, J.; Thong, P.; Watt, F. [National University of Singapore (Singapore). Dept. of Physics

    1997-03-01

    The high energy (1-4MeV) focused ion beam (nuclear microbeam) has found uses in many scientific disciplines through a wide variety of ion beam based techniques. Of the many techniques available, the powerful combination of Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS), and Scanning Transmission Ion Microscopy (STIM) is proving to be extremely useful, particularly in the characterisation and elemental analysis of thin specimens. In this paper we briefly review these ion beam techniques, as well as the hardware required for their application. Finally, we describe the application of the PIXE, RBS and STIM techniques in conjunction with a scanning focused 2MeV proton microbeam (nuclear microscopy). The examples chosen to illustrate the potential of nuclear microscopy are recent investigations into the degenerative diseases atherosclerosis (coronary heart disease), Parkinson`s disease and Alzheimer`s disease. (author)

  10. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  11. Defence Research and Development Canada: Suffield research on nuclear methods for detection of buried bulk explosives

    Science.gov (United States)

    McFee, John E.; Faust, Anthony A.

    2011-06-01

    Defence R&D Canada - Suffield has conducted research and development on nuclear methods for detection of bulk explosives since 1994. Initial efforts were directed at confirmation of the presence of bulk explosives in land mines and improvised explosive devices (IEDs). In close collaboration with a few key Canadian companies, methods suitable for vehicle-mounted or fixed position applications and those suitable for person- or small robotportable roles have been studied. Vehicle-mounted systems mainly employ detection of characteristic radiation, whereas person-portable systems use imaging of back scattered radiation intensity distributions. Two key design tenets have been reduction of personnel shielding by the use of teleoperation and custom design of sensors to address the particular problem, rather than adapting an existing sensor to a problem. This is shown in a number of recent research examples. Among vehicle-mounted systems, recent research to improve the thermal neutron analysis (TNA) sensors, which were put into service with the Canadian Forces in 2002, are discussed. Research on fast neutron analysis (FNA) and associated particle imaging (API), which can augment or replace TNA, depending on the application, are described. Monoenergetic gamma ray induced photoneutron spectroscopy is a novel method which has a number of potential advantages and disadvantages over TNA and FNA. Sources, detectors and geometries have been identified and modelling studies have suggested feasibility. Among person-portable systems, research on neutron backscatter imaging and X-ray coded aperture backscatter imaging are discussed.

  12. Outline of results of safety research (in nuclear fuel cycle field in fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The safety research in Power Reactor and Nuclear Fuel Development Corporation in fiscal year 1996 has been carried out based on the basic plan of safety research (from fiscal year 1996 to 2000) which was decided in March, 1996. In this report, on nuclear fuel cycle field, namely all the subjects in the fields of nuclear fuel facilities, environmental radioactivity and waste disposal, and the subjects related to nuclear fuel facilities among the fields of aseismatic and probabilistic safety assessments, the results of research in fiscal year 1996, the first year of the 5-year project, are summarized together with the outline of the basic plan of safety research. The basic policy, objective and system for promotion of the safety research are described. The objectives of the safety research are the advancement of safety technology, the safety of facilities, stable operation techniques, the safety design and the evaluation techniques of next generation facilities, and the support of transferring nuclear fuel cycle to private businesses. The objects of the research are uranium enrichment, fuel fabrication and reprocessing, and waste treatment and storage. 52 investigation papers of the results of the safety research in nuclear fuel cycle field in fiscal year 1996 are collected in this report. (K.I.)

  13. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    Energy Technology Data Exchange (ETDEWEB)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent [Nuclear Engineering and Radiological Science Center, Alabama A and M University, Huntsville, AL (United States); James, Ralph B.; Blackburn, Noel D. [Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, NY (United States); Glenn, Chance M. [College of Engineering, Technology and Physical Sciences, Alabama A and M University, Huntsville, AL (United States)

    2015-07-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  14. Nuclear technology in research and everyday life; Kerntechnik in Forschung und Alltag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-12-15

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  15. Public participation processes related to nuclear research installations: what are the driving factors behind participation intention?

    Science.gov (United States)

    Turcanu, Catrinel; Perko, Tanja; Laes, Erik

    2014-04-01

    This article addresses organised public participation processes related to installations for nuclear research. The aim was to determine predictors that could provide an empirical insight into the motivations underlying people's intended level of involvement. The results highlight attitude towards participation and moral norm as the strongest predictors for participation intention. Other significant predictors were time constraints, attitude towards nuclear energy, subjective and descriptive norms, and knowledge. An opposing relationship is noted between participation intention and attitude towards nuclear energy. At the same time, people who are more knowledgeable about the nuclear domain seem more willing to get involved. The analysis also revealed that financial benefits do not influence people's intended involvement in participation processes related to nuclear research installations. The results reported here are based on empirical data from a large-scale public opinion survey (N = 1020) carried out in Belgium during May-June 2011.

  16. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  17. Nuclear power research priorities and electricity future of Germany in the context of nuclear phase out

    OpenAIRE

    Romero Nevado, Mireia

    2014-01-01

    This paper discusses the development of the German power system in the context of nuclear phase out. An energy system model has been developed to study different scenarios taking into account an immediate or a delayed phase out of the operating reactors. The model has a regional focus considering the plans of the German government regarding renewable technologies expansion and the current installed capacity of all the power generating technologies. The model is developed using OSeMOSYS, an op...

  18. Mapping Nuclear Fallout Using the Weather Research & Forecasting (WRF) Model

    Science.gov (United States)

    2012-09-01

    difficulty of making accurate fallout predictions. 2.2.1 Fireball In the first few instants following a nuclear explosion, fireball temperatures can...exceed 107 K, and the resulting gradient between the atmospheric and the fireball temperatures will cause the fireball to rise [2]. The temperature...will decrease initially through radiative cooling, but as toroidal motion of the fireball begins to dominate, entrainment of cold air will result in

  19. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  20. A Study on Comparison of HANARO and KIJANG Research Reactor in Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Kim, Hyun-Jo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As one of major national projects for nuclear science and engineering in Korea, the KIJANG Research Reactor(KJRR) project was commenced in order to develop the core research reactor(RR) technologies for strengthening the competitiveness of the RR export and also to stabilize the supply of key radioisotopes for medical and industrial applications. This paper is about applying IAEA safeguards at new nuclear facility (KJRR). The beginning of this project is comparing of HANARO and KIJANG research reactor in nuclear safeguards for nuclear material accountancy method. As mentioned before, research reactor is basically item counting facility. In Fig 1, first two processes are belonging to item counting. But last two processes are for bulk handling. So KIJANG RR would be treated item counting facility as well as bulk handling facility by fission moly production facility. For this reason, nuclear material accountancy method for KJRR is not easy compared to existing one. This paper accounted for solution of KJRR nuclear material accountancy briefly. Future study on the suitable nuclear material accountancy method for mixed facility between item counting facility and bulk handling facility will be conducted more specifically.

  1. Atomic scale modelling of materials of the nuclear fuel cycle; Modelisation a l'echelle atomique de materiaux nucleaires du cycle du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Bertolus, M.

    2011-10-15

    This document written to obtain the French accreditation to supervise research presents the research I conducted at CEA Cadarache since 1999 on the atomic scale modelling of non-metallic materials involved in the nuclear fuel cycle: host materials for radionuclides from nuclear waste (apatites), fuel (in particular uranium dioxide) and ceramic cladding materials (silicon carbide). These are complex materials at the frontier of modelling capabilities since they contain heavy elements (rare earths or actinides), exhibit complex structures or chemical compositions and/or are subjected to irradiation effects: creation of point defects and fission products, amorphization. The objective of my studies is to bring further insight into the physics and chemistry of the elementary processes involved using atomic scale modelling and its coupling with higher scale models and experimental studies. This work is organised in two parts: on the one hand the development, adaptation and implementation of atomic scale modelling methods and validation of the approximations used; on the other hand the application of these methods to the investigation of nuclear materials under irradiation. This document contains a synthesis of the studies performed, orientations for future research, a detailed resume and a list of publications and communications. (author)

  2. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J [comp.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs.

  3. Nuclear criticality research at the University of New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Busch, R.D. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-06-01

    Two projects at the University of New Mexico are briefly described. The university`s Chemical and Nuclear Engineering Department has completed the final draft of a primer for MCNP4A, which it plans to publish soon. The primer was written to help an analyst who has little experience with the MCNP code to perform criticality safety analyses. In addition, the department has carried out a series of approach-to-critical experiments on the SHEBA-II, a UO{sub 2}F{sub 2} solution critical assembly at Los Alamos National Laboratory. The results obtained differed slightly from what was predicted by the TWODANT code.

  4. The Acoustic Emission signal acquired by the microphones placed in the CABRI test device along the fourteen last R.I.A. experiments: an example of reproducible research in nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Laurent Pantera, Oumar Traore [CEA, DEN, DER/SRES, Cadarache, F-13108 Saint Paul lez Durance (France)

    2015-07-01

    The CABRI facility is an experimental nuclear reactor of the French Atomic Energy Commission. It is located at the Cadarache Research Centre in southern France and it is designed to act as a support to the French nuclear infrastructure. The purpose of the new testing programme termed, 'CABRI International Programme' (CIP) is to study the behaviour of PWR-type fuel rods at high burnup, equipped with an 'advanced' cladding, under Reactivity Initiated Accident (RIA) conditions (such as the scenario of a control rod ejection). Within the framework of this programme, piloted and funded by the French Institute of Nuclear Radioprotection and Safety (IRSN), ten tests are to be conducted with a frequency of two tests per year. The LPRE laboratory of the CEA which is in charge of the Preparation, realisation and breakdown of the test results studies the possibility to set up a new test analysis based on the processing of signals coming from sensors placed within the test equipment. During the experimental phase, the behaviour of the fuel element generates acoustic waves which can be detected by two microphones placed upstream and downstream of the test device. Studies showed the interest to realize temporal and spectral analyses on these signals by showing the existence of signatures which can be correlated with physical phenomena as the rod failure or the test shutdown (i.e. scram). The work presented in this article results from the will to consolidate these studies. Since the main phenomenon to be tracked is the fuel rod failure, the aim would be to highlight specific events which would have been precursors of the rod failure in order to use in the future these signals for further interpretation. Such an antecedent works resumption leads to a better understanding of the experimental needs and constitutes a good initial state to prepare the new very fast digital data acquisition systems. Although all the raw data are accessible in the form of text files

  5. Optical design of a laser system for nuclear fusion research.

    Science.gov (United States)

    de Metz, J

    1971-07-01

    High power laser improvements, high quality aspheric lenses, and sharp focusing on a solid deuterium target enable us to get numerous nuclear fusion reactions inside the deuterium plasma. Since Maiman successfully built the first light amplifier in 1960 [Nature 187, 493 (1960)] and Terhune performed air breakdown experiments in 1962 ["Optical Third Harmonic Generation," Comptes rendus de la 3ème Conférence Internationale d'Electronique Quantique, Paris, 11-15 février 1963, P. Grivet and N. Bloembergen, Eds. (Dunod, Paris, 1964), pp. 1559-15761, the laser has been thought of as a valuable energy source for fusion devices. Now a kind of race has started toward high temperature plasmas created by powerful lasers. However, the peak power of solid state laser is limited by glass damage, pump efficiences, and unwanted effects such as superradiance. So it is necessary to improve all the optical properties of the laser and the focusing of the lens on the target. In this paper, requirements for fusion implying a very high flux will be stated. Successive optical designs will be described together with measurement methods, and the contribution of optical improvements to the occurrence of nuclear fusion reaction in deuterium targets will be evaluated.

  6. The role of research in nuclear regulation: Status and future activities in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Soda, K. [Japan Atomic Energy Research Institute, Chyiyodaku, Tokyo (Japan)

    1997-01-01

    The role of nuclear regulation is grouped into the three categories in the Basic Safety Principles for Nuclear Power Plants, the INSAG-3 document of IAEA published in 1988. First category is to specify and develop standards and regulations for safety, and to issue licenses to operating organization. Second category is to inspect, monitor and review the safety performances of nuclear power plants and operating organizations. In the second category, corrective action may be ordered if it is found necessary after inspection, monitoring and review. The third category is to advocate safety research and disseminate safety information. Nuclear safety research is closely related to nuclear regulation. The licensing procedures of nuclear facilities requires a two step approach in Japan, that is, those who wish to construct and operate a nuclear plant must apply for a government approval for construction and operation. Safety examination is then performed first by the government, and the second examination is carried out by the Nuclear Safety Commission. In this process, research information is supplied to the Advisory Committee on Technical Matters which is under the Ministry of Trade and Industry and to the Committee on Examination of Reactor Safety which is under the Science and Technology Agency. Research organizations are asked by those Committees to provide data needed for safety examination and to perform safety analyses for verification of analyses submitted to the Committees by the licensees. in addition in the licensing procedures, examination guides needed for the safety examination are based on experimental data and analyses performed by research organizations by the government request.

  7. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  13. Emerging battery research in Indonesia: The role of nuclear applications

    Science.gov (United States)

    Kartini, E.

    2015-12-01

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

  14. Emerging battery research in Indonesia: The role of nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, E. [Science and Technology Center for Advanced Materials, National Nuclear Energy Agency, South Tangerang (Indonesia)

    2015-12-31

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

  15. The use of neutron scattering in nuclear weapons research

    Energy Technology Data Exchange (ETDEWEB)

    Juzaitis, R.J. [Los Alamos National Lab., NM (United States)

    1995-10-01

    We had a weapons science breakout session last week. Although it would have been better to hold it closer in time to this workshop, I think that it was very valuable. it may have been less of a {open_quotes}short-sleeve{close_quotes} workshop environment than we would have liked, but as the first time two communities-the weapons community and the neutron scattering community- got together, it was a wonderful opportunity to transfer information during the 24 presentations that were made. This report contains discussions on the fundamental analysis of documentation of the enduring stockpile; LANSCE`s contribution to weapons; spallation is critical to understanding; weapons safety assessments; applied nuclear physics requires cross section information; fission models need refinement; and establishing teams on collaborative projects.

  16. 1997 Scientific Report[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Govaerts, P.

    1998-07-01

    The 1997 Scientific Report of the Belgian Nuclear Research Centre SCK-CEN describes progress achieved in nuclear safety, radioactive waste management, radiation protection and safeguards. In the field of nuclear research, the main projects concern the behaviour of high-burnup and MOX fuel, the embrittlement of reactor pressure vessels, the irradiation-assisted stress corrosion cracking of reactor internals, and irradiation effects on materials of fusion reactors. In the field of radioactive waste management, progress in the following domains is reported: the disposal of high-level radioactive waste and spent fuel in a clay formation, the decommissioning of nuclear installations, the study of alternative waste-processing techniques. For radiation protection and safeguards, the main activities reported on are in the field of site and environmental restoration, emergency planning and response and scientific support to national and international programmes.

  17. Somatic cell nuclear transfer in Oregon: expanding the pluripotent space and informing research ethics.

    Science.gov (United States)

    Lomax, Geoffrey P; DeWitt, Natalie D

    2013-12-01

    In May, Oregon Health and Science University (OHSU) announced the successful derivation, by the Mitalipov laboratory, of embryonic stem cells by somatic cell nuclear transfer. This experiment was recognized as a "formidable technical feat" and potentially a key step toward developing cell-based therapies. The OHSU report is also an example of how a scientific breakthrough can inform research ethics. This article suggests ways that nuclear transfer embryonic stem cell lines may contribute to research ethics by adding rigor to studies addressing pressing research questions important to the development of cell-based therapies.

  18. International Source Book: Nuclear Fuel Cycle Research and Development Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M.; Lakey, L. T.

    1982-11-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This second volume includes the program summaries of those countries listed alphabetically from Japan to Yugoslavia. Information on international agencies and associations, particularly the IAEA, NEA, and CEC, is provided also.

  19. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  20. SAFIR2014. The Finnish Research Programme on Nuclear Power Plant Safety 2011-2014. Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. (ed.)

    2013-02-15

    The Finnish Nuclear Power Plant Safety Research Programme 2011-2014, SAFIR2014, is a 4-year publicly funded national technical and scientific research programme on the safety of nuclear power plants. The programme is funded by the State Nuclear Waste Management Fund (VYR), as well as other key organisations operating in the area of nuclear energy. The programme provides the necessary conditions for retaining knowledge needed for ensuring the continuance of safe use of nuclear power, for developing new know-how and for participation in international co-operation. The SAFIR2014 Steering Group, responsible of the strategic alignements of the programme, consists of representatives of the Finnish Nuclear Safety Authority (STUK), Ministry of Employment and the Economy (MEE), Technical Research Centre of Finland (VTT), Teollisuuden Voima Oyj (TVO), Fortum Power and Heat Oy (Fortum), Fennovoima Oy, Lappeenranta University of Technology (LUT), Aalto University (Aalto), Finnish Funding Agency for Technology and Innovation (Tekes), Finnish Institute of Occupational Health (TTL) and the Swedish Radiation Safety Authority (SSM). The research programme is divided into nine areas: Man, organisation and society, Automation and control room, Fuel research and reactor analysis, Thermal hydraulics, Severe accidents, Structural safety of reactor circuits, Construction safety, Probabilistic risk analysis (PRA), and Development of research infrastructure. A reference group is assigned to each of these areas to respond for the strategic planning and to supervise the projects in its respective field. Research projects are selected annually based on a public call for proposals. Most of the projects are planned for the entire duration of the programme, but there can also be shorter one- or two-year projects. The annual volume of the SAFIR2014 programme in 2011-2012 has been 9,5-9,9 M euro. Main funding organisations were the State Nuclear Waste Management Fund (VYR) with over 5 M euro and

  1. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A [Editor

    2004-09-21

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Nuclear energy research until 2000. The necessity of the nuclear energy research until the year 2000 and a proposal for the organizational model of the research; Ydinenergiatutkimus 2000; Selvitys energiatutkimuksen tarpeesta vuoteen 2000 ja ehdotus tutkimuksen organisoinnista

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, L. [Finnish Centre for Nuclear and Radiation Safety, Helsinki (Finland); Rintamaa, R.; Vanttola, T. [Technical Research Centre of Finland, Espoo (Finland)] [eds.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland`s existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland`s potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.).

  6. FY2001 Final Report Laboratory Directed Research and Development (LDRD) on Advanced Nuclear Fuel Design in the Future Nuclear Energy Market

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.; Choi, J.-S.; DiSabatino, A.; Wirth, B.

    2001-09-30

    This study is to research the maturity of advanced nuclear fuel and cladding technology and to explore the suitability of existing technology for addressing the emerging requirements for Generation IV reactors and emerging thermal/fast spectrum reactors, while simultaneously addressing nuclear waste management, and proliferation resistance concerns.

  7. Radioactive ion beams for biomedical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2002-01-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in biomedical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio- lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission) suitable for SPECT, positron emission suitable for positron emission tomography (PET), alpha -, beta /sup -/- and Auger electron emission. (21 refs).

  8. National nuclear power plant safety research 2007-2010. Proposal for SAFIR2010 framework plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A country utilising nuclear energy is presumed to possess a sufficient infrastructure to cover the education and research in this field, besides the operating organisations of the plants and a regulatory body. The starting point of public nuclear safety research programmes is that they provide the necessary conditions for retaining the knowledge needed for ensuring the continuance of safe and economic use of nuclear power, for development of new know-how and for participation in international cooperation. In fact, the Finnish organisations engaged in research in this sector have been an important resource which the various ministries, the Radiation and Nuclear Safety Authority (STUK) and the power companies have had at their disposal. Ministry of Trade and Industry appointed a group to write the Framework Plan of the new programme. This report contains a proposal for the general outline of the programme, preliminarily entitled as SAFIR2010 (SAfety of Nuclear Power Plants - Finnish National Research Programme). The plan has been made for the period 2007-2010, but it is based on safety challenges identified for a longer time span as well. Olkiluoto 3, the new nuclear power plant unit under construction has also been taken into account in the plan. The safety challenges set by the existing plants and the new plant unit, as well as the ensuing research needs do, however, converge to a great extent. The research programme is strongly based on the Chapter 7a of the Finnish Nuclear Energy Act. The construction of the new power plant unit will increase the need for experts in the field in Finland. At the same time, the retirement of the existing experts is continuing. These factors together will call for more education and training, in which active research activities play a key role. This situation also makes long-term safety research face a great challenge. The Framework Plan aims to define the important research needs related to the safety challenges. The research into

  9. Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

  10. A future for nuclear sites beyond their service life. Nuclear site value development; Un avenir pour les sites nucleaires en fin de cycle. Valorisation des sites nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    As the nuclear industry moves into a new development phase, many facilities built in the fifties and sixties are reaching the end of their service life. Dismantling them and rehabilitating the sites on which they stand is a major industrial challenge which will give rise to a number of new projects. AREVA has more than 20 years' experience in these highly technical fields. As more and more sites reach the end of their service life, AREVA considers nuclear site value development as a fully-fledged industrial activity. The group's competencies in this field have been grouped together to form a dedicated entity: the Nuclear Site Value Development Business Unit, created in 2008. Several billion euros are invested in site value development projects which are far-reaching and complex, and often last for several decades. Long before work actually begins, lengthy studies and preparations are required to schedule operations, select the techniques to be used and optimize costs and deadlines. The Nuclear Site Value Development BU is currently working on four major projects involving its own facilities and those of the CEA: - La Hague: dismantling of the first generation of used fuel recycling facilities. Between 1966 and 1998, almost 5,000 tons of used fuel from graphite-moderated gas-cooled reactors, 4,500 tons of light water reactor fuel, as well as fuel from fast reactors and research reactors, were treated at UP2 400, the very first industrial recycling plant on the La Hague site. - Marcoule: first-time dismantling of a recycling plant. 1,000 rooms to be cleaned up, 30,000 tons of waste to be treated, 30 years of work. - Cadarache: first-time dismantling of a Mox fuel fabrication plant. The Cadarache plant was commissioned in 1962 to fabricate fuel for fast reactors; this was followed by MOX fuel for light water reactors, an activity which continued until the plant was shut down in 2003. - Annecy and Veurey: giving a new lease of life to former industrial sites

  11. Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hively, LM

    2003-02-13

    NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (<10{sup -3}/year) in the operational environment. Moreover, the ONLY way to guarantee a controlled failure sequence is to seed progressively larger faults in the equipment or to overload the equipment for accelerated tests. Both of these approaches are infeasible for operational utility machinery, but are straight-forward in a test environment. Our subcontractor has provided such test sequences. Thus, we have revised Tasks 2.1-2.4 to analyze archival test data from such tests. The second phase of our work involves validation of the nonlinear prognostication over the second and third years of the proposed work. Recognizing the inherent limitations outlined in the previous

  12. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Present status of contamination monitoring at the Dalat Nuclear Research Institute (DNRI)

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Van Nguyen [Dalat Nuclear Research Inst. (Viet Nam)

    1997-06-01

    The Dalat nuclear research reactor was renovated and upgraded from the previous TRIGA reactor. In Vietnam, it is a unique nuclear device having suitable neutron flux for the radioisotope production and neutron activation analysis. Soon after the reactor reached its initial criticality in November 1983, a programme has been formed to develop the application of nuclear techniques in various fields. In addition, the use of radioisotopes for diagnostic, therapeutic and other research purposes has been in progress. In order to support these activities, the radiation protection, especially the radiation contamination monitoring has been properly paid attention to. In DNRI, the Radiation Protection Department is responsible for controlling and supervising radiation and working safety for all activities. In this paper, the following items are described on radiation contamination monitoring: controlled area, surface contamination monitoring, and airborne concentration monitoring. (G.K.)

  14. Nuclear energy was the way of the future; 50 anniversary of the research reactor

    NARCIS (Netherlands)

    Wassink, J.

    2013-01-01

    It was the hidden jewel of TU Delft, according to the employees of the nuclear reactor. Others protested against it and insisted that it be eliminated. Following a major mid-life crisis, the Delft research reactor is now in better shape than ever before.

  15. Current status of neutron activation analysis using the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Van Suc; Nguyen Mong Sinh [Nuclear Research Institute, Dalat (Viet Nam)

    1999-10-01

    Neutron activation analysis is one of the most sensitive, rapid, accurated methods for determination of trace elements in different materials. A review is made of the current status of the activities and the results in studying and developing NAA (Neutron Activation Analysis) at the Dalat Nuclear Research Institute and applying this method to different sectors of science and technology in Vietnam. (author)

  16. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY... License No. R- 112, held by Reed College (the licensee), which authorizes continued operation of the Reed... renewed Facility Operating License No. R-112 will expire 20 years from its date of issuance. The...

  17. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  18. ORGANIZATIONAL ASPECT OF SYSTEMATIC RESEARCH AND ANALYSES OF HUMAN RESOURCES (HR) POTENTIAL IN THE NUCLEAR INDUSTRY

    OpenAIRE

    Nikolay I. Ishchenko

    2013-01-01

    The article observes organizational aspects of systematic approach to HR development in the areas of scientific industries, which uses and explores socially dangerous technologies. Specific aspects of the nuclear industry as a large scientific and production area have been observed in the article. Major steps and results of systematic HR research have been formulated. 

  19. UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B M.K. [Principal Investigator, ed.; Goetz, J; Lapik, A; Korolija, M; Prakhov, S; Starostin, A [ed.

    2011-05-18

    This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup 0}, 2{pi}{sup }0, 3{pi}{sup 0}, {eta} , {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4 . It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G-parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta} ,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta} and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular

  20. Quality Assessment of Research Articles in Nuclear Medicine Using STARD and QUADAS-2 Tools

    Directory of Open Access Journals (Sweden)

    Krisana Roysri

    2014-10-01

    details of research methodology so that the reader can assess the quality of research articles. Conclusion: Five nuclear medicine journals with the highest impact factor were comparable in terms of STARD score, although they all showed lack of clarity regarding index test, reference standard, and time interval, according to QUADAS-2. The current data were too limited to determine the journal with the lowest bias. Thus, a comprehensive overview of the research methodology of each article is of paramount importance to enable the reader to assess the quality of articles.

  1. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    Science.gov (United States)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  2. Nuclear Physics Research at the University of Richmond progress report, November 1, 1992--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1993-12-31

    Summarized in this report is the progress achieved during the period from November 1, 1992 to October 31, 1993 under Contract Number DE-FG05-88ER40459. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focussed on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and the University of Pennsylvania.

  3. Comparative analysis of publications on nuclear field in the world, Ukraine and in the institute for nuclear research of the national academy of sciences of Ukraine

    CERN Document Server

    Trofimenko, A P; Lipska, A Y

    2003-01-01

    Comparative analysis of publications in the world, in Ukraine and in the Institute for Nuclear Research of NAS of Ukraine (INR) in nuclear physics and other directions of INR research was performed. Conclusions about the intensity of research, contribution of Ukraine in this research and the INR role in it are presented. It is shown that 30 % of Ukrainian publications in nuclear physics, and about 8 % of them in other fields belong to the INR. Part of Ukrainian authors who publish their works in Ukraine and abroad, as well as the part of foreign authors publishing in Ukraine is shown. Distribution of the INR publications among 16 countries is indicated. Ths mentioned information can be used for profound study of research in Ukraine and INR.

  4. 77 FR 4807 - Revised Fee Policy for Acceptance of Foreign Research Reactor Spent Nuclear Fuel From High-Income...

    Science.gov (United States)

    2012-01-31

    ... National Nuclear Security Administration Revised Fee Policy for Acceptance of Foreign Research Reactor... Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel'' (61 FR 25092, May..., Department of Energy. ACTION: Notice of a change in the fee policy. SUMMARY: This notice announces a...

  5. The Nordic nuclear safety research. Report 1994; Nordisk kernesikkerhedsprogram 1994-1997. Rapport for 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This is a report on the first year of the fifth four-year Nordic Nuclear Safety Research (NKS) program (1994-1997). Three major fields of research have been identified: reactor safety; radioactive waste; and environmental impact. A total of seven projects are now under way within that framework. Together with additional financial support from a number of ministries and companies in the nuclear power field, the total NKS budget will be some USD 1.5 million per year. To this should be added contributions in kind by participating organizations, worth at least another USD 2 million per year, without which this program would not be possible. Finland and Sweden presently operate a total of 16 power producing reactors. Denmark, Finland, Norway and Sweden operate research reactors. There is a plant for nuclear fuel production in Sweden. All five Nordic countries have intermediate waste storages. In Finland and Sweden repositories for low and intermediate level waste are in operation, and repositories for spent fuel are being planned. In addition, there are a number of power, research and naval reactors and other nuclear installations in Nordic surroundings, both in Eastern and Western Europe. Hence, nuclear safety, radiation protection, waste management, radioecology and emergency preparedness issues are of common interest to all Nordic countries. These two reactor safety projects constitute a new angle of reactor safety in the NKS perspective: One project (AFA-1) deals with long-lived low and medium level waste in this respect. Environmental impact of radioactive releases is studied in two radioecology projects. Another aspect of environmental impact is emergency preparedness. A separate project, SAM, has been set up to organize, coordinate and follow up the technical and scientific work. (EG).

  6. Publicly administrated nuclear waste management research programme 1994-1996. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [ed.] [VTT Energy, Espoo (Finland)

    1997-09-01

    The main objective of the JYT-programme has been to provide the authorities with independent information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into following main topic areas: (1) bedrock structure and stability, rock investigation methods and characteristics and flow of ground water, (2) release of radionuclides from a repository and subsequent transport in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management, (4) natural analogue studies, (5) waste management technology and costs and (6) socio political and other societal issues and environmental impact assessment.

  7. Childhood leukaemia risks: from unexplained findings near nuclear installations to recommendations for future research.

    Science.gov (United States)

    Laurier, D; Grosche, B; Auvinen, A; Clavel, J; Cobaleda, C; Dehos, A; Hornhardt, S; Jacob, S; Kaatsch, P; Kosti, O; Kuehni, C; Lightfoot, T; Spycher, B; Van Nieuwenhuyse, A; Wakeford, R; Ziegelberger, G

    2014-09-01

    Recent findings related to childhood leukaemia incidence near nuclear installations have raised questions which can be answered neither by current knowledge on radiation risk nor by other established risk factors. In 2012, a workshop was organised on this topic with two objectives: (a) review of results and discussion of methodological limitations of studies near nuclear installations; (b) identification of directions for future research into the causes and pathogenesis of childhood leukaemia. The workshop gathered 42 participants from different disciplines, extending widely outside of the radiation protection field. Regarding the proximity of nuclear installations, the need for continuous surveillance of childhood leukaemia incidence was highlighted, including a better characterisation of the local population. The creation of collaborative working groups was recommended for consistency in methodologies and the possibility of combining data for future analyses. Regarding the causes of childhood leukaemia, major fields of research were discussed (environmental risk factors, genetics, infections, immunity, stem cells, experimental research). The need for multidisciplinary collaboration in developing research activities was underlined, including the prevalence of potential predisposition markers and investigating further the infectious aetiology hypothesis. Animal studies and genetic/epigenetic approaches appear of great interest. Routes for future research were pointed out.

  8. Decision no. 2011-DC-0215 of the French nuclear safety authority from May 5, 2011, ordering ITER Organization to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0215 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a ITER ORGANIZATION de proceder a une evaluation complementaire de la surete de son installation nucleaire de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the ITER Organization, operator of the ITER tokamak facility of Cadarache (France). (J.S.)

  9. [Recent progress in nuclear magnetic resonance spectrum for drug research and development].

    Science.gov (United States)

    Zhong, Jun; Jiang, Xue-mei

    2015-01-01

    In the process of modern drug research, the new methods and technologies which can detect drug molecules' chemical composition, structure and interaction with biomolecules are always the key scientific problems people care about. Spectra (including IR, UV and NMR) are the most common analytical methods, of which NMR can obtain detailed parameter about the nucleus of organic molecules through researching the laws of nuclear transition in the impact of surrounding chemical environment. The parameter contains rich information about the chemical composition, structure and interaction with other molecules of organic molecules. In many complex environments, such as liquid, solid or gas state, even biological in situ environment, NMR can provide molecules' chemical composition, atomic-resolution three-dimensional structure, information of interaction with each other and dynamic process, especially the information about drug interacting with biomacromolecules. In recent years, the applications of nuclear magnetic resonance spectrum in drug research and development are more and more widespread. This paper reviewed its recent progress in structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in drug research and development. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in drug research. In the second part, we explained the basic principles briefly and summarized progress in methods and techniques for drug research. In the third part, we discussed applications of nuclear magnetic resonance ir structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in detail. The conclusions were stated in the last part.

  10. Ongoing research experiments at the former Soviet nuclear test site in eastern Kazakhstan

    Science.gov (United States)

    Leith, William S.; Kluchko, Luke J.; Konovalov, Vladimir; Vouille, Gerard

    2002-01-01

    Degelen mountain, located in EasternKazakhstan near the city of Semipalatinsk, was once the Soviets most active underground nuclear test site. Two hundred fifteen nuclear tests were conducted in 181 tunnels driven horizontally into its many ridges--almost twice the number of tests as at any other Soviet underground nuclear test site. It was also the site of the first Soviet underground nuclear test--a 1-kiloton device detonated on October 11, 1961. Until recently, the details of testing at Degelen were kept secret and have been the subject of considerable speculation. However, in 1991, the Semipalatinsk test site became part of the newly independent Republic of Kazakhstan; and in 1995, the Kazakhstani government concluded an agreement with the U.S. Department of Defense to eliminate the nuclear testing infrastructure in Kazakhstan. This agreement, which calls for the "demilitarization of the infrastructure directly associated with the nuclear weapons test tunnels," has been implemented as the "Degelen Mountain Tunnel Closure Program." The U.S. Defense Threat Reduction Agency, in partnership with the Department of Energy, has permitted the use of the tunnel closure project at the former nuclear test site as a foundation on which to support cost-effective, research-and-development-funded experiments. These experiments are principally designed to improve U.S. capabilities to monitor and verify the Comprehensive Test Ban Treaty (CTBT), but have provided a new source of information on the effects of nuclear and chemical explosions on hard, fractured rock environments. These new data extends and confirms the results of recent Russian publications on the rock environment at the site and the mechanical effects of large-scale chemical and nuclear testing. In 1998, a large-scale tunnel closure experiment, Omega-1, was conducted in Tunnel 214 at Degelen mountain. In this experiment, a 100-ton chemical explosive blast was used to test technologies for monitoring the

  11. The Defense Threat Reduction Agency's Technical Nuclear Forensics Research and Development Program

    Science.gov (United States)

    Franks, J.

    2015-12-01

    The Defense Threat Reduction Agency (DTRA) Technical Nuclear Forensics (TNF) Research and Development (R&D) Program's overarching goal is to design, develop, demonstrate, and transition advanced technologies and methodologies that improve the interagency operational capability to provide forensics conclusions after the detonation of a nuclear device. This goal is attained through the execution of three focus areas covering the span of the TNF process to enable strategic decision-making (attribution): Nuclear Forensic Materials Exploitation - Development of targeted technologies, methodologies and tools enabling the timely collection, analysis and interpretation of detonation materials.Prompt Nuclear Effects Exploitation - Improve ground-based capabilities to collect prompt nuclear device outputs and effects data for rapid, complementary and corroborative information.Nuclear Forensics Device Characterization - Development of a validated and verified capability to reverse model a nuclear device with high confidence from observables (e.g., prompt diagnostics, sample analysis, etc.) seen after an attack. This presentation will outline DTRA's TNF R&D strategy and current investments, with efforts focusing on: (1) introducing new technical data collection capabilities (e.g., ground-based prompt diagnostics sensor systems; innovative debris collection and analysis); (2) developing new TNF process paradigms and concepts of operations to decrease timelines and uncertainties, and increase results confidence; (3) enhanced validation and verification (V&V) of capabilities through technology evaluations and demonstrations; and (4) updated weapon output predictions to account for the modern threat environment. A key challenge to expanding these efforts to a global capability is the need for increased post-detonation TNF international cooperation, collaboration and peer reviews.

  12. COMMENTS ON "A NEW LOOK AT LOW-ENERGY NUCLEAR REACTION RESEARCH"

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, K.

    2009-12-30

    Cold fusion researchers have accumulated a large body of anomalous results over the last 20 years that they claim proves a new, mysterious nuclear reaction is active in systems they study. Krivit and Marwan give a brief and wholly positive view of this body of research. Unfortunately, cold fusion researchers routinely ignore conventional explanations of their observations, and claim much greater than real accuracy and precision for their techniques. This paper attempts to equally briefly address those aspects of the field with the intent of providing a balanced view of the field, and to establish some criteria for subsequent publications in this arena.

  13. A confirmatory research approach to the measurement of EMI/RFI in commercial nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    The Oak Ridge National Laboratory (ORNL) is conducting confirmatory research on the measurement of electromagnetic/radio frequency interference (EMI/RFI) in nuclear power plants. While it makes a good beginning, the currently available research data are not sufficient to characterize the EMI/RFI environment of the typical nuclear plant. Data collected over several weeks at each of several observation points are required to meet this need. To collect the required data, several approaches are examined, the most promising of which is the relatively new technology of application specific spectral receivers. While several spectral receiver designs have been described in the literature, none is well suited for nuclear power plant EMI/RFI surveys. This paper describes the development of two receivers specifically designed for nuclear power plant EMI/RFI surveys. One receiver surveys electric fields between 5 MHz and 8 GHz, while the other surveys magnetic fields between 305 Hz and 5 MHz. The results of field tests at TVA`s Bull Run Fossil Plant are reported.

  14. Basic Research and Development Effort to Design a Micro Nuclear Power Plant for Brazilian Space Applications

    Science.gov (United States)

    Guimares, L. N. F.; Camillo, G. P.; Placco, G. M.; Barrios, G., A., Jr.; Do Nascimento, J. A.; Borges, E. M.; De Castro Lobo, P. D.

    For some years the Nuclear Energy Division of the Institute for Advanced Studies is conducting the TERRA (Portuguese abbreviation for advanced fast reactor technology) project. This project aims at research and development of the key issues related with nuclear energy applied to space technology. The purpose of this development is to allow future Brazilian space explorers the access of a good and reliable heat, power and/or propulsion system based on nuclear energy. Efforts are being made in fuel and nuclear core design, designing and building a closed Brayton cycle loop for energy conversion, heat pipe systems research for passive space heat rejection, developing computational programs for thermal loop safety analysis and other technology that may be used to improve efficiency and operation. Currently there is no specific mission that requires these technology development efforts; therefore, there is a certain degree of freedom in the organization and development efforts. This paper will present what has been achieved so far, what is the current development status, where efforts are heading and a proposed time table to meet development objectives.

  15. Data base on dose reduction research projects for nuclear power plants. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Yu, C.K.; Roecklein, A.K. [Brookhaven National Lab., Upton, NY (United States)

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  16. A confirmatory research approach to the measurement of EMI/RFI in commercial nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1995-02-01

    The Oak Ridge National Laboratory (ORNL) is conducting confirmatory research on the measurement of electromagnetic/radio frequency interference (EMI/RFI) in nuclear power plants while it makes a good beginning, the currently available research data are not sufficient to characterize the EMI/RFI environment of the typical nuclear plant. Data collected over several weeks at each of several observation points are required to meet this need. To collect the required data, several approaches are examined, the most promising of which is the relatively new technology of application specific spectral receivers. While several spectral receiver designs have been described in the literature, none is well suited for nuclear power plant EMI/RFI surveys. This paper describes the development of two receivers specifically designed for nuclear power plant EMI/RFI surveys. One receiver surveys electric fields between 5 MHz and 8 GHz, while the other surveys magnetic fields between 305 Hz and 5 MHz. The results of field tests at TVA`s Bull Run Fossil Plant are reported.

  17. Nuclear safety research in HGF 2012; Fortschrittsbericht 2012. Programm 'Nukleare Sicherheitsforschung' Helmholtz-Gemeinschaft

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-06-15

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners

  18. Concept of a nuclear powered submersible research vessel and a compact reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Tsuyoshi; Odano, Naoteru; Yoritsune, Tsutomu; Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (Japan); Tokunaga, Sango [Japan Deep Sea Technology Association, Tokyo (Japan)

    2001-07-01

    A conceptual design study of a submersible research vessel navigating in 600 m depth and a compact nuclear reactor were carried out for the expansion of the nuclear power utilization. The mission of the vessel is the research of mechanism of the climate change to predict the global environment. Through conditions of the Arctic Ocean and the sea at high latitude have significant impacts on the global environmental change, it is difficult to investigate those areas by ordinary ships because of thick ice or storm. Therefore the research vessel is mainly utilized in the Arctic Ocean and the sea at high latitude. By taking account of the research mission, the basic specifications of the vessel are decided; the total weight is 500 t, the submersible depth is 600 m, the maximum speed is 12 knots (22.2 km/h), and the number of crews is 16. Nuclear power has an advantage in supplying large power of electricity in the sea for long period. Based on the requirements, it has been decided that two sets of submersible compact reactor, SCR, which is light-weighted and of enhanced safety characteristics of supply the total electricity of 500 kW. (author)

  19. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  20. SAFIR2010. The Finnish research programme on nuclear power plant safety 2007-2010. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. (ed.)

    2009-02-15

    Major part of Finnish public research on nuclear power plant safety during the years 2007-2008 has been carried out in the SAFIR2010 programme. The steering group of SAFIR2010 consists of representatives from Radiation and Nuclear Safety Authority (STUK), Ministry of Employment and the Economy (MEE), VTT Technical Research Centre of Finland (VTT), Teollisuuden Voima Oyj (TVO), Fortum Power and Heat Oyj, Fortum Nuclear Services Oy (Fortum), Tekes - the Finnish Funding Agency for Technology and Innovation (Tekes), Helsinki University of Technology (TKK) and Lappeenranta University of Technology (LUT). In addition to representatives of these organisations, the Steering Group has permanent experts from the Swedish Radiation Safety Authority (SSM) and Fennovoima Oy (Fennovoima). SAFIR2010 research programme is divided in eight research areas that are Organisation and human, Automation and control room, Fuel and reactor physics, Thermal hydraulics, Severe accidents, Structural safety of reactor circuit, Construction safety, and Probabilistic Safety Analysis (PSA). Research projects of the programme are chosen on the basis of annual call for proposals. The annual volume of the SAFIR2010 programme in 2007-2008 has been 6,3-6,7 M euro and approximately 50 person years. Main funding organisations in 2007-2008 were State Waste Management Fund VYR with 2,7-3,0 M euro and VTT with 2,4-2,5 M euro annually. In 2008 research was carried out in 30 projects. The research in the programme has been carried out primarily by VTT Technical Research Centre of Finland. Other research units responsible for the projects solely or in co-operation with other institutions include Lappeenranta University of Technology, Helsinki University of Technology, Tampere University of Technology, Fortum Nuclear Services Oy, Finnish Institute of Occupational Health and Finnish Meteorological Institute. In addition, there have been a few minor subcontractors in some projects. The programme management

  1. SAFIR2010. The Finnish Research Programme on Nuclear Power Plant Safety 2007-2010. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K.; Suolanen, V. (eds.)

    2011-02-15

    Major part of Finnish public research on nuclear power plant safety during the years 2007-2010 has been carried out in the SAFIR2010 programme. The steering group of SAFIR2010 consisted of representatives from Radiation and Nuclear Safety Authority (STUK), Ministry of Employment and the Economy (MEE), Technical Research Centre of Finland (VTT), Teollisuuden Voima Oyj (TVO), Fortum Power and Heat Oyj, Fortum Nuclear Services Oy (Fortum), Finnish Funding Agency for Technology and Innovation (Tekes), Aalto University School of Science and Technology (Aalto, former Helsinki University of Technology) and Lappeenranta University of Technology (LUT). In addition to representatives of these organisations, the Steering Group had permanent experts from the Swedish Radiation Safety Authority (SSM) and Fennovoima Oy (Fennovoima). SAFIR2010 research programme was divided in eight research areas that were Organisation and human, Automation and control room, Fuel and reactor physics, Thermal hydraulics, Severe accidents, Structural safety of reactor circuit, Construction safety, and Probabilistic Safety Analysis (PSA). Research projects of the programme were chosen on the basis of annual call for proposals. The annual volume of the SAFIR2010-programme in 2007-2010 has been 6,5-7,1 M euro and approximately 50 person years. Main funding organisations in 2007-2010 have been the State Waste Management Fund VYR with 2,7-3,0 M euro and VTT with 2,4-2,7 M euro annually. In 2010 research was carried out in 33 projects. The research in the programme has been carried out primarily by VTT Technical Research Centre of Finland. Other research units responsible for the projects solely or in co-operation with other institutions include Lappeenranta University of Technology, Aalto University (previously Helsinki University of Technology), Tampere University of Technology, Fortum Power and Heat Oy (previously Fortum Nuclear Services Oy), Finnish Institute of Occupational Health and Finnish

  2. Radiant research prospects? A review of nuclear waste issues in social science research; Straalande forskningsutsikter? En oeversikt om kaernavfallsfraagor inom samhaellsvetenskaplig forskning

    Energy Technology Data Exchange (ETDEWEB)

    Bergquist, Ann-Kristin [Umeaa universitet, Umeaa (Sweden)

    2007-05-15

    The present report has been put together on behalf of KASAM and constitutes a review of social science research and literature that been produced on the nuclear waste issue in Sweden, with focus on recent research. The aim with the investigation has been to map the scope of and the direction of the independent research about nuclear waste in Sweden, in relation to the research that has been initiated and financed by the stakeholders that are participating in the decision-making process in the nuclear waste issue. Another aim has been to point out areas that have not been taken into consideration.

  3. Health effects[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Mahieu, L.

    1998-07-01

    The objectives of the research in the field of epidemiology , performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality and morbidity in nuclear workers in Belgium; (2) to document the feasibility of retrospective cohort studies in Belgium; (3) to participate in the IARC study. For radiobiology, the main objectives are: (1) to elucidate the mechanisms of the effects of ionizing radiation on the mammalian embryo during the early phase of its development, (2) to assess the genetic risks of maternal exposure to ionizing radiation, (3) to elucidate the mechanisms by which damage to the brain and mental retardation are caused in man after prenatal irradiation. The main achievements in these domains for 1997 are presented.

  4. Progress in high energy physics and nuclear safety : Proceedings of the NATO Advanced Research Workshop on Safe Nuclear Energy

    CERN Document Server

    Polański, Aleksander; Begun, Viktor

    2009-01-01

    The book contains recent results on the progress in high-energy physics, accelerator, detection and nuclear technologies, as well as nuclear safety in high-energy experimentation and in nuclear industry, covered by leading experts in the field. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments are highlighted. Most of the current high-energy experiments and their physical motivation are analyzed. Various nuclear energy safety aspects, including progress in the production of new radiation-resistant materials, new and safe nuclear reactor designs, such as the slowly-burning reactor, as well as the use of coal-nuclear symbiotic methods of energy production can be found in the book.

  5. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henry, C.N. (comp.)

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  6. NCTPlan application for neutron capture therapy dosimetric planning at MEPhI nuclear research reactor.

    Science.gov (United States)

    Elyutina, A S; Kiger, W S; Portnov, A A

    2011-12-01

    The results of modeling of two therapeutic beams HEC-1 and HEC-4 at the NRNU "MEPhI" research nuclear reactor exploitable for preclinical treatments are reported. The exact models of the beams are constructed as an input to the NCTPlan code used for planning Neutron Capture Therapy (NCT) procedure. The computations are purposed to improve the accuracy of prediction of a dose absorbed in tissue with the account of all components of radiation.

  7. Future development of the research nuclear reactor IRT-2000 in Sofia

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T.G. [Institute for Nuclear Research and Nuclear Energy, BAS, Sofia (Bulgaria)

    1999-07-01

    The present paper presents a short description of the research reactor IRT-2000 Sofia, started in 1961 and operated for 28 years. Some items are considered, connected to the improvements made in the contemporary safety requirements and the unrealized project for modernization to 5 MW. Proposals are considered for reconstruction of reactor site to a 'reactor of low power' for education purposes and as a basis for the country's nuclear technology development. (author)

  8. The application of research reactor Maria for analysis of thorium use in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Andrzejewski, K.; Myslek-Laurikainen, B.; Pytel, B.; Szczurek, J. [Dep. Thorium Project, Institute of Atomic Energy POLATOM, 05-400 Otwock-Swierk (Poland); Polkowska-Motrenko, H. [Institute of Nuclear Chemistry and Technology, ul.Dorodna 16 03-195 Warszawa (Poland)

    2010-07-01

    The MARIA reactor, pool-type light-water cooled and beryllium moderated nuclear research reactor was used to evaluate the {sup 233}U breeding during the experimental irradiation of the thorium samples. The level of impurities concentrations was determined using ICP-MS method. The associated development of computer programs for analysis of application of thorium in EPR reactor consist of PC version of CORD-2/GNOMER system are presented. (authors)

  9. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  10. Speech by Prime Minister Francois Fillon. Visit of the Jules Horowitz experimental reactor works on the Commissariat a l'Energie et aux Energies Alternatives site. Cadarache, May 3, 2010; Discours du Premier ministre Francois FILLON Cadarache, lundi 3 mai 2010. Visite du chantier du Reacteur experimental Jules Horowitz sur le site du Commissariat a l'Energie Atomique et aux Energies Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In this speech, the French Prime Minister evokes the present context, the importance of strategic technologies, and the challenge of investing in these technologies within a context of reduction of public expenses. He comments the decision of his government to finance research and education activities in different domains, and more specifically in the energy sector with this fourth generation Jules Horowitz experimental reactor. He recalls that the nuclear sector has always been very important to the eyes of the successive French governments, and outlines how this reactor will contribute to reactor operational optimization, lifetime extension and safety, nuclear fuel development, etc.

  11. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  12. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    Science.gov (United States)

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind.

  13. Inattentional blindness: present knowledge, recent research and implications for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Budau, J. [Bruce Power, Tiverton, Ontario (Canada)

    2011-07-01

    Inattentional blindness can occur when our attention has been assigned to a primary task and not enough attentional resources are left to detect what can be a very important unexpected event. This unexpected event is often something that would be detected under normal conditions. Recent research has shown that perceptual load, and qualities of the unexpected stimulus can impact the occurrence of inattentional blindness. As the nuclear industry has situations of high perceptual load, consideration should be given to the implications of this research. (author)

  14. Inattentional blindness: present knowledge, recent research and implications for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Budau, J. [Bruce Power, Tiverton, Ontario (Canada)

    2011-09-15

    Inattentional blindness can occur when our attention has been assigned to a primary task and not enough attentional resources are left to detect what can be a very important unexpected event. This unexpected event is often something that would be detected under normal conditions. Recent research has shown that perceptual load, and qualities of the unexpected stimulus can impact the occurrence of inattentional blindness. As the nuclear industry has situations of high perceptual load, consideration should be given to the implications of this research. (author)

  15. Current status and prospects of nuclear physics research based on tracking techniques

    Science.gov (United States)

    Alekseev, V. A.; Alexandrov, A. B.; Bagulya, A. V.; Chernyavskiy, M. M.; Goncharova, L. A.; Gorbunov, S. A.; Kalinina, G. V.; Konovalova, N. S.; Okatyeva, N. M.; Pavlova, T. A.; Polukhina, N. G.; Shchedrina, T. V.; Starkov, N. I.; Tioukov, V. E.; Vladymirov, M. S.; Volkov, A. E.

    2017-01-01

    Results of nuclear physics research made using track detectors are briefly reviewed. Advantages and prospects of the track detection technique in particle physics, neutrino physics, astrophysics and other fields are discussed on the example of the results of the search for direct origination of tau neutrino in a muon neutrino beam within the framework of the international experiment OPERA (Oscillation Project with Emulsion-tRacking Apparatus) and works on search for superheavy nuclei in nature on base of their tracks in meteoritic olivine crystals. The spectra of superheavy elements in galactic cosmic rays are presented. Prospects of using the track detection technique in fundamental and applied research are reported.

  16. Nuclear structure research with the Penning-trap mass spectrometer ISOLTRAP at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Neidherr, Dennis [Johannes Gutenberg-Universitaet, Mainz (Germany)

    2009-07-01

    At the double-Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN the cyclotron frequency of short-lived radionuclides is measured in order to determine their mass with a relative uncertainty in the order of 10{sup -8} and below. This ground state property plays an important role in many fields of modern physics from nuclear-structure research to nuclear astrophysics and tests of the weak interaction of the Standard Model. An example for the first one is the evolution of the nuclear shape as a function of the number of neutrons and protons. In 2008 the masses of {sup 223-229}Rn and {sup 143-146}Xe were measured for the first time directly, whereas {sup 229}Rn was even discovered by our Penning trap based experiment. With this mass values one can study the proton-neutron interaction and therefore get information about the nuclear structure like collectivity, the onset of deformation or the geometrical shapes in atomic nuclei. The experimental results as well as the impact on the theoretical models will be presented.

  17. Evaluation of the Finnish nuclear safety research program 'SAFIR2010'

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    A panel of three members has been asked by the Ministry of Employment and the Economy (MEE) to evaluate SAFIR2010, the Finnish research program on nuclear power plant safety. The program was established for the period 2007-2010 to help maintain expertise in nuclear safety, to integrate young people into the research in order to help assure the future availability of expertise, and to support international collaborations. The program is directed by a Steering Group, appointed by MEE, with representatives from all organizations involved with nuclear safety in Finland. SAFIR2010 has consisted of approximately 30 projects from year to year that fall into eight subject areas: 1. Organization and human factors 2. Automation and control room 3. Fuel and reactor physics 4. Thermal hydraulics 5. Severe accidents 6. Structural safety of reactor circuit 7. Construction safety 8. Probabilistic safety analysis (PSA) For each of these areas there are Reference Groups that provide oversight of the projects within their jurisdiction. The panel carried out its evaluation by reviewing copies of relevant documents and, during a one-week period 17-22 January 2010, meeting with key individuals. The results of the panel are provided as general conclusions, responses to questions posed by MEE, challenges and recommendations and comments on specific projects in each subject area. The general conclusions reflect the panel's view that SAFIR2010 is meeting its objectives and carrying out quality research. The questions addressed are: (a.) Are the achieved results in balance with the funding? Are the results exploited efficiently in practice? (b.) How well does the expertise cover the field? Is the entire SAFIR2010 programme balanced to all different fields in nuclear safety? Does it raise efficiently new experts? (c.) Have the 2006 evaluation results been implemented successfully into SAFIR2010 program? (d.) Challenges and recommendations. In general the panel was very positive about

  18. Cost calculations for decommissioning and dismantling of nuclear research facilities, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Inga [StudsvikNuclear AB (Sweden); Backe, S. [Institute for Energy Technology (Norway); Iversen, Klaus [Danish Decommissioning (Denmark); Lindskog, S [Swedish Nuclear Power Inspectorate (Sweden); Salmenhaara, S. [VTT Technical Research Centre of Finland (Finland); Sjoeblom, R. [Tekedo AB (Sweden)

    2006-11-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility. However, no actual international guideline on cost calculations exists at present. Intuitively, it might be tempting to regard costs for decommissioning of a nuclear facility as similar to those of any other plant. However, the presence of radionuclide contamination may imply that the cost is one or more orders of magnitude higher as compared to a corresponding inactive situation, the actual ratio being highly dependent on the level of contamination as well as design features and use of the facility in question. Moreover, the variations in such prerequisites are much larger than for nuclear power plants. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological and other prerequisites. Application of inadequate methodologies especially at early stages has often lead to large underestimations. The goals of the project and the achievements described in the report are as follows: 1) Advice on good practice with regard to: 1a) Strategy and planning; 1b) Methodology selection; 1c) Radiological surveying; 1d) Uncertainty analysis; 2) Techniques for assessment of costs: 2a) Cost structuring; 2b) Cost estimation methodologies; 3) Compilation of data for plants, state of planning, organisations, etc.; 3a) General descriptions of relevant features of the nuclear research facilities; 3b) General plant specific data; 3c) Example of the decommissioning of the R1 research reactor in Sweden; 3d) Example of the decommissioning of the DR1 research reactor in Denmark. In addition, but not described in the present report, is the establishment of a Nordic network in the area including an internet based expert system. It should be noted that the project is planned to exist for at least three years and that the present report is an interim one

  19. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  20. Report from IPNS research plan committee on particle and nuclear physics studies at JHF 50-GeV proton synchrotron

    CERN Document Server

    Enyo, H; Okada, Y

    2003-01-01

    This report summarizes the evaluations and suggestions of IPNS research programs for JHF 50-GeV proton synchrotron. The following subjects are described: the role of JHF for particle and nuclear physics, neutrino oscillation experiment, physics of rare decay K(+) and high intense muon sources, strangeness nuclear physics, experiments of hadron physics and antiproton science experiments. (J.P.N.)

  1. Dense plasmas research in the Chilean Nuclear Energy Commission: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Leopoldo; Silva, Patricio; Moreno, Jose; Zambra, Marcelo; Sylvester, Gustavo; Esaulov, Andrey; Altamirano, Luis [Comision Chilena de Energia Nuclear (CCHEN), Santiago (Chile)]. E-mail: lsoto@cchen.cl

    2002-03-01

    A review of the dense transient plasmas researches, developed in the Chilean Nuclear Energy Commission, is presented. A brief summary of the researches done in collaboration with the Pontificia Universidad Catolica de Chile, between 1993 to 1997, is shown. In addition, the program 'Plasma Physics in Small Devices', developed at the Comision Chilena de Energia Nuclear since 1999 is delineated. The diagnostics development and results obtained during three experiments using small pinch devices are shown: a capillary discharge; a Z pinch driven by a small generator; and a low energy plasma focus. The experiments were complemented by magnetohydrodynamics numerical calculations, in order to assist the design and physical interpretation of the experimental data. The diagnostics techniques used in these experiments include current and voltage monitors, multi pinhole camera, plasma image using a ICCD camera gated from 3 to 20 ns, holographic interferometry, and vacuum ultraviolet spectroscopy. Recently, the pulse power generator SPEED 2, a medium energy and large current device (187 kJ, 4 MA, 300 kV, 400 ns, dI/dt{approx}10{sup 13} A/s), has been transferred from the Duesseldorf University to the Comision Chilena de Energia Nuclear. Future experiments, and the perspectives of using this device, are also discussed. (author)

  2. Nuclear Fission Reactor Safety Research in FP7 and future perspectives

    CERN Document Server

    Garbil, Roger

    2014-01-01

    The European Union (ЕU) has defined in the Europe 2020 strategy and 2050 Energy Roadmap its long-term vision for establishing a secure, sustainable and competitive energy system and setting up legally binding targets by 2020 for reducing greenhouse emissions, by increasing energy efficiency and the share of renewable energy sources while including a significant share from nuclear fission. Nuclear energy can enable the further reduction in harmful emissions and can contribute to the EU’s competitive energy system, security of supply and independence from fossil fuels. Nuclear fission is a valuable option for those 14 EU countries that promote its use as part of their national energy mix. The European Group on Ethics in Science and New Technologies (EGE) adopted its Opinion No.27 ‘An ethical framework for assessing research, production and use of energy’ and proposed an integrated ethics approach for the research, production and use of energy in the EU, seeking equilibrium among four criteria – access ...

  3. ORNL Nuclear Safety Research and Development Program Bimonthly Report for July-August 1968

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.

    2001-08-17

    The accomplishments during the months of July and August in the research and development program under way at ORNL as part of the U.S. Atomic Energy Commission's Nuclear Safety Program are summarized, Included in this report are work on various chemical reactions, as well as the release, characterization, and transport of fission products in containment systems under various accident conditions and on problems associated with the removal of these fission products from gas streams. Although most of this work is in general support of water-cooled power reactor technology, including LOFT and CSE programs, the work reflects the current safety problems, such as measurements of the prompt fuel element failure phenomena and the efficacy of containment spray and pool-suppression systems for fission-product removal. Several projects are also conducted in support of the high-temperature gas-cooled reactor (HTGR). Other major projects include fuel-transport safety investigations, a series of discussion papers on various aspects of water-reactor technology, antiseismic design of nuclear facilities, and studies of primary piping and steel, pressure-vessel technology. Experimental work relative to pressure-vessel technology includes investigations of the attachment of nozzles to shells and the implementation of joint AEX-PVFX programs on heavy-section steel technology and nuclear piping, pumps, and valves. Several of the projects are directly related to another major undertaking; namely, the AEC's standards program, which entails development of engineering safeguards and the establishment of codes and standards for government-owned or -sponsored reactor facilities. Another task, CHORD-S, is concerned with the establishment of computer programs for the evaluation of reactor design data, The recent activities of the NSIC and the Nuclear Safety journal in behalf of the nuclear community are also discussed.

  4. Research on pressure control of pressurizer in pressurized water reactor nuclear power plant

    Science.gov (United States)

    Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang

    2010-07-01

    Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.

  5. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

  6. Aspects of public opinion research in risk perception studies covering the nuclear field

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Katia Suemi; Hiromoto, Goro, E-mail: ktanimoto@ipen.b, E-mail: hiromoto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A project for site selection and construction of a national radioactive waste repository is underway at the Comissao Nacional de Energia Nuclear. Public acceptance is determinant to the deployment of an undertaking of this size. A major concern regarding the use of nuclear energy are the problems related to safe management of the radioactive waste. For effective communication between decision makers and the public, a mutual understanding of views, as well as attitudes towards risk, is needed. The use of opinions polls is necessary in order to achieve it. This work aims to point out the major aspects to be approached by an opinion poll for the study of risk perception on the candidate regions for repository construction. A risk perception research model is presented, to be applied to the case of radioactive waste disposal, along with theoretical support to the organization and implementation of its structure. (author)

  7. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  8. Action research for the development of the organizational climate in nuclear power plants. Review of the 6-year research and development program

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michio [Kumamoto Univ. (Japan). Faculty of Education; Misumi, Jyuji; Misumi, Emiko; Kotani, Fumio; Fukui, Hirokazu; Sakurai, Yukihiro

    1998-09-01

    The Institute of Nuclear Safety System, Incorporated and the Japan Institute for Group Dynamics have conducted action research for the development of the organizational climate in nuclear power plants. First, two types of scales were completed. One is for measuring the leadership behavior of leaders working at nuclear power plants and the other is for measuring the safety consciousness of workers. After having diagnosed the reality of actual nuclear power plants using those scales developed, leadership training courses were developed and implemented successfully. Analyses of the commitment to organization and self-efficacy and the relationship between leadership and personality were conducted as well. (author)

  9. Radiological and environmental consequences. Final report of the Nordic Nuclear Safety Research project BOK-2

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E. [Icelandic Radiation Protection Institute (Iceland)

    2002-11-01

    Final report of the Nordic Nuclear Safety Research project BOK-2, Radiological and Environmental Consequences. The project was carried out 1998-2001 with participants from all the Nordic countries. Representatives from the Baltic States were also invited to some of the meetings and seminars. The project consisted of work on terrestrial and marine radioecology and had a broad scope in order to enable participation of research groups with various fields of interest. This report focuses on the project itself and gives a general summary of the studies undertaken. A separate technical report summarises the work done by each research group and gives references to papers published in scientific journals. The topics in BOK-2 included improving assessment of old and recent fallout, use of radionuclides as tracers in Nordic marine areas, improving assessment of internal doses and use of mass spectrometry in radioecology. (au)

  10. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen [Idaho National Laboratory

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  11. Geochemistry research planning for the underground storage of high-level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  12. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor, Rev. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun

    2005-12-15

    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  13. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun

    2005-07-15

    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  14. Review on use of neutron radiography at Saclay Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, G. [Saclay Nuclear Research Centre DRE/SRO, Gif-sur-Yvette (France)

    1996-11-01

    The Commissariat a l`Energie Atomique (CEA) operates three research reactors at Saclay. Each of them is equipped with a Neutron Radiology facility. Osiris is involved in studies of nuclear fuel rod behaviour during accidental events. The underwater NR facility allows to obtain images of the rods before and after power ramp. The Orphee installation is devoted to industrial application of NR including non destructive testing and real time imaging. The main activity concerns the examination of the pyrotechnic devices of the Ariane launcher programmes. Other areas of interest are also described. (author) 2 figs., 1 tab., 5 refs.

  15. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  16. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The appendices contains additional relevant information on: Environment Australia EIS Guidelines, composition of the Study Team, Consultation Activities and Resuits, Relevant Legislation and Regulatory Requirements, Exampies of Multi-Purpose Research Reactors, Impacts of Radioactive Emissions and Wastes Generated at Lucas Heights Science and Technology Centre, Technical Analysis of the Reference Accident, Flora and Fauna Species Lists, Summary of Environmental Commitments and an Outline of the Construction Environmental Management Plan Construction Environmental Management Plan figs., ills., refs. Prepared for Australian Nuclear Science and Technology Organisation (ANSTO)

  17. Resource Letter MP-3: The Manhattan Project and Related Nuclear Research

    Science.gov (United States)

    Reed, B. Cameron

    2016-10-01

    This Resource Letter is a supplement to the earlier Resource Letters MP-1 and MP-2, and provides further sources on the Manhattan Project and related research. Books, review papers, journal articles, videos, and websites are cited for the following topics: general works, technical works, biographical and autobiographical works, foreign wartime nuclear programs and related allied intelligence, the use of the bombs against Hiroshima and Nagasaki, technical papers of historical interest, postwar policy and technical developments, and educational materials. Together, these three Resource Letters describe nearly 400 sources of information on the Manhattan Project.

  18. [Cyclotron based nuclear science]. Progress in research, April 1, 1992--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the {mu} {yields} e{gamma} decay rate and determination of the Michel parameter in normal {mu} decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z{sub projectile} -- Z{sub target} combinations. Studies of the ({alpha},2{alpha}) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references.

  19. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1995-12-31

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.

  20. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  1. The awareness of the functional and near population with the relation to the research nuclear reactor IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Vanni, Silvia R.; Martins, Maria da Penha S. [Centro Tecnologico da Marinha (CTMSP), SP (Brazil); Sabundjian, Gaiane, E-mail: gdjian@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    After the natural accident that hit Japan in the beginning of March of 2011, and that ended into an accident of great proportions in the nuclear installations of Fukushima, it has now the debate over the lack of information that the population in general has over the nuclear energy. The dissemination of information, about the operation and security of the nuclear reactors, has the purpose of softening the effect that the pessimistic atmosphere has over its using. This study was reinforced by the memories of serious consequences due to other nuclear accidents that have already happened (Chernobyl, Three-Mile and Hiroshima/Nagasaki event), bringing insecurity, fear and even revenge from part of the public. Over all, people are not sufficiently informed about the positives and negatives aspects of the nuclear energy. It is necessary the adoption of a clear and aware policy with the population, about the pacific use of nuclear energy. Today, the international and national organizations of control of nuclear energy, the International Atomic Energy Agency (IAEA) and the Comissao Nacional de Energia Nuclear (CNEN), have respectively, published information about this subject using a more professional way and of hard access for the public in general. This work has the goal of checking the level of information that the population of workers and individuals of the close public to the research nuclear reactor IEA-R1, located in the Institute of Nuclear Research (IPEN), University City, Sao Paulo, Brazil, has over it. The way used for this study, involved questionnaires with straight questions and of simple language over the subject, to people of all different social, economic and cultural classes, from 12 to 80 years old. From the results found after this work, it was verified the necessity to elaborate a project of awareness of information and clarification about the nuclear energy, using ways of communication that exist and that are easy for the public to understand. (author)

  2. Nuclear Chemistry.

    Science.gov (United States)

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  3. The European Research on Severe Accidents in Generation-II and -III Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Van Dorsselaere

    2012-01-01

    Full Text Available Forty-three organisations from 22 countries network their capacities of research in SARNET (Severe Accident Research NETwork of excellence to resolve the most important remaining uncertainties and safety issues on severe accidents in existing and future water-cooled nuclear power plants (NPP. After a first project in the 6th Framework Programme (FP6 of the European Commission, the SARNET2 project, coordinated by IRSN, started in April 2009 for 4 years in the FP7 frame. After 2,5 years, some main outcomes of joint research (modelling and experiments by the network members on the highest priority issues are presented: in-vessel degraded core coolability, molten-corium-concrete-interaction, containment phenomena (water spray, hydrogen combustion…, source term issues (mainly iodine behaviour. The ASTEC integral computer code, jointly developed by IRSN and GRS to predict the NPP SA behaviour, capitalizes in terms of models the knowledge produced in the network: a few validation results are presented. For dissemination of knowledge, an educational 1-week course was organized for young researchers or students in January 2011, and a two-day course is planned mid-2012 for senior staff. Mobility of young researchers or students between the European partners is being promoted. The ERMSAR conference is becoming the major worldwide conference on SA research.

  4. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  5. Scientometric mapping of vacuum research in nuclear science & technology: a global perspective

    Science.gov (United States)

    Kademani, B. S.; Sagar, A.; Kumar, A.; Kumar, V.

    2008-05-01

    This paper attempts to analyse the growth and development of Vacuum research in Nuclear Science and Technology, as reflected in publication output covered by International Nuclear Information System (INIS) database during 2002-2006. A total of 12027 papers were published in the field of vacuum science. United States topped the list with 1936 (16.10%) publications followed by Japan with 1770 (14.70%) publications, The highest number of publications (3276) were published in 2004. The average number of publications published per year were 2405.4. The highest number of publications were in 'Physics of Elementary Particles and Fields' with 2644 (21.98%) publications. The authorship and collaboration trend is towards multi-authored papers. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 223 publications. The most preferred journals for publication were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review -D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers.

  6. Progress of a research program on seismic base isolation of nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, K.; Ando, K.; Shibata, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    2000-05-01

    Development of an evaluation code and related test program have been conducted to provide the technical base of the seismic base isolation of nuclear components. In the Phase I (FY1991-FY1995) of the research, a methodology and a computer code Ver.1 for evaluating the effect of seismic base isolation of nuclear components were developed. Case study was carried out on the effectiveness of base isolation of emergency transformer. Difference of input earthquake motion, type of isolation device and influence of the soil property were studied. Case study of a cost/benefit analysis in introducing the base isolation to emergency transformer was tried as an application of the computer code. As the Phase II (FY1996-FY2000), in order to obtain the test data of component base isolation systems, a verification test program, in which the test utilizing the real earthquake and the test by a shaking table are to be carried out, has been initiated since FY1996. In the tests, dynamic response and failure mode of base isolation systems will be examined. This paper overviews the progress of Phase I and II researches. (orig.)

  7. [Development of the software package of the nuclear medicine data processor for education and research].

    Science.gov (United States)

    Maeda, Hisato; Yamaki, Noriyasu; Azuma, Makoto

    2012-01-01

    The objective of this study was to develop a personal computer-based nuclear medicine data processor for education and research in the field of nuclear medicine. We call this software package "Prominence Processor" (PP). Windows of Microsoft Corporation was used as the operating system of this PP, which have 1024 × 768 image resolution and various 63 applications classified into 6 groups. The accuracy was examined for a lot of applications of the PP. For example, in the FBP reconstruction application, there was visually no difference in the image quality as a result of comparing two SPECT images obtained from the PP and GMS-5500A (Toshiba). Moreover, Normalized MSE between both images showed 0.0003. Therefore the high processing accuracy of the FBP reconstruction application was proven as well as other applications. The PP can be used in an arbitrary place if the software package is installed in note PC. Therefore the PP is used to lecture and to practice on an educational site and used for the purpose of the research of the radiological technologist on a clinical site etc. widely now.

  8. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  9. Experience in implementation of «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Kosilov, A. N.

    2017-01-01

    This paper describes the experience of teaching «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer and master degree programs and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academic Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of «Nuclear Knowledge Management» course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association «Consortium of ROSATOM supporting universities».

  10. RATU2. The Finnish research programme on the structural integrity of nuclear power plants. Interim report 1995 - April 1997

    Energy Technology Data Exchange (ETDEWEB)

    Solin, J.; Sarkimo, M.; Asikainen, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity] [eds.

    1997-06-01

    The projects within the Finnish public funded research programme on the structural integrity of nuclear power plants (RATU2) are briefly introduced and the scientific and technical results obtained during the first two years, 1995-April 1997, are summarised in this report. The RATU2 programme was started in 1995 and will be continued until 1998. In 1996 this programme represented 6 % of the nuclear energy R and D in Finland. The research programme is mainly publicly funded and supplies impartial expertise for the regulation of nuclear energy. It also plays an important role in the education of new experts, technology transfer and international exchange of scientific results. The programme is organised into five research projects on the following topics: Material degradation in the reactor environment, Reliability of nondestructive inspections of nuclear power plants, Structural analyses for nuclear power plant components, Maintenance strategies and dependability, and Fire safety. The ageing of the structures and components in the Finnish nuclear power plants is one of the main issues to be considered when safety and economic operation of the plants is evaluated. At the same time, ways are being sought to extend the lifetime of components. The first half of the RATU2 research programme has already brought significant scientific findings and useful applications for ensuring the reliability of NPP components. New technology has been transferred to domestic use through active participation to international co-operation. On the other hand, international acceptance of the results has provided valuable feedback and benchmarking. (orig.). 112 refs.

  11. Bright flash neutron radiography capability of the research reactor at the McClellan Nuclear Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, Berkeley, CA 94720 (United States); Lerche, M. [McClellan Nuclear Research Center, 5335 Price Avenue Building 258, McClellan, CA 95652 (United States); Schillinger, B. [Forschungsreaktor FRM-II, Technische Universität München, D-85747 Garching (Germany); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2014-06-01

    The capability to produce a bright, short neutron pulse at the McClellan Nuclear Research Center (MNRC) can be very attractive for some neutron imaging applications. Complementary to conventional thermal neutron radiography conducted at the reactor, operating at the average power of 1 MW, a short pulse of ∼25 ms FWHM duration can be produced at MNRC with the peak power exceeding 350 MW. Combination of a fast thermal neutron counting detector with a short neutron pulse at MNRC, enables high-resolution stroboscopic imaging to complement conventional neutron radiography. The results presented in this paper demonstrate the MNRC capabilities for conducting conventional thermal neutron radiography, demonstrating imaging spatial resolution below 100 μm, as well as bright flash neutron radiography with multiple nearly simultaneous events detected with microsecond timing resolution.

  12. Implementation of manufacturing data management application in the scientific research project. Case: CERN, the European Organization for Nuclear Research

    CERN Document Server

    Saifoulina, Margarita

    2010-01-01

    This Bachelor’s thesis examined the implementation process of an MTF (Manufacturing and Test Folder) application in the CLIC (Compact Linear Collider) Radio Frequency Structure Development project for manufacturing data management purposes. The primary goal of the study was to investigate how MTF implementation and its integration with CERN EDMS (Engineering and Equipment Data Management System) system could facilitate product life cycle through the supply chain, and could affect on manufacturing operations performance in internaland external levels. The aim of the study was also to find out implementation differences within CERN (European Organization for Nuclear Research) projects. The study is divided into two parts: a qualitative theory section and an empirical section. In the theory section differences of features between PDM (Product Data Management), EDM (Engineering Data Management) and PLM (Product Life Cycle Management) systems were studied. The thesis examined the benefits and managerial challeng...

  13. V meeting on results of Research Plan of Nuclear Safety Conseil; V Jornadas sobre Resultados del Plan de Investigacion del CSN

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This book presents the papers presented at the meeting on results of Research Plan of CSN (Nuclear Safety Conseil). The main sessions were : 1.- Nuclear Safety. 2.- Radiation protection and Radioactive wastes. 3.- Riskpercom.

  14. Status of neutron beam utilization at the Dalat nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dien, Nguyen Nhi; Hai, Nguyen Canh [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  15. Paul Scherrer Institut annual report 1994. Annex IV: PSI nuclear energy and safety research progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.; Kallfelz, J.M.; Mathews, D. [eds.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    Nuclear energy research in Switzerland is concentrated at PSI. It is explicitly mentioned in the Institute`s official charter and commands about one fifth of the Institute`s federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI`s activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs.

  16. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  17. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option research center

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the Research Center, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the Research Center and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  18. Sustainability indicators for innovation and research institutes of nuclear area in Brazil; Indicadores de sustentabilidade para institutos de pesquisa e inovacao da area nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S.F.; Barreto, A.A.; Rodrigues, P.C.H.; Feliciano, V.M.D., E-mail: sfa@cdtn.br, E-mail: aab@cdtn.br, E-mail: pchr@cdtn.br, E-mail: vmfj@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-11-01

    Indicators are relevant tools for measuring sustainability process. In this study, the relevance of sustainability indicators appropriate for research and innovation institutes in Brazil is discussed. As reference for case study, nuclear research and innovation institutes were chosen. Sixty-nine sustainability indicators were considered. Some of these indicators were obtained from lists in the literature review, distributed between the dimensions environmental, economic, social, cultural and institutional. The other indicators were developed through discussions between professionals from nuclear, environmental, economic, social and cultural areas. Among the investigated indicators, 32 were selected as being the most relevant. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed. (author)

  19. Health status of radiation workers in an institute of nuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, F.; Paunescu, G.; Stroe, F. [Inst. of Public Health, Bucharest (Romania); Andrei, N.

    2000-05-01

    The aim of this study was the identification of the changes in health condition of workers from an institute of nuclear research. Thirty-five workers (25 male and 10 female) radiation exposed to low doses of ionizing radiation were admitted in the Radiopathology Centre Bucharest, after a selection performed during the annual check-up. The workers have had different professions: nuclear fuel processor, engineer laboratory technician, electrician, instrument technician. The time of exposure to ionizing radiation was between 6 to 25 years. Medical specialists in occupational health, dermatology, ophthalmology, O.R.L., endocrinology, haematology, neurology and psychology investigated them. The following lab tests were performed: haematological examination, biochemical examination, immunology tests, alergology skin tests, functional lung tests and cardiogram. No special problems concerning the exposure to ionizing radiation were found, but the following diseases were detected in some extent: neurasthenia, high blood pressure, ischemic heart disease, digestive system disorders, endocrinology disorders and anaemia. High blood pressure, ischemic heart disease and digestive system disorders were related with stress or job strain. Anaemia occurred in connection with gynaecological disorders. Some thyroid dysfunction appeared because of low dietary iodine content in the Sub-Carpathian region. The focus of the psychological exam was the identification of the effect of different factors (exogenous, endogenous or multidimensional) over a person, that could influence the psychological potential. The psychological exam reveals the following disturbances: asthenia, tiredness, chronic fatigue, psycho-emotional impairment, lapses of attention, anxiety. These disturbances may be in relation both with job strain (especially a substantial stress factor for nuclear fuel processor and engineer laboratory technician) and the syndrome of workplace. (author)

  20. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  1. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Determination of Absorbed and Effective Dose from Natural Background Radiation around a Nuclear Research Facility

    Directory of Open Access Journals (Sweden)

    M. A. Musa

    2011-01-01

    Full Text Available Problem statement: This study presents result of outdoor absorbed dose rate and estimated effective dose from the naturally occurring radionuclides 232Th and 238U series 40K, around a Nuclear Research Reactor at the Centre for Energy Research and Training (CERT, Zaria, Nigeria. Approach: A high-resolution in situ ?-ray spectrometry was used to carry out the study. CERT houses a 30Kw Research Reactor and other neutron and gamma sources for Research and Training. Results: The values of absorbed dose rate in air for 232Th, 238U and 40K range from 8.2 ± 2.5-24.5 ± 3.6 nGy h?1, 1.9 ± 1.2-4.6 ± 2.5 nGy h?1 and 12.2 ± 5-38 ± 6.7n Gy h?1 respectively . The estimated total annual effective dose outdoor for the sites range from 27.3-79.9 ?Sv y?1.Conclusions: This showed that radiation exposure level for the public is lower than the recommended value of 1 mSv y?1.Hence, the extensive usage of radioactive materials within and around CERT does not appear to have any impact on the radiation burden of the environment.

  3. The role of research in nuclear regulation: A US industry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Simard, R.L.

    1997-01-01

    The author reviews the focus of research efforts within the NRC following the development of nuclear energy. Initial work focused on research in support of rulemaking and generic-issue resolution largely to support the licensing of U.S. plants that was going on at the time, including study of design basis accidents. Going into the 1980`s there was a need for information on accidents beyond the design basis, following the TMI accident. Aging research became relevant with the plants accumulating years of operation. More recently effort has gone into work on more advanced reactor designs. Looking ahead the author argues there may be few unresolved safety issues, and analytic tools are presently very well developed. So the question of what to do in the future is relevant, especially when coupled with changing responsibilities, changing legislation, changing budgets, changing market forces, and changing expectations from consumers. So the author poses questions which should be addressed as one looks at planning for the role of research in the NRC in the future.

  4. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    Science.gov (United States)

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  5. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  6. Development of a computational database for probabilistic safety assessment of nuclear research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Vagner S.; Oliveira, Patricia S. Pagetti de; Andrade, Delvonei Alves de, E-mail: vagner.macedo@usp.br, E-mail: patricia@ipen.br, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The objective of this work is to describe the database being developed at IPEN - CNEN / SP for application in the Probabilistic Safety Assessment of nuclear research reactors. The database can be accessed by means of a computational program installed in the corporate computer network, named IPEN Intranet, and this access will be allowed only to professionals previously registered. Data updating, editing and searching tasks will be controlled by a system administrator according to IPEN Intranet security rules. The logical model and the physical structure of the database can be represented by an Entity Relationship Model, which is based on the operational routines performed by IPEN - CNEN / SP users. The web application designed for the management of the database is named PSADB. It is being developed with MySQL database software and PHP programming language is being used. Data stored in this database are divided into modules that refer to technical specifications, operating history, maintenance history and failure events associated with the main components of the nuclear facilities. (author)

  7. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  8. The tissue bank at the national nuclear research institute in Mexico.

    Science.gov (United States)

    Esther Martínez-Pardo, María; Lourdes Reyes-Frías, Ma

    2003-01-01

    The Instituto Nacional de Investigaciones Nucleares (ININ, The National Nuclear Research Institute) received during 1997-1998 strong support of the International Atomic Energy Agency (IAEA), to establish the first and only one tissue bank (BTR ININ tissue bank) in Mexico that uses ionising radiation as sterilising agent. In that time, the BTR staff was trained in different tissue banks in several countries. Basic equipment for tissue processing donated by the IAEA was received in 1998. In July, 1999 the Mexican Health Secretariat gave the Sanitary License No. 1062000001 to the BTR to operate as an official organ and tissue bank. In August, 2001 the ININ and the Hospital Materno Infantil (HMI-ISSEMYM) signed an agreement to collaborate in amnion processing. The hospital is responsible for donor selection, serology tests, tissue procurement and washing, since this hospital is the BTR amnion supplier. The tissues are collected by ININ weekly with complete documentation. The BTR is responsible for processing: cleaning, air drying, packaging, labelling, microbiological control and sterilisation by gamma irradiation. The sterilised tissue is kept under quarantine for 6 months to obtain the results of the donor second serology test. From March to June, 2002 the BTR has processed 347.86 units (50 cm(2) each), is say, 17,393 cm(2). In addition, the pig skin xenograft process has been implemented and a protocol for clinical applications of it is running at the Hospital Central Sur de Alta Especialidad (PEMEX). Also the ININ tissue bank present status and perspectives are described.

  9. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  10. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  11. Research and development for decontamination system of spent resin in Hanbit Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Gi Hong [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-12-15

    When reactor coolant leaks occur due to cracks of a steam generator tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000-7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In

  12. Bright Flash Neutron Radiography at the McClellan Nuclear Research Reactor

    Science.gov (United States)

    Lerche, M.; Tremsin, A. S.; Schillinger, B.

    The University of California, Davis McClellan Nuclear Research Center (MNRC) operates a 2 MW TRIGATM reactor, which is currently the highest power TRIGATM reactor in the United States. The Center was originally build by the US Air Force to detect hidden defects in aircraft structures using neutron radiography; the Center can accommodate samples as large as 10.00 m long, 3.65 m high, and weighing up to 2,270 kg. The MNRC reactor can be pulsed to 350 MW for about 30 ms (FWHM). The combination of a short neutron pulse with a fast microchannel plate based neutron detector enables high-resolution flash neutron radiography to complement conventional neutron radiography

  13. Results from the Nuclear Plant Aging Research Program: Their use in inspection activities

    Energy Technology Data Exchange (ETDEWEB)

    Gunther, W.; Taylor, J. (Brookhaven National Lab., Upton, NY (USA))

    1990-09-01

    The US NCR's Nuclear Plant Aging Research (NPAR) Program has determined the susceptibility to aging of components and systems, and the potential for aging to impact plant safety and availability. The NPAR Program also identified methods for detecting and mitigating aging in components. This report describes the NPAR results which can enhance NRC inspection activities. Recommendations are provided for communicating pertinent information to NRC inspectors. These recommendations are based on a detailed assessment of the NRC's Inspection Program, and feedback from resident and regional inspectors as described within. Examples of NPAR report summaries and aging inspection guides for components and systems are included. 13 refs., 3 figs., 4 tabs.

  14. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  15. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    Science.gov (United States)

    Reece, Charles E.

    2016-12-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  16. Seismic hazard analysis of nuclear installations in France. Current practice and research

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadioun, B. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1997-03-01

    The methodology put into practice in France for the evaluation of seismic hazard on the sites of nuclear facilities is founded on data assembled country-wide over the past 15 years, in geology, geophysics and seismology. It is appropriate to the regional seismotectonic context (interplate), characterized notably by diffuse seismicity. Extensive use is made of information drawn from historical seismicity. The regulatory practice described in the RFS I.2.c is reexamined periodically and is subject to up-dating so as to take advantage of new earthquake data and of the results gained from research work. Acquisition of the basic data, such as the identification of active faults and the quantification of site effect, which will be needed to achieve improved preparedness versus severe earthquake hazard in the 21st century, will necessarily be the fruit of close international cooperation and collaboration, which should accordingly be actively promoted. (J.P.N.)

  17. Future challenges for nuclear power plant development research, and for radiological protection sciences.

    Science.gov (United States)

    Lazo, Edward

    2007-11-01

    The promise of the future shines brightly for nuclear energy technology and production, yet also holds many challenges. Focus on new reactor designs is currently aiming at what is termed the fourth generation of reactors, which will come into operation after 2030. The 10 countries participating in the Generation-IV International Forum to develop the new generation of reactors have designated six reactor designs that will be studied. This paper will briefly discuss some of these challenges in new reactor designs in general. In addition to the challenges posed by new reactor designs, radiation protection is also faced with a series of challenges for the future. These are borne from experience with the implementation of the current system of radiological protection, from the evolution of radiation biological research, and from changes in society in the area of radiological risk assessment and management. This paper will address all of these emerging challenges, and point towards approaches to resolve them in the future.

  18. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  19. Eu-funded nuclear research on plant life management in the 4. and 5. framework programme

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P.; Van Goethem, G. [European Commission, Dir. General Research, Bruxelles (Belgium)

    2001-07-01

    In this paper an overview will be given of the European Union EURATOM research in the field of plant life management and ageing of structural components. The results obtained so far in the projects executed under the 5. framework programme (FP-5/1999-2002) will be presented and discussed in detail. The objectives of the 5. framework programme, which is end-user driven, are: 1) to develop a common basis for the continued safe operation and prolonging the safe operational life-spans of existing nuclear installations; 2) to develop better methods for their inspection, maintenance and management (both in terms of performance and occupational exposure). The following three sections were proposed under this heading of the work programme: Integrity of equipment and structures, on-line monitoring, inspection and maintenance, and organisation and management of safety. Besides the traditional technological challenges, socio-economic concerns are also taken on board, such as public acceptance and cost of the nuclear option as well as plant simplification and man-technology-organisation interaction. An additional challenge for the EU consists of the enlargements process towards Central and Eastern European Countries in the coming years. Therefore FP5 pays attention also to plant safety assessments of VVER reactors and to the spreading of the new safety culture in these candidate countries in co-operation with similar activities run at the Commission especially under the programmes of Tacis/Phare and of the Joint Research Centre (JRC). In the area of plant life management so far 18 projects have been selected for funding by the European Commission. Most of them are costs shared actions, which means that the European Commission on the one hand and the project partners on the other hand provide each 50 % of the necessary funding. The total contract value of the selected projects is about 18 million euros. (authors)

  20. Nuclear data production, calculation and measurement: a global overview of the gamma heating issue

    Directory of Open Access Journals (Sweden)

    Gueton O.

    2013-03-01

    Full Text Available The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR, is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…. This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: Development of a Monte Carlo code (FIFRELIN to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE of CEA, Cadarache to increase the experimental measurement accuracy.

  1. Nuclear control

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wan Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    International cooperation in nuclear industries requires nuclear control as prerequisites. The concept of nuclear control is based on the Treaty on the Non-proliferation of Nuclear Weapon (NPT). The International Atomic Energy Agency (IAEA) plays central role in implementing nuclear control. Nuclear control consists of nuclear safeguards, physical protection, and export/import control. Each member state of NPT is subject to the IAEA`s safeguards by concluding safeguards agreements with the IAEA. IAEA recommends member states to implement physical protection on nuclear materials by `The Physical Protection of Nuclear Material` and `The Convention on the Physical Protection of Nuclear Material` of IAEA. Export/Import Control is to deter development of nuclear weapons by controlling international trade on nuclear materials, nuclear equipments and technology. Current status of domestic and foreign nuclear control implementation including recent induction of national inspection system in Korea is described and functions of recently set-up Technology Center for Nuclear Control (TCNC) under the Korea Atomic Energy Research Institute (KAERI) are also explained. 6 tabs., 11 refs. (Author).

  2. Planning and Response to the Detonation of an Improvised Nuclear Device: Past, Present, and Future Research

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, A

    2008-07-31

    While the reality of an improvised nuclear device (IND) being detonated in an American city is unlikely, its destructive power is such that the scenario must be planned for. Upon reviewing the academic literature on the effects of and response to IND events, this report looks to actual responders from around the country. The results from the meetings of public officials in the cities show where gaps exist between theoretical knowledge and actual practice. In addition to the literature, the meetings reveal areas where future research needs to be conducted. This paper recommends that local response planners: meet to discuss the challenges of IND events; offer education to officials, the public, and responders on IND events; incorporate 'shelter-first' into response plans; provide information to the public and responders using the 3 Cs; and engage the private sector (including media) in response plans. In addition to these recommendations for the response planners, the paper provides research questions that once answered will improve response plans around the country. By following the recommendations, both groups, response planners and researchers, can help the country better prepare for and mitigate the effects of an IND detonation.

  3. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  4. Study on operation conditions and an operation system of a nuclear powered submersible research vessel, 'report of working group on application of a very small nuclear reactor to an ocean research'

    Energy Technology Data Exchange (ETDEWEB)

    Ura, Tamaki [Tokyo Univ., Tokyo (Japan); Takamasa, Tomoji [Tokyo Univ. of Mercantile Marine, Tokyo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (JP)] [and others

    2001-07-01

    JAERI has studied on design of a nuclear powered submersible research vessel, which will navigate under sea mainly in the Arctic Ocean, as a part of the design activity of advanced marine reactors. This report describes operation conditions and an operating system of the vessel, which were discussed by the specialists of hull design, sound positioning, ship motions and oceanography, etc. The design conditions on ship motions for submersible vessels were surveyed considering regulations in our country, and ship motions were evaluated in the cases of underwater and surface navigations taking account of observation activities in the Arctic Ocean. The effect of ship motions on the compact nuclear reactor SCR was assessed. A submarine transponder system and an on-ice communication buoy system were examined as a positioning and communication system, supposing the activity under ice. The interval between transponders or communication buoys was recommended as 130 km. Procedures to secure safety of nuclear powered submersible research vessel were discussed according to accidents on the hull or the nuclear reactor. These results were reflected to the concept of the nuclear powered submersible research vessel, and subjects to be settled in the next step were clarified. (author)

  5. Defence R&D Canada research on nuclear methods of landmine detection

    Science.gov (United States)

    McFee, John E.; Faust, Anthony A.

    2003-09-01

    Defence R&D Canada (DRDC) has an active research and development program on detection of landmines using nuclear methods. They are intended for confirmation by detection of characteristic radiation or imaging of back scattered intensity distributions. Both vehicle-mounted and person-portable systems are being developed. Research on thermal neutron analysis (TNA) was initiated in 1994 to provide a confirmation detector for the DRDC developed multisensor, teleoperated, vehicle-mounted, landmine detection system. A version is now commercially available and four units have been fielded by the Canadian Land Forces. A prototype next generation TNA, which uses an electronic neutron generator as a source, has been constructed. Preliminary tests have shown improved performance. Research is now ongoing to investigate the addition of a fast neutron analysis capability to the next generation TNA. Characterization studies and software improvements are being conducted. Related research is investigating whether fast inorganic scintillator materials can provide an improvement in energy resolution. For person-portable applications, both neutron and photon irradiation processes are being investigated. A prototype landmine detector based on neutron moderation imaging has been completed and preliminary images of antipersonnel mine simulants obtained. It consists of a novel thermal neutron imaging system, a unique neutron source to uniformly irradiate the underlying ground and hardware and software for image generation and enhancement. Simulations show that it should provide a significant improvement over non-imaging neutron backscatter systems. X-ray backscatter imaging research is concentrating on non-collimated approaches to enable it to be person-portable. One such method, coded aperture imaging, is being investigated and extensive simulations using Geant4 have demonstrated its merits. Initial joint experiments with UC San Diego, using their HEXIS detector, have been conducted.

  6. A Review of the Research on Response to Improvised Nuclear Device Events

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, A; Buddemeier, B; Dombroski, M

    2008-07-01

    Following the events of September 11, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. Understanding the state of knowledge, identifying gaps, and making recommendations for how to fill those gaps, this paper will provide a framework under which past findings can be understood and future research can fit. The risk of an improvised nuclear device (IND) detonation may seem unlikely; and while this is hopefully true, due to its destructive capability, IND events must be prepared for. Many people still live under the Cold War mentality that if a city is attacked with a nuclear weapon, there is little chance of survival. This assumption, while perhaps true in the case of multiple, thermonuclear weapons exchanges, does not hold for the current threat. If a single IND were detonated in the United States, there would be many casualties at the point of impact; however, there would also be many survivors and the initial response by two major groups will mean the difference between life and death for many people. These groups are the first responders and the public. Understanding how these two groups prepare, react and interact will improve response to nuclear terrorism. Figure 1 provides a visualization of the response timeline of an IND event. For the purposes of this assessment, it is assumed that to accurately inform the public, three functions need to be

  7. Research projects of the Finnish Centre for Radiation and Nuclear Safety 1996-1997; Saeteilyturvakeskuksen tutkimushankkeet 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, R.; Koponen, H. [eds.

    1996-02-01

    The research activities of the Finnish Centre for Radiation and Nuclear Safety (STUK) are based on the Centre`s primary task of preventing and restricting adverse effects of radiation. As a rule, studies concerning nuclear safety (part 1 of the publication) are studies originating from the regulatory function of STUK; these are directed and funded by the Centre but the Centre does not carry them out itself. In contrast, studies dealing with radiation exposure and health risks (part 2 of the publication) are conducted by the Centre itself, often in cooperation with some other research institute or university. Results of these studies are published in open scientific literature.

  8. An Update of Soviet Research on and Exploitation of ’Nuclear Winter,’ 1984-1986

    Science.gov (United States)

    1986-09-16

    34The World After Nuclear War" the impresion was given that the Soviet scientists would become important actiie participants in the international nuc...would be capable of triggering a "nuclear winter." Stenchikov of the CCAS presented a paper "On 3D Nuclear Winter Modeling," in which he and

  9. Creating symbiosis in research and education. Preserve nuclear competencies for Germany and provide highest safety standards to international markets

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Stefan [AREVA GmbH, Erlangen (Germany). Research and Development, Innovations and Patent Management

    2015-06-15

    AREVA participates actively in networks of industry and science via university cooperation and gives new ideas born from practical experience for the academic training of future nuclear engineers. Thus, the company ensures both the availability of new talents for its export strategy and relevant expertise for nuclear safety in Germany. When it comes to education and science after the German nuclear phase-out decision, the efforts must focus on internationalization. Greater integration in international networks can contribute to keeping the nuclear know-how in Germany alive. This concerns both industry and science. By having foreign experts use German training facilities, participate in research projects and gather professional practice, they contribute to the safe operation here and experience first-hand our safety culture grown over decades. In this context, AREVA outlines its university cooperation in Germany and abroad.

  10. 23 May 2016 - Signature of a MoU between the National Nuclear Research Center, Republic of Azerbaijan, and the ALICE Collaboration

    CERN Multimedia

    Bennett, Sophia Elizabeth

    2016-01-01

    From left to right: Head of the Nuclear Physics Department, National Nuclear Research Center A. Rustamov; Chairman, National Nuclear Research Center A. Garibov; Deputy Minister for Communication and High Technology of the Republic of Azerbaijan E. Velizadeh; CERN Director for Research and Computing E. Elsen; ALICE Collaboration Spokesperson P. Giubellino. Are also attending: Permanent Representative of the Republic of Azerbaijan to the United Nations Office and other international organizations in Geneva Ambassador V. Sadiqov and Director for International Relations C. Warakaulle.

  11. A Coordinated Research Project on the Implementation of Nuclear Techniques to Improve Food Traceability

    Science.gov (United States)

    Frew, Russell; Cannavan, Andrew; Zandric, Zora; Maestroni, Britt; Abrahim, Aiman

    2013-04-01

    Traceability systems play a key role in assuring a safe and reliable food supply. Analytical techniques harnessing the spatial patterns in distribution of stable isotope and trace element ratios can be used for the determination of the provenance of food. Such techniques offer the potential to enhance global trade by providing an independent means of verifying "paper" traceability systems and can also help to prove authenticity, to combat fraudulent practices, and to control adulteration, which are important issues for economic, religious or cultural reasons. To address some of the challenges that developing countries face in attempting to implement effective food traceability systems, the IAEA, through its Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture, has initiated a 5-year coordinated research project involving institutes in 15 developing and developed countries (Austria, Botswana, Chile, China, France, India, Lebanon, Morocco, Portugal, Singapore, Sweden, Thailand, Uganda, UK, USA). The objective is to help in member state laboratories to establish robust analytical techniques and databases, validated to international standards, to determine the provenance of food. Nuclear techniques such as stable isotope and multi-element analysis, along with complementary methods, will be applied for the verification of food traceability systems and claims related to food origin, production, and authenticity. This integrated and multidisciplinary approach to strengthening capacity in food traceability will contribute to the effective implementation of holistic systems for food safety and control. The project focuses mainly on the development of techniques to confirm product authenticity, with several research partners also considering food safety issues. Research topics encompass determination of the geographical origin of a variety of commodities, including seed oils, rice, wine, olive oil, wheat, orange juice, fish, groundnuts, tea, pork, honey and

  12. Whole-Organism Concentration Ratios for Plutonium in Wildlife from Past US Nuclear Research Data

    Energy Technology Data Exchange (ETDEWEB)

    johansen, M.; Kamboj; Kuhne, W.

    2012-07-26

    Whole-organism concentration ratios (CR{sub wo-media}) for plutonium (Pu) in wildlife were calculated using data from the broad range of organism types and environmental settings of the US nuclear research program. Original sources included site-specific reports and scientific journal articles typically from 1960s to 80s research. Most of the calculated CR{sub wo-media} values are new to existing data sets, and, for some wildlife categories, serve to fill gaps or add to sparse data including those for terrestrial reptile; freshwater bird, crustacean and zooplankton; and marine crustacean and zooplankton. Ratios of Pu concentration in the whole-organism to that in specific tissues and organs are provided here for a range of freshwater and marine fish. The CR{sub wo-media} values in fish living in liquid discharge ponds were two orders of magnitude higher than those for similar species living in lakes receiving Pu from atmospheric fallout, suggesting the physico-chemical form of the source Pu can dominate over other factors related to transfer, such as organism size and feeding behavior. Small rodent data indicated one to two order of magnitude increases when carcass, pelt, and gastrointestinal tract were included together in the whole-organism calculation compared to that for carcass alone. Only 4% of Pu resided in the carcass of small rodents compared to 75% in the gastrointestinal tract and 21% in the pelt.

  13. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  14. Whole-organism concentration ratios for plutonium in wildlife from past US nuclear research data.

    Science.gov (United States)

    Johansen, M P; Kamboj, S; Kuhne, W W

    2013-12-01

    Whole-organism concentration ratios (CRwo-media) for plutonium (Pu) in wildlife were calculated using data from the broad range of organism types and environmental settings of the US nuclear research program. Original sources included site-specific reports and scientific journal articles typically from 1960s to 80s research. Most of the calculated CRwo-media values are new to existing data sets, and, for some wildlife categories, serve to fill gaps or add to sparse data including those for terrestrial reptile; freshwater bird, crustacean and zooplankton; and marine crustacean and zooplankton. Ratios of Pu concentration in the whole-organism to that in specific tissues and organs are provided here for a range of freshwater and marine fish. The CRwo-media values in fish living in liquid discharge ponds were two orders of magnitude higher than those for similar species living in lakes receiving Pu from atmospheric fallout, suggesting the physico-chemical form of the source Pu can dominate over other factors related to transfer, such as organism size and feeding behavior. Small rodent data indicated one to two order of magnitude increases when carcass, pelt, and gastrointestinal tract were included together in the whole-organism calculation compared to that for carcass alone. Only 4% of Pu resided in the carcass of small rodents compared to 75% in the gastrointestinal tract and 21% in the pelt.

  15. Monte-Carlo Simulations of the Nuclear Energy Deposition Inside the CARMEN-1P Differential Calorimeter Irradiated into OSIRIS Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amharrak, H.; Reynard-Carette, C.; Carette, M. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lemaire, M.; Vaglio-Gaudard, C. [CEA, DEN, DER, SPRC, LPN, Cadarache, F-13108 Saint Paul Lez Durance (France); Fourmentel, D.; Lyoussi, A. [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. These measurements are then used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. Nuclear heating is a great deal of interest at the moment as the measurement of such heating is an important issue for MTRs reactors. This need is especially generated by the new Jules Horowitz Reactor (JHR), under construction at CEA/Cadarache 'French Alternative Energies and Atomic Energy Commission'. This new reactor, that will be operational in late 2019, is a new facility for the nuclear research on materials and fuels. Indeed the expected nuclear heating rate is about 20 W/g for nominal capacity of 100 MW. The present Monte Carlo calculation works belong to the IN-CORE (Instrumentation for Nuclear radiation and Calorimetry On line in Reactor): a joint research program between the CEA and Aix- Marseille University in 2009. One scientific aim of this program is to design and develop a multi-sensors device, called CARMEN, dedicated to the measurements of main physical parameters simultaneously encountered inside JHR's experimental channels (core and reflector) such as neutron fluxes, photon fluxes, temperature, and nuclear heating. A first prototype was already developed. This prototype includes two mock-ups dedicated respectively to neutronic measurements (CARMEN-1N) and to photonic measurements (CARMEN-1P) with in particular a specific differential calorimeter. Two irradiation campaigns were performed successfully in the periphery of OSIRIS reactor (a MTR located at Saclay, France) in 2012 for nuclear heating levels up to 2 W/g. First Monte Carlo calculations reduced to the graphite sample of the

  16. Nuclear reaction

    CERN Multimedia

    Penwarden, C

    2001-01-01

    At the European Research Organization for Nuclear Research, Nobel laureates delve into the mysteries of particle physics. But when they invited artists from across the continent to visit their site in Geneva, they wanted a new kind of experiment.

  17. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor

  18. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    Energy Technology Data Exchange (ETDEWEB)

    Eipeldauer, Mary D [ORNL; Shelander Jr, Bruce R [ORNL

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

  19. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  20. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  1. A study on the research and development planning of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byong Chull; Won, B. C.; Kim, J. W.; Cho, C. Y.; Cheon, S. H.; Kim, J. U.; Kim, I. C.; Hong, Y. P.; Kang, W. J.; Lee, H. S.; Yoon, Y. S.; Park, J. H.; Kim, S. S.; Park, C. S.; Yang, M. S.; Lee, Y. H

    1998-01-01

    This study was performed aiming to provide the basic input to establish `the mild and long-term nuclear R and D program (1997 - 2006)` for government. This program is announced by the government as an official plan after endorsement of Atomic Energy Commission (AEC). Second, the historical formation and transition of both nuclear R and D policy and nuclear R and D development system after the introduction of nuclear energy in Korea were analyzed. Third, the current status of several nuclear-related R and D projects and R and D management, which have been conducted at KAERI were analyzed and a better direction for effective and efficient R and D activities was suggested. Finally, on the basis of above analysis, this study made an effort to extract the appropriate lessons for future directions for carrying out nuclear R and D projects. (author). 19 refs., 40 tabs., 10 figs

  2. A civil super-Manhattan project in nuclear research for a safer and prosperous world

    CERN Document Server

    Sornette, D

    2015-01-01

    Humankind is confronted with a "nuclear stewardship curse", facing the prospect of needing to manage nuclear products over long time scales in the face of the short-time scales of human polities. I propose a super Manhattan-type effort to rejuvenate the nuclear energy industry to overcome the current dead-end in which it finds itself, and by force, humankind has trapped itself in. A 1% GDP investment over a decade in the main nuclear countries could boost economic growth with a focus on the real world, epitomised by nuclear physics/chemistry/engineering/economics with well defined targets. By investing vigorously to obtain scientific and technological breakthroughs, we can create the spring of a world economic rebound based on new ways of exploiting nuclear energy, both more safely and more durably.

  3. Archaeometry: nuclear and conventional techniques applied to the archaeological research; Arqueometria: tecnicas nucleares y convencionales aplicadas a la investigacion arqueologica

    Energy Technology Data Exchange (ETDEWEB)

    Esparza L, R.; Cardenas G, E. (ed.)

    2005-07-01

    The book that now is presented is formed by twelve articles that approach from different perspective topics as the archaeological prospecting, the analysis of the pre hispanic and colonial ceramic, the obsidian and the mural painting, besides dating and questions about the data ordaining. Following the chronological order in which the exploration techniques and laboratory studies are required, there are presented in the first place the texts about the systematic and detailed study of the archaeological sites, later we pass to relative topics to the application of diverse nuclear techniques as PIXE, RBS, XRD, NAA, SEM, Moessbauer spectroscopy and other conventional techniques. The multidisciplinary is an aspect that highlights in this work, that which owes to the great specialization of the work that is presented even in the archaeological studies including in the open ground of the topography, mapping, excavation and, of course, in the laboratory tests. Most of the articles are the result of several years of investigation and it has been consigned in the responsibility of each article. The texts here gathered emphasize the technical aspects of each investigation, the modern compute systems applied to the prospecting and the archaeological mapping, the chemical and physical analysis of organic materials, of metal artifacts, of diverse rocks used in the pre hispanic epoch, of mural and ceramic paintings, characteristics that justly underline the potential of the collective works. (Author)

  4. 7th International Workshop on Application of Lasers in Atomic Nuclei ResearchNuclear Ground and Isometric State Properties”

    CERN Document Server

    Błaszczak, Z; Marinova, K; LASER 2006

    2007-01-01

    7th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, May 29-June 01, 2006 Researchers and PhD students interested in recent results in the nuclear structure investigation by laser spectroscopy, the progress of the experimental technique and the future developments in the field will find this volume indispensable. Reprinted from Hyperfine Interactions (HYPE) Volume ???

  5. Applied nuclear data research and development. Progress report, July 1--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Baxman, C.I.; Young, P.G. (comps.)

    1978-12-01

    Activities of the Los Alamos Nuclear Data Group for the period July 1 through September 30, 1978, are described. Work was performed in the following subject areas: theory and evaluation of nuclear cross sections; nuclear cross-section processing; and fission products and actinides--yields, yield theory, decay data, depletion, and buildup. Separate abstracts were prepared for four sections that contained significant amounts of data. 18 figures, 12 tables. (RWR)

  6. Perspectives for photonuclear research at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D.; Balabanski, D.L.; Constantin, P.; Gales, S.; Tesileanu, O.; Ur, C.A.; Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); Anzalone, A.; La Cognata, M.; Spitaleri, C. [INFN-LNS, Catania (Italy); Belyshev, S.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Camera, F. [Departement of Physics, University of Milano, Milano (Italy); INFN section of Milano, Milano (Italy); Csige, L.; Krasznahorkay, A. [Hungarian Academy of Sciences (MTA Atomki), Institute of Nuclear Research, Post Office Box 51, Debrecen (Hungary); Cuong, P.V. [Vietnam Academy of Science and Technology, Centre of Nuclear Physics, Institute of Physics, Hanoi (Viet Nam); Cwiok, M.; Dominik, W.; Mazzocchi, C. [University of Warsaw, Warszawa (Poland); Derya, V.; Zilges, A. [University of Cologne, Institute for Nuclear Physics, Cologne (Germany); Gai, M. [University of Connecticut, LNS at Avery Point, Connecticut, Groton (United States); Gheorghe, I. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Ishkhanov, B.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Kuznetsov, A.A.; Orlin, V.N.; Stopani, K.A.; Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Pietralla, N. [Technische Universitat Darmstadt, Institut fur Kernphysik, Darmstadt (Germany); Sin, M. [University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Utsunomiya, H. [Konan University, Department of Physics, Kobe (Japan); University of Tokyo, Center for Nuclear Study, Saitama (Japan); Weller, H.R. [Triangle Universities Nuclear Laboratory, North Carolina, Durham (United States); Duke University, Department of Physics, North Carolina, Durham (United States)

    2015-12-15

    The perspectives for photonuclear experiments at the new Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility are discussed in view of the need to accumulate novel and more precise nuclear data. The parameters of the ELI-NP gamma beam system are presented. The emerging experimental program, which will be realized at ELI-NP, is presented. Examples of day-one experiments with the nuclear resonance fluorescence technique, photonuclear reaction measurements, photofission experiments and studies of nuclear collective excitation modes and competition between various decay channels are discussed. The advantages which ELI-NP provides for all these experiments compared to the existing facilities are discussed. (orig.)

  7. Environmental monitoring data around the Chernobyl nuclear power plant used in the cooperative research project between JAERI and CHESCIR (Ukraine). Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Takashi; Matsunaga, Takeshi; Amano, Hikaru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tkachenko, Yuri; Kovalyov, Alexandr; Sukhoruchkin, Andrei; Derevets, Varely [The State Enterprise for Region Monitoring of Environment and Dosimetric Control (Ukraine)

    2003-01-01

    This report is a compilation of the shared data derived from the environmental monitoring by RADEK (The state Enterprise for Region Monitoring of Environment and Dosimetric Control of Ukraine) and the record of environmental characteristics derived from field observations during a research project (1992-1999) between JAERI (Japan Atomic Energy Research Institute) and CHESCIR (Chernobyl Science and Technology Centre for International Research). The compiled data in this report are especially related to one particular research subject (Subject-3) of the project on the migration of radionuclides released into the terrestrial and aquatic environments after a nuclear accident. The present report shows the basis of published works concerning Subject-3. (author)

  8. Research study on typical feature of the media coverage on nuclear accidents in the national newspapers in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, T. [Univ. of Tokyo, Graduate School of Engineering, Tokyo (Japan); Kimura, H. [Univ. of Tokyo, Nuclear Professional School, Tokyo (Japan)

    2011-07-01

    This study focuses on survey of the characteristics of the media coverage on three well-known nuclear accidents. From a quantitative standpoint of the media reporting, it was revealed that the amount of the articles in the surveyed national newspapers tend to increase soon after accidents happen. Plus, as a qualitative research the author interviewed three leader writers, who suggested that the Japanese nuclear industry should prepare to distribute information more timely and sufficiently. They also answered the PR staff needs to contact journalists regularly in order to recognize their awareness and earn their trust. (author)

  9. Estimation of metal pollutant loads from Nuclear and Energy Research Institute (Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joyce R.; Monteiro, Lucilena R.; Soares, Sabrina M.V.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Silva, Douglas B. da; Faustino, Mainara G.; Pires, Maria A.F.; Cotrim, Marycel E.B., E-mail: joyce.marques@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    According to National Environmental Council's (CONAMA) Resolution 357/05, pollutant load can be defined as the amount of a particular pollutant released in receiving water body; it is commonly expressed in a mass-time ratio. As specified in CONAMA's Resolution 430/11, the responsible for the pollutant source must present the Pollutant Load Declaration to environmental authorities. However, pollutant load knowledge is also important to the water quality maintenance and its environmental rating that must be kept to meet the requirements of the most restrictive use. In the control of metals releases is also important due public health matters, since they can cause harmful environmental contamination and major public health issues. Therefore this work aims to present the estimated metal pollutant load released by Nuclear and Energy Research Institute (IPEN/CNEN - Brazil), between 2013 and 2014. Results of cadmium, lead, copper, chromium, zinc, nickel, manganese, iron, barium, silver, boron and tin in composite samples (weekly) via Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and bromide (Br-) released as a tracer, to measure the wastewater flow were used to estimate IPEN's Metal Pollutant load. This study is part of the environmental assessment Program at IPEN, instituted since 2006 to the attendance of the current environmental legislation (CONAMA's Resolution 430/11, Article 19-A of State Decree 8.468/76 and State Decree 15.425/80). (author)

  10. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  11. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  12. U.S. Nuclear Regulatory Commission seismic regulations, research, and emerging trends

    Energy Technology Data Exchange (ETDEWEB)

    Chokshi, N.C.; Shao, L.C. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research; Apostolakis, G.

    1997-03-01

    Historically in the United States, seismic issues have played an important role in determining site suitability and, in some cases, have determined the ultimate fate of power plants. During the late 1960s and early 1970s, a seismic design philosophy evolved as the licensing of the earlier plants was in progress. Concepts such as the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE) emerged and were codified into the federal regulations with the publication in December 1973 of Appendix A, `Seismic and Geologic Siting Criteria for Nuclear Power Plants,` to 10 CFR Part 100, `Reactor Site Criteria.` Seismic considerations are also important in siting and design of other fuel cycle and waste facilities. In this paper, a brief overview of the current seismic siting and design regulations are described along with some recent and planned changes based on the past experience, advancement in the state-of-the-art, and research results. In particular, the recently revised siting rule and use of the probabilistic seismic hazard analysis in implementation of the rule will be described in more detail. The paper includes discussion of some recent seismic issues and research activities, including issues related to aging. Some emerging trends are highlighted. In particular, the paper focuses on use of `expert opinion` in the probabilistic analysis and risk informed regulations and their implications to the seismic design. An additional focus is on international cooperative programs and how to initiate such programs such that better use can be made of limited resources to resolve issues of common interest. (author)

  13. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  14. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Draft Environmental Impact Statement (EIS) for the replacement of the Australian Research reactor has been released. An important objective of the EIS process is to ensure that all relevant information has been collected and assessed so that the Commonwealth Government can make an informed decision on the proposal. The environmental assessment of the proposal to construct and operate a replacement reactor described in the Draft EIS has shown that the scale of environmental impacts that would occur would be acceptable, provided that the management measures and commitments made by ANSTO are adopted. Furthermore, construction and operation of the proposed replacement reactor would result in a range of benefits in health care, the national interest, scientific achievement and industrial capability. It would also result in a range of benefits derived from increased employment and economic activity. None of the alternatives to the replacement research reactor considered in the Draft EIS can meet all of the objectives of the proposal. The risk from normal operations or accidents has been shown to be well within national and internationally accepted risk parameters. The dose due to reactor operations would continue to be small and within regulatory limits. For the replacement reactor, the principle of `As Low As Reasonably Achievable` would form an integral part of the design and licensing process to ensure that doses to operators are minimized. Costs associated with the proposal are $286 million (in 1997 dollars) for design and construction. The annual operating and maintenance costs are estimated to be $12 million per year, of which a significant proportion will be covered by commercial activities. The costs include management of the spent fuel from the replacement reactor as well as the environmental management costs of waste management, safety and environmental monitoring. Decommissioning costs for the replacement reactor would arise at the end of its lifetime

  15. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  16. Nuclear non-proliferation: the U.S. obligation to accept spent fuel from foreign research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shapar, Howard K.; Egan, Joseph R. [Shaw, Pittman, Potts and Trowbridge (United States)

    1995-12-31

    The U.S. Department of Energy (DOE) had a 35-year program for the sale and receipt (for reprocessing) of high-enriched research reactor fuel for foreign research reactors, executed pursuant to bilateral agreements with nuclear trading partners. In 1988, DOE abruptly let this program lapse, citing environmental obstacles. DOE promised to renew the program upon completion of an environmental review which was to take approximately six months. After three and a half years, an environmental assessment was finally produced.Over a year and half elapsed since publication of the assessment before DOE finally took action to renew the program. The paper sets forth the nuclear non-proliferation and related foreign policy considerations which support renewal of the program. It also summarized the contractual and other commitments made to foreign research reactors and foreign governments and aspects of U.S. environmental law as they apply to continuation of the program. (author).

  17. Needfulness and challenges of internationalisation and involvement of international environmental NGOs in University research and education: The lessons learned from nuclear waste management sector research projects

    Directory of Open Access Journals (Sweden)

    Peter Mihok

    2014-11-01

    Full Text Available Society’s perceptions of desired democratic standards in radioactive waste management sector have changed significantly in the recent two decades. The change, known also as ‘participatory turn’, can be well illustrated on the example of site selection process for a geological repository of spent nuclear fuel in the Czech Republic. Empiric evidence from this process outlines links between the roles of Governmental bodies, NGOs, research institutions and businesses in dealing with the new challenges in decision making procedures concerning spent nuclear fuel. Selected examples from the EURATOM financed research projects ARGONA, COWAM and IPPA illustrate a growing need for internationalisation and involvement of environmental NGOs in related research and education processes in a near future.

  18. Construction of a bibliographic information database and development of retrieval system for research reports in nuclear science and technology (II)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Duk Haeng; Kim, Tae Whan; Choi, Kwang; Yoo, An Na; Keum, Jong Yong; Kim, In Kwon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-05-01

    The major goal of this project is to construct a bibliographic information database in nuclear engineering and to develop a prototype retrieval system. To give an easy access to microfiche research report, this project has accomplished the construction of microfiche research reports database and the development of retrieval system. The results of the project are as follows; 1. Microfiche research reports database was constructed by downloading from DOE Energy, NTIS, INIS. 2. The retrieval system was developed in host and web version using access point such as title, abstracts, keyword, report number. 6 tabs., 8 figs., 11 refs. (Author) .new.

  19. Management of communication area in a nuclear research and development institute

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Wellington Antonio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil). Servico de Negocios e Comunicacao]. E-mail: soaresw@cdtn.br

    2005-07-01

    Nuclear energy to the general public is always associated to the production of nuclear weapons or to nuclear and radiological accidents. Public communication actions done by the National Commission of Nuclear Energy (CNEN) have been contributing to make known the social and peaceful applications of nuclear energy, reaching different kinds of public. Interaction programs with society and in particular with students have also been carried out by the Nuclear Technology Development Center (CDTN/CNEN). Measuring public communication results can help to show that financial resource in this area should be considered as investment and not as expenses. One needs therefore a well-established managing system. Fundamentals of the National Quality Award Criteria for Excellence - PNQ are being applied in the area in charge of business and public communication at CDTN. Systematic registration of results started in 2000 and a gradual increase in the number of means of communication for the internal public has occurred in the last five years. The Center has now a bimonthly newspaper edition. Communication indicators have shown an increasing number of students received in the Center or provided with lectures in schools. Results of satisfaction inquiry from these students show good results. The implemented management system has allowed informing the nature and quantity of people reached by the information on nuclear applications and the improvement in the institutional image. (author)

  20. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    Science.gov (United States)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  1. Groundwater assessment in water resources management at Nuclear and Energy Research Institute, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sabrina M.V.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Faustino, Mainara G.; Silva, Douglas B. da; Cotrim, Marycel E.B.; Pires, Maria Aparecida F., E-mail: sabrinamoura@usp.br, E-mail: joyce.marques@usp.br, E-mail: luciremo@uol.com.br, E-mail: thamistellato@gmail.com, E-mail: tatianebscs@live.com, E-mail: mainarag@usp.br, E-mail: douglas.sbatista@yahoo.com.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    To comply with the guidelines for environmental control and legal requirements, the Nuclear and Energy Research Institute (IPEN/ CNEN - Brazil/ SP) performs the Environmental Monitoring Program for Chemical Stable Compounds (PMA-Q) since 2007, in attendance to the Term for the Adjustment of Conduct (TAC) signed between IPEN and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). The PMA-Q program includes the assessment of the IPEN's wastewater released in water body, and the groundwater assessment, which is carried out in nine monitoring wells. In groundwater is analyzed, by ion chromatography, species regulated by CONAMA 396/08 [01] fluoride, chloride, nitrite-N, nitrate-N, sulfate, sodium, potassium, ammonium, magnesium and calcium, besides other parameters. Furthermore, based on legal requirements, each year the program is reviewed and improvement actions are planned and implemented. Therefore, the integrated monitoring of groundwater should provide information on the quality and dynamics of the aquifer compared to seasonal variations and anthropogenic effects. Thus, this study intends to evaluate the chemical features of the institute groundwater, evaluating the database of the monitoring program from 2011 to 2014, for the ions chloride, nitrate-N, sulfate, sodium, potassium, magnesium, calcium and bicarbonate, using these information diagrams will be developed for the characterization of the wells. This assessment will be essential to support the control actions of environmental pollution and the management of water resources. Making possible the establishment of groundwater Quality Reference Figures (QRF), according to the CONAMA 396/08 [01] rating, in order to demonstrate that the activities developed at IPEN are not affecting on the aquifer features. (author)

  2. The BSC implanting process in a nuclear research center in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cezar Augusto de; Guimaraes, Regia Ruth Ramirez; Filgueiras, Sergio Almeida Cunha [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Planejamento Estrategico e Qualidade - PE]. E-mail: cao@cdtn.br; rrrg@cdtn.br; sacf@cdtn.br

    2007-07-01

    The dynamics of the economical development founded due to the markets globalization and also to the increasing of the competition based on innovation, whose leadership belongs to the richest countries, presses for changes and moves the national and regional innovating systems. In a world of constant change, getting along with the external changes became one of the most relevant factors of the organizational success. Knowing and interpreting the external reality; monitoring the transformations; finding the opportunities and being able to answer fast and adequately; neutralize or minimize the threats: these and other abilities are constantly done by the most successful organizations, as part of a structured and conscious process focused on results . The technological research institutes were created in order to support the industries in their effort to overcome the competition by innovating. It is related, in last instance, to be an integrating part of the national or local innovating system, essential to the economical development and also to the improvement of life quality. However, they are put in this mutation atmosphere and fight for adapting to the new premises of the organizational success in order to have their mission fulfilled. In this context, the Development Center for Nuclear Technology - CDTN, makes an effort to adequate its strategically planning, by introducing and adapting the best administrating practices known nowadays. Among them, the Balanced Scorecard - BSC. This paper presents a brief form of each elaborating form of the strategic planning and also of the BSC implantation, it also clears up the level achieved by the organization and discusses the difficulties it faced. (author)

  3. Nordic Nuclear Safety Research 1994 - 2008: From standardized 4-year classics to customized R and B

    Energy Technology Data Exchange (ETDEWEB)

    Bennerstedt, T.N.O. (TeknoTelje HB, Torhamn (Sweden))

    2011-10-15

    This is a presentation of NKS (Nordic Nuclear Safety Research), its work and achievements in the years 1994 - 2008, during which the author served as Nordic secretary and (later) as coordinator. NKS and the Nordic perspective are briefly introduced together with the NKS support structure, organization and administration: Owners, Board, Nordic secretary, Bureau and Secretariat. The author then embarks on a journey through the modern history of NKS work. The last two of the six fixed 4-year programs are described as regards planning, contents, project work, administration, dissemination of results, evaluations and conclusions. The trip continues to the land of R and B and the present (2011) structure of two general frameworks, namely, NKS-R: reactor safety, and NKS-B: emergency preparedness; each consisting of a set of flexible activities; hence, R and B. The reasoning behind this makeover is touched upon together with the new organization and simpler administration that developed. Major activities and the produced results are introduced and the evaluations summarized. The author's own conclusions and recommendations are followed by a short and subjective list of references. In a number of appendices some important background material has been compiled: bullet point versions of minutes of Owners Group and Board meetings; economic contributions and budgets; the NKS policy document; an overview of all NKS programs and evaluations; lists of R and B activities and funding; the author's personal remarks; a list of some NKS documents (other than technical reports and minutes); and a list of acronyms used in this report. (Author)

  4. Is knowledge important? Empirical research on nuclear risk communication in two countries.

    Science.gov (United States)

    Perko, Tanja; Zeleznik, Nadja; Turcanu, Catrinel; Thijssen, Peter

    2012-06-01

    Increasing audience knowledge is often set as a primary objective of risk communication efforts. But is it worthwhile focusing risk communication strategies solely on enhancing specific knowledge? The main research questions tackled in this paper were: (1) if prior audience knowledge related to specific radiation risks is influential for the perception of these risks and the acceptance of communicated messages and (2) if gender, attitudes, risk perception of other radiation risks, confidence in authorities, and living in the vicinity of nuclear/radiological installations may also play an important role in this matter. The goal of this study was to test empirically the mentioned predictors in two independent case studies in different countries. The first case study was an information campaign for iodine pre-distribution in Belgium (N = 1035). The second was the information campaign on long-term radioactive waste disposal in Slovenia (N = 1,200). In both cases, recurrent and intensive communication campaigns were carried out by the authorities aiming, among other things, at increasing specific audience knowledge. Results show that higher prior audience knowledge leads to more willingness to accept communicated messages, but it does not affect people’s perception of the specific risk communicated. In addition, the influence of prior audience knowledge on the acceptance of communicated messages is shown to be no stronger than that of general radiation risk perception. The results in both case studies suggest that effective risk communication has to focus not only on knowledge but also on other more heuristic predictors, such as risk perception or attitudes toward communicated risks.

  5. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  6. Research on the improvement of nuclear safety -The development of LOCA analysis codes for nuclear power plant-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Pyo; Jung, Yung Jong; Kim, Kyung Doo; Jung, Jae Joon; Kim, Won Suk; Han, Doh Heui; Hah, Kooi Suk; Jung, Bub Dong; Lee, Yung Jin; Hwang, Tae Suk; Lee, Sang Yong; Park, Chan Uk; Choi, Han Rim; Lee, Sang Jong; Choi, Jong Hoh; Ban, Chang Hwan; Bae, Kyoo Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The present research aims at development of both a best estimate methodology on LOCA analysis and, as an application, performance analyses of safety systems. SBLOCA analyses have been continued to examine the capacity reduction effect of ECCS since the second project year. As a results, core uncovery, which is requirement of URD has not been occurred in 6`` cold leg break. Although core uncovery has been predicted when DVI line has been broken for DVI+4-Train HPIS, the calculated PCT has lied well within the criterion. The effect of safety injection position and SIT characteristics are also analyzed for LBLOCA. The results show that cold leg injection is the most effective way and the adaption of advanced SIT could lead to elimination of LPSI pump from the safety system. On the other hand, the quantified uncertainties obtained from THTF and FLECHT/SEASET which represents blowdown and reflood phenomena, respectively, have been confirmed using IET(LOFT test). The application uncertainty for Kori unit 3 has been analyzed. Finally, application of the best estimate methodology using the uncertainties concerned with the code, the bais, and the application, leads to overall uncertainty of about 200K for Kori unit 3. 244 figs, 22 tabs, 92 refs. (Author).

  7. Celebrating 40 years of research in Journal of Physics G: Nuclear and Particle Physics

    Science.gov (United States)

    Adcock, Colin D.; Martin, Alan D.; Schwenk, Achim

    2015-09-01

    2015 marks the 40th anniversary of Journal of Physics G: Nuclear and Particle Physics. This editorial provides a brief history of the journal, and introduces a unique collection of invited articles from leading authors to celebrate the occasion.

  8. State-of-the-art research: Reflections on a concerted Nordic-Baltic nuclear energy effort

    Energy Technology Data Exchange (ETDEWEB)

    Husdal, Lars; Tveit, Jesper; Vaagen, Jan S.; Ridikas, Danas

    2009-09-15

    Quite a few hold the view that nuclear energy will have its renaissance in the not too distant future. Technology is, however, a necessary, but not sufficient condition. The needed prerequisites represent a complex issue. With increasing energy demand and depletion of non-renewable energy resources, nuclear will have to prove its role in an increasing energy mix, globally, regionally and often also nationally. Based on its history, experience with coordinated interplay in electricity production from a variety of energy sources, and science engagements, we argue for a future Nordic/Baltic SHOWCASE: A nuclear weapons free and proliferation safe nuclear energy supplier in the region, with a concerted role in competence building and in international ventures, and with focus on operation, safety, economy and societal aspects. (Author)

  9. Modernization of physical protection educational laboratories in the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Krasnoborodko, A. A.

    2017-01-01

    Non-proliferation of nuclear materials includes, in addition to accounting and control, the Physical Protection (PP) of one. The paper considers the experience by MEPhI in application the practical educational in the area of PP technical systems. The following aspects are discussed in the paper: specific features graduate program in nuclear security area; overview of the practical course curricula in the special laboratory.

  10. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons; Foersvarets forskningsanstalt och planerna paa svenska kaernvapen

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, Thomas [Uppsala Univ. (Sweden). Dept. of History

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  11. Trends in Nuclear Astrophysics

    OpenAIRE

    Schatz, Hendrik

    2016-01-01

    Nuclear Astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  12. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  13. Nuclear power plants of ENDESA: strategical and operational fields. Research and Development. Centrales Nucleares de ENDESA Campos de actuacion estrategica y operativa. Investigacion y desarrollo

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. (Empresa Nacional de Electricidad. ENDESA. (Spain))

    1994-01-01

    The total nuclear power installed at ENDESA plants amounts 1467 Mw. Environmental management is focused onto waste management, emissions management and safety during operation. The strategy of ENDESA is related with actions to improve research and development in advanced power reactors and passive power plants like AP-600 and SBWR. There is also a collaboration with EPRI to define the specifications for future reactors. ENDESA participates within the European NPI program for evolutive reactors to develop the French EPRI reactor. R+D in materials is organized in: steam generators projects, analysis of neutronic irradiation of the vessel in Light Water Reactors, analysis of cladding and fuel rods subjected to high burning, inspection of cracks in vessel PWR.

  14. NATO Advanced Research Workshop “Nuclear Power and Energy Security”

    CERN Document Server

    Apikyan, Samuel A; Nuclear Power and Energy Security

    2010-01-01

    World energy consumption has grown dramatically over the past few decades. This growth in energy demand will be driven by large increases in both economic growth and world population coupled with rising living standards in rapidly growing countries. The last years, we routinely hear about a "renaissance" of nuclear energy. The recognition that nuclear power is vital to global energy security in the 21st century has been growing for some time. "The more we look to the future, the more we can expect countries to be considering the potential benefits that expanding nuclear power has to offer for the global environment and for economic growth," IAEA Director General Mohamed ElBaradei said in advance of a gathering of 500 nuclear power experts assembled in Moscow for the "International Conference on Fifty Years of Nuclear Power - the Next Fifty Years". But such a renaissance is not a single-valued and sure thing. Legitimate four unresolved questions remain about high relative costs; perceived adverse safety, envir...

  15. Preparations for the start-up of a research program in nuclear safeguards at Chalmers - Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Yasunori; Pazsit, Imre

    2004-12-01

    This report gives an account of the work performed at the Dept. of Reactor Physics at Chalmers Univ. of Technology in the second stage of the preparations for the start-up of a research program in nuclear safeguards and nuclear material management. The program is aimed at utilizing the experimental facilities as well as the experience in reactor physics, criticality safety, signal processing and unfolding, and experimental nuclear techniques, in tackling problems in non-destructive assay (NDA) of nuclear materials. During the present project, the following three main subjects were dealt with: first tests and pilot measurements were performed with one of the two newly acquired {sup 252}Cf detectors that were obtained from JNC Japan; the second exercise of the ESARDA benchmark. which consisted of the evaluation of the pulse train generated by Los Alamos Laboratory for multiplicity counting was performed and reported to the organisers of the benchmark; the modified Monte-Carlo code MCNP-PoliMi was installed, tested and work started for generating (although outside the ESARDA benchmark), pulse train data as obtained from various neutron sources with or without the presence of fissile material, as detected with an Active Well Coincidence Counter.

  16. Summary of some Recent Work on Financial Planning for Decommissioning of Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, Staffan (Swedish Nuclear Power Inspectorate, Stockholm (Sweden)); Sjoeblom, Rolf (Tekedo AB, Nykoeping (Sweden))

    2008-06-15

    The new European Union Environmental Liability Directive (ELD) together with the new standard and the increased awareness of the implications of the statements on Environmental liabilities in the IFRS/IA high-light the need for appropriate planning for decommissioning including cost estimations and waste fund management. These new regulations and standards are in some respects more stringent than the strictly nuclear rules. Consequently, The Swedish Nuclear Power Inspectorate has sought communication with non-nuclear actors in the area, including the participation in the recent meeting Environmental Economics and Investment Assessment 11, 27-30 May, 2008, Cadiz, Spain. The present compilation of publications on decommissioning and associated cost calculations in Sweden was prompted by these contacts. The compilation comprises 14 reports published during the last four years

  17. First start toward nuclear disarmament: CIS openness and compliance. Research report, August 1991-April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Casteel, B.

    1992-04-01

    In the last six months we have seen significant changes in the Soviet Union which have radically altered that way we have conducted business. Now, it is no longer the Soviet Union, but the Commonwealth of Independent States (CIS). We are now making wholesale unilateral cuts in our defense structure as the CIS is viewed as our friend and no longer the Evil Empire. We are supplying the CIS with food, loan credits, and even offering assistance to help them destroy nuclear weapons. Even though the world has changed, the CIS remains the only country on the face of the earth capable of destroying the United States in a nuclear holocaust.

  18. Virtual Visit to the ATLAS Control Room during Researchers Night by Institute of Nuclear Physics Polish Academy of Sciences, Cracow

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    We invite our "6-th Ma?opolska Researchers Night" guests for Virtual Visits in ATLAS Control Room. They could ask Polish scientists and experts during a lecture "How a mass is created - the Higgs boson discovery" to be given by dr Anna Kaczmarska. "Ma?opolska Researchers Night" is a part of European Researchers Night events to be held in more than 200 cities. Institute of Nuclear Physics Polish Academy of Sciences invites Cracow citizens and tourists visiting our town to its laboratories and to the "Science Garden" formed, especially for this event, in front of the main building. Visitors will have an unique opportunity to discuss science problems with researches and students. Wide range of demonstrations of interesting activities performed in our institute will be presented, these include among others: - AIC 144 Cyclotron with hadrons' therapy facility for eye treatment - Dosimetry and environmental pollution monitoring - Large Hadron Collider experiments - Van de Graff linear accelerator with proton micro b...

  19. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  20. Status of QNDE and NDC research for nuclear power plant in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Teruo [Tokyo Univ. (Japan). Research Center for Advanced and Science]|[National Inst. for Advanced Interdisciplinary Research, MITI (Japan)

    1999-08-01

    Nuclear power plants in Japan have been fabricated and constructed in compliance with the standards developed by MITI in 1980. These standards were developed as design standards taking aging phenomena during service lifetime into consideration. But these standards do not specify the requirements for flaw evaluation and repair methods, though they include some maintenance requirements. Therefore, MITI decided to develop Maintenance Standards which commensurate with plant age, and entrusted Japan Power Engineering and Inspection Corporation (JAPEIC) with survey of ASME Sec. XI. Draft of Maintenance Standards was developed in March, 1996, and will be legislated by 1999. Structural materials of nuclear power plants would sustain damage owing to cyclic stress, high temperature or neutron irradiation etc. during operation. And damage would change mechanical properties of materials, such as tensile strength, charpy absorption energy, fracture toughness and so on. As integrity of nuclear power station depends on these mechanical properties of materials, it will become very important to be able to evaluate mechanical properties of materials nondestructively especially for older nuclear power plants. These circumstances made MITI entrust JAPEC with verification test to develop nondestructive characterization methods. This verification test started in the 1990 fiscal year and was completed in 1997 fiscal year. (orig./DGE)

  1. Status of NDE research and applications for life management of nuclear power plants in india

    Energy Technology Data Exchange (ETDEWEB)

    Raj, B.; Shyamsunder, M.T.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    1999-08-01

    The development and application of various nondestructive evaluation techniques and methodologies for the life management of nuclear power plants in India are described. The indigenous development carried out to meet the stringent quality requirements in evaluation of fabricated components and innovative methodologies using multidisciplinary approaches and advances for assessment of inservice performance of plants are highlighted. (orig.)

  2. The Thrill of Discovery: Nuclear Physics Research in the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khalili, J.S. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2005-04-18

    To many people outside our field, both scientists and the general public, nuclear physics is no longer regarded as being at the forefront of scientific endeavour. Indeed it is often met with outright hostility. Other physicists will point out that the last time a Nobel Prize was awarded in the field was in 1975. This paper, based on a lecture delivered during an Open Plenary Session of the recent International Nuclear Physics Conference INPC2004, which was aimed at a non-specialist audience, will seek to dispel this myth. Nuclear physics is currently enjoying a period of rapid advances. Many new discoveries have been made in the past few years, from neutron halos and nuclear molecules to a new form of radioactive decay via two protons; from hints of a new particle consisting of five quarks to new 'superheavy' elements. This talk will give a personal perspective on why, far from looking with envy at our neighbours in areas of physics that currently enjoy a higher media profile, we have more than enough to keep us busy and excited in the 21st century.

  3. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center

    2015-11-15

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  4. Calibration of chromosomal aberrations in the National Institute of Nuclear Research; Calibracion de aberraciones cromosomicas en el ININ

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C.; Brena V, M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2008-07-01

    In the laboratory of biological dosimetry of the National Institute of Nuclear Research one carried out a calibration of chromosomal aberrations. The result obtained by the different participants does not mark to significant differences between the readings of the cells and the considered one of dose for each one of the cases. The biological material for this intercomparison was prepared in the Republic of Argentina like part of the activities of the Project Regional OIEA-RLA/9/054 {sup S}trengthening of the National Systems for the Preparation and Answer in Radiological and Nuclear Emergencies{sup .} In this regional project participates seven countries of the area and in October of this year will be presented the results of each one of them. Part of the objectives of this project is the one to conform a network of mutual aid in case of radiological accidents for which the participants must unify criteria. (Author)

  5. Vision of the Training Department of the National Institute of Nuclear Research; Vision del Departamento de Capacitacion del Instituto Nacional de Investigaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, C. E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2008-12-15

    The availability of skilled personnel is an essential element of the national infrastructure, to ensure the safety and security through the strong principles of management and good technology, quality assurance, training and qualification of new personnel, thorough safety evaluations and building on lessons of experience and research. In the national case the General Regulation of Radiation Safety requires that the Radiation Safety Responsible (RSR) must be experienced in issues of radiation safety of the facility in which employed. As experience has been found by chance that some people who have attended courses offered by the National Institute of Nuclear Research and have not achieved a result approval, obtain approval at the respective courses offered by other entities, which may have a potential dilemma (not at all cases since then), in the sense that the aspiration to become experts in the safety basic standards, can be addressed only after ensuring that there is an acceptance at the level of the course and evaluation ways of the present courses to RSR. Viewed another way, one can consider the formation of RSR experience in planning for better training of experts in the safety basic standards. It happens that the courses offered to RSR some of them do not cover the requirements of time, content and practices established in the regulations. The Mexican Society of Radiological Safety can affect as a partner to improve the courses quality. (Author)

  6. Draft Convention on the Exemption from Taxes of the European Organization for Nuclear Research, The Representatives of Member States on the Council of the Organization, the Director-General and the Members of the Staff of the European Organization for Nuclear Research

    CERN Document Server

    European Organization for Nuclear Research

    1955-01-01

    Draft Convention on the Exemption from Taxes of the European Organization for Nuclear Research, The Representatives of Member States on the Council of the Organization, the Director-General and the Members of the Staff of the European Organization for Nuclear Research

  7. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  8. Nuclear power research funding 1956-2007: startup funding or subsidy? An update; Forschungsfoerderung Kernenergie 1956-2007: Anschubfinanzierung oder Subvention? Update

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Gerd [VGB Power Tech e.V., Essen (Germany); RWE Power AG, Essen (Germany); Weis, Michael [VGB Power Tech e.V., Essen (Germany)

    2008-12-15

    The latest outline of nuclear power research funding since 1956 was written roughly 4 years ago. This makes it appropriate to update facts and figures to the 2007 status. Another reason for doing so is the current political debate about an extension of plant life of German nuclear power stations. One objective of these debates frequently is seen to be the use of absurd figures about 'subsidies' in an attempt to discredit the economic benefit of nuclear power. The research situation has not changed much. A continued low level of funding of nuclear research, on the one hand, is opposed by a high level of electricity generation from nuclear power, on the other hand. Present nuclear power plants generating electricity have never received any subsidies. Various federal governments, most recently the Schroeder government, made this point absolutely clear. Public R and D funds were intended to be startup aids convincingly serving their purpose where the respective technologies were able to unfold. Consequently, the economic benefit of the development of nuclear power is beyond any doubt. Another wrong statement is the allegation that the demolition of nuclear power plants and the management of radioactive waste were paid for out of taxpayers' money. In fact, these costs are already included in the price of electricity, and the necessary capital outlay is posted in the appropriate provisions. (orig.)

  9. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  10. Nuclear science research with dynamic high energy density plasmas at NIF

    Science.gov (United States)

    Shaughnessy, D. A.; Gharibyan, N.; Moody, K. J.; Despotopulos, J. D.; Grant, P. M.; Yeamans, C. B.; Berzak Hopkins, L.; Cerjan, C. J.; Schneider, D. H. G.; Faye, S.

    2016-05-01

    Nuclear reaction measurements are performed at the National Ignition Facility in a high energy density plasma environment by adding target materials to the outside of the hohlraum thermo-mechanical package on an indirect-drive exploding pusher shot. Materials are activated with 14.1-MeV neutrons and the post-shot debris is collected via the Solid Radiochemistry diagnostic, which consists of metal discs fielded 50 cm from target chamber center. The discs are removed post-shot and analyzed via radiation counting and mass spectrometry. Results from a shot using Nd and Tm foils as targets are presented, which indicate enhanced collection of the debris in the line of sight of a given collector. The capsule performance was not diminished due to the extra material. This provides a platform for future measurements of nuclear reaction data through the use of experimental packages mounted external to the hohlraum.

  11. The Nordic nuclear safety research. Plan 1995; Nordisk kernesikkerhedsprogram 1994-1997. Plan for 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The annual plans for the 4-year Nordic nuclear safety program, initiated in 1994, are described. The goals of this program are information exchange and common consensus in the field of nuclear safety, radiation protection and emergency preparedness among the respective Nordic authorities. Awareness of all the safety and radiation protection aspects in the Nordic countries as well as in the neighbouring countries is to be strengthened. The present four-years plan comprehends 7 main projects on reactor safety, waste management, environmental effects and emergency plans. The eighth project is of administrative nature. Numerous national authorities, enterprises and institutions support the program through contribution of unpaid work, providing of laboratory resources etc. (EG).

  12. Capabilities of the RENEB network for research and large scale radiological and nuclear emergency situations

    OpenAIRE

    Monteiro Gil, Octávia; Vaz, Pedro; Romm, Horst; De Angelis, Cinzia; Antunes, Ana Catarina; Barquinero, Joan-Francesc; Beinke, Christina; Bortolin, Emanuela; Burbidge, Christopher Ian; Cucu, Alexandra; Della Monaca, Sara; Moreno Domene, Mercedes; Fattibene, Paola; Gregoire, Eric; Hadjidekova, Valeria

    2017-01-01

    Purpose: To identify and assess, among the participants in the RENEB (Realizing the European Network of Biodosimetry) project, the emergency preparedness, response capabilities and resources that can be deployed in the event of a radiological or nuclear accident/incident affecting a large number of individuals. These capabilities include available biodosimetry techniques, infrastructure, human resources (existing trained staff), financial and organizational resources (including the role of na...

  13. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another

  14. Research on a laser ultrasound method for testing the quality of a nuclear radiation protection structure

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Ma, Liyin

    2017-02-01

    Laser ultrasonics has been investigated for inspecting the quality of a nuclear radiation protection structure. A possibility is proposed to improve the signal to noise ratio (SNR) of a laser ultrasonic inspection system. Then, a nuclear radiation protection structure composed of an AISI 1045 steel sheet connected with a lead alloy sheet by using an epoxy resin adhesive was manufactured with simulated defects. A non-contact laser ultrasonic inspection system, where the measured signals were filtered using a wavelet threshold de-noising method, was established to conduct a series of experiments. The proposed signal processing method can significantly improve the SNR of measured laser ultrasound signals on a rough solid surface. Compared with the SNR of original ultrasonic signals measured in transmission and reflection, the SNR of processed transmitted and reflected signals is improved by 13.8 and 16.6 dB, respectively. Moreover, laser ultrasonic C-scans based on the transmission and pulse-echo method can detect the simulated de-bonding defects, and the relative deviation between the measured sizes and design values is below 9%. Therefore, the laser ultrasonic method combined with effective signal processing can achieve the quantitative characterization of de-bonding defects in nuclear radiation protection structures.

  15. Electric Power quality Analysis in research reactor: Impacts on nuclear safety assessment and electrical distribution reliability

    Energy Technology Data Exchange (ETDEWEB)

    Touati, Said; Chennai, Salim; Souli, Aissa [Nuclear Research Centre of Birine, Ain Oussera, Djelfa Province (Algeria)

    2015-07-01

    The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how well a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)

  16. Experience with the transport and storage casks CASTOR (registered) MTR 2 for spent nuclear fuel assemblies from research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jack, Allen; Rettenbacher, Katharina; Skrzyppek, Juergen [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2011-07-01

    The CASTOR (registered) MTR 2 cask was designed and manufactured by the company GNS during the 1990's for the transport and interim storage of spent nuclear fuel assemblies from various types of research reactors. Casks of this type have been used at the VKTA Research Centre in Rossendorf near Dresden, Germany as well as at the European Commission's Joint Research Centre at Petten and at the HOR reactor at Delft in the Netherlands. A total of 24 units have been used for the functions of transport and storage with various spent fuel types (VVER, HFR-HEU, and HOR-HEU) for more than ten years now. This type of packaging for radioactive material is a member of the CASTOR (registered) family of spent nuclear fuel casks used worldwide. Over 1000 units are loaded and in storage in Europe, Asia, Africa and North America. This paper presents the experience from the use of the casks for transport and storage in the past, as well as the prospects for the future. (author)

  17. Current research and development activities on fission products and hydrogen risk after the accident at Fukushima Daiichi nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Takeshi; Hoshi, Harutaka; Hotta, Akitoshi [Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority, Tokyo (Japan)

    2015-02-15

    After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

  18. Mass Casualty Decontamination in a Chemical or Radiological/Nuclear Incident with External Contamination: Guiding Principles and Research Needs.

    Science.gov (United States)

    Cibulsky, Susan M; Sokolowski, Danny; Lafontaine, Marc; Gagnon, Christine; Blain, Peter G; Russell, David; Kreppel, Helmut; Biederbick, Walter; Shimazu, Takeshi; Kondo, Hisayoshi; Saito, Tomoya; Jourdain, Jean-René; Paquet, Francois; Li, Chunsheng; Akashi, Makoto; Tatsuzaki, Hideo; Prosser, Lesley

    2015-11-02

    Hazardous chemical, radiological, and nuclear materials threaten public health in scenarios of accidental or intentional release which can lead to external contamination of people.  Without intervention, the contamination could cause severe adverse health effects, through systemic absorption by the contaminated casualties as well as spread of contamination to other people, medical equipment, and facilities.  Timely decontamination can prevent or interrupt absorption into the body and minimize opportunities for spread of the contamination, thereby mitigating the health impact of the incident.  Although the specific physicochemical characteristics of the hazardous material(s) will determine the nature of an incident and its risks, some decontamination and medical challenges and recommended response strategies are common among chemical and radioactive material incidents.  Furthermore, the identity of the hazardous material released may not be known early in an incident.  Therefore, it may be beneficial to compare the evidence and harmonize approaches between chemical and radioactive contamination incidents.  Experts from the Global Health Security Initiative's Chemical and Radiological/Nuclear Working Groups present here a succinct summary of guiding principles for planning and response based on current best practices, as well as research needs, to address the challenges of managing contaminated casualties in a chemical or radiological/nuclear incident.

  19. Safety Re-evaluation of Kyoto University Research Reactor by reflecting the Accident of Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, K.; Yamamoto, T. [Kyoto Univ., Kyoto (Japan)

    2013-07-01

    Kyoto University Research Reactor (KUR) is a light-water moderated tank-type reactor operated at rated thermal power of 5MW. After the accident of Fukushima Daiichi nuclear power plant, we have settled a 40-ton water tank near the reactor room, and prepared a mobile fire pump and a mobile power generator as additional safety measures for beyond design basis accidents (BDBAs). We also have conducted the safety re-evaluation of KUR, and confirmed that the integrity of KUR fuels could be kept against the BDBA with the use of the additional safety measures when the several restrictions were imposed on the reactor operation.

  20. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  1. 核电站机器人研究现状与发展趋势%Research Status and Development Trend of Nuclear Power Plant Robots

    Institute of Scientific and Technical Information of China (English)

    徐文福; 毛志刚

    2011-01-01

    核机器人在核电站安全中起着极重要的作用.本文首先介绍了核电站的运行原理,并对其关键设施的安全性级别进行分类.然后从三个主要应用——关键设施维护、核辐射监测与预警、核事故处理与救援等方面,分析了各国核电站机器人的研究现状.最后,归纳了其中的关键技术,并对未来的发展趋势进行了展望.%Nuclear robots play a very important role in safe operation of nuclear power plants. In this paper, the operating principle of nuclear power plants is firstly introduced and the safety levels of key nuclear facilities are illustrated. Then the present research status of nuclear robots in the world is summarized from three main aspects: maintenance of key nuclear facilities, inspection and warning of nuclear radiation, accident management and rescuing. Finally, the key technologies of nuclear power plant robots are discussed, and the research prospects are presented.

  2. The nuclear energy of the future: the researches and the objectives; L'energie nucleaire du futur: quelles recherches pour quels objectifs?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  3. U.S. Nuclear Regulatory Commission

    Science.gov (United States)

    ... to page Search NRC Report a Safety Concern Nuclear Reactors Power Reactors Research & Test Reactors Operating Reactors ... Reactors Operator Licensing for New Reactors Research Activities Nuclear Reactor Quick Links Nuclear Materials Special Nuclear Material ...

  4. Nuclear Science Division annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. (ed.)

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

  5. Nuclear physics research program at the 30 MeV Karaj cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Noshad, H. E-mail: hnoshad@seai.neda.net.ir; Soheyli, S.; Lamehi-Rachti, M.; Talebi-Taher, A.R.; Aslani, Gh.; Maboudi-Moghaddam, S.; Rahighi, J.; Kakuee, O.R.; Heydari, N

    2002-08-01

    A versatile reaction chamber and its accessories as well as a multiparameter data acquisition system were designed, assembled, and installed in the R and D hall at NRCAM to allow nuclear measurements. The {sup 209}Bi(p,f) and {sup 197}Au(p,f) reaction experiments at E{sub p}=30 MeV were performed. The good agreement between our experimental results as compared with previously published data are presented here to show the reliability of our apparatus. In the case of the bismuth reaction, the fission cross section obtained by using pair spectrometry as well as its associated error have been measured for the first time.

  6. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Hecke, K.; Goethals, P.

    2006-07-15

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  7. Nuclear Structure

    Science.gov (United States)

    Gargano, Angela

    2003-04-01

    An account of recent studies in the field of theoretical nuclear structure is reported. These studies concern essentially research activities performed under the Italian project "Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi". Special attention is addressed to results obtained during the last two years as regards the development of new many-body techniques as well as the interpretation of new experimental aspects of nuclear structure.

  8. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  9. Application of modern computer technology to EPRI (Electric Power Research Institute) nuclear computer programs: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Feinauer, L.R.

    1989-08-01

    Many of the nuclear analysis programs in use today were designed and developed well over a decade ago. Within this time frame, tremendous changes in hardware and software technologies have made it necessary to revise and/or restructure most of the analysis programs to take advantage of these changes. As computer programs mature from the development phase to being production programs, program maintenance and portability become very important issues. The maintenance costs associated with a particular computer program can generally be expected to exceed the total development costs by as much as a factor of two. Many of the problems associated with high maintenance costs can be traced back to either poorly designed coding structure, or ''quick fix'' modifications which do not preserve the original coding structure. The lack of standardization between hardware designs presents an obstacle to the software designer in providing 100% portable coding; however, conformance to certain guidelines can ensure portability between a wide variety of machines and operating systems. This report presents guidelines for upgrading EPRI nuclear computer programs to conform to current programming standards while maintaining flexibility for accommodating future hardware and software design trends. Guidelines for development of new computer programs are also presented. 22 refs., 10 figs.

  10. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  11. Applied nuclear data research and development. Progress report, January 1-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Baxman, C.I.; Young, P.G. (comps.)

    1981-07-01

    Activities of the Los Alamos Nuclear Data Group for January 1 through March 31, 1981, are described. Topics include: (1) peripheral effects in R-matrix theory; (2) Coulomb corrections in light nuclei; (3) new R-matrix analysis of reactions in the /sup 7/Li system; (4) variance-covariance analysis of n + Li reactions; (5) calculated charged-particle emission in the mass-90 region; (6) determination of deformed optical model parameters for neutron reactions on /sup 235/U and /sup 239/Pu; (7) calculation of excited state cross sections for actinide nuclei; (8) calculation of the prompt neutron spectrum and ..nu../sub p/ for the spontaneous fission of /sup 252/Cf; (9) international nuclear model codes comparison study; (10) an improved calculation of heating and radiation damage from neutron capture; (11) LMFBR cross-section production with MAX; (12) TRANSX development; (13) THOR calculations; (14) covariance processing; (15) analysis of charges for use of central computing facility; (16) S/sub n/ calculations for D/sub 2/O sphere; (17) integral data testing of ENDF/B fission-product data; (18) decay power comparisons using ENDF/B-IV and -V data in CINDER-10; (19) ENDF/B-V data testing and summary data; (20) SPEC5: code to produce multigroup spectra; and (21) calculation of H. B. Robinson-2 fuel isotopics and comparison with measurements. (WHK)

  12. THE DEVELOPMENT OF AN ENTERPRISE RESOURCE PLANNING SYSTEM (ERP FOR A RESEARCH AND TECHNOLOGY INSTITUTE: THE CASE OF THE NUCLEAR AND ENERGY RESEARCH INSTITUTE -IPEN

    Directory of Open Access Journals (Sweden)

    Willy Hoppe de Souza

    2011-05-01

    Full Text Available This paper reports the history of the development of an enterprise resource planning (ERP dedicated to managing the technical activities of the Nuclear and Energy Research Institute, a governmental research and technology institute in Brazil. After the implementation of the new planning process, the development of a new management information system named SIGEPI was immediately initiated. The implementation of this system followed a strategy of integrating databases already available and developing new ones in order to facilitate the data collecting process and to improve the quality and the reliability of these data. This paper describes the evolution of SIGEPI, its main features and it also reports the difficulties faced for almost ten years of developments. The success factors of the case were classified into three groups: strategic, technical and behavioral ones. The impact of these factors and recommendation for future similar developments are presented.

  13. THE DEVELOPMENT OF AN ENTERPRISE RESOURCE PLANNING SYSTEM (ERP FOR A RESEARCH AND TECHNOLOGY INSTITUTE: THE CASE OF THE NUCLEAR AND ENERGY RESEARCH INSTITUTE -IPEN

    Directory of Open Access Journals (Sweden)

    Willy Hoppe de Souza

    2011-01-01

    Full Text Available This paper reports the history of the development of an enterprise resource planning (ERPdedicated to managing the technical activities of the Nuclear and Energy Research Institute, agovernmental research and technology institute in Brazil. After the implementation of the newplanning process, the development of a new management information system named SIGEPIwas immediately initiated. The implementation of this system followed a strategy of integratingdatabases already available and developing new ones in order to facilitate the data collectingprocess and to improve the quality and the reliability of these data. This paper describes theevolution of SIGEPI, its main features and it also reports the difficulties faced for almost tenyears of developments. The success factors of the case were classified into three groups:strategic, technical and behavioral ones. The impact of these factors and recommendation forfuture similar developments are presented.

  14. Nuclear physics research program at the 30 MeV Karaj cyclotron

    CERN Document Server

    Noshad, H; Lamehi-Rachti, M; Talebi-Taher, A R; Aslani, G; Maboudi-Moghaddam, S; Rahighi, J; Kakuee, O R; Heydari, N

    2002-01-01

    A versatile reaction chamber and its accessories as well as a multiparameter data acquisition system were designed, assembled, and installed in the R and D hall at NRCAM to allow nuclear measurements. The sup 2 sup 0 sup 9 Bi(p,f) and sup 1 sup 9 sup 7 Au(p,f) reaction experiments at E sub p =30 MeV were performed. The good agreement between our experimental results as compared with previously published data are presented here to show the reliability of our apparatus. In the case of the bismuth reaction, the fission cross section obtained by using pair spectrometry as well as its associated error have been measured for the first time.

  15. Advanced Tele-operation[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M.

    1998-07-01

    Maintenance, repair, and dismantling operations in nuclear facilities have to be performed remotely when high radiation doses exclude hands-on operation, but also to minimize contamination risks and occupational doses to the operators. Computer-aided and sensor-based tele-operation enhances safety, reliability, and performance by helping the operator in difficult tasks with poor remote environmental perception. The objectives of work in this domain are to increase the scientific knowledge of the studied phenomena, to improve the interpretation of data, to improve the piloting og experimental devices during irradiation, to reveal and to understand possible unexpected phenomena occurring during irradiation. This scientific report describes the achievements for 1997 in the area of radiation tolerance for of remote-sensing, optical fibres and optical fibre sensors.

  16. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  17. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  18. Research and development of earthquake-resistant structure model for nuclear fuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, S.; Shioya, I. [and others

    1999-05-01

    It is important for a nuclear fuel facility to reduce an input intensity of earthquake on the upper part of the building. To study of a response of the building caused by earthquake, an earthquake-resistant structure model is constructed. The weight of the structure model is 90 ton, and is supported by multiple layers of natural ruber and steel. And a weight support device which is called 'softlanding' is also installed to prevent the structure model from loosing the function at excess deformation. The softlanding device consists of Teflon. Dynamic response characteristics of the structure model caused by sine wave and simulated seismic waves are measured and analyzed. Soil tests of the fourth geologic stratum on which the structure model is sited are made to confirm the safety of soil-structure interactions caused by earthquake. (M. Suetake)

  19. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    Science.gov (United States)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  20. Non-radioactive waste management in a Nuclear Energy Research Institution

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F., E-mail: helioaf@ipen.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEM-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2013-07-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  1. Triangle Universities Nuclear Laboratory annual report: TUNL XVI, 1 January 1977 -- 31 December 1977. [Summaries of research activities at Triangle Universities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    A summary of research is presented on nuclear physics. Included in the studies are neutron and fission physics, neutron polarization studies, high resolution studies, gamma ray spectroscopy, charged-particle reactions with polarized beams, radiative capture reactions, atomic collision physics, heavy ion physics, the development of facilities, ion source development, accelerator development and instrumentation computer-related development, and nuclear theory and phenomenology. A list of publications is included. (JFP)

  2. Nuclear medical approaches to clinical research; Nuklearmedizinische Ansaetze in der klinischen Forschung

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Andreas; Nguyen, Tristan (eds.)

    2009-11-15

    In the frame of the master course Clinical research management at the scientific college Lahr in cooperation with the Albert-Ludwigs-University Freiburg three contributions are presented: Functional imaging - supported clinical studies in the sleep research. A comparison of NMR imaging versus SPECT and PET (advantages and disadvantages). Clinical studies with ionizing radiation and the radiation fear of the public. The new radioimmunotherapeutic agent Zevalin and the challenges at the market.

  3. Chinese Nuclear Science Basic Data Base (CNSBDB)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new research project on "Development of the Chinese Nuclear Science Basic Database (CNSBDB)for Fundamental Researches of Nuclear Physics and Interrelated Subjects, and Requirements of NuclearPower and Nuclear Technologies Application" has been commenced. The CNSBDB contains thefollowing eight segments: 1) Information on Nuclear Science (INFO); 2) Nuclear Structure Data Base(NSDB); 3) Nuclear Decay Data Base (NDDB); 4) Nuclear Reaction Data Base (NRDB); 5) Nuclear

  4. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  5. Fault detection and analysis in nuclear research facility using artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Abu Bakar, E-mail: Abakar@uniten.edu.my [Department of Electronics & Communication, College of Engineering, Universiti Tenaga Nasional, 43009 Kajang, Selangor (Malaysia); Ibrahim, Maslina Mohd [Instrumentation Program, Malaysian Nuclear Agency, Bangi (Malaysia)

    2016-01-22

    In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either ‘yes’ or ‘no’ state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.

  6. Research on the improvement of nuclear safety -Improvement of level 1 PSA computer code package-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Kyoo; Kim, Tae Woon; Kim, Kil Yoo; Han, Sang Hoon; Jung, Won Dae; Jang, Seung Chul; Yang, Joon Un; Choi, Yung; Sung, Tae Yong; Son, Yung Suk; Park, Won Suk; Jung, Kwang Sub; Kang Dae Il; Park, Jin Heui; Hwang, Mi Jung; Hah, Jae Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This year is the third year of the Government-sponsored mid- and long-term nuclear power technology development project. The scope of this sub project titled on `The improvement of level-1 PSA computer codes` is divided into three main activities : (1) Methodology development on the underdeveloped fields such as risk assessment technology for plant shutdown and low power situations, (2) Computer code package development for level-1 PSA, (3) Applications of new technologies to reactor safety assessment. At first, in this area of shutdown risk assessment technology development, plant outage experiences of domestic plants are reviewed and plant operating states (POS) are decided. A sample core damage frequency is estimated for over draining event in RCS low water inventory i.e. mid-loop operation. Human reliability analysis and thermal hydraulic support analysis are identified to be needed to reduce uncertainty. Two design improvement alternatives are evaluated using PSA technique for mid-loop operation situation: one is use of containment spray system as backup of shutdown cooling system and the other is installation of two independent level indication system. Procedure change is identified more preferable option to hardware modification in the core damage frequency point of view. Next, level-1 PSA code KIRAP is converted to PC-windows environment. For the improvement of efficiency in performing PSA, the fast cutest generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. 48 figs, 15 tabs, 59 refs. (Author).

  7. Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Burton; Chu, Margaret; Hoffman, Darleane; Juzaitis, Ray; Mtingwa, Sekazi; Omberg, Ronald P.; Rempe, Joy L.; Warin, Dominique

    2012-06-12

    The Fuel Cycle (FC) Subcommittee of NEAC met February 7-8, 2012 in Washington (Drs. Hoffmann and Juzaitis were unable to attend). While the meeting was originally scheduled to occur after the submission of the President’s FY 2013 budget, the submission was delayed a week; thus, we could have no discussion on balance in the NE program. The Agenda is attached as Appendix A. The main focus of the meeting was on accident tolerant fuels, an important post Fukushima issue, and on issues related to the report of the Blue Ribbon Commission on America’s Nuclear Future (BRC) as related to the responsibility for used fuel disposal which was assigned to the FC program with the end of the Office of Civilian Radioactive Waste Management. In addition we heard an update on the systems study program which is aimed at helping chose the best options for advanced reactors, and possible new study on separation and waste form relevance to used fuel disposal (these two items are only discussed in this section of the report).

  8. Fault detection and analysis in nuclear research facility using artificial intelligence methods

    Science.gov (United States)

    Ghazali, Abu Bakar; Ibrahim, Maslina Mohd

    2016-01-01

    In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either `yes' or `no' state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.

  9. A method to assess predominant energies of exposure in a nuclear research centre--Saclay (France).

    Science.gov (United States)

    Thierry-Chef, I; Cardis, E; Ciampi, A; Delacroix, D; Marshall, M; Amoros, E; Bermann, F

    2001-01-01

    A study of dosimetric errors is under way within an international collaborative study of cancer risk among workers in the nuclear industry. The objective is to quantify errors in the estimated photon doses to individual organs used for cancer risk estimation. One source of errors is the response of old dosemeters in workplace exposure conditions. As these conditions are not well known, the International Study must rely on expert estimations. This paper describes a method to assess the proportion of the dose from photons in three energy ranges ( or = 300 keV) using the responses under filters of a multi-element dosemeter. The method was tested on experimental and simulated data and provides a good estimate of the proportion of dose from photons below 100 keV, the most critical for dosemeter response. It was applied to personnel readings in one facility, confirming the experts' estimation. Beyond the International Study, the method has implication for the monitoring and protection of workers.

  10. Final Report, University Research Program in Robotics (URPR), Nuclear Facilities Clean-up

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, Delbert; Kapoor, Chetan; Pryor, Mitch

    2005-03-31

    This final report describes the research activity at the University of Texas at Austin with application to EM needs at DOE. This research activity is divided in to two major thrusts and contributes to the overall University Research Program in Robotics (URPR) thrust by providing mechanically oriented robotic solutions based on modularity and generalized software. These thrusts are also the core strengths of the UTA program that has a 40-year history in machine development, 30 years specifically devoted to robotics. Since 1975, much of this effort has been to establish the general analytical and design infrastructure for an open (modular) architecture of systems with many degrees of freedom that are able to satisfy a broad range of applications for future production machines. This work has coalesced from two principal areas: standardized actuators and generalized software.

  11. Nuclear energy - some aspects; Energia nuclear - alguns aspectos

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, Fausto de Paula Menezes

    2005-05-15

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy.

  12. Improving the Indico Framework at the European Organization for Nuclear Research - Internship Report - LEIC 2006/2007 (FEUP)

    CERN Document Server

    Ferreira, Jose Pedro

    2007-01-01

    This document describes the work developed by José Pedro Macedo Alves Ferreira, Informatics Engineering and Computing (LEIC) undergraduate student at the Engineering Faculty of the University of Porto (FEUP), in the context of the project "Improving the Indico Framework". The project took place at the European Organization for Nuclear Research (CERN), in the framework of both the Technical Student Program of this organization, and the curricular internship of the aforementioned degree. The contents of this report refer to the internship period, the first half of the one-year Technical Student program. The project aimed to introduce usability improvements into an already existing web application, the Indico platform, a integrated system for event scheduling and management, which was initially developed as a European project and continued by CERN, being currently used by several institutions worldwide. Indico presented some usability issues that for long had been noticed by the users and required correction, m...

  13. Testing the direct ion storage dosemeter for personal dosimetry in a nuclear research centre and a hospital.

    Science.gov (United States)

    Vanhavere, F; Covens, P

    2010-03-01

    The direct ion storage (DIS) dosemeter can have some clear advantages in personal dosimetry. Before introducing the DIS into practice in the dosimetry service, a series of tests was performed on the linearity, angular and energy dependence, temperature influences and hard resets. After that, for several months, the DIS dosemeters were worn in parallel with the legal dosemeters (thermoluminescent badge) in a nuclear research centre and in several departments of a university hospital. The conclusions are that the DIS has good characteristics to be used as legal personal dosemeter, and that the comparison with the TLD badge is good. Only in interventional radiology and cardiology fields the DIS gives significant lower values than the TLD badge.

  14. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    Energy Technology Data Exchange (ETDEWEB)

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  15. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  16. Computational analysis of neutronic parameters for TRIGA Mark-II research reactor using evaluated nuclear data libraries

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.N. [Department of Physics, Jahangirnagar University, Dhaka (Bangladesh); Sarker, M.M., E-mail: sarker_md@yahoo.co [Reactor Physics and Engineering Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Ganakbari, Savar, GPO Box 3787, Dhaka-1000 (Bangladesh); Khan, M.J.H. [Reactor Physics and Engineering Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Ganakbari, Savar, GPO Box 3787, Dhaka-1000 (Bangladesh); Islam, S.M.A. [Department of Physics, Jahangirnagar University, Dhaka (Bangladesh)

    2010-03-15

    The aim of this study is to analyze the neutronic parameters of TRIGA Mark-II research reactor using the chain of NJOY-WIMS-CITATION computer codes based on evaluated nuclear data libraries CENDL-2.2 and JEFF-3.1.1. The nuclear data processing code NJOY99.0 has been employed to generate the 69 group WIMS library for the isotopes of TRIGA core. The cell code WIMSD-5B was used to generate the cross sections in CITATION format and then 3-dimensional diffusion code CITTATION was used to calculate the neutronic parameters of the TRIGA Mark-II research reactor. All the analyses were performed using the 7-group macroscopic cross section library. The CITATION test-runs using different cross section sets based on different models applied in WIMS calculations have shown a strong influence of those models on the final integral parameters. Some of the cells were specially treated with PRIZE options available in WIMSD-5B to take into account the fine structure of the flux gradient in the fuel-reflector interface region. It was observed that two basic parameters, the effective multiplication factor, k{sub eff} and the thermal neutron flux, were in good agreement among the calculated results with each other as well as the measured values. The maximum power densities at the hot spot were 1.0446E02 W/cc and 1.0426E02 W/cc for the libraries CENDL-2.2 and JEFF-3.1.1 respectively. The calculated total peaking factors 5.793 and 5.745 were compared to the original SAR value of 5.6325 as well as MCNP result. Consequently, this analysis will be helpful to enhance the neutronic calculations and also be used for the further thermal-hydraulics study of the TRIGA core.

  17. Corrosion Surveillance for Research Reactor Spent Nuclear Fuel in Wet Basin Storage

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.P.

    1998-10-16

    Foreign and domestic test and research reactor fuel is currently being shipped from locations over the world for storage in water filled basins at the Savannah River Site (SRS). The fuel was provided to many of the foreign countries as a part of the "Atoms for Peace" program in the early 1950's. In support of the wet storage of this fuel at the research reactor sites and at SRS, corrosion surveillance programs have been initiated. The International Atomic Energy Agency (IAEA) established a Coordinated Research Program (CRP) in 1996 on "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" and scientists from ten countries worldwide were invited to participate. This paper presents a detailed discussion of the IAEA sponsored CRP and provides the updated results from corrosion surveillance activities at SRS. In May 1998, a number of news articles around the world reported stories that microbiologically influenced corrosion (MIC) was active on the aluminum-clad spent fuel stored in the RBOF basin at SRS. This assessment was found to be in error with details presented in this paper. A biofilm was found on aluminum coupons, but resulted in no corrosion. Cracks seen on the surface were not caused by corrosion, but by stresses from the volume expansion of the oxide formed during pre-conditioning autoclaving. There has been no pitting caused by MIC or any other corrosion mechanism seen in the RBOF basin since initiation of the SRS Corrosion Surveillance Program in 1993.

  18. Environmental restoration[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaert, T.; Vanmaercke, H.

    1998-07-01

    The objectives of the research activities in the field of environmental restoration are: (1) to optimize and validate models for the impact assessment from environmental, radioactive contaminations, including waste disposal or discharges; (2) to support the policy of national authorities for public health and radioactive waste management. The main achievements for 1997 are given.

  19. Neutron flux from a 14‐MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    OpenAIRE

    2009-01-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14‐MeV (D‐T) neutron generator and a...

  20. The nuclear research in Mexico (1986-1994). Bibliometrics of papers published in journals outside of the Latin American region; La investigacion nuclear en Mexico (1986-1994). Bibliometria de trabajos publicados en revistas fuera de la region latinoamericana

    Energy Technology Data Exchange (ETDEWEB)

    Garrido R, S.A

    2007-07-01

    Mexican research in nuclear science during 1986-1994 has been studied through the bibliometric analysis of the output of scientific papers published by Mexican institutions in non Latin American journals of international circulation. Bibliographic references were compiled from the International Nuclear Information System (INIS) database as well as from proceedings and annual reports of Mexican research institutions within the field of interest. After careful normalization, data from the 920 detected papers were keyboarded and checked in a database used for the evaluation of the number of papers by discipline, source institutions and departments, authors, coauthors, publication year as well as publishing journals and their geographic origin, language of publication and the interactions of all these parameters. Results were expressed in reports, and summarized in tables and figures to visualize the state of this research field in Mexico. (Author)

  1. International Workshop on Research, Development, and Demonstration to Enhance the Role of Nuclear Energy in Meeting Climate and Energy Challenges

    OpenAIRE

    Anadon, Laura Diaz; Bosetti, Valentina; Bunn, Matthew G.; Catenacci, Michela; Lee, Audrey

    2011-01-01

    Dramatic growth in nuclear energy would be required for nuclear power to provide a significant part of the carbon-free energy the world is likely to need in the 21st century, or a major part in meeting other energy challenges. This would require increased support from governments, utilities, and publics around the world. Achieving that support is likely to require improved economics and major progress toward resolving issues of nuclear safety, proliferation-resistance, and nuclear waste manag...

  2. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  3. A simple setup for neutron tomography at the Portuguese Nuclear Research Reactor

    CERN Document Server

    Pereira, M A Stanojev; Pugliesi, R

    2012-01-01

    A simple setup for neutron radiography and tomography was recently installed at the Portuguese Research Reactor. The objective of this work was to determine the operational characteristics of the installed setup, namely the irradiation time to obtain the best dynamic range for individual images and the spatial resolution. The performance of the equipment was demonstrated by imaging a fragment of a 17th century decorative tile.

  4. Research and experience report 2010 - Developments in the technical and legal basis of nuclear oversight; Erfahrungs- und Forschungsbericht 2010 - Entwicklungen im Bereich der Grundlagen der nuklearen Aufsicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-15

    This comprehensive annual report presents a review of the activities carried out by the Swiss Federal Nuclear Safety Inspectorate (ENSI) in the year 2010. The inspectorate's fields of activity - fuels and materials, significant internal and external events and occurrences, human factors, system behaviour and accident sequences, radiological protection and waste disposal - are reviewed. Information on incidents in Swiss nuclear facilities are reviewed in the ENSI Surveillance Report. The Research and Experience Report also provides information on a selection of particularly instructive incidents in nuclear facilities outside Switzerland. Incidents are analysed with a view to identifying any potential relevance to Swiss nuclear facilities. International co-operation is mentioned and current changes and developments related to plant surveillance are noted. Organisational aspects are discussed and various guidelines and directives are presented and discussed

  5. Contributions of the National Institute of Nuclear Research to the advance of Science and Technology in Mexico. Commemorative edition 2010; Contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la ciencia y la tecnologia en Mexico. Edicion conmemorativa 2010

    Energy Technology Data Exchange (ETDEWEB)

    Duque M, G.; Jimenez R, M.; Monroy G, F.; Romero H, S.; Serment G, J. (ed.) [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    From the second decade of the X X century the applications of the nuclear energy have been important part of the scientific and technological patrimony in Mexico. Records exist with regard to the use of the radioisotopes and the radiations in our country in that time, and in a formal way until the year of 1950, in a process that culminates with the creation of the Comision Nacional de Energia Nuclear (CNEN. January 1, 1956). In January 12, 1972 were published the Organic Law that created to the Instituto Nacional de Energia Nuclear, being responsible for the works that the CNEN developed. The current Instituto Nacional de Investigaciones Nucleares (ININ) was constituted starting from the Regulation Law of the constitutional Article 27 in nuclear matter of January 26, 1979, abrogated and substituted by the Law in force of February 4, 1985. In this lapse they were undertaken multitude of projects with results and diverse achievements. From their creation, the mission of the ININ and the previous institutions has been to realize research in science and nuclear technology, to promote their peaceful uses and to diffuse the achieved advances, always searching for to link them to the economic, social, scientific and technological development of the country. In this occasion with the purpose of participating in the commemoration of the bicentennial of the independence and centennial of the Mexican revolution in our country, the ININ decided to publish this work, directed to a wide public, with the intention of providing a vision the most complete and appropriate possible of the activities in research and technology that it is carries out at the moment. This work also seeks to be a diffusion instrument of the tasks that they are carried out in the institute, in diverse subjects as: the basic research, the nuclear applications in the health, the agriculture and the industry, the studies on the contamination and the environment; the dosimetry; the radiological protection; as

  6. Teaching Research on Nuclear Techniques and Nuclear Engineering and Attempts in Training Students' Competence%核技术与核工程课程教学与学生能力培养探索

    Institute of Scientific and Technical Information of China (English)

    郭立平; 刘传胜

    2012-01-01

    文章介绍了笔者在核技术与核工程课程教学与学生能力培养方面的一些经验和尝试。重点介绍了以粒子加速器和核反应堆为代表的大型核科学平台以及在其上建立的应用广泛的重要核技术。在讲授基础知识的同时,突出了当代核技术及应用最新进展。在提高学生能力方面,尝试了课程论文、业余科研和毕业设计三种实践模式,并获得了良好的效果。%The article introduces the author's some experience and try in nuclear technology and engineering curriculum tea- ching and the cultivation of the students' capability, Focused on large nuclear science platform as the representative of particle accelerator and nuclear reactor and widely applied nuclear techniques based on the platform. Contemporary nuclear techni- ques and their up-to-date applications are emphasized, while basic knowledge was taught. In order to improve the students' competence, course thesis, extracurricular academic research as well as graduation design three practical modes are attempted and obtain a good effect.

  7. 'Geo'chemical research: a key building block for nuclear waste disposal safety cases.

    Science.gov (United States)

    Altmann, Scott

    2008-12-12

    Disposal of high level radioactive waste in deep underground repositories has been chosen as solution by several countries. Because of the special status this type waste has in the public mind, national implementation programs typically mobilize massive R&D efforts, last decades and are subject to extremely detailed and critical social-political scrutiny. The culminating argument of each program is a 'Safety Case' for a specific disposal concept containing, among other elements, the results of performance assessment simulations whose object is to model the release of radionuclides to the biosphere. Public and political confidence in performance assessment results (which generally show that radionuclide release will always be at acceptable levels) is based on their confidence in the quality of the scientific understanding in the processes included in the performance assessment model, in particular those governing radionuclide speciation and mass transport in the geological host formation. Geochemistry constitutes a core area of research in this regard. Clay-mineral rich formations are the subjects of advanced radwaste programs in several countries (France, Belgium, Switzerland...), principally because of their very low permeabilities and demonstrated capacities to retard by sorption most radionuclides. Among the key processes which must be represented in performance assessment models are (i) radioelement speciation (redox state, speciation, reactions determining radionuclide solid-solution partitioning) and (ii) diffusion-driven transport. The safety case must therefore demonstrate a detailed understanding of the physical-chemical phenomena governing the effects of these two aspects, for each radionuclide, within the geological barrier system. A wide range of coordinated (and internationally collaborated) research has been, and is being, carried out in order to gain the detailed scientific understanding needed for constructing those parts of the Safety Case

  8. ‘Geo’chemical research: A key building block for nuclear waste disposal safety cases

    Science.gov (United States)

    Altmann, Scott

    2008-12-01

    Disposal of high level radioactive waste in deep underground repositories has been chosen as solution by several countries. Because of the special status this type waste has in the public mind, national implementation programs typically mobilize massive R&D efforts, last decades and are subject to extremely detailed and critical social-political scrutiny. The culminating argument of each program is a 'Safety Case' for a specific disposal concept containing, among other elements, the results of performance assessment simulations whose object is to model the release of radionuclides to the biosphere. Public and political confidence in performance assessment results (which generally show that radionuclide release will always be at acceptable levels) is based on their confidence in the quality of the scientific understanding in the processes included in the performance assessment model, in particular those governing radionuclide speciation and mass transport in the geological host formation. Geochemistry constitutes a core area of research in this regard. Clay-mineral rich formations are the subjects of advanced radwaste programs in several countries (France, Belgium, Switzerland…), principally because of their very low permeabilities and demonstrated capacities to retard by sorption most radionuclides. Among the key processes which must be represented in performance assessment models are (i) radioelement speciation (redox state, speciation, reactions determining radionuclide solid-solution partitioning) and (ii) diffusion-driven transport. The safety case must therefore demonstrate a detailed understanding of the physical-chemical phenomena governing the effects of these two aspects, for each radionuclide, within the geological barrier system. A wide range of coordinated (and internationally collaborated) research has been, and is being, carried out in order to gain the detailed scientific understanding needed for constructing those parts of the Safety Case

  9. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    RDandD Programme 2010 presents SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas: the programme for low- and intermediate-level waste (the LILW Programme) and the Nuclear Fuel Programme. Operation of the existing facilities takes place within the Operational Process. RDandD Programme 2010 consists of five parts: Part I Overall plan of action Part II The LILW Programme Part III The Nuclear Fuel Programme Part IV Research for assessment of long-term safety Part V Social science research RDandD Programme 2007 was mainly focused on development of technology to realize the final repository for spent nuclear fuel. The efforts described were aimed at gaining a greater knowledge of long-term safety and compiling technical supporting documentation for applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. Many important results from these efforts are reported in this programme. The integrated account of the results will be presented in applications submitted in early 2011. The regulatory review of RDandD Programme 2007 and its supplement called for clarifications of plans and programmes for the final repository for short-lived radioactive waste, SFR, and the final repository for long-lived waste, SFL. This RDandD Programme describes these plans more clearly

  10. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  11. Investigation of the properties of aluminium alloys used in the construction of nuclear research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hajewska, E. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1993-11-01

    In the paper there are described the results of the studies of the properties of aluminium alloys using in the construction of research reactors, especially of the Polish alloy PAR-1 which belongs to the group of Al-Mg-Si alloys. The influence of the heat treatment on structure of the alloy as well as on the mechanical and corrosion properties was studying. In the paper the results of some properties of PAR-1 alloy after irradiation were done. (author). 27 refs, 43 figs, 9 tabs.

  12. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    Science.gov (United States)

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  13. Altered Nuclear Functions in Progeroid Syndromes: a Paradigm for Aging Research

    Directory of Open Access Journals (Sweden)

    Baomin Li

    2009-01-01

    Full Text Available Syndromes of accelerated aging could provide an entry point for identifying and dissecting the cellular pathways that are involved in the development of age-related pathologies in the general population. However, their usefulness for aging research has been controversial, as it has been argued that these diseases do not faithfully reflect the process of natural aging. Here we review recent findings on the molecular basis of two progeroid diseases, Werner syndrome (WS and Hutchinson-Gilford progeria syndrome (HGPS, and highlight functional connections to cellular processes that may contribute to normal aging.

  14. Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, James W., LTC [Editor

    2000-09-15

    These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  15. Energy Frontier Research Center Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd Allen

    2014-04-01

    Scientific Successes • The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based anharmonic smoothing technique has enabled quantitative benchmarking of ab initio PDOS simulations. • Direct comparison between anharmonicity-smoothed ab initio PDOS simulations for UO2 and experimental measurements has demonstrated the need for improved understanding of UO2 at the level of phonon dispersion, and, further, that advanced lattice dynamics simulations including finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. • PDOS measurements performed on polycrystalline samples have identified the phonon branches and energy ranges most highly impacted by fission-product and hyper-stoichiometry lattice defects in UO2. These measurements have revealed the broad-spectrum impact of oxygen hyper-stoichiometry on thermal transport. The reduction in thermal conductivity caused by hyper-stoichiometry is many times stronger than that caused by substitutional fission-product impurities. • Laser-based thermo-reflectance measurements on UO2 samples irradiated with light (i.e. He) ions to introduce point defects have been coupled with MD simulations and lattice parameter measurements to determine the role of uranium and oxygen point defects in reducing thermal conductivity. • A rigorous perturbation theory treatment of phonon lifetimes in UO2 based on a 3D discretization of the Brillouin zone coupled with experimentally measured phonon dispersion has been implemented that produces improved predictions of the temperature dependent thermal conductivity. • Atom probe investigations of the influence of grain boundary structure on the segregation behavior of Kr in UO2 have shown that smaller amounts of Kr are present at low angle grain boundaries than at large angle grain

  16. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  17. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Main report, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B. [Mitre Corp., McLean, VA (United States)

    1995-06-01

    The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer e following software development and assurance activities: Requirements specification; design; coding; verification and validation, inclukding static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire ran e identification, categorization and prioritization of technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary includes an overview of the framwork and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; this document, Volume 2, is the main report.

  18. Human factors aspects of non-destructive testing in the nuclear power context. A review of research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    1999-02-01

    The present report reviews literature relevant to human factors and non-destructive testing. The purpose is to cover research that has been done, and to find out what still needs to be done to improve inspection performance. Methods of non-destructive testing (e.g., ultrasonics, eddy current) are complex diagnostic tools used by operators to inspect materials, e.g., components of a nuclear power plant. In order to maintain the integrity of a plant, recurrent inspections are made while the components are still in service. To control the quality of inspections, operators have to follow a procedure that determines what equipment to use and how to use it. The procedure also guides the operator in assessment of indications. There are a number of factors that can affect the inspection quality (e.g., heat, time pressure, and fear of radiation). In earlier studies, experience, organizational practices, and work conditions have been shown to affect on the quality of inspections. The quality of inspection performance is considered to benefit from adapting equipment and procedure to man`s abilities and limitations. Furthermore, work conditions and feedback are considered determinants of performance quality. However, exactly how performance is affected by these factors, and the combined effect of them, need to be studied further. Further research is needed in decision criteria, procedure, and work conditions, and their effect on the quality of inspection performance

  19. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  20. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  1. Nuclear fusion systems analysis research. FY 1975 annual report, 1 July 1974--30 June 1975

    Energy Technology Data Exchange (ETDEWEB)

    Weatherwax, R.K. (ed.)

    1975-12-31

    This report summarizes research conducted during FY 1975 on the parametric systems analysis of fusion central power stations. As described in the report the methodology being pursued provides for a phased analysis starting with simple ''nominal'' parameters and associated computer codes and progressing to more complex functional models and then to physically based mathematical models for the systems of major significance in future power station viability. The nominal parameter analysis for preliminary screening only derives from consideration of extant reactor point designs and defines a nominal 5000 MWt reactor with either a 900 or 1250 K peak blanket coolant temperature. Functionalized performance and cost models are described for helium Brayton cycle, steam Rankine cycle and binary cycle electric power generation systems.

  2. Replacement Nuclear Research Reactor. Supplement to Draft Environmental Impact Statement. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Draft Environmental Impact Statement for a replacement research reactor at Lucas Heights, was available for public examination and comment for some three months during 1998. A Supplement to the Draft Environmental Impact Statement (Draft EIS) has been completed and was lodged with Environment Australia on 18 January 1999. The Supplement is an important step in the overall environmental assessment process. It reviews submissions received and provides the proponent`s response to issues raised in the public review period. General issues extracted from submissions and addressed in the Supplement include concern over liability issues, Chernobyl type accidents, the ozone layer and health issues. Further studies, relating to issues raised in the public submission process, were undertaken for the Supplementary EIS. These studies confirm, in ANSTO`s view, the findings of the Draft EIS and hence the findings of the Final EIS are unchanged from the Draft EIS

  3. Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dastjerdi, Mohammad Hosein Choopan; Khalafi, Hossein; Kasesaz, Yaser [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Movafeghi, Amir

    2016-11-01

    Three unused domestic fuel rods were investigated qualitatively and quantitatively by means of thermal neutron radiography. The neutron radiography tests were performed by the image plate method at Tehran research reactor in order to check the fuel properties. The pellets of these three fuel rods contained three different U-235 enrichments and different sizes that were filled into a zircalloy tube. In the qualitative investigations, the difference in size and enrichment between the pellets and the gaps between them were obviously recognized in the image of the fuel rods. In the quantitative investigations, data of the pellets compositions, their sizes (lengths and diameters) and the gaps between them were extracted from obtained images. It was found that the measured data and the manufacturer's specifications are in good agreement.

  4. Nuclear systems of the future: international forum generation 4 and research and development projects at the Cea; Systemes nucleaires du futur: forum international generation 4 et projets de R et D du CEA

    Energy Technology Data Exchange (ETDEWEB)

    Carre, F

    2003-07-01

    To advance nuclear energy to meet future energy needs, ten countries have agreed to develop a future generation of nuclear energy systems, known as Generation 4. A technology road map to guide the Generation 4 effort was begun. This document presents the goals for these nuclear systems and the research programs of the Cea on the gas technology, GT-MHR, VHTR and GFR and the other systems as sodium Fast Neutron reactors, supercritical water and space nuclear. (A.L.B.)

  5. Monte-Carlo Application for Nondestructive Nuclear Waste Analysis

    Science.gov (United States)

    Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.

    2014-06-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum

  6. Report to the Nuclear energy Research Advisory Committee (NERAC) Subcommittee on "Long-Term Isotope Research and Productions Plan" - Responses to Questions

    Energy Technology Data Exchange (ETDEWEB)

    Ammoniums

    1999-07-01

    This report presents responses to two series of questions that were raised by a subcommittee of the Nuclear Energy Research Advisory Committee (NERAC) that has been charged with producing a ''Long-Term Isotope Research and Production Plan.'' The NERAC subcommittee is chaired by Dr. Richard Reba, and the Hanford Site Visit team, which comprises a subset of the subcommittee members, is chaired by Dr. Thomas Ruth. The first set of questions raised by the subcommittee on isotope production at the Hanford Site was received from Dr. Ruth on May 10, 1999, and the second set was received from him on July 5, 1999. Responses to the first set of questions were prepared as part of a June 1999 report entitled ''Isotope Production at the Hanford Site in Richland, Washington'' (PNNL 1999a). The responses to these questions are summarized in this document, with frequent references to the June 1999 report for additional details. Responses to the second set of questions from the NERAC subcommittee are presented in this document for the first time.

  7. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  8. Nuclear power plant safety research 1999-2002. A proposal for the content and organisation of the new research programme; Kansallinen ydinvoimalaitosten turvallisuustutkimus 1999- 2002. Ydinenergianeuvottelukunnan ehdotus uuden tutkimusohjelman sisaelloeksi ja organisoinniksi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The Working Group was appointed by the Advisory Committee on Nuclear Energy to propose a framework scheme and possibly a new organization for the existing nuclear power plant safety research programme for the period 1999 to 2002. While planning the programme, account has been taken of the recent changes in the framework, the opportunity to participate in the research and development-programmes of the European Union in the first place. The principal aim of the national nuclear power plant safety research is to create the necessary conditions to ensure and even enhance the high safety level of the running nuclear power plants in Finland. In addition, the research programme should take care of the national know-how especially for the needs of the safety authorities and it should also maintain the capability for the research and development-needs in the case of new power plant projects. The dissemination of the results obtained in terms of the national research programme and via international cooperation as well as the education and training of the researchers are also part of the programme

  9. Researches on nuclear wastes. Knowledge gained and perspectives at the 2006 date line; Recherches sur les dechets nucleaires acquis et perspectives a l'echeance 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. The responsibility of these researches is given to the French atomic energy commission (CEA) and to the national agency for radioactive wastes (ANDRA) who have to coordinate their works with other research organizations and industrialists. The aim of this colloquium is to make a status of the scientific knowledge gained before the implementation of the public and parliamentary debates on nuclear wastes management. This document gathers the presentations (slides) given at the colloquium and dealing with: separation/transmutation, storage and conditioning of waste packages; geologic disposal, the inter-disciplinary PACE program of the CNRS; synthesis of the researches evaluation process; general principles for a sustainable management of radioactive wastes; technical experience implemented by industrialists since 15 years; point of view of the nuclear safety authority; international context of nuclear waste management and related researches; a sociological enlightening: researches advance as seen by the public. (J.S.)

  10. Advance: research project on aging electrical wiring in nuclear power plants; Advance: proyecto de investigacion de envejecimiento en cableado electrico en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Cano, J. C.; Ruiz, S.

    2013-07-01

    As Nuclear Power Plants get older it is more important to know the real condition of low voltage, instrumentation, power and control cables. Additionally, as new plants are being built, the election of cables and the use of in-situ monitoring techniques to get reliable aging indicators, can be very useful during the plant life. The goal of this Project is to adapt, optimize and asses Condition Monitoring techniques for Nuclear Power Plants cables. These techniques, together with the appropriate acceptance criteria, would allow specialists to know the state of the cable over its entire length and estimate its residual life. In the Project, accelerated ageing is used in cables installed in European NPPs in order to evaluate different techniques to detect local and global ageing. Results are compared with accepted tests to validate its use for the estimation of cables residual life. This paper describes the main stages of the Project and some results. (Author)

  11. Research in Theoretical High Energy Nuclear Physics at the University of Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann [Univ. of Arizona, Tucson, AZ (United States). Dept. of Physics

    2016-03-28

    In the past decade (2004-2015) we addressed the quest for the understanding of how quark confinement works, how it can be dissolved in a limited space-time domain, and what this means: i) for the paradigm of the laws of physics of present day; and, ii) for our understanding of cosmology. The focus of our in laboratory matter formation work has been centered on the understanding of the less frequently produced hadronic particles (e.g. strange antibaryons, charmed and beauty hadrons, massive resonances, charmonium, Bc). We have developed a public analysis tool, SHARE (Statistical HAdronization with REsonances) which allows a precise model description of experimental particle yield and fluctuation data. We have developed a charm recombination model to allow for off-equilibrium rate of charmonium production. We have developed methods and techniques which allowed us to study the hadron resonance yield evolution by kinetic theory. We explored entropy, strangeness and charm as signature of QGP addressing the wide range of reaction energy for AGS, SPS, RHIC and LHC energy range. In analysis of experimental data, we obtained both statistical parameters as well as physical properties of the hadron source. The following pages present listings of our primary writing on these questions. The abstracts are included in lieu of more detailed discussion of our research accomplishments in each of the publications.

  12. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heui Dong; Cho, Sung Won; Park, Jong Hwa; Hong, Sung Wan; Yoo, Dong Han; Hwang, Moon Kyoo; Noh, Kee Man; Song, Yong Man [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H{sub 2}/air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author).

  13. Study of an intrinsically safe infrastructure for training and research on nuclear technologies

    Directory of Open Access Journals (Sweden)

    Ripani Marco

    2014-01-01

    Full Text Available Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70 MeV, 0.75 mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant. Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility.

  14. Performance improvement of artificial neural networks designed for safety key parameters prediction in nuclear research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mazrou, Hakim [Division de Physique Radiologique, Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz, Fanon, B.P. 399, 16000 Alger (Algeria)], E-mail: mazrou_h@crna.dz

    2009-10-15

    The present work explores, through a comprehensive sensitivity study, a new methodology to find a suitable artificial neural network architecture which improves its performances capabilities in predicting two significant parameters in safety assessment i.e. the multiplication factor k{sub eff} and the fuel powers peaks P{sub max} of the benchmark 10 MW IAEA LEU core research reactor. The performances under consideration were the improvement of network predictions during the validation process and the speed up of computational time during the training phase. To reach this objective, we took benefit from Neural Network MATLAB Toolbox to carry out a widespread sensitivity study. Consequently, the speed up of several popular algorithms has been assessed during the training process. The comprehensive neural system was subsequently trained on different transfer functions, number of hidden neurons, levels of error and size of generalization corpus. Thus, using a personal computer with data created from preceding work, the final results obtained for the treated benchmark were improved in both network generalization phase and much more in computational time during the training process in comparison to the results obtained previously.

  15. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can be reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146

  16. Research on the Key Issues of the Nuclear Power Industry%核电产业几个关键问题研究展望

    Institute of Scientific and Technical Information of China (English)

    陈润羊; 花明

    2012-01-01

    核电产业是我国战略性新兴产业中新能源产业的重要构成部分。随着核技术在能源和非动力领域的广泛深入应用.核产业的研究引起了各界的广泛关注和探讨。文章应用比较分析方法,分类概述了国内外关于核电产业的五个关键问题:核电产业的竞争优势、发展战略、影响要素、产业集群和制约因素等的研究现状,综述了目前核电产业理论研究上呈现的特点、存在的不足,并展望了未来的发展趋势,以期为我国当前蓬勃发展的核电产业实践提供指导。%The nuclear power industry is important to energy industry in our countryg strategic emerging industry. With the extensive application of nuclear technology in the dynamic and non-dynamic field, nuclear industry research has caught wide attention and discussion from all walks of life. The method of comparative analysis is used to summarize the current situation of nuclear power industry, and five key issues have been classified, including the competitive advantage of the nuclear power industry, development strategy, influential factors, industry cluster and restricting factors. The characteristics and shortage of theory research on the current nuclear power industry are summarized. In order to provide guidance for our country; nuclear power industry, the development trend in future has been prospected.

  17. Nuclear and radiochemistry

    CERN Document Server

    Konya, Jozsef

    2012-01-01

    The field of nuclear and radiochemistry is wide-reaching, with results having functions and use across a variety of disciplines. Drawing on 40 years of experience in teaching and research, this concise book explains the basic principles and applications of the primary areas of nuclear and radiochemistry. Separate chapters cover each main area of recent radiochemistry. This includes nuclear medicine and chemical aspects of nuclear power plants, namely the problems of nuclear wastes and nuclear analysis (both bulk and surface analysis), with the analytical methods based on the interactions of

  18. The Relationship between Nuclear Disarmament and Nuclear Nonproliferation

    Institute of Scientific and Technical Information of China (English)

    Sun; Xiangli

    2015-01-01

    The history of nuclear weapons development since the end of World War II is also one of nuclear arms control.There are two major aspects that represent the global efforts of nuclear arms control,which include limiting on nuclear weapon development in quantities and qualities,and limiting on the proliferation of nuclear weapons and the relevant research and development technologies.The limitation on the nuclear weapons development constitute

  19. Comparative Research on Chinese and Foreign Nuclear Power Technology Based on Patents%基于专利的核电技术中外对比研究

    Institute of Scientific and Technical Information of China (English)

    娄岩; 杨培培; 黄鲁成; 苗红

    2016-01-01

    Purpose/Significance] Nuclear energy as an economic and efficient energy for easing the worldˊs energy crisis has many ad-vantages, so it gets more and more attention. Nuclear power generation is a very important application of nuclear energy, the development of nuclear power technology has also caused widespread concern around the world. [ Method/Process] In the study of nuclear power tech-nology it can be divided into patent research and non-patent research, and the patent research on nuclear power technology is few in Chi-na. So this article discusses nuclear power technologyˊs current situation from the perspective of patent and analyses nuclear power technol-ogy from the macro and micro levels, using the patents to find issues in the field of research and development. [ Result/Conclusion] Re-search shows that although the growth rate of patents is increasing in recent years, research of nuclear energy started late, and the number of patents is small, also the exchanges link with research institutions in other countries are less. Finally, concerning the existing problems of the nuclear industry, some suggestions that aim at promoting the development of Chinaˊs nuclear power industry, are given.%[目的/意义]核能作为缓和世界能源危机的一种经济有效的能源有很多优点,因此受到越来越多的关注。核能发电是核能一项很重要的用途,核电技术的发展也受到了世界各国的关注。[方法/过程]对核电技术的研究可以分为专利研究与非专利研究,但国内关于核电技术的专利研究相对较少。从专利的角度来研究核电技术的现状,从宏观和微观两个层面对核电技术进行分析,发现我国该技术领域在研发中存在的问题。[结论/结果]研究表明,尽管我国近年专利增长率不断提高,但是对核电的研究起步较晚,申请专利数量较少,与其他国家的研究机构交流联系较少等问题。最后针对我国核电

  20. Nuclear air cushion vehicles.

    Science.gov (United States)

    Anderson, J. L.

    1973-01-01

    This paper serves several functions. It identifies the 'state-of-the-art' of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant. Using mission studies and cost estimates, the report describes some of the advantages of nuclear power for large air cushion vehicles. The paper also summarizes the technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies that have been performed at NASA Lewis Research Center.

  1. The development of a under-water robot system for inspection of the contaminated inner wall of nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Hoon; Kim, Byung Man; Cho, Hyung Suk; Park, Ki Yong [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Park, Young Soo; Yoon, Ji Sup; Lee, Byung Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    In this paper, an under-water robot system is developed in order to inspect the radiation level and decontaminate the contaminated inner wall of nuclear research reactor, TRIGA MARK III. This system is composed of the mobile robot which navigates autonomously under the water and the ground control unit which monitors and commands the motion of mobile robot. The mobile robot can move on the wall surface with five thruster systems and is composed of three parts, i.e., mechanical, control, and sensory parts. The five thruster system is configured such as one main thruster, two wall adhesion thruster, and two turning/buoyancy compensation thruster. The control part has 4 CPU boards and each board is configured such that one is in charge of supervisory control mode which controls the position of mobile robot and communicates with the ground control unit and the other board is designed to have motor control mode which drives two motors simultaneously. In secondary part, the laser scanner and fluorescent reflectors and the incilinometer are designed. The laser scanner with fluorescent reflectors provides the current position of the mobile robot on the wall surface and by incilinometer, the moving direction can be obtained. This paper describes the design and configuration procedures of under-water robot in detail and presents the experimental results for characteristic test of the thruster system. 11 refs., 4 tabs., 7 figs.

  2. Nuclear fuels technologies: Thermally induced gallium removal system (TIGRS), fiscal year 1998 research and development test plan

    Energy Technology Data Exchange (ETDEWEB)

    Buksa, J.J.; Butt, D.P.; Chidester, K.; DeMuth, S.F.; Havrilla, G.J.; James, C.A.; Kolman, D.G.

    1997-12-24

    This document details the research and development (R and D) activities that will be conducted in Fiscal Year 1998 (FY98) by the Thermally Induced Gallium Removal System (TIGRS) team for the Department of Energy Office of Fissile Materials Disposition. This work is a continuation and extension of experimental activities that have been conducted in support of using weapons-derived plutonium in the fabrication of mixed-oxide (MOX) nuclear fuel for reactor-based plutonium disposition. The ultimate purpose of this work is to demonstrate adequate Thermally Induced Gallium Removal with a prototypic system. This Test Plan presents more than the FY98 R and D efforts in order to frame the Task in its entirety. To achieve the TIGRS Program objectives, R and D activities during the next two years will be focused on (1) process development leading to a prototypic TIGRS design, and (2) prototypic TIGRS design and testing leading to and including a prototypic demonstration of TIGRS operation. Both the process development and system testing efforts will consist of a series of surrogate-based cold tests and plutonium-based hot tests. Some of this testing has already occurred and will continue into FY99.

  3. Diagnostic systems for the nuclear fusion and plasma research in the PF-24 plasma focus laboratory at the IFJ PAN

    Directory of Open Access Journals (Sweden)

    Marciniak Łukasz

    2016-12-01

    Full Text Available This paper presents a set of diagnostics dedicated to PF-24 - new medium size - plasma focus (PF device built and operated at the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN. The PF-24 can operate at energy level up to 93 kJ and charging voltage up to 40 kV. Each condenser is connected with a specially designed spark gap with a very small jitter, which ensures a high effi ciency and a low current rise time. The working parameters of PF-24 generator make it a suitable tool for testing new detection systems to be used in fusion research. Four types of such detection systems are presented in this article: three diagnostic systems used to measure electric quantities (Rogowski coil, magnetic probe, capacitance probe, neutron counter based on beryllium activation, fast neutron pinhole camera based on small-area BCF-12 plastic scintillation detectors and high-speed four-frame soft X-ray camera with microchannel plate.

  4. Research by ESS Division for the Nevada Nuclear Waste Storage Investigations: Progress report, January-June 1985

    Energy Technology Data Exchange (ETDEWEB)

    Vaniman, D. (comp.)

    1987-10-01

    Petrographic research for the Nevada Nuclear Waste Storage Investigations focused on xenolithic variability in the Topopah Spring Member and on variations of clinoptilolite composition at Yucca Mountain. Zeolite and smectite occurrences were considered in terms of their relation to a disturbed zone beneath the potential repository, and mineral stability experiments have produced a new clinoptilolite structure as a result of prolonged heating at low temperature. Limitations were defined on the abundance of erionite and of sulfur. X-ray diffraction studies lead to improved analytical methods. Progress was made in the comparative study of mineralogy in sand ramps and in faults. Geological modeling considered the differences of the diffusion of nonsorbing tracers in vertically and in horizontally fractured rock. Modeling also treated the diffusion of a nonsorbing tracer in devitrified and in zeolitized rock. The results of these experiments in all cases show relatively symmetrical two-dimensional diffusion patterns. Preliminary calculations compare the dispersion/diffusion of nonsorbing Tc with the dispersion/diffusion/sorption of U. 27 refs., 20 figs., 5 tabs.

  5. Research and experience report 2007. Developments in the technical and legal basis of nuclear oversight; Erfahrungs- und Forschungsbericht 2007. Entwicklungen im Bereich der Grundlagen der nuklearen Aufsicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reviews the aims, duties and responsibilities of the inspectorate and the work done during 2007. In the area of reactor safety, the research covered materials and the deterministic and probabilistic analysis of incidents and their consequences. In the area of radiation protection, the protection of persons and the environment in the vicinity of nuclear facilities from ionising radiation is addressed. In this area, accurate metrology and research to improve dosimetry and radiation analysis is discussed. In the area of transport and waste management, the HSK is focussing its efforts on research into the geological strata suitable for the final storage of highly radioactive, long-lived waste. Human factors, organisation and safety culture are quoted as playing a major role in nuclear safety. According to the report, greater attention is being given to these factors by those bodies responsible for nuclear regulation. Appendices present an overview of work done, international activities and publications along with the ENSI's guidelines.

  6. Research and experience report 2012. Developments in the technical and legal basis of nuclear oversight; Erfahrungs- und Forschungsbericht 2012. Entwicklungen im Bereich der Grundlagen der nuklearen Aufsicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) acts upon the basis of the latest developments in science and technology. ENSI supports and coordinates safety research, the results of which influence directly its Guidelines, individual decisions and resources. Research projects also serve training purposes and maintain competence within ENSI and its experts. The research in fuels and materials covers the reactor core and the graded approach to barriers used for the confinement of radioactive materials. Based on test results from accidents involving a loss of coolant ENSI instructed the operators of Swiss nuclear power plants to review whether they were relevant to their own facilities. Ageing mechanisms affecting structural materials are crucial to the long-term operation of nuclear power plants. Specialised thematic databases are being created in order to facilitate a systematic analysis of relevant operating experience from numerous countries. In addition to damage that may result from events within nuclear power plants, the safety analyses also reflect external events. ENSI supports international projects conducting complex experiments and simulations of aircraft accidents and earthquakes. It is involved in some projects relating to flood risks. The effect of operator behaviour on accidents in nuclear power plants is the focus point of research into human factors which identifies and analyses certain operator errors influencing negatively the course of an accident. Proposals to improve accident procedures were developed. This research area also focuses on the influence of the control room layout on the performance of operating staff. System behaviour and accident sequences in nuclear power plants are analysed in conditions ranging from normal operations through to accidents resulting in core melt-down. The results are used for the quantitative evaluation of the plant risk in probabilistic safety analyses. Applied research in radiological protection ranges

  7. INTRODUCTION: Status report on fusion research

    Science.gov (United States)

    Burkart, Werner

    2005-10-01

    A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting

  8. The role of nuclear emulsions in the institutionalization of research in experimental physics in Brazil; O papel das emulsoes nucleares na institucionalizacao da pesquisa em fisica experimental no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Cassio Leite [Instituto Ciencia Hoje, Rio de Janeiro, RJ (Brazil); Videira, Antonio A.P. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, DF (Brazil)

    2011-07-01

    In this paper, we describe and analyze the introduction and the use of the nuclear emulsions technique in Brazil. Even though consistent researches in cosmic ray physics had been done since the forties of the last century in this country, physicists here only began using this technique after Cesar Lattes' works in Bristol (England) and Berkeley (US). Despite being the implantation of the technique in this country posterior to the origin of the method itself dated from late 1900s, Brazilian scientists were quickly familiarized with it and adopted it not only in cosmic rays, but also in particle physics and nuclear physics, employing it until recently. In our work, we will be concerned with the reasons of this longevity. In other words, why were the nuclear emulsions technique employed for so many years in Brazil, even after its vanishing in physics researches centers in the world? We advance here that the answer to this question involves the institutionalization of science in Brazil mainly physics and economical, social, and geographic reasons. (author)

  9. Scope and dissolution studies and characterization of irradiated nuclear fuel in Atalante Hot Cell Facilities (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Dancausse, Jean-Philippe; Reynier Tronche, Nathalie; Ferlay, Gilles; Herlet, Nathalie; Eysseric, Cathrine; Esbelin, Eric

    2005-01-01

    Since 1999, several studies on nuclear fuels were realised in C11/C12 Atalante Hot Cell. This paper presents firstly an overview of the apparatus used for fuel dissolution and characterisation like reactor design, gas trapping flask and solid/liquid separation. Then, the general methodology is described as a function of fuel, temperature, reagents, showing for each step, the reachable experimental data: Dissolution rate, chemical and radiochemical fuel composition including volatile LLRN, insoluble mass, composition, morphology, cladding chemical, radiochemical and physical characterisation using SIMS (made in Cadarache/LECA facilities), MEB. To conclude, some of the obtained results on 129I and 14C composition of oxide fuels, rate of dissolution and first results on dissolution studies of RERTR UMo fuel will be detailed. (Author)

  10. Research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Kozub, R.L.; Hindi, M.M.

    1992-06-01

    This report discusses the following topics: electron capture decay of {sup 179}Ta; search for 17-keV neutrinos in the Internal Bremsstrahlung Spectrum of {sup 125}I; and {beta}{sup +} decay and cosmic-ray half-life of {sup 91}Nb.

  11. Research and experience report 2012. Developments in the technical and legal basis of nuclear oversight; Erfahrungs- und Forschungsbericht 2012. Entwicklungen im Bereich der Grundlagen der nuklearen Aufsicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) acts upon the basis of the latest developments in science and technology. ENSI supports and coordinates safety research, the results of which influence directly its Guidelines, individual decisions and resources. Research projects also serve training purposes and maintain competence within ENSI and its experts. The research in fuels and materials covers the reactor core and the graded approach to barriers used for the confinement of radioactive materials. Based on test results from accidents involving a loss of coolant ENSI instructed the operators of Swiss nuclear power plants to review whether they were relevant to their own facilities. Ageing mechanisms affecting structural materials are crucial to the long-term operation of nuclear power plants. Specialised thematic databases are being created in order to facilitate a systematic analysis of relevant operating experience from numerous countries. In addition to damage that may result from events within nuclear power plants, the safety analyses also reflect external events. ENSI supports international projects conducting complex experiments and simulations of aircraft accidents and earthquakes. It is involved in some projects relating to flood risks. The effect of operator behaviour on accidents in nuclear power plants is the focus point of research into human factors which identifies and analyses certain operator errors influencing negatively the course of an accident. Proposals to improve accident procedures were developed. This research area also focuses on the influence of the control room layout on the performance of operating staff. System behaviour and accident sequences in nuclear power plants are analysed in conditions ranging from normal operations through to accidents resulting in core melt-down. The results are used for the quantitative evaluation of the plant risk in probabilistic safety analyses. Applied research in radiological protection ranges

  12. Study of the influence of heat sources on the out-of-pile calibration curve of calorimetric cells used for nuclear energy deposition quantification

    Energy Technology Data Exchange (ETDEWEB)

    De Vita, C.; Brun, J.; Reynard-Carette, C.; Carette, M.; Amharrak, H. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint Paul Lez Durance (France)

    2015-07-01

    At present the Jules Horowitz Reactor is under construction in Cadarache research center of CEA 'French Alternative Energies and Atomic Energy Commission' center located in the south-east of France. This new Material Testing Reactor (MTR) will be operational in late 2019 and will allow the generation of a new experimental potential (up to 20 irradiation devices simultaneously) and new harsh conditions such as higher neutron fluxes (5.10{sup 14} n.cm{sup -2}.s{sup -1} for E≥1 MeV), faster material ageing and higher nuclear heating (up to 20 W/g for nominal capacity of 100 MW). In nuclear research field, the control and the measurement of the nuclear heating (energy deposition rate per mass unit induced by the interactions of radiations with matter) is crucial to carry out accurate studies on ageing of materials and on the behavior of nuclear fuels under irradiation. Several experiments need to know precisely this key parameter in order to establish dedicated thermal conditions. The measurement of the nuclear heating inside MTRs is realized by three kinds of sensors: single-cell calorimeter, differential calorimeter and gamma thermometer. One scientific objective of the IN-CORE program, between CEA and Aix-Marseille University in 2009, is to improve the nuclear heating measurement. In this context a new multi-sensor device, called CARMEN, was made. This device contains in particular a differential calorimeter which was designed to measure the nuclear heating in the periphery of OSIRIS reactor (a MTR located at Saclay, France) up to 2 W/g and tested during two irradiation campaigns. Results obtained during these campaigns showed that temperatures reached inside the calorimeter are higher than ones obtained during the preliminary out-of-pile calibration experiments. For instance for 1.74 W/g, the in-pile temperature of the calorimeter rod is equal to 305 deg. C against 225 deg. C in laboratory conditions by simulating the nuclear heating by Joule Effect

  13. RDandD Programme 2007. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    The programme describes in general terms the planned measures and the facilities that are needed for the task, with a focus on the plans for the period 2008-2013. The period of immediate concern is 2008-2010. The level of detail for the three subsequent years is naturally lower. The programme provides a basis for designing systems to manage and dispose of the radioactive waste from the nuclear power plants. SKB intends to dispose of the spent nuclear fuel in accordance with the KBS-3 method. In the RDandD Programme we describe our activities and the planning for it. We also deal with societal research and other methods for disposal of spent nuclear fuel. The planning for low- and intermediate-level waste, as well as for the societal research, is presented in separate parts. The upcoming review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they view different parts of the activity. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government. The most important milestone during the coming three-year period is to submit applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. RDandD programme 2007 therefore focuses on the technology development that is needed to realize the final repository for spent nuclear fuel. The site investigations in Forsmark and Laxemar will be concluded in 2007. The work of compiling the applications for the final repository is under way. In contrast to the immediately preceding programmes, RDandD Programme 2007 therefore also contains a summary of the site investigation phase and a look ahead at the steps that remain before the final repository can be put into operation. RDandD Programme 2007 consists of six parts: Part I SKB's plan of action; Part II Final repository for

  14. The nuclear research and technology development in the GDR from 1945 to 1965. Framework conditions, policy of the State party and implementation; Die Kernforschung und Kerntechnologieentwicklung in der DDR 1945-1965. Rahmenbedingungen, Politik der Staatspartei und Umsetzung

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Olaf

    2012-06-07

    The study follows the development of the nuclear research and nuclear technology in the GDR between 1945 and 1965. The GDR as an industrial country was highly dependent on brown coal, which was the only available primal energy source in the former GDR. Therefore the civil use of nuclear power called the attention of the executive and party leadership. This consideration was supported by the fact of large uranium deposits on the territory of former East Germany. After the foundation of the GDR, a first attempt to establish an independent nuclear power industry had failed. From 1955 on, the efforts in this direction have been stepped up. Despite the enormous effort of material and human resources the development of an independent East German nuclear industry never got off the ground. In 1965 it was decided to continue the buildup of an East German nuclear industry on base of the nuclear technology of the former Soviet Union. This decision marked a turning point in the East German energy policy and the end to ambitious plans of an independent nuclear industry. The research shows the frame, the preconditions and objectives of the development of the East German nuclear industry on the base of relevant documents from the government of the former GDR, the political machine of the Communist Party (SED) and the Academy of Science Berlin. The research is implementing the context of international nuclear research and technical progress against the background of the Cold War and the international nuclear euphoria as well as within the range of global politics. The discussion focusses on two points. Along with high expectations to an independent energy production and an exporting nuclear industry, the Communist party aimed for clear political results. The author will show the connection between plans of the executive and party leadership of the SED for an ambitious nuclear energy development and the international acceptance of the East German State in the German-German rivalry.

  15. Nuclear energy.

    Science.gov (United States)

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  16. PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

    2002-09-26

    The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of

  17. Nuclear Confidence

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Fukushima nuclear accident provides valuable lessons for China national nuclear Corp.as it continues to expand its operations AS Japan’s Fukushima nuclear crisis sparks a global debate over nuclear safety,China National Nuclear Corp. (CNNC),the country’s largest nuclear plant operator, comes under the spotlight.

  18. Supporting Technical Work Under IAEA Safeguards Agreements of 2013 Completed by Laboratory of Technical Research for Nuclear Safeguards

    Institute of Scientific and Technical Information of China (English)

    GAO; Qiang; LIU; Hong-bin; YANG; Qun; BU; Li-xin; MIAO; Qiang; HE; Li-xia; XU; Zheng; ZHANG; Wen-liang

    2013-01-01

    Safeguards applied by the International Atomic Energy Agency(IAEA)are an important element of the global nuclear non-proliferation regime.In order to verify that commitments made by states under safeguards agreements with the IAEA are fulfilled.China signed the voluntary offer agreement(INFCIRC/369)with IAEA in 1988.The agreement entered into force in 1989.There are three nuclear

  19. A study on the implementation of joint research projects in the field of nuclear technology between Korea and China

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Joon Keuk; Suh, In Suk; Lee, Eui Jin; Kim, Kyoung Pyo; Lee, Jeong Kong; Lee, Byung Wook; Yang, Maeng Ho; Lee, Tae Jun; Chung, Whan Sam; Lee, Man Ki; Lee, Hyo Se; Jun, Byung Jin; Park, Byung Bae; Hong, Young Don; Lee, Chang Woo; Chung, Moon Ki; Sim, Suk Ku; Hwang, Dae Hyun; Oh, Won Zin

    1999-11-01

    In an effort to achieve the objectives, the following provisions were made. First of all, the current status of energy industry was carefully reviewed. An increase of energy consumption, both in industrial and home purposes, implored introduction of nuclear power as an alternative energy production source. Secondly, the current status of China's nuclear development programs together with future prospects was reviewed. Through this review, more effective implementation of nuclear cooperative programs could be devised. Thirdly, China's newly developed nuclear infrastructure was analyzed. The re-structuring of the CNNC was reviewed. Based on this analysis, future cooperative programs could be identified. Lastly, proper strategies for future cooperation between the two countries on a complementary basis were studied. Recommendations for better cooperation programs, particularly for the nuclear policy-making process, were presented. For fruitful cooperation, it is naturally needed match funds to support the implementation of joint projects. It is basically China's idea that Korea provides the funds and China provides manpower. China has a great potential market. The Korean Governments support for key funds for cooperative programs will thus have a sincere meaning. For fruitful cooperation, it is naturally needed match funds to support the implementation of joint projects. It is basically China's idea that Korea provides the funds and China provides manpower. China has a great potential market. The Korean Governments support for key funds for cooperative programs will thus have a sincere meaning. The findings of this study could serve as the database for future nuclear cooperation between the two countries. It is hoped that all local nuclear related organizations in Korea could use some valuable references derived from the study. Information generated from the study could also be used as a benchmark for continued cooperation with China. Various

  20. Research advances on engineering structural seismic safety of nuclear power plant%核电厂工程结构抗震研究进展

    Institute of Scientific and Technical Information of China (English)

    孔宪京; 林皋

    2013-01-01

      当前以及今后相当长一段时期,核电都将是中国积极发展的能源形式之一,保障核电安全是确保核电工程建设顺利实施和安全运营的关键。然而,中国幅员广阔,地质条件差异大,海域自然条件复杂;同时,中国地震活动范围广、强度大、频度高,基于标准化设计的核电工程结构在建设过程中面临着诸多问题。尤其是2011年日本大地震导致的福岛核电事故的教训,对核电工程的抗震安全提出了新的问题。结合大连理工大学十几年来在解决我国核电工程结构抗震安全中的关键问题,以及在“地震作用下核电厂工程结构的功能失效机理及抗震安全评价”研究中所取得若干进展进行综述性介绍,主要包括核岛地基抗震适应性研究和核岛安全相关工程结构抗震防灾研究。%Nuclear power is one of energy resources that China will vigorously develop for a long term from now on. The issue of nuclear power security guarantee is a key to ensure the smooth implementation and the safe operation of the nuclear power plant construction. However,because of the vast territory of China,the great differences in geological conditions and the complex natural conditions of ocean,as well as a wide range of seis-mic activity,high strength and high frequency of earthquakes in China,nuclear power buildings based on cur-rent standardized design methods are facing problems. Moreover,the lessons of the 2011 Fukushima nuclear ac-cident due to destructive earthquake come out new problems to Chinese seismic safety of nuclear power engineer-ing. In this paper,by combining engineering practice in recent years of nuclear power engineering seismic safety evaluation of the Dalian University of Technology,the key issues and the research methods in the structural seis-mic safety of Chinese nuclear power projects and some progress made by the Dalian University of Technology in the study of

  1. Jules Horowitz Reactor, a new irradiation facility: Improving dosimetry for the future of nuclear experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G.; Beretz, D.; Destouches, C. [CEA, DEN, DER/SPEX, F-13108 Saint-Paul-lez-Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Jules Horowitz Reactor (JHR) is an experimental reactor under construction at the French Nuclear Energy and Alternative Energies Commission (CEA) facility at Cadarache. It will achieve its first criticality by the end of 2014. Experiments that will be conducted at JHR will deal with fuel, cladding, and material behavior. The JHR will also produce medical radio-isotopes and doped silicon for the electronic industry. As a new irradiation facility, its instrumentation will benefit from recent improvements. Nuclear instrumentation will include reactor dosimetry, as it is a reference technique to determine neutron fluence in experimental devices or characterize irradiation locations. Reactor dosimetry has been improved with the progress of simulation tools and nuclear data, but at the same time the customer needs have increased: Experimental results must have reduced and assessed uncertainties. This is now a necessary condition to perform an experimental irradiation in a test reactor. Items improved, in the framework of a general upgrading of the dosimetry process based on uncertainty minimization, will include dosimeter, nuclear data, and modelling scheme. (authors)

  2. 24th WRSM panel discussion: {open_quotes}The role of research in nuclear regulation: The case of qualified importers{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A. [Consejo de Seguridad Nuclear, Madrid (Spain)

    1997-01-01

    Scientific knowledge and technological maturity are needed to establish regulatory requirements, what also needs talent and skills. Scientists are rarely interested in regulation and regulators not always are closely connected to scientific research. This has created gaps in regulations, mainly within qualified importers. A qualified importer, in the sense of this presentation, is a country who has acquired nuclear power plants from more technologically advanced exporters but with an increasing participation of its own industry and institutions in the design, construction, component manufacture and assembly of such nuclear power plants and is fully responsible for the operation of the nuclear units and the corresponding fuel cycle. These countries have also a long standing and independent nuclear regulatory organization and the corresponding technical body. Spain is a qualified importer. In the case of Spain, it originally adopted the codes and regulations of the UE which it was a member of, as well as the codes and standards of the country from which their reactors were produced. Since Spain added KWU plants they even went to German regulations. Plant operation rested with Spain. As problems began to appear in operating plants, local research projects were funded to study the problems, aimed at immediate solutions, but also providing training for local personnel in addition to information of use for regulators. Spain has participated in many joint research projects, which have trained people, and given confidence to Spaniards involved in science and regulations. Qualified importers, like Spain, participate in research, even though it may not translate itself into regulation. Such participation will always serve to give self-confidence and independence to regulators and licensees, to better understand the adopted regulations of the most advanced countries and to solve specific problems.

  3. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  4. Nuclear Egress of Herpesviruses

    Institute of Scientific and Technical Information of China (English)

    Richard J.Roller

    2008-01-01

    Herpesviruses assemble and fill their capsids in the infected cell nucleus,and must then move this enormous macromolecular assembly across the nuclear membrane and into the cytoplasm.Doing so is a complex,multi-step process that involves envelopment of the capsid at the inner nuclear membrane and de-envelopment by fusion with the outer nuclear membrane.This process is orchestrated by viral proteins,but requires the modification of cellular structures and mechanisms including the nuclear lamina.In this review I summarize recent research on the mechanism of nuclear envelopment and the viral and cellular systems involved in its execution.

  5. Research on the improvement of nuclear safety -Development of a nuclear power plant system analysis code TASS (Transient and setpoint simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Suk Koo; Jang, Won Pyo; Kim, Heui Chul; Kim, Kyung Doo; Lee, Sung Jae; Hah, Kyooi Suk; Song, Soon Jah; Um, Kil Sub; Yoon, Han Yung; Kim, Doo Il; Yoo, Hyung Keun; Choi, Jae Don; Lee, Byung Il; Kim, Jung Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    During the third year of the project the development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the Westinghouse and CE type operating reactors as well as the PWR reactors under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the YGN-3/4 FSAR transients, Kori-3 loss of AC power transient, plant data, Kori-4 load rejection and YGN-3 startup test data as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best estimate RELAP5/MOD 3.1 calculation for the YGN-3/4 FASR transients and shows its capability in simulating plant transient and startup data as well as the thermal hydraulic transient test data. Topical reports on TASS 1.0 code have been prepared and will be submitted to Korea Institute of Nuclear Safety for its licensing application to Westinghouse and CE type PWR transient analyses. The development of TASS 2.0 code has been head started in this year to timely utilize the TASS 2.0 code for the KNGR design certification. 65 figs, 30 tabs, 44 refs. (Author).

  6. North Carolina State University nuclear structure research at the Triangle Universities Nuclear Laboratory. Progress report, 1 April 1979-31 March 1980. [4/1/79 to 3/31/80

    Energy Technology Data Exchange (ETDEWEB)

    Gould, C.R.; Mitchell, G.E.; Seagondollar, L.W.; Tilley, D.R.

    1980-02-01

    Research during the period April 1, 1979 to March 31, 1980 is reported in the following areas: neutron cross section experiments, high-resolution studies, radiative capture reactions, atomic physics, and nuclear theory and phenomenology. Other activities, including accelerator development and instrumentation and developments related to computers, are also sketched. The body of this report is a photocopy of that portion of the TUNL Annual Report XVIII in which NCSU personnel were involved. The TUNL Annual Report XVIII (see DOE/TIC--11133 in the Report Number Index) is indexed in greater depth. (RWR)

  7. Half-century archives of occupational medical data on French nuclear workers: a dusty warehouse or gold mine for epidemiological research?

    Science.gov (United States)

    Garsi, Jerome-Philippe; Samson, Eric; Chablais, Laetitia; Zhivin, Sergey; Niogret, Christine; Laurier, Dominique; Guseva Canu, Irina

    2014-12-01

    This article discusses the availability and completeness of medical data on workers from the AREVA NC Pierrelatte nuclear plant and their possible use in epidemiological research on cardiovascular and metabolic disorders related to internal exposure to uranium. We created a computer database from files on 394 eligible workers included in an ongoing nested case-control study from a larger cohort of 2897 French nuclear workers. For each worker, we collected records of previous employment, job positions, job descriptions, medical visits, and blood test results from medical history. The dataset counts 9,471 medical examinations and 12,735 blood test results. For almost all of the parameters relevant for research on cardiovascular risk, data completeness and availability is over 90%, but it varies with time and improves in the latest time period. In the absence of biobanks, collecting and computerising available good-quality occupational medicine archive data constitutes a valuable alternative for epidemiological and aetiological research in occupational health. Biobanks rarely contain biological samples over an entire worker's carrier and medical data from nuclear industry archives might make up for unavailable biomarkers that could provide information on cardiovascular and metabolic diseases.

  8. An archival study on the nuclear fusion research in Japan later half of 1980's. An interview with SEKIGUCHI Tadashi, Professor Emeritus at the University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Nisio, Sigeko; Uematsu, Eisui [Nihon Univ., College of Science and Technology, Funabashi, Chiba (Japan); Obayashi, Haruo [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2003-05-01

    An interview record with SEKIGUCHI Tadashi, Professor Emeritus at The University of Tokyo, on the nuclear fusion researches in Japan later half of 1980's is given. The major topics concerned are: activities of Science Council of Japan, the establishment of the Japan Society of Plasma Science and Nuclear Fusion Research, the history of establishing National Institute for Fusion Science, and effects of Grant-in-Aid for Scientific Research, and others. (author)

  9. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  10. Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility

    Science.gov (United States)

    Froideval, A.; Badillo, A.; Bertsch, J.; Churakov, S.; Dähn, R.; Degueldre, C.; Lind, T.; Paladino, D.; Patterson, B. D.

    2011-09-01

    Spectroscopy and imaging of condensed matter have benefited greatly from the availability of intense X-ray beams from synchrotron sources, both in terms of spatial resolution and of elemental specificity. The advent of the X-ray free electron laser (X-ray FEL) provides the additional features of ultra-short pulses and high transverse coherence, which greatly expand possibilities to study dynamic processes and to image non-crystalline materials. The proposed SwissFEL facility at the Paul Scherrer Institute is one of at present four X-ray FEL projects worldwide and is scheduled to go into operation in the year 2017. This article describes a selection of problems in nuclear materials science and technology that would directly benefit from this and similar X-ray FEL sources. X-ray FEL-based experiments are proposed to be conducted on nuclear energy-related materials using single-shot X-ray spectroscopy, coherent X-ray scattering and/or X-ray photon correlation spectroscopy in order to address relevant scientific questions such as the evolution in time of the irradiation-induced damage processes, the deformation processes in nuclear materials, the ion diffusion processes in the barrier systems of geological repositories, the boiling heat transfer in nuclear reactors, as well as the structural characterization of graphite dust in advanced nuclear reactors and clay colloid aggregates in the groundwater near a radioactive waste repository.

  11. Proceedings of the 2nd NUCEF international symposium NUCEF`98. Safety research and development of base technology on nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This volume contains 68 papers presented at the 2nd NUCEF International Symposium NUCEF`98 held on 16-17 November 1998, in Hitachinaka, Japan, following the 1st symposium NUCEF`95 (Proceeding: JAERI-Conf 96-003). The theme of this symposium was `Safety Research and Development of Base Technology on Nuclear Fuel Cycle`. The papers were presented in oral and poster sessions on following research fields: (1) Criticality Safety, (2) Reprocessing and Partitioning, (3) Radioactive Waste Management. The 68 papers are indexed individually. (J.P.N.)

  12. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  13. Nuclear safeguards; Salvaguardias nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zurron, O.

    2015-07-01

    Safeguards control at the Juzbado Plant is implemented through the joint IAEA/EURATOM partnership approach in force within the European Union for all nuclear facilities. this verification agreement is designed to minimize burden on the operators whilst ensuring that both inspectorate achieve the objectives related to their respective safeguards regimes. This paper outlines the safeguards approaches followed by the inspectorate and the particularities of the Juzbado Plants nuclear material accountancy and control system. (Authors)

  14. Radioactive target needs for nuclear reactor physics and nuclear astrophysics

    OpenAIRE

    Jurado, B.; Barreau, G.; Bacri, C. O.

    2010-01-01

    Nuclear Instruments and Methods in Physics Research Section A - In press.; Nuclear reaction cross sections of short-lived nuclei are key inputs for new generation nuclear reactor simulations and for models describing the nucleosynthesis of elements. After discussing various topics of nuclear astrophysics and reactor physics where the demand of nuclear data on unstable nuclei is strong, we describe the general characteristics of the targets needed to measure the requested data. In some cases t...

  15. Advanced instrumentation and analysis methods for in-pile thermal and nuclear measurements: from out-of-pile studies to irradiation campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 (France)

    2015-07-01

    Research and development on nuclear fuel behavior under irradiations and accelerated ageing of structure materials is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR) currently under construction in the South of France in the CEA Cadarache research centre will offer a real opportunity to perform R and D programs and hence will crucially contribute to the selection, optimization and qualification of innovative materials and fuels. To perform such programs advanced accurate and innovative experiments, irradiation devices that contain material and fuel samples are required to be set up inside or beside the reactor core. These experiments needs beforehand in situ and on line sophisticated measurements to accurately reach specific and determining parameters such as thermal and fast neutron fluxes, nuclear heating and temperature conditions to precisely monitor and control the conducted assays. Consequently, since 2009 CEA and Aix-Marseille University collaborate in order to design and develop a new multi-sensor device which will be dedicated to measuring profiles of such conditions inside the experimental channels of the JHR. These works are performed in the framework of two complementary joint research programs called MAHRI-BETHY and INCORE. These programs couple experimental studies carried out both out-of nuclear fluxes (in laboratory) and under irradiation conditions (in OSIRIS MTR reactor in France and MARIA MTR reactor in Poland) with numerical works realized by thermal simulations (CAST3M code) and Monte Carlo simulations (MCNP code). These programs deal with three main aims. The first one corresponds to the design and/or the test of new in-pile instrumentation. The second one concerns the development of advanced calibration procedures in particular in the case of one specific sensor: a differential calorimeter used to quantify

  16. First ITER Council convened in Cadarache - historic step in the quest for clean Energy 28 November 2007 Cadarache

    CERN Multimedia

    Hay, Jennifer

    2007-01-01

    "On 27 November 2007, the ITER Council convened for the first time in the history of the new International Organization. Opening the meeting, Dr Werner Burkart, Deputy Director of the International Atomic Energy Agency (AIEA), said: "Let me congratulate all who have contributed to the achievements of the ITER initiative to date.... (1,5 page)

  17. Research and experience report 2008. Developments in the technical and legal basis of nuclear oversight; Erfahrungs- und Forschungsbericht 2008. Entwicklungen im Bereich der Grundlagen der nuklearen Aufsicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reviews research into regulatory safety and the work done during 2008. In the area of reactor safety, research - in addition to research into materials - was concentrated primarily on safety and reliability analyses. ENSI supports projects looking at ageing mechanisms such as fatigue, corrosion, embrittlement and the development of cracks under a range of environmental conditions. Topics such as the interaction between core meltdown and water and concrete as well as the development of methods and computer codes are covered. In the area of transport and waste management, ENSI is focussing its efforts on research into the geological strata suitable for the final storage of highly radioactive, long-lived waste. Human and organisational factors and safety culture now account for an increasing part of the work of this regulatory body. Appendices present an overview of work done, international activities, publications and the basic principles of the new ENSI guidelines.

  18. Cold nuclear fusion

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang Huang Yuxiang

    2013-10-01

    Full Text Available In normal temperature condition, the nuclear force constraint inertial guidance method, realize the combination of deuterium and tritium, helium and lithium... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion". According to the similarity of the nuclear force constraint inertial guidance system, the different velocity and energy of the ion beam mixing control, developed ion speed dc transformer, it is cold nuclear fusion collide, issue of motivation and the nuclear power plant start-up fusion and power transfer system of the important equipment, so the merger to apply for a patent

  19. The Nordic nuclear safety research 1990-93. Evalution and executive summary; Nordisk kernesikkerhedsforskning 1990-93. Evaluering og administrativ sammenfatning

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.

    1994-11-01

    A four-year Nordic research programme in the field of nuclear safety was carried through from 1990 through 1993, performed under the auspices of the Nordic Committee for Nuclear Safety Research, NKS. The aim has been to increase knowledge required to judge the safety of nuclear installations in and around the Nordic areas, and to improve and harmonize emergency preparedness. There were 19 individual projects within the four main section of the programme: Emergency preparedness, Waste and decommissioning, Radioecology, and Reactor safety. The programme was evaluated in 1994 by five evaluators, and the main emphasis was on general questions. The evaluators recommend that project plans are revised at mid-term, for updating. During the project period, NKS should use specified criteria to judge progress and success. Time tables must be adhered to. Recommendations deal with reporting and presentation of results, project leaders must disseminate information at the professional level and organize seminars. The NKS annual reports should be conceived so that they can also be used for external information. NKS should establish a policy aimed at enhanced information on its projects. Final reports should contain conclusions and recommendations which can subsequently be followed up. Directors of the competent authorities in the Nordic countries should be requested to give their views on the recommendations, and also industry, on the usefulness of results. It is proposed that NKS consider presentation of the outcome to responsible ministers and their staff. These recommendations were taken into account during 1994. (AB).

  20. Safety research programs sponsored by Office of Nuclear Regulatory Research. Quarterly progress report, January 1-March 31, 1983. Volume 3, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bari, R A; Cerbone, R J; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Luckas, Jr, W J; Reich, M; Saha, P; Sastre, C

    1983-06-01

    The projects reported are the following: HTGR Safety Evaluation, SSC Development, Validation and Application, CRBR Balance of Plant Modeling, Thermal-Hydraulic Reactor Safety Experiments, LWR Plant Analyzer Development, LWR Code Assessment and Application; Stress Corrosion Cracking of PWR Steam Generator Tubing, Bolting Failure Analysis, Probability Based Load Combinations for Design of Category I Structures, Mechanical Piping Benchmark Problems, Soil Structure Interaction; Human Error Data for Nuclear Power Plant Safety Related Events, Criteria for Human Engineering Regulatory Guides and Human Factors in Nuclear Power Plant Safeguards.