Sample records for cachoeirinha magmatic arc

  1. The 1590-1520 Ma Cachoeirinha magmatic arc and its tectonic implications for the Mesoproterozoic SW Amazonian craton crustal evolution

    Directory of Open Access Journals (Sweden)

    Ruiz Amarildo S.


    Full Text Available Isotopic and chemical data of rocks from the Cachoeirinha suite provide new insights on the Proterozoic evolution of the Rio Negro/Juruena Province in SW Amazonian craton. Six U-Pb and Sm-Nd analyses in granitoid rocks of the Cachoeirinha suite yielded ages of 1587-1522 Ma and T DM model ages of 1.88-1.75 Ga (EpsilonNd values of -0.8 to +1.0. In addition, three post-tectonic plutonic rocks yielded U-Pb ages from 1485-1389 Ma (T DM of 1.77-1.74 Ga and EpsilonNd values from -1.3 to +1.7. Variations in major and trace elements of the Cachoeirinha suite rocks indicate fractional crystallization process and magmatic arc geologic setting. These results suggest the following interpretations: (1 The interval of 1590-1520 Ma represents an important magmatic activity in SW Amazonian craton. (2 T DM and arc-related chemical affinity supportthe hypothesis that the rocks are genetically associated with an east-dipping subduction zone under the older (1.79-1.74 Ga continental margin. (3 The 1590-1520 Ma age of intrusive rocks adjacent to an older crust represents similar geological framework along the southern margin of Baltica, corroborating the hypothesis of tectonic relationship at that time.

  2. Diffuse degassing through magmatic arc crust (Invited) (United States)

    Manning, C. E.; Ingebritsen, S.


    The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these

  3. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel


    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  4. The Maramuni Arc of Papua New Guinea: A Record of Continental Collision, Orogenesis and Arc Magmatism (United States)

    Holm, R.; Spandler, C.; Richards, S.


    Although Papua New Guinea is relatively young in geological terms, it lies in a complex tectonic setting of oblique convergence between the Pacific and Australian plates, and trapped between the converging Ontong Java Plateau of the Pacific plate and the Australian continent. This complex setting combined with a lack of regional quantitative datasets has led to uncertainty in the timing and nature of major terrane forming events. The Maramuni arc represents the only continuous record of the tectonic evolution of Papua New Guinea during the Miocene, and hence provides an opportunity to gain insight into subduction dynamics, orogenesis and crustal processes that operated throughout this dynamic period. We present an integrated U-Pb geochronology, Hf isotope and geochemical investigation of the Maramuni arc utilizing a suite of intrusive rocks from the eastern Papuan Highlands that span the Late Miocene from ca. 12 Ma to 6 Ma. Northward dipping subduction beneath Papua New Guinea and early Maramuni arc activity is disrupted by arrival of the Australian continent at the trench from 12 Ma. The magmatic rocks formed from ca. 12-9 Ma have compositional affinities of subduction-zone magmas, but record increasing incompatible trace element contents and decreasing ɛHf with time, which we interpret to reflect a progressive increase in the crustal component of the magmas. Subsequent porphyry suites emplaced at 7.5-6 Ma are distinct from the older magmatic rocks by their marked HREE-depletion, which reflects a dramatic shift in arc-mantle dynamics. This is interpreted as break-up of the subducted slab and crustal delamination, and is marked by a second phase of uplift in the New Guinea Orogen. These results provide insights into the processes of continent collision and the expression of such processes in the geological record with potential applications in ancient convergent margins.

  5. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc (United States)

    Hagen-Peter, Graham; Cottle, John M.


    Extensive exposure of intrusive igneous rocks along the Ross orogen of Antarctica-an ancient accretionary orogen on the margin of East Gondwana-provides an exceptional opportunity to study continental arc magmatism. There is significant petrologic and geochemical variability in igneous rocks within a 500-km-long segment of the arc in southern Victoria Land. The conspicuous occurrence of carbonatite and alkaline silicate rocks (nepheline syenite, A-type granite, and alkaline mafic rocks) adjacent to large complexes of subalkaline granitoids is not adequately explained by traditional models for continental arc magmatism. Extensive geochemical analysis (> 100 samples) and zircon U-Pb geochronology (n = 70) confirms that alkaline and carbonatitic magmatism was partially contemporaneous with the emplacement of large subduction-related igneous complexes in adjacent areas. Major pulses of subalkaline magmatism were compositionally distinct and occurred at different times along the arc. Large bodies of subalkaline orthogneiss and granite (sensu lato) were emplaced over similar time intervals (ca. 25 Myr) to the north (ca. 515-492 Ma) and south (ca. 550-525 Ma) of the alkaline magmatic province, although the initiation of these major pulses of magmatism was offset by ca. 35 Myr. Alkaline and carbonatitic magmatism spanned at least ca. 550-509 Ma, overlapping with voluminous subalkaline magmatism in adjacent areas. The most primitive rocks from each area have similarly enriched trace element compositions, indicating some common characteristics of the magma sources along the arc. The samples from the older subalkaline complex have invariably low Sr/Y ratios (generation and differentiation. The younger subalkaline complex and subalkaline rocks within the area of the alkaline province extend to higher Sr/Y ratios (up to 300), indicative of generation and differentiation at deeper levels. The significant spatial and temporal diversity in magmatism can be explained by a tectono-magmatic

  6. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel


    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  7. The Ordovician magmatic arc in the northern Chile-Argentina Andes between 21° and 26° south latitude (United States)

    Niemeyer, Hans; Götze, Jens; Sanhueza, Marcos; Portilla, Carolina


    A continental magmatic arc (the Famatinian magmatic arc) was developed on the western margin of Gondwana during the Early to Middle Ordovician. This has a northwestern orientation in the northern Chile-Argentina Andes between 21° and 26° south latitude with a northeastern directed subduction zone and developed on a continental crust represented by a metamorphic basement. A paleogeographical scheme for the Ordovician magmatic arc is proposed and two tectonic environments can be recognized from our own data and data from the literature: forearc and arc. The Cordón de Lila Complex can be assigned to a forearc position. Here the turbiditic flows become paralell to the northwestern elongation of the magmatic arc. The sedimentation in the frontal-arc high platform of the forearc is represented by stromatolitic limestones and a zone of phosphate production. The internal structure of the arc can be inferred from the petrographic composition of the turbidites: basaltic and andesitic lavas, dacitic and/or rhyolitic lavas and ash fall tuffs. Also the Quebrada Grande Formation was developed on the forearc. Plutonic Ordovician rocks testify the continuity of the magmatic arc. The data about the basement exposed in the present paper do not support the existence of the Arequipa-Antofalla Terrane.

  8. Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada (United States)

    du Bray, Edward A.; John, David A.; Cousens, Brian L.


    Ongoing arc magmatism along western North America was preceded by ancestral arc magmatism that began ca. 45 Ma and evolved into modern arc volcanism. The southern ancestral arc segment, active from ca. 30 to 3 Ma, adjoins the northern segment in northern California across a proposed subducted slab tear. The east edge of the Walker Lane approximates the east edge of the southern arc whose products, mostly erupted from stratovolcanoes and lava dome complexes arrayed along the crest of the ancestral arc, extend down the west flank of the Sierra Nevada. Southern arc segment rocks include potassic, calc-alkaline intermediate- to silicic-composition lava flows, lava dome complexes, and associated volcaniclastic deposits.

  9. Petrogenesis and tectonic implications of an Early Jurassic magmatic arc from South to East China Seas (United States)

    Zhang, L.; Xu, C.


    Granite and diorite samples by drilling in northeastern South China Sea (SCS) and southwestern East China Sea (ECS) contribute key information to understanding tectonic regime of South China Block in Jurassic time. SIMS and LA-ICPMS U-Pb zircon analyses yield ages ranging from 195±2 Ma to 198±1 Ma for samples from well LF3511 in SCS, and an age of 187±1 Ma for the sample from well ESC635 in ECS. They are low temperature I-type granitoids with strongly enriched fluid-mobile elements and depleted Nb-Ta features, indicating subduction arc-related magmatism in their origin. Sr-Nd isotopic compositions for samples from SCS ((87Sr/86Sr)i=0.705494-0.706623, ɛNdt=-0.9 to +2.2) and sample from ECS ((87Sr/86Sr)i=0.705200, ɛNdt=1.1) suggest an affinity with evolved mantle-derived melts. The granitoids found from NE SCS, SE Taiwan to the SW ECS could spatially define an Early Jurassic NE-SW-trending Dongsha-Talun-Yandang low-temperature magmatic arc zone along the East Asian continental margin, paired with Jurassic accretionary complexes exposed in SW Japan, E Taiwan to the W Philippines. Its geodynamic context is associated with oblique subduction of the paleo-Pacific slab beneath Eurasia, as a mechanism responsible for early Jurassic lithospheric extension with magmatism in the South China Block.

  10. Seismic anisotropy from compositional banding in granulites from the deep magmatic arc of Fiordland, New Zealand (United States)

    Cyprych, Daria; Piazolo, Sandra; Almqvist, Bjarne S. G.


    We present calculated seismic velocities and anisotropies of mafic granulites and eclogites from the Cretaceous deep lower crust (∼40-65 km) of Fiordland, New Zealand. Both rock types show a distinct foliation defined by cm-scale compositional banding. Seismic properties are estimated using the Asymptotic Expansion Homogenisation - Finite Element (AEH-FE) method that, unlike the commonly used Voigt-Reuss-Hill homogenisation, incorporates the phase boundary network into calculations. The predicted mean P- and S-wave velocities are consistent with previously published data for similar lithologies from other locations (e.g., Kohistan Arc), although we find higher than expected anisotropies (AVP ∼ 5.0-8.0%, AVS ∼ 3.0-6.5%) and substantial S-wave splitting along foliation planes in granulites. This seismic signature of granulites results from a density and elasticity contrast between cm-scale pyroxene ± garnet stringers and plagioclase matrix rather than from crystallographic orientations alone. Banded eclogites do not show elevated anisotropies as the contrast in density and elastic constants of garnet and pyroxene is too small. The origin of compositional banding in Fiordland granulites is primarily magmatic and structures described here are expected to be typical for the base of present day magmatic arcs. Hence, we identify a new potential source of anisotropy within this geotectonic setting.

  11. Os and U-Th isotope signatures of arc magmatism near Mount Mazama, Crater Lake, Oregon (United States)

    Ankney, Meagan E.; Shirey, Steven B.; Hart, Garret L.; Bacon, Charles R.; Johnson, Clark M.


    Interaction of mantle melts with the continental crust can have significant effects on the composition of the resulting melts as well as on the crust itself, and tracing this interaction is key to our understanding of arc magmatism. Lava flows and pyroclastic deposits erupted from ∼50 to 7.7 ka at Mt. Mazama (Crater Lake, Oregon) were analyzed for their Re/Os and U-Th isotopic compositions. Mafic lavas from monogenetic vents around Mt. Mazama that erupted during the buildup to its climactic eruption have lower 187Os/188Os ratios (0.1394 to 0.1956) and high 230Th excess ((230Th/238U)0 of 1.180 to 1.302), whereas dacites and rhyodacites tend to have higher 187Os/188Os ratios (0.2292 to 0.2788) and significant 238U excess ((230Th/238U)0 of 0.975 to 0.989). The less radiogenic Os isotope compositions of the mafic lavas can be modeled by assimilation of young (∼2.5 to 7 Ma), mafic lower crust that was modified during regional extension, whereas the more radiogenic Os isotope compositions of the dacites and rhyodacites can be attributed to assimilation of older (∼10 to 16 Ma), mid to upper crust that acquired its composition during an earlier period of Cascade magmatism. Production of Th excesses in the lower crust requires very young garnet formation accompanying dehydration melting in the lower crust at less than a few 100 ka by heat from recent basaltic magma injection. The results from this study suggest that the combination of Os and Th isotopes may be used to provide insights into the timescales of evolution of the continental crust in arc settings, as well as the influence of the crust on erupted magmas, and suggest a link between the age and composition of the lower and upper crust to regional tectonic extension and/or earlier Cascade magmatism.

  12. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  13. First magmatism in the New England Batholith, Australia: forearc and arc-back-arc components in the Bakers Creek Suite gabbros (United States)

    McKibbin, Seann J.; Landenberger, Bill; Fanning, C. Mark


    The New England Orogen, eastern Australia, was established as an outboard extension of the Lachlan Orogen through the migration of magmatism into forearc basin and accretionary prism sediments. Widespread S-type granitic rocks of the Hillgrove and Bundarra supersuites represent the first pulse of magmatism, followed by I- and A-types typical of circum-Pacific extensional accretionary orogens. Associated with the former are a number of small tholeiite-gabbroic to intermediate bodies of the Bakers Creek Suite, which sample the heat source for production of granitic magmas and are potential tectonic markers indicating why magmatism moved into the forearc and accretionary complexes rather than rifting the old Lachlan Orogen arc. The Bakers Creek Suite gabbros capture an early ( ˜ 305 Ma) forearc basalt-like component with low Th / Nb and with high Y / Zr and Ba / La, recording melting in the mantle wedge with little involvement of a slab flux and indicating forearc rifting. Subsequently, arc-back-arc like gabbroic magmas (305-304 Ma) were emplaced, followed by compositionally diverse magmatism leading up to the main S-type granitic intrusion ( ˜ 290 Ma). This trend in magmatic evolution implicates forearc and other mantle wedge melts in the heating and melting of fertile accretion complex sediments and relatively long ( ˜ 10 Myr) timescales for such melting.

  14. The neoproterozoic Goias magmatic arc, central Brazil: a review and new Sm-Nd isotopic data

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio Martins; Fuck, Reinhardt Adolfo; Gioia, Simone Maria Costa Lima [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail:


    In this study we review the main characteristics and geochronological/isotopic data of metaigneous rocks of the juvenile Neoproterozoic Goias Magmatic Arc in central Brazil. Some new Sm-Nd isotopic data are also presented for both the southern (Arenopolis) and northern (Mara Rosa) sections of the arc. In the south, granitoids of the Choupana-Turvania area yielded a Sm-Nd whole-rock isochron age of 863{+-} 97 Ma and e{sub Nd} (T) of +4.1 T{sub D}M model ages vary between 0.94 and 1.13 Ga. Metavolcanic rocks in the Pontalina region have a Sm-Nd whole rock isochron age of 762 {+-} 77 Ma and e{sub Nd} (T) of +2.9. T {sub DM} values are between 0.96 and 1.10 Ga. In the northern section of the Goias Arc, mylonitic gneisses of the Serra Azul ridge, an important N30E shear zone, were investigated and have a Sm-Nd isochron age of 3058 {+-} 120 Ma and initial e{sub Nd} value of ca.+ 2.1. This data suggests that the Serra Azul ridge might represent either a mylonitized fragment of the Archaen terranes exposed just to the south, or the sialic basement of the Araguaia Belt supracrustal, along the eastern margin of the Amazon Craton. The geochronological data available so far indicate a long history of arc formation and amalgamation on the western margin of the Sao Francisco-Congo continent during the Neoproterozoic. The history of convergence of continental masses is partially coeval with the fragmentation of Rodinia, indicating that the western margin (present geographic reference) of that continent occupied a peripheral setting in the Rodinia super continent. (author)

  15. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand (United States)

    Stowell, H.; Tulloch, A.; Zuluaga, C.; Koenig, A.


    Pembroke Granulite from Fiordland, New Zealand provides a window into the mid- to lower crust of magmatic arcs. Garnet Sm-Nd and zircon U-Pb ages constrain the timing and duration of high-P partial melting that produced trondhjemitic high Sr/Y magma. Trace element zoning in large, euhedral garnet is compatible with little post growth modification and supports the interpretation that garnet Sm-Nd ages of 126.1??2.0 and 122.6??2.0. Ma date crystal growth. Integration of the garnet ages with U-Pb zircon ages elucidates a history of intrusion(?) and a protracted period of high-temperature metamorphism and partial melting. The oldest zircon ages of 163 to 150. Ma reflect inheritance or intrusion and a cluster of zircon ages ca. 134. Ma date orthopyroxene-bearing mineral assemblages that may be magmatic or metamorphic in origin. Zircon and garnet ages from unmelted gneiss and garnet reaction zones record garnet granulite facies metamorphism at 128 to 126. Ma. Peritectic garnet and additional zircon ages from trondhjemite veins and garnet reaction zones indicate that garnet growth and partial melting lasted until ca. 123. Ma. Two single fraction garnet ages and young zircon ages suggest continued high-temperature re-equilibration until ca. 95. Ma. Phase diagram sections constrain orthopyroxene assemblages to <0.6 GPa @ 650??C, peak garnet granulite facies metamorphic conditions to 680-815??C @ 1.1-1.4. GPa, and a P-T path with a P increase of???0.5. GPa. These sections are compatible with water contents???0.28wt.%, local dehydration during garnet granulite metamorphism, and <0.3. GPa P increases during garnet growth. Results demonstrate the utility of integrated U-Pb zircon and Sm-Nd garnet ages, and phase diagram sections for understanding the nature, duration, and conditions of deep crustal metamorphism and melting. Geochronologic and thermobarometric data for garnet granulite indicate that thickening of arc crust, which caused high-pressure metamorphism in northern

  16. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter


    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  17. Mineralogy and Genesis of Joveinan Iron Skarn (Cenozoic Magmatic Arc, North of Isfahan

    Directory of Open Access Journals (Sweden)

    Shahzad Sherafat


    Full Text Available Joveinan marbles and skarns are located 5 km NE of Ghohrood and 140 km NW ofIsfahan in the *central part of Urumieh- Dokhtar magmatic arc. Intrusion of Ghohroodgranitoid into the Cretaceous carbonate rocks caused the contact metamorphism andformation of skarn mineral paragenesis wollastonite, clinopyroxene, garnet, actinolite,epidote, chlorite, calcite, quartz, magnetite and sulfides (iron and copper. Mineralogicalstudies and paragenetic mineral relations confirm that the Joveinan skarn is polygeneticin origin and evolved in two major stages, metamorphism and metasomatism(progressive and retrogressive. In metamorphism stage that occurred immediately afterthe granitoid magma emplacement within carbonate rocks, Joveinan marbles were formed. Metasomatic stage occurred with generation of anhydrous calc-silicatesminerals such as wollastonite, diopsidic-hedenbergitic pyroxene and ugrandite garnets.The main stage of retrograde metasomatic, alteration of primary calc-silicate minerals ofskarn (pyroxene-garnet, caused the formation of epidote, actinolite and chlorite. Theassociation of wollastonite, magnetite and andradite represents that skarn crystallized inover 550 ° C temperature range and low partial pressure of CO2. Joveinan skarn is acalcic skarn that has been formed at shallow depth by oxidative hydrothermal fluids andevolved in different stages.

  18. Scrubbing masks magmatic degassing during repose at Cascade-Range and Aleutian-Arc volcanoes (United States)

    Symonds, Robert B.; Janik, C.J.; Evans, William C.; Ritchie, B.E.; Counce, Dale; Poreda, R.J.; Iven, Mark


    Between 1992 and 1998, we sampled gas discharges from ≤173°C fumaroles and springs at 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA) including Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. For each site, we collected and analyzed samples to characterize the chemical (H2O, CO2, H2S, N2, CH4, H2, HCl, HF, NH3, Ar, O2, He) and isotopic (δ13C of CO2, 3He/4He, 40Ar/36Ar, δ34S, δ13C of CH4, δ15N, and δD and δ18O of water) compositions of the gas discharges, and to create baseline data for comparison during future unrest. The chemical and isotopic data show that these gases contain a magmatic component that is heavily modified from scrubbing by deep hydrothermal (150° - 350°C) water (primary scrubbing) and shallow meteoric water (secondary scrubbing). The impact of scrubbing is most pronounced in gas discharges from bubbling springs; gases from boiling-point fumaroles and superheated vents show progressively less impact from scrubbing. The most effective strategies for detecting gas precursors to future CRAA eruptions are to measure periodically the emission rates of CO2 and SO2, which have low and high respective solubilities in water, and to monitor continuously CO2 concentrations in soils around volcanic vents. Timely resampling of fumaroles can augment the geochemical surveillance program by watching for chemical changes associated with drying of fumarolic pathways (all CRAA sites), increases in gas geothermometry temperatures (Mount Mageik, Trident, Mount Baker, Mount Shasta), changes in δ13C of CO2 affiliated with magma movement (all CRAA site), and increases in 3He/4He coupled with intrusion of new magma (Mount Rainier, Augustine Volcano, Makushin, Mount Shasta). Repose magmatic degassing may discharge substantial amounts of S and Cl into the edifices of Mount Baker and several other CRAA

  19. Reappraisal of Peri-Arabic ophiolites and geodynamics: Why the Kermanshah ophiolite (SW Iran) is a Paleocene-Eocene magmatic arc at the foot of Eurasia (United States)

    Whitechurch, Hubert; Omrani, Jafar; Agard, Philippe; Humbert, Fabien; Montigny, Raymond; Jolivet, Laurent


    The nature and significance of the Kermanshah ophiolite (Zagros, Iran), classically identified as one of the few remnants of the Peri-Arabic ophiolite system obducted onto Arabia during the Late Cretaceous, are reinvestigated in this study. Systematic major and trace element geochemistry was performed, mainly on magmatic rocks, from two distinct areas: the Kamaryan Paleocene to Eocene arc and the so-called Harsin-Sahneh "ophiolites". Both domains display low to medium-K calc-alkaline signatures with variably negative anomalies in Nb, Ta, and Ti and positive ones in Sr, Ba, Th, and U. The magmatic activity of the Palaeocene-Eocene magmatic group shows an evolution through time, with a geochemical signature close to tholeiitic Back-Arc Basin-Basalts (BAB) for Palaeocene rocks and a clear calc-alkaline arc signature for Eocene volcanics. The presumably ophiolitic gabbros of the Harsin-Sahneh complex intruding harzburgites, as well as the associated dykes, also show a BAB geochemical signature. Overall, field relationships and geochemical patterns suggest that these rocks were emplaced on a mantle substratum close to the ocean-continent transition. This Palaeocene-Eocene magmatic activity in Kermanshah, which extended further to the north-west into Turkey, coincided with a marked slowing of the Arabia/Eurasia convergence. It furthermore occurred after the stopping of the Sanandaj-Sirjan magmatism (Mesozoic arc) but before the development of the Urumieh-Dokhtar magmatic arc (Tertiary arc). We relate this transient magmatic activity to slab retreat and back-arc extension at the foot of the Eurasian margin and to lithospheric-scale reconstructions across the Neotethys between Turkey and Iran.

  20. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity (United States)

    Wannamaker, Philip E.; Evans, Rob L.; Bedrosian, Paul A.; Unsworth, Martyn J.; Maris, Virginie; McGary, R. Shane


    Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct changes in plate coupling, subduction fluid evolution, and modes of arc magmatism along the length of Cascadia are clearly expressed in the resistivity structure. Relatively high resistivities under the coasts of northern and southern Cascadia correlate with elevated degrees of inferred plate locking, and suggest fluid- and sediment-deficient conditions. In contrast, the north-central Oregon coastal structure is quite conductive from the plate interface to shallow depths offshore, correlating with poor plate locking and the possible presence of subducted sediments. Low-resistivity fluidized zones develop at slab depths of 35–40 km starting ∼100 km west of the arc on all profiles, and are interpreted to represent prograde metamorphic fluid release from the subducting slab. The fluids rise to forearc Moho levels, and sometimes shallower, as the arc is approached. The zones begin close to clusters of low-frequency earthquakes, suggesting fluid controls on the transition to steady sliding. Under the northern and southern Cascadia arc segments, low upper mantle resistivities are consistent with flux melting above the slab plus possible deep convective backarc upwelling toward the arc. In central Cascadia, extensional deformation is interpreted to segregate upper mantle melts leading to underplating and low resistivities at Moho to lower crustal levels below the arc and nearby backarc. The low- to high-temperature mantle wedge transition lies slightly trenchward of the arc.

  1. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc

    DEFF Research Database (Denmark)

    Bailey, John C; Jensen, E.S.; Hansen, A.


    The geochemistry of basaltic to dacitic lavas and dykes in the volcanic centres of NorthSantorini (Greece) has been investigated using elemental and Sr-Nd-Pb isotopic data andthree main magmatic series with sub-parallel trace element patterns for basalts can bedistinguished. The basalts have Sr a...

  2. Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments (United States)

    Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu


    The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and

  3. Birth and demise of the Rheic Ocean magmatic arc(s): Combined U-Pb and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata (United States)

    Pereira, M. F.; Gutíerrez-Alonso, G.; Murphy, J. B.; Drost, K.; Gama, C.; Silva, J. B.


    Paleozoic continental reconstructions indicate that subduction of Rheic oceanic lithosphere led to collision between Laurussia and Gondwana which was a major event in the formation of the Ouachita-Appalachian-Variscan orogenic belt and the amalgamation of Pangea. However, arc systems which record Rheic Ocean subduction are poorly preserved. The preservation of Devonian detrital zircon in Late Devonian-Early Carboniferous siliciclastic rocks of SW Iberia, rather than arc-related igneous rocks indicates that direct evidence of the arc system may have been largely destroyed by erosion. Here we report in-situ detrital zircon U-Pb isotopic analyses of Late Devonian-Early Carboniferous siliciclastic rocks from the Pulo do Lobo Zone, which is a reworked Late Paleozoic suture zone located between Laurussia and Gondwana. Detrital zircon age spectra from the Pulo do Lobo Zone Frasnian formations show striking similarities, revealing a wide range of ages dominated by Neoproterozoic and Paleoproterozoic grains sourced from rocks typical of peri-Gondwanan terranes, such as Avalonia, the Meguma terrane and the Ossa-Morena Zone. Pulo do Lobo rocks also include representative populations of Mesoproterozoic and Early Silurian zircons that are typical of Avalonia and the Meguma terrane which are absent in the Ossa-Morena Zone. The Famennian-Tournaisian formations from the Pulo do Lobo Zone, however, contain more abundant Middle-Late Devonian zircon indicating the contribution from a previously unrecognized source probably related to the Rheic Ocean magmatic arc(s). The Middle-Late Devonian to Early Carboniferous zircon ages from the siliciclastic rocks of SW Iberia (South Portuguese, Pulo do Lobo and Ossa-Morena zones) have a wide range in εHfT values (- 8.2 to + 8.3) indicating the likely crystallization from magmas formed in a convergent setting. The missing Rheic Ocean arc was probably built on a Meguma/Avalonia type basement. We propose for the Pulo do Lobo Zone that the

  4. Land use and its impacts on the water quality of the Cachoeirinha Invernada Watershed, Guarulhos (SP

    Directory of Open Access Journals (Sweden)

    Dhisney Gonçalves de Oliveira


    Full Text Available The urbanization process through which large urban centers have been passing has drastically affected the availability and especially the quality of water. The Cachoeirinha Invernada Watershed (CIW, located in the municipality of Guarulhos (State of São Paulo, Brazil, includes areas with different land use classes. This paper aims to correlate the spatial and temporal effects of land use and land cover on the water quality of the Cachoeirinha Invernada Watershed. In a period of 12 months and at six sampling points along the watershed, the physicochemical parameters temperature (T, pH, turbidity (TU, total solids (TS, electrical conductivity (EC, total phosphorus (TP, biochemical oxygen demand (BOD, as well as microbiological analysis (E. coli were measured. Water quality was assessed using a modified version (WQIM of the Water Quality Index (WQI and the Trophic State Index (TSI. The areas surrounded by urban development presented a marked worsening in water quality, with the downstream point most affected and ranked as ‘POOR’. From the evaluated parameters, what contributed most to water quality degradation of the Cachoeirinha Invernada Watershed (CIW was E. coli, followed by BOD, and TP, all parameters related to the presence of sewage in the water. The need for the construction of sewerage and waste treatment, protection and recovery of riparian forests, and environmental education regarding waste disposal are necessary to significantly improve the environmental quality of the Cachoeirinha Invernada Watershed.

  5. Petrogenesis of the Jiaoziding granitoids and associated basaltic porphyries: Implications for extensive early Neoproterozoic arc magmatism in western Yangtze Block (United States)

    Li, Jun-Yong; Wang, Xiao-Lei; Gu, Zhi-Dong


    Middle Neoproterozoic (ca 860-750 Ma) granitoids are widely distributed in the western margin of the Yangtze Block, China, yet their magma sources and tectonic settings are unclear. The geochronology and geochemistry of the granitoids and associated basaltic porphyries, which intruded the 970 Ma Tongmuliang arc volcanic rocks in the Jiaoziding area (east of Pingwu county), were investigated in this study. LA-ICP-MS zircon U-Pb dating indicates that the Jiaoziding granitoids and basaltic porphyries were formed at 795 ± 6 Ma and 790 ± 20 Ma, respectively. The granitoids have high SiO2 (69.2-76.9 wt%), K2O (2.3-5.6 wt%), and Na2O (3.2-5.1 wt%) contents, and a low Al2O3 (12.4-14.5 wt%) content. The basaltic porphyries contain high concentrations of TiO2 ( 3 wt%) and high field strength elements, have steep rare earth element patterns, and are depleted in Nd and Hf isotopes. Batch partial-melting modelling indicates that the Jiaoziding granitoids could have been derived by 5% and 50-70% partial melting of Tongmuliang mafic rocks and quartz-keratophyres, respectively. Formation of the basaltic porphyries by melting of upwelling asthenospheric mantle would have been facilitated by extensive lithospheric delamination during the Neoproterozoic. This study established a link between mid-Neoproterozoic granitic magmatism and 970 Ma juvenile arc crust, indicating that extensive early Neoproterozoic juvenile arc crust, and partial melting of this crust in an extensional setting, favoured the formation of middle Neoproterozoic granitic rocks along the W-NW margin of the Yangtze Block.

  6. Felsic magmatism in the Southern Mariana arc: Petrogenetic comparison between Zealandia Bank and East Diamante (United States)

    Shukuno, H.; Tamura, Y.; Stern, R. J.; Nunokawa, A.; Kawabata, H.; Miyazaki, T.; Senda, R.; Kimura, J.; Nichols, A. R.


    Felsic magmas have been recognized to be a significant component in intra-oceanic arc systems (IOAS), but their origin in this setting is still a matter of debate. Zealandia Bank and East Diamante are two submarine volcanoes in the Southern Marina arc that have erupted felsic magmas. Previous geologic and petrologic studies of the Diamante cross-arc volcanic chain suggest that the felsic magmas of East Diamante may be caused by the remobilization of tonalitic middle crust (Stern et al., 2010). The petrogenetic comparison between Zealandia and East Diamante volcanoes conducted in this study provides further constraints on the genesis of felsic magma in an IOAS. ROV Hyper-Dolphin dives during cruise NT09-08, on R/V Natsushima, were carried out in the Zealandia area and on the Diamante cross-arc volcanic chain. Zealandia Bank, which is built on the volcanic front, has two neighboring edifices, North and West Zealandia, on the rear-arc side. The western half of Zealandia Bank is dominated by felsic lavas, with mafic lavas having been recovered from a ridge extending to the south of the main edifice and a parasitic cone. Magnesian olivine basalts have been recovered from West Zealandia. The Diamante cross-arc volcanic chain consists of three major edifices, a caldera with felsic resurgent domes on the volcanic front (East Diamante), and two basaltic cones on the rear-arc side (West and Central Diamante). There are silica gaps at around 60 % SiO2 in both the Zealandia Bank and East Diamante magmas. Felsic lavas from East Diamante are generally porphyritic, with total phenocryst abundances up to 41 % and the assemblage consisting of quartz, plagioclase, clinopyroxene, orthopyroxene and Fe-Ti oxides. Felsic lavas from Zealandia Bank, on the other hand, generally contain less phenocrysts, with an assemblage of 1-3 % plagioclase, 0.1-0.3 % clinopyroxene, Zealandia Bank have Ca-rich plagioclase and Mg-rich pyroxenes relative to East Diamante felsic lavas. Equilibrium

  7. The mantle source of island arc magmatism during early subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc, Pakistan) (United States)

    Ewing, Tanya A.; Müntener, Othmar


    The Cretaceous-Paleogene Kohistan arc complex, northern Pakistan, is renowned as one of the most complete sections through a preserved paleo-island arc. The Jijal Complex represents a fragment of the plutonic roots of the Kohistan arc, formed during its early intraoceanic history. We present the first Hf isotope determinations for the Jijal Complex, made on rutile from garnet gabbros. These lithologies are zircon-free, but contain rutile that formed as an early phase. Recent developments in analytical capabilities coupled with a careful analytical and data reduction protocol allow the accurate determination of Hf isotope composition for rutile with <30 ppm Hf for the first time. Rutile from the analysed samples contains 5-35 ppm Hf, with sample averages of 13-17 ppm. Rutile from five samples from the Jijal Complex mafic section, sampling 2 km of former crustal thickness, gave indistinguishable Hf isotope compositions with εHf(i) ranging from 11.4 ± 3.2 to 20.1 ± 5.7. These values are within error of or only slightly more enriched than modern depleted mantle. The analysed samples record variable degrees of interaction with late-stage melt segregations, which produced symplectitic overprints on the main mineral assemblage as well as pegmatitic segregations of hydrous minerals. The indistinguishable εHf(i) across this range of lithologies demonstrates the robust preservation of the Hf isotope composition of rutile. The Hf isotope data, combined with previously published Nd isotope data for the Jijal Complex garnet gabbros, favour derivation from an inherently enriched, Indian Ocean type mantle. This implies a smaller contribution from subducted sediments than if the source was a normal (Pacific-type) depleted mantle. The Jijal Complex thus had only a limited recycled continental crustal component in its source, and represents a largely juvenile addition of new continental crust during the early phases of intraoceanic magmatism. The ability to determine the Hf

  8. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America

    Directory of Open Access Journals (Sweden)

    Benjamim Bley de Brito Neves

    Full Text Available ABSTRACT: Magmatic arcs are an essential part of crust-forming events in planet Earth evolution. The aim of this work was to describe an early Ediacaran magmatic arc (ca. 635-580 Ma exposed in the northernmost portion of the Transversal Zone, central subprovince of Borborema Province, northeast Brazil. Our research took advantage of several syntheses by different authors, including theses and dissertations, carried out on magmatic rocks of the study area for the last 30 years. The ca. 750 km long and up to 140 km wide arc, trending ENE-WSW, is preserved to the south of the Patos Lineament, between 35º15' and 42º30'W and 7º15' and 8ºS. About 90 different stocks and batholiths of I-type granitic rocks were mapped along this orogenic zone, preferentially intruding low-grade schists of the Cryogenian-Ediacaran Piancó-Alto Brígida (SPAB belt. Three igneous supersuites are recognized: a epidote-bearing granodiorites and tonalites ("Conceição" type; b high-K calc-alkaline granites ("Itaporanga" type; c biotite granodiorites of trondhjemite affinity ("Serrita" type. A fourth group of peralkalic and shoshonitic rocks occurs to the south of the previous ones, reflecting special tectonic conditions. NNE-SSW trending Paleoproterozoic fold belts, surrounding Archean nuclei, characterize the continental part of the northern lower plate. The oceanic fraction of this lower plate was recycled by subduction and scarce remnants of which may be seen either within the enclosing low-grade schists or as xenoliths within the arc intrusions. The upper continental plate presents WSW-ENE structural trends and is composed of Neoproterozoic fold belts and Paleoproterozoic reworked basement inliers. Available data bear clear evidence of an Ediacaran magmatic arc built at the northern portion of the Transversal Zone in the Borborema Province, northeast Brazil.

  9. Late Cretaceous eclogite in the Eastern Rhodopes (Bulgaria): evidence for subduction under the Sredna Gora magmatic arc (United States)

    Miladinova, Irena; Froitzheim, Nikolaus; Nagel, Thorsten J.; Janák, Marian; Georgiev, Neven; Fonseca, Raúl O. C.; Sandmann, Sascha; Münker, Carsten


    The Rhodopes in Bulgaria and Greece represent a nappe stack of high-grade units with polymetamorphic history. Constraining the time of metamorphism in individual subunits is essential for unraveling the controversial framework of subduction, exhumation and nappe stacking. Here we present new evidence for Late Cretaceous high-pressure metamorphism in the Eastern Rhodopes. In eclogite from the Byala Reka-Kechros Dome (Kazak eclogite), garnet growth is dated at 81.6 ± 3.5 Ma by Lu-Hf chronometry, indicating that prograde eclogite-facies metamorphism occurred during the Late Cretaceous. Petrological data and modeling suggest peak-pressure conditions of 1.2-1.6 GPa, 570-620 °C. We propose that metamorphism took place in a subduction zone dipping towards north under the Sredna Gora section of the Apuseni-Banat-Timok-Sredna Gora continental magmatic arc. Eclogite-facies metamorphism coincides with the main phase of granitoid intrusions in the Sredna Gora Zone. The site of magmatic activity in this area shifted southward during the Late Cretaceous and arrived in the Eastern Rhodopes at 69 Ma, as shown by granite intrusions of that age only 4 km north of the locality of the dated eclogite sample. This proximity may be explained by south-directed rollback of the subduction zone, although also post-69 Ma tectonic displacement has to be considered. Together with published age data from other parts of the Rhodopes, the new data confirm that multiple subduction events took place between 200 and 40 Ma along this section of the southern European plate boundary.

  10. Petrogenesis and U-Pb and Sm-Nd geochronology of the Taquaral granite: record of an orosirian continental magmatic arc in the region of Corumba - MS

    Directory of Open Access Journals (Sweden)

    Letícia Alexandre Redes

    Full Text Available The Taquaral Granite is located on southern Amazon Craton in the region of Corumbá, westernmost part of the Brazilian state of Mato Grosso do Sul (MS, near Brazil-Bolivia frontier. This intrusion of batholitic dimensions is partially covered by sedimentary rocks of the Urucum, Tamengo Bocaina and Pantanal formations and Alluvial Deposits. The rock types are classified as quartz-monzodiorites, granodiorites, quartz-monzonites, monzo and syenogranites. There are two groups of enclaves genetically and compositionally different: one corresponds to mafic xenoliths and the second is identified as felsic microgranular enclave. Two deformation phases are observed: one ductile (F1 and the other brittle (F2. Geochemical data indicate intermediate to acidic composition for these rocks and a medium to high-K, metaluminous to peraluminous calk-alkaline magmatism, suggesting also their emplacement into magmatic arc settings. SHRIMP zircon U-Pb geochronological data of these granites reveals a crystallization age of 1861 ± 5.3 Ma. Whole rock Sm-Nd analyses provided εNd(1,86 Ga values of -1.48 and -1.28 and TDM model ages of 2.32 and 2.25 Ga, likely indicating a Ryacian crustal source. Here we conclude that Taquaral Granite represents a magmatic episode generated at the end of the Orosirian, as a part of the Amoguija Magmatic Arc.

  11. Crustal contributions to arc magmatism in the Andes of Central Chile (United States)

    Hildreth, W.; Moorbath, S.


    Fifteen andesite-dacite stratovolcanoes on the volcanic front of a single segment of the Andean arc show along-arc changes in isotopic and elemental ratios that demonstrate large crustal contributions to magma genesis. All 15 centers lie 90 km above the Benioff zone and 280??20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and seafloor are nearly constant along the segment. Nonetheless, from S to N along the volcanic front (at 57.5% SiO2) K2O rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Ce from 25 to 50 ppm, whereas FeO*/MgO declines from >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part reflecting suppression of HREE enrichment by deep-crustal garnet. Rb, Cs, Th, and U contents all rise markedly from S to N, but Rb/Cs values double northward - opposite to prediction were the regional alkali enrichment controlled by sediment subduction. K/Rb drops steeply and scatters greatly within many (biotite-free) andesitic suites. Wide diversity in Zr/Hf, Zr/Rb, Ba/Ta, and Ba/La within and among neighboring suites (which lack zircon and alkali feldspar) largely reflects local variability of intracrustal (not slab or mantle) contributions. Pb-isotope data define a limited range that straddles the Stacey-Kramers line, is bracketed by values of local basement rocks, in part plots above the field of Nazca plate sediment, and shows no indication of a steep (mantle+sedimentary) Pb mixing trend. 87Sr/86Sr values rise northward from 0.7036 to 0.7057, and 143Nd/144Nd values drop from 0.5129 to 0.5125. A northward climb in basal elevation of volcanic-front edifices from 1350 m to 4500 m elevation coincides with a Bougueranomaly gradient from -95 to -295 mgal, interpreted to indicate thickening of the crust from 30-35 km to 50-60 km. Complementary to the thickening crust, the mantle wedge beneath the front thins northward from about 60 km to 30-40 km (as slab depth is constant). The thick northern crust contains

  12. The Cauaburi magmatic arc: Litho-stratigraphic review and evolution of the Imeri Domain, Rio Negro Province, Amazonian Craton (United States)

    Carneiro, Marcia C. R.; Nascimento, Rielva S. C.; Almeida, Marcelo E.; Salazar, Carlos A.; Trindade, Ivaldo Rodrigues da; Rodrigues, Vanisse de Oliveira; Passos, Marcel S.


    A lithostratigraphic review of the Cauaburi Complex was carried out by means of field, tectono-metamorphic and geochemical data, which were the basis for the sub-division of the Cauaburi Complex orthogneisses into the Santa Izabel do Rio Negro, Cumati and São Jorge facies. These rocks crop out between São Gabriel da Cachoeira and Santa Izabel do Rio Negro, Amazonas, Brazil. The gneisses of the Santa Izabel do Rio Negro and Cumati facies are metaluminous and of calc-alkaline affinity; in turn, the rocks of the São Jorge facies are peraluminous and of alkaline affinity. They vary from (amphibole)-biotite granodiorites/monzogranites (Cumati and Santa Izabel do Rio Negro facies) to spessartite-bearing biotite monzogranites (São Jorge facies). The Cauaburi Complex geochemical signature is compatible with that of granites generated in collisional settings (magmatic arc?) and its evolution is related to three distinct tectono-metamorphic events: D1, causing foliation S1, which developed during the Cauaburi Complex syn-tectonic emplacement in the Cauaburi Orogeny; D2/M2, causing foliation S2, which was generated under amphibolite facies conditions (717.9 °C and 5.84 kbars), and the emplacement of I- and S-type granite during the Içana Orogen, and low-temperature D3, associated with the K'Mudku Event, which caused foliation S3 and reworking via transcurrent shear zones under greenschist facies conditions.

  13. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin


    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas

  14. Oxygen isotope regional pattern in granitoids from the Cachoeirinha Belt, northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.


    Four groups of granitoids are present within the Cachoeirinha belt and in the adjacent migmatitic basement, between 37 0 and 40 0 W long. and 7 0 and 8 0 15' S lat., States of Pernambuco and Paraiba: a) K 2 O - enriched, very porphyritic; b) a calc-alkalic slightly porphyritic group; c) group with trondjemitic affinities; and d) peralkalic group. Petrology and oxygen isotope geochemistry for over 100 samples from these groups were studied. Almost all plutons for which 5 or more samples were analyzed, exhibit a total range of gamma 18 O less than 2% o. A broad range of mean oxygen isotope composition is observed, varying from 6.93 to 12.79% o. There is a systematic regional trend in which the calc-alkalic granitoids (conceicao-type) found within the Cachoeirinha space are the most 18 O - enriched rocks (10.6 to 12.9% o) while the lowest mean gamma 18 O values (4.5 to 9.7% o) are found in the K 2 O - enriched granitoids (Itaporanga-type). Intermediate gamma 18 O values were recorded in the bodies with trondhjemitic affinities (8.9 to 9.8% o) which intruded metasediments of the Salgueiro Group and in the peralkalic granitoids of Catingueira (8.1 to 9.8% o) which intruded Cachoeirinha metamorphics. Among the potassic granitoids, mean gamma 18 O increases from Bodoco to Itaporanga (from west to east). As a whole, the W.R. gamma 18 O of these plutons correlate with the type of grade of metamorphism of the host rocks and, therefore, with the tectonic framework, increasing from those which intruded the gneiss-migmatites to those which intruded the low-grade metamorphics of the Cachoeirinha Group. The possible origin of each rock group is discussed in light of the oxygen isotope geochemistry. (Author) [pt

  15. Surface Deformation Caused by a Shallow Magmatic Source at Okmok Volcano, Aleutian Arc (United States)

    Miyagi, Y.; Freymueller, J. T.; Kimata, F.; Sato, T.; Mann, D.; Kasahara, M.


    Okmok Volcano, located on Umnak Island in the eastern Aleutian arc, last erupted in 1997. Okmok consists of a 10 km wide caldera with several cones located inside. Significant surface deformation before, during and after the eruption has been measured using InSAR. However, the area of coherent data has been limited to the northern part of the caldera, with some additional coherent areas along the outer flanks of the volcano. With support from NASDA (National Space Development Agency of Japan) and the International Arctic Research Center, we carried out GPS campaigns in 2000 and 2001 to supplement the InSAR data with 3D measurements of deformation at well-distributed points. We surveyed 24 sites on and around Okmok in 2000, and 31 sites in 2001. As of this date, no SAR data from suitable passes has been acquired in the summer of 2001; if any are acquired, we will also analyze this data. InSAR data for the period 1997-2000 show what appears to be a radially-symmetric pattern of displacements, consistent with the inflation of a shallow (3-4 km) pressure (Mogi) source located beneath the geoemtric center of the caldera. A deflation source at the same location and depth was inferred from an interferogram spanning the eruption. The 2000-2001 GPS data, on the other hand, show evidence for rapid horizontal extension between sites in center of the caldera. This signal cannot be explained by a Mogi source, and may represent the intrusion of a shallow dike. In addition to this probable dike source, it appears that overall inflation of the volcano continues. The proposed dike extends from roughly the center of the caldera toward the 1997 eruptive vent. In May 2001, a swarm of micro-earthquakes occurred somewhere close to Okmok Volcano (location errors are very large as the closest permanent seismic site is ~100 km from Okmok). It is possible that this small earthquake swarm could have been associated with the intrusion of the shallow dike.

  16. Temporal and Spatial Fluctuations in Ancestral Northern Cascade Arc Magmatism from New LA-ICP-MS U-Pb Zircon Dating (United States)

    McCallum, I. S.; Mullen, E.; Jean-Louis, P.; Tepper, J. H.


    Mt. Baker and the adjacent Chilliwack batholith (MBC focus) in NW Washington preserve the longest magmatic record in the Cascade Arc, providing an excellent natural laboratory for examining the spatial, temporal and geochemical evolution of Cascade magmatism and links to tectonic processes. We present new U-Pb zircon LA-ICP-MS ages for 14 samples from MBC and neighboring regions of the north Cascades. The new results are up to 8 Myr different from previous K-Ar ages, illustrating the need for new age determinations in the Cascades. A maximum age of 34.74±0.24 Ma (2σ) (Post Creek stock) is consistent with 35-40 Ma ages for arc inception in the southern Cascades. The most voluminous MBC plutons cluster at 32-29 Ma, consistent with an early flare-up that also coincides with intrusion of the Index batholith farther south (2 samples at 33.26±0.19, 33.53±0.15 Ma). This flare-up is absent in the northernmost Cascades where the oldest pluton (Fall Creek stock) is 6.646±0.046 Ma, 4 Myr younger than previously cited. Earliest Cascade magmatism is progressively younger to the north of MBC, possibly tracing the northerly passage of the slab edge. MBC activity was continuous to 22.75±0.17 Ma (Whatcom Arm), marking the initiation of an 11 Myr hiatus. Magmatism resumed at 11.33±0.08 Ma (Indian Creek) and continued to the modern Mt. Baker cone, defining a pattern of southwesterly migration over ~55 km that may be attributable to slab rollback and arc rotation (e.g. Wells & McCaffrey 2013). Uniformity of the rate and direction of migration implies that rollback and rotation began at least 11 Myr ago. Post-hiatus magmas show distinct geochemical and petrologic characteristics including a major Pb isotopic shift. The 2.430±0.016 Ma Lake Ann stock contains 4.2 Ma zircon antecrysts, recording prolonged activity in that area. The 1.165±0.013 Ma Kulshan caldera ignimbrite contains ~200 Ma inherited zircons that may provide the first direct record of Wrangellian basement beneath

  17. Further evidence of 777 Ma subduction-related continental arc magmatism in Eastern Dom Feliciano Belt, southern Brazil: The Chácara das Pedras Orthogneiss (United States)

    Koester, E.; Porcher, C. C.; Pimentel, M. M.; Fernandes, L. A. D.; Vignol-Lelarge, M. L.; Oliveira, L. D.; Ramos, R. C.


    In this study new SHRIMP U-Pb zircon data for the Chácara das Pedras Gneiss in Porto Alegre, southern Brazil are presented. They represent a small exposure of the crust which was intruded by a large volume of orogenic to anorogenic granitoids at ca. 618-562 m.y. in the Eastern Domain of the Dom Feliciano Belt. The Chácara das Pedras tonalitic orthogneiss has geochemical similarities with subduction-related magmatic rocks of continental arcs. They present high Sr initial ratios (∼0.712), negative ɛNd(t = 777) values (∼-6), TDM varying from 1.8 to 2.0 Ga. The igneous protoliths of these orthogneisses were previously considered to be Paleoproterozoic based on an upper intercept age of discordant zircon analyses. In the present study these orthogneisses were re-sampled and re-analyzed in an attempt to obtain more concordant analytical data. The U-Pb zircon analyses were carried out using the SHRIMP IIe at the Laboratório de Geocronologia de Alta Resolução of the Universidade de São Paulo. The U-Pb concordia age obtained for igneous textural domains of the zircon grains is 777 ± 4 Ma. A few analyses on zircon overgrowths give poorly defined late Cryogenian ages of ca. 650 Ma. Older ages, mostly discordant, were obtained in a few zircon cores, showing an upper intercept age of ca. 1.9 Ga. One sample of the Três Figueiras Granodiorite, which crosscut the orthogneiss in the same outcrop, was also investigated. The zircons of this granodiorite are, however, mostly metamitic, preventing the determination of a reliable age. Some concordant analyses from a few grains define ages ranging in the interval between ca. 603 and 1022 Ma. The youngest (ca. 603 Ma) may represent a maximum age for the granodiorite crystallization. Older ages, with discordance Porto Alegre region, although records of similar ages (780-800 Ma) are recognized within the Eastern Domain of the Dom Feliciano Belt. Examples are the Piratini Gneisses (Piratini region) and in the Cerro Bori

  18. Intra-continental back-arc basin inversion and Late Carboniferous magmatism in Eastern Tianshan, NW China: Constraints from the Shaquanzi magmatic suite

    Directory of Open Access Journals (Sweden)

    Hongjun Jiang


    Full Text Available The Yamansu belt, an important tectonic component of Eastern Tianshan Mountains, of the Central Asian Orogenic Belt, NW China hosts many Fe–(Cu deposit. In this study, we present new zircon U-Pb geochronology and geochemical data of the volcanic rocks of Shaquanzi Formation and diorite intrusions in the Yamansu belt. The Shaquanzi Formation comprises mainly basalt, andesite/andesitic tuff, rhyolite and sub-volcanic diabase with local diorite intrusions. The volcanic rocks and diorites contain ca. 315–305 Ma and ca. 298 Ma zircons respectively. These rocks show calc-alkaline affinity with enrichment in large-ion lithophile elements (LILEs, light rare-earth elements (LREEs, and depletion in high field strength elements (HFSEs in primitive mantle normalized multi-element diagrams, which resemble typical back-arc basin rocks. They show depleted mantle signature with εNd(t ranging from +3.1 to +5.6 for basalt; +2.1 to +4.7 for andesite; −0.2 to +1.5 for rhyolite and the εHf(t ranges from −0.1 to +13.0 for andesites; +5.8 to +10.7 for andesitic tuffs. We suggest that the Shaquanzi Formation basalt might have originated from a depleted, metasomatized lithospheric mantle source mixed with minor (3–5% subduction-derived materials, whereas the andesite and rhyolite could be fractional crystallization products of the basaltic magma. The Shaquanzi Formation volcanic rocks could have formed in an intra-continental back-arc basin setting, probably via the southward subduction of the Kangguer Ocean beneath the Middle Tianshan Massif. The Yamansu mineralization belt might have undergone a continental arc to back-arc basin transition during the Late Carboniferous and the intra-continental back-arc basin might have closed in the Early Permian, marked by the emplacement of dioritic magma in the Shaquanzi belt.

  19. Lutetian arc-type magmatism along the southern Eurasian margin: New U-Pb LA-ICPMS and whole-rock geochemical data from Marmara Island, NW Turkey (United States)

    Ustaömer, P. Ayda; Ustaömer, Timur; Collins, Alan S.; Reischpeitsch, Jörg


    The rocks of Turkey, Greece and Syria preserve evidence for the destruction of Tethys, the construction of much of the continental crust of the region and the formation of the Tauride orogenic belt. These events occurred between the Late Cretaceous and Miocene, but the detailed evolution of the southern Eurasian margin during this period of progressive continental accretion is largely unknown. Marmara Island is a basement high lying at a key location in the Cenozoic Turkish tectonic collage, with a Palaeogene suture zone to the south and a deep Eocene sedimentary basin to the north. North-dipping metamorphic thrust sheets make up the island and are interlayered with a major metagranitoid intrusion. We have dated the intrusion by Laser Ablation ICP-MS analysis of U and Pb isotopes on zircon separates to 47.6 ± 2 Ma. We also performed major- and trace-elemental geochemical analysis of 16 samples of the intrusion that revealed that the intrusion is a calc-alkaline, metaluminous granitoid, marked by Nb depletion relative to LREE and LIL-element enrichment when compared to ocean ridge granite (ORG). We interpret the metagranitoid sill as a member of a mid-Eocene magmatic arc, forming a 30 km wide and more than 200 km long arcuate belt in NW Turkey that post-dates suturing along the İzmir-Ankara-Erzincan Suture zone. The arc magmatism was emplaced at the early stages of mountain building, related to collision of Eurasia with the Menderes-Taurus Platform in early Eocene times. Orogenesis and magmatism loaded the crust to the north creating coeval upward-deepening marine basins partially filled by volcanoclastic sediments.

  20. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics (United States)

    Kröner, A.; Hegner, E.; Lehmann, B.; Heinhorst, J.; Wingate, M. T. D.; Liu, D. Y.; Ermelov, P.


    Early Palaeozoic tonalite to granodiorite intrusions in northern Kazakhstan are associated with lode gold mineralization and have SHRIMP zircon ages of 457.3 ± 6.6 Ma (Aksu), 452.9 ± 5.6 Ma and 447.4 ± 5.4 Ma (both Zholymbet). The Stepnyak intrusion contains large xenoliths with an age of 480.6 ± 5.0 Ma. One early Palaeozoic zircon from a porphyritic diorite at Stepnyak has a core with a near-concordant 207Pb/ 206Pb age of 3888 ± 1.5 Ma, whereas other xenocrystic grains are between 983 and 2698 Ma old. The early Archaean age is probably inherited from unexposed basement of the Kokchetav Massif and represents the oldest crustal material so far known from the Asian continent. It appears that the Aksu, Zholimbet and Stepnyak granitoids were emplaced in the late Ordovician in an Andean- or Japan-type continental arc environment on the margin of the Kokchetav Massif. Late Palaeozoic granitoids in central Kazakhstan have Devonian zircon ages of 407.1 ± 3.9, 381.1 ± 3.1 and 369.2 ± 4.9 Ma, whereas the youngest sample from the Topar Massif has a late Carboniferous emplacement age of 314.1 ± 5.1 Ma. Initial ɛNd values range from +5 to -1 corresponding to Nd-model ages of 1.1-0.6 Ga. The isotopic data are similar to those of other Phanerozoic granitoids of the Central Asian Orogenic Belt and corroborate melting of predominantly juvenile crustal protoliths. Our data also confirm that Devonian and Carboniferous arc magmatism in central Kazakhstan assimilated older and already accreted island arc systems, yet is derived from primitive sources, probably in a subduction setting. The range of ɛNd values with corresponding Nd mean crustal residence ages in the range of 0.6-1.1 Ga for most samples indicates variable recycling of late Proterozoic largely juvenile continental crust in the formation of the Palaeozoic magmatic arcs of central Kazakhstan. The orogenic evolution terminated with Permian anorogenic, rift-related alkaline granite magmatism ( ɛNd = +2 to +8) which

  1. Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs (United States)

    Agrinier, Pierre; Shilobreeva, Svetlana; Bardoux, Gerard; Michel, Agnes; Maximov, Alexandr; Kalatcheva, Elena; Ryabinin, Gennady; Bonifacie, Magali


    By using the stable isotopes of chlorine (δ 37Cl), we have shown that magmatic chlorine (δ 37Cl ≤ -0.6 ‰ [1]) is different from surface chlorine (δ 37Cl ≈ 0 ‰ [1]) in hydrothermal system of Soufrière and Montagne Pelé from the young arc volcanic system of Lesser Antilles. First measurements on condensed chlorides from volcanic gases (e.g. [2], [3]) did not permitted to get sensible δ 37Cl values on degassed chlorine likely because chlorine isotopes are fractionated during the HClgas - chloride equilibrium in the fumaroles or during sampling artifacts. Therefore we have developed an alternative strategy based on the analysis of chloride in thermal springs, streams, sout{f}lowing on the flanks of the volcanoes. Due to the highly hydrophilic behavior of Cl, we hypothesize that thermal springs incorporate chlorine without fractionation of chlorine isotopes and might reflect the chlorine isotopic composition degassed by magmas [1]. Indeed Thermal spring with low δ 37Cl chlorides (≤ -0.6 perthousand{}) are linked with magmatic volatiles characters (3He ratio at 5 Ra at and δ 13C CO2 quad ≈ -3 perthousand{}). To go further in the potentiality of using the Chlorine isotopes to reveal contribution of magmatic chlorine in volcanic systems, we have started the survey of thermal springs and wells waters in the Kamchatka-Kuril volcanic mature Arc (on sites Mutnovsky, Paratunka, Nalychevsky, Khodutkinsky, Paramushir Island, identified by Taran, 2009 [4] for concentrations of chloride). Preliminary results show δ 37Cl values ranging from 0.5 to -0.2 ‰ and generally higher chloride concentrations. The δ 37Cl values are higher than the value recorded for the young arc volcanic system of lesser Antilles. At present moment very few negative δ 37Cl have been measured in the Kamchatka-Kuril volcanic mature Arc. [1] Li et al., 2015 EPSL in press. [2] Sharp et al. 2010 GCA. [3] Rizzo et al., 2013, EPSL, 371, 134. [4] Taran, 2009, GCA, 73, 1067

  2. Insights into Magmatic-Hydrothermal Processes in the Newly-Discovered Seafloor Massive Sulfide Deposits of the New Hebrides Arc-Backarc System, SW Pacific (United States)

    Anderson, M. O.; Hannington, M. D.; Haase, K. M.; Schwarz-Schampera, U.; McConachy, T.


    Magmatic processes leading to hydrothermal venting and the controls on the distribution of vents at two locations along the New Hebrides arc-backarc system are being revealed by new bathymetric data and geological maps interpreted from remotely operated vehicle dive videos. The Nifonea volcanic complex spans the width of the Vate Trough, a nascent backarc basin located ~50 km to the east of the New Hebrides arc. Hydrothermal activity occurs in the caldera at the summit of Nifonea at a water depth of ~1875 m. A NW-trending eruptive fissure cuts through the center of the caldera near the area of active venting. This fissure is associated with isolated pillow mounds and collapse features along its length, and is the source of extensive jumbled sheet flows that cover the caldera floor. Low-temperature, diffuse venting is widespread; active black smoker chimneys are localized on and around the pillow mounds, in clusters of ~20 x 20 m and growing directly on the flows. The impression is that the hydrothermal venting is young and not yet "organized," in large part because of the eruptive style dominated by collapsed sheet flows. The Tinakula seafloor massive sulfide (SMS) deposit is located in a much shallower (~1150 m), extended arc-backarc setting at the northern end of the New Hebrides arc, ~25 km from the arc front. Chimney fields occur along two corridors, and are associated with volcanic mounds and calderas. The eastern field occupies an area of ~1200 x 200 m, and the western sulfide field is ~500 x 100 m in size. The density of chimneys appears to be largely controlled by permeability of the volcanic facies, which are dominated by autoclastic and hyaloclastic breccias. Tinakula has been commercially drilled, offering insight into the third dimension of the system. This is one of the first studies of SMS deposits in the New Hebrides arc and fills a 'knowledge gap' in the occurrence of seafloor hydrothermal systems in arc-related settings of the Melanesian

  3. Petrological and geochemical characterization of the plutonic rocks of the Sierra de La Aguada, Province of San Luis, Argentina: Genetic implications with the Famatinian magmatic arc

    Directory of Open Access Journals (Sweden)

    E. Cristofolini


    Full Text Available This study presents a synthesis on the geology of the crystalline complex that constitute the Sierra de la Aguada, San Luis province, Argentine, from an approach based on field relations, petrologic and structural features and geochemical characteristic. This mountain range exposes a basement dominated by intermediate to mafic calcalkaline igneous rocks and peraluminous felsic granitoids, both emplaced in low to medium grade metamorphic rocks stabilized under low amphibolite facies. All this lithological terrane has been grouped in the El Carrizal-La Aguada Complex. Field relations, petrographic characterization and geochemical comparison of the plutonic rocks from the study area with those belonging to the Ordovician Famatinian suit exposed in the Sierra Grande de San Luis, suggest a genetic and temporal relation linked to the development of the Famatinian magmatic arc.

  4. From the plutonic root to the volcanic roof of a continental magmatic arc: a review of the Neoproterozoic Araçuaí orogen, southeastern Brazil (United States)

    Gonçalves, Leonardo; Alkmim, Fernando F.; Pedrosa-Soares, Antônio; Gonçalves, Cristiane C.; Vieira, Valter


    The Araçuaí-West Congo orogen (AWCO) is one of the various components of the Brasiliano/Pan-African orogenic network generated during the amalgamation of West Gondwana. In the reconstructions of Gondwana, the AWCO, encompassing the Araçuaí orogen of South America and the West Congo belt of Southwestern Africa, appears as a tongue-shaped orogenic zone embraced by the São Francisco-Congo craton. Differing from the vast majority of the known orogens owing to its singular confined setting, the AWCO contains a large amount of orogenic igneous rocks emplaced in all stages of its tectonic evolution. We present new and revised information about the oldest Ediacaran granitic assemblage, the G1 Supersuite, which together with the Rio Doce Group defines the Rio Doce magmatic arc, and then we propose a new tectonic setting for the arc. Field relationships and mineralogical compositions of the G1 Supersuite allow us to characterize three lithofacies associations, Opx-bearing rocks, enclave-rich Tonalite-Granodiorite and enclave-poor Granite-Tonalite, suggesting different crustal levels are exposed in the central part of the Araçuaí orogen. The region is interpreted to represent a tilted crustal section, with deep arc roots now exposed along its western border. Chemically, these plutonic associations consist mostly of magnesian, metaluminous to slightly peraluminous, calc-alkaline to alkali-calcic and medium- to high-K acidic rocks. The dacitic and rhyolitic rocks of the Rio Doce Group are mainly magnesian, peraluminous, calcic to calc-alkaline, and medium- to high-K acidic rocks. Zircon U-Pb data constrain the crystallization of the granitoids between ca. 625 and 574 Ma, while the age of the metamorphosed volcanic rocks is around ca. 585 Ma. Thus, within errors, these rock associations likely belong to the same magmatic event and might represent the subduction-related, pre-collisional, evolution of the Araçuaí orogen. In addition, whole-rock Sm-Nd isotopic compositions

  5. Record of Permian-Early Triassic continental arc magmatism in the western margin of the Jiamusi Block, NE China: petrogenesis and implications for Paleo-Pacific subduction (United States)

    Yang, Hao; Ge, Wenchun; Dong, Yu; Bi, Junhui; Wang, Zhihui; Ji, Zheng; Yang, H.; Ge, W. C.; Dong, Y.; Bi, J. H.; Wang, Z. H.; Ji, Z.


    In this paper, we report zircon U-Pb ages, Hf isotopes and whole-rock geochemical data for the Permian to Early Triassic granitoids from the western margin of the Jiamusi Block (WJB), NE China. The intermediate to felsic (SiO2 = 59.67-74.04 wt%) granitoids belong to calc-alkaline series and are characterized by enrichments in light rare earth elements and large ion lithophile elements with pronounced negative Nb, Ta and Ti anomalies, revealing typical continental magmatic arc geochemical signatures. The zircon U-Pb determinations on the granodiorite, monzogranite, syenogranite and quartz diorite samples yielded ages between ca. 275-245 Ma, which, together with the published coeval intrusive rocks, indicates that Permian to Early Triassic continental arc magmatism occurred extensively in the WJB. The low and mainly negative zircon ɛ Hf( t) values between -7.6 and +1.6 and the zircon Hf model ages of 1.2-1.8 Ga, which are significantly older than their crystallization ages, suggest that they were mainly derived from reworking of ancient crustal materials with a limited input of juvenile components. The geochemical systematics and petrogenetic considerations indicate that the studied granitoids were generated from a zone of melting, assimilation, storage, and homogenization, i.e., a MASHed zone at the base of Paleo- to Mesoproterozoic continental crust, where large portions of igneous rocks and minor clay-poor sediments involved in the source region. In combination with regional geological data, we argue that the Jiamusi Block was unlikely the rifted segment of the Songliao Block and two possible geodynamical models were proposed to interpret the formation of the ca. 275-245 Ma granitoids in the WJB. In the context of Permian global plate reconstruction, we suggest that Paleo-Pacific plate subduction was initiated in the Permian to Early Triassic beneath the Jiamusi Block, and even whole eastern NE China.

  6. Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism (United States)

    Bustamante, Camilo; Cardona, Agustín; Archanjo, Carlos J.; Bayona, Germán; Lara, Mario; Valencia, Victor


    Between the Late Cretaceous and Paleogene, the Northern Andes experienced subduction and collision due to the convergence between the oceanic Caribbean Plate and the continental margin of Ecuador and Colombia. Subduction-related calc-alkaline plutonic rocks form stocks of limited areal expression or local batholiths that consist mostly of diorites and granodiorites. We investigated two stocks (Hatillo and Bosque) exposed in the Central Cordillera of Colombia that had U-Pb zircon crystallization ages between 60 and 53 Ma. Relatively low radiogenic Sr, Nd and Pb isotopes from selected samples account for a heterogeneous crustal source, whereas negative anomalies of Nb and Ti, high LREE/HREE and Sr/Y > 28 ratios indicate that the magmas were emplaced in a continental magmatic arc setting. ƐHf(i) values of the dated zircons were between - 4 and + 7 and suggest some contamination of the magmas during their ascent through the crust. The high Sr/Y ratios recorded both in the investigated plutons as well as in other Paleogene plutons in the Central Cordillera suggest that the magmas differentiate in high-pressure conditions (garnet stability field). This differentiation probably occurred at the base of a thickened crust through the Mesozoic subduction and accretion of oceanic arcs to the continental margin during the Lower Cretaceous and Paleocene. The existence of other Paleogene granitoids with evidence of shallower differentiation signatures may be also an inheritance of along strike variations in the Northern Andean continental crust due to Cretaceous to Paleogene oblique convergence. The Hf isotope results from Paleogene detrital zircons from volcanoclastic rocks of the eastern Colombian basins reinforce the possibility of a distal magmatic focus.

  7. Depositional Cycles on Magmatic and Back Arcs: an Example from Western Lndonesla Cycles sédimentaires dans les arcs magmatiques et les bassins d'arrière arcs. Un exemple : l'Indonésie occidentale

    Directory of Open Access Journals (Sweden)

    Baumann P.


    Full Text Available Cainozoic sedimentation cycles are described from the magmatic arc occupied by the islands of Sumatra and Java and of its backarc area, the Sundashelf. Four sedimentation cycles can be individualized on Sumatra and Java (Fig. 9, each starting with a transgression and terminating with a phase of volcanism and tectonism. The transgression that initiated an additional cycle is known from Northeast Sumatra but its pertinent volcanic end phase if present could not yet be recognized. The succession of sediments of the four complete cycles show a causal related stratigraphic order. They can be regarded as lithotectonic units and are shown to have been caused by geotectonic events. Acceleration of spreading first caused the transgression (Pitman 1978 that initiated the cycle. lt subsequently increased the rate of subduction what in turn produced an increase of tectonic stress and volcanism on the active plate margin. Plusieurs cycles sédimentaires du Cénozoïque appartenant à l'arc magmatique, constitué par les îles de Java et Sumatra et à son arrière-arc , et au plateau continental de la Sonde, sont décrits et discutés. Quatre cycles sédimentaires peuvent être reconnus à Java et Sumatra (f ig. 9, commençant chacun par une transgression et se terminant par une phase volcanique et tectonique. Dans le nord-est de Sumatra, une transgression appartenant à un cinquième cycle a été reconnue : cependant la phase terminale volcanique de ce cycle, si elle n'a jamais existé, n'a pas encore pu être mise en évidence. Le dépôt des couches appartenant aux quatre cycles complets a eu lieu en respectant un ordre stratigraphique bien déterminé. On peut considérer ce dépôt de couches sédimentaires, comme une unité lithotectonique déposée à la faveur des mécanismes géotectoniques. La transgression initiale de chaque cycle a été provoquée par une accélération de l'expansion océanique (Pitman 1978. Cette accélération, par ailleurs

  8. New U-Pb ages in the Diablillos Intrusive Complex, Southern Puna, Argentina: A long magmatic event in the Paleozoic Arc, SW Gondwana

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Agustin; Hauser, Natalia [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias. Lab. de Geocronologia; Becchio, Raul; Nieves, Alexis; Suzano, Nestor [Universidad Nacional de Salta (UNSa)-CONICET, Salta (Argentina)


    The Puna geological region comprises Salta, Jujuy and Catamarca provinces, northwestern Argentina. This 4000 meter above sea level high-plateau region lies between the Central Argentinian Andes. The Puna basement in the central Andes consists of Proterozoic–Paleozoic metamorphic rocks and granitoids. Diverse authors, proposed different models to explain the origin of the basement, where two orogenic events are recognized: the Pampean (Upper Precambrian–Lower Cambrian) and Famatinian (Upper Cambrian–Lower Silurian) (e.g. Ramos et al., 1986; Ramos, 1988; Loewy et al., 2004; for opposite points of view see Becchio et al., 1999; Bock et al., 2000; Buttner et al., 2005). Hence, Lucassen et al. (2000) proposed for the Central Andean basement, an evolution in a mobile belt, where the Pampean and Famatinian cycles are not distinct events but, they are one single, non-differentiable event from 600 to 400 Ma. The mobile belt culminated in low-P/ high-T metamorphism at approximately 525-500 Ma. Then, these were followed by a long-lasting high-thermal gradient regime in the mid-crust until Silurian times. Becchio et al., (2011) defined the Diablillos Intrusive Complex (CID, by its Spanish name), emplaced in the Inca Viejo Range. This range splits the Salares Ratones-Centenario with the Salar Diablillos (Fig.1). This Complex is located in the Eastern Magmatic Belt, Southern Puna, Argentina. Here we present new zircons U-Pb ages by LA-MC-ICPMS in the Diablillos Intrusive Complex, contributing to understanding the magmatic event in the lower Paleozoic arc, SW Gondwana. (author)

  9. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes (United States)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Xu, Xianbing; Deng, Qi; Fu, Xuehai


    The South Qinling Belt in Central China is an important window to investigate the Neoproterozoic tectono-magmatic processes along the northern margin of the Yangtze Block. Here we present whole-rock geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of a suite of Middle Neoproterozoic intrusion from the Wudang Uplift in South Qinling. Zircon LA-ICP-MS U-Pb ages reveal that these rocks were formed at ca. 705-716 Ma. Geochemical features indicate that the felsic magmatic rocks are I-type granitoids, belong to calcic- to calc-alkaline series, and display marked negative Nb, Ta and Ti anomalies. Moreover, the enrichment of light rare earth elements (LREEs) and large ion lithophile elements (LILEs), combined with depletion of heavy rare earth elements (HREEs) support that these rocks have affinity to typical arc magmatic rocks formed in Andean-type active continental margins. The REE patterns are highly to moderately fractionated, with (La/Yb)N = 5.13-8.10 in meta-granites, and 2.32-2.35 in granodiorite. The granitoids have a wide range of zircon εHf(t) values (-29.91 to 14.76) and zircon Hf two-stage model ages (696-3482 Ma). We suggest that the ca. 705-716 Ma granitoids were sourced from different degrees of magma mixing between partial melting of the overlying mantle wedge triggered by hydrous fluids released from subducted materials and crustal melting. The hybrid magmas were emplaced in the shallow crust accompanied by assimilation and fractional crystallization (AFC). Both isotopic and geochemical data suggest that the ca. 705-716 Ma felsic magmatic rocks were formed along a continental arc. These rocks as well as the contemporary A-type granite may mark a transitional tectonic regime from continental arc to rifting, probably related to slab rollback during the oceanic subduction beneath the northern margin of Yangtze Block.

  10. U-Pb SHRIMP and Sm-Nd geochronology of the paleoproterozoic Silvania magmatic arc in the neoproproterozoic Brasilia Belt, Goias, Central Brazil

    International Nuclear Information System (INIS)

    Fischel, D.P.; Pimentel, M.M.; Fuck, R.A; Armstrong, R


    The Brasilia Belt is a large Neoproterozoic orogen formed along the western margin of the Sao Francisco/Congo Craton in central Brazil. It comprises: (i) a thick Meso-Neoproterozoic metasedimentary/sedimentary pile with eastward tectonic vergence; (ii) a large Neoproterozoic juvenile arc in the west (Goias Magmatic Arc); and (iii) a micro-continent (or exotic sialic terrain) formed by Archean rock units (the Crixas -Goias granitegreenstones) and associated Proterozoic formations (Almeida et al. 1981, Fuck et al. 1993,1994, Pimentel et al. 2000a, b). The sialic basement on which the Brasilia Belt sediments were deposited is poorly understood, despite being well exposed in some areas of Goias and Tocantins. Gneiss and volcano-sedimentary units form most of this basement. Early studies have suggested that these rock units are dominantly Archean ( Danni et al. 1982, Marini et al. 1984). However, recent Sm- Nd isotopic studies have indicated that most of them are Paleoproterozoic (Sato 1998, Pimentel et al. 1999a, 2000b). Granite gneiss to the south and east of the Barro Alto mafic-ultramafic layered complex has been dated at 2128+/- 15 Ma (Correia et al. 1997). Calc-alkaline granite gneiss from Almas-Dianopolis is dated at ca. 2.2-2.45 Ga old (U-Pb SHRIMP on zircon and titanite, Cruz et al. 2000). The latter is probably the western extension of Paleoproterozoic rocks which underlie the San Francisco Craton to the east of the northern part of the Brasilia Belt. In central Goias, a large part of the Brasilia Belt is underlain by high-grade metamorphic rocks known as the Anapolis-Itaucu Complex, together with surrounding greenschist to amphibolite facies Mesoto Neoproterozoic cover metasediments of the Araxa group. These rocks represent the main constituent of the internal zone of the Brasilia Belt (Fuck et al. 1994, Pimentel et al. 2000b). Between the Araxa Group, and the easternmost part of the Anapolis-Itaucu Complex a volcano-sedimentary association known as Silvania

  11. New evidence of recurring convergent margin magmatism in the eastern central Rondonia, Brazil

    International Nuclear Information System (INIS)

    Bettencourt, Jorge Silva; Basei, Miguel A; Payolla, Leonelo; Leite Jr, Washington Barbosa


    The Rio Negro-Juruena Geochronological Province, 'sensu' Cordani et al., 1979. Teixeira et al., 1989, Tassinari and Macambira, 1999, has been, traditionally regarded as a single geotectonic unit extending from ca. 1.80 to 1.55 Ga. More recently it has been divided by Santos et al., 2000 into two distinct provinces, the northern termed Rio Negro Province, and the southern part, Juruena Province. Recent advances based on new geochronological and geological data, (Tassinari et al., 2000; Pinho et al., 1977; Van Schmus et al., 1998; Bettencourt et al., 1999; Rizzoto, 1999; Geraldes et al., in press; Payolla et al., subm; Santos et al., 2000), and references therein, have assisted in defining, in its Juruena segment, two distinct orogenies, such as: 1) the Alto Jauru orogen (1.79 1.74 Ga), interpreted as a SW extension in Mato Grosso state of the Rio Negro - Juruena Province and the equivalent units, in northern Rondonia, termed Jamari Complex, and Gneissic Migmatitic Jauru Complex (Scandolara et al., 1999) encompassing calc-alkaline and volcano-sedimentary arc related rocks, ranging in age from 1.76 and 1.73 Ga (Tassinari et al., 1999; Payolla et al., subm; Santos et al., op. cit., and 2) Cachoeirinha orogen (1.57 1.52Ga) (Geraldes, et al., in press), in Mato Grosso state. The absence of unequivocal evidence of episodic westward growth, including correspondent convergent-margin magmatism, in the Proterozoic SW margin of the Amazonian Craton, between the period 1.6 Ga, led us to believe the existence of a long period of stabilization between 1.7 and 1.6 Ga, for the SW Amazonian Craton. Meanwhile our preliminary new U-Pb zircon data ages record a previously undocumented major accretion arc-related magmatic event (yet to be proven at length), within the time interval, 1.65 and 1.63 Ga, thus constraining a probable north-northeastward trending recurring subducting zone (present-day coordinates) (au)

  12. Back-arc extension in the Andaman Sea: Tectonic and magmatic processes imaged by high-precision teleseismic double-difference earthquake relocation

    Digital Repository Service at National Institute of Oceanography (India)

    Diehl, T.; Waldhauser, F.; Cochran, J. R.; KameshRaju, K.A.; Seeber, L.; Schaff, D.; Engdahl, E.R.

    -scale structure and spatiotemporal behavior of active faults in the Andaman Sea. The new data reveal that back-arc extension is primarily accommodated at the Andaman Back-Arc Spreading Center (ABSC) at approx. 10 degrees, which hosted three major earthquake swarms...


    Directory of Open Access Journals (Sweden)

    Leonardo Franklin Fornelos


    Full Text Available The environmental analyses, on the geographical approach, provide technical and scientific support for thezoning generation, used in environmental planning. In this perspective it’s necessary to evaluate theenvironmental vulnerabilities within the ecodynamical conception (Tricart, 1977, based on systems theory.One of the widely used evaluation methodologies, not only in the geographical environment, is the UniversalSoil Loss Equation (USLE, using maps to spatialize and quantify its factors. Whereas progress have beenmade in the generation of Remote Sensing products, through new sensors, this paper proposes the use ofSRTM elevation data to generate one of the USLE factors, the Lenght-Slope map. The studied area wascórrego Cachoeirinha watershed, located in the municipalities of Cáceres and Porto Estrela, Mato Grosso- Brazil. The implementation involved the drafting of rainfall erosivity, soil erodibility, lenght-slope factor,crop/vegetation factor and support practices maps. These maps were combined in ArcGis, allowing thequantification of soil losses in the watershed and the determination of different fragility degrees, in conformitywith the classification proposed by UNESCO (1980. The LS map generated from SRTM revealed moredetails on the hillside shapes. It’s emphasized the greater agility to produce the soil loss maps, consequentlythe vulnerability, using SRTM.

  14. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao


    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  15. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes (United States)

    Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.


    Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore

  16. Petrological and geochemical constraints on the origin of mafic dykes intruding the composite Kaçkar Pluton from the eastern Blacksea magmatic arc, NE Turkey (United States)

    Aydin, Faruk; Oguz, Simge; Baser, Rasim; Uysal, Ibrahim; Sen, Cüneyt; Karsli, Orhan; Kandemir, Raif


    Geological, petrographical and geochemical data of mafic dykes intruding the composite Kaçkar Pluton from the eastern Blacksea magmatic arc (EBMA), NE Turkey, provide new insights into the nature of the metasomatizing agents in subcontinental lithospheric mantle beneath the region during the late Mesozoic-early Tertiary. Mafic dykes from the Çaykara and Hayrat (Trabzon), and also Ikizdere (Rize) areas from the northern margin of the EBMA consist of basalts, dolerites, lamprophyres (basic member) and lesser basaltic andesites and trachyandesites (evolved member). All dykes have no deformation and metamorphism. The outcrops of these dykes vary, with thickness from 0.2 to 10 m. and visible length from 3 to 20 m. In general, the mafic dykes dip steeply and cut directly across the Kaçkar Pluton, and show NW- and NE-trending, roughly parallel to the orientations of the EBMA main faults. Most of the dyke samples display subaphyric to porphyritic texture with phenocrysts of plagioclase (up to 10%), clinopyroxene (5-20%), amphibole (5-15%), and some contain variable amount of biotite (5-20%), lesser quartz (1-2%), and minor euhedral zircon, apatite and Fe-Ti oxides. The basic members of the mafic dykes have SiO2 of 44.1-51.9%, MgO of 4.5-12.1%, and TiO2 >mostly 0.8% (up to 2.3%) with K2O+Na2O of 1.3-6.6% with mostly subalkaline character. They are relatively high in mg-number (0.45-0.73) and transition metals (V=171-376 ppm, Co=22-45 ppm, Ni=3-148 ppm, and Sc=21-49 ppm). The evolved members of the dykes exhibit relatively higher SiO2 (57.1-60.2%) and K2O+Na2O (5.6-9.0%), and lower MgO (2.2-5.9%) and TiO2 (0.5-0.8%) contents than those from the basic dykes. Also, these samples have slightly low mg-number (0.41-0.65) and transition metals (V=99-172 ppm, Co=9-22 ppm, Ni=1-43 ppm, and Sc=9-20 ppm). In the Harker diagrams, all samples of the mafic dykes form a continuous array, and exhibit similar geochemical characteristics. In general, SiO2 inversely correlates with MgO, Fe

  17. Evolution of the late Paleozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38°-41°S): Constraints for the tectonic setting along the southwestern margin of Gondwana (United States)

    Martin, Mark W.; Kato, Terence T.; Rodriguez, Carolina; Godoy, Estanislao; Duhart, Paul; McDonough, Michael; Campos, Alberto


    Stratigraphic, structural, metamorphic, and geochronologic studies of basement rocks in the Andean foothills and Coast Ranges of south central Chile (39°-41°S) suggest a protracted late Paleozoic to middle Mesozoic deformational and metamorphic history that imposes important constraints on the tectonic development of the southwestern Gondwana margin. In the study area the late Paleozoic paired metamorphic belt, coeval magmatic arc, and overlying Triassic sedimentary units preserve a record of Late Carboniferous to Early Permian subduction and arc magmatism, subsequent deep exhumation of the Western Series subduction complex, and diminished uplift and erosion of the Eastern Series arc-forearc region by the Late Triassic. Late Paleozoic structural elements and metamorphic assemblages formed during early subduction and arc magmatism, collectively referred to as Dl, are largely erased in the Western Series by the dominant D2 schistosity and lower greenschist grade metamorphism. D1 structural features, as well as original sedimentary textures, are relatively well preserved in the less penetratively deformed Eastern Series. The regional distribution of late Paleozoic arc magmatism suggests that the late Paleozoic convergent margin deviated from a N-S trend north of this area to a NW-SE trend near this latitude and faced an open marine environment to the southwest. A transition from F2 isoclinal folding to more open, larger-scale F3 folds, interpreted as change in ductility during differential uplift of the Western Series, is not apparent in the Eastern Series. Despite a lesser degree of uplift during the main exhumational D2 event, delineation of unconformities and U-Pb dating of detrital zircons and intrusions into the Eastern Series allow tighter constraints to be placed on timing of uplift and denudation of the Eastern Series than on that in the Western Series. A regional unconformity exposed in the Lake District that separates more highly deformed Eastern Series

  18. Magmatic tritium

    International Nuclear Information System (INIS)

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.


    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ( 3 H) of deep origin ( 2 O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable 3 H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics

  19. Geochemistry and Nd-Sr isotopic signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, eastern precambrian shield of Bolivia: petrogenetic constraints for a mesoproterozoic magmatic arc setting

    International Nuclear Information System (INIS)

    Matos, Ramiro; Teixeira, Wilson; Bettencourt, Jorge Silva; Geraldes, Mauro Cesar


    The Pensamiento Granitoid Complex (PGC), located in the northern part of the eastern Precambrian shield of Bolivia, is tectonically assigned to the Rondonian-San Ignacio Province (1.55 - 1.30 Ga) of the Amazonian Craton that is made up by Archean and Proterozoic provinces. The Proterozoic ones result from accretionary orogens that become successively younger south westwards, such as the Rondonian/San Ignacio (1.37 - 1.32 Ga) and the Sunsas orogenies (1.20 - 1.00 Ga). The PGC crops out mainly on the 'Paragua craton' bounded to the south by the Sunsas belt, and composed of granites and subvolcanic terms, and subordinately of syenites, granodiorites, tonalites, trondhjemites and diorites as orogenic representatives of the Rondonian/San Ignacio Orogeny, intrusive into the Lomas Maneches (ca. 1.68 Ga) and Chiquitania (ca. 1.7 Ga) complexes. Thirteen whole rock chemical analyses for major, trace and REE elements were performed for the La Junta, San Martin, Diamantina, Porvernir, San Cristobal, Piso Firme plutons of the PGC. The negative trends of MgO, Al 2 O 3 and CaO contents with increasing SiO 2 suggest that fractional crystallization played an important role in the petrogenesis of the investigated rocks. The data also indicate a mainly peraluminous, sub-alkaline to high-K calc-alkaline composition, and fractionated LREE/HREE patterns are consistent with a magmatic arc character for these plutons. SHRIMP U-Pb zircon ages of the La Junta and San Martin syn- to late-kinematic plutons are 1347 ± 21 Ma and 1373 ± 20 Ma respectively, and the Sm-Nd T DM model ages are between 1.9 to 2.0 Ga, while ε Nd(1330) values range from +1.8 to -4.3, respectively. In addition, the late- to post-kinematic Diamantina pluton yields SHRIMP U-Pb zircon age of 1340 ± 20 Ma, and variable Sm-Nd T DM model ages (1.6 to 1.9 Ga) and ε Nd(1330) values (+0.4 to -1.2) that are comparable with previous results found for other coeval plutons. The Porvenir, San Cristobal and Piso Firme plutons

  20. Magmatic tritium

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Aams, A.I. [Los Alamos National Lab., NM (United States); McMurtry, G.M. [Univ. of Hawaii, Honolulu, HI (United States); Shevenell, L. [Univ. of Nevada, Reno, NV (United States); Pettit, D.R. [National Aeronautics and Space Administration (United States); Stimac, J.A. [Union Geothermal Company (United States); Werner, C. [Pennsylvania State Univ., University Park, PA (United States)


    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics.

  1. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran (United States)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann G.; Pourkaseb, Houshang; Asadi, Sina; Saed, Madineh; Lentz, David R.


    The present work attempts to discriminate between the geochemical features of magmatic-hydrothermal systems involved in the early stages of mineralization in high grade versus low grade porphyry copper systems, using chemical compositions of silicate and sulfide minerals (i.e., plagioclase, biotite, pyrite and chalcopyrite). The data indicate that magmatic plagioclase in all of the porphyry copper systems studied here has high An% and Al content with a significant trend of evolution toward AlAl3SiO8 and □Si4O8 endmembers, providing insight into the high melt water contents of the parental magmas. Comparably, excess Al and An% in the high grade deposits appears to be higher than that of selected low grade deposits, representing a direct link between the amounts of exsolving hydrothermal fluids and the potential of metal endowment in porphyry copper deposits (PCDs). Also, higher Al contents accompanied by elevated An% are linked to the increasing intensity of disruptive alteration (phyllic) in feldspars from the high grade deposits. As calculated from biotite compositions, chloride contents are higher in the exsolving hydrothermal fluids that contributed to the early mineralization stages of highly mineralized porphyry systems. However, as evidenced by scattered and elevated log (fH2O)/(fHF) and log (fH2O)/(fHCl) values, chloride contents recorded in biotite could be influenced by post potassic fluids. Geothermometry of biotite associated with the onset of sulfide mineralization indicates that there is a trend of increasing temperature from high grade to low grade porphyry systems. Significantly, this is coupled with a sharp change in copper content of pyrite assemblages precipitated at the early stages of mineralization such that Cu decreased with increasing temperature. Based on EMPA and detailed WDS elemental mapping, trace elements do not exhibit complex compositional zoning or solid solution in the sulfide structure. Nevertheless, significant amounts of Cu and

  2. The subduction erosion and mantle source region contamination model of Andean arc magmatism: Isotopic evidence from igneous rocks of central Chile

    International Nuclear Information System (INIS)

    Stern, Charles R


    Continental crust may be incorporated in mantle-derived Andean magmas as these magmas rise through the crust (Hildreth and Moorbath, 1988), or alternatively, crust may be tectonically transported into the mantle by subduction of trench sediments and subduction erosion of the continental margin, and then added into the mantle source region of Andean magmas (Stern, 1991). Since the mantle has relatively low Sr, Nd, and Pb concentrations compared to continental crust, differences in the isotopic compositions of magmas erupted in different region of the Andes may be produced by relatively small differences in the amount of subducted crust added to the mantle source region of these magmas. By comparison, significantly larger amounts of crust must be assimilated by mantle-derived magmas to produce isotopic differences of similar magnitude. Therefore, constraining the process by which continental crust is incorporated in Andean magmas has important implications for understanding the chemical cycling that takes place in the Andean subduction-related magma factory. Isotopic data suggest the incorporation of a greater proportion of crust in Andean magmas erupted at the northern portion of the Southern Volcanic Zone of central Chile compared to those erupted in the southern portion of the Southern Volcanic Zone of south central Chile (SSVZ) (Stern et al., 1984; Futa and Stern, 1988; Hildreth and Moorbath, 1988). The NSVZ occurs just south of the current locus of the subduction of the Juan Fernandez Ridge. The southward migration of the locus of subduction of this ridge has resulted in decreasing subduction angle below the NSVZ, the eastward migration of the volcanic front of the Andean arc, and an increase in the crustal thickness below the arc. These factors together have caused changes, since the middle Miocene, in the isotopic composition of Andean igneous rocks of central Chile. The data indicate a close chronologic relation between the southward migrations of the locus

  3. Chromites from the Gogoł;ów-Jordanów Serpentinite Massif (SW Poland) - evidence of the arc setting magmatism (United States)

    Wojtulek, Piotr; Puziewicz, Jacek; Ntaflos, Theodoros; Bukała, Michał


    The Gogołów-Jordanów Serpentinite Massif (GJSM) is a peridotitic member of the Variscan Ślęża Ophiolite (SW Poland). Chromitite veinlets and pockets occur in the central part of the massif in the Czernica Hill area within completely serpentinized rocks. Chromitites consist of rounded chromite grains up to 4 cm and chlorite filling the interstices. The veins are embedded in serpentine-olivine-chlorite aggregates. Chemical composition of chromite occurring in chromitites defines two varieties. Chromite I (Cr# = 0.49 - 0.58) contains 23.32 - 28.36 wt.% Al2O3, 40.29 - 48.10 wt.% Cr2O3, 15.10 - 15.50 wt.% FeO, 14.50 - 15.50 wt.% MgO and ~0.1 wt.% TiO2. Chromite II (Cr# = 0.71 - 0.73) contains 13.83 - 15.24 wt.% Al2O3, 54.85 - 56.65 wt.% Cr2O3, 16.71 - 18.04 wt.% FeO, 10.62 - 11.59 wt.% MgO and 0.1 wt.% TiO2. Chromite grains are composed mostly of chromite I. Chromite II forms irregular spongy domains up to 150 µm, located at fissures or forming grain rims. The bulk chromitite composition of the massive ores reveals Rb, Ba, Pb and Sb enrichment relative to primitive mantle; Pt and Pd (up to 36 ppb) are also enriched relative to primitive mantle. Other phases coexisting with chromite are chlorite and olivine. Chlorite (Fe# = 0.02) contains 17.5 - 23.0 wt.% Al2O3, 0.6 - 1.8 wt.% Cr2O3 and 31.8 - 34.2 wt.% MgO. Olivine (Fo93.5-96.2) contains 0.44- 0.51 wt.% NiO. Olivine grains are zoned - the low-forsteritic cores are surrounded by high-forsteritic domain. Chromite II and chlorite are secondary phases and were probably formed due to greenschist facies metamorphism. Chromitites are cumuletes of melt blocked during its flow through peridotitic host. Low TiO2 content and moderate chromian number of the GJSM chromitites is typical for chromian spinels originated from melt derived from back arc depleted source (cf. Python et al., 2008, Gonzalez-Jimenez, 2011). The GJSM chromitites are rich in Al and poor in Pt and Pd what is typical for chromitites occurring in the

  4. Paleozoic tectonic evolution of the Dananhu-Tousuquan island arc belt, Eastern Tianshan: Constraints from the magmatism of the Yuhai porphyry Cu deposit, Xinjiang, NW China (United States)

    Wang, Yunfeng; Chen, Huayong; Han, Jinsheng; Chen, Shoubo; Huang, Baoqiang; Li, Chen; Tian, Qinglei; Wang, Chao; Wu, Jianxin; Chen, Mingxia


    The Yuhai intrusions (quartz diorite, granite and pyroxene diorite) are located in the eastern part of the Dananhu-Tousuquan island arc belt of the Eastern Tianshan, and associated with the early Paleozoic porphyry Cu mineralization. LA-ICP-MS zircon U-Pb dating yielded emplacement ages of 443.5 ± 4.1 Ma for the quartz diorite, 325.4 ± 2.5 Ma for the granite, and 291 ± 3.0 Ma for the pyroxene diorite. These rocks are tholeiitic to calc-alkaline and metaluminous, with A/CNK values ranging from 0.66 to 1.10. The Silurian ore-bearing Yuhai quartz diorite is rich in LREEs and LILEs (e.g., K, Ba, Pb and Sr), and depleted in HREEs and HFSEs (e.g., Nb, Ta and Ti). These rocks are MgO-rich (1.90-3.80 wt.%; Mg# = 37-72), with high Sr/Y, La/Yb and Ba/Th ratios, positive εNd(t) (6.31-6.84) and εHf(t) (13.26-16.40), low (87Sr/86Sr)i (0.7037-0.7039), and low Nb/U and Ta/U ratios. The data suggest that the quartz diorite was generated by the partial melting of subducted juvenile oceanic slab. The oxygen fugacity (ƒO2) of the quartz diorite, calculated by zircon Ce4+/Ce3+ ratios, is higher than that of the granite and pyroxene diorite, implying that the quartz diorite was more favorable to porphyry Cu mineralization. The Carboniferous Yuhai granite reveals similar geochemical features with the quartz diorite, except for the lower Mg# (27-33), and the more elevated Th/U and Th/La ratios. Furthermore, these rocks also show high εNd(t) (5.2-5.8) and εHf(t) (11.03-14.85) values, and low (87Sr/86Sr)i (0.7036-0.7037). These features indicate that the parental magma of the granite was probably derived from a juvenile lower crust with no significant mantle component involvement. Different from the Yuhai quartz diorite and granite, the early Permian Yuhai pyroxene diorite contains low SiO2 (50.76-55.74 wt.%) and high MgO (3.96-4.33 wt.%; Mg# = 40-44). The εNd(t), εHf(t) and (87Sr/86Sr)i values of the pyroxene diorite are 5.77-6.42, 7.99-12.10 and 0.7035-0.7040, respectively. The

  5. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil (United States)

    Francisco da Silva Filho, Adejardo; de Pinho Guimarães, Ignez; Santos, Lucilene; Armstrong, Richard; Van Schmus, William Randall


    The Pernambuco Alagoas (PEAL) domain shows the major occurrence of granitic batholiths of the Borborema Province, NE Brazil, with Archean to Neoproterozoic range of Nd TDM model ages, giving clues on the role of granites during the Brasiliano orogeny. SHRIMP U/Pb zircon geochronological data for seven granitic intrusions of the PEAL domain divide the studied granitoids into three groups: 1) early-to syn-collision granitoids with crystallization ages ca. 635 Ma (Serra do Catú pluton), 2) syn-collision granitoids with crystallization ages 610-618 Ma (Santana do Ipanema, Água Branca, Mata Grande and Correntes plutons) and 3) late-to post-collision granitoids with ages of ca. 590 Ma (Águas Belas, and Cachoeirinha plutons). The intrusions of group 1 and 2, except the Mata Grande and Correntes plutons, show Nd TDM model ages ranging from 1.2 to 1.5 Ga, while the granitoids from group 3, and Mata Grande Pluton and Correntes plutons have Nd TDM model ages ranging from 1.7 to 2.2 Ga. The studied granitoids with ages <600 Ma are high-K, calc-alkaline, shoshonitic and those with ages <600 Ma are transitional high-K calc-alkaline to alkaline. The volcanic arc signatures associated with the Paleoproterozoic Nd TDM model ages are interpreted as inherited from the source rocks. The oldest ages and lower Nd TDM model ages are recorded from granitoids intruded in the southwest part of the PEAL domain, suggesting that these intrusions are associated with slab-tearing during convergence between the PEAL and the Sergipano domains. Zircon oxygen isotopic data in some of the studied plutons, together with the available Nd isotopic data suggest that the Brasiliano orogeny strongly reworked older crust, of either Paleoproterozoic or Tonian ages. The studied granitoids are coeval with calc-alkaline granitoids of the Transversal Zone and Sergipano domains and rare high-K calc-alkaline granitoids from the Transversal Zone domain. Such large volumes of high-K granitoids with

  6. ???????? ??????? ???????? ????? ?? ?????? ArcGIS ??? ?????? ??????????????? ?????????? ????? ???????????? ?????????? ???????????


    ?????, ?.; ?????, ?.; ???????????, ?.; ????????, ?.


    ?????????? ?????? ????????? ???????????????? ??????? ??? ???????? ????? ??? ???????????? ????????? ????? ?????? ?? ????????? ???????????? ?????????? ???????????. ??????? ??????? ??????? ???????, ???????????? ?? ???? ??????????? ???????????? ArcGIS. ?????????? ?????????? ?????????? ???????? ?? ??????????? ?????????? ? ????????????? ??????? ArcGIS Online ?? ??????? Collector for ArcGIS. ???????? ???? ???????? ????????????????? ??????? ??? ????? ?????? ? ?????????????? ?????? ????? ???????? ?? ?...

  7. Geochemistry and Nd-Sr isotopic signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, eastern precambrian shield of Bolivia: petrogenetic constraints for a mesoproterozoic magmatic arc setting;Geoquimica e assinaturas Nd-Sr do Complexo Granitoide Pensamiento, provincia Rondoniana-San Ignacio, pre-cambriano de Bolivia Oriental: caracterizacao petrogenetica de um arco magmatico no mesoproterozoico

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Ramiro, E-mail: rmatoss@igc.usp.b [Universidad Mayor de San Andre (UMSA), La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Geologicas y del Medio Ambiente; Teixeira, Wilson; Bettencourt, Jorge Silva, E-mail: wteixeir@usp.b, E-mail: jsbetten@usp.b [Universidade de Sao Paulo (IGC/USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica; Geraldes, Mauro Cesar, E-mail: geraldes@uerj.b [Universidade do Estado do Rio de Janeiro (FG/UERJ), RJ (Brazil). Faculdade de Geologia


    The Pensamiento Granitoid Complex (PGC), located in the northern part of the eastern Precambrian shield of Bolivia, is tectonically assigned to the Rondonian-San Ignacio Province (1.55 - 1.30 Ga) of the Amazonian Craton that is made up by Archean and Proterozoic provinces. The Proterozoic ones result from accretionary orogens that become successively younger south westwards, such as the Rondonian/San Ignacio (1.37 - 1.32 Ga) and the Sunsas orogenies (1.20 - 1.00 Ga). The PGC crops out mainly on the 'Paragua craton' bounded to the south by the Sunsas belt, and composed of granites and subvolcanic terms, and subordinately of syenites, granodiorites, tonalites, trondhjemites and diorites as orogenic representatives of the Rondonian/San Ignacio Orogeny, intrusive into the Lomas Maneches (ca. 1.68 Ga) and Chiquitania (ca. 1.7 Ga) complexes. Thirteen whole rock chemical analyses for major, trace and REE elements were performed for the La Junta, San Martin, Diamantina, Porvernir, San Cristobal, Piso Firme plutons of the PGC. The negative trends of MgO, Al{sub 2}O{sub 3} and CaO contents with increasing SiO{sub 2} suggest that fractional crystallization played an important role in the petrogenesis of the investigated rocks. The data also indicate a mainly peraluminous, sub-alkaline to high-K calc-alkaline composition, and fractionated LREE/HREE patterns are consistent with a magmatic arc character for these plutons. SHRIMP U-Pb zircon ages of the La Junta and San Martin syn- to late-kinematic plutons are 1347 {+-} 21 Ma and 1373 {+-} 20 Ma respectively, and the Sm-Nd T{sub DM} model ages are between 1.9 to 2.0 Ga, while {epsilon}{sub Nd(1330)} values range from +1.8 to -4.3, respectively. In addition, the late- to post-kinematic Diamantina pluton yields SHRIMP U-Pb zircon age of 1340 {+-} 20 Ma, and variable Sm-Nd T{sub DM} model ages (1.6 to 1.9 Ga) and {epsilon}{sub Nd(1330)} values (+0.4 to -1.2) that are comparable with previous results found for other coeval

  8. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil (United States)

    Silva, Thyego R. da; Ferreira, Valderez P.; Lima, Mariucha M. Correia de; Sial, Alcides N.; Silva, José Mauricio R. da


    The Neoproterozoic Major Isidoro batholith (˜100 km2), composed of metaluminous to slightly peraluminous magmatic epidote-bearing tonalite to granite, is part of the Águas Belas-Canindé composite batholith, which intruded the Pernambuco-Alagoas Domain of the Borborema Province, northeastern Brazil. These rocks contain biotite, amphibole, titanite and epidote that often shows an allanite core as key mafic mineral phases. K-diorite mafic enclaves are abundant in this pluton as well as are amphibole-rich clots. The plutonic rocks are medium-to high-K calc-alkaline, with SiO2 varying from 59.1 to 71.6%, Fe# from 0.6 to 0.9 and total alkalis from 6.1 to 8.5%. Chondrite-normalized REE patterns are moderately fractionated, show (La/Lu)N ratios from 13.6 to 31.8 and discrete negative Eu anomalies (0.48-0.85). Incompatible-element spidergrams exhibit negative Nb-Ta and Ti anomalies. This batholith was emplaced around 627 Ma (U-Pb SHRIMP zircon age) coevally with an amphibolite-facies metamorphic event in the region. It shows Nd-model age varying from 1.1 to 1.4 Ga, average ɛNd(627Ma) of -1.60 and back-calculated (627 Ma) initial 87Sr/86Sr ratios from 0.7069 to 0.7086. Inherited zircon cores that yielded 206Pb/238U ages from 800 to 1000 Ma are likely derived from rocks formed during the Cariris Velhos (1.1-0.9 Ga) orogenic event. These isotopic data coupled with calculated δ18O(w.r.) value of +8.75‰ VSMOW indicate an I-type source and suggest a reworked lower continental crust as source rock. A granodioritic orthogneiss next to the Major Isidoro pluton, emplaced along the Jacaré dos Homens transpressional shear zone, yielded a U-Pb SHRIMP zircon age of 642 Ma, recording early tectonic movements along this shear zone that separates the Pernambuco-Alagoas Domain to the north, from the Sergipano Domain to the south. The emplacement of the Major Isidoro pluton was synkinematic, coeval with the development of a regional flat-lying foliation, probably during the peak of

  9. Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau-continent convergence (United States)

    Bayona, Germán; Cardona, Agustín; Jaramillo, Carlos; Mora, Andrés; Montes, Camilo; Valencia, Victor; Ayala, Carolina; Montenegro, Omar; Ibañez-Mejia, Mauricio


    Recognition of magmatic events in polyphase arc-continent collision margin is critical for proper tectonic reconstructions that trace the short and changing nature of the configuration of the continental margin. Additionally, the recognition of the origin of detrital volcanic zircons within continental basins becomes a challenge if only distant oceanic and continental magmatic arcs are considered as the only possible source. In this study we report U/Pb zircon ages in isolated plutons that support an early Paleogene magmatic arc that extended ca 700 km along the northern Andean continental margin. Additional detrital zircon Paleogene ages (45-65 Ma), from Paleocene-lower Eocene continental sandstones and volcaniclastic rocks in 19 localities from Colombian and Venezuela Andean basins, indicate that volcanic detritus were supplied from a magmatic arc striking parallel to the subduction zone and also show the existence of intraplate magmatism extending more than 400 km inland. The wide distribution of this Early Paleogene magmatism along the northern South America margin is related to subduction of the buoyant Caribbean plate; the relative short period of magmatism (migration of those plates.

  10. Dynamics of diachronous back-arc extension: insights from 3D thermo-mechanical analogue experiments (United States)

    Boutelier, D. A.; Cruden, A. R.


    Subduction of an old, dense oceanic lithosphere can lead to rifting and extension of the magmatic arc. Such subduction systems are inherently three-dimensional with significant along-strike variations in the timing and style of deformation and magmatism. Geodynamic models used to explain such variations and associated trench curvature generally ignore the role of the overriding plate and its deformation. 3D thermo-mechanical analogue experiments are used to investigate the kinematics and dynamics of diachronous arc rifting and back-arc basin opening. In the models, horizontal tension increases in the upper plate until the magmatic arc lithosphere fails and back-arc opening occurs via slab rollback. This result corresponds well to previous 2D models of arc rifting and subsequent back-arc opening via trench rollback and the mechanics of retreating slabs in fluid dynamic experiments. However, in our experiments arc failure occurs diachronously, initiating near the model edge due to locally higher temperatures and lower strength and then propagating along strike, producing an arcuate plate boundary. The experiments demonstrate that trench rollback rate is limited by the propagation rate of arc failure. Conversely, slab rollback generates additional horizontal tension in the adjacent magmatic arc lithosphere, which drives along-strike propagation of arc failure. Feedback between the rates of trench rollback and arc failure propagation dictates the geometry of the back-arc basin in plan-view. The shape of the back-arc basin obtained in models fits remarkably well with that of the Mariana basin in the western Pacific. Experiments where the strength of the magmatic arc, or forearc varies along strike or where the negative buoyancy of the subducting plate varies along strike explore further the role of the slab edge and the trench-parallel tensile strength of the retreating forearc block.

  11. Crustal structure transition from oceanic arc to continental arc, eastern Aleutian Islands and Alaska Peninsula (United States)

    Fliedner, Moritz M.; Klemperer, Simon L.


    The Aleutian island arc crosses from the Pacific Ocean to the North-American continent at the island of Unimak. 3-D finite-difference traveltime inversion of our onshore-offshore seismic reflection/refraction data gives a velocity model of the crust and uppermost mantle. The arc crust is on average 30 km thick, but thickens to almost 40 km under the western Alaska Peninsula. The transition from oceanic arc to continental arc is characterised by a decrease in average velocity in the upper crust from about 6.5 km/s to less than 6.0 km/s, with no systematic change in the velocity of the lower crust. Throughout our study area, in the upper 15 km of the crust the highest velocities are observed in the fore-arc just south of the volcanic line. In the lower crust, the lowest velocities of just 6.2 km/s are found close to the volcanic line. The uppermost mantle is quite heterogeneous with velocities ranging from 7.6 to 8.2 km/s, in part due to the thermal gradient from cold fore-arc to hot back-arc. Whereas the Aleutian oceanic (fore-)arc has higher seismic velocities than average continental crust throughout the crust, the Peninsula section is close to the continental average in the upper c. 20 km of the crust. We infer that repeated episodes of arc magmatism can produce a felsic-to-intermediate upper crust as is observed in the continents, but arc magmatism produces a thicker mafic lower crust than the average continent retains. Some of the excess mafic material in the island-arc crust can be attributed to pre-existing oceanic crust, which is less evident or absent in a continental arc.

  12. Magma addition rates in continental arcs: New methods of calculation and global implications (United States)

    Ratschbacher, B. C.; Paterson, S. R.


    The transport of mass, heat and geochemical constituents (elements and volatiles) from the mantle to the atmosphere occurs via magma addition to the lithosphere. Calculation of magma addition rates (MARs) in continental arcs based on exposed proportions of igneous arc rocks is complex and rarely consistently determined. Multiple factors influence MAR calculations such as crust versus mantle contributions to magmas, a change in MARs across the arc and with depths throughout the arc crustal column, `arc tempos' with periods of high and low magmatic activity, the loss of previous emplaced arc rocks by subsequent magmatism and return to the mantle, arc migration, variations in the intrusive versus extrusive additions and evolving arc widths and thicknesses during tectonism. All of these factors need to be considered when calculating MARs.This study makes a new attempt to calculate MARs in continental arcs by studying three arc sections: the Famatinian arc, Argentina, the Sierra Nevada batholith, California and the Coast Mountain batholith, Washington and British Columbia. Arcs are divided into fore-arc, main arc and back arc sections and `boxes' with a defined width, length and thickness spanning upper middle and lower crustal levels are assigned to each section. Representative exposed crustal slices for each depth are then used to calculate MARs based on outcrop proportions for each box. Geochemical data is used to infer crustal recycling percentages and total thickness of the arc. Preliminary results show a correlation between MARs, crustal thicknesses and magmatic flare-up durations. For instance, the Famatinian arc shows a strong decrease in MARs between the main arc section (9.4 km3/Ma/arc-km) and the fore-arc (0.61 km3/Ma/arc-km) and back-arc (1.52 km3/Ma/arc-km) regions and an increase in the amount of magmatism with depth.Global MARs over geologic timescales have the potential to investigate mantle melt generation rates and the volatile outgassing contribution

  13. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle (United States)

    Spencer, Christopher J.; Murphy, J. Brendan; Kirkland, Christopher L.; Liu, Yebo; Mitchell, Ross N.


    The geologic record exhibits periods of active and quiescent geologic processes, including magmatism, metamorphism and mineralization. This apparent episodicity has been ascribed either to bias in the geologic record or fundamental changes in geodynamic processes. An appraisal of the global geologic record from about 2.3 to 2.2 billion years ago demonstrates a Palaeoproterozoic tectono-magmatic lull. During this lull, global-scale continental magmatism (plume and arc magmatism) and orogenic activity decreased. There was also a lack of passive margin sedimentation and relative plate motions were subdued. A global compilation of mafic igneous rocks demonstrates that this episode of magmatic quiescence was terminated about 2.2 billion years ago by a flare-up of juvenile magmatism. This post-lull magmatic flare-up is distinct from earlier such events, in that the material extracted from the mantle during the flare-up yielded significant amounts of continental material that amalgamated to form Nuna — Earth's first hemispheric supercontinent. We posit that the juvenile magmatic flare-up was caused by the release of significant thermal energy that had accumulated over some time. This flux of mantle-derived energy could have provided a mechanism for dramatic growth of continental crust, as well as the increase in relative plate motions required to complete the transition to modern plate tectonics and the supercontinent cycle. These events may also be linked to Palaeoproterozoic atmospheric oxygenation and equilibration of the carbon cycle.

  14. The Southern Washington Cascades magmatic system imaged with magnetotellurics (United States)

    Bowles-martinez, E.; Bedrosian, P.; Schultz, A.; Hill, G. J.; Peacock, J.


    The goal of the interdisciplinary iMUSH project (Imaging Magma Under Saint Helens) is to image the magmatic system of Mount Saint Helens (MSH), and to determine the relationship of this system to the greater Cascades volcanic arc. We are especially interested in an anomalously conductive crustal zone between MSH and Mount Adams known as the Southern Washington Cascades Conductor (SWCC), which early studies interpreted as accreted sediments, but more recently has been interpreted as a broad region of partial melt. MSH is located 50 km west of the main arc and is the most active of the Cascade volcanoes. Its 1980 eruption highlighted the need to understand this potentially hazardous volcanic system. We use wideband magnetotelluric (MT) data collected in 2014-2015 along with data from earlier studies to create a 3D model of the electrical resistivity throughout the region, covering MSH as well as Mount Adams and Mount Rainier along the main volcanic arc. We look at not only the volcanoes themselves, but also their relationship to one another and to regional geologic structures. Preliminary modeling identifies several conductive features, including a mid-crustal conductive region between MSH and Mount Adams that passes below Indian Heaven Volcanic Field and coincides with a region with a high Vp/Vs ratio identified in the seismic component of iMUSH. This suggests that it could be magmatic, but does not preclude the possibility of conductive sediments. Synthesis of seismic and MT data to address this question is ongoing. We also note a conductive zone running north-south just west of MSH that is likely associated with fluids within faults of the Saint Helens Seismic Zone. We finally note that curvature of the conductive lineament that defines the main Cascade arc suggests that the boundary of magmatism is influenced by compression within the Yakima Fold and Thrust Belt, east and southeast of Mount Adams.

  15. High-pressure thermal aureoles around two Neoproterozoic synorogenic magmatic epidote-bearing granitoids, Northeastern Brazil (United States)

    Caby, Renaud; Sial, Alcides N.; Ferreira, Valderez P.


    Unusual high-pressure inner thermal aureoles are described from the Minador and Angico Torto epidote-bearing tonalitic plutons that emplaced into greenschist-facies metasedimentary rocks of the Neoproterozoic Cachoeirinha-Salgueiro belt, northeastern Brazil. The foliated pelitic hornfelses display the mineral assemblage garnet, kyanite, staurolite, muscovite, biotite, plagioclase ± quartz. Rare fibrolite is only found very close to the contacts. Hornfelses display steep mineral lineations and steeply-dipping foliations concordant with magmatic contacts. Leucocratic veinlets containing quartz, oligoclase, garnet, kyanite, staurolite, rutile and ilmenite suggest that limited melting conditions were reached very close to magmatic contacts ( T ⩾ 650 °C, P around 8 kbar). These high-pressure hornfelses form a few meters thick, rigid envelopes around the two plutons. Contrary to known examples of kyanite-bearing hornfelses that recorded high-temperature decompression, the nearly isobaric cooling down to ca. 450 °C is constrained by 3.20-3.30 Si contents of retrogressive phengites from both inner hornfelses and ductilely-deformed tonalite at the pluton margins. Isograds and bathograds are, therefore, apparently telescoped due to HP/LT shearing, possibly caused by subsequent differential vertical movements affecting these two solidified plutons. The unusual depth of emplacement of these syn-kinematic calc-alkaline plutons is explained by a tentative geodynamic model involving a pre-620 Ma-subduction setting. Resumen Las aureolas internas que rodean dos plutones tonalíticos emplazados dentro de rocas cajas en facies esquistos verdes del Cinturón-plegado Cachoeirinha-Salgueiro al noreste de Brasil, contienen hornfelses pelíticos foliados con granate, kyanita, estaurolita, muscovita, biotita, plagioclasa ± cuarzo. Fibrolita es rara ó es encontrada solamente cerca de las zonas de contacto. Los hornfelses desarrollaron foliaciones concordantes con buzamiento fuerte

  16. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume? (United States)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.


    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  17. Impacts of continental arcs on global carbon cycling and climate (United States)

    Lee, C. T.; Jiang, H.; Carter, L.; Dasgupta, R.; Cao, W.; Lackey, J. S.; Lenardic, A.; Barnes, J.; McKenzie, R.


    On myr timescales, climatic variability is tied to variations in atmospheric CO2, which in turn is driven by geologic sources of CO2 and modulated by the efficiency of chemical weathering and carbonate precipitation (sinks). Long-term variability in CO2 has largely been attributed to changes in mid-ocean ridge inputs or the efficiency of global weathering. For example, the Cretaceous greenhouse is thought to be related to enhanced oceanic crust production, while the late Cenozoic icehouse is attributed to enhanced chemical weathering associated with the Himalayan orogeny. Here, we show that continental arcs may play a more important role in controlling climate, both in terms of sources and sinks. Continental arcs differ from island arcs and mid-ocean ridges in that the continental plate through which arc magmas pass may contain large amounts of sedimentary carbonate, accumulated over the history of the continent. Interaction of arc magmas with crustal carbonates via assimilation, reaction or heating can significantly add to the mantle-sourced CO2 flux. Detrital zircons and global mapping of basement rocks shows that the length of continental arcs in the Cretaceous was more than twice that in the mid-Cenozoic; maps also show many of these arcs intersected crustal carbonates. The increased length of continental arc magmatism coincided with increased oceanic spreading rates, placing convergent margins into compression, which favors continental arcs. Around 50 Ma, however, nearly all the continental arcs in Eurasia and North America terminated as India collided with Eurasia and the western Pacific rolled back, initiating the Marianas-Tonga-Kermadec intra-oceanic subduction complex and possibly leading to a decrease in global CO2 production. Meanwhile, extinct continental arcs continued to erode, resulting in regionally enhanced chemical weathering unsupported by magmatic fluxes of CO2. Continental arcs, during their magmatic lifetimes, are thus a source of CO2, driving

  18. Quaternary Magmatism in the Cascades - Geologic Perspectives (United States)

    Hildreth, Wes


    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  19. Semi-adakitic magmatism of the Satkatbong diorite, South Korea: Geochemical implications for post-adakitic magmatism in southeastern Eurasia (United States)

    Lim, Hoseong; Woo, Hyeon Dong; Myeong, Bora; Park, Jongkyu; Jang, Yun-Deuk


    The Satkatbong diorite (190 Ma) and the older Yeongdeok granite (250 Ma) in the Yeongnam massif, which is part of the southeastern margin of the Eurasian plate, are affected by a subduction system that is associated with the Izanagi and Farallon plates. The Satkatbong diorite is characterized by its abundant mafic magmatic enclaves (MMEs), mantle affinity, and intermediate adakitic Sr/Y vs. Y signature, whereas the Yeongdeok granite is distinctly adakitic and felsic and contains few MMEs. These differences in adakitic features might be due to differences in the lithospheric mantle material and/or different mafic MME sources. The results of rare earth element (REE) analyses and newly proposed Sr/La modeling in this study indicate that these two plutons were both generated by slab-mantle mixing and continental assimilation, whereas the Satkatbong diorite was additionally affected by the injection of a mafic source of MMEs, which "diluted" its adakitic chemistry. The young and hot subducting ridge passing toward the northeast due to the oblique subduction of the Izanagi and Farallon plates during the Early Mesozoic could have given rise to slab melting and asthenospheric influence through slab melting regions and a slab window, respectively. This implies that the adakitic Yeongdeok granite produced by slab melting and then the semi-adakitic Satkatbong diorite produced by asthenospheric influence, including other similar adakitic to semi-adakitic magmatism, might have occurred along the areas affected by ridge subduction. We suggest that this sequential magmatism would be applicable for many continental arcs which experienced ridge subduction being one of the mechanisms of adakite to semi-adakite magmatism.

  20. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea (United States)

    Holm, Robert J.; Spandler, Carl; Richards, Simon W.


    Understanding the evolution of the mid-Cenozoic Melanesian arc is critical for our knowledge of the regional tectonic development of the Australian-Pacific plate margin, yet there have been no recent studies to constrain the nature and timing of magmatic activity in this arc segment. In particular, there are currently no robust absolute age constraints at the plate margin related to either the initiation or cessation of subduction and arc magmatism. We present the first combined U-Pb zircon geochronology and geochemical investigation into the evolution of the Melanesian arc utilizing a comprehensive sample suite from the Simuku Igneous Complex of West New Britain, Papua New Guinea. Development of the embryonic island arc from at least 40 Ma and progressive arc growth was punctuated by distant collision of the Ontong Java Plateau and subduction cessation from 26 Ma. This change in subduction dynamics is represented in the Melanesian arc magmatic record by emplacement of the Simuku Porphyry Complex between 24 and 20 Ma. Petrological and geochemical affinities highlight genetic differences between 'normal' arc volcanics and adakite-like signatures of Cu-Mo mineralized porphyritic intrusives. The contemporaneous emplacement of both 'normal' arc volcanics and adakite-like porphyry intrusives may provide avenues for future research into the origin of diverse styles of arc volcanism. Not only is this one of few studies into the geology of the Melanesian arc, it is also among the first to address the distant tectono-magmatic effects of major arc/forearc collision events and subduction cessation on magmatic arcs, and also offers insight into the tectonic context of porphyry formation in island arc settings.

  1. Evidence for Paleocene-Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back-arc to arc: Implications for regional geodynamics and obduction (United States)

    Whitechurch, H.; Omrani, J.; Agard, P.; Humbert, F.; Montigny, R.; Jolivet, L.


    The nature and significance of the Kermanshah ophiolite (Zagros Mountains, Iran), traditionally identified as one of the remnants of the Peri-Arabic ophiolite system obducted onto Arabia in the Late Cretaceous, is reinvestigated in this study. We assess the geochemistry of magmatic rocks from two distinct areas: the Kamyaran Paleocene-Eocene arc and the so-called Harsin-Sahneh ophiolite complex. Volcanic rocks associated with Triassic to Liassic sediments display a clear alkali signature, whereas the Paleocene volcanic rocks show a geochemical signature similar to that of tholeiitic back-arc basin basalts. The presumed ophiolitic gabbros of the Harsin-Sahneh complex and some of the associated dykes that intrude harzburgites or gabbros also have a back-arc basin signature. Eocene volcanics, gabbros and dykes intruding the harzburgites display clear low to medium-K calc-alkaline signatures with variable negative Nb, Ta, and Ti and positive Sr, Ba, Th, and U anomalies. Field relationships and geochemical evidence indicate that the Eocene magmatic rocks were intruded into a mantle substratum close to the ocean-continent transition. The geochemistry of magmatic rocks from Paleocene to Eocene suggests that an Eocene arc was constructed in a Paleocene back-arc basin along the Eurasian continental margin. In the Kermanshah region this magmatic activity, which extended further to the northwest into Turkey, coincided with a marked slowing down of the convergence of Arabia with Eurasia. Furthermore, it occurred after the Mesozoic Sanandaj-Sirjan magmatism had ceased but before the development of the Tertiary Urumieh-Dokhtar magmatic arc. We tentatively relate this transient magmatic activity to a slab retreat and a back-arc extension at the Eurasian continental margin.

  2. A reworked Lake Zone margin: Chronological and geochemical constraints from the Ordovician arc-related basement of the Hovd Zone (western Mongolia)

    Czech Academy of Sciences Publication Activity Database

    Soejono, I.; Buriánek, D.; Janoušek, V.; Svojtka, Martin; Čáp, P.; Erban, V.; Ganpurev, D.

    294/295, December (2017), s. 112-132 ISSN 0024-4937 Institutional support: RVO:67985831 Keywords : Ordovician magmatic arc * Mid-Silurian intra-plate magmatism * Hovd Zone * Reworked Lake Zone Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.677, year: 2016

  3. Arc saw development report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.; Beitel, G.A.


    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  4. Charnockitic magmatism in southern India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In collisional tectonic settings where island arc material has been thrust into deeper levels of the crust or simply accreted from beneath, the formation of tonalite melt and hbl-bearing, opx- bearing charnockites is likely. If higher pres- sures are achieved, garnet will also be a part of these charnockites. In the case of southern.

  5. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate (United States)

    ten Brink, Uri S.; Marshak, S.; Granja, Bruna J.L.


    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  6. Weak Tectono-Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Valerio Acocella


    Full Text Available The tectono-magmatic relationships along obliquely convergent plate boundaries, where strain partitioning promotes strike-slip structures along the volcanic arc, are poorly known. Here it is unclear if and, in case, how the strike-slip structures control volcanic processes, distribution and size. To better define the possible tectono-magmatic relationships along strike-slip arcs, we merge available information on the case study of Sumatra (Indonesia with field structural data. The Sumatra arc (entire volcanic belt consists of 48 active volcanoes. Of these, 46% lie within 10 km from the dextral Great Sumatra Fault (GSF, which carries most horizontal displacement on the overriding plate, whereas 27% lie at >20 km from the GSF. Among the volcanoes at <10 km from GSF, 48% show a possible structural relation to the GSF, whereas only 28% show a clear structural relation, lying in pull-aparts or releasing bends; these localized areas of transtension (local extensional zone do not develop magmatic segments. There is no relation between the GSF along-strike slip rate variations and the volcanic productivity. The preferred N30°-N40°E volcano alignment and elongation are subparallel to the convergence vector or to the GSF. The structural field data, collected in the central and southern GSF, show, in addition to the dextral motions along NW-SE to N-S striking faults, also normal motions (extending WNW-ESE or NE-SW, suggesting local reactivations of the GSF. Overall, the collected data suggest a limited tectonic control on arc volcanism. The tectonic control is mostly expressed by the mean depth of the slab surface below the volcanoes (130 ± 20 km and, subordinately, local extension along the GSF. The latter, when WNW-ESE oriented (more common, may be associated with the overall tectonic convergence, as suggested by the structural data; conversely, when NE-SW oriented (less common, the extension may result from co- and post-seismic arc normal extension

  7. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, Michel


    The strongly incompatible behaviour of uranium in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behavior, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth, which crystallized uraninite, dated at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: per-alkaline, high-K met-aluminous calc-alkaline, L-type peraluminous and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass of their volcanic equivalents represent the best U source. Per-alkaline granites or syenites are associated with the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction under the present economic conditions and make them unfavorable U sources for other deposit types. By contrast, felsic per-alkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals (U-thorite, allanite, Nb oxides) become metamict. The volcanic rocks of the same geochemistry may be

  8. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, M.


    Uranium strongly incompatible behaviour in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behaviour, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth which crystallized uraninite appeared at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous ones and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass in their volcanic equivalents represent the best U source. Peralkaline granites or syenites represent the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction at the present economic conditions and make them unfavourable U sources for other deposit types. By contrast, felsic peralkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals [U-thorite, allanite, Nb oxides] become metamict. The volcanic rocks of the same geochemistry may be also a

  9. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology. (United States)

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W


    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  10. Arc-continent collision of the Coastal Range in Taiwan: Geochronological constraints from U-Pb ages of zircons (United States)

    Geng, Wei; Zhang, Xun-Hua; Huang, Long


    The oblique arc-continent collision between the Luzon arc and the southeastern margin of the Eurasian continent caused the uplift of Taiwan. The Coastal Range in eastern Taiwan is the northern section of the Luzon arc in the collision zone and thus records important information about the arc-continent collision. In this paper, we determine and analyze the U-Pb ages of magmatic zircons from the volcanic arc and clastic zircons from the fore-arc basin in the Coastal Range. For the volcanic arc in the Coastal Range, the eruption ages range from 16.8-5 Ma. Given that the initial subduction of the South China Sea oceanic crust (17 Ma) occurred before the Luzon arc formed, we conclude that the volcanic activity of the Coastal Range began at 16.8 ± 1.3 Ma; it was most active from 14 to 8 Ma and continued until approximately 5 Ma. The U-Pb chronology also indicates that the initial stage of arc-continent collision of the Coastal Range started at approximately 5 Ma, when the northern section of the Luzon arc moved away from the magmatic chamber because of the kinematics of the Philippine Sea Plate.

  11. DC arc weld starter (United States)

    Campiotti, Richard H.; Hopwood, James E.


    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  12. Episodic nature of continental arc activity since 750 Ma: A global compilation (United States)

    Cao, Wenrong; Lee, Cin-Ty A.; Lackey, Jade Star


    Continental arcs have been recently hypothesized to outflux large amounts of CO2 compared to island arcs so that global flare-ups in continental arc magmatism might drive long-term greenhouse events. Quantitative testing of this hypothesis, however, has been limited by the lack of detailed studies on the spatial distribution of continental arcs through time. Here, we compile a worldwide database of geological maps and associated literature to delineate the surface exposure of granitoid plutons, allowing reconstruction of how the surface area addition rate of granitoids and the length of continental arcs have varied since 750 Ma. These results were integrated into an ArcGIS framework and plate reconstruction models. We find that the spatial extent of continental arcs is episodic with time and broadly matches the detrital zircon age record. Most vigorous arc magmatism occurred during the 670-480 Ma and the 250-50 Ma when major greenhouse events are recognized. Low continental arc activity characterized most of the Cryogenian, middle-late Paleozoic, and Cenozoic when climate was cold. Our results indicate that plate tectonics is not steady, with fluctuations in the nature of subduction zones possibly related in time to the assembly and dispersal of continents. Our results corroborate the hypothesis that variations in continental arc activity may play a first order role in driving long-term climate change. The dataset presented here provides a quantitative basis for upscaling continental arc processes to explore their effects on mountain building, climate, and crustal growth on a global scale.

  13. Magmatic gas scrubbing: Implications for volcano monitoring (United States)

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.


    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  14. Monitoring ARC services with GangliARC

    International Nuclear Information System (INIS)

    Cameron, D; Karpenko, D


    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  15. Quantifying subduction erosion and the northward migration of volcanism in the central Aleutian arc (United States)

    Jicha, B. R.; Kay, S. M.; Schaen, A. J.


    Crustal material is returned to the upper mantle in convergent margins via sediment subduction or trenchward erosion of the forearc by the downgoing plate (i.e., subduction erosion). The active Aleutian arc is currently classified as an accreting margin as most of the arc has a well-developed accretionary prism that formed in the Pliocene. Geochemistry of Pliocene-Recent lavas in the central Aleutian arc indicates significant sediment involvement during magma genesis. However, prior to the late Pliocene, the Aleutian arc was in a long-term state of episodic forearc subduction erosion with minor involvement of subducted sediment compared to that since the late Pliocene. The central Aleutian volcanic front has migrated northwards tens of kilometers since the construction of the broad arc massif by voluminous volcanism during arc inception in the early to mid-Paleogene. We have recently added more than forty new 40Ar/39Ar dates and obtained new geochemical data for volcanic rocks on thirteen different central and western Aleutian islands to supplement the existing data base in an attempt to quantify how and where Aleutian arc volcanism migrated with time. Crustal losses into subduction zones along with additions from arc magmatism must be considered in the balance of arc construction. In the Aleutian arc, both new addition by arc magmatism and crustal loss by forearc subduction erosion appear to have been episodic since arc inception. As such, the arc has not been in a continuous state of wholesale landward retreat from inception to the Pliocene. Our compiled and newly acquired data allow for numerous cross-arc transects of various lengths and time periods that seem to indicate a long-term average arc migration rate of 1.6 km/Myr from Amlia Island (173.5° W) in the central Aleutians to Kiska Island (177.5° E) in the western Aleutians. This migration rate is about half as fast as the long-term average trench retreat rates of active erosive arcs ( 3.0 km/Myr over tens

  16. Cataphoresis in electric arcs (United States)

    Murphy, A. B.


    A two-dimensional numerical model is used to investigate cataphoresis (demixing driven by electrical fields) in free-burning arcs in mixtures of argon with helium, hydrogen, nitrogen and oxygen at atmospheric pressure. The method of inclusion of electrical field effects in the combined diffusion coefficient treatment of diffusion and demixing is presented. Cataphoresis is found to lead to large increases in helium concentration near the anode in argon-helium arcs and smaller decreases in hydrogen concentration near the axis in argon-hydrogen arcs. There is no significant effect in argon-nitrogen and argon-oxygen arcs. The effects of cataphoresis on other arc properties are generally small and are significant only in argon-helium arcs.

  17. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.


    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  18. Magmatic and tectonic evolution of the Ladakh Block from field studies (United States)

    Raz, U.; Honegger, K.


    The Ladakh Block is in an intermediate position between the Indian plate in the south and the Karakorum-Tibetan plate in the north. To the west it is separated from the Kohistan Arc by the Nanga Parbat Syntaxis, to the east it is cut off from the Lhasa Block by the Gartok-Nubra Fault. Present data, together with previously published results, show, that the Ladakh Block consists of an island arc in the south and a calc-alkaline batholith in the north with remnants of a continental crust. Migmatitic gneisses and metasedimentary sequences, such as quartzites and metapelites, interbedded with basaltic volcanics and overlain by thick platform carbonates were found as evidence of a continental crust. Remnants of megafossils ( Megalodon and Lithiotis) within the high-grade metamorphic marbles indicate a probable age of Late Triassic to Early Jurassic. These sediments were intruded by a faintly layered hornblende-gabbro, which preceded the calc-alkaline magmatic episode. Gabbro and gabbronorites are found as roof pendants and large inclusions within diorites and granodiorites. The major part of the batholith consists of granodiorite and biotite-granite plutons, ranging from Late Cretaceous to Tertiary. Associated with the intrusives are volcanic rocks with trachyandesite to alkalibasalt and basalt-andesite to rhyolite compositions. Garnet-bearing leucogranites succeeded the emplacement of the major plutons. The magmatic stage ended, finally, by intense fracturing and injections of NE-SW striking andesitic dykes. The southernmost unit of the Ladakh Block is formed by oceanic crust with serpentinized peridotite and hornblende-gabbro and is covered by volcanics of an island-arc type (Dras volcanics). These units are intruded by gabbronorite, as well as Middle and Upper Cretaceous granodiorite and coarse-grained biotite-granite. In a plate tectonic view the Ladakh Block represents a transitional sector between the pure island arc of Kohistan in the west and the Andean type

  19. A magmatic belt within the Neo-Tethyan suture zone and its role in the tectonic evolution of northern Turkey (United States)

    Tüysüz, Okan; Dellaloǧlu, A. Aziz; Terzioǧlu, Nuri


    The Sakarya and Kırşehir continental fragments of Northern Turkey were separated by the Ankara-Erzincan ophiolitic suture zone, which is the remnant of the northern branch of the Neo-Tethys, namely the Ankara-Erzincan Ocean. This ocean branch opened during the Lias between these two continental fragments and started to close at the beginning of the Late Cretaceous, by the consumption of its floor, along two north-dipping subduction zones. The northern one was along the southern margin of the Sakarya Continent. As a result of this subduction zone, an ensialic magmatic arc, some fore-arc basins and a mélange belt developed from north to south on the Sakarya Continent. The second subduction zone, located to the south, gave rise to a mélange belt and an island arc developed with and on it. Hot-spot magmatics (seamounts), which were scraped from the subducting oceanic crust, also accreted into this ophiolitic-volcanic belt. At the end of the late Cretaceous, the central part of the Ankara-Erzincan Ocean closed due to the collision of the Kırşehir and the Sakarya continents. As a result of this collision, mélange belts and ensimatic arc volcanics formed the Ankara-Yozgat suture between these continental fragments.

  20. Composite Sunrise Butte pluton: Insights into Jurassic–Cretaceous collisional tectonics and magmatism in the Blue Mountains Province, northeastern Oregon (United States)

    Johnson, Kenneth H.; Schwartz, J.J.; Žák, Jiří; Verner, Krystof; Barnes, Calvin G.; Walton, Clay; Wooden, Joseph L.; Wright, James E.; Kistler, Ronald W.


    The composite Sunrise Butte pluton, in the central part of the Blue Mountains Province, northeastern Oregon, preserves a record of subduction-related magmatism, arc-arc collision, crustal thickening, and deep-crustal anatexis. The earliest phase of the pluton (Desolation Creek unit) was generated in a subduction zone environment, as the oceanic lithosphere between the Wallowa and Olds Ferry island arcs was consumed. Zircons from this unit yielded a 206Pb/238U age of 160.2 ± 2.1 Ma. A magmatic lull ensued during arc-arc collision, after which partial melting at the base of the thickened Wallowa arc crust produced siliceous magma that was emplaced into metasedimentary rocks and serpentinite of the overthrust forearc complex. This magma crystallized to form the bulk of the Sunrise Butte composite pluton (the Sunrise Butte unit; 145.8 ± 2.2 Ma). The heat necessary for crustal anatexis was supplied by coeval mantle-derived magma (the Onion Gulch unit; 147.9 ± 1.8 Ma).The lull in magmatic activity between 160 and 148 Ma encompasses the timing of arc-arc collision (159–154 Ma), and it is similar to those lulls observed in adjacent areas of the Blue Mountains Province related to the same shortening event. Previous researchers have proposed a tectonic link between the Blue Mountains Province and the Klamath Mountains and northern Sierra Nevada Provinces farther to the south; however, timing of Late Jurassic deformation in the Blue Mountains Province predates the timing of the so-called Nevadan orogeny in the Klamath Mountains. In both the Blue Mountains Province and Klamath Mountains, the onset of deep-crustal partial melting initiated at ca. 148 Ma, suggesting a possible geodynamic link. One possibility is that the Late Jurassic shortening event recorded in the Blue Mountains Province may be a northerly extension of the Nevadan orogeny. Differences in the timing of these events in the Blue Mountains Province and the Klamath–Sierra Nevada Provinces suggest that

  1. Temporal evolution of magmatic-hydrothermal systems in the Manus Basin, Papua New Guinea: Insights from vent fluid chemistry and bathymetric observations (United States)

    Reeves, E. P.; Thal, J.; Schaen, A.; Ono, S.; Seewald, J.; Bach, W.


    The temporal evolution of hydrothermal fluids from back-arc systems is poorly constrained, despite growing evidence for dynamic magmatic-hydrothermal activity, and imminent commercial mining. Here we discuss surveys of diverse vent fluids from multiple hydrothermal fields in the Manus back-arc basin, Papua New Guinea, sampled in 2006 and 2011. Effects of host rock composition, and dynamic magmatic volatile inputs on fluid chemistry are evaluated to understand changes in these systems. Highly acidic and SO4-rich moderate temperature fluids (~48-215°C), as well as SO4-poor black smoker fluids (up to 358°C), were collected at the PACMANUS, SuSu Knolls and DESMOS areas in 2006 and 2011. Acidic, milky white SuSu and DESMOS fluids, rich in elemental S and SO4, exit the seafloor with Na, K, Mg, and Ca diluted conservatively up to 30% relative to seawater, implying subsurface mixing of seawater with SO2-rich aqueous fluids exsolved from magma, analogous to subaerial fumarole discharge. SO2 disproportionation during cooling and mixing of magmatic fluids contributes acidity, SO4, H2S and S(0)(s), as well as widespread S outcrops on the seafloor. Nearby black smoker fluids indicate entrainment and reaction of magmatic fluid into convecting fluids at depth, and additional hybrid-type fluids appear to consist of evolved seawater and unreacted magmatic fluid SO2 derivatives. Fluids at DESMOS in 2006 indicate increased magmatic SO2 relative to 1995, despite constant low venting temperatures (~120°C). In contrast, dramatic changes in bathymetry and seafloor morphology point to substantial continuous eruption of volcaniclastic material between 2006 and 2011 at SuSu Knolls, burying fumarolic vents from 2006. Compositions of new 2011 acidic, sulfate-rich fluids there suggest reaction with less altered, fresher rock. At the PACMANUS area, farther from the arc, direct magmatic degassing to the seafloor is not occurring presently, but entrainment and reaction of similar acid

  2. Magmatic underplating beneath the Rajmahal Traps: Gravity ...

    Indian Academy of Sciences (India)

    To understand the impact of the magmatic process that originated in the deep mantle on the lower crustal level of the eastern Indian shield and adjoining Bengal basin the conspicuous gravity anomalies observed over the region have been modelled integrating with available geophysical information. The 3-D gravity ...

  3. Geochemical characteristics of Proterozoic granite magmatism from ...

    Indian Academy of Sciences (India)

    T Yellappa


    Mar 6, 2018 ... rocks occur near the transition zone around Krish- nagiri in the northern part of Tamil Nadu ... Archean and Neoproterozoic high-grade metamor- phic and magmatic rocks. The important ... Western Dharwar Craton, EDC: Eastern Dharwar Craton, Tz: Transition Zone. Location of the granite plutons are also.

  4. Progressive magmatism and evolution of the Variscan suture in southern Iberia (United States)

    Braid, James A.; Murphy, J. Brendan; Quesada, Cecilio; Gladney, Evan R.; Dupuis, Nicolle


    Magmatic activity is an integral component of orogenic processes, from arc magmatism during convergence to post-collisional crustal melting. Southern Iberia exposes a Late Paleozoic suture zone within Pangea and where a crustal fragment of Laurussia (South Portuguese Zone) is juxtaposed with parautochthonous Gondwana (Ossa Morena Zone). Fault-bounded oceanic metasedimentary rocks, mélanges and ophiolite complexes characterize the suture zone and are intruded by plutonic rocks and mafic dykes. The generation and emplacement of these intrusive rocks and their relationship to development of the suture zone and the orogen are undetermined. Field evidence combined with U/Pb (zircon) geochronology reveals three main phases of plutonism, a pre-collisional unfoliated gabbroic phase emplaced at ca 354 Ma, crosscut by a syn-tectonic ca 345 Ma foliated granodiorite phase followed by a ca 335 Ma granitic phase. Geochemical analyses (major, trace, rare earth elements) indicate that the gabbro exhibits a calc-alkaline arc signature whereas the granodiorite and granite are typical of post-collisional slab break-off. Taken together, these data demonstrate a protracted development of the orogen and support a complex late stage evolution broadly similar to the tectonics of the modern eastern Mediterranean. In this scenario, the highly oblique closure of a small tract of oceanic lithosphere postdates the main collision event resulting in escape of parautochthonous and allochthonous terranes toward the re-entrant.

  5. Uranium deposits in magmatic and metamorphic rocks

    International Nuclear Information System (INIS)


    The association of uranium with certain types of magmatic and metamorphic rocks is well known. They have consequently been explored and studied quite extensively. In recent years interest in them has been eclipsed by the discovery of larger, lower cost deposits in other geological environments. Nonetheless, magmatic and metamorphic rocks continue to be important sources of uranium and large areas of the Earth's crust with such rocks are prospective locations for additional discoveries. As future exploration and development could be more difficult the full importance of individual deposits may not be recognized until after many years of investigation and experience. In addition to being important host rocks, magmatic and metamorphic rocks have been of considerable interest to uranium geologists as they are considered to be important source rocks for uranium and thus can lead to deposits nearby in other environments. Furthermore, these rocks provide important information on the geochemical cycle of uranium in the Earth's crust and mantle. Such information can lead to identification of uranium provinces and districts and to a basic understanding of processes of formation of uranium deposits. The International Atomic Energy Agency convened a Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks. The meeting was held in Salamanca, Spain, from 29 September to 3 October 1986. It was followed by a two day field trip to uranium deposits in the Ciudad Rodrigo and Don Benito areas. The meeting was attended by 48 participants from 22 countries. Two panels were organized for discussion of the following topics: (1) ore deposit genesis and characterization and (2) exploration and resource assessment. The technical papers together with the panel reports form this publication. The scope and variety of the papers included and the panel reports provide a good coverage of current knowledge and thinking on uranium in magmatic and metamorphic rocks

  6. Thermal and exhumation history of the Costal Cordillera arc of the northern Chile revealed by thermochronological dating

    NARCIS (Netherlands)

    Juez-Larré, J.; Kukowski, N.; Dunai, T.J.; Hartley, A.J.; Andriessen, P.A.M.


    The thermal and erosional history of convergent plate boundaries is important for understanding the links between subduction, arc magmatism, genesis of ore deposits, topography and climate of orogenic belts. Unlike the continent-continent collision that formed many of the largest orogenic belts

  7. Current perspectives on energy and mass fluxes in volcanic arcs (United States)

    Leeman, William; Davidson, Jon; Fischer, Tobias; Grunder, Anita; Reagan, Mark; Streck, Martin

    Volcanoes of the Pacific Ring of Fire and other convergent margins worldwide are familiar manifestations of nature's energy, account for about 25% of global volcanic outputs, dominate volcanic gas emissions to the atmosphere, and pose significant physical threats to a large human population. Yet the processes behind this prolific activity remain poorly understood.An international “State of the Arc” (SOTA) conference was held in August on the slopes of Mt. Hood, Oregon, to address current views on the energy and mass fluxes in volcanic arcs. This meeting brought together some 90 leading experts and students of subduction zones and their related magmatism.

  8. Welding arc initiator (United States)

    Correy, T.B.


    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  9. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.


    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  10. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.


    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  11. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Soejono, I.; Janoušek, V.; Žáčková, E.; Sláma, Jiří; Konopásek, J.; Machek, Matěj; Hanžl, P.


    Roč. 106, č. 6 (2017), s. 2109-2129 ISSN 1437-3254 Institutional support: RVO:67985530 ; RVO:67985831 Keywords : Cadomian magmatic arc * Brunovistulian Domain * Bohemian Massif * Gondwana margin * U–Pb geochronology * geochemistry Subject RIV: DB - Geology ; Mineralogy; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Geology; Volcanology (GFU-E) Impact factor: 2.283, year: 2016

  12. Petrogenesis of the Mairupt microgranite: A witness of an Uppermost Silurian magmatism in the Rocroi Inlier, Ardenne Allochton (United States)

    Cobert, Corentin; Baele, Jean-Marc; Boulvais, Philippe; Poujol, Marc; Decrée, Sophie


    Magmatism in the Rocroi inlier (Ardenne Allochton, southeastern Avalonia during eo-Hercynian times) consists of a swarm of bimodal dykes (diabase and/or microgranite) emplaced in Middle to Upper Cambrian siliciclastics (Revin Group). Felsic volcanites interbedded within the Upper Silurian/Lower Devonian transgressive strata on the eastern edge of the inlier were interpreted as belonging to the same magmatic event. This was subsequently invalidated by zircon U-Pb dating of the Mairupt and Grande Commune magmatic rocks, which yielded an Upper Devonian age. Here we report a reevaluation of the age of the Mairupt microgranite based on LA-ICP-MS in situ U-Pb zircon geochronology, which yields a concordant age of 420.5 ± 2.9 Ma (Late Silurian/Early Devonian). This new dating restores the consistency between the different magmatic occurrences in the Rocroi inlier. The geochemical and petrographical data furthermore indicate a major crustal contribution, which fits well within the context of crust thinning of the Ardenne margin (southeastern Avalonia) in the transtensional Rheno-Hercynian back-arc basin.

  13. Aspects of the magmatic geochemistry of bismuth (United States)

    Greenland, L.P.; Gottfried, D.; Campbell, E.Y.


    Bismuth has been determined in 74 rocks from a differentiated tholeiitic dolerite, two calc-alkaline batholith suites and in 66 mineral separates from one of the batholiths. Average bismuth contents, weighted for rock type, of the Great Lake (Tasmania) dolerite, the Southern California batholith and the Idaho batholith are, 32, 50 and 70 ppb respectively. All three bodies demonstrate an enrichment of bismuth in residual magmas with magmatic differentiation. Bismuth is greatly enriched (relative to the host rock) in the calcium-rich accessory minerals, apatite and sphene, but other mineral analyses show that a Bi-Ca association is of little significance to the magmatic geochemistry of bismuth. Most of the bismuth, in the Southern California batholith at least, occurs in a trace mineral phase (possibly sulfides) present as inclusions in the rock-forming minerals. ?? 1973.

  14. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N (United States)

    Anderson, Melissa O.; Chadwick, William W.; Hannington, Mark D.; Merle, Susan G.; Resing, Joseph A.; Baker, Edward T.; Butterfield, David A.; Walker, Sharon L.; Augustin, Nico


    The relationships between tectonic processes, magmatism, and hydrothermal venting along ˜600 km of the slow-spreading Mariana back-arc between 12.7°N and 18.3°N reveal a number of similarities and differences compared to slow-spreading mid-ocean ridges. Analysis of the volcanic geomorphology and structure highlights the complexity of the back-arc spreading center. Here, ridge segmentation is controlled by large-scale basement structures that appear to predate back-arc rifting. These structures also control the orientation of the chains of cross-arc volcanoes that characterize this region. Segment-scale faulting is oriented perpendicular to the spreading direction, allowing precise spreading directions to be determined. Four morphologically distinct segment types are identified: dominantly magmatic segments (Type I); magmatic segments currently undergoing tectonic extension (Type II); dominantly tectonic segments (Type III); and tectonic segments currently undergoing magmatic extension (Type IV). Variations in axial morphology (including eruption styles, neovolcanic eruption volumes, and faulting) reflect magma supply, which is locally enhanced by cross-arc volcanism associated with N-S compression along the 16.5°N and 17.0°N segments. In contrast, cross-arc seismicity is associated with N-S extension and increased faulting along the 14.5°N segment, with structures that are interpreted to be oceanic core complexes—the first with high-resolution bathymetry described in an active back-arc basin. Hydrothermal venting associated with recent magmatism has been discovered along all segment types.

  15. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin


    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  16. ALICE - ARC integration


    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva; Peters, Andreas; Siaz, Pablo


    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructur...

  17. Evidence for the Jurassic arc volcanism of the Lolotoi complex, Timor: Tectonic implications (United States)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won


    We report the first sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon ages with geochemical data from metavolcanic rocks in the Lolotoi complex, Timor. The zircon U-Pb ages of two andesitic metavolcanic rocks yield a permissible range of the Middle Jurassic extrusion from 177 Ma to 174 Ma. The geochemical data indicate that the origins of the basaltic and andesitic metavolcanic rocks are products of prolonged oceanic crust and arc magmatism, respectively. They are originated from partial melting of lherzolites, providing an insight into the tectonic evolution of the forearc basements of the Banda volcanic arc. Thus, parts of the Banda forearc basement are pieces of allochthonous oceanic basalts and Jurassic arc-related andesites accreted to the Sundaland during the closure of Mesotethys, and are incorporated later into the Great Indonesian Volcanic Arc system along the southeastern margin of the Sundaland.

  18. Exotic Members of Southern Alaska's Jurassic Arc (United States)

    Todd, E.; Jones, J. V., III; Karl, S. M.; Box, S.; Haeussler, P. J.


    The Jurassic Talkeetna arc and contemporaneous plutonic rocks of the Alaska-Aleutian Range batholith (ARB) are key components of the Peninsular terrane of southern Alaska. The Talkeetna arc, considered to be a type example of an intra-oceanic arc, was progressively accreted to northwestern North America in the Jurassic to Late Cretaceous, together with associated components of the Wrangellia Composite terrane. Older Paleozoic and Mesozoic rock successions closely associated with the ARB suggest that at least part of the Peninsular terrane might be an overlap succession built on pre-existing crust, possibly correlative with the Wrangellia terrane to the east. However, the relationship between the Talkeetna arc, ARB, and any pre-existing crust remains incompletely understood. Field investigations focused on the petrogenesis of the ARB near Lake Clark National Park show that Jurassic to Late Cretaceous plutonic rocks commonly host a diverse range of mineralogically distinct xenolith inclusions, ranging in size from several cm to hundreds of meters. The modal fraction of these inclusions ranges from 50% in some outcrops. They are generally mafic in composition and, with few exceptions, are more mafic than host plutonic rocks, although they are observed as both igneous (e.g., gabbro cumulate, diorite porphyry) and metamorphic types (e.g., amphibolite, gneiss and quartzite). Inclusion shapes range from angular to rounded with sharp to diffuse boundaries and, in some instances, are found as planar, compositionally distinct bands or screens containing high-temperature ductile shear fabrics. Other planar bands are more segmented, consistent with lower-temperature brittle behavior. Comparison of age, geochemical fractionation trends, and isotope systematics between the inclusions and host plutons provides a critical test of whether they are co-genetic with host plutons. Where they are related, mafic inclusions provide clues about magmatic evolution and fractionation history

  19. 3230-3200 Ma post-orogenic extension and mid-crustal magmatism along the southeastern margin of the Barberton Greenstone Belt, South Africa (United States)

    Lana, Cristiano; Buick, Ian; Stevens, Gary; Rossouw, Riana; De Wet, Willem


    The Barberton Granitoid-Greenstone Terrain (South Africa) preserves a complex and protracted evolution involving several events of magmatism and terrain accretion along convergent tectonic boundaries. Recent studies propose that the main period of tectonic accretion and arc-related magmatism is linked to a system of divergent subduction zones above which voluminous TTG magmas were emplaced between ca. 3236 and 3227 Ma. Our structural and LA-ICP-MS U-Pb geochronology study along the southeastern margin of the Barberton Greenstone Belt (BGB) ties the waning stages of this TTG magmatism to a short (ca. BGB. The timing of the granodiorite emplacement also constrains a minimum age for the deposition of the Moodies Group clastic sediments, which for much of the southern and southeastern parts of the BGB must have happened before ca. 3228 Ma. 3205 ± 9 Ma subvolcanic dykes intruded into the granodiorite complex indicate that the period of exhumation and cooling of the crystalline rocks along the extensional detachment was relatively short (<30 Ma), between 3228 and 3205 Ma. Our observations combined with previously published structural data from the northwestern and southern margin of the belt suggest that the main mechanism of large-scale infolding of the supracrustal strata was shortly followed by the extension-related magmatism and subsequent, solid-state diapiric movement of the arc-related plutons.

  20. Devonian alkaline magmatic belt along the northern margin of the North China Block: Petrogenesis and tectonic implications (United States)

    Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min


    Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.

  1. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling (United States)

    Chiaradia, Massimo; Müntener, Othmar; Beate, Bernardo; Fontignie, Denis


    In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geochemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt-mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geochemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW-SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and back-arc (Sumaco) chains. All rocks display typical subduction-related geochemical signatures, such as Nb and Ta negative anomalies and LILE enrichment. They show a relative depletion of fluid-mobile elements and a general increase in incompatible elements from the front to the back-arc suggesting derivation from progressively lower degrees of partial melting of the mantle wedge induced by decreasing amounts of fluids released from the slab. We observe widespread petrographic evidence of interaction of primary melts with mafic xenoliths as well as with clinopyroxene- and/or amphibole-bearing cumulates and of magma mixing at all frontal and main arc volcanic centers. Within each volcanic center, rocks display correlations between evolution indices and radiogenic isotopes, although absolute variations of radiogenic isotopes are small and their values are overall rather primitive (e.g., ɛNd = +1.5 to +6, 87Sr/86Sr = 0

  2. Copahue volcano and its regional magmatic setting (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin


    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  3. A geochemical approach to distinguishing competing tectono-magmatic processes preserved in small eruptive centres (United States)

    McGee, Lucy E.; Brahm, Raimundo; Rowe, Michael C.; Handley, Heather K.; Morgado, Eduardo; Lara, Luis E.; Turner, Michael B.; Vinet, Nicolas; Parada, Miguel-Ángel; Valdivia, Pedro


    Small eruptive centres (SECs) representing short-lived, isolated eruptions are effective samples of mantle heterogeneity over a given area, as they are generally of basaltic composition and show evidence of little magmatic processing. This is particularly powerful in volcanic arcs where the original melting process generating stratovolcanoes is often obscured by additions from the down-going slab (fluids and sediments) and the overlying crust. The Pucón area of southern Chile contains active and dormant stratovolcanoes, Holocene, basaltic SECs and an arc-scale strike-slip fault (the Liquiñe Ofqui Fault System: LOFS). The SECs show unexpected compositional heterogeneity considering their spatial proximity. We present a detailed study of these SECs combining whole rock major and trace element concentrations, U-Th isotopes and olivine-hosted melt inclusion major element and volatile contents to highlight the complex inter-relations in this small but active area. We show that heterogeneity preserved at individual SECs relates to different processes: some start in the melting region with the input of slab-derived fluids, whilst others occur later in a centre's magmatic history with the influence of crustal contamination prior to olivine crystallisation. These signals are deduced through the combination of the different geochemical tools used in this study. We show that there is no correlation between composition and distance from the arc front, whilst the local tectonic regime has an effect on melt composition: SECs aligned along the LOFS have either equilibrium U-Th ratios or small Th-excesses instead of the large—fluid influenced—U-excesses displayed by SECs situated away from this feature. One of the SECs is modelled as being generated from fluid-enriched depleted mantle, a source which it may share with the stratovolcano Villarrica, whilst another SEC with abundant evidence of crustal contamination may share its plumbing system with its neighbouring

  4. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton (United States)

    Yang, Fan; Santosh, M.; Tang, Li


    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  5. ALICE-ARC integration

    International Nuclear Information System (INIS)

    Anderlik, C; Gregersen, A R; Kleist, J; Peters, A; Saiz, P


    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  6. Consolidating NASA's Arc Jets (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald


    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  7. ALICE—ARC integration (United States)

    Anderlik, C.; Gregersen, A. R.; Kleist, J.; Peters, A.; Saiz, P.


    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites.

  8. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Yener Eyuboglu


    Full Text Available The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine–Himalayan belt. The late Mesozoic–Cenozoic geodynamic evolution of this belt remains controversial. Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved. The adakitic lithologies comprise porphyries and hyaloclastites. The porphyries are represented by biotite-rich andesites, hornblende-rich andesite and dacite. The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud. The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area. We report zircon U-Pb ages of 48.71 ± 0.74 Ma for the adakitic rocks, and 44.68 ± 0.84 Ma for the non-adakitic type, suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism. We evaluate the origin, magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt. Our results have important bearing on the late Mesozoic–Cenozoic geodynamic evolution of the eastern Mediterranean region.

  9. Modulation of magmatic processes by carbon dioxide (United States)

    Caricchi, L.; Sheldrake, T. E.; Blundy, J. D.


    Volatile solubility in magmas increases with pressure, although the solubility of CO2 is much lower than that of H2O. Consequently, magmas rising from depth release CO2-rich fluids, which inevitably interact with H2O-poor magmas in the upper crust (CO2-flushing). CO2-flushing triggers the exsolution of H2O-rich fluids, leading to an increase of volume and magma crystallisation. While the analyses of eruptive products demonstrates that this process operates in virtually all magmatic system, its impact on magmatic and volcanic processes has not been quantified. Here we show that depending on the initial magma crystallinity, and the depth of magma storage, CO2-flushing can lead to volcanic eruptions or promote conditions that favour the impulsive release of mineralising fluids. Our calculations show that the interaction between a few hundred ppm of carbonic fluids, and crystal-poor magmas stored at shallow depths, produces rapid pressurisation that can potentially lead to an eruption. Further addition of CO2 increases magma compressibility and crystallinity, reducing the potential for volcanic activity, promoting the formation of ore deposits. Increasing the depth of fluid-magma interaction dampens the impact of CO2-flushing on the pressurisation of a magma reservoir. CO2-flushing may result in surface inflation and increases in surface CO2 fluxes, which are commonly considered signs of an impending eruption, but may not necessarily result in eruption depending on the initial crystallnity and depth of the magmatic reservoir. We propose that CO2-flushing is a powerful agent modulating the pressurisation of magma reservoirs and the release of mineralising fluids from upper crustal magma reservoirs.

  10. Arcs from gravitational lensing (United States)

    Grossman, Scott A.; Narayan, Ramesh


    The proposal made by Paczynski (1987) that the arcs of blue light found recently in two cluster cores are gravitationally lensed elongated images of background galaxies is investigated. It is shown that lenses that are circularly symmetric in projection produce pairs of arcs, in conflict with the observations. However, more realistic asymmetric lenses produce single arcs, which can become as elongated as the observed ones whenever the background galaxy is located on or close to a cusp caustic. Detailed computer simulations of lensing by clusters using a reasonable model of the mass distribution are presented. Elongated and curved lensed images longer than 10 arcsec occur in 12 percent of the simulated clusters. It is concluded that the lensing hypothesis must be taken seriously.

  11. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...... part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more "traditional" push model. The solution comes as a module implementing the functionalities necessary to achieve...

  12. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.


    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  13. Claritas rise, Mars: Pre-Tharsis magmatism? (United States)

    Dohm, J.M.; Anderson, R.C.; Williams, J.-P.; Ruiz, J.; McGuire, P.C.; Buczkowski, D.L.; Wang, R.; Scharenbroich, L.; Hare, T.M.; Connerney, J.E.P.; Baker, V.R.; Wheelock, S.J.; Ferris, J.C.; Miyamoto, H.


    Claritas rise is a prominent ancient (Noachian) center of tectonism identified through investigation of comprehensive paleotectonic information of the western hemisphere of Mars. This center is interpreted to be the result of magmatic-driven activity, including uplift and associated tectonism, as well as possible hydrothermal activity. Coupled with its ancient stratigraphy, high density of impact craters, and complex structure, a possible magnetic signature may indicate that it formed during an ancient period of Mars' evolution, such as when the dynamo was in operation. As Tharsis lacks magnetic signatures, Claritas rise may pre-date the development of Tharsis or mark incipient development, since some of the crustal materials underlying Tharsis and older parts of the magmatic complex, respectively, could have been highly resurfaced, destroying any remanent magnetism. Here, we detail the significant characteristics of the Claritas rise, and present a case for why it should be targeted by the Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Express spacecrafts, as well as be considered as a prime target for future tier-scalable robotic reconnaissance. ?? 2009 Elsevier B.V.

  14. Tectonics and magmatism of ultraslow spreading ridges (United States)

    Dubinin, E. P.; Kokhan, A. V.; Sushchevskaya, N. M.


    The tectonics, structure-forming processes, and magmatism in rift zones of ultraslow spreading ridges are exemplified in the Reykjanes, Kolbeinsey, Mohns, Knipovich, Gakkel, and Southwest Indian ridges. The thermal state of the mantle, the thickness of the brittle lithospheric layer, and spreading obliquety are the most important factors that control the structural pattern of rift zones. For the Reykjanes and Kolbeinsey ridges, the following are crucial factors: variations in the crust thickness; relationships between the thicknesses of its brittle and ductile layers; width of the rift zone; increase in intensity of magma supply approaching the Iceland thermal anomaly; and spreading obliquety. For the Knipovich Ridge, these are its localization in the transitional zone between the Gakkel and Mohns ridges under conditions of shear and tensile stresses and multiple rearrangements of spreading; nonorthogonal spreading; and structural and compositional barrier of thick continental lithosphere at the Barents Sea shelf and Spitsbergen. The Mohns Ridge is characterized by oblique spreading under conditions of a thick cold lithosphere and narrow stable rift zone. The Gakkel and the Southwest Indian ridges are distinguished by the lowest spreading rate under the settings of the along-strike variations in heating of the mantle and of a variable spreading geometry. The intensity of endogenic structure-forming varies along the strike of the ridges. In addition to the prevalence of tectonic factors in the formation of the topography, magmatism and metamorphism locally play an important role.

  15. Magmatic unrest beneath Mammoth Mountain, California (United States)

    Hill, David P.; Prejean, Stephanie


    Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ˜57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small ( M ≤ 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO 2, and fumarole gases with elevated 3He/ 4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO 2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO 2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.

  16. Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow

    NARCIS (Netherlands)

    Schellart, W. P.


    Subduction along the western margin of South America has been active since the Jurassic, but Andean orogeny started in the middle Cretaceous and was preceded by backarc extension in the Jurassic-Early Cretaceous. The timing and sequence of these events has remained unexplained. Here I present a

  17. Arc Heated Scramjet Test Facility (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  18. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo (United States)

    Wallace, P.J.; Gerlach, T.M.


    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  19. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand

    DEFF Research Database (Denmark)

    van der Meer, Quinten; Waight, Tod Earle; Scott, James


    –100Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i)=18.6, 207Pb/204Pb(i)=15.62, 208Pb/204Pb(i)=38.6, 87Sr/86Sr(i)=0.7063–0.7074, εNd(i)=−2.1 −+0.1 and εHf(i)=−0.2 −+2.3) and are interpreted as melts originating from subduction-modified lithosphere....... Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92–84Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i)=18.7 to 19.4, 207Pb/204Pb(i)=15.60 to 15.65, 208Pb/204Pb(i)=38.6 to 39.4, 87Sr/86Sr(i)=0.7031 to 0.7068, εNd(i)=+4.5 to +8.0 and εHf(i)=+5.1 to +8...... from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98–82Ma) occurred outboard of Gondwana’s former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i)≈20.5, 207Pb...

  20. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.


    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  1. Gas tungsten arc welder (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  2. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P


    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  3. Thermal Arc Spray Overview (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati


    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  4. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva


    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  5. Contrasting magmatic signatures in the Rairakhol and Koraput ...

    Indian Academy of Sciences (India)

    The relation between alkaline magmatism and tectonism has been a contentious issue, parti- cularly for the Precambrian continental regions. Alkaline complexes at the southwestern margin of Eastern Ghats belt, India, have been interpreted as rift-valley magmatism. However, those complexes occurring in granulite ...

  6. Cambro-Ordovician post-collisional granites of the Ribeira belt, SE-Brazil: A case of terminal magmatism of a hot orogen (United States)

    Valeriano, Claudio de Morisson; Mendes, Julio Cezar; Tupinambá, Miguel; Bongiolo, Everton; Heilbron, Monica; Junho, Maria do Carmo Bustamante


    This work presents an overview of the geology and chemical composition of the Cambrian-Ordovician post-collisional (COPC) granites and associated rocks of Ribeira belt, SE-Brazil. These COPC granites make up some of the most picturesque and highest (>2000 m) rocky peaks and cliffs of Rio de Janeiro state, an accessible case of post-orogenic granitic magmatism associated with the terminal stages of a hot Ediacaran-Cambrian (Brasiliano-Panafrican) orogen. The COPC magmatism intruded tonalitic to granitic orthogneisses of the Rio Negro arc (∼790-600 Ma) and associated paragneisses of the São Fidelis Group. Post-collisional magmatism started ∼10 m.y. after the latest collisional event, the Buzios Orogeny, lasting discontinuously from ∼510 Ma until ∼470 Ma. The 15 largest intrusive bodies in Rio de Janeiro State are referred to in the literature as the Parati/Mangaratiba, Vila Dois Rios, Pedra Branca, Suruí, Silva Jardim, Favela, Andorinha, Teresópolis, Frade, Nova Friburgo, Conselheiro Paulino, São José do Ribeirão, Sana and Itaoca granites. They crop out as rounded/elliptical stocks or gently-dipping sheets, always with sharp contacts with the country rocks, along with pegmatite and aplitic veins and dykes. COPC granites are grey and pink undeformed medium-grained biotite monzogranites with (K-feldspar) porphyritic, mega-crystic, equigranular and serial textures. Magmatic flow foliation is frequently observed. Peripheric xenolith zones are common as well as isolated xenoliths from the country rocks. In a compilation of more than 100 chemical compositions, SiO2 contents display a major mode at 71wt%. The COPC magmatism generated high-K calc-alkaline granites and quartz monzonites with predominantly metaluminous granites. Meso to melanocratic gabbroic and dioritic enclaves also have calc-alkaline affinity and likely represent more resistant mafic xenoliths from the Rio Negro Arc.

  7. The Anatahan Felsic Province in the Mariana Arc System (United States)

    Stern, R. J.; Hargrove, U. S.


    The May 2003 plinian eruption of Anatahan was a surprise for the residents of the Northern Mariana Mariana Comonwealth (USA). From a petrologic perspective, this eruption of siliceous andesite was also atypical for the Mariana arc, which elsewhere mostly erupts fractionated basalts and basaltic andesites. However, felsic eruptions are not unusual for Anatahan which has previously erupted a wide range of lavas, from basalts through dacites. The reasons and significance of the intermittently felsic nature of Anatahan lavas may reflect either development of a mature magma chamber localized beneath Anatahan or perhaps the presence of an areally-extensive pool of felsic magma in the middle crust, similar to that inferred for the Izu arc to the north. Anatahan lies at the southern end of the Mariana Central Island Province and just north of the Southern Seamount Province, but it has never been clear whether these morphological subdivisions reflect different magma fluxes along the arc or are due to the island volcanoes being older than the seamounts. Synthesis of existing data for Anatahan and data for surrounding seamounts collected during the 2001 Cook 7 expedition and earlier cruises indicates that Anatahan is situated near the middle of an arc segment with an unusually high proportion of felsic lavas compared to typical Mariana Arc magmatic products. The 115 km-long arc segment from E. Diamante seamount East Diamante seamount (15° 55'N) to a seamount NW of Zealandia Bank (17° N) define the Anatahan Felsic Province (AFP). Seven edifices within this region, including Anatahan, have erupted felsic lavas, often interspersed with more mafic lavas. Volcano size does not seem important in controlling the abundance of felsic lavas within the AFP; the volcanic island of Sarigan does not contain felsic lavas, whereas small parasitic cones NE of Anatahan and SW of E. Diamante erupt lavas with 65% and 72% SiO2, respectively. This region also contains two suspected hydrothermal

  8. Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America) (United States)

    Bourdon, Erwan; Eissen, Jean-Philippe; Gutscher, Marc-André; Monzier, Michel; Hall, Minard L.; Cotten, Joseph


    the oceanic crust and its partial melting since ca. 1.5 Ma. Since then, the production of adakites in fore arc position has deeply transformed the magma genesis in the overall arc changing from 'typical' calc-alkaline magmatism induced by hydrous fluid metasomatism, to the space- and time-associated lithology adakite/high-Mg andesite/adakite-like andesite/high-Nb basalts characteristic of slab melt metasomatism.

  9. Hall-effect arc protector (United States)

    Rankin, R.A.; Kotter, D.K.


    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  10. Arc - An endogenous neuronal retrovirus? (United States)

    Shepherd, Jason D


    The neuronal gene Arc is essential for long-lasting information storage in the mammalian brain and has been implicated in various neurological disorders. However, little is known about Arc's evolutionary origins. Recent studies suggest that mammalian Arc originated from a vertebrate lineage of Ty3/gypsy retrotransposons, which are also ancestral to retroviruses. In particular, Arc contains homology to the Gag polyprotein that forms the viral capsid and is essential for viral infectivity. This surprising connection raises the intriguing possibility that Arc may share molecular characteristics of retroviruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Platinum Metals in Magmatic Sulfide Ores (United States)

    Naldrett, A. J.; Duke, J. M.


    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  12. The magmatic model for the origin of Archean Au-quartz vein ore systems: an assessment of the evidence

    International Nuclear Information System (INIS)

    Spooner, E.T.C.


    The magmatic model for the origin of Archean Au-quartz vein ore systems suggests that Au was derived by partition between silicate (± sulphide) melts of certain compositions and H 2 O-CO 2 -NaCl magmatic fluids. Supporting evidence includes partial/structural geological relationships, timing relationships, H and C isotope geochemistry, probable primary Au enrichment in the Lamaque stocks, and fluid inclusion volatile geochemistry. Evidence is currently negative with respect to various within- and sub-greenstone belt metamorphic/deep crustal fluid models for primary Au mineralization; however a U-Pb age for vein stage 3 sphene from the Camflo deposit, Quebec which is ∼ 55-60 Ma younger than the host stock at 2685-2680 Ma indicates dissolution/reprecipitation of Au by late, (?) upper crustal saline fluids. Evidence is accumulating that epithermal-meso thermal Au-Ag mineralization in island arc and cordilleran settings may also have been magmatically derived ± high level fluid mixing from calc-alkaline, shoshonitic and other igneous compositions. (author)

  13. Late Miocene calc-alkalic volcanism in northwestern Mexico: an expression of rift or subduction-related magmatism? (United States)

    Mora-Klepeis, Gabriela; McDowell, Fred W.


    Magmatism in NW Mexico records a Late Miocene transformation from convergence to extension in the Gulf of California rift system. Miocene calc-alkalic rocks in the Baja California peninsula are related to the final subduction of the Farallon plate system, but the heterogeneous nature of volcanism younger than 12.5 Ma has led to conflicting tectonic interpretations. Neogene volcanic rocks in the Sierra Santa Ursula, Sonora, were emplaced in three magma pulses, according to mapping, K-Ar geochronology, and geochemistry. From 23.5 to 15 and 14 to 11.4 Ma, calc-alkalic rocks show an arc-like signature. The 12-11 Ma calc-alkalic dacites, however, are characterized by higher K, Rb, 87Sr/ 86Sr, and light REE abundances than are the older rocks. The timing, petrography, and geochemistry of the 12-11 Ma rocks are interpreted to reflect postsubduction magmatism. A change in magma chemistry from predominantly calc-alkalic to tholeiitic rocks at 10.3 Ma corresponds to orthogonal extension during early Gulf of California evolution. Sr, Nd, and Pb radiogenic isotope signatures show minor changes over time. The volcanic record for 20-12.5 Ma at Sierra Santa Ursula and adjacent areas is consistent with the reconstructed history of the Guadalupe microplate. The interval of magmatism produced from 12 to 11 Ma appears to reflect changes in plate geometry during the transition from subduction to rifting.

  14. Age of Izu-Bonin-Mariana arc basement (United States)

    Ishizuka, Osamu; Hickey-Vargas, Rosemary; Arculus, Richard J.; Yogodzinski, Gene M.; Savov, Ivan P.; Kusano, Yuki; McCarthy, Anders; Brandl, Philipp A.; Sudo, Masafumi


    Documenting the early tectonic and magmatic evolution of the Izu-Bonin-Mariana (IBM) arc system in the Western Pacific is critical for understanding the process and cause of subduction initiation along the current convergent margin between the Pacific and Philippine Sea plates. Forearc igneous sections provide firm evidence for seafloor spreading at the time of subduction initiation (52 Ma) and production of "forearc basalt". Ocean floor drilling (International Ocean Discovery Program Expedition 351) recovered basement-forming, low-Ti tholeiitic basalt crust formed shortly after subduction initiation but distal from the convergent margin (nominally reararc) of the future IBM arc (Amami Sankaku Basin: ASB). Radiometric dating of this basement gives an age range (49.3-46.8 Ma with a weighted average of 48.7 Ma) that overlaps that of basalt in the present-day IBM forearc, but up to 3.3 m.y. younger than the onset of forearc basalt activity. Similarity in age range and geochemical character between the reararc and forearc basalts implies that the ocean crust newly formed by seafloor spreading during subduction initiation extends from fore- to reararc of the present-day IBM arc. Given the age difference between the oldest forearc basalt and the ASB crust, asymmetric spreading caused by ridge migration might have taken place. This scenario for the formation of the ASB implies that the Mesozoic remnant arc terrane of the Daito Ridges comprised the overriding plate at subduction initiation. The juxtaposition of a relatively buoyant remnant arc terrane adjacent to an oceanic plate was more favourable for subduction initiation than would have been the case if both downgoing and overriding plates had been oceanic.

  15. Precise U-Pb Zircon Constraints on the Earliest Magmatic History of the Carolina Terrane. (United States)

    Wortman; Samson; Hibbard


    The early magmatic and tectonic history of the Carolina terrane and its possible affinities with other Neoproterozoic circum-Atlantic arc terranes have been poorly understood, in large part because of a lack of reliable geochronological data. Precise U-Pb zircon dates for the Virgilina sequence, the oldest exposed part, constrain the timing of the earliest known stage of magmatism in the terrane and of the Virgilina orogeny. A flow-banded rhyolite sampled from a metavolcanic sequence near Chapel Hill, North Carolina, yielded a U-Pb zircon date of 632.9 +2.6/-1.9 Ma. A granitic unit of the Chapel Hill pluton, which intrudes the metavolcanic sequence, yielded a nearly identical U-Pb zircon date of 633 +2/-1.5 Ma, interpreted as its crystallization age. A felsic gneiss and a dacitic tuff from the Hyco Formation yielded U-Pb zircon dates of 619.9 +4.5/-3 Ma and 615.7 +3.7/-1.9 Ma, respectively. Diorite and granite of the Flat River complex have indistinguishable U-Pb upper-intercept dates of 613.9 +1.6/-1.5 Ma and 613.4 +2.8/-2 Ma. The Osmond biotite-granite gneiss, which intruded the Hyco Formation before the Virgilina orogeny, crystallized at 612.4 +5.2/-1.7 Ma. Granite of the Roxboro pluton, an intrusion that postdated the Virgilina orogeny, yielded a U-Pb upper intercept date of 546.5 +3.0/-2.4 Ma, interpreted as the time of its crystallization. These new dates both provide the first reliable estimates of the age of the Virgilina sequence and document that the earliest known stage of magmatism in the Carolina terrane had begun by 633 +2/-1.5 Ma and continued at least until 612.4 +5.2/-1.7 Ma, an interval of approximately 25 m.yr. Timing of the Virgilina orogeny is bracketed between 612.4 +5.2/-1.7 Ma and 586+/-10 Ma (reported age of the upper Uwharrie Formation). The U-Pb systematics of all units studied in the Virgilina sequence are simple and lack any evidence of an older xenocrystic zircon component, which would indicate the presence of a continental

  16. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.


    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting


    African Journals Online (AJOL)

    canal to fonn part of Moss. • The trail should be made use of by schools and the public. • The area should be cleared of exotic vegetation. e Indigenous trees should be planted to replace the removed exotic trees. The establishment of the ARC trail in 1985 came about as a direct result of the 1983 team1s rec ommenda ti ons ...

  18. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt (United States)

    Ciobanu, Cristiana L.; Cook, Nigel J.; Stein, Holly


    The 1,500-km-long Banatitic Magmatic and Metallogenetic Belt (BMMB) of Romania, Serbia and Bulgaria is a complex calc-alkaline magmatic arc of Late Cretaceous age. It hosts a variety of magmatic-hydrothermal Cu, Au, Mo, Zn, Pb and Fe deposits, including Europe's only world-class porphyry-copper deposits. Regional metallogeny can be linked to subduction of the Vardar Ocean during the Late Cretaceous, as part of the closure of the Neotethys Ocean that had separated Europe and Africa in the Mesozoic. Porphyry Cu-(Au)-(Mo) and intimately associated epithermal massive sulphides dominate in the central segments of the belt in southernmost Banat (Romania), Serbia and north-west Bulgaria. These districts are the economically most important today, including major active Cu-Au mines at Moldova Nouă in Romania, Majdanpek, Veliki Krivelj and Bor in Serbia, and Elatsite, Assarel and Chelopech in Bulgaria. More numerous (and mostly mined in the past) are Fe, Cu and Zn-Pb skarns, which occur mainly at the two ends of the belt, in Eastern Bulgaria and in Romania. This paper summarises some of the deposit characteristics within the geodynamic framework of terminal Vardar subduction. Heterogeneous terranes of the belt, including the Apuseni Mountains at the western end, are aligned parallel to the Vardar front following continental collision of the Dacia and Tisza blocks. All available geochronological data (numerous K-Ar and some U-Pb and Re-Os ages) are compiled, and are complemented by a new high-precision Re-Os date for the Dognecea skarn deposit, south-west Romania (76.6±0.3 Ma). These data indicate that magmatism extended over at least 25 million years, from about 90 to 65 Ma in each segment of the belt. Within Apuseni Mountains and Banat, where magma emplacement was related to syn-collisional extension in the orogenic belt of Carpathians, ore formation seems to be restricted in time and maybe constrained by a shared tectonic event.

  19. Circular arc structures

    KAUST Repository

    Bo, Pengbo


    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  20. A simple 2-D model for the evolution of an island-arc system (United States)

    Zharinov, S. E.; Demin, S. S.


    Slow seismotectonic movements along inclined deep fault planes under compressive horizontal stresses are supposed to be the principal mechanism controlling the structure and processes in island-arc systems. In order to treat the stress variations caused by this mechanism, a simple geomechanical model is investigated. We consider a shearing surface crack embedded in a homogeneous elastic half-space. The key element of the model is viscous interaction between the sides of the crack, the viscosity varying with depth. The model differs from the classical steady-state mode of subduction by nonstationary creep processes on deep faults and possibly by cyclical evolution of island-arc systems. The results of our numerical analysis are in good agreement with geological, geophysical and seismological data. (i) Vertical displacements of the free surface in the model fit well with the typical topography of a trench—arc-basement rise—back-arc basin system. (ii) The Benioff seismic zone is supposed to be formed due to the concentration of shear stresses near the fault plane. The characteristic patterns of seismicity, the fine geometry of Benioff zones, and their double-planed structure can be explained in terms of our model. (iii) A zone of considerable heat generation caused by viscous dissipation along the fault plane is found within a narrow area in the depth range 100-200 km. Moreover, the island-arc basement rise is characterized in the model by a relative tension of a few tens or even hundreds of bars, while at depths of 100-150 km below the surface, additional compression of the same order of magnitude acts. The magmatic plumbing system may be visualised as a "toothpaste tube" or a sponge filled with magma which is squeezed from the depths to the surface due to the redistribution of the tectonic stresses only. This can explain the physical origin of island-arc magmatism and the typical position of volcanic belts.

  1. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.


    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with

  2. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.


    Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier). The latest Cretaceous-early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ∼ 120-130 million years of oceanic magmatism in geological history of the northern Neotethys.

  3. Cordillera Zealandia: A Mesozoic arc flare-up on the palaeo-Pacific Gondwana Margin. (United States)

    Milan, L A; Daczko, N R; Clarke, G L


    Two geochemically and temporally distinct components of the Mesozoic Zealandia Cordilleran arc indicate a shift from low to high Sr/Y whole rock ratios at c. 130 Ma. Recent mapping and a reappraisal of published Sr-Nd data combined with new in-situ zircon Hf isotope analyses supports a genetic relationship between the two arc components. A reappraisal of geophysical, geochemical and P-T estimates demonstrates a doubling in thickness of the arc to at least 80 km at c. 130 Ma. Contemporaneously, magmatic addition rates shifted from ~14 km 3 /my per km of arc to a flare-up involving ~100 km 3 /my per km of arc. Excursions in Sr-Nd-Hf isotopic ratios of flare-up rocks highlight the importance of crust-dominated sources. This pattern mimics Cordilleran arcs of the Americas and highlights the importance of processes occurring in the upper continental plates of subduction systems that are incompletely reconciled with secular models for continental crustal growth.

  4. Volcano geodesy in the Cascade arc, USA (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin


    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  5. Crustal Evolution of a Paleozoic Intra-oceanic Island-Arc-Back-Arc Basin System Constrained by the Geochemistry and Geochronology of the Yakuno Ophiolite, Southwest Japan

    Directory of Open Access Journals (Sweden)

    Yoshimitsu Suda


    Full Text Available The Yakuno ophiolite in southwest Japan is considered to have been obducted by the collision between an intra-oceanic island-arc-back-arc basin (intra-OIA-BAB system and the East Asian continent during the late Paleozoic. New SIMS (SHRIMP zircon U-Pb determinations for amphibolite and metagabbro of BAB origin within the Yakuno ophiolite yield ages of 293.4 ± 9.5 Ma and 288 ± 13 Ma, respectively. These ages are slightly older (however, overlapping within analytical errors than the magmatic age of arc granitoids (ca. 285–282 Ma that intruded into the mafic rocks of BAB origin. Results from geochronological and geochemical data of the Yakuno ophiolite give rise to the following tentative geotectonic model for the Paleozoic intra-OIA-BAB system: the initial stage of BAB rifting (ca. 293–288 Ma formed the BAB crust with island-arc basalt (IAB signatures, which was brought to the OIA setting, and generated the arc granitoids (ca. 285–282 Ma by anatexis of the BAB crust. A later stage of BAB rifting (

  6. Nominally hydrous magmatism on the Moon. (United States)

    McCubbin, Francis M; Steele, Andrew; Hauri, Erik H; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J


    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca(5)(PO(4))(3)(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H(2)O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher.

  7. The ARCS radial collimator

    Directory of Open Access Journals (Sweden)

    Stone M.B.


    Full Text Available We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.


    Lingafelter, J.W.


    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  9. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.


    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  10. The time-space distribution of Eocene to Miocene magmatism in the central Peruvian polymetallic province and its metallogenetic implications (United States)

    Bissig, Thomas; Ullrich, Thomas D.; Tosdal, Richard M.; Friedman, Richard; Ebert, Shane


    rocks west of Tarma (21-20 Ma). A relationship between the Oligocene intrusions and polymetallic mineralization at Uchucchacua is possible, but evidence remains inconclusive. Widespread magmatism resumed in the middle Miocene and includes large igneous complexes in the Cordillera Occidental to the south of Domo de Yauli, and smaller scattered intrusive centers to the north thereof. Ore deposits of modest size are widely associated with middle Miocene intrusions along the Cordillera Occidental, north of Domo de Yauli. However, small volcanic centers were also active up to 50 km east of the continental divide and include dacitic dikes and domes, spatially associated with major base and precious metal mineralization at Cerro de Pasco and Colquijirca. Basaltic volcanism (14.54 ± 0.49 Ma) is locally observed in the back-arc domain south of Domo de Yauli approximately 30 km east of the Cordillera Occidental. After about 10 Ma intrusive activity decreased throughout Central Perú and ceased between 6 and 5 Ma. Late Miocene magmatism was locally related to important mineralization including San Cristobal (Domo de Yauli), Huarón and Yauricocha. Overall, there is no evidence for a systematic eastward migration of the magmatic arc through time. The arc broadened in the late Eocene to early Oligocene, and thereafter ceased over wide areas until the early Miocene, when magmatism resumed in a narrow arc. A renewed widening and subsequent cessation of the arc occurred in the late middle and late Miocene. The pattern of magmatism probably reflects two cycles of flattening of the subduction in the Oligocene and late Miocene. Contrasting crustal architecture between areas south and north of Domo de Yauli probably account for the differences in the temporal and aerial distribution of magmatism in these areas. Ore deposits are most abundant between Domo de Yauli and Cerro de Pasco and were generally emplaced in the middle and late Miocene during the transition to flat subduction and

  11. Cenozoic Collision of the Lesser Antilles Arc and Continental South America and the Origin of the EL Pilar Fault (United States)

    Speed, R. C.


    It is proposed that the Cenozoic tectonic record of the southern Lesser Antilles arc and northeastern continental South America can be explained by ongoing right-oblique collision between the arc and continent. The collision has proceeded by the transport of the leading edge of the arc across the slope and outer shelf of a former north facing passive margin of the South American continent. The overriding began in the study region near the Gulf of Cariaco in eastern Venezuela in late Eocene or Oligocene time and has migrated with a generally SE vector. Suturing has occurred between the arc and continent after the attainment of a critical distance of overlap; today's point of suturing lies in the Paria Peninsula. East of there, overriding continues. Major tectonic elements engaged in or created by the collision are the southern Lesser Antilles magmatic arc, forearc basin, the Araya-Tobago terrane, a South American foreland thrust and fold belt, and a foreland basin. The Araya-Tobago terrane is thought to consist of sediments of South American provenance that were accreted to the Lesser Antilles forearc during its transit of an ocean basin and the continental slope and outer shelf. The emplacement of the magmatic arc and the Araya-Tobago terrane caused tectonic imbrication of shelf strata to propagate ahead of the arc front as a foreland thrust and fold belt. Tectonic loading of the shelf also caused subsidence of a major foreland basin on the continentward side of the thrust belt. It is proposed the El Pilar fault exists between the Gulf of Cariaco and the Paria Peninsula as an active right slip fault but not east of Paria. It is not a throughgoing transform fault between the South American and Caribbean plates. The El Pilar fault exists where the overlapping arc and the continent are sutured and takes up a suture-parallel component of convergence between arc and continent. The eastern tip of the fault propagates east with the point of suturing. Reconstructions of

  12. Isotopic implications for the origin and the geodynamic nature of the Miocene granitic rocks in the northwest Anatolia (Turkey): comparison with the central Aegean magmatism (United States)

    Hasözbek, Altug; Satir, Muharrem; Erdogan, Burhan; Siebel, Wolfgang; Akay, Erhan; Deniz Dogan, Güllü


    Central Aegean magmatic belt including the northwestern Anatolia is interpreted in the literature as formed along magmatic arc which has migrated southwardly to its present position. During and after the closure of the Neo-Tethyan Ocean and progressive collision of the Tauride-Anatolide Platform with the Sakarya Continent, widespread magmatism occurred in NW Anatolia. These magmatic associations form a NW trending belt. In NW Anatolia, mostly Miocene I-type, shallow seated Egrigöz, Koyunoba, Alacam plutons expose along the suture zone called İzmir-Ankara Zone. These granitoid rocks intruded into the basement rocks of the region which are from bottom to top consist of Menderes Massif, Afyon Zone and Bornova Flysch Zone. Due to the complex geodynamic evolution, the exact emplacement mode of the Miocene granitoids is still a subject for debate. New results give rise to re-consider the general mode of the Miocene magmatic activity and address the question if the magmatism was triggered by compression or extensional tectonic processes. The new data are also compared to those of the central Aegean granitoids. Initial isotopic signatures of these shallow seated granitoids of NW Anatolian are 87Sr/86Sr(I) = 0.70800-0.70975, ENd(I) = -4.9 to -7.3, δ18O = 9.4-10.6, 206Pb/204Pb = 18.85-18.918. These characteristics indicate an assimilation-dominated crystallization and most probably origin of a metaluminous older meta-sedimentary protolith which is also common in most of the central Aegean magmatic suites. However, the geodynamic scenario for the mode of emplacement of the Miocene granitoids along the NW Anatolia implies remarkable differences when comparing to the central Aegean granitoid suites. These differences can be summarized as: an extension related granitoid emplacement in the central Aegean occurred between 15 Ma to 10 Ma. However, in NW Anatolia, the granitoids emplaced after Eocene collision and continue till 20-22 Ma. Isotopic patterns with suggested mixing

  13. Electric arc welding gun (United States)

    Luttrell, Edward; Turner, Paul W.


    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  14. Intraplate mafic magmatism: New insights from Africa and N. America (United States)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.


    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread

  15. Fluid Dynamic Experiments on Mush Column Magmatism (United States)

    Flanagan-Brown, R. E.; Marsh, B. D.


    A vertically extensive stack of sills interconnected by pipe-like conduits extending from the mantle through the lithosphere and capped by a volcanic center is a magmatic mush column. At any instant at various locations it contains fractionated and primitive melts as pools of nearly crystal-free magma, pools of crystal-rich magma, thick beds of cumulates, open conduits, and conduits congested by cognate and wall debris. All boundaries of the system are sheathed by solidification fronts. With the wide range of local, characteristic length scales there is a commensurate range of solidification time scales. This creates a complicated series of resistances to magma flow and provides a variety of distinct local physical environments for the chemical modification of magma. The system is driven by over-pressure from the addition of new melt from below. The over-pressure propagates upward by moving magma which flushes conduits, disrupts cumulate beds, and pools or purges sills. A critical aspect of this process is the entrainment, transport, and deposition of crystals throughout the system. Picritic lavas charges with entrained (tramp) olivine of a wide compositional range erupted at many systems (e.g. Jan Mayen, Kilauea, Reunion, etc.) are the final expression of this process. That the size and abundance of these crystals is correlated with eruptive flux (Murata & Richter, AJS, 1966) suggests an important indicator of the overall dynamics of the mush column. A mush column of this basic nature is observed is observed in the McMurdo Dry Valleys region of Antarctica and is inferred beneath Hawaii and the ocean ridges. We have attempted to model this process by studying the entrainment, transport, and deposition of particles in a vertical stack of sills (Plexiglas tanks) connected by resistive conduits (check valves), over-pressured from the base, and open at the top. The system is about two meters in height with water and oil as fluids and particles with Reynolds numbers

  16. Laser Assisted Plasma Arc Welding

    Energy Technology Data Exchange (ETDEWEB)



    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  17. Submarine Arc Volcanism in the Southern Mariana Arc: Results of Recent ROV studies (United States)

    Nichols, A. R.; Tamura, Y.; Stern, R. J.; Embley, R. W.; Hein, J. R.; Jordan, E.; Ribeiro, J. M.; Sica, N.; Kohut, E. J.; Whattam, S. A.; Hirahara, Y.; Senda, R.; Nunokawa, A.


    The submarine Diamante cross-arc volcanoes (~16°N) and the Sarigan-Zealandia Bank Multi-Volcano Complex (SZBMVC; ~16°45’N), north and south, respectively, of Anatahan Island in the southern Mariana Arc, were studied during several dives in June 2009 using the ROV Hyper-Dolphin, cruise NT09-08 (R/V Natsushima); neither has been studied in detail before. The data collected provide a new perspective on how the subduction factory operates to complement previous studies on other cross-arc volcanic chains in the Izu-Bonin-Mariana Arc. The Diamante complex consists of three major edifices, two cones (West and Central Diamante) and a more complex caldera-like edifice at the volcanic front (East Diamante). West and Central Diamante are basaltic volcanoes but East Diamante has a more complex history. Our studies indicate initial construction of a basaltic volcano. Magmatic evolution led to a violent caldera-forming and quieter dome-building events. Post-caldera quiescence allowed a carbonate platform to grow, now preserved on the eastern caldera wall. Felsic magma or hot rock provides a heat source for an active hydrothermal field associated with felsic domes in the caldera, which NOAA investigators discovered in 2004. A new type of hydrothermal deposit was discovered in the hydrothermal field, consisting of large sulfide-sulfate mounds topped by bulbous constructions of low-temperature Fe and Mn oxides. Vents on the mounds were observed to emit shimmering water. The SZBMVC consists of six closely spaced edifices whose loci are aligned along two parallel trends, one along the volcanic front (Zealandia Bank, Sarigan and South Sarigan), and one about 15 km west towards the rear-arc (Northwest Zealandia, West Zealandia and West Sarigan). Zealandia Bank dives revealed that, as with East Diamante, initial activity was basaltic and became more evolved with time. The western half of Zealandia Bank is dominated by felsic lavas centered on a small (~2 km diameter) caldera and

  18. Zircon geochronology reveals polyphase magmatism and crustal anatexis in the Buchan Block, NE Scotland: Implications for the Grampian Orogeny

    Directory of Open Access Journals (Sweden)

    T.E. Johnson


    Full Text Available The type locality for high-temperature, low-pressure regional metamorphism, the Buchan Block in NE Scotland, exhibits profound differences to the rest of the Grampian Terrane. These differences have led some to regard the Buchan Block as an exotic crustal fragment comprising Precambrian basement gneisses and cover rocks thrust into their current position during Grampian orogenesis. Although rocks of the Buchan Block are now generally correlated with Dalradian strata elsewhere, the origin of the gneisses and the cause of the high heat flow and associated magmatism is debated. We report SIMS U–Pb and LA-ICPMS Hf isotopic data in zircon from high-grade rocks from the northeast (Inzie Head Gneiss and northwest (Portsoy corners of the Buchan Block. Around Inzie Head, upper amphibolite to granulite facies metasedimentary gneisses coexist with diorite sheets that were emplaced contemporaneously with partial melting of their host rocks, at least locally. U–Pb geochronology indicates a crystallisation age for the diorite of 486 ± 9 Ma. Highly-deformed diorites within the Portsoy Gabbro have a crystallisation age of 493 ± 8 Ma. Ages of ca. 490 Ma for magmatism and high-grade metamorphism, which are broadly contemporaneous with ophiolite obduction and the onset of orogenesis, are significantly older than the established peak of Grampian metamorphism (ca. 470 Ma. We propose a new model for the Grampian Orogeny involving punctuated tectonothermal activity due to tectonic switching during accretionary orogenesis. Rollback of a NW-dipping subduction zone at ca. 490 Ma produced a back-arc environment (the Buchan Block with associated arc magmatism and high dT/dP metamorphism. Arrival of an outboard arc resulted in shortening (the initial phase of the Grampian Orogeny at ca. 488 Ma. Rollback of a NW-dipping subduction zone to the SE of the ca. 488 Ma suture began at 473 Ma and led to lithospheric-scale extension, decompression melting and

  19. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes (United States)

    Afanasyev, Andrey; Blundy, Jon; Melnik, Oleg; Sparks, Steve


    Many active or dormant volcanoes show regions of high electrical conductivity at depths of a few kilometres beneath the edifice. We explore the possibility that these regions represent lenses of high-salinity brine separated from a single-phase magmatic fluid containing H2O and NaCl. Since chloride-bearing fluids are highly conductive and have an exceptional capacity to transport metals, these regions can be an indication of an active hydrothermal ore-formation beneath volcanoes. To investigate this possibility we have performed hydrodynamic simulations of magma degassing into permeable rock. In our models the magma source is located at 7 km depth and the fluid salinity approximates that expected for fluids released from typical arc magmas. Our model differs from previous models of a similar process because it is (a) axisymmetric and (b) includes a static high-permeability pathway that links the magma source to the surface. This pathway simulates the presence of a volcanic conduit and/or plexus of feeder dykes that are typical of most volcanic systems. The presence of the conduit leads to a number of important hydrodynamic consequences, not observed in previous models. Importantly, we show that an annular brine lens capped by crystallised halite is likely to form above an actively degassing sub-volcanic magma body and can persist for more than 250 kyr after degassing ceases. Parametric analysis shows that brine lenses are more prevalent when the fluid is released at temperatures above the wet granite solidus, when magmatic fluid salinity is high, and when the high-permeability pathway is narrow. The calculated depth, form and electrical conductivity of our modelled system shares many features with published magnetotelluric images of volcano subsurfaces. The formation and persistence of sub-volcanic brine lenses has implications for geothermal systems and hydrothermal ore formation, although these features are not explored in the presented model.

  20. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland (United States)

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans


    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  1. Arc fault detection system (United States)

    Jha, K.N.


    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  2. Mesozoic to Cenozoic U-Pb zircon ages from Graham Land, West Antarctica: the magmatic evolution of the Antarctic Peninsula batholith (United States)

    Bastias, Joaquin; Spikings, Richard; Ulianov, Alex; Schaltegger, Urs; Grunow, Anne; Hervé, Francisco


    The plutonic rocks of the Antarctic Peninsula form one of the major intrusive bodies located along the circum-Pacific rim. Spanning ages of ˜240 to 9 Ma and emplaced over 1300 km long and 200 km wide along Graham and Palmer Land, these rocks represents a key unit to understand the magmatic and tectonic evolution of the Antarctic Peninsula. In the north, the plutons intrude Paleozoic- Mesozoic low-grade meta-sedimentary rocks, and intrudes schists and ortho- and paragneisses with Triassic to Carboniferous metamorphic ages, further south. The origin of the arc of Antarctic Peninsula has been in dispute since the interpretation of Vaughan and Storey (2000) who suggested that these plutonic rocks are part of an allochthonous arc, contradicting the traditional interpretation that these rocks are autochthonous and are part of the continental arc which formed along the southern margin of Gondwana (Suarez, 1976). We will address the magmatic and tectonic evolution of the Antarctic Peninsula by providing crystallization ages (zircon U-Pb and hornblende 40Ar/39Ar) of the main plutonic units, together with the characterization of the tectonic environment within which magmatism was occurring (geochemical studies and isotopic tracing). We present 45 LA-ICP-MS U-Pb (zircon) and 4 40Ar/39Ar (hornblende) dates of plutons and dikes from the west coast of the northern Antarctic Peninsula and the South Shetland Islands. Their geochemical composition shows affinities with calc-alkaline, supra-subduction zone rocks (Pearce et al., 1984). The U-Pb zircon ages range between ˜160 Ma (Stonington Island) to ˜9 Ma (Cornwallis Island), with a peak in the Early Cretaceous (Albian and Aptian). Upper Jurassic to Eocene intrusions were emplaced in a constant, approximately stationary position. Magmatism displaced ˜50km westwards during the Miocene, which is currently exposed on Watkin Island (˜22 Ma), Snodgrass Island (˜19 Ma), Litchfield Island (˜19 Ma) and Cornwallis Island (˜26 Ma

  3. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye


    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  4. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand (United States)

    van der Meer, Q. H. A.; Waight, T. E.; Scott, J. M.; Münker, C.


    Continental intraplate magmas with isotopic affinities similar to HIMU are identified worldwide. Involvement of an asthenospheric HIMU or HIMU-like source is contested because the characteristic radiogenic Pb compositions coupled with unradiogenic Sr and intermediate Nd and Hf compositions can also result from in-situ ingrowth in metasomatised lithospheric mantle. Sr-Nd-Pb-Hf isotopic compositions of late Cretaceous lamprophyre dikes from Westland, New Zealand, provide new insights into the formation of a HIMU-like alkaline intraplate magmatic province under the Zealandia continent. The oldest (102-100 Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i) = 18.6, 207Pb/204Pb(i) = 15.62, 208Pb/204Pb(i) = 38.6, 87Sr/86Sr(i) = 0.7063-0.7074, εNd(i) = -2.1 - +0.1 and εHf(i) = -0.2 - +2.3) and are interpreted as melts originating from subduction-modified lithosphere. Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92-84 Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i) = 18.7 to 19.4, 207Pb/204Pb(i) = 15.60 to 15.65, 208Pb/204Pb(i) = 38.6 to 39.4, 87Sr/86Sr(i) = 0.7031 to 0.7068, εNd(i) = +4.5 to +8.0 and εHf(i) = +5.1 to +8.0. Melt compositions point to an amphibole-bearing spinel facies lithospheric mantle source enriched by metasomatism that introduced, amongst many elements, U + Th which lead to rapid ingrowth to HIMU-like compositions. Importantly, this HIMU-like source enrichment appears to have completely originated from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98-82 Ma) occurred outboard of Gondwana's former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i) ≈ 20.5, 207Pb/204Pb(i) ≈ 15.7, 208Pb/204Pb(i) ≈ 40.0, εNd(i) ≈ 4.5 and εHf(i) ≈ 4.0). In contrast to the inboard HIMU-like magmas, the

  5. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead-zinc mineralization (Gangdese, Tibet) (United States)

    Zhou, Jinsheng; Yang, Zhusen; Hou, Zengqian; Liu, Yingchao; Zhao, Xiaoyan; Zhang, Xiong; Zhao, Miao; Ma, Wang


    In addition to well-known subduction processes, the collision of two continents also generates abundant ore deposits, as in the case of the Tibetan Plateau, which is the youngest and most spectacular collisional belt on Earth. During the building history of the Gangdese magmatic belt, several magmatic flare-up events developed, however, significant magmatic-hydrothermal lead-zinc mineralization dominantly accompanied the magmatism during the syncollisional period ( 65-41 Ma). Based on integrated geochemical and isotopic data, we provide insights into the genesis and evolution of syncollisional magmas, and their implications for significant magmatic-hydrothermal lead-zinc mineralization. The Sr-Nd isotopic compositions of most syncollisional igneous rocks (87Sr/86Sr = 0.7034-0.7123; εNd(t) = - 9.0 to + 1.8) indicate a mixing origin between mantle-derived basaltic magmas and ancient crustal melts, and fractional crystallization is a fundamental mechanism by which syncollisional magmas evolve towards intermediate to silicic compositions. Most lead-zinc mineralization-related plutons are high silica (76.14% wt.% SiO2 on average), high oxygen fugacity (average ΔFMQ + 2.5) granites with highly evolved chemical signatures [average Eun/Eun* = 0.33, high Rb/Sr (average = 3.9)], and they represent the final products from primary magmas. Due to the contribution of ancient crustal melts to the genesis of mineralization-related parent magmas, the spatial distribution of Pb-Zn deposits within the northern Gangdese magmatic belt is controlled by the lithospheric architecture. In compressional environments, magmas have low evacuation efficiency and long magma chamber lifespan, which is favorable for basaltic parents evolved to high silica granites through sufficient fractional crystallization. This scenario contributes to our understanding of the significant magmatic-hydrothermal lead-zinc mineralization that occurred in the syncollisional period.

  6. Argon isotopes as recorders of magmatic processes (United States)

    Layer, P. W.; Gardner, J. E.; Mora Chaparro, J. C.; Arce, J. L.


    Argon isotopic ratios vary enough between different reservoirs (atmosphere, crust, mantle) and diffuse fast enough through most minerals at magmatic temperatures (700-1200 C) to make them ideal for looking at magma chamber dynamics. Indeed, diffusion is sufficiently fast to allow short time scales to be deciphered, setting argon apart from many other isotopic methods. A mineral's ability to retain "excess" argon (40Ar/36Ar ratios greater than the atmospheric value and apparent ages older than the known eruption age) during post-eruption cooling is key to Ar studies. Previous work shows that both phenocrysts (crystallizing in the magma chamber; e.g. Mt St. Helens; Layer and Gardner, 2001) and xenocrysts (introduced into the magma chamber; e.g Toba; Gardner et al., 2002) preserve excess argon, which enables magma chamber processes to be deciphered through the variable diffusion rates between crystal phases. Single crystal 40Ar/39Ar step-heating of biotite from the 10.5 ka eruption of Nevado de Toluca volcano, Mexico indicates that they are xenocrystic and resided for only a short (< 1 year) time in the magma before it erupted. The biotite has reaction rims of hornblende, orthopyroxene and plagioclase, and failed to grow experimentally at pressure-temperature conditions of the magma, confirming the xenocrystic nature of this phase. Single-step fusion of plagioclase phenocrysts from eruptions of El Chichon volcano, Mexico, shows evidence of excess (mantle) argon, whereas hornblende from the same eruptions contains little or none. In this case, faster diffusion of Ar in plagioclase than in hornblende allow plagioclase to incorporate excess argon during magma recharge; hornblende does not. Combining such results with other isotopic systems may in fact better determine magma chamber processes. At El Chichon, Sr isotopes suggest magma recharges ocurred (Tepley et al., 2000), whereas the argon isotopes suggest such pulses occurred just before each eruption. The fast and

  7. Mesozoic Granitic Magmatism in Macao, Southeast China (United States)

    Quelhas, P. M.; Mata, J.; Lou, U. T.; Ribeiro, M. L.; Dias, Á. A.


    Macao ( 30 Km2) is a territory characterized by small granitic intrusions, located along the coastal region of Southeast China (Cathaysia Block). Granitoids occur as different facies, including microgranite dykes, with distinct textural, mineralogical and geochemical features, for which a middle-upper Jurassic age ( 164 Ma) has been proposed. New data suggest that these granitoids are mostly high-K calc-alkaline metaluminous (A/CNK = 0.8 - 1.1) biotite granites, consistent with total absence of primary muscovite. They show variable amounts of SiO2 (67-77%), reflecting different degrees of magmatic evolution. There is also variability in terms of trace elements, particularly Rare Earth Elements (REEs), evidenced by decreasing (La/Sm)N, (Gd/Lu)N, (Ce/Yb)N and (Eu/Eu*)N towards the more evolved samples, which can be partly attributed to fractional crystallization processes. Most of the granitoids are characterized by (La/Yb)N = 3 - 10.8, showing negative Ba, Nb, Sr, Zr, P, Ti and Eu anomalies. On the other hand, microgranite dykes, along with a few more evolved granites, show an opposite tendency, being usually enriched in HREEs relatively to LREEs with (La/Yb)N = 0.4 - 1.1. Our data suggests intermediate genetic affinities between I-type and A-type granites. Although these granitoids are mostly metaluminous (characteristic of I-types), Ga/Al ratios, usually used to identify A-types, are close to the accepted boundary between A-type and other granite types. The affinities with A-type granites are more marked for the more evolved facies, which depict higher values of FeOt/MgO (14 - 60) and K2O/MgO (60 - 250). Their trace element characteristics are also transitional between WPG (Within-plate granites) and Syn-COLG (Collision Granites). We interpret those transitional characteristics (A/I and WPG/Syn-COLG) of Macao granitoids as reflecting an origin by melting of infracrustal sources over a period of high heat transfer from mantle to crust during an extensional tectonic

  8. Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia

    Directory of Open Access Journals (Sweden)

    Fatih Karaoğlan


    Full Text Available The southeastern Anatolia comprises numbers of tectono-magmatic/stratigraphic units such as the metamorphic massifs, the ophiolites, the volcanic arc units and the granitoid rocks. All of them play important role for the late Cretaceous evolution of the southern Neotethys. The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion. Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of (83.1 ± 2.2–(74.6 ± 4.4 Ma. Comparison of the ophiolites, the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution. The ophiolites formed in a suprasubduction zone (SSZ setting as a result of northward intra-oceanic subduction. A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83–75 Ma. Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform (Malatya-Keban and followed by the intrusion of I-type calc-alkaline volcanic arc granitoids during 84–82 Ma. New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZ-type crust. Then the arc-related volcanic-sedimentary unit continued its development and lasted at ∼75 Ma until the deposition of the late Campanian–Maastrichtian shallow marine limestone. The subduction trench eventually collided with the Bitlis-Pütürge massif giving rise to HP-LT metamorphism of the Bitlis massif. Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were

  9. Timing of maturation of a Neoproterozoic oceanic arc during Pan-African Orogeny: the Asmlil complex (Anti-Atlas, South Morocco) (United States)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Watlet, Arnaud; Vandycke, Sara


    Many intra-oceanic paleo-arcs are exposed in the Pan-African belt surrounding the West African Craton. In the Moroccan Anti-Atlas, remnants of Intra-Oceanic Subduction Zone (IOSZ) are preserved in few erosional windows moulded along the Anti-Atlas Major fault. These complexes highlight a Neoproterozoic paleo-suture made of 760 My back-arc ophiolites thrusted to the south onto a dismembered band of oceanic arc relics. The Asmlil arc complex, located in the southern part of the Bou Azzer inlier, is made of (i) 755 to 745 My- intermediate banded gneiss interpreted as metavolcanic products of a juvenile oceanic arc. This latter has been intruded by (ii) medium-grained hornblende-gabbro and dioritic magmas, in turn intruded by (iii) medium- to coarse grained hornblenditic-granodioritic decametric intrusions under sub-magmatic HT conditions. Hornblende-gabbros are made of garnet + amphibole/cpx relics + epidote + rutile paragenesis. Calculated pseudosections yielded P ~ 11-12 kbar for T ranging between 600 and 720°C for garnet growth. Measured Zr-in-rutile thermometer gave slightly higher temperature ranging between 710-790°C. On the field, garnet-rich leucocratic veinlets suggest that moderate partial melting of the mafic rock or localized dehydration reactions took place under garnet-granulite conditions (>800°C for hydrated chemical system). New geochronological data on garnet-bearing leucogabbros constrain their emplacement at 700 ±7 My (U-Pb zircon with low Th/U volcanic to subvolcanic massifs. Second event occurred around 700 My and results from mafic products intruding previous arc. A last event also dated at 660-650 My in the Sirwa window marks the emplacement of hot hornblenditic arc-magmas into older arc massifs during the tectonic extrusion of the arc section. This late event is also related to intense melt production at different level of the arc contributing to differentiation of the whole arc complex. We thus interpreted the Asmlil complex as the final

  10. Geochemical, Sr-Nd isotopic investigations and U-Pb zircon chronology of the Takht granodiorite, west Iran: Evidence for post-collisional magmatism in the northern part of the Urumieh-Dokhtar magmatic assemblage (United States)

    Haghighi Bardineh, Seyyed Nematollah; Zarei Sahamieh, Reza; Zamanian, Hassan; Ahmadi Khalaji, Ahmad


    Subduction of Neo-Tethys lithosphere beneath the Iranian plateau during Neogene led to the formation of a NW-SE trending volcano-plutonic zone called Urumieh-Dokhtar magmatic assemblage (UDMA). The Takht granodiorite (NE of Hamedan Province, western Iran) belongs to the UDMA and has geochemical properties of post-collisional granitoids that was formed after the collision of Arabian and Iranian plateaus. This body contains rounded mafic micro-granular enclaves with relatively gradational rims indicating the effect of magma mixing/mingling in formation of the granodiorite body. The determination of U-Pb zircon age proved the Takht granodiorite was formed at Miocene (16.8 ± 0.24 Ma). The Nd-Sr isotope ratios and Sr/Nd, Nb/La and Th/U ratios of the granodiorite confirmed the magma was formed mainly by melting of continental crust, and its enclaves originated from a mantle derived mafic magma. Samples show negative anomalies in Nb, Sr, Ti, P and Eu, whereas positive anomalies in Th, K, Zr, Yb and Rb that reveals contribution of mantle and crustal materials in their generation. The Takht granodiorite has geochemical features of A2-type granites and also shows properties of both the volcanic arc and within plate magmatism association granitoids (high levels of LILEs and HFSEs). Regarding this interpretation and also post-collisional tectonic regime, it can be concluded that post-collision extensions caused deep faults in the UDMA that let mantle derived magmas rise up to the thicken crust. Such magma triggered melting in the middle crustal levels and was contaminated with crustal materials to generate granodiorite and enclave magmas respectively. The results of the current study decipher collision between the Arabian and the Iranian plateaus occurred before Miocene and the magmatism in the UDMA continued after closure of Neo-Tethys.

  11. Study of the subduction-related magmatism and of the continental erosion, by uranium-series: constraints on the processes and the timescale

    International Nuclear Information System (INIS)

    Dosseto, A.


    (The first part of this research thesis in geochemistry proposes an overview of knowledge and a description of the contribution of uranium-series to the magmatism in subduction zones. The second part addresses the continental erosion, and more particularly the alteration regimes and the dynamics of transfer of sediments constrained by uranium-series. Already published articles complete this report: U-Th-Pa-Ra study of the Kamchatka arc: new constraints on genesis of arc basalts; Dehydration and partial melting in subduction zones: constraints from U-series disequilibria; Timescale and conditions of chemical weathering under tropical climate: study of the Amazon basin with U-series; Timescale and conditions of chemical weathering in the Bolivian Andes and their fore-land basin

  12. Latest Cambrian-Early Ordovician rift-related magmatic activity in the Kouřim Unit, Bohemian Massif (United States)

    Soejono, Igor; Machek, Matej; Sláma, Jiří; Janoušek, Vojtěch


    Pre-collisional history of high-grade Variscan complexes is mostly difficult to reveal, due to intense reworking during the development of the orogenic belt. An ancient magmatism could provide a unique possibility to study it. The Kouřim Unit represents an extensive pre-Variscan plutonic body involved into the tectonic collage of the Kutná Hora Crystalline Complex, at the northern margin of the Moldanubian Domain in the Bohemian Massif. The LA-ICP-MS zircon ages and geochemical characteristics of (meta-)igneous rocks from the Kouřim Unit allow us to determine the timing and nature of magmatic activity within this part of the Bohemian Massif and thus to decipher its pre-Variscan evolution. The Kouřim Unit is composed of strongly metamorphosed and deformed sequence of magmatic rocks, dominated mainly by various types of migmatites, coarse-grained orthogneisses and minor metadiorites. The newly obtained LA-ICP-MS U-Pb zircon ages of four orthogneisses ranging between 486 ± 2 Ma and 484 ± 2 Ma are interpreted as timing the magma crystallization. The single metadiorite gave concordia age of 337 ± 2 Ma interpreted as the age of migmatitization. Few discordant older ages from metadiorite are considered as older xenocrysts more or less reset during the Variscan metamorphism. The orthogneisses are acid (SiO2 = 68.6-76.4 wt. %), exclusively subaluminous and seem to form a single calc-alkaline trend, whereas the metadiorite is intermediate (SiO2 = 54.3 wt. %; mg# = 61), distinctly metaluminous and displays tholeiitic character. The chondrite-normalized REE patterns for the orthogneisses show LREE enrichment (LaN/YbN = 1.5-8.9) and deep negative Eu anomalies (Eu/Eu* = 0.42-0.32); the NMORB-normalized spiderplots feature LILE/HFSE enrichment with deep negative Nb- Ta-Ti anomalies. In contrast, both patterns of metadiorite resemble those of NMORB (LaN/YbN = 0.5, Eu/Eu* = 0.96). The apparent magmatic arc-like geochemical signature of the orthogneisses is interpreted as

  13. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition (United States)

    Wang, Xinyu; Yuan, Chao; Zhang, Yunying; Long, Xiaoping; Sun, Min; Wang, Lixing; Soldner, Jeremie; Lin, Zhengfan


    Voluminous Paleozoic intrusions occur in the Beishan Orogenic Collage (BOC) and their genesis and tectonic background are important to reconstruct the accretion-collision processes in the southernmost Altaids. Paleozoic is an important period for arc development in the BOC, where the Gongpoquan and Huaniushan arcs are located. There are two pulses of magmatism in the Huaniushan and Gongpoquan arcs, i.e., the ca. 470-423 Ma I-type and ca. 424-395 Ma S- and A-type granitoids. In this study, we focus on two peraluminous granitic plutons in the Gongpoquan arc, i.e., the Baitoushan muscovite granite and Haergen two-mica granite, aiming at unraveling their petrogenesis and tectonic background. Zircon LA-ICP-MS U-Pb dating yields emplacement ages of ca. 409-395 Ma and ca. 409 Ma for the Baitoushan and Haergen plutons, respectively. Both the granitic plutons are strongly peraluminous with A/CNK ratios of 1.10-1.20, indicative of S-type affinities. The rocks are characterized by high SiO2 and K2O contents with high CaO/Na2O ratios. Moreover, the rocks possess low MgO contents, Rb/Sr and Rb/Ba ratios, together with their relatively high initial 87Sr/86Sr ratios (0.7139-0.7152) and less radiogenic εNd(t) values (-3.15 to -5.17), implying a clay-poor and plagioclase-rich crustal source. Compared with earlier pulse of arc-related magmatism (ca. 470-423 Ma), the latter pulse of magmatism (ca. 424-395 Ma) consists mainly of "normal granite" characterized by higher SiO2 (>66%) and K2O contents, weaker fractionated REE patterns and lower δEu values, and gabbroic to dioritic intrusions are only sporadic. Moreover, the granitoids of the latter pulse show variable but more crust-like Sr-Nd isotopic compositions ((87Sr/86Sr)0 = 0.7038-0.7327; εNd(t) = -6.70 to +0.33) than the earlier ones ((87Sr/86Sr)0 = 0.7024-0.7080; εNd(t) = -2.56 to +8.86), indicating that the Early Devonian (ca. 424-395 Ma) experienced extensive crustal melting with minor involvement of mantle materials

  14. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea (United States)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.


    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  15. Impact of Magmatism on the Geodynamic Evolution of Southern Georgia on the Example of the Lesser Caucasus Artvin-Bolnisi Block. (United States)

    Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio


    The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit

  16. Magnesium Isotopes as a Tracer of Crustal Materials in Volcanic Arc Magmas in the Northern Cascade Arc

    Directory of Open Access Journals (Sweden)

    Aaron W. Brewer


    Full Text Available Fifteen North Cascade Arc basalts and andesites were analyzed for Mg isotopes to investigate the extent and manner of crustal contributions to this magmatic system. The δ26Mg of these samples vary from within the range of ocean island basalts (the lightest being −0.33 ± 0.07‰ to heavier compositions (as heavy as −0.15 ± 0.06‰. The observed range in chemical and isotopic composition is similar to that of other volcanic arcs that have been assessed to date in the circum-pacific subduction zones and in the Caribbean. The heavy Mg isotope compositions are best explained by assimilation and fractional crystallization within the deep continental crust with a possible minor contribution from the addition of subducting slab-derived fluids to the primitive magma. The bulk mixing of sediment into the primitive magma or mantle source and the partial melting of garnet-rich peridotite are unlikely to have produced the observed range of Mg isotope compositions. The results show that Mg isotopes may be a useful tracer of crustal input into a magma, supplementing traditional methods such as radiogenic isotopic and trace element data, particularly in cases in which a high fraction of crustal material has been added.

  17. Mesoarchean Gabbroanorthosite Magmatism of the Kola Region (United States)

    Kudryashov, N.; Mokrushin, A.


    The Kola peninsula is the region marked with development of anorthosite magmatism in the NE Baltic Shield. The Archaean gabbroanorthosites intrusions - Tsaginsky, Achinsky and Medvezhe-Schucheozersky - have the age of 2.7-2.6 Ga (Bayanova, 2004). The Patchemvarek and Severny gabbroanorthosites intrusions are located in the junction zone of the Kolmozero-Voronja greenstone belt and the Murmansk domain. Age data for sedimentaryvolcanogenic rocks of the Kolmozero-Voronja belt and Murmansk domain granitoids are 2.8-2.7 Ga. The gabbroanorthosites intrusions have more calcic composition (70-85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fiskenesset Complex (Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 29257 and 29358 Ma for the gabbroanorthosites of the Patchemvarek and Severny massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Cen = 2.2-4.2, Ybn = 1.6-2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Cen = 1.2, Ybn = 1.1, La/Ybn = 1.32), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive "Nd= + 2.68 for the gabbroanorthosites of the Severny Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. The rocks of the Severny and Patchemvarek massifs has 87Sr/86Sri = 0.702048 and 87Sr/86Sri = 0.70258_8, respectively. The oldest U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severny massifs marking the Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean and the Mesoarchean gabbroanorthosites suggest the existence of two mantle sources. One of them produced

  18. Percussive arc welding apparatus (United States)

    Hollar, Jr., Donald L.


    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  19. Post-Eocene volcanics of the Abazar district, Qazvin, Iran: Mineralogical and geochemical evidence for a complex magmatic evolution (United States)

    Asiabanha, A.; Bardintzeff, J. M.; Kananian, A.; Rahimi, G.


    The style of volcanism of post-Eocene volcanism in the Alborz zone of northern Iran is different to that of Eocene volcanism (Karaj Formation). Indeed, the volcanic succession of the Abazar district, located in a narrow volcanic strip within the Alborz magmatic assemblage, is characterized by distinct mineralogical and chemical compositions linked to a complex magmatic evolution. The succession was produced by explosive eruptions followed by effusive eruptions. Two main volcanic events are recognized: (1) a thin rhyolitic ignimbritic sheet underlain by a thicker lithic breccia, and (2) lava flows including shoshonite, latite, and andesite that overlie the first event across a reddish soil horizon. Plagioclase in shoshonite (An 48-92) shows normal zoning, whereas plagioclase in latite and andesite (An 48-75) has a similar composition but shows reverse and oscillatory zoning. QUILF temperature calculations for shoshonites and andesites yield temperatures of 1035 °C and 1029 °C, respectively. The geothermometers proposed by Ridolfi et al. (2010) and Holland and Blundy (1994) yield temperatures of 960 °C and 944 °C for latitic lava, respectively. The samples of volcanic rock show a typical geochemical signature of the continental arc regime, but the andesites clearly differ from the shoshonites, the latites and the rhyolites. The mineralogical and chemical characteristics of these rocks are explained by the following petrogenesis: (1) intrusion of a hot, mantle-depth mafic (shoshonitic) magma, which differentiated in the magma chamber to produce a latitic and then a rhyolitic liquid; (2) rhyolitic ignimbritic eruptions from the top of the magma chamber, following by shoshonitic and then latitic extrusions; (3) magma mingling between the latitic and andesitic magmas, as indicated by the occurrence of andesite clasts within the latite; and (4) andesitic effusions. The youngest volcanic events in the Alborz zone show a close chemical relationship with continental arc

  20. Formation of hybrid arc andesites beneath thick continental crust (United States)

    Straub, Susanne M.; Gomez-Tuena, Arturo; Stuart, Finlay M.; Zellmer, Georg F.; Espinasa-Perena, Ramon; Cai, Yue; Iizuka, Yoshiyuki


    Andesite magmatism at convergent margins is essential for the differentiation of silicate Earth, but no consensus exists as to andesite petrogenesis. Models proposing origin of primary andesite melts from mantle and/or slab materials remain in deadlock with the seemingly irrefutable petrographic and chemical evidence for andesite formation through mixing of basaltic mantle melts with silicic components from the overlying crust. Here we use 3He/4He ratios of high-Ni olivines to demonstrate the mantle origin of basaltic to andesitic arc magmas in the central Mexican Volcanic Belt (MVB) that is constructed on ~ 50 km thick continental crust. We propose that the central MVB arc magmas are hybrids of high-Mg# > 70 basaltic and dacitic initial mantle melts which were produced by melting of a peridotite subarc mantle interspersed with silica-deficient and silica-excess pyroxenite veins. These veins formed by infiltration of reactive silicic components from the subducting slab. Partial melts from pyroxenites, and minor component melts from peridotite, mix in variable proportions to produce high-Mg# basaltic, andesitic and dacitic magmas. Moderate fractional crystallization and recharge melt mixing in the overlying crust produces then the lower-Mg# magmas erupted. Our model accounts for the contrast between the arc-typical SiO2 variability at a given Mg# and the strong correlation between major element oxides SiO2, MgO and FeO which is not reproduced by mantle-crust mixing models. Our data further indicate that viscous high-silica mantle magmas may preferentially be emplaced as intrusive silicic plutonic rocks in the crust rather than erupt. Ultimately, our results imply a stronger turnover of slab and mantle materials in subduction zones with a negligible, or lesser dilution, by materials from the overlying crust.

  1. Origin of sulfur and crustal recycling of copper in polymetallic (Cu-Au-Co-Bi-U ± Ag) iron-oxide-dominated systems of the Great Bear Magmatic Zone, NWT, Canada (United States)

    Acosta-Góngora, P.; Gleeson, S. A.; Samson, I. M.; Corriveau, L.; Ootes, L.; Jackson, S. E.; Taylor, B. E.; Girard, I.


    The Great Bear Magmatic Zone, in northwest Canada, contains numerous polymetallic mineral occurrences, prospects, and deposits of the iron oxide copper-gold deposit (IOCG) family. The mineralization is hosted by the Treasure Lake Group and igneous rocks of the Great Bear arc and was deposited concomitantly with the arc magmatism (ca. 1.88 to 1.87 Ga). In situ δ 34S ( n = 48) and δ 65Cu ( n = 79) analyses were carried out on ore-related sulfides from a number of these systems. The δ 34S values mainly vary between 0 and +5‰, consistent with derivation of sulfur from the mantle. Lower δ 34S values (-7.7 to +1.4‰) from the Sue-Dianne breccia may indicate SO2 disproportionation of a magmatic hydrothermal fluid. The δ 65Cu values vary between -1.2 and -0.3‰, and are lower than the igneous δ 65Cu range of values (0.0 ± 0.27‰). The S and Cu isotopic data are decoupled, which suggests that Cu (and possibly some S) was dissolved and remobilized from supracrustal rocks during early stages of alteration (e.g., sodic alteration) and then precipitated by lower temperature, more oxidizing fluids (e.g., Ca-Fe-K alteration). A limited fluid inclusion dataset and δ 13C and δ 18O values are also presented. The δ 18Ofluid values are consistent with a magmatic origin or a host-rock equilibrated meteoric water source, whereas the δ 13Cfluid values support a marine carbonate source. Combined, the S and Cu isotopic data indicate that while the emplacement of the Great Bear magmatic bodies may have driven fluid convection and may be the source of fluids and sulfur, metals such as Cu could have been recycled from crustal sources.

  2. A reworked Lake Zone margin: Chronological and geochemical constraints from the Ordovician arc-related basement of the Hovd Zone (western Mongolia) (United States)

    Soejono, Igor; Buriánek, David; Janoušek, Vojtěch; Svojtka, Martin; Čáp, Pavel; Erban, Vojtěch; Ganpurev, Nyamtsetseg


    The primary relationships and character of the boundaries between principal lithotectonic domains in the Mongolian tract of the Central Asian Orogenic Belt (CAOB) are still poorly constrained. This brings much uncertainty in understanding of the orogeny configuration and the complete accretionary history. The plutonic Khuurai Tsenkher Gol Complex and the mainly metasedimentary Bij Group represent associated medium- to high-grade basement complexes exposed in the Hovd Zone close to its boundary with the Lake Zone in western Mongolia. The Khuurai Tsenkher Gol Complex is composed of variously deformed acid to basic magmatic rocks intimately associated with the metamorphosed sedimentary and volcanic rocks of the Bij Group. Results of our field work, new U-Pb zircon ages and whole-rock geochemical data suggest an existence of two separate magmatic events within the evolution of the Khuurai Tsenkher Gol Complex. Early to Mid-Ordovician (476 ± 5 Ma and 467 ± 4 Ma protoliths) normal- to high-K calc-alkaline orthogneisses, metadiorites and metagabbros predominate over Mid-Silurian (430 ± 3 Ma) tholeiitic-mildly alkaline quartz monzodiorites. Whereas the geochemical signature of the former suite unequivocally demonstrates its magmatic-arc origin, that of the latter quartz monzodiorite suggests an intra-plate setting. As shown by Sr-Nd isotopic data, the older arc-related magmas were derived from depleted mantle and/or were generated by partial melting of juvenile metabasic crust. Detrital zircon age populations of the metasedimentary rocks together with geochemical signatures of the associated amphibolites imply that the Bij Group was a volcano-sedimentary sequence, formed probably in the associated fore-arc wedge basin. Moreover, our data argue for an identical provenance of the Altai and Hovd domains, overall westward sediment transport during the Early Palaeozoic and the east-dipping subduction polarity. The obvious similarities of the Khuurai Tsenkher Gol Complex

  3. [Spectra and thermal analysis of the arc in activating flux plasma arc welding]. (United States)

    Chai, Guo-Ming; Zhu, Yi-Feng


    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  4. Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: Implications for Gondwana (United States)

    Yellappa, T.; Rao, J. Mallikharjuna


    Granitoid intrusions occur widely in the Southern Granulite Terrain (SGT) of India, particularly within the Cauvery Suture Zone (CSZ), which is considered as the trace of the Neoproterozoic Mozambique ocean closure. Here we present the petrological and geochemical features of 19 granite plutons across the three major tectonic blocks of the terrain. Our data show a wide variation in the compositions of these intrusions from alkali feldspathic syenite to granite. The whole rock geochemistry of these intrusions displays higher concentrations of SiO2, FeO*, K2O, Ba, Zr, Th, LREE and low MgO, Na2O, Ti, P, Nb, Y and HREE's. The granitoids are metaluminous to slightly peraluminous in nature revealing both I-type and A-type origin. In tectonic discrimination plots, the plutons dominantly show volcanic arc and syn-collisional as well as post-collisional affinity. Based on the available age data together with geochemical constrains, we demonstrate that the granitic magmatism in the centre and south of the terrain is mostly associated with the Neoproterozoic subduction-collision-accretion-orogeny, followed by extensional mechanism of Gondwana tectonics events. Similar widespread granitic activity has also been documented in the Arabian Nubian shield, Madagascar, Sri Lanka and Antarctica, providing similarities for the reconstruction of the crustal fragments of Gondwana supercontinent followed by Pan-African orogeny.

  5. Isotopic evidence of Middle Proterozoic magmatism from Bombay ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Isotopic evidence of Middle Proterozoic magmatism from. Bombay High Field: Implications to crustal evolution of western offshore of India. S S Rathore1,∗, A R Vijan2, M P Singh2, B N Prabhu3 and Anand Sahu1. 1Forward Base Office, Assam & Assam Arakan Basin-Tripura, ONGC, Agartala 799 014, India.

  6. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley


    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  7. Contrasting magmatic signatures in the Rairakhol and Koraput ...

    Indian Academy of Sciences (India)

    Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkali- basalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated ...

  8. Contrasting magmatic signatures in the Rairakhol and Koraput ...

    Indian Academy of Sciences (India)

    Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkalibasalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated ...

  9. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)


    dyke swarm). It is suggested that the ~2.8 Ga A-type granites in the Singbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting. Key words: Granite; A-type; Geochemistry; Archaean; Crustal reworking; Singhbhum craton. Abstract. Click here to ...

  10. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)

    Abhishek Topno


    Apr 11, 2018 ... crustal melting of tonalitic/granodioritic source similar to the ~3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE–SSW trending mafic dyke swarm). It is suggested that the.

  11. The Neoproterozoic Malani magmatism of the northwestern Indian ...

    Indian Academy of Sciences (India)

    2) in India. This magmatic activity took place at ∼750Ma post-dating the Erinpura granite (850 Ma) and ended prior to Marwar Supergroup (680 Ma) sedimentation. Malani eruptions occurred mostly on land, but locally sub-aqueous conditions ...

  12. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari


    Full Text Available Volcanic rocks of interest are situated in the middle part of the Urumieh-Dokhtar Magmatic Arc (UDMA. They are parts of a vast magmatic province located in the north of Bitlis-Zagros suture zone. Having a prevailing porphyritic texture, these rocks include phenocrysts of plagioclase, amphibole and biotite in a matrix composed of feldspar, quartz, opaque, glass and microlite and mineralogically show composition of dacite to andesite. Minerals are mostly fresh. Effects of alteration are limited to weak chloritization and saussuritization in some amphiboles and rim of plagioclases, respectively. All of the analyzed biotites in the Miocene-Pliocene volcanic rocks in the east of Kamu are of Mg-biotite. According to a widespread classification of micas to 6 general end-members, biotites of interest are averagely composed of 55.45% phlogopite, 15.90% talc, 12.72% Ti-phlogopite, 11.44% eastonite, 3.71% ferri-eastonite and 0.78% muscovite. Chemical composition of biotites indicates a calk-alkaline magmatic series for the magma from which biotites are crystallized. Estimation of the oxygen fugacity of magma, based on chemical composition and Fe3+ content of biotite, shows that the oxygen fugacity was limited to FMQ buffer in quality and was about 10-15 bar in quantity. This value accords the oxygen fugacity for intermediate-acidic volcanic rocks.

  13. Active Magmatic Underplating in Western Eger Rift, Central Europe (United States)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst


    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  14. Stratigraphy, geochemistry and tectonic significance of the Oligocene magmatic rocks of western Oaxaca, southern Mexico (United States)

    Martiny, Barbara; Martínez-Serrano, Raymundo G.; Morán-Zenteno, Dante J.; Macías-Romo, Consuelo; Ayuso, Robert A.


    In western Oaxaca, Tertiary magmatic activity is represented by extensive plutons along the continental margin and volcanic sequences in the inland region. K-Ar age determinations reported previously and in the present work indicate that these rocks correspond to a relatively broad arc in this region that was active mainly during the Oligocene (˜35 to ˜25 Ma). In the northern sector of western Oaxaca (Huajuapan-Monte Verde-Yanhuitlán), the volcanic suite comprises principally basaltic andesite to andesitic lavas, overlying minor silicic to intermediate volcaniclastic rocks (epiclastic deposits, ash fall tuffs, ignimbrites) that were deposited in a lacustrine-fluvial environment. The southern sector of the volcanic zone includes the Tlaxiaco-Laguna de Guadalupe region and consists of intermediate to silicic pyroclastic and epiclastic deposits, with silicic ash fall tuffs and ignimbrites. In both sectors, numerous andesitic to dacitic hypabyssal intrusions (stocks and dikes) are emplaced at different levels of the sequence. The granitoids of the coastal plutonic belt are generally more differentiated than the volcanic rocks that predominate in the northern sector and vary in composition from granite to granodiorite. The studied rocks show large-ion lithophile element (LILE) enrichment (K, Rb, Ba, Th) relative to high-field-strength (HFS) elements (Nb, Ti, Zr) that is characteristic of subduction-related magmatic rocks. On chondrite-normalized rare earth element diagrams, these samples display light rare earth element enrichment (LREE) and a flat pattern for the heavy rare earth elements (HREE). In spite of the contrasting degree of differentiation between the coastal plutons and inland volcanic rocks, there is a relatively small variation in the isotopic composition of these two suites. Initial 87Sr/ 86Sr ratios obtained and reported previously for Tertiary plutonic rocks of western Oaxaca range from 0.7042 to 0.7054 and ɛNd values, from -3.0 to +2.4, and for the

  15. Stratigraphy, geochemistry and tectonic significance of the Oligocene magmatic rocks of western Oaxaca, southern Mexico (United States)

    Martiny, B.; Martinez-Serrano, R. G.; Moran-Zenteno, D. J.; MacIas-Romo, C.; Ayuso, R.A.


    In Western Oaxaca, Tertiary magmatic activity is represented by extensive plutons along the continental margin and volcanic sequences in the inland region. K-Ar age determinations reported previously and in the present work indicate that these rocks correspond to a relatively broad arc in this region that was active mainly during the Oligocene (~ 35 to ~ 25 Ma). In the northern sector of western Oaxaca (Huajuapan-Monte Verde-Yanhuitlan), the volcanic suite comprises principally basaltic andesite to andesitic lavas, overlying minor silicic to intermediate volcaniclastic rocks (epiclastic deposits, ash fall tuffs, ignimbrites) that were deposited in the lacustrine-fluvial environment. The southern sector of the volcanic zone includes the Tlaxiaco-Laguna de Guadalupe region and consists of intermediate to silicic pyroclastic and epiclastic deposits, with silicic ash fall tuffs and ignimbrites. In both sectors, numerous andesitic to dacitic hypabyssal intrusions (stocks and dikes) were emplaced at different levels of the sequence. The granitoids of the coastal plutonic belt are generally more differentiated than the volcanic rocks that predominate in the northern sector and vary in composition from granite to granodiorite. The studied rocks show large-ion lithophile element (LILE) enrichment (K, Rb, Ba, Th) relative to high-field-strength (HFS) elements (Nb, Ti, Zr) that is characteristic of subduction-related magmatic rocks. On chondrite-normalized rare earth element diagrams, these samples display light rare earth element enrichment (LREE) and a flat pattern for the heavy rare earth elements (HREE). In spite of the contrasting degree of differentiation between the coastal plutons and inland volcanic rocks, there is a relatively small variation in the isotopic composition of these two suites. Initial 87Sr/86Sr ratios obtained and reported previously for Tertiary plutonic rocks of western Oaxaca range from 0.7042 to 0.7054 and ??Nd values, from -3.0 to +2.4, and for

  16. Arcing phenomena in fusion devices workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.


    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included.

  17. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.


    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  18. Characteristic Time Scales of Characteristic Magmatic Processes and Systems (United States)

    Marsh, B. D.


    Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these

  19. Surface erosion by electrical arcs

    International Nuclear Information System (INIS)

    Behrisch, R.


    The authors discuss traces of cathode spots from electrical arcs observed on the vessel walls of high temperature plasma experiments. They originate from short metal plasma discharges which can be ignited at the walls due to the Langmuir sheath potential in front of the walls and thus the hydrogen plasma acts as the anode. The arcs may also be caused by electrical potentials which are created by gradients in the plasma, by plasma motion or during disruptive plasma phases. The material eroded from the walls at the cathode spots contributes to impurity introduction into the hydrogen plasma. Further arcing is a critical issue in high intensity ion sources and in RF transmitters and antennas for plasma heating

  20. Paleoproterozoic arc basalt-boninite-high magnesian andesite-Nb enriched basalt association from the Malangtoli volcanic suite, Singhbhum Craton, eastern India: Geochemical record for subduction initiation to arc maturation continuum (United States)

    Rajanikanta Singh, M.; Manikyamba, C.; Ganguly, Sohini; Ray, Jyotisankar; Santosh, M.; Dhanakumar Singh, Th.; Chandan Kumar, B.


    The Singhbhum Craton of eastern India preserves distinct signatures of ultramafic-mafic-intermediate-felsic magmatism of diverse geodynamic affiliations spanning from Paleo-Mesoarchean to Proterozoic. Here we investigate the 2.25 Ga Malangtoli volcanic rocks that are predominantly clinopyroxene- and plagioclase-phyric, calc-alkaline in nature, display basalt-basaltic andesite compositions, and preserve geochemical signatures of subduction zone magmatism. Major, trace and rare earth element characteristics classify the Malangtoli volcanic rocks as arc basalts, boninites, high magnesian andesites (HMA) and Nb enriched basalts (NEB). The typical LILE enriched-HFSE depleted geochemical attributes of the arc basalts corroborate a subduction-related origin. The boninitic rocks have high Mg# (0.8), MgO (>25 wt.%), Ni and Cr contents, high Al2O3/TiO2 (>20), Zr/Hf and (La/Sm)N (>1) ratios with low (Gd/Yb)N (54 wt.%), MgO (>6 wt.%), Mg# (0.47) with elevated Cr, Co, Ni and Th contents, depleted (Nb/Th)N, (Nb/La)N, high (Th/La)N and La/Yb (Y with low Sr/Y. The NEBs have higher Nb contents (6.3-24 ppm), lower magnitude of negative Nb anomalies with high (Nb/Th)pm = 0.28-0.59 and (Nb/La)pm = 0.40-0.69 and Nb/U = 2.8-34.4 compared to normal arc basalts [Nb = generation of NEB. Thus, the arc basalt-boninite-HMA-NEB association from Malangtoli volcanic suite in Singhbhum Craton preserves the signature of a complete spectrum of Paleoproterozoic active convergent margin processes spanning from subduction initiation to arc maturation.

  1. Geochronological synthesis of magmatism, metamorphism and metallogeny of Costa Rica, Central America

    International Nuclear Information System (INIS)

    Alvarado, Guillermo E.; Gans, Phillipe B.


    A comprehensive compilation of 651 (since 1968) radiometric ages determinations (415 40 Ar/ 39 Ar, 211 K/Ar, 5 U/Th, 4 Rb/Sr, 2 U/Pb, and 13 fission track thermochronology ages using zircon) have provided a complete picture of the igneous stratigraphy of Costa Rica, and information about the age of the major metamorphic and metallogenic events in the region. Igneous rocks of Late Jurassic to Middle Eocene age (∼ 160 to ∼ 41 Ma), mainly accreted ophiolites. The actual subduction zone was established, represented by volcano-sedimentary rocks of basic to felsic composition, at the beginning of Campanian time (∼ 71 Ma). However, voluminous subalkaline, primary volcanic rocks have appeared only after ∼ 29 Ma. Intrusive to hypabyssal granitic to gabboic plutons, stocks, equivalent dykes and sills, are widely exposed in the Talamanca range (∼ 12,4 - 7,8 Ma), hills of Escazu (∼ 6,0 - 5,9 Ma), and Fila Costena (∼ 18,3 - 16,8 and ∼ 14,8 - 11,1 Ma), Tapanti-Montes del Aguacate-Carpintera (∼ 4,2 - 2,2 Ma) and Guacimal (∼ 6,4 - 5,2 Ma). Arc rocks between 29 and 11 Ma (called Photo-Volcanic Front) are known in the San Carlos plains and in southern Costa Rica. The location and age of the igneous rocks have indicated that there was a 20 degrees counterclockwise rotation of the arc (termed as Proto-Volcanic Front) between 15 and 8 Ma, with a pole of rotation that has centered on southern Costa Rica. This rotation is attributed to deformation in the overriding plate (shortening in the south coeval with extension in the NW), accompanied by trench retreat in the south. At ∼ 3,45 Ma, arc-related volcanism has shut off in southern part of the region, but local acid-adakite volcanism has persisted in the Talamanca range (4,2 - 0,95 Ma) due to the subduction of the Cocos Ridge. The Paleo-Volcanic Front is represented by arc-related rocks (8 - 3,5 Ma) along the length of Costa Rica, parallel to but in front of the modern arc. This activity was followed by the

  2. Petrogenesis of metaultramafic rocks from the Quadrilátero Ferrífero and adjacent terrains, Minas Gerais, Brazil: Two events of ultramafic magmatism? (United States)

    da Fonseca, Gabriela Magalhães; Jordt-Evangelista, Hanna; Queiroga, Gláucia Nascimento


    In the worldwide known Quadrilátero Ferrífero and the adjacent terrains, southeastern Brazil, many serpentinite and soapstone quarries, and some rare bodies of metaultramafic rocks that partially preserve minerals or textures from the original igneous protolith can be found. It is not known if the protoliths and the ages of the metaultramafic rocks found in the Quadrilátero Ferrífero (and its oriental basement) and Mineiro Belt regions are the same or if they represent distinct magmatic episodes. The petrogenetic investigation, specially concerning the REE contents, aimed to gather informations about the type of magmatism and the mantle source in order to compare the metaultramafic rocks of both regions. The interpretation of the data concerning petrography, mineral chemistry and geochemistry shows that the metaultramafic rocks are similar to komatiitic peridotites, with MgO contents > 22 wt % and TiO2 < 0.9 wt %. The plot of the REE for the lithotypes found in the Quadrilátero Ferrífero shows decrease in LREE possibly reflecting the depletion of the mantle source. On the other hand the samples from the Mineiro Belt are enriched in LREE suggesting a mantle source enriched in these elements. This enrichment may have been caused by mantle metassomatism that occurred during accretion of the Paleoproterozoic magmatic arc that generated the Mineiro belt. In this paper, we therefore suggest two periods of ultramafic magmatism. The first one found in the Archean basement of the Quadrilátero Ferrífero, with a depleted mantle source. The second occurred in the Paleoproterozoic basement of the Mineiro belt, having a metassomatized mantle as source.

  3. Petrology and SHRIMP zircon geochronology of granulites from Vesleknausen, Lützow-Holm Complex, East Antarctica: Neoarchean magmatism and Neoproterozoic high-grade metamorphism

    Directory of Open Access Journals (Sweden)

    Toshiaki Tsunogae


    Full Text Available We report new petrological data and geochronological measurements of granulites from Vesleknausen in the highest-grade section of the Lützow-Holm Complex, part of the Gondwana-assembling collisional orogen in East Antarctica. The locality is dominated by felsic to intermediate orthogneiss (charnockite and minor biotite gneiss, mafic orthogneiss, and hornblende-pyroxene granulite, with deformed and undeformed dykes of metagranite and felsic pegmatite. Pseudosection analysis of charnockite in the system NCKFMASHTO, supported by geothermometry of mafic orthogneiss, was used to infer peak metamorphic temperatures of 750–850 °C, approximately 150 °C lower than those estimated for metasedimentary gneisses from Rundvågshetta, 6 km to the northeast. SHRIMP U-Pb analysis of zircons from feldspar-pyroxene gneiss, which corresponds to a partially molten patch around mafic orthogneiss, yielded a Concordia upper intercept ages of 2507.9 ± 7.4 Ma, corresponding to the time of formation of the magmatic protolith to the orthogneiss. Partial melting during peak metamorphism probably took place between 591 and 548 Ma, as recorded in rims overgrew around magmatic zircon. Our results suggest that Rundvågshetta-Vesleknausen-Strandnibba region in southwestern Lützow-Holm Bay, where orthogneisses are dominant, consists of a single crustal block, possibly formed by ca. 2.5 Ga arc magmatism. The Neoarchean magmatic terrane was tectonically mingled with other fragments (such as metasedimentary units in northern Lützow-Holm Bay by subduction/collision events during the assembly of Gondwana supercontinent, and subsequently underwent ∼850 °C granulite-facies metamorphosed during Neoproterozoic to Cambrian final collisional event.

  4. Geochemical evolution of magmatism in Archean granite-greenstone terrains (United States)

    Samsonov, A. V.; Larionova, Yu. O.


    Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9-2.7 Ga) and Kaapvaal (3.5-2.9 Ga) cratons and in the Pilbara block (3.5-2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type

  5. Jurassic–Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    E. Sarifakioglu


    seamount volcanic rocks indicate that the northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier. The latest Cretaceous–early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction–accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ~ 120–130 million years of oceanic magmatism in geological history of the northern Neotethys.

  6. Monogenetic Arc Volcanism in the Central Andes: The "Hidden" Mafic Component in the Land of Andesite and Ignimbrite (United States)

    van Alderwerelt, B. M.; Ukstins Peate, I.; Ramos, F. C.


    Faulting in the upper crust of the Central Andes has provided passage for small volumes of mafic magma to reach the surface, providing a window into petrogenetic processes in the region's deep crust and upper mantle. Mafic lavas are rare in the Central Andean region dominated by intermediate-composition arc volcanism and massive sheets of silicic ignimbrite, and provide key data on magmatic origin, evolution, and transport. This work characterizes fault-controlled, within-arc monogenetic eruptive centers representative of the most mafic volcanism in the Altiplano-Puna region of the Andes since (at least) the Mesozoic. Olivine-phyric basaltic andesite (54 wt% SiO2, 7.3 wt% MgO) at Cerro Overo maar and associated dome, La Albóndiga Grande, and an olivine-clinopyroxene flow (53 wt% SiO2, 6.7 wt% MgO) from Cordón de Puntas Negras have been erupted at the intersection of regional structural features and the modern volcanic arc. Bulk magma chemistry, radiogenic isotopes, and microanalyses of mineral and melt inclusion composition provide insight on the composition(s) of mafic magmas being delivered to the lowermost crust and the deep crustal processes which shape central Andean magma. Bulk major and trace elements follow regional arc differentiation trends and are clearly modified by crustal magmatic processes. In contrast, microanalyses reveal a much richer history with olivine-hosted melt inclusions recording multiple distinct magmas, including potential primary melts. Single crystal olivine 87Sr/86Sr from Cerro Overo (0.7041-0.7071) define a broader range than whole rock (0.7062-0.7065), indicating preservation of juvenile melt in olivine-hosted inclusions lost at the whole rock scale. Mineral chemistry (via EMPA) P-T calculations define a petrogenetic history for these endmember lavas. Field mapping, bulk chemistry, and microanalyses outline the generation, storage, transportation, and eventual eruption of the "hidden" mafic component of the Andean arc.

  7. Origin of the magmatic varieties of the Serdán-Oriental Basin, eastern Trans-Mexican Volcanic Belt (United States)

    Mori, L.; Gomez-Tuena, A.; Becerra Torres, E.; Landa-Piedra, L.


    Quaternary magmatic activity in the Serdán-Oriental Basin (SOB) of the eastern Trans-Mexican Volcanic Belt produced mafic-intermediate monogenetic cones of variable geochemical affinities, that are built on >45 km thick crust at ~360-420 km distance from the trench, in a region under which the Cocos plate lays at >120 km depth. For these features, the volcanic sequences of the SOB offer the opportunity to understand the mechanisms of element recycling and the origin of magmatic diversity in the Mexican arc. Our data permit to observe a relationship between the geochemical diversity of magmatism and its geographic distribution. Most cones emplaced at the volcanic front, south of Malinche and Pico de Orizaba stratovolcanoes, vary in composition from calc-alkaline basalt to andesite, and display typical arc-like geochemical features such as high LILE-LREE/HFSE and moderate REE ratios. The southern part of the basin also hosts a few high-K mafic cones with stronger LILE-LREE enrichments at similar HFSE contents, and more fractionated REE patterns; interestingly, high Gd/Yb ratios in these rocks are coupled with high Nb/Ta and Sm/Zr. The basalts and basaltic andesites emplaced at larger distance from the trench display progressively higher Ti and HFSE contents than those of the volcanic front at similar LILE. On the other hand, the mafic cones emplaced north of Malinche display the lowest LILE-LREE/HFSE ratios, with high-Nb compositions similar to those of intraplate magmas. The distribution pattern of volcanism recognized in the SOB is consistent with different degrees of mantle melting produced by variable contributions from the oceanic plate. In particular, decreasing Ba-La/Nb and Zr/Nb ratios in the volcanic products emplaced from the front to the rear-arc reflect a gradual decrease in slab fluxes added to the wedge, and hence lower degrees of mantle melting, as the Cocos plate sinks to higher depths. The geochemical features of the high-K suite indicate that the

  8. Nature's refineries — Metals and metalloids in arc volcanoes (United States)

    Henley, R.W.; Berger, Byron R.


    Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium

  9. Geochemical features of trace and rare earth elements of pumice in middle Okinawa Trough and its indication of magmatic process (United States)

    Zhai, Shikui; Guo, Kun; Zong, Tong; Yu, Zenghui; Wang, Shujie; Cai, Zongwei; Zhang, Xia


    Pumice, the most widely distributed volcanic rock in Okinawa Trough, is loose and porous. Since its formation, it has definitely suffered from the denudation of the sea to different degrees. In order to truly reveal the geochemical features of pumice, we choose the method of mineral separation. Firstly, the phenocryst is separated from glass. Then the phenocryst is divided into light and heavy mineral compositions. By ICP-MS (inductively coupled plasma mass spectrometry) analytical technology, the contents of trace and rare earth elements in the whole pumice, the glass and the heavy and light mineral compositions are determined respectively. By researching the elemental geochemical features, the magma dynamic processes are found. It shows that the initial magma for the pumice in Okinawa Trough came from the depleted mantle, from which the N-MORB (normal type of mid-ocean ridge basalt) is formed, homologous with the local basalts. But they are formed in different periods of magma crystal fractionation. Featured with sufficient crystal fractionation for pumice, it is found that the earlier crystallizing minerals are olivine, plagioclase and pyroxene. The pumice magma, formed from the depleted mantle, was mixed with additional subduction-related materials (components), and contaminated with the mass from upper crust when it rose up into the crust. As the Okinawa Trough is a back-arc basin in its early back-arc spreading stage, its magmatism has a series of its own unique characteristics, different from not only the mid-ocean ridge expansion, but also the mature back-arc basin.

  10. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey - (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.


    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  11. Temporal magma source changes at Gaua volcano, Vanuatu island arc (United States)

    Beaumais, Aurélien; Bertrand, Hervé; Chazot, Gilles; Dosso, Laure; Robin, Claude


    Gaua Island (also called Santa Maria), from the central part of the Vanuatu arc, consists of a large volcano marked by a caldera that hosts the active Mount Garet summit cone. In this paper, a geochemical study including Sr, Nd, Pb and Hf isotopic compositions of 25 lavas emitted since 1.8 Ma is presented, with a focus on the volcanic products that preceded (old volcanics, main cone and pyroclastic series) and followed (Mount Garet) the caldera forming event. All lavas show an island arc signature with enrichment in LILE and depletion in HFSE. Post-caldera lavas define a medium-K calc-alkaline trend, whereas lavas from the former main cone have high-K calc-alkaline compositions. Compared to the pre-caldera volcanic suite, the Mount Garet lavas have similar Th/Nb ( 1.5), 143Nd/144Nd ( 0.51295) and 176Hf/177Hf ( 0.28316) ratios, but higher Ba/La ( 42 vs. 27) and 87Sr/86Sr (0.70417 vs. 0.70405) ratios and lower Ce/Pb ( 2.7 vs. 4.6), La/Sm ( 2.5 vs. 4.0) and 206Pb/204Pb (18.105 vs. 18.176) ratios. High Th/Nb and low Nd and Hf isotopic ratios compared to N-MORB suggest the contribution of 2% of subducted sediment melt to the mantle source of Gaua magmas. Most of the observed differences between pre- and post-caldera lavas can be accounted for by the involvement of at least two portions of the mantle wedge, metasomatized by different slab-derived aqueous fluids. In addition, the lower La/Sm (at a given 143Nd/144Nd) ratios of Mount Garet lavas suggest a higher degree of partial melting ( 10-15%) compared to the pre-caldera lavas ( 5%). The Santa Maria Pyroclastic Series (SMPS) eruption probably triggered the caldera collapse, in response to emptying of the magmatic chamber. This event may have allowed new access to the surface for a geochemically distinct batch of magma issued from a separate magma chamber, resulting in the birth and construction of Mount Garet within the caldera. As both magmatic suites were emitted over a very short time, the storage of their parental

  12. Rotating Drive for Electrical-Arc Machining (United States)

    Fransen, C. D.


    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  13. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang


    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  14. Failed magmatic eruptions: Late-stage cessation of magma ascent (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.


    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  15. A synthesis on the alkaline magmatism of Eastern Paraguay


    Gomes, Celso de Barros; Chiaramonti, Piero Comin-; Fernandez, Victor Velazquez


    Alkaline magmatism occurs in six distinct areas of Paraguay and forms bodies of variable size, shape, composition and age. The oldest rocks are found in the north and correspond to the Permo-Triassic Alto Paraguay Province (241 Ma). Four Early Cretaceous events can be distinguished in Eastern Paraguay: the Rio Apa and Amambay Provinces (139 Ma), both predating the tholeiites of the Serra Geral Formation, are located in the northern and northeastern regions, respectively; and the Central (126 ...

  16. Continental crust formation on early Earth controlled by intrusive magmatism. (United States)

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T


    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  17. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hrubcová, Pavla; Geissler, W.H.; Bräuer, K.; Vavryčuk, Václav; Tomek, Č.; Kämpf, H.


    Roč. 36, č. 12 (2017), s. 2846-2862 ISSN 0278-7407 R&D Projects: GA ČR GA17-19297S; GA ČR GC16-19751J Institutional support: RVO:67985530 Keywords : active intraplate magmatic underplating * mantle-derived fluids * high-velocity lower crust * reflection-free magma body Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 3.784, year: 2016

  18. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  19. A rotating arc plasma invertor

    International Nuclear Information System (INIS)

    Reusch, M.F.; Jayaram, K.


    A device is described for the inversion of direct current to alternating current. The main feature is the use of a rotating plasma arc in crossed electric and magnetic fields as a switch. This device may provide an economic alternative to other inversion methods in some circumstances

  20. Hooded arc ion-source

    CERN Multimedia

    CERN PhotoLab


    The positioning system for the hooded arc ion-source, shown prior to mounting, consists of four excentric shafts to locate the ion-source and central electrodes. It will be placed on the axis of the SC and introduced into the vacuum tank via the air locks visible in the foreground.

  1. Vacuum Gas Tungsten Arc Welding (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.


    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  2. Tectonic obliteration of magmatic fabrics in an Ordovician ophiolite (United States)

    Di Chiara, A.; Morris, A.; Anderson, M. W.; Menegon, L. M.


    The Thetford Mines Ophiolite (TMO) is part of the Canadian Appalachians (Quebec region) which experienced syn-emplacement and two post-emplacement deformations, the Taconian (Ordovician) and the (Devonian) Acadian orogenies. New results from an integrated rock magnetic, petrological and microstructural study on 12 paleomagnetic sites show a complete tectonic overprint of the original magnetic fabric. Anisotropy of magnetic susceptibility (AMS) results show that on the southern layered gabbros the magnetic fabric is locally preserved, being parallel to observed magmatic foliations. The nine sites from the northwestern sector of the TMO share a remarkably similar magnetic fabric, despite formed by fundamentally different magmatic processes. They are all characterized by a minimum anisotropy axis (kmin) oriented NW-SE and the maximum axis (kmax) steeply plunging to the NE. Additional microstructural analyses show that the kmax of the magnetic fabric is subparallel to the crystal preferred orientation of the iron rich particles. We think that at low strain regime the AMS fabric reflect the magmatic foliation; whereas at higher strain regime the AMS fabric has a tectonic overprint consistent with a shortening direction perpendicular to the regional trend of fold axes, thus recording the last regional tectonic event during the Acadian orogeny.

  3. Magnification Bias in Gravitational Arc Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Caminha, G. B. [Rio de Janeiro, CBPF; Estrada, J. [Fermilab; Makler, M. [Rio de Janeiro, CBPF


    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analytic calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.

  4. STRUVE arc and EUPOS® stations (United States)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana


    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  5. Influence of arc current and pressure on non-chemical equilibrium air arc behavior (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU


    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  6. Magmatism, Hydrothermalism, and Carbon Cycling in the sedimented Guaymas Basin (United States)

    Soule, S. A.; Teske, A.; Lizarralde, D.; Ravelo, A. C.; Alello, I. W.; Mortera-Gutierrez, C. A.; Berndt, C.; Torres, M.; Canet, C.


    The central Gulf of California is characterized by thickly-sedimented, young oceanic spreading centers that lack the seafloor volcanic deposition common to mature, deep-water mid-ocean ridges. Instead, ascending magmas are emplaced within the sediment as sills, which drive hydrothermal circulation and decarbonation of the sediments. Guaymas Basin, a prime example of these processes, is comprised of two short overlappy spreading segments. Decades of study in the southern spreading center have revealed numerous high-temperature hydrothermal vents driven by shallow fluid circulation over magmatic sills, and deeper fluid circulation along rift graben bounding faults. Drilling studies in the southern basin led to a model of shallow sill intrusion within a 1-2km wide magmatic zone at the rift axis and subsequent deepening of the sill horizon due to subsidence and burial by sediment. Seismic observations in the northern Guaymas Basin, however, have suggested that sill intrusion may occur over a much wider area, up to 40km from the rift axis. In addition, seafloor mapping has shown numerous sites of fluid flow (n=100) across the northern Guaymas basin that correlate spatially with the subsurface distribution of sills. More recently, a cruise to the area located a high-temperature black smoker vent at the edge of the northern rift basin, which was previously thought to be devoid of active hydrothermal systems. Further, close inspection of one of the identified seafloor fluid flow sites located 40km from the rift axis found active fluid flow at 70˚C as well as typical hydrothermal sulfide-oxidizing vent fauna (Riftia tube worms, Beggiatoaceae bacterial mat), validating the hypothesis of magmatically-driven fluid flow at extreme distances from the presumed center of magmatic accretion. Together, these findings have motivated an IODP drilling leg to this region provisionally scheduled for 2019. This presentation will summarize the new findings at the northern Guaymas Basin

  7. Geochemical Relationships between Volcanic and Plutonic Upper to Mid Crustal Exposures of the Rosario Segment, Alisitos Arc (Baja California, Mexico): An Outstanding Field Analog to the Izu-Bonin-Mariana Arc (United States)

    Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.


    Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.

  8. Review of Arc Models in Distribution Networks

    Directory of Open Access Journals (Sweden)

    Yin Qi


    Full Text Available The incipient fault in underground cable is recognized as arc fault. Then the arc model selection is very important for the incipient fault detection. The arc features and some typical models have been introduced in detail, including traditional thermal based models, arc models in low voltage and models of arc in long free air. At last, the Kizilcay’s model is recommended to analyze the incipient fault in underground cable for its accuracy and widely utilized. Finally, some conclusions are summarized.

  9. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    Energy Technology Data Exchange (ETDEWEB)

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan


    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  10. The Porgera gold deposit, Papua, New Guinea, 1: association with alkalic magmatism in a continent-island-arc collision zone

    International Nuclear Information System (INIS)

    Richards, J.P.; Chappell, B.W.; McCulloch, M.T.; McDougall, I.


    The meso thermal to epithermal Porgera gold deposit is spatially and temporally associated with shallow level (≤ 2 km emplacement depth) stocks and dykes of the Porgera Intrusive Complex (PIC). Gold mineralization immediately followed emplacement of the PIC, and is dated between 5 and 6 Ma ago. The Porgera intrusive suite is comprised of fine- to medium-grained, porphyritic to euhedral granular, volatile-rich, sodic alkali basalts/gabbros, hawaiites, and mugearites (TAS chemical classification scheme). The rocks display chemical and isotopic characteristics similar to those of intra plate alkalic basalts, but their unusually high volatile contents result in stabilization of hornblende as a phenocryst and intergranular phase in more evolved rock types. The observed order of cotectic crystallization is olivine - clinopyroxene - hornblende -plagioclase, with ubiquitous spinel (chromite/magnetite) and fluor-apatite. (author)

  11. Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Shevenell, Lisa [ATLAS Geosciences, Inc., Reno, NV (United States); Coolbaugh, Mark [ATLAS Geosciences, Inc., Reno, NV (United States); Hinz, Nick [Univ. of Nevada, Reno, NV (United States); Stelling, Pete [Western Washington Univ., Bellingham, WA (United States); Melosh, Glenn [GEODE, Santa Rosa, CA (United States); Cumming, William [Cumming Geoscience, Santa Rosa, CA (United States)


    This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production. To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.

  12. Arc Boudinage, Basin Inversion and Obduction in an Evolving Subduction System of East Antarctica (United States)

    Ferraccioli, F.; Balbi, P.; Armadillo, E.; Crispini, L.; Capponi, G.


    The paleo-Pacific margin of Gondwana experienced protracted subduction and accretionary tectonics starting in late Neoproterozic-early Cambrian times. Northern Victoria Land (NVL), in East Antarctica, preserves a cryptic record of these active margin processes. Most models indicate that NVL contains three main terranes, namely the Robertson Bay, Bowers and Wilson terranes. Significant debate centres, however, on whether these are far travelled terranes with respect to the East Antarctic Craton, and on the tectonic and magmatic processes that affected its active margin and were ultimately responsible for the formation of the Ross Orogen. Here we interpret new aeromagnetic, aerogravity and land-gravity compilations that enable us to trace the extent of major subglacial faults in the basement of NVL, examine crustal architecture, and propose a new evolutionary model for the active margin of the craton. Prominent aeromagnetic anomalies at the edge of the Wilkes Subglacial Basin delineate the extent of an early-stage magmatic arc (ca 530 Ma?). This arc may have accreted as an exotic element onto the former Neoproterozoic rifted margin of East Antarctica or (perhaps more likely) developed in situ upon a pre-existing suture. Remnants of magnetic arc basement are also identified ca 150 km further to the east within the Wilson Terrane (WT). We propose that these were originally adjacent arc segments and that transtension triggered significant arc boudinage separating these segments. Transtension may have created accommodation space for the development of thick Cambrian sedimentary basins, which are marked by regional magnetic lows with an en-echelon geometry. Basin inversion likely occurred in a later traspressional stage of the Ross-Delamerian Orogen (ca. 490-460 Ma) that triggered the development of a major pop-up structure within the WT. Several buried thrusts of the pop-up can be traced in the aeromagnetic images and a prominent residual gravity high delineates its high

  13. Magmatic context of Bou Skour copper deposit (Eastern Anti-Atlas, Morocco): Petrogrography, geochemistry and alterations (United States)

    EL Azmi, Daoud; Aissa, M.; Ouguir, H.; Mahdoudi, M. L.; El Azmi, M.; Ouadjo, A.; Zouhair, M.


    The Bou Skour copper deposit is located in the western part of the Saghro massif (Eastern Anti-Atlas), about 50 km East of the city of Ouarzazate. It is subdivided into several areas that are, from North to South: “Panthère”, “Chaigne”, “Anne Marie”, “Chapeau de fer” and “Patte d'Oie”. The latter is economically the most important and is the object of this study. The “Patte d'Oie” district consists mainly of extrusive and intrusive igneous rocks. The extrusive rocks are represented by andesites spatially associated with pyroclastic terms (ignimbrites and pyroclastic breccias). This volcanic unit is intruded by a pink granite pluton and a I-type granodiorite with equigranular texture (Bou Skour granodiorite) showing to the border a microgranular facies (microgranodiorite). All these magmatic formations are intersected by rhyolitic dykes (NNE-SSW) and doleritic dykes (WNW-ESE to NW-SE). The granodiorite and andesite have undergone a polyphase hydrothermal alteration: (i) potassic alteration, (ii) phyllitic alteration, (iii) silicification, (iv) argillic alteration and (v) propylitic alteration. The analysis of geochemical data of granodiorite, granite, andesite and dolerite confirmed: (i) their petrographic natures, (ii) the medium-K calc-alkaline affiliation of andesite and granodiorite, which would have been set up into an active geotectonic environment, probably of island arc or collision, during the Pan-African orogeny, (iii) The high-K calc-alkaline character of granite indicating a post-collision development during the Pan-African orogeny and (iv) The alkaline affinity of the dolerite which is linked to an extensive post-orogenic setting (post-Pan-African). The copper mineralization of “Patte d'Oie” area is hosted, exclusively, in the andesitic and granodioritic facies. It is represented, essentially, by chalcopyrite and bornite minerals and is, probably, related to a porphyry system (disseminated and stockwork mineralization

  14. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling (United States)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley


    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented

  15. Spatiotemporal distribution of low-frequency earthquakes in Southwest Japan: Evidence for fluid migration and magmatic activity (United States)

    Yu, Zhiteng; Zhao, Dapeng; Niu, Xiongwei; Li, Jiabiao


    Low-frequency earthquakes (LFEs) in the lower crust and uppermost mantle are widely observed in Southwest Japan, and they occur not only along the subducting Philippine Sea (PHS) slab interface but also beneath active arc volcanoes. The volcanic LFEs are still not well understood because of their limited quantities and less reliable hypocenter locations. In this work, seismic tomography is used to determine detailed three-dimensional (3-D) P- and S-wave velocity (Vp and Vs) models of the crust and upper mantle beneath Southwest Japan, and then the obtained 3-D Vp and Vs models are used to relocate the volcanic LFEs precisely. The results show that the volcanic LFEs can be classified into two types: pipe-like and swarm-like LFEs, and both of them are located in or around zones of low-velocity and high-Poisson's ratio anomalies in the crust and uppermost mantle beneath the active volcanoes. The pipe-like LFEs may be related to the fluid migration from the lower crust or the uppermost mantle, whereas the swarm-like LFEs may be related to local magmatic activities or small magma chambers. The number of LFEs sometimes increases sharply before or after a nearby large crustal earthquake which may cause cracks and fluid migration. The spatiotemporal distribution of the LFEs may indicate the track of migrating fluids. As compared with the tectonic LFEs along the PHS slab interface, the volcanic LFEs are more sensitive to fluid migration and local magmatic activities. High pore pressures play an important role in triggering both types of LFEs in Southwest Japan.

  16. The SOAR Gravitational Arc Survey (United States)

    Makler, M.; Furlanetto, C.; Santiago, B. X.; Caminha, G. B.; Cypriano, E.; Cibirka, N.; Pereira, M. E. S.; Bom, C. R. D.; Lima, M. P.; Brandt, C. H.; Neto, A. F.; Estrada, J.; Lin, H.; Hao, J.; McKay, T. M.; da Costa, L. N.; Maia, M. A. G.


    We present the first results of the SOAR Gravitational Arc Survey (SOGRAS). The survey imaged 47 clusters in two redshift intervals centered at z=0.27 and z=0.55, targeting the richest clusters in each interval. Images were obtained in the g', r' and i' bands with a median seeing of 0.83, 0.76 and 0.71 arcsec, respectively, in these filters. Most of the survey clusters are located within the Sloan Digital Sky Survey (SDSS) Stripe-82 region and all of them are in the SDSS footprint. We present the first results of the survey, including the 6 best strong lensing systems, photometric and morphometric catalogs of the galaxy sample, and cross matches of the clusters and galaxies with complementary samples (spectroscopic redshifts, photometry in several bands, X-ray and Sunyaev Zel'dovich clusters, etc.), exploiting the synergy with other surveys in Stripe-82. We apply several methods to characterize the gravitational arc candidates, including the Mediatrix method (Bom et al. 2012) and ArcFitting (Furlanetto et al. 2012), and for the subtraction of galaxy cluster light. Finally, we apply strong lensing inversion techniques to the best systems, providing constraints on their mass distribution. The analyses of a spectral follow-up with Gemini and the derived dynamical masses are presented in a poster submitted to this same meeting (Cibirka et al.). Deeper follow-up images with Gemini strengthen the case for the strong lensing nature of the candidates found in this survey.

  17. Cretaceous to Cenozoic sequential kinematics in the forearc-arc transition: effects of changing oblique plate convergence and the San Andreas system with implications for the La Paz fault (southern Baja California, Mexico) (United States)

    Mattern, Frank; Pérez Venzor, José Antonio; Pérez Espinoza, Jesus Efraín; Rochin, Joel Hirales


    We studied metasediments and mylonitic arc granitoids from the forearc-arc transition of southern Baja California, Mexico. Thin section analyses and field evidence show that metamorphism of the forearc-arc transition is of the high T/P active margin type. The heat was provided by Cretaceous arc intrusions. Field observations and thin section analyses, including the time/temperature deformation path, demonstrate that the study area was first affected by dextral, ductile shearing followed by ductile, sinistral, possibly transpressive strike-slip parallel to the magmatic arc during the Cretaceous. Both intervals are related to changing oblique plate convergence and, thus, identified as trench-linked strike-slip effects. The geometric relationship between arc-dipping foliation, stretching lineation and shear sense indicates that the arc may have been pressed onto the rocks of the study area during sinistral shearing. The sinistral interval lasted up until regional cooling (Early Cenozoic?). Because the La Paz fault is closely associated with the forearc-arc transition, it must have the same Cretaceous to Early Cenozoic kinematic history. The northern segment of the La Paz fault is a modern, brittle, strike-slip fault interpreted as a dextral synthetic fault of the San Andreas system which opened the Gulf of California (Mar de Cortés/Golfo de California). We found no evidence for Miocene Basin and Range extension.

  18. A historical overview of Moroccan magmatic events along northwest edge of the West African Craton (United States)

    Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane


    Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in

  19. Spatial and Temporal Evolution of the Tertiary Magmatism and Extension in the Aegean Region in Response to Collision-Driven Mantle Dynamics (United States)

    Dilek, Y.; Bonev, N.


    Tertiary extension has played an important role in shaping the crustal architecture of the Alpine mountain belt in the Aegean region by unroofing the orogenic stack that was created during the late Mesozoic-Cenozoic convergence between Africa and Eurasia. Exhumation of metamorphic core-complexes started as early as the Paleocene-early Eocene in the Rhodope (Bulgaria-Greece) and Kazdag (NW Turkey) massifs in the north, and continued during the Oligocene-Miocene in the south involving the north-central Aegean region (Greek mainland and islands) and northwest-central Anatolia. This extensional deformation was spatially and temporally associated with voluminous magmatism derived from both mantle and crustal melts. We focus on the interplay between lithospheric-scale extensional tectonics and magmatism during the Eocene-Miocene, and evaluate the mode, nature and tempo of tectonic and magmatic events and their relations in time and space during this time period. Following the latest Cretaceous closure of the Vardar-Izmir-Ankara Ocean, the inherited subduction-zone component in the continental mantle lithosphere influenced the Eocene (56-38 Ma) magmatism, which produced I-type, medium to high-K calc-alkaline, and LILE and LREE enriched arc to syn- and post-collisional granitoids and their extrusive counterparts. This magmatism migrated across from the Rhodope-Serbo-Macedonian massifs in the Balkan Peninsula and the Sakarya continent in western Anatolia in the north, to the Aegean islands and the Menderes massif in the south through the Oligo-Miocene (30-14 Ma). The younging of the granitoid magmatism and the increase in its K2O/SiO2 ratio occurred progressively southwards in the Aegean through time. The decreasing influence of subduction component was accompanied by a progressive increase in crustal component, with involvement of assimilation and fractional crystallization processes in the granitoid petrogenesis. The coeval volcanic suites generally have the same

  20. Thermal and magmatic processes on Venus, Earth, and Mars (United States)

    Hauck, Steven Arthur, II

    Venus, Mars, and Earth present unique opportunities and laboratories for studying the thermal and magmatic evolution of terrestrial planets. Key observations from the Magellan mission to Venus were that the surface hosts a mere ˜1000 impact craters and that more than 65% of the surface is covered by volcanic plains. A popular hypothesis suggested the plains were emplaced in 10--100 Myr. However, analysis of the population of impact craters with respect to plains geology suggests that magmatism associated with plains emplacement lasted approximately half the average surface age of the planet, almost 500 Myr. Martian thermo-magmatic evolution is constrained by estimates that the crust was predominantly emplaced within the first 500 Myr, has an average crustal thickness of 50--100 km, and observations that imply that the planet had an internally generated magnetic field early, but is lacking one today. Coupling of a simple, parameterized model of mantle convection to a batch-melting model for peridotite allows reconstruction of reasonable estimates of the conditions and evolutionary path of the crust and mantle. Key elements of the nominal model are inclusion of the energetics of melting, a wet (weak) mantle rheology, self-consistent fractionation of heat producing elements to the crust, a near chondritic abundance of those same elements, and a core with 15 wt% sulfur. Inclusion of the latent heat of melting mantle material is crucial for constraining thermal and magmatic history of Mars. The nominal model results in an average crustal thickness of 67 km that was 75% emplaced by 4 Ga. The subduction of terrestrial oceanic lithosphere is an important heat transfer process related to plate tectonics. The source of deep focus earthquakes may be tied to the thermal structure of downgoing slabs and the potential for catastrophic transformation of metastable olivine below the 410 km discontinuity. The first models of subducting slabs that include thermal conductivity that

  1. Magmatic carbon dioxide emissions at Mammoth Mountain, California (United States)

    Farrar, Christopher D.; Neil, John M.; Howle, James F.


    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts

  2. Auroral arc classification scheme based on the observed arc-associated electric field pattern

    International Nuclear Information System (INIS)

    Marklund, G.


    Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-assocaited field) and asymmetric and reversal arcs. In this paper rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the arc electric field pattern from the two current continuity mechanisms, polarisation electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarisation arcs, Birkeland current arcs and combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented. (author)

  3. Prototype arc saw design and cutting trials

    International Nuclear Information System (INIS)

    Allison, G.S.


    A program was initiated to develop the arc saw as a tool capable of removing the end fittings from spent nuclear fuel bundles. A special arc saw for this purpose was designed, installed at the Pacific Northwest Laboratory and satisfactorily operated to remove end fittings from simulated, nonradioactive fuel bundles. The design of the arc saw included consideration of the cutting environment, power supply size, control equipment, and work piece size. Several simulated fuel bundles were cut to demonstrate that the arc saw met design specifications. Although the arc saw development program was curtailed before significant performance data could be collected, tests indicate that the arc saw is a good means of cropping spent fuel bundles and is well suited to remote operation and maintenance

  4. The age, nature and likely genesis of the Cambrian Khantaishir arc, Lake Zone, Mongolia (United States)

    Janoušek, Vojtěch; Jiang, Yingde; Schulmann, Karel; Buriánek, David; Hanžl, Pavel; Lexa, Ondrej; Ganchuluun, Turbat; Battushig, Altanbaatar


    Recent discovery of the huge Cambrian arc in the Khantaishir Mountain Range (SE Mongolian Altai) suggests that the principal Neoproterozoic and Devonian-Carboniferous episodes of crustal growth in the Central Asian Orogenic Belt (CAOB) (Sengör et al. 1993) have to be revised. This probably the largest arc system known in the Mongolian tract of the CAOB is seemingly intrusive into the Neoproterozoic accretionary wedge (the Lake Zone) in the N and underthrust southwards below the Palaeozoic volcanosedimentary prism (Gobi Altai Zone). The arc shows a section from deep, ultramafic cumulates to shallower crustal levels of the magmatic system and thus provides an excellent opportunity to study this important period of crustal growth in the Mongolian CAOB. The magmatic rocks are intermediate to ultrabasic (SiO2 = 39.2-61.8 wt. %), rather primitive (mg# = 45-60) Amp-Bt tonalites to coarse-grained Amp gabbros and hornblendites. They are Na-rich (Na2O/K2O = 1.3-9.7 by wt.), exclusively metaluminous and mostly subalkaline, except for the ultrabasic types that enter the alkaline domain due to accumulation of Amp crystals. The P-T conditions calculated using the Amp thermobarometer of Ridolfi et al. (2010) show that the gabbro crystallized at 930-950 ° C and 0.36-0.43 GPa. The (normal-) calc-alkaline chemistry and characteristic trace-element enrichment in hydrous-fluid mobile large-ion lithophile elements (LILE: Rb, Ba, Th, U, K and Pb) over high-field strength elements (HFSE: Nb and Ta) confirm an origin within an igneous arc. The newly obtained LA ICP-MS zircon ages for three tonalites-diorites range between 516 ± 2 Ma and 494 ± 3 Ma. While zircons in two of them give high initial ɛHf values (+8 to +14), implying a derivation by (near) closed-system fractionation from little modified, depleted-mantle derived magmas, the third contains significantly different component (ɛHf = +3 to +6). The latter component may have come from a distinct, less depleted

  5. Interaction mechanism in hybrid laser arc welding


    Mahrle, Achim; Rose, Sascha; Lohse, Martin; Beyer, Eckhard; Füssel, Uwe


    Achievable benefits in hybrid laser-arc welding are closely related to suitable parameter settings. Basic optimizations consequently need a profound understanding of the relevance of involved interaction mechanisms. These are however differently evaluated and discussed in literature. This paper gives an overview on the most popular hypotheses in the field of laser-arc processing. The importance of direct interactions between laser radiation and arc plasma as well as the role of metal evaporat...

  6. Arc saw and its application to decommissioning

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.


    The arc saw is a toothless, circular saw that cuts by arc erosion. A model was built to study the arc saw's usefulness in cutting up radioactively contaminated metal scrap. It was chosen because it cuts with very little contact to the work piece and because cutting is not affected by material hardness. After installation of several improvements it was found it could cut almost any combination of metals and that clamping or fixturing requirements were minimum. Cutting proceeds rapidly and efficiently

  7. Programming ArcGIS with Python cookbook

    CERN Document Server

    Pimpler, Eric


    Programming ArcGIS with Python Cookbook, Second Edition, is written for GIS professionals who wish to revolutionize their ArcGIS workflow with Python. Whether you are new to ArcGIS or a seasoned professional, you almost certainly spend time each day performing various geoprocessing tasks. This book will teach you how to use the Python programming language to automate these geoprocessing tasks and make you a more efficient and effective GIS professional.

  8. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc

    International Nuclear Information System (INIS)

    Chen, Tang; Wang, Cheng; Liao, Meng-Ran; Xia, Wei-Dong


    A model including the cathode, near-cathode region, and arc column was constructed. Specifically, a thermal perturbation layer at the arc fringe was calculated in order to couple sheath/presheath modelling with typical arc column modelling. Comparative investigation of two modes of attachment of a dc (100, 150, 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten was conducted. Computational data revealed that there exists two modes of arc discharge: the spot mode, which has an obvious cathode surface temperature peak in the arc attachment centre; and the diffuse mode, which has a flat cathode surface temperature distribution and a larger arc attachment area. The modelling results of the arc attachment agree with previous experimental observations for the diffuse mode. A further 3D simulation is obviously needed to investigate the non-axisymmetrical features, especially for the spot mode. (paper)

  9. The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Litvak, Vanesa D.; Poma, Stella; Alonso, Ricardo N.; Hinton, Richard; EIMF


    The tectonic and geodynamic setting of the southern Central Andean convergent margin changed significantly between the Late Cretaceous and the Late Miocene, influencing magmatic activity and its geochemical composition. Here we investigate how these changes, which include changing slab-dip angle and convergence angles and rates, have influenced the contamination of the arc magmas with crustal material. Whole rock geochemical data for a suite of Late Cretaceous to Late Miocene arc rocks from the Pampean flat-slab segment (29-31 °S) of the southern Central Andes is presented alongside petrographic observations and high resolution age dating. In-situ U-Pb dating of magmatic zircon, combined with Ar-Ar dating of plagioclase, has led to an improved regional stratigraphy and provides an accurate temporal constraint for the geochemical data. A generally higher content of incompatible trace elements (e.g. Nb/Zr ratios from 0.019 to 0.083 and Nb/Yb from 1.5 to 16.4) is observed between the Late Cretaceous ( 72 Ma), when the southern Central Andean margin is suggested to have been in extension, and the Miocene when the thickness of the continental crust increased and the angle of the subducting Nazca plate shallowed. Trace and rare earth element compositions obtained for the Late Cretaceous to Late Eocene arc magmatic rocks from the Principal Cordillera of Chile, combined with a lack of zircon inheritance, suggest limited assimilation of the overlying continental crust by arc magmas derived from the mantle wedge. A general increase in incompatible, fluid-mobile/immobile (e.g., Ba/Nb) and fluid-immobile/immobile (e.g., Nb/Zr) trace element ratios is attributed to the influence of the subducting slab on the melt source region and/or the influx of asthenospheric mantle. The Late Oligocene ( 26 Ma) to Early Miocene ( 17 Ma), and Late Miocene ( 6 Ma) arc magmatic rocks present in the Frontal Cordillera show evidence for the bulk assimilation of the Permian-Triassic (P

  10. Observations of arcing in the ISX tokamak

    International Nuclear Information System (INIS)

    Mioduszewski, P.; Clausing, R.E.; Heatherly, L.


    Arcing has been proposed as a major source of metal impurities in tokamak plasmas. Arc tracks have been observed in the ISX tokamak on the limiter, the inner-wall surface, and on the samples from the surface analysis station. Linear as well as fern-like arc tracks have been observed. From optical and SEM analysis of the tracks, it was estimated that about 10 16 to 10 17 atoms were released per arc. To study the influence of arcing on the tokamak discharge, an experiment was set up to measure electrical and optical signals of arcing in situ. In well controlled tokamak discharges, arcing was observed only during the initial breakdown of the plasma and during the quenching phase at the end of the discharge. In disrupted discharges, each plasma disruption was accompanied by arcing. The pulse-length of one single unipolar arc was measured to be about 50 μs and the current amplitude was typically about 20 A

  11. The Abundance of Large Arcs From CLASH (United States)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team


    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  12. Stability of alternating current gliding arcs

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Salewski, Mirko; Leipold, Frank


    on Ohm’s law indicates that the critical length of alternating current (AC) gliding arc discharge columns can be larger than that of a corresponding direct current (DC) gliding arc. This finding is supported by previously published images of AC and DC gliding arcs. Furthermore, the analysis shows...... that the critical length can be increased by increasing the AC frequency, decreasing the serial resistance and lowering the gas flow rate. The predicted dependence of gas flow rate on the arc length is experimentally demonstrated. The gap width is varied to study an optimal electrode design, since the extended non...

  13. Performance tracking under ARCS contracts. Directive

    International Nuclear Information System (INIS)


    The directive discusses the development of a non-resource intensive method for reporting performance based work allocation results under the ARCS (Alternative Remedial Contracting Strategy) contractors

  14. Evolution by Replenishment Fractional Crystallization (RFC) of Midproterozoic Magmatic Enclaves in Granites of the Eastern Llano Uplift, central Texas, U.S.A (United States)

    Smith, R. K.; Gray, W.


    The Llano Uplift is a gentle structural dome exposing both island-arc and continental margin blocks emplaced along the southern margin of Laurentia during the Grenville orogeny (locally the Llano orogeny). These ~1370 to 1230 Ma metaigneous and metasedimentary rocks were subsequently intruded by a number of ~1119 to 1070 Ma post-to syntectonic granitic plutons collectively known as the Town Mountain Granite. The eastern most of these plutons (Lone Grove, Kingsland, and Marble Falls plutons) contain sparse microgranular magmatic enclaves of intermediate composition (56-68 wt.% SiO2). The enclaves display sharp borders in contact with the host granite suggesting magma quenching with little or no physical exchange between host granite and enclave magma. The origin of the enclave magma(s) is uncertain, as no synchronous mafic to intermediate rocks are exposed in the Uplift. New major- and trace-element analyses are providing clues as to the possible origins and evolution of the enclave magmas. Numerical modeling reveals that neither fractional crystallization nor simple mixing can explain the trace-element trends. However, assuming source magmas similar to primitive continental arc andesites, the trends can be adequately replicated by a replenishment fractional crystallization(RFC) model. The model assumes that replenishment/hybridization events are accompanied by 20%-30% fractionation of plagioclase + clinopyroxene + magnetite. Modeling further reveals that results are relatively insensitive to the number of replenishment events (from 50 to 1000), as well as perturbations in the mineral percentages, suggesting that RFC is a very plausible and robust explanation for the chemical evolution of the enclaves. As suggested by Weibe et al. (1997), RFC and lack of magma exchange may be indicative of enclave magma ponding and hybridization at the base of the host granite magma chamber, followed by occasional dispersment into the host granite. Origin from a primitive

  15. A comparison of the seismic structure of oceanic island arc crust and continental accreted arc terranes (United States)

    Calvert, A. J.


    Amalgamation of island arcs and their accretion to pre-existing continents is considered to have been one of the primary mechanisms of continental growth over the last 3 Ga, with arc terranes identified within Late Archean, Proterozoic, and Phanerozoic continental crust. Crustal-scale seismic refraction surveys can provide P wave velocity models that can be used as a proxy for crustal composition, and although they indicate some velocity variation in accreted arcs, these terranes have significantly lower velocities, and are hence significantly more felsic, than modern island arcs. Modern oceanic arcs exhibit significant variations in crustal thickness, from as little as 10 km in the Bonin arc to 35 km in the Aleutian and northern Izu arcs. Although globally island arcs appear to have a mafic composition, intermediate composition crust is inferred in central America and parts of the Izu arc. The absence of a sharp velocity contrast at the Moho appears to be a first order characteristic of island arc crust, and indicates the existence of a broad crust-mantle transition zone. Multichannel seismic reflection surveys complement refraction surveys by revealing structures associated with variations in density and seismic velocity at the scale of a few hundred meters or less to depths of 60 km or more. Surveys from the Mariana and Aleutian arcs show that modern middle and lower arc crust is mostly non-reflective, but reflections are observed from depths 5-25 km below the refraction Moho suggesting the localized presence of arc roots that may comprise gabbro, garnet gabbro, and pyroxenite within a broad transition from mafic lower crust to ultramafic mantle. Such reflective, high velocity roots are likely separated from the overlying arc crust prior to, or during arc-continent collision, and seismic reflections within accreted arc crust document the collisional process and final crustal architecture.

  16. Ecton processes in vacuum arc

    International Nuclear Information System (INIS)

    Mesyats, G.A.


    It is established that when microexplosions occur on a cathode there is a so-called explosive electron emission (EEE) observed. Such an emission is realized through individual short portions (the electron avalanches) which we have named open-quotes ectonsclose quotes. The duration of electron current of such a portion is dictated by the time needed to cool down the emission center, that causes the EEE to stop. We will proceed from the assumption of Kesaev, that the cathode spot consists of separate cells from which the current i n , equal to the doubled arc current i m , is flowing. An ecton is formed by interaction between the liquid metal stream and plasma. When the current exceeds a certain threshold value, the liquid metal stream produces a drop. This drop, even before its break-off, leads to the increase in density of the ion current from plasma in the stream-drop joint. This results in a great energy concentration in the joint and initiates an ecton due to the Joule heating of the joint. We consider the arc cycle to consist of two processes. The first one, of a duration t e , is the process of ecton operation. The second one, of a duration t i , is due to the ion current flowing within the cathode region. During the t i period the formation of a new liquid metal stream is completed, which causes a new ecton to emerge. The process thus becomes self-sustaining. If the new ecton is produced, with a drop breaking-off, then the criterion for the arc cycle to be self-sustaining is written as γd t i m ≥ 1

  17. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki


    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  18. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki


    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  19. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina (United States)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.


    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  20. Analogue modeling of arc and backarc deformation in the New Hebrides arc and North Fiji Basin

    NARCIS (Netherlands)

    Schellart, W. P.; Lister, G. S.; Jessell, M. W.

    In most backarc basins, extension is perpendicular to the arc. Thus individual spreading ridges extend approximately parallel to the arc. In the North Fiji Basin, however, several ancient and active spreading ridges strike 70°-90° to the New Hebrides arc. These high-angle spreading ridges relocated

  1. Magmatic Hydrothermal Fluids: Experimental Constraints on the Role of Magmatic Sulfide Crystallization and Other Early Magmatic Processes in Moderating the Metal Content of Ore-Forming Fluids (United States)

    Piccoli, P. M.; Candela, P. A.


    It has been recognized for some time that sulfide phases, although common in intermediate-felsic volcanic rocks, are not as common in their plutonic equivalents. That sulfide crystallization, or the lack thereof, is important in the protracted magmatic history of porphyry Cu and related systems is supported by the work of e.g., Rowins (2000). Candela and Holland (1986) suggested that sulfide crystallization could moderate the ore metal concentrations in porphyry environments. Experiments show clearly that Au and Cu can partition into Cl-bearing vapor and brine. This effect can be enhanced by S (Simon, this session). However, in some instances enhances this effect. That is, the partitioning of Au and Cu into vapor+brine is highly efficient (e.g. Simon et al. 2003; Frank et al 2003). This suggests that if sulfides do not sequester ore metals early during the history of a magma body from the melt, they will partition strongly into the volatile phases. Whether volatile release occurs in the porphyry ore environment, or at deeper levels upon magma rise, is a yet unsolved question. Little is known about deep release of volatiles (during magma transport at lower- to mid-crustal levels). Saturation of melts with a CO2-bearing fluid could happen at levels much deeper than those typical of ore formation. CO2 is released preferentially, so a high CO2 concentration in fluids in the porphyry ore environment argues against deep fluid release. Of course, this depends upon the specific processes of crystallization and fluid release, which may be complex. Our experiments on sulfides have concentrated on pyrrhotite and Iss. Our partitioning data for Po/melt exhibit wide variations from metal to metal: Cu (2600); Co (170); Au (140); Ni (100); Bi, Zn and Mn (2). These results suggest that crystallization of Po can contribute to variable ore metal ratios (e.g. Cu/Au). Other sulfides behave differently. If a melt is Iss (Cpy) saturated, then Cu will be buffered at a high value, and Au

  2. Magmatic activity stages of the El'brus volcanic center (Great Caucasus): isotope geochronological data

    International Nuclear Information System (INIS)

    Chernyshev, I.V.; Lebedev, V.A.; Bubnov, S.N.; Arakelyants, M.M.; Gol'tsman, Yu.V.


    The age of volcanites in the Elbrus volcanic center was determined by the methods of K-Ar- and Rb-Sr-dating to ascertain stages of magmatic activity in the area. The data obtained suggest existence of at least two stages of magmatic activity: Middle Neopleistocene (225-180 thous. years) and Late Neopleistocene-Holocene ( [ru

  3. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  4. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft

    Directory of Open Access Journals (Sweden)

    Jamal Rasouli


    -related arc magmatism. The systematic variation for the major elements implies involvement of fractional crystallization in the evolution of JBPC. The trends are consistent with the fractionation of plagioclase feldspar and ferromagnesian minerals as indicated by decreasing MgO, CaO, FeOt and TiO2 with increasing SiO2 despie the content of (K2O+Na2O. It generally increases with increasing SiO2 for intermediate compositions (67 wt% SiO2 ≤ and then decreases for more felsic granitic rocks, indicating that sodic feldspar was a major fractionating phase for alkali-granite and granite suit (Rasouli, 2015. Overall REE abundances slightly decrease with increasing SiO2 consistent with plagioclase fractionation. The distribution of voluminous volcanic rocks in the studied area implies that the JBPC could be a part of the mature magmatic arc. The field petrography and geochemical studies indicated that the JPBC originated from both crustal and mantle derived magmas: The increase in temperature and excess fluid pressure caused by subduction trigged melting of mantle edge and formation of basaltic magma and its ascending and introducing into the crust was followed by partial melting (Rasouli, 2015. The juxtaposed series of mafic-felsic pulses formed a mixed magma. Finally this magma is emplaced at broad, shallow magma chamber (9-12 km, where the differentiation took place by fractional crystallization and produced a wide variety of rocks form quartz-diorite to alkali granite. In such shallow magma reservoirs, the emplacement of magma took place as sill (Fridrich et al, 1991. Combining field observations and petrofabric studies displayed a deep caldera as a feeder zone for Eocene volcanic rocks (Rasouli, 2015. The JBPC is located in a shear zone and multiple magmatic pulses were injected as sills. The magmatic fabrics show active tectonic controls on magmatism during and after magma emplacement. The transpressional tectonic regime is well compatible with our data. References Fridrich, C

  5. Evaluating optical hazards from plasma arc cutting. (United States)

    Glassford, Eric; Burr, Gregory


    The Health Hazard Evaluation Program of the National Institute for Occupational Safety and Health evaluated a steel building materials manufacturer. The employer requested the evaluation because of concerns about optical radiation hazards from a plasma arc cutting system and the need to clarify eye protection requirements for plasma operators, other employees, and visitors. The strength of the ultraviolet radiation, visible radiation (light), and infrared radiation generated by the plasma arc cutter was measured at various distances from the source and at different operating amperages. Investigators also observed employees performing the plasma arc cutting. Optical radiation above safe levels for the unprotected eyes in the ultraviolet-C, ultraviolet-B, and visible light ranges were found during plasma arc cutting. In contrast, infrared and ultraviolet-A radiation levels during plasma arc cutting were similar to background levels. The highest non-ionizing radiation exposures occurred when no welding curtains were used. A plasma arc welding curtain in place did not eliminate optical radiation hazards to the plasma arc operator or to nearby employees. In most instances, the measured intensities for visible light, UV-C, and UV-B resulted in welding shade lens numbers that were lower than those stipulated in the OSHA Filter Lenses for Protection Against Radiant Energy table in 29 CFR 1910.133(a)(5). [1] Investigators recommended using a welding curtain that enclosed the plasma arc, posting optical radiation warning signs in the plasma arc cutter area, installing audible or visual warning cues when the plasma arc cutter was operating, and using welding shades that covered the plasma arc cutter operator's face to protect skin from ultraviolet radiation hazards.

  6. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias


    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and mana......The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed...... and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed...... outside the worker node environment. Also, the service used for cataloging the location of data files is different from otherGrids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data...

  7. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite (United States)

    Landis, G.P.; Rye, R.O.


    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic

  8. Sr isotopic microsampling of magmatic rocks; a review (Invited) (United States)

    Davidson, J. P.


    Sr isotopes have been used since the 1960s as powerful tracers of source for igneous rocks. In the past 10 years in-situ isotopic microsampling has afforded us tremendous progress in our capacity to understand magmatic processes. This progress is underpinned by analytical advances particularly in sample extraction through laser or micromill and in multicollector mass spectrometer improvements to sensitivity and precision. Perhaps the biggest surprise was the recognition in the 1990s that young magmatic rocks are commonly isotopically heterogeneous at the component (inter- or intra- crystal) scale. Given that melting and fractionation do not affect 87Sr/86Sr we would not a priori expect isotopic variations within or among crystals in a young igneous rock. This observation alone attests to open system behavior in magmas, and tells us that many of the crystals have been mechanically aggregated and not grown directly from the melt in which they are found solidified (a conclusion that can also commonly be drawn from cursory petrographic examination). This recognition in turn means that we can make use of the crystals as recorders of the isotopic environments in which they crystallise: If a crystal grows progressively from a melt which changes its isotopic composition through processes such as contamination and mixing, then the only record of the melt evolution is in the core-rim compositions of the crystals - analogous to the environmental record of tree rings. Plagioclase crystals in mafic enclaves from Lassen (CA) and Purico-Chascon (Chile), for instance, have isotopic records that reflect origination from the more silicic host. Core-rim records of evolution can also be integrated with textural measurements. At Stromboli we have shown how isotopic zoning correlates with crystal size distribution. The detailed records of single crystals can be complemented by multi crystal core analyses which can be used to distinguish specific populations. This approach was used on

  9. Sr-Nd-Pb isotope variability across and along the Ecuadorian volcanic arc (United States)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Mouhcine; Hidalgo, Silvana


    the 2 cordilleras and of the inter-andean valley plot at the junction of the two trends. These new data confirm previous observations made with the trace element and Sr-Nd systematics that suggested marked differences between the two cordilleras ([1], [3], [4]), and allow us to go forward distinguishing the back-arc. In addition, we are able to test the influence of Carnegie ridge on magma geochemistry, which is still debated. Altogether, Sr-Nd-Pb isotope variations require three different magmatic sources: (1) an unradiogenic component, represented by back-arc magmas, which may correspond to the mantle source; (2) an upper crustal radiogenic component, expressed in Eastern cordillera magmas and (3) a third component (low 87Sr/86Sr, radiogenic Nd-Pb isotopes), represented by some Western Cordillera magmas, which could either be an unradiogenic, immature oceanic basement or a slab influence. [1] Hidalgo et al., Lithos 132-133 (2012), 180-192 [2] Samaniego et al., Contrib. Mineral. Petrol. 160 (2010), 239-260 [3] Chiaradia et al., Contrib. Mineral. Petrol. 158 (2009), 563-588 [4] Schiano et al., Contrib. Mineral. Petrol. 160 (2010), 297-312

  10. Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States (United States)

    Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.


    Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  11. Drilling of Submarine Shallow-water Hydrothermal Systems in Volcanic Arcs of the Tyrrhenian Sea, Italy (United States)

    Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.


    Seafloor hydrothermal systems related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (holes ended in mineralization. Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the hydrothermal fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day hydrothermal fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the presence of an anhydrite seal to a larger hydrothermal system at depth. The aim of this study is to understand the role that magmatic volatiles and phase separation play in the formation of these precious and trace element-rich shallow water (<750m) hydrothermal systems in the volcanic arcs of the Tyrrhenian Sea.

  12. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan


    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  13. Late Palaeogene emplacement and late Neogene–Quaternary exhumation of the Kuril island-arc root (Kunashir island constrained by multi-method thermochronometry

    Directory of Open Access Journals (Sweden)

    J. De Grave


    Full Text Available The Kuril islands constitute a volcanic island arc-trench system, stretching from eastern Hokkaido (Japan to Kamchatka (Russia along the northwestern Pacific subduction system. The current arc consists of several volcanic islands mainly with Neogene basement and capped by several, predominantly andesitic, active subduction stratovolcanoes. Kunashir Island is the southwestern-most island of the arc, just off the Hokkaido coast and represents the study area in this paper. The island is composed of a Lower Complex of mainly late Miocene to Pliocene volcanic rocks, covered by an Upper Complex of younger (basaltic andesitic lava flows and tuffs on which currently four active volcanic edifices are built. In the Lower Complex sub-volcanic and deeper-seated intrusives of the so-called Prasolov and Dokuchaev magmatic complexes are found. More differentiated, tonalitic–granodioritic rocks were collected from these small intrusive bodies. An early Oligocene zircon LA-ICP-MS U/Pb age of 31 Ma for the Prasolov Complex was obtained, showing that the basement of Kunashir Island is older than previously thought. Thermochronometry (apatite fission-track and U-Th-Sm/He and zircon U-Th/He analyses further shows that the magmatic basement of the island was rapidly exhumed in the Pleistocene to present levels in a differential pattern, with He-ages ranging from 1.9 to 0.8 Ma. It is shown that the northern section of the island was hereby exhumed more intensely.

  14. Characteristics of Cu isotopes from chalcopyrite-rich black smoker chimneys at Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau basin (United States)

    Berkenbosch, H. A.; de Ronde, C. E. J.; Paul, B. T.; Gemmell, J. B.


    We analysed primary chalcopyrite from modern seafloor `black smoker' chimneys to investigate high-temperature hydrothermal Cu isotope fractionation unaffected by metamorphism. Samples came from nine chimneys collected from Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau backarc basin. This is the first known study of Cu isotopes from submarine intraoceanic arc/backarc volcanoes, with both volcanoes discharging significant amounts of magmatic volatiles. Our results ( n = 22) range from δ65Cu = -0.03 to 1.44 ± 0.18 ‰ (2 sd), with the majority of samples between ˜0.00 and 0.50 ‰. We interpret this cluster ( n = 17) of lower δ65Cu values as representing a mantle source for the chimney Cu, in agreement with δ65Cu values for mantle rocks. The few higher δ65Cu values (>0.90 ‰) occur (1) within the same chimneys as lower values, (2) randomly distributed within the chimneys (i.e. near the top and bottom, interior and exterior), and (3) within chalcopyrite of approximately the same age (responsible for the observed isotopic fractionation. When compared to global δ65Cu data for primary chalcopyrite, volcanic arc chimneys are most similar to porphyry copper deposits that also form from magmatic-hydrothermal processes in convergent tectonic settings.

  15. Jurassic ash-flow sheets, calderas, and related intrusions of the Cordilleran volcanic arc in southeastern Arizona: implications for regional tectonics and ore deposits (United States)

    Lipman, P.W.; Hagstrum, J.T.


    Volcanologic, petrologic, and paleomagnetic studies of widespread Jurassic ash-flow sheets in the Huachuca-southern Dragoon Mountains area have led to identification of four large source calderas and associated comagnetic intracaldera intrusions. Stratigraphic, facies, and contact features of the caldera-related tuffs also provide constraints on the locations, lateral displacements, and very existence for some major northwest-trending faults and inferred regional thrusts in southeastern Arizona. Silicic alkalic compositions of the Jurassic caldera-related, ash-flow tuffs; bimodal associated mafic magmatism; and interstratified coarse sedimentary deposits provide evidence for synvolcanic extension and rifting within the Cordilleran magmatic arc. Gold-copper mineralization is associated with subvolcanic intrusions at several of the Jurassic calderas. -from Authors

  16. Magmatic gas flux emissions from Gorelyi volcano, Kamchatka, and implications for volatile recycling in the NW Pacific (United States)

    Aiuppa, A.; Bagnato, E.; Calabrese, S.; Giudice, G.; Liuzzo, M.; Tamburello, G.; Allard, P.; Chaplygin, I.; Taran, Y.


    The Kamchatka peninsula, in the north-western part of the Pacific 'Ring of Fire', is one of the most active volcanic realms on Earth, with 29 historically erupting volcanoes along its ~700 km-long Eastern Volcanic Belt (EVB). This notwithstanding, volatile input and output fluxes along this arc sector have remained poorly characterised until very recently. We here report on the very first assessment of volatile flux emissions from Gorelyi, a large (25 km3, 1830 m high) and most active shield-like Holocene volcano located on the southern segment of the Kamchatka EVB. By combing results from a variety of in situ and remote sensing techniques (MultiGAS, filter packs, and UV camera), we determine the bulk plume molar concentrations of major (H2O 93.5%, CO2 2.6%, SO2 2.2%, HCl 1.1%, HF 0.3%, H2 0.2%) to trace-halogens (Br, I) and trace-element volatile species, and we estimate a total gas release of ~11,000 t/day from Gorelyi during ~900°C non-eruptive degassing. Using this observation, we derive new constraints on the abundances and origins of volatiles in the subduction-modified mantle source feeding magmatism in Kamchatka.

  17. Straddling the tholeiitic/calc-alkaline transition: the effects of modest amounts of water on magmatic differentiation at Newberry Volcano, Oregon (United States)

    Mandler, Ben E.; Donnelly-Nolan, Julie M.; Grove, Timothy L.


    Melting experiments have been performed at 1 bar (anhydrous) and 1- and 2-kbar H2O-saturated conditions to study the effect of water on the differentiation of a basaltic andesite. The starting material was a mafic pumice from the compositionally zoned tuff deposited during the ~75 ka caldera-forming eruption of Newberry Volcano, a rear-arc volcanic center in the central Oregon Cascades. Pumices in the tuff of Newberry caldera (TNC) span a continuous silica range from 53 to 74 wt% and feature an unusually high-Na2O content of 6.5 wt% at 67 wt% SiO2. This wide range of magmatic compositions erupted in a single event makes the TNC an excellent natural laboratory in which to study the conditions of magmatic differentiation. Our experimental results and mineral–melt hygrometers/thermometers yield similar estimates of pre-eruptive H2O contents and temperatures of the TNC liquids. The most primitive (mafic) basaltic andesites record a pre-eruptive H2O content of 1.5 wt% and a liquidus temperature of 1,060–1,070 °C at upper crustal pressure. This modest H2O content produces a distinctive fractionation trend that is much more enriched in Na, Fe, and Ti than the calc-alkaline trend typical of wetter arc magmas, but slightly less enriched in Fe and Ti than the tholeiitic trend of dry magmas. Modest H2O contents might be expected at Newberry Volcano given its location in the Cascade rear arc, and the same fractionation trend is also observed in the rim andesites of the rear-arc Medicine Lake volcano in the southern Cascades. However, the Na–Fe–Ti enrichment characteristic of modest H2O (1–2 wt%) is also observed to the west of Newberry in magmas erupted from the arc axis, such as the Shevlin Park Tuff and several lava flows from the Three Sisters. This shows that modest-H2O magmas are being generated directly beneath the arc axis as well as in the rear arc. Because liquid lines of descent are particularly sensitive to water content in the range of 0–3 wt% H

  18. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels


    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...

  19. The kinematical structure of gravitationally lensed arcs

    NARCIS (Netherlands)

    Moller, O; Noordermeer, E


    In this paper, the expected properties of the velocity fields of strongly lensed arcs behind galaxy clusters are investigated. The velocity profile along typical lensed arcs is determined by ray-tracing light rays from a model source galaxy through parametric cluster toy models consisting of

  20. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    A classical combinatorial fact is that the simplicial complex consisting of disjointly embedded chords in a convex planar polygon is a sphere. For any surface F with non-empty boundary, there is an analogous complex Arc(F) consisting of suitable equivalence classes of arcs in F connecting its bou...

  1. ArcForm - A multimodal notation

    DEFF Research Database (Denmark)

    Allsopp, Benjamin Brink

    ArcForm (AF) is a visual notation based on a new graph-like network structure. It supports a unique approach to labeling arcs and nodes to allow diverse and grammatically normal English (or other natural language) sentences to be embedded in the network (Allsopp, 2013). In doing this AF combines ...

  2. Feature extraction of arc tracking phenomenon (United States)

    Attia, John Okyere


    This document outlines arc tracking signals -- both the data acquisition and signal processing. The objective is to obtain the salient features of the arc tracking phenomenon. As part of the signal processing, the power spectral density is obtained and used in a MATLAB program.

  3. The next-generation ARC middleware

    DEFF Research Database (Denmark)

    Appleton, O.; Cameron, D.; Cernak, J.


    The Advanced Resource Connector (ARC) is a light-weight, non-intrusive, simple yet powerful Grid middleware capable of connecting highly heterogeneous computing and storage resources. ARC aims at providing general purpose, flexible, collaborative computing environments suitable for a range of uses...

  4. The Magmatic Component of the Plate Boundary Observatory. (United States)

    Mencin, D.; Jackson, M.; Lisowski, M.; Feaux, K.; Andersen, G.; Bohnenstiehl, K.; Hodgkinson, K.; Coyle, B.; Friesen, B.; Pauk, B.; Walls, C.; Meertens, C.


    The Plate Boundary Observatory (PBO) component of the NSF-funded Earthscope program has a significant complement of instruments devoted to the study of magmatic systems. There are ten target areas: Akutan, Unimak, Augustine, Mt St Helens, Long Valley, Yellowstone, Lake Tahoe, Medicine Lake, Mt Lassen, and Mt Shasta that include 22 borehole strainmeters, 22 borehole seismometers, 26 borehole tiltmeters and 110 continuous GPS stations all returning data in near real-time. In conjunction with the existing instrumentation operated by the USGS Volcanic Hazards Programs Volcano Observatories, this represents a significant array of tools for exploring various volcanic processes. In the first four years of the project, PBO has captured two volcanic events (Mt St Helens and Augustine) far exceeding the anticipation of capturing one event in the first 15 years of the project. This presentation gives an overview and status of the program, the various targets, instrumentation and results.

  5. Magmatism and petroleum exploration in the Brazilian Paleozoic basins

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz Filho, Antonio; Antonioli, Luzia [Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Rua Sao Francisco Xavier, no 524/2030, CEP 20550-900, Rio de Janeiro, RJ (Brazil); Mizusaki, Ana Maria Pimentel [Universidade Federal do Rio Grande do Sul, Instituto de Geociencias, Avenida Bento Goncalves, no 9500, Campus do Vale, CEP 91509-900, Porto Alegre, RS (Brazil)


    Petroleum exploration in the Paleozoic sedimentary basins of Brazil has proven very challenging for explorationists. Except for the Solimoes Basin, in which transcurrent tectonism formed prospective structural highs, Brazilian Paleozoic basins lack intense structural deformation, and hence the detection and prospecting of place is often difficult. Magmatic intrusive and associated rocks in all these basins have traditionally been considered heat sources and hydrocarbon traps. The role of tholeiitic basic dikes in the generation, migration and accumulation of petroleum in the Anhembi oil occurrence (Sao Paulo State) is discussed herein. It follows that similar geological settings in other Paleozoic basins can be regarded as promising sites for oil accumulation that warrant investigation via modern geological and geophysical methods. (author)

  6. Understanding Magmatic Plumbing System Dynamics at Fernandina Island, Galapagos (United States)

    Varga, K. C.; McGuire, M.; Geist, D.; Harpp, K. S.


    Fernandina is the most active Galápagos volcano, and is located closest to the seismically defined hotspot. Allan and Simkin (2000) observed that the subaerial edifice is constructed of homogeneous basalts (Mg# = 49 ± 2) with highly variable plagioclase phenocryst contents and sparse olivine. Geist et al. (2006) proposed a magmatic plumbing system in which the volcano is supplied by interconnected sills, the shallowest of which is density-stratified: olivine and pyroxene are concentrated at greater depths, whereas less dense plagioclase mush is higher in the sill. Consequently, olivine-rich lava erupts laterally during submarine events, but plagioclase-rich lava supplies subaerial vents. To test this hypothesis, we examine lavas erupted in 1995, 2005, and 2009. These SW flank eruptions emerged alternatively from en echelon radial fissures on the lower flanks and circumferential fissures near the caldera rim. The 1995 radial fissure unzipped downslope and then formed a cone 4 km from the coast, sending flows to the ocean. In 2005, circumferential fissures erupted five flows south of the 1995 fissure. As in 1995, the 2009 fissures opened down the SW flank before focusing to a cone near the 1995 vents, producing 6 km-long flows that also reached the ocean. By correlating plagioclase crystal size distribution and morphologies with single event chronological sequences, we examine Fernandina's magmatic plumbing system. Modal plagioclase in 1995 lava decreases (20% to <5%) throughout the middle eruptive phase. Early 2005 samples are nearly aphyric (Chadwick et al., 2010), with 1-2% plagioclase. The 2009 eruption has reduced plagioclase, similar to mid-1995 samples. Preliminary observations suggest that less plagioclase-rich mush is being flushed out during early-to-medial event sequences, whereas plag phenocrysts are transported more during later phases. Plausible plumbing dynamics suggest a zone of plagioclase-rich mush that is eroded and incorporated into radial

  7. Uranium metallogeny, magmatism and structure in southeast China

    International Nuclear Information System (INIS)

    Simpson, P.R.


    Granite magmatism and the associated uranium metallogeny in southeast China are considered in relation to a plate tectonic model previously developed for Jiangxi Province which envisages the suturing of three separate continental fault blocks or plates which are thought to have existed as separate continental microplates until the Permian, namely the Sino-Korean, Yangtze and South China Plates. In Jiangxi Province, most of the granitic magmas, including those considered in the paper to be associated with U ore deposits, can be shown to be systematically distributed in relation to the postulated destructive plate margins which are thought to have existed along all the plate boundaries between the continental microplates. The granitic intrusions in Jiangxi range from those more proximal to the inferred location of the subduction zone in a modified Andean type model, such as porphyries of Cu, Cu-Mo and W-Cu type, to more distal granites of U-W-Sn-F-Nb-REE type. They range in age from Indosinian to Yanshanian (but mainly the latter) and are intruded in tensional settings along major lithospheric fracture zones, with sinistral strike slip, many of which continued to move both during and after granite emplacement. These U, W, Sn, F, Nb and REE rich metalliferous granites, which all intruded post-tectonically long after the principal metamorphic events, which are Jinningian (Late Proterozoic on the Yangtze Plate) and Caledonian (South China Plate), and the younger suturing events, are considered in the study to be essentially of juvenile magmatic rather than crustal origin. Such a tectonic model helps to account for the well developed and structurally zoned metallogeny of southeast China and the genesis of the Southeast China Uranium Province. Selected examples of U ore deposits which occur within the Southeast China Uranium Province are considered in order to develop the basis for a genetic model for U which would be more generally applicable to this region and possibly

  8. Magmatic Processes and Systems Deduced from Single Crystals (United States)

    Davidson, J.; Bezard, R. C.; Morgan, D. J.; Ginibre, C.


    When crystals grow in liquids the composition of their outermost layer will reflect that of the host with which they are in equilibrium and will therefore record the liquid composition, pressure and temperature.. Following separation from their sources, magmas differentiate. This change in liquid composition is driven largely by crystallisation in response to cooling or decompression. Other open system processes such as mixing and contamination are common. These can lead to abrupt changes in trace element and isotopic composition, accompanied by petrographic features, such as dissolution surfaces or zones of melt inclusions. Where such careful mineral-scale studies have been performed, the prevalence of open system processes is clear. In many cases these are shown by core-rim isotopic variations. Crystal-scale compositional variations in the context of whole rock compositions and petrography have allowed us to show crustal assimilation even from regions of supposedly oceanic crust such as the Lesser Antilles. In tandem with tracking magma evolution, core-rim analyses of appropriate crystals have also provided diffusion profiles which reflect timescales of magmatic processes. A key point, long recognised by Bruce Marsh, is that in situ geochemical data should be considered in a petrographic context in order to gain the most (and most credible) insights on the workings of magma systems from hand specimen to whole volcano/pluton scales: The petrographic microscope is not dead yet Identification of magmatic processes from in situ scrutiny allows us to synthesise the architectures and inner workings of magma systems. The evidence for interaction among magmas in many systems is compelling and suggests that many exist as stacked dike-sill arrangements with wall-rock focussed crystal growth and mush zones. These are consistent with many of the systematics suggested some time ago by Bruce Marsh

  9. The Arc of cognition: Signaling cascades regulating Arc and implications for cognitive function and disease. (United States)

    Epstein, Irina; Finkbeiner, Steven


    The activity-regulated cytoskeletal (Arc) gene is implicated in numerous synaptic plasticity paradigms, including long-term potentiation and depression and homeostatic plasticity, and is critical for consolidating memory. How Arc facilitates these forms of plasticity is not fully understood. Unlike other neuronal immediate-early genes, Arc encodes a protein that shuttles between the somatodendritic and nuclear compartments to regulate synaptic plasticity. Little attention has been paid to Arc's role in the nucleus. Here, we highlight the regulatory elements and signaling cascades required to induce Arc transcription and discuss the significance of Arc nuclear localization for synaptic plasticity and scaling. We integrate these findings into the context of cognitive function and disease and propose a model in which Arc mediates an effect on memory as a "chaser" of synaptic activity through homeostatic scaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sensor Control of Robot Arc Welding (United States)

    Sias, F. R., Jr.


    The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.

  11. Modification of tungsten layers by arcing

    International Nuclear Information System (INIS)

    Laux, M.; Schneider, W.; Juettner, B.; Lindig, S.; Mayer, M.; Balden, M.; Beilis, I.; Djakov, B.


    Numerous traces of arcs have been found on W-covered graphite tiles of ASDEX Upgrade after exposure. The distributions of number density, lengths and orientation are calculated and compared to pure graphite tiles at comparable locations. It was established that arcs perforate a 1 μm tungsten layer down to the carbon substrate. The amount of removal should rise with arc current, but a surface fraction of about 8% is eroded at 10 A already. At tiles of the divertor baffle the layer is continuously removed along the entire track pointing to higher currents. The carbon of the stripped parts is subject to subsequent erosion processes. The distribution of materials in and around arc tracks was investigated by sputter depth profiling (SIMS and AES) and the characteristic geometry was studied using an electron microscope. Observations are interpreted using results from laboratory vacuum arcs on the same material

  12. Neogene displacements in the Solomon Islands Arc (United States)

    Ridgway, J.


    The geology and present configuration of the Solomon Island arc can be explained in terms of the Neogene displacement of a single linear chain of islands. The central part of an original arc consisting of Bougainville, Choiseul, Santa Ysabel, Guadalcanal and San Cristobal was displaced to the northeast as a consequence of the attempted subduction of the Woodlark spreading system. Malaita arose on the northeastern side of the arc as a result of interaction between the arc and the Pacific Ocean floor and the volcanic islands of the New Georgia group formed to the southwest in response to the subduction of a spreading ridge, thus giving rise to the present double chain structure of the arc.

  13. Laser assisted arc welding for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fuerschbach, P.W.


    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  14. Triple junction magmatism: a geochemical study of Neogene volcanic rocks in western California (United States)

    Johnson, C.M.; O'Neil, J.R.


    Inception of volcanism at late Oligocene to Recent centers in the eastern Coast Ranges of California (ECR suite) regularly decreases in age northward and is correlated with the northward migration of the transform-transform-trench Mendocino triple junction (MTJ). Miocene volcanism in the southern California basin (SCB suite) is spatially and temporally associated with the transform-ridge-trench Rivera triple junction (RTJ). The tholeiitic to calc-alkaline rocks in both suites were erupted through older trench melange while arc magmatism was occurring several hundred kilometers to the east. Therefore they are not related to subduction zone magmatism, but instead to interactions of the MTJ and RTJ with the continental margin. The ECR rocks, dominantly intermediate to silicic in composition, have relatively high ??18O values up to 11.3, 87Sr 86Sr ratios up to 0.7055, as well as relatively high Th contents, suggesting that crustal anatexis played a dominant role in their generation. Coupled crystal fractionation and crustal assimilation by an initially basaltic magma cannot explain the high ??18O values and 87Sr 86Sr ratios because greater than 95% of the basalt would need to crystallize. In contrast, the SCB rocks, dominantly mafic to intermediate in composition, have relatively low ??18O values down to 5.2 and 87Sr 86Sr ratios down to 0.7025 suggesting that these rocks were derived dominantly from a mantle source. Whether crustal anatexis occurs is determined largely by the type of stress a triple junction imposes upon the continental margin. Both the MTJ and RTJ are associated with high heat flow and magma fluxes from the mantle. The transform-transform-trench MTJ is associated with locally variable mild extension to compression and therefore allows pooling of basaltic magma in the crust to initiate crustal melting. The high rates of continental extension associated with the transform-ridge-trench RTJ prevents such pooling of magma. The space created by decoupling

  15. Amphibole reaction rims as a record of pre-eruptive magmatic heating: An experimental approach (United States)

    De Angelis, S. H.; Larsen, J.; Coombs, Michelle L.; Dunn, A.; Hayden, Leslie A.


    Magmatic minerals record the pre-eruptive timescales of magma ascent and mixing in crustal reservoirs and conduits. Investigations of the mineral records of magmatic processes are fundamental to our understanding of what controls eruption style, as ascent rates and magma mixing processes are well known to control and/or trigger potentially hazardous explosive eruptions. Thus, amphibole reaction rims are often used to infer pre-eruptive magma dynamics, and in particular to estimate magma ascent rates. However, while several experimental studies have investigated amphibole destabilization during decompression, only two investigated thermal destabilization relevant to magma mixing processes. This study examines amphibole decomposition experimentally through isobaric heating of magnesio-hornblende phenocrysts within a natural high-silica andesite glass. The experiments first equilibrated for 24 h at 870 °C and 140 MPa at H2O-saturated conditions and ƒO2 ∼ Re–ReO prior to rapid heating to 880, 900, or 920 °C and hold times of 3–48 h. At 920 °C, rim thicknesses increased from 17 μm after 3 h, to 55 μm after 12 h, and became pseudomorphs after longer durations. At 900 °C, rim thicknesses increased from 7 μm after 3 h, to 80 μm after 24 h, to pseudomorphs after longer durations. At 880 °C, rim thicknesses increased from 7 μm after 3 h, to 18 μm after 36 h, to pseudomorphs after 48 h. Reaction rim microlites vary from 5–16 μm in size, with no systematic relationship between crystal size and the duration or magnitude of heating. Time-averaged rim microlite growth rates decrease steadily with increasing experimental duration (from  to 3.1 to ). Time-averaged microlite nucleation rates also decrease with increasing experimental duration (from  to 5.3 mm−3 s−1). There is no systematic relationship between time-averaged growth or nucleation rates and the magnitude of the heating step. Ortho- and clinopyroxene together constitute 57–90

  16. Amphibole reaction rims as a record of pre-eruptive magmatic heating: An experimental approach (United States)

    De Angelis, S. H.; Larsen, J.; Coombs, M.; Dunn, A.; Hayden, L.


    Magmatic minerals record the pre-eruptive timescales of magma ascent and mixing in crustal reservoirs and conduits. Investigations of the mineral records of magmatic processes are fundamental to our understanding of what controls eruption style, as ascent rates and magma mixing processes are well known to control and/or trigger potentially hazardous explosive eruptions. Thus, amphibole reaction rims are often used to infer pre-eruptive magma dynamics, and in particular to estimate magma ascent rates. However, while several experimental studies have investigated amphibole destabilization during decompression, only two investigated thermal destabilization relevant to magma mixing processes. This study examines amphibole decomposition experimentally through isobaric heating of magnesio-hornblende phenocrysts within a natural high-silica andesite glass. The experiments first equilibrated for 24 h at 870 °C and 140 MPa at H2O-saturated conditions and ƒO2 ∼ Re-ReO prior to rapid heating to 880, 900, or 920 °C and hold times of 3-48 h. At 920 °C, rim thicknesses increased from 17 μm after 3 h, to 55 μm after 12 h, and became pseudomorphs after longer durations. At 900 °C, rim thicknesses increased from 7 μm after 3 h, to 80 μm after 24 h, to pseudomorphs after longer durations. At 880 °C, rim thicknesses increased from 7 μm after 3 h, to 18 μm after 36 h, to pseudomorphs after 48 h. Reaction rim microlites vary from 5-16 μm in size, with no systematic relationship between crystal size and the duration or magnitude of heating. Time-averaged rim microlite growth rates decrease steadily with increasing experimental duration (from 3.97 ×10-7 mms-1 to 3.1 to 3.5 ×10-8 mms-1). Time-averaged microlite nucleation rates also decrease with increasing experimental duration (from 1.2 ×103mm-3s-1 to 5.3 mm-3 s-1). There is no systematic relationship between time-averaged growth or nucleation rates and the magnitude of the heating step. Ortho- and clinopyroxene

  17. Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics (United States)

    Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M.


    This work reports evidence of recent tectonically controlled plutonic magmatism related to Neogene volcanism in a broad area of Northeast Peloponnesus (Greece) that is straddled by the Hellenic Volcanic Arc and comprises the Argolid, the Argolic and Saronic gulfs and eastern Corinthia including the province of Crommyonia at the western half of Megaris peninsula (western Attica). We assess the contemporary stress field based on formal inversion of well-constrained crustal earthquake focal mechanisms and determine that it is principally extensional and NE-SW oriented, with σ1 strike and plunge being N64° and 77°, respectively and σ3 strikes and plunge N210° and 10°. This generates WNW-ESE and NW-SE faults, the former being dominant in the Saronic Gulf and the latter in the Argolic. In addition, the analysis predicts E-W and N330° faults with non-trivial right- and left-lateral heave, respectively, which are consistent with the R and R΄ directions of Riedel shear theory and explain a number of observed earthquake focal mechanisms and earthquake epicentre alignments. We also present a semi-quantitative analysis of observed aeromagnetic anomalies by performing numerical modelling of the radially averaged power spectrum with an efficient anomaly separation scheme based on a new type of 2-D Fourier domain filter introduced herein, the Radial Extended Meyer Window. This analysis identifies an extensive complex of magnetized rock formations buried at depths greater than 3 km which, given the geology and geotectonic setting of the area, can hardly be explained with anything other than calc-alkaline intrusions (plutons). At northeastern Corinthia and Crommyonia, this type of intrusive activity is unexceptional, mainly concentrated in the Gulf of Megara-Sousaki areas and consistent with the low-intensity, small-scale Pliocene dacitic volcanism observed therein. Conversely, large-scale elongate anomalies of E-W and N330° orientation have been identified in the Argolid

  18. Role of arc mode in laser-metal active gas arc hybrid welding of mild steel

    International Nuclear Information System (INIS)

    Li, Geng; Zhang, Chen; Gao, Ming; Zeng, Xiaoyan


    Highlights: • Pulsed arc is more effective to improve the stability of laser-arc hybrid welding. • LCHW has the highest fraction of acicular ferrite and high-angle grain boundaries. • Grain refinement depends on effective current of the arc. • LSHW has the most apparent vestige of texture components. • The microstructure and microtexture formation mechanisms were summarized. - Abstract: Arc mode plays an important role in joint characterizations of arc welding, but it has been seldom considered in laser-arc hybrid welding. This paper investigated the role of arc mode on laser-metal active gas (MAG) arc hybrid welding of mild steel. Three arc modes were employed, which were cold metal transfer (CMT), pulsed spray arc and standard short circuiting arc. Microtexture of the joints were observed and measured via electron back scattering diffraction (EBSD) system to reveal the effect of arc mode on microstructure. Mechanical properties of the joints were evaluated by tensile and Charpy V-notch impact tests. It was found that both the stability and mechanical properties of laser-CMT hybrid welding (LCHW) is the best, while those of laser-standard short circuiting arc welding (LSHW) is the worst. OM and EBSD results showed that the fraction of acicular ferrite and high-angle grain boundaries in fusion zone decreases gradually in the sequence of LCHW, laser-pulsed spray arc welding and LSHW, while the mean grain size increases gradually. Finally, the microstructure formation mechanisms and the relationship between microstructure and mechanical properties were summarized by the loss of alloying element and the stirring effect in molten pool

  19. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage. (United States)

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo


    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  20. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Scandinavia and other countries. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed...... by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the LHC Computing Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous...... environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF....

  1. Voluminous arc dacites as amphibole reaction-boundary liquids (United States)

    Blatter, Dawnika L.; Sisson, Thomas W.; Hankins, W. Ben


    Dacites dominate the large-volume, explosive eruptions in magmatic arcs, and compositionally similar granodiorites and tonalites constitute the bulk of convergent margin batholiths. Shallow, pre-eruptive storage conditions are well known for many dacitic arc magmas through melt inclusions, Fe-Ti oxides, and experiments, but their potential origins deeper in the crust are not well determined. Accordingly, we report experimental results identifying the P-T-H2O conditions under which hydrous dacitic liquid may segregate from hornblende (hbl)-gabbroic sources either during crystallization-differentiation or partial melting. Two compositions were investigated: (1) MSH-Yn-1 dacite (SiO2: 65 wt%) from Mount St. Helens' voluminous Yn tephra and (2) MSH-Yn-1 + 10% cpx to force saturation with cpx and map a portion of the cpx + melt = hbl peritectic reaction boundary. H2O-undersaturated (3, 6, and 9 wt% H2O) piston cylinder experiments were conducted at pressures, temperatures, and fO2 appropriate for the middle to lower arc crust (400, 700, and 900 MPa, 825-1100 °C, and the Re-ReO2 buffer ≈ Ni-NiO + 2). Results for MSH-Yn-1 indicate near-liquidus equilibrium with a cpx-free hbl-gabbro residue (hbl, plg, magnetite, ± opx, and ilmeno-hematite) with 6-7 wt% dissolved H2O, 925 °C, and 700-900 MPa. Opx disappears down-temperature consistent with the reaction opx + melt = hbl. Cpx-added phase relations are similar in that once 10% cpx crystallizes, multiple saturation is attained with cpx, hbl, and plg, +/- opx, at 6-7 wt% dissolved H2O, 940 °C, and 700-900 MPa. Plg-hbl-cpx saturated liquids diverge from plg-hbl-opx saturated liquids, consistent with the MSH-Yn-1 dacite marking a liquid composition along a peritectic distributary reaction boundary where hbl appears down-temperature as opx + cpx are consumed. The abundance of saturating phases along this distributary peritectic (liquid + hbl + opx + cpx + plg + oxides) reduces the variance, so liquids are restricted to

  2. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance (United States)

    Bettencourt, Jorge Silva; Juliani, Caetano; Xavier, Roberto P.; Monteiro, Lena V. S.; Bastos Neto, Artur C.; Klein, Evandro L.; Assis, Rafael R.; Leite, Washington Barbosa, Jr.; Moreto, Carolina P. N.; Fernandes, Carlos Marcello Dias; Pereira, Vitor Paulo


    The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04-2.97 Ga), metavolcanic-sedimentary units (2.76-2.74 Ga), granitoids (3.07-2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74-2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb-Y-Sn-Be-U. The latter, as well as Sn-W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0-1.87 Ga), two calc-alkaline volcanic sequences (2.0-1.95 Ga to 1.89-1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu-Au and Cu-Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98-1.75 Ga), generated in ocean-ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Col

  3. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano (United States)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.


    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  4. The Magmatic Budget of Rifted Margins: is it Related to Inheritance? (United States)

    Manatschal, G.; Tugend, J.; Gillard, M.; Sauter, D.


    High quality reflection and refraction seismic surveys show a divergent style of margin architecture often referred to as magma-poor or magma-rich. More detailed studies show, however, that the evolution of these margins can be similar, despite the variable quantity and distribution of magmatism. These observations suggest that simple relations between magmatic and extensional systems are inappropriate to describe the magmatic history of rifted margins. Moreover, the study of magmatic additions indicates that they may occur, prior to, during or after lithospheric breakup. Furthermore, the observation that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far the inherited composition and temperature of the decompressing mantle may control the magmatic budget during rifting. In our presentation we will review examples from present-day and fossil rifted margins to discuss their structural and magmatic evolution and whether they are considered as magma-rich or magma-poor. The key questions that we aim to address are: 1) whether decompression melting is the driving force, or rather the consequence of extension, 2) how far the magmatic budget is controlled by inherited mantle composition and temperature, and 3) how important magma storage is during initial stages of rifting. Eventually, we will discuss to what extent the evolution of margins may reflect the interplay between inheritance (innate/"genetic code") and the actual physical processes (acquired/external factors).

  5. Isotopic clues to magmatic source regions for neogene Andean volcanic rocks in the El Teniente area near 38oS latitude

    International Nuclear Information System (INIS)

    Kay, Suzanne Mahlburg; Kurtz, A.C


    The origin of isotopic variations in Central Andean arc lavas is a long-standing problem that involves identifying mantle and crustal source regions. Advances have come from analyzing temporal and spatial variations in constrained tectonic settings. The purpose here is to highlight the similarities of temporal variations in an east-west transect of Neogene magmatic units near 34 O S latitude with those from a south-north transect along the modern Southern Volcanic Zone (SVZ, e.g. Hildreth and Moorbath 1988, Tormey et al. 1991). The comparison shows the importance of crustal thickening processes associated with compressional shortening and of lithospheric scale adjustments associated with eastward migration of the arc front on magma sources. Sr, Nd and Pb isotopic analyses of 27 Neogene volcanic and plutonic samples from the El Teniente area are presented in Table 1 and plotted along with some analyses from Skewes and Stern (1994) and Stern and Skewes (1995) in Figure 2. The data show a clear progression from older samples with more 'depleted' isotopic signatures (lower 87 Sr/ 86 Sr and Pb isotopic ratios, higher εNd) to younger samples with more 'enriched' signatures (higher 87 Sr/ 86 Sr and Pb isotopic ratios, lower εNd). In detail, four temporal and spatial groups marked by discontinuities in isotopic trends can be defined. Within each group, εNd tends to decrease and 87 Sr/ 86 Sr ratios to increase with SiO2 concentration (au)

  6. C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions (United States)

    Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.


    Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702

  7. Using of Gis Technology For Arctic Geophysical, Geological and Magmatic Rock Database (United States)

    Ryakhovsky, V. M.; Mironov, Yu. V.; Pustovoy, A. A.

    The software technology is developed on the basis of Oracle ODBC and unites hard- ware, software, and multi-aspect subject-oriented databases on geology and geo- physics including data on composition of magmatic rocks for purposes of geodynamic and metallogenic analysis. The technology provides users with opportunity to form the attributive tables through voluntary quarries with crossing indices on various types of objects. In case, the data in tables have geographic coordinates, they could be adapted to wide spectrum of specialized digitized maps using ArcView. Beside of that, the tables could be used in the environment of popular processing software such as MS Excel, MS Access, Surfer, etc. On the basis of developed technology, a GIS structure chart is created for the multi-purpose processing of huge data files containing multi- aspect geological information. The users get an opportunity to model objects and sit- uations; the dialog language is quasi-natural; the consulting on specific and restricted problems is possible. Such a multi-contour system is able, at the analytical level, to ad- just different informational models with reference ones, which sufficiently decreases the efficiency of scientific researches as a whole. One of the important results of used software technology is the revealing of specific Arctic isotope province, which in- cludes spreading ridges of Northern Atlantic, Norvegian-Greenland sea and Arctic ocean, Iceland and Jan-Mayen island, Iceland-Faeroe Rise, and also traps of Norway, Britain, and Greenland. MORB and the island rocks of this province are analogous in relation with ratios of most Sr, Nd, and Pb isotopes to basalts of well-known South- ern Hemisphere DUPAL-anomaly, but, by 207Pb/204Pb and 206Pb/204Pb ratios, they are corresponding with normal MORB. This specificity is connected to admixture of the special component ARCTIC. This component represents one of end-components of trends, which are formed by compositions of continental

  8. A review of arcing phenomena in vacuum and in the transition to atmospheric pressure arcs

    International Nuclear Information System (INIS)

    Kimblin, C.W.


    This paper reviews vacuum-arc phenomena, and the effect of low-pressure gaseous ambients on electrode phenomena in the transition to atmospheric pressure arcs. The 5 main areas addressed are cathode-spot phenomena, anode-spot phenomena, the properties of the interelectrode plasma for both diffuse arcs and columnar arcs, the interaction of vacuum arcs with axial and transverse magnetic fields, and finally, the transition to atmospheric pressure arcs. The current levels range from 50 A to 50 kA. For each of these 5 main areas, features of the vacuum arc which can be reasonably established from the literature are first described, followed by a discussion of parameters requiring additional experimental and theoretical study. For example, the current densities, microstructure, and theoretical description of the cathode spot remain the subject of much debate. There is also a need for additional experimental observations of the anode ion flux and ion energies in order to clarify the overall anode-spot mechanism. With respect to high-current columnar arcs, here there is uncertainty concerning the pressure in the arc column and the mechanism of the grossly evaporating cathode spot. It is firmly established that these high-current columnar arcs can be avoided by applying an axial magnetic field parallel to the arcing axis, but a detailed understanding of the magnetic field/arc interaction remains to be established. The review concludes with a discussion of experimental investigations of electrode phenomena in the presence of low ambient gas pressures. Here the overall objective is to relate the theoretical and experimental descriptions of vacuum-arc cathode-spot phenomena to the more commonly encountered electrode phenomena at atmospheric pressure

  9. Ultrasound in arc welding: a review. (United States)

    da Cunha, Tiago Vieira; Bohórquez, Carlos Enrique Niño


    During the last decade, the introduction of ultrasound techniques in arc welding with the intention of improving the operational performance and technical characteristics of the welding processes have been studied intensively. In this work is presented a broad review of the literature surrounding the utilization of this technique. Firstly, we discuss the use of traditional mechanical transducers to generate ultrasound in arc welding. Furthermore, we describe the various methods and their application in arc-welding processes. After, is presented a recent method of introducing ultrasonic energy in arc welding, which forms a potential alternative to the use of traditional mechanical type transducers. This method was originally developed in the late 1990s and is called arc with ultrasonic excitation of current. Here, the arc acts not only as a thermal source but also as an emission mechanism for ultrasound, acting directly on the weld pool. We presented and discussed various innovative concepts based on this method, which allows the introduction of ultrasonic energy in the arc welding without the need of any auxiliary device of welding. In addition, we also presented the variations of this method reported in the literature. Finally, we have described the respective effects attributed to the use of this method in the welding of different materials using various welding processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. PBO-Style Seismic and Geodetic Monitoring at Frequently-Active Aleutian Arc Volcanoes (United States)

    Murray, T. L.; Power, J. A.; Freymueller, J. T.; Tytgat, G.; Moran, S. C.; Lisowski, M.; Johnston, M. J.; Pauk, B. A.; Caplan-Auerbach, J.; Paskievitch, J. F.; Plucinski, T. A.; McNutt, S. R.; Petersen, T.; Mann, D.


    A major goal of EarthScope and the Plate Boundary Observatory (PBO) is to obtain real-time data on the dynamics of magma transport and the physical processes surrounding magmatic intrusions before, during, and after eruption. To accomplish this the PBO has selected five active Aleutian arc volcanic centers for instrumentation; Augustine, Pavlof, Unimak Island (the location of Isanotski, Shishaldin, Fisher Caldera, and Westdahl Volcano), Akutan, and Okmok. Six of these volcanoes have erupted within the last 20 years and four are known to be actively deforming. The frequency of eruptive activity at these volcanoes, as well as diverse chemistry of erupted products, makes these volcanic centers unique natural laboratories within the North American plate boundary system for studying active volcanism. During the summer of 2002 the Alaska Volcano Observatory (AVO) began deployment of PBO-style networks consisting of continuous GPS receivers collocated with broadband seismometers at Akutan Volcano and Okmok Caldera. Five GPS receivers were installed in 2002, and are recording on-site. Three GPS receivers on Okmok radio data approximately 70 km to Dutch Harbor. The radio system provides full duplex serial communication between the instruments at each remote site and the central recording system in Dutch Harbor. Planned 2003 work includes adding broadband seismometers to the existing sites and adding three more sites for a total of four telemetered broadband-GPS sites on each volcano. These deployments complement short-period seismic networks that were deployed on Akutan Volcano and Okmok Caldera in 1996 and 2002 and campaign GPS measurements begun in 1996 and 2000, respectively. The instruments installed this year and the addition of the broadband seismometers in 2003 will greatly improve our ability to study volcanic processes. Once the existing networks are enhanced by additional instrumentation through PBO, they will provide the opportunity to study the mechanics and

  11. Transport coefficients in copper vapor arc plasmas

    International Nuclear Information System (INIS)

    Rahal, A.M.; Rahhaoui, B.; Vacquie, S.


    The presence of copper vapors modifies the properties of arc discharges. The paper deals with a region not investigated earlier, where in the core of the positive column of very short or high current arcs there is a high copper concentration. At these values the relative losses take a greater part in the energy balance. Using the charged-charged collision integrals, the transport coefficients (axial temperature, thermal and electric conductivity, viscosity) of the plasma with higher copper vapor concentration are calculated as the function of the arc current intensity. (D.Gy.)

  12. Stratigraphy, geochronology, and accretionary terrane settings of two Bronson Hill arc sequences, northern New England (United States)

    Moench, R.H.; Aleinikoff, J.N.


    The Ammonoosuc Volcanics, Partridge Formation, and the Oliverian and Highlandcroft Plutonic Suites of the Bronson Hill anticlinorium (BHA) in axial New England are widely accepted as a single Middle to Late Ordovician magmatic arc that was active during closure of Iapetus. Mapping and U-Pb dating indicate, however, that the BHA contains two volcano-sedimentary-intrusive sequences of probable opposite subduction polarity, here termed the Ammonoosuc and Quimby sequences. The Ammonoosuc sequence is defined by the Middle Ordovician Ammonoosuc Volcanics near Littleton, NH, the type area, northeast to Milan, NH, and Oquossoc, ME; it also includes black slate of the Partridge Formation ( C. bicornis--zone graptolites, ???457 Ma). Related metamorphosed intrusives are the tonalitic Joslin Turn pluton (469 ?? 2 Ma), the Cambridge Black granitic pluton (468 ?? 3 Ma), and gabbro, tonalite (467 ?? 4 Ma), and sheeted diabase of the Chickwolnepy intrusions. These intrusives cut lowermost Ammonoosuc (therefore >469 Ma). Probable uppermost Ammonoosuc is dated at 465 ?? 6 and 461 ?? 8 Ma. Successively below the Ammonoosuc are the Dead River and Hurricane Mountain Formations (flysch and melange), and the Jim Pond Formation (484 ?? 5 Ma) and Boil Mountain Complex (both ophiolite), which are structurally underlain by the Neoproterozoic(?) Chain Lakes massif. The Quimby sequence is defined by the Lower Silurian(?) to Upper Ordovician Quimby Formation, composed of bimodal volcanics (443 ?? 4 Ma) and sulfidic shale and graywacke that lie conformably to unconformably above the Ammmonoosuc Volcanics and Partridge Formation. Also in the Quimby sequence are several granitic to sparsely gabbroic plutons of the Highlandcroft (441-452 Ma) and Oliverian (435-456 Ma) Plutonic Suites, which intrude the Dead River, Ammonoouc and Partridge, but not the Quimby Formation. Based on faunal, paleolatitude, and isotopic data, the Ammonoosuc sequence and its correlatives and underlying sequences formed off

  13. Long-term fore-arc basin evolution in response to changing subduction styles in southern Alaska (United States)

    Finzel, Emily S.; Enkelmann, Eva; Falkowski, Sarah; Hedeen, Tyler


    Detrital zircon U-Pb and fission track double-dating and Hf isotopes from the Mesozoic and Cenozoic strata in the southern Alaska fore-arc basin system reveal the effects of two different modes of flat-slab subduction on the evolution of the overriding plate. The southern margin of Alaska has experienced subduction of a spreading-ridge ( 62-50 Ma) and an oceanic plateau ( 40-0 Ma). When a subducting spreading ridge drives slab flattening, our data suggest that after the ridge has moved along strike retro-arc sediment sources to the fore arc become more predominant over more proximal arc sources. Spreading-ridge subduction also results in thermal resetting of rocks in the upper plate that is revealed by thermochronologic data that record the presence of young age peaks found in subsequent, thin sedimentary strata in the fore-arc basin. When a subducting oceanic plateau drives slab flattening, our data suggest that basin catchments get smaller and local sediment sources become more predominant. Crustal thickening due to plateau subduction drives widespread surface uplift and significant vertical uplift in rheologically weak zones that, combined, create topography and increase rock exhumation rates. Consequently, the thermochronologic signature of plateau subduction has generally young age peaks that generate short lag times indicating rapid exhumation. The cessation of volcanism associated with plateau subduction limits the number of syndepositional volcanic grains that produce identical geochronologic and thermochronologic ages. This study demonstrates the merit of double-dating techniques integrated with stratigraphic studies to expose exhumational age signatures diagnostic of large-scale tectonic processes in magmatic regions.

  14. Magmatic and fragmentation controls on volcanic ash surface chemistry (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.


    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  15. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control (United States)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.


    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  16. Drilling to investigate processes in active tectonics and magmatism (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.


    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  17. Chronology of magmatic and biological events during mass extinctions (United States)

    Schaltegger, U.; Davies, J.; Baresel, B.; Bucher, H.


    For mass extinctions, high-precision geochronology is key to understanding: 1) the age and duration of mass extinction intervals, derived from palaeo-biodiversity or chemical proxies in marine sections, and 2) the age and duration of the magmatism responsible for injecting volatiles into the atmosphere. Using high-precision geochronology, here we investigate the sequence of events linked to the Triassic-Jurassic boundary (TJB) and the Permian-Triassic boundary (PTB) mass extinctions. At the TJB, the model of Guex et al. (2016) invokes degassing of early magmas produced by thermal erosion of cratonic lithosphere as a trigger of climate disturbance in the late Rhaetian. We provide geochronological evidence that such early intrusives from the CAMP (Central Atlantic Magmatic Province), predate the end-Triassic extinction event (Blackburn et al. 2013) by 100 kyr (Davies et al., subm.). We propose that these early intrusions and associated explosive volcanism (currently unidentified) initiate the extinction, followed by the younger basalt eruptions of the CAMP. We also provide accurate and precise calibration of the PTB in marine sections in S. China: The PTB and the extinction event coincide within 30 kyr in deep water settings; a hiatus followed by microbial limestone deposition in shallow water settings is of <100 kyr duration. The PTB extinction interval is preceded by up to 300 kyr by the onset of partly alkaline explosive, extrusive and intrusive rocks, which are suggested as the trigger of the mass extinction, rather than the subsequent basalt flows of the Siberian Traps (Burgess and Bowring 2015). From temporal constraints, the main inferences that can be made are: The duration of extinction events is in the x10 kyr range during the initial intrusive activity of a Large Igneous Province, and is postdated by the majority of basalt flows over several 100 kyr. For modeling climate change associated with mass extinctions, volatiles released from the basalt flows may

  18. Geophysical Observations Supporting Research of Magmatic Processes at Icelandic Volcanoes (United States)

    Vogfjörd, Kristín. S.; Hjaltadóttir, Sigurlaug; Roberts, Matthew J.


    Magmatic processes at volcanoes on the boundary between the European and North American plates in Iceland are observed with in-situ multidisciplinary geophysical networks owned by different national, European or American universities and research institutions, but through collaboration mostly operated by the Icelandic Meteorological Office. The terrestrial observations are augmented by space-based interferometric synthetic aperture radar (InSAR) images of the volcanoes and their surrounding surface. Together this infrastructure can monitor magma movements in several volcanoes from the base of the crust up to the surface. The national seismic network is sensitive enough to detect small scale seismicity deep in the crust under some of the voclanoes. High resolution mapping of this seismicity and its temporal progression has been used to delineate the track of the magma as it migrates upwards in the crust, either to form an intrusion at shallow levels or to reach the surface in an eruption. Broadband recording has also enabled capturing low frequency signals emanating from magmatic movements. In two volcanoes, Eyjafjallajökull and Katla, just east of the South Iceland Seismic Zone (SISZ), seismicity just above the crust-mantle boundary has revealed magma intruding into the crust from the mantle below. As the magma moves to shallower levels, the deformation of the Earth‘s surface is captured by geodetic systems, such as continuous GPS networks, (InSAR) images of the surface and -- even more sensitive to the deformation -- strain meters placed in boreholes around 200 m below the Earth‘s surface. Analysis of these signals can reveal the size and shape of the magma as well as the temporal evolution. At near-by Hekla volcano flanking the SISZ to the north, where only 50% of events are of M>1 compared to 86% of earthquakes in Eyjafjallajökull, the sensitivity of the seismic network is insufficient to detect the smallest seismicity and so the volcano appears less

  19. 49 CFR 195.226 - Welding: Arc burns. (United States)


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...

  20. Arc tracks on nanostructured surfaces after microbreakdowns

    International Nuclear Information System (INIS)

    Sinelnikov, D; Bulgadaryan, D; Kolodko, D; Kurnaev, V; Hwangbo, D; Ohno, N; Kajita, S


    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope. (paper)

  1. Seldovia, Alaska 1 arc-second DEM (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seldovia, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  2. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.


    . Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...... surfaces. A gap was observed between the polymer surface and the luminous region of the plasma column, indicating the existence of a gas boundary layer. The thickness of the gas boundary layer is smaller at higher gas flow-rates or with ultrasonic irradiation to the AC gliding arc and the polymer surface......An alternating current (AC) gliding arc can be conveniently operated at atmospheric pressure and efficiently elongated into the ambient air by an air flow and thus is useful for surface modification. A high speed camera was used to capture dynamics of the AC gliding arc in the presence of polymer...

  3. Late Cretaceous to Paleocene metamorphism and magmatism in the Funeral Mountains metamorphic core complex, Death Valley, California (United States)

    Mattinson, C.G.; Colgan, J.P.; Metcalf, J.R.; Miller, E.L.; Wooden, J.L.


    Amphibolite-facies Proterozoic metasedimentary rocks below the low-angle Ceno-zoic Boundary Canyon Detachment record deep crustal processes related to Meso-zoic crustal thickening and subsequent extension. A 91.5 ?? 1.4 Ma Th-Pb SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) monazite age from garnet-kyanite-staurolite schist constrains the age of prograde metamorphism in the lower plate. Between the Boundary Canyon Detachment and the structurally deeper, subparallel Monarch Spring fault, prograde metamorphic fabrics are overprinted by a pervasive greenschist-facies retrogression, high-strain subhorizontal mylonitic foliation, and a prominent WNW-ESE stretching lineation parallel to corrugations on the Boundary Canyon Detachment. Granitic pegmatite dikes are deformed, rotated into parallelism, and boudinaged within the mylonitic foliation. High-U zircons from one muscovite granite dike yield an 85.8 ?? 1.4 Ma age. Below the Monarch Spring fault, retrogression is minor, and amphibolite-facies mineral elongation lineations plunge gently north to northeast. Multiple generations of variably deformed dikes, sills, and leucosomal segregations indicate a more complex history of partial melting and intrusion compared to that above the Monarch Spring fault, but thermobarometry on garnet amphibolites above and below the Monarch Spring fault record similar peak conditions of 620-680 ??C and 7-9 kbar, indicating minor (sedimentary protoliths was a source for the structurally higher 86 Ma pegmatites. Two weakly deformed two-mica leucogranite dikes that cut the high-grademetamorphic fabrics below the Monarch Spring fault yield 62.3 ?? 2.6 and 61.7 ?? 4.7 Ma U-Pb zircon ages, and contain 1.5-1.7 Ga cores. The similarity of metamorphic, leuco-some, and pegmatite ages to the period of Sevier belt thrusting and the period of most voluminous Sierran arc magmatism suggests that both burial by thrusting and regional magmatic heating contributed to metamorphism and

  4. Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): Geochemical record of the nascent Greater Antilles paleo-arc (United States)

    Torró, Lisard; Proenza, Joaquín A.; Marchesi, Claudio; Garcia-Casco, Antonio; Lewis, John F.


    Metamorphosed basalts, basaltic andesites, andesites and plagiorhyolites of the Early Cretaceous, probably pre-Albian, Maimón Formation, located in the Cordillera Central of the Dominican Republic, are some of the earliest products of the Greater Antilles arc magmatism. In this article, new whole-rock element and Nd-Pb radiogenic isotope data are used to give new insights into the petrogenesis of the Maimón meta-volcanic rocks and constrain the early evolution of the Greater Antilles paleo-arc system. Three different groups of mafic volcanic rocks are recognized on the basis of their immobile element contents. Group 1 comprises basalts with compositions similar to low-Ti island arc tholeiites (IAT), which are depleted in light rare earth elements (LREE) and resemble the forearc basalts (FAB) and transitional FAB-boninitic basalts of the Izu-Bonin-Mariana forearc. Group 2 rocks have boninite-like compositions relatively rich in Cr and poor in TiO2. Group 3 comprises low-Ti island arc tholeiitic basalts with near-flat chondrite-normalized REE patterns. Plagiorhyolites and rare andesites present near-flat to subtly LREE-depleted chondrite normalized patterns typical of tholeiitic affinity. Nd and Pb isotopic ratios of plagiorhyolites, which are similar to those of Groups 1 and 3 basalts, support that these felsic lavas formed by anatexis of the arc lower crust. Geochemical modelling points that the parental basic magmas of the Maimón meta-volcanic rocks formed by hydrous melting of a heterogeneous spinel-facies mantle source, similar to depleted MORB mantle (DMM) or depleted DMM (D-DMM), fluxed by fluids from subducted oceanic crust and Atlantic Cretaceous pelagic sediments. Variations of subduction-sensitive element concentrations and ratios from Group 1 to the younger rocks of Groups 2 and 3 generally match the geochemical progression from FAB-like to boninite and IAT lavas described in subduction-initiation ophiolites. Group 1 basalts likely formed at magmatic

  5. The Mozambique Ridge: a document of massive multistage magmatism (United States)

    Fischer, Maximilian D.; Uenzelmann-Neben, Gabriele; Jacques, Guillaume; Werner, Reinhard


    The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ˜131 and ˜125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.

  6. Precise relocation of low-frequency earthquakes in Northeast Japan: new insight into arc magma and fluids (United States)

    Niu, Xiongwei; Zhao, Dapeng; Li, Jiabiao


    High-resolution (˜10-20 km) P- and S-wave velocity (Vp, Vs) tomography of the crust and uppermost mantle is determined to relocate precisely a large number of low-frequency earthquakes (LFEs) which occurred in Hokkaido and Tohoku during 2002-2016. The LFEs and seismic tomography are combined to study the arc magma and fluids in the study region. We divide the 4036 LFEs in Hokkaido and 4946 LFEs in Tohoku into 43 groups. Most of the LFEs are located in or around low-Vp, low-Vs and high Poisson's ratio anomalies beneath active arc volcanoes, which indicate the existence of abundant fluids and magmatic activities in the crust and uppermost mantle beneath the volcanoes. Our results also reveal the influence of large crustal earthquakes on the spatial and temporal distributions of the LFEs. Many of the LFEs occurred at edges of the low-Vp and low-Vs zones within ˜15 km of the active volcanoes, indicating transportation and/or cooling of the arc magmas.

  7. ATLAS DDM integration in ARC

    International Nuclear Information System (INIS)

    Behrmann, G; Cameron, D; Ellert, M; Kleist, J; Taga, A


    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous resources in several countries and yet must present a single access point for all data stored within the centre. The middleware framework used in NDGF differs significantly from other Grids, specifically in the way that all data movement and registration is performed by services outside the worker node environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF

  8. Lifespans of Cascade Arc volcanoes (United States)

    Calvert, A. T.


    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  9. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia (United States)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.


    -metamorphic domes at Russian North-East. Paper 2. Magmatism, metamorphism and migmatization in Late Mesozoic domes // Pacific geology. 1996. V. 15. № 1. P. 84-93. (in Russian) 13. Bering Strait Geologic Field Party, Koolen metamorphic complex, NE Russia: implications for the tectonic evolution of the Bering Strait region // Tectonics, vol. 16, no. 5, p. 713-729 14. Bondarenko G.E., Luchitskaya M.V. Mesozoic tectonic evolution of Alarmaut rise // Byul. MOIP. Otd. Geol. V. 78. Is. 3. P. 25-38. (in Russian) 15. Katkov S.M., Strikland A., Miller E.L. Age of granite batholiths in the Anyui-Chukotka Foldbelt // Doklady. Earth Sciences. 2007. Vol. 414. № 4. P. 515-518. 16. Amato J.M., Wright J.E. Potassic mafic magtism in the Kigluaik gneiss dome, northern Alaska: a geochemical study of arc magmatism in an extensional tectonic setting // J. Geophys. Res. 1997. Vol.102. N B4. P.8065-8084 17. Tikhomirov P.L., Luchitskaya M.V., Kravchenko-Berezhnoy I.R. Comparison of Cretaceous granitoids of the Chaun tectonic zone to those of the Taigonos Peninsula, NE Asia: rock chemistry, composition of rock forming minerals, and conditions of formation // Stephan Mueller series. Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov (in press) 28. Velikoslavinsky S.D. Geochemical typification of acid magmatic rocks of leading geodynamic settings // Petrology. 2003. V. 11. № 4. P.363-380. (in Russian) 19. Pearce J.A. Sources and settings of granitic rocks // Episodes. 1996. V. 19. N. 4. P. 120-125

  10. Transpolar arcs observed simultaneously in both hemispheres (United States)

    Carter, J. A.; Milan, S. E.; Fear, R. C.; Walach, M.-T.; Harrison, Z. A.; Paxton, L. J.; Hubert, B.


    Two coexisting transpolar arcs are observed on 31 August 2005. We track the formation and motion of the arcs in both the Northern and Southern Hemispheres, using data from two independent satellites (Imager for Magnetopause to Aurora Global Exploration and a Defence Meteorological Satellite Program satellite). The observations are supported by supplementary ground-based ionospheric convection data from the Super Dual Auroral Radar Network. The two arcs form during a period of northward interplanetary magnetic field. Following a change in the direction of the interplanetary magnetic field BY component from negative to positive, the dawnside arc traverses the polar cap to the duskside in the Northern Hemisphere. Over the same time period and in the Southern Hemisphere, the duskside arc traverses the polar cap to the dawnside. A complex magnetic field line topology resulting in the coexistence of two tongues of closed field lines protruding into the otherwise open polar cap is implied. We discuss these observations in terms of magnetic conjugacy and a model of transpolar arcs formation.

  11. Recent ARC developments: Through modularity to interoperability

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, O; Cameron, D; Ellert, M; Groenager, M; Johansson, D; Kleist, J [NDGF, Kastruplundsgade 22, DK-2770 Kastrup (Denmark); Dobe, P; Joenemo, J; Konya, B [Lund University, Experimental High Energy Physics, Institute of Physics, Box 118, SE-22100 Lund (Sweden); Fraagaat, T; Konstantinov, A; Nilsen, J K; Saada, F Ould; Qiang, W; Read, A [University of Oslo, Department of Physics, P. O. Box 1048, Blindern, N-0316 Oslo (Norway); Kocan, M [Pavol Jozef Safarik University, Faculty of Science, Jesenna 5, SK-04000 Kosice (Slovakia); Marton, I; Nagy, Zs [NIIF/HUNGARNET, Victor Hugo 18-22, H-1132 Budapest (Hungary); Moeller, S [University of Luebeck, Inst. Of Neuro- and Bioinformatics, Ratzeburger Allee 160, D-23538 Luebeck (Germany); Mohn, B, E-mail: [Uppsala University, Department of Physics and Astronomy, Div. of Nuclear and Particle Physics, Box 535, SE-75121 Uppsala (Sweden)


    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  12. Recent ARC developments: Through modularity to interoperability

    International Nuclear Information System (INIS)

    Smirnova, O; Cameron, D; Ellert, M; Groenager, M; Johansson, D; Kleist, J; Dobe, P; Joenemo, J; Konya, B; Fraagaat, T; Konstantinov, A; Nilsen, J K; Saada, F Ould; Qiang, W; Read, A; Kocan, M; Marton, I; Nagy, Zs; Moeller, S; Mohn, B


    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  13. Klystron Gun Arcing and Modulator Protection

    International Nuclear Information System (INIS)

    Gold, S


    The demand for 500 kV and 265 amperes peak to power an X-Band klystron brings up protection issues for klystron faults and the energy dumped into the arc from the modulator. This situation is made worse when more than one klystron will be driven from a single modulator, such as the existing schemes for running two and eight klystrons. High power pulsed klystrons have traditionally be powered by line type modulators which match the driving impedance with the load impedance and therefore current limit at twice the operating current. Multiple klystrons have the added problems of a lower modulator source impedance and added stray capacitance, which converts into appreciable energy at high voltages like 500kV. SLAC has measured the energy dumped into klystron arcs in a single and dual klystron configuration at the 400 to 450 kV level and found interesting characteristics in the arc formation. The author will present measured data from klystron arcs powered from line-type modulators in several configurations. The questions arise as to how the newly designed solid-state modulators, running multiple tubes, will react to a klystron arc and how much energy will be dumped into the arc

  14. Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. (United States)

    Wei, S Shawn; Wiens, Douglas A; Zha, Yang; Plank, Terry; Webb, Spahr C; Blackman, Donna K; Dunn, Robert A; Conder, James A


    Processes of melt generation and transport beneath back-arc spreading centres are controlled by two endmember mechanisms: decompression melting similar to that at mid-ocean ridges and flux melting resembling that beneath arcs. The Lau Basin, with an abundance of spreading ridges at different distances from the subduction zone, provides an opportunity to distinguish the effects of these two different melting processes on magma production and crust formation. Here we present constraints on the three-dimensional distribution of partial melt inferred from seismic velocities obtained from Rayleigh wave tomography using land and ocean-bottom seismographs. Low seismic velocities beneath the Central Lau Spreading Centre and the northern Eastern Lau Spreading Centre extend deeper and westwards into the back-arc, suggesting that these spreading centres are fed by melting along upwelling zones from the west, and helping to explain geochemical differences with the Valu Fa Ridge to the south, which has no distinct deep low-seismic-velocity anomalies. A region of low S-wave velocity, interpreted as resulting from high melt content, is imaged in the mantle wedge beneath the Central Lau Spreading Centre and the northeastern Lau Basin, even where no active spreading centre currently exists. This low-seismic-velocity anomaly becomes weaker with distance southward along the Eastern Lau Spreading Centre and the Valu Fa Ridge, in contrast to the inferred increase in magmatic productivity. We propose that the anomaly variations result from changes in the efficiency of melt extraction, with the decrease in melt to the south correlating with increased fractional melting and higher water content in the magma. Water released from the slab may greatly reduce the melt viscosity or increase grain size, or both, thereby facilitating melt transport.

  15. The Early Mesozoic volcanic arc of western North America in northeastern Mexico (United States)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora


    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  16. Erosion of nanostructured tungsten by laser ablation, sputtering and arcing

    Directory of Open Access Journals (Sweden)

    Dogyun Hwangbo


    Full Text Available Mass loss of nanostructured tungsten, which was formed by helium plasma irradiation, due to laser ablation, sputtering, and arcing was investigated. Below the helium sputtering energy threshold (200eV. Reduction in sputtering on nanostructured surface was observed. Arcing was initiated using laser pulses, and the erosion rate by arcing was measured. The erosion rate increased with arc current, while the erosion per Coulomb was not affected by arc current.


    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon


    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  18. GUI for studying the parameters influence of the electric arc model for a three-phase electric arc furnace (United States)

    Ghiormez, L.; Prostean, O.; Panoiu, M.; Panoiu, C.


    This paper presents an analysis regarding the modeling of the behavior for a three-phase electric arc furnace installation. Therefore, a block diagram is implemented in Simulink that represents the modeling of the entire electric arc furnace installation. This block diagram contains also the modeling of the electric arc which is the element that makes the electric arc furnace behaving as a nonlinear load. The values for the model parameters of the electric arc furnace installation are like the ones from the real installation taken into consideration. Other model parameters are the electric arc model ones. In order to study the influence of the parameters of the electric arc models, it is developed a Matlab program that contains the graphical user interfaces. These interfaces make connection with the models of the electric arc implemented in Simulink. The interfaces allow the user to modify parameters for each of the electric arc model. Current and voltage of the electric arc are the variables taken into account to study the influence of the parameters on the electric arc models. Waveforms for voltage and current of the electric arc are illustrated when a parameter of the model is modified in order to analyze the importance of this parameter on the electric arc model. Also, for each of the models is presented the voltage-current characteristic of the electric arc because this characteristic gives information about the behavior of the electric arc furnace installation.

  19. arcControlTower: the System for Atlas Production and Analysis on ARC (United States)

    Filipčič, Andrej; ATLAS Collaboration


    PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses a specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControlTower load parameters, the jobs can be controlled by ARC client tools. The system could be extended to other submission systems using central distribution.

  20. arcControlTower: the System for Atlas Production and Analysis on ARC

    International Nuclear Information System (INIS)

    Filipcic, Andrej


    PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses a specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControlTower load parameters, the jobs can be controlled by ARC client tools. The system could be extended to other submission systems using central distribution.

  1. Gas Metal Arc Welding and Flux-Cored Arc Welding. Teacher Edition. Second Edition. (United States)

    Fortney, Clarence; Gregory, Mike

    These instructional materials are designed to improve instruction in Gas Metal Arc Welding (GMAW) and Flux-Cored Arc Welding (FCAW). The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and…

  2. Preface to special issue: Granite magmatism in Brazil (United States)

    Janasi, Valdecir de Assis; de Pinho Guimarães, Ignez; Nardi, Lauro Valentim Stoll


    Granites are important both to the geologic evolution and to the economy of Brazil. Deposits of precious and rare metals, such as Au, Sn and many others, are directly or indirectly associated with granites, especially in the geologically under-explored Amazon region. On the opposite eastern side of the country, expanding exploitation of natural granite as dimension stone makes Brazil currently the world's second largest exporter of granite blocks. Granites are a major constituent of the Brazilian Archean-Proterozoic cratonic domains (the Amazon and São Francisco cratons) and their surrounding Neoproterozoic fold belts. The granites are thus fundamental markers of the major events of crustal generation and recycling that shaped the South American Platform. As a result, Brazilian granites have received great attention from the national and international community, and a number of influential meetings focused on the study of granites were held in the country in the last three decades. These meetings include the two International Symposia on Granites and Associated Mineralization (Salvador, January 21-31, 1987, and August 24-29, 1997), the Symposium on Rapakivi Granites and Related Rocks (Belém, August 2-5, 1995) and the Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amazonian Craton (Belém, August 2006). Special issues dedicated to contributions presented at these meetings in the Journal of South American Earth Sciences (Sial et al., 1998), Lithos (Stephens et al., 1999), Canadian Mineralogist (Dall'Agnol and Ramo, 2006), Precambrian Research (Ramo et al., 2002) and Anais da Academia Brasileira de Ciências (Dall'Agnol and Bettencourt, 1997; Sial et al., 1999a) are still important references on the knowledge of Brazilian granites and granite petrology in general.

  3. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)


    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  4. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution

    DEFF Research Database (Denmark)

    Samuelsen, Camilla O; Baraznenok, Vera; Khorosjutina, Olga


    for Srb8 and Srb9. Here, we identify a TRAP240/ARC250 homologue in Schizosaccharomyces pombe and demonstrate that this protein, spTrap240, is stably associated with a larger form of Mediator, which also contains conserved homologues of Srb8, Srb10, and Srb11. We find that spTrap240 and Sch. pombe Srb8 (sp...... with the polymerase. Our findings provide experimental evidence for recent suggestions that TRAP230/ARC240 and TRAP240/ARC250 may indeed be the Srb8 and Srb9 homologues of mammalian Mediator. Apparently Srb8/TRAP230/ARC240, Srb9/TRAP240/ARC250, Srb10, and Srb11 constitute a conserved Mediator submodule, which...

  5. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong; Chen Qiang


    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. (paper)

  6. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry

    Directory of Open Access Journals (Sweden)

    Houshang Pourkaseb


    used as an indicator for characterizing the conditions involved during the evaluation of magma crystallization i.e., pressure, temperature, liquid water content and oxygen fugacity. Most recent studies on the porphyry copper intrusions in the Urumieh- Dokhtar magmatic arc by (Zarasvandi et al., 2015a, indicate that all of the mineralized porphyry systems (Dalli porphyry is included consistently show high levels of La/Sm and Sm/Yb, with concave upward patterns in the rare earth elements’ spider diagrams. Importantly, such features indicate high crustal assimilation in a relatively thickened crust and provide insight into the contribution of hornblende during the development of mineralized porphyry systems in the Urumieh- Dokhtar belt. The results of this study indicate that amphiboles of Dalli intrusions belong to the calsic group and range in composition from magnesio- hornblende, to edenite, magnesiohastingsite, and tschermakite. (Ridolfi et al., 2010, indicating that the alumina content of amphibole could be used for geobarometry. The calculations of geobarometry for quartz diorite intrusions of Dalli indicate that they formed in the pressure range of 136 to 287 (MPa. Also, calculation of magmatic water content using amphibole geochemistry indicates that the water content of quartz diorite intrusions in the Dalli were between 4.6- 5.7 (wt. %. The results of plagioclase chemistry indicate that there is a little zoning in this mineral. Also, the plagioclase composition varies from Or0.01 to Ab 0.48, An 0.50, Or 0.018, Ab 0.62 and An 0.35. They mostly have Andesine and Labradorite compositions. Discussion Amphibole minerals of the Dalli intrusions are calcic type and exhibit geochemical signatures of subduction zones. Also, characterizing the source of ore-hosting intrusions with amphibole chemistry indicate that parental magma of Dalli intrusion were generated from mixing of mantle melts with crustal materials. It seems that in an ongoing process of closure of Neo

  7. HybridArc: A novel radiation therapy technique combining optimized dynamic arcs and intensity modulation

    Energy Technology Data Exchange (ETDEWEB)

    Robar, James L., E-mail: [Department of Radiation Oncology, Dalhousie University, Halifax (Canada); Department of Physics and Atmospheric Science, Dalhousie University, Halifax (Canada); Thomas, Christopher [Department of Radiation Oncology, Dalhousie University, Halifax (Canada)


    This investigation focuses on possible dosimetric and efficiency advantages of HybridArc-a novel treatment planning approach combining optimized dynamic arcs with intensity-modulated radiation therapy (IMRT) beams. Application of this technique to two disparate sites, complex cranial tumors, and prostate was examined. HybridArc plans were compared with either dynamic conformal arc (DCA) or IMRT plans to determine whether HybridArc offers a synergy through combination of these 2 techniques. Plans were compared with regard to target volume dose conformity, target volume dose homogeneity, sparing of proximal organs at risk, normal tissue sparing, and monitor unit (MU) efficiency. For cranial cases, HybridArc produced significantly improved dose conformity compared with both DCA and IMRT but did not improve sparing of the brainstem or optic chiasm. For prostate cases, conformity was improved compared with DCA but not IMRT. Compared with IMRT, the dose homogeneity in the planning target volume was improved, and the maximum doses received by the bladder and rectum were reduced. Both arc-based techniques distribute peripheral dose over larger volumes of normal tissue compared with IMRT, whereas HybridArc involved slightly greater volumes of normal tissues compared with DCA. Compared with IMRT, cranial cases required 38% more MUs, whereas for prostate cases, MUs were reduced by 7%. For cranial cases, HybridArc improves dose conformity to the target. For prostate cases, dose conformity and homogeneity are improved compared with DCA and IMRT, respectively. Compared with IMRT, whether required MUs increase or decrease with HybridArc was site-dependent.

  8. The magmatic history of the Vetas-California mining district, Santander Massif, Eastern Cordillera, Colombia (United States)

    Mantilla Figueroa, Luis C.; Bissig, Thomas; Valencia, Víctor; Hart, Craig J. R.


    The Vetas-California Mining District (VCMD), located in the central part of the Santander Massif (Colombian Eastern Cordillera), based on U-Pb dating of zircons, records the following principal tectono-magmatic events: (1) the Grenville Orogenic event and high grade metamorphism and migmatitization between ˜1240 and 957 Ma; (2) early Ordovician calc-alkalic magmatism, which was synchronous with the Caparonensis-Famatinian Orogeny (˜477 Ma); (3) middle to late Ordovician post-collisional calc-alkalic magmatism (˜466-436 Ma); (4) late Triassic to early Jurassic magmatism between ˜204 and 196 Ma, characterized by both S- and I-type calc-alkalic intrusions and; (5) a late Miocene shallowly emplaced intermediate calc-alkaline intrusions (10.9 ± 0.2 and 8.4 ± 0.2 Ma). The presence of even younger igneous rocks is possible, given the widespread magmatic-hydrothermal alteration affecting all rock units in the area. The igneous rocks from the late Triassic-early Jurassic magmatic episodes are the volumetrically most important igneous rocks in the study area and in the Colombian Eastern Cordillera. They can be divided into three groups based on their field relationships, whole rock geochemistry and geochronology. These are early leucogranites herein termed Alaskites-I (204-199 Ma), Intermediate rocks (199-198 Ma), and late leucogranites, herein referred to as Alaskites-II (198-196 Ma). This Mesozoic magmatism is reflecting subtle changes in the crustal stress in a setting above an oblique subduction of the Panthalassa plate beneath Pangea. The lower Cretaceous siliciclastic Tambor Formation has detrital zircons of the same age populations as the metamorphic and igneous rocks present in the study area, suggesting that the provenance is related to the erosion of these local rocks during the late Jurassic or early Cretaceous, implying a local supply of sediments to the local depositional basins.

  9. Constraints of magmatic oxidation state on mineralization in the Beiya alkali-rich porphyry gold deposit, western Yunnan, China

    Directory of Open Access Journals (Sweden)

    Xue-Quan Gao


    Full Text Available The Beiya gold deposit is the biggest Cenozoic gold deposit in the Jinshajiang-Ailaoshan alkali-rich porphyry metallogenic belt within the Sanjiang region. Porphyry intrusions are widely distributed at the Beiya deposit. In this study, we investigate the lithological and geochemical characteristics of the Beiya alkali-rich porphyries and compare zircon Ce4+/Ce3+ ratio and magmatic oxygen fugacity (fO2 of the ore-bearing and ore-barren porphyries. The research shows that the ore-bearing intrusion is monzogranite porphyry in the area of Wandongshan, Hongnitang and their surrounding ore blocks. The intrusions have similar U-Pb zircon ages of ∼36 Ma, and all the porphyries display patterns of enriched LREEs and depleted HREEs. The ore-bearing monzogranite porphyry is characterized with high zircon Ce4+/Ce3+ ratio (average of 80 and high fO2 value (average of △FMQ = +3.7, whereas the ore-barren monzogranite porphyry and granite porphyry are characterized by much lower zircon Ce4+/Ce3+ ratios (average of 24 and 20, respectively and low fO2 values (average of △FMQ = +1.2 and △FMQ = −0.5, respectively. This indicates that the ore-bearing porphyry intrusions had much higher fO2 of magma than the ore-barren porphyry intrusions. We suggest that oxidized magmas are more favorable to porphyry Cu-Au mineralization under the intra-continental and collisional settings, which is similar to that in arc environments. Such a conclusion may potentially be used in regional exploration for porphyry Cu-Au deposits.

  10. Vacuum arc ion charge state distributions

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.


    We have measured vacuum arc ion charge state spectra for a wide range of metallic cathode materials. The charge state distributions were measured using a time-of-flight diagnostic to monitor the energetic ion beam produced by a metal vapor vacuum arc ion source. We have obtained data for 48 metallic cathode elements: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U. The arc was operated in a pulsed mode with pulse length 0.25 msec; arc current was 100 A throughout. This array of elements extends and completes previous work by us. In this paper the measured distributions are cataloged and compared with our earlier results and with those of other workers. We also make some observations about the performance of the various elements as suitable vacuum arc cathode materials

  11. 'LTE-diffusion approximation' for arc calculations

    International Nuclear Information System (INIS)

    Lowke, J J; Tanaka, M


    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode

  12. Sweden: Autonomous Reactivity Control (ARC) Systems

    International Nuclear Information System (INIS)

    Qvist, Staffan A.


    The next generation of nuclear energy systems must be licensed, constructed, and operated in a manner that will provide a competitively priced supply of energy, keeping in consideration an optimum use of natural resources, while addressing nuclear safety, waste, and proliferation resistance, and the public perception concerns of the countries in which those systems are deployed. These issues are tightly interconnected, and the implementation of passive and inherent safety features is a high priority in all modern reactor designs since it helps to tackle many of the issues at once. To this end, the Autonomous Reactivity Control (ARC) system was developed to ensure excellent inherent safety performance of Generation-IV reactors while having a minimal impact on core performance and economic viability. This paper covers the principles for ARC system design and analysis, the problem of ensuring ARC system response stability and gives examples of the impact of installing ARC systems in well-known fast reactor core systems. It is shown that even with a relatively modest ARC installation, having a near-negligible impact on core performance during standard operation, cores such as the European Sodium Fast Reactor (ESFR) can be made to survive any postulated unprotected transient without coolant boiling or fuel melting

  13. Emissions of chromium (VI) from arc welding. (United States)

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris


    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.

  14. Vertical Arc for ILC Low Emittance Transport

    International Nuclear Information System (INIS)

    Tenenbaum, P.; Woodley, M.; SLAC


    The design and parameters of a vertical arc for the ILC Low Emittance Transport (LET) are reviewed. A 1 TeV CM ILC which relies upon 30 MV/m accelerating cavities with a packing fraction of 65% will require almost 48 km of main linac, which suggests that the total site length including BDS and bunch compressors will be on the order of 53 km. If built in a laser-straight tunnel with the low-energy ends near the surface, and assuming a perfectly spherical ''cue ball'' planetary surface with radius 6370 km, the collider halls will necessarily be 55 meters below grade, as shown in the top plot of Figure 1. Such depths would demand extensive use of deep tunneling, which would potentially drive up the cost and difficulty of ILC construction. An alternate solution is to use discrete vertical arcs at a few locations to allow a ''piecewise straight'' construction in which the depth of the tunnel below grade does not vary by more than a few meters. This approach is shown schematically in the bottom plot of Figure 1. In this Note we consider the issues for a design with one such vertical arc at the 250 GeV/c point (ie, midway down the linac for 1 TeV CM), and a second arc at the entrance to the BDS (ie, the entire BDS lies in one plane, with vertical arcs at each end)

  15. Geology, petrology, U-Pb (SHRIMP) geochronology of the Morrinhos granite - Paragua terrane, SW Amazonian craton: implications for the magmatic evolution of the San Ignacio orogeny

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Ohana; Ruiz, Amarildo Salina; Sousa, Maria Zelia Aguiar de, E-mail:, E-mail:, E-mail: [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Instituto de Ciencias Exatas e da Terra. Dept. de Geologia Geral; Batata, Maria Elisa Froes, E-mail: [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Grupo de Pesquisa em Evolucao Crustal e Tectonica; Lafon, Jean-Michel [Universidade Federal do Para (GEOCIAM/UFPA), Belem, PR (Brazil). Inst. Nacional de Cencia e Tecnologia de Geociencias da Amazonia


    Morrinhos granite is a batholith body that is slightly elongated in the NNW direction and approximately 1,140 km{sup 2} long; it is located in the municipality of Vila Bela da Santissima Trindade of the state of Mato Grosso, Brazil, in the Paragua Terrane, Rondonian-San Ignacio Province, in the SW portion of the Amazonian Craton. This intrusion displays a compositional variation from tonalite to monzogranite, has a medium to coarse inequigranular texture and is locally porphyritic; biotite is the predominant mafic in one of the facies, and hornblende is predominant in the other, with both metamorphosed into the green schist facies. The studied rocks characterize an intermediate to acidic sequence that was formed by a subalkaline magmatism; the series is alkali-calcic to metaluminous to slightly peraluminous, and the rocks evolved through fractioned crystallization mechanisms. The structural data show two deformation phases represented by penetrative foliation (S{sub 1}) and open folds (D{sub 2}), and both phases were most likely related to the San Ignacio Orogeny. The geochronological (U-Pb SHRIMP) and isotopic (Sm-Nd) investigations of these rocks indicated a crystallization age of 1350±12Ma, T{sub DM} of approximately 1.77 Ga and εNd{sub (1.35}) with a negative value of -2.57, suggesting that their generation was related to a partial melting process of a Paleoproterozoic (Statherian) continental crust. The results herein indicate that the Morrinhos granite was generated in a continental magmatic arc in a late- to post-orogenic stage of the San Ignacio Orogeny, and it can be recognized as belonging to the Pensamiento Intrusive Suite. (author)

  16. The role of amphibole in Merapi arc magma petrogenesis: insights from petrology and geochemistry of lava hosted xenoliths and xenocrysts (United States)

    Chadwick, J. P.; Troll, V. R.; Schulz, B.; Dallai, L.; Freda, C.; Schwarzkopf, L. M.; Annersten, H.; Skogby, H.


    Recently, increasing attention has been paid to the role of amphibole in the differentiation of arc magmas. The geochemical composition of these magmas suggests that deep to mid crustal fractionation of amphibole has occurred. However, this phase is typically an infrequent modal phenocryst phase in subduction zone eruptive deposits(1). Nevertheless, erupted material only represents a portion of the magmatism produced in subduction zone settings, with many opportunities for melts to stall on route to the surface. This discrepancy between whole rock geochemistry and petrological interpretation of arc magmas has lead many scientists to postulate that, at mid to deep crustal levels, there may be significant volumes of amphibole bearing lithologies. Amphibole instability at shallow levels can also contribute to its scarcity in eruptive deposits. This argument is strengthened by field and petrological evidence, including the widespread occurrence of amphibole-rich intrusive rocks in exhumed orogenicbelts formed during subduction zone activity, e.g. the Adamello batholith (2),as well as the presence of amphibole-rich xenoliths and xenocrysts preserved in arc lavas worldwide, e.g. in Indonesia, Antilles, and Central America. Thus, amphibole appears to play an integral role in subduction zone magmatism and identifying and constraining this role is central to understanding arc magma petrogenisis. Amphibole-rich melts or bodies in the deep to mid crust could be a significant hydrous reservoir for intra-crustal melts and fluids (1). In this preliminary study, we have carried out petrological and geochemical analyses of recent basaltic andesite and amphibole bearing crystalline igneous inclusions and xenocrysts from Merapi volcano in Java, Indonesia. The basaltic andesite geochemistry is consistent with amphibole fractionation and the crystalline inclusions are cogenetic to the Merapi magmatic system. These inclusions are likely to represent fractionation residues reflecting

  17. Variation in Volatile and Ore Metal Abundances Along the New Zealand Volcanic Arc as Recorded by Minerals and Melt Inclusions (United States)

    Rowe, M. C.; Iveson, A. A.; Norling, B.; Chambefort, I. S.; Webster, J. D.


    Volatile and ore metals within magmas record a wide variety of magmatic processes in the Earth's shallow upper crust. These elements have previously been linked to volatile degassing or exsolution and such processes as eruption triggering and the formation of magmatic ore deposits. However, it is unknown why different volcanoes, or different eruptions of the same volcano, record such wide-ranging geochemical behaviour. More fundamental questions related to the source of these metals also remain unanswered, such as what role (if any) does subduction play in controlling metal fluctuations. In an effort to ascertain the sources of volatile and ore metal variation in intermediate-silicic magmas, this study attempts to take a more comprehensive look at the causes of volatile and ore metal variation in arc magmas as a function of composition and location within a single arc system. This study focuses on the New Zealand arc system, stretching from Mt Taranaki to White Island, examining volatile and trace metals (including Li, Cu, As, Mo, Sb, Sn, W, and Tl) from varying phenocryst phases and melt inclusions. Melt inclusion compositions range from basaltic (51 wt% SiO2) to high-Si rhyolite (81 wt% SiO2), however are predominantly andesitic to dacitic. Sulfur and Cl melt compositions are also highly variable, with concentrations from below detection limit up to ~2000 ppm S and 5300 ppm Cl. Trace metal abundances were determined for all major phenocryst phases, including plagioclase, clinopyroxene, orthopyroxene, and amphibole and biotite where available. Comparing trace metal abundances of phenocrysts and inclusions to both glass and crystal major element/volatile compositions allows for a systematic comparison of volcanoes along the arc. Lithium and Cu are the only two trace metals above detection limit in all analysed phases, however, Cu variations are highly variable compared to other ore metals. New experimental crystallisation runs with hydrous dacite also allow us to

  18. Electric arc, water jet cutting of metals

    International Nuclear Information System (INIS)

    Bruening, D.


    For thermal dismantling and cutting of metallic components, as electric arc, water jet cutting method was developed that can be used for underwater cutting work up to a depth of 20 m. Short-circuiting of a continuously fed electrode wire in contact with the metal generates an electric arc which induces partial melting of the metal, and the water jet surrounding the wire rinses away the molten material, thus making a continuous kerf in the material. The method was also tested and modified to allow larger area, surface cutting and removal of metallic surface coatings. This is achieved by melting parts of the surface with the electric arc and subsequent rinsing by the water jet. The cutting and melting depth for surface removal can be accurately controlled by the operating parameters chosen. (orig./DG) [de


    Noland, R.A.; Stone, C.C.


    An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.

  20. Circular arc snakes and kinematic surface generation

    KAUST Repository

    Barton, Michael


    We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including "rationalization" of a surface by congruent arcs, form finding and, most interestingly, non-static architecture. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  1. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin (United States)

    Finn, Carol A.; Müller, R. Dietmar; Panter, Kurt S.


    Common geological, geochemical, and geophysical characteristics of continental fragments of East Gondwana and adjacent oceanic lithosphere define a long-lived, low-volume, diffuse alkaline magmatic province (DAMP) encompassing the easternmost part of the Indo-Australian Plate, West Antarctica, and the southwest portion of the Pacific Plate. A key to generating the Cenozoic magmatism is the combination of metasomatized lithosphere underlain by mantle at only slightly elevated temperatures, in contrast to large igneous provinces where mantle temperatures are presumed to be high. The SW Pacific DAMP magmatism has been conjecturally linked to rifting, strike-slip faulting, mantle plumes, or hundreds of hot spots, but all of these associations have flaws. We suggest instead that sudden detachment and sinking of subducted slabs in the late Cretaceous induced Rayleigh-Taylor instabilities along the former Gondwana margin that in turn triggered lateral and vertical flow of warm Pacific mantle. The interaction of the warm mantle with metasomatized subcontinental lithosphere that characterizes much of the SW Pacific DAMP concentrates magmatism along zones of weakness. The model may also provide a mechanism for warming south Pacific mantle and resulting Cenozoic alkaline magmatism, where the oceanic areas are characterized primarily, but not exclusively, by short-lived hot spot tracks not readily explained by conventional mantle plume theory. This proposed south Pacific DAMP is much larger and longer-lived than previously considered.

  2. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei


    The Na-rich intermediate-to-felsic granitic rocks provide insights into the generation of magmas in subduction zones. This paper presents zircon LA-ICP-MS U-Pb ages as well as whole-rock geochemical, mineral chemical, and in situ zircon Hf isotopic data on Na-rich granitic rocks from the Tengchong Block, SW China. The granodiorites and associated mafic magmatic enclaves (MMEs) from the Menglian batholith yield zircon U-Pb ages of 116.1 ± 0.8 to 117.8 ± 0.6 Ma and 117.7 ± 0.7 Ma, respectively. Both host granodiorites and enclaves show calc-alkaline and sodium-rich nature, enrichment in large-ion lithophile elements (LILEs), and variable depletion in zircon Hf isotopic compositions. Euhedral amphiboles in both granodiorites and associated enclaves are magnesian-hornblende with high Mg and Ca and contain euhedral plagioclase inclusions of labradorite to andesine (An36-57) composition. The granodiorite was most likely derived through the mixing of partial melts derived from juvenile basaltic lower crust and a minor evolved component of ancient crustal sources. The quartz monzodiorite-granodiorites and associated MMEs from the Xiaotang-Mangdong batholith yield zircon U-Pb ages of 120.3 ± 1.3 to 122.6 ± 0.8 Ma and 120.7 ± 1.5 Ma. These rocks are also sodium-rich and show calc-alkaline trend with negative zircon Hf isotopic compositions (- 5.55 to + 0.58). The MMEs in the host intrusions are monzogabbro with variable and depleted zircon Hf isotopic compositions. The amphiboles in the both host intrusions and the enclaves show Al-rich ferro-tschermakite composition. We infer that the quartz monzodiorite-granodiorites were derived from magmas generated by the melting of ancient basaltic rocks in the lower arc crust induced by the underplating of mantle-derived mafic magmas. The formation of the different types of Na-rich granitic rocks is correlated to the subduction of Bangong-Nujiang Tethyan ocean. A comparison with magmatism in the northern magmatic belt suggests

  3. Carboniferous-Permian tectonic transition envisaged in two magmatic episodes at the Kuruer Cu-Au deposit, Western Tianshan (NW China) (United States)

    Yu, Jie; Li, Nuo; Qi, Nan; Guo, Jian-Ping; Chen, Yan-Jing


    Carboniferous and Middle Permian magmatism was formed in a continental arc and post-collisional settings, respectively, with the latter episode responsible for the Cu-Au mineralization.

  4. On the Trail of Joan of Arc

    Directory of Open Access Journals (Sweden)

    Linda Joyce Forristal


    Full Text Available The year 2012 marked the 600th anniversary of the birthday of Joan of Arc (Fr., Jeanne d’Arc (1412–1431. Tributes to this national heroine can be found all over France. There are literally countless statues, streets and restaurants named after her and many sites dedicated to her life. However, despite widespread social and mechanical reproduction and cultural naming in relation to the Maid of Orléans, there is no official network or integrated signage in France to promote cultural heritage tourism to the numerous Joan of Arc sites and festivals, even though her life and death, by any measure, were seminal events in the country’s history. Unfortunately, the pilgrim who wants to follow or intersect with Joan of Arc’s trail through France, for cultural, historical or religious reasons, must do so without much help. Using Actor Network Theory and Site Sacralization Theory as framing devices, this paper explores human actors and tangible and intangible non-human factors that may have contributed to the lack of a unified tourism product despite the existence of an adequate Joan of Arc tourismscape. Insights gleaned from this research include Joan’s conflicted status as both/either saint and/or patriot, the existence of no cooperation or linkage between Joan of Arc sites, and cautious French tourism development policies. Several possible scenarios are suggested as suitable means to help implement or foster the creation of an on-the-ground or virtual Joan of Arc trail or tour.

  5. Petrologic Modeling of Magmatic Evolution in The Elysium Volcanic Province (United States)

    Susko, D.; Karunatillake, S.; Hood, D.


    The Elysium Volcanic Province (EVP) on Mars is a massive expanse of land made up of many hundreds of lava flows of various ages1. The variable surface ages within this volcanic province have distinct elemental compositions based on the derived values from the Gamma Ray Spectrometer (GRS) suite2. Without seismic data or ophiolite sequences on Mars, the compositions of lavas on the surface provide some of the only information to study the properties of the interior of the planet. The Amazonian surface age and isolated nature of the EVP in the northern lowlands of Mars make it ideal for analyzing the mantle beneath Elysium during the most recent geologic era on Mars. The MELTS algorithm is one of the most commonly used programs for simulating compositions and mineral phases of basaltic melt crystallization3. It has been used extensively for both terrestrial applications4 and for other planetary bodies3,5. The pMELTS calibration of the algorithm allows for higher pressure (10-30 kbars) regimes, and is more appropriate for modeling melt compositions and equilibrium conditions for a source within the martian mantle. We use the pMELTS program to model how partial melting of the martian mantle could evolve magmas into the surface compositions derived from the GRS instrument, and how the mantle beneath Elysium has changed over time. We attribute changes to lithospheric loading by long term, episodic volcanism within the EVP throughout its history. 1. Vaucher, J. et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204, 418-442 (2009). 2. Susko, D. et al. A record of igneous evolution in Elysium, a major martian volcanic province. Scientific Reports 7, 43177 (2017). 3. El Maarry, M. R. et al. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? Journal of Volcanology and Geothermal Research 185, 116-122 (2009). 4. Ding, S. & Dasgupta, R. The

  6. Nitrogen in peridotite xenoliths: Lithophile behavior and magmatic isotope fractionation (United States)

    Yokochi, Reika; Marty, Bernard; Chazot, Gilles; Burnard, Pete


    In order to document the origin and speciation of nitrogen in mantle-derived rocks and minerals, the N and Ar contents and isotopic compositions were investigated for hydrous and anhydrous peridotite xenoliths from Ataq, Yemen, from Eifel, Germany, and from Massif Central, France. Nitrogen and Ar were extracted by stepwise combustion with a fine temperature resolution, followed by fusion in a platinum crucible. A large isotopic disequilibrium of up to 25.4‰ is observed within single peridotite xenoliths, with δ 15N values as low as -17.3‰ in phlogopite whereas clinopyroxene and olivine show positive δ 15N values. Identical Sr isotopic ratios of phlogopite, clinopyroxene and whole rock in this wehrlite sample are consistent with crystallization from a common reservoir, suggesting that the light N signature of phlogopite might be the result of isotopic fractionation during N uptake from the host magma. The nitrogen concentration is systematically high in phlogopite, (7.6-25.7 ppm), whereas that of bulk peridotite xenoliths is between 0.1 and 0.8 ppm. The high N content of phlogopite is at least partly due to host magma-mineral interaction, and may also suggest the occurrence of N as NH4+ that substituted for K + during mineral growth in mafic magmas. Such speciation is consistent with the fact that N and Rb contents correlate well for a set of samples from mantle regions that were affected by subduction-related metasomatism and magmatism. The N/Rb ratios of these samples are comparable with values estimated for subduction zone magmas, but are one order of magnitude lower than the N/Rb ratios characterizing subducting slabs. This difference suggests preferential release of N relative to alkalis in the forearc region. N/ 40Ar ∗ ratios of minerals from analyzed mantle xenoliths are much higher than those of vesicles in MORBs and OIBs, requiring either the occurrence of nitrogen speciation in the mantle more compatible than Ar, significant loss of fluid phase

  7. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism (United States)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel


    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  8. Arc-to-Arc mini-sling 1999: a critical analysis of concept and technology. (United States)

    Palma, Paulo


    The aim of this study was to critically review the Arc-to-Arc mini-sling (Palma's technique) a less invasive mid-urethral sling using bovine pericardium as the sling material. The Arc-to-Arc mini-sling, using bovine pericardium, was the first published report of a mini-sling, in 1999. The technique was identical to the "tension-free tape" operation, midline incision and dissection of the urethra. The ATFP (white line) was identified by blunt dissection, and the mini-sling was sutured to the tendinous arc on both sides with 2 polypropylene 00 sutures. The initial results were encouraging, with 9/10 patients cured at the 6 weeks post-operative visit. However, infection and extrusion of the mini-sling resulted in sling extrusion and removal, with 5 patients remaining cured at 12 months. The Arc-to-Arc mini-sling was a good concept, but failed because of the poor technology available at that time. Further research using new materials and better technology has led to new and safer alternatives for the management of stress urinary incontinence.

  9. Arc-to-arc mini-sling 1999: a critical analysis of concept and technology

    Directory of Open Access Journals (Sweden)

    Paulo Palma


    Full Text Available PURPOSE: The aim of this study was to critically review the Arc-to-Arc mini-sling (Palma's technique a less invasive mid-urethral sling using bovine pericardium as the sling material. MATERIALS AND METHODS: The Arc-to-Arc mini-sling, using bovine pericardium, was the first published report of a mini-sling, in 1999. The technique was identical to the "tension-free tape" operation, midline incision and dissection of the urethra. The ATFP (white line was identified by blunt dissection, and the mini-sling was sutured to the tendinous arc on both sides with 2 polypropylene 00 sutures. RESULTS: The initial results were encouraging, with 9/10 patients cured at the 6 weeks post-operative visit. However, infection and extrusion of the mini-sling resulted in sling extrusion and removal, with 5 patients remaining cured at 12 months. CONCLUSION: The Arc-to-Arc mini-sling was a good concept, but failed because of the poor technology available at that time. Further research using new materials and better technology has led to new and safer alternatives for the management of stress urinary incontinence.

  10. Sheath and arc-column voltages in high-pressure arc discharges

    International Nuclear Information System (INIS)

    Benilov, M S; Benilova, L G; Li Heping; Wu Guiqing


    Electrical characteristics of a 1 cm-long free-burning atmospheric-pressure argon arc are calculated by means of a model taking into account the existence of a near-cathode space-charge sheath and the discrepancy between the electron and heavy-particle temperatures in the arc column. The computed arc voltage exhibits a variation with the arc current I similar to the one revealed by the experiment and exceeds experimental values by no more than approximately 2 V in the current range 20-175 A. The sheath contributes about two-thirds or more of the arc voltage. The LTE model predicts a different variation of the arc voltage with I and underestimates the experimental values appreciably for low currents but by no more than approximately 2 V for I ≳ 120 A. However, the latter can hardly be considered as a proof of unimportance of the space-charge sheath at high currents: the LTE model overestimates both the resistance of the bulk of the arc column and the resistance of the part of the column that is adjacent to the cathode, and this overestimation to a certain extent compensates for the neglect of the voltage drop in the sheath. Furthermore, if the latter resistance were evaluated in the framework of the LTE model in an accurate way, then the overestimation would be still much stronger and the obtained voltage would significantly exceed those observed in the experiment.

  11. Mantle amphibole control on arc and within-plate chemical signatures: Quaternary lavas from Kurdistan Province, Iran (United States)

    Kheirkhah, M.; Allen, M. B.; Neill, I.; Emami, M. H.; McLeod, C.


    New analyses of Quaternary lavas from Kurdistan Province in west Iran shed light on the nature of collision zone magmatism. The rocks are from the Turkish-Iranian plateau within the Arabia-Eurasia collision. Compositions are typically basanite, hawaiite and alkali basalt. Sr-Nd isotope values are close to BSE, which is similar to Quaternary alkali basalts of NW Iran, but distinct from a depleted source melting under Mount Ararat. The chemical signatures suggests variable melting of two distinct sources. One inferred source produced melts with La/Nb from~3.5 to~1.2, which we model as the result of depletion of amphibole during ≤1% melting in the garnet stability field. We infer phlogopite in the source of potassic lavas from Takab. Lithosphere delamination or slab break-off mechanisms for triggering melting are problematic, as the lithosphere is~150-200km thick. It is possible that the negative dT/dP section of the amphibole peridotite solidus was crossed as a result of lithospheric thickening in the collision zone. This explanation is conditional upon the mantle source being weakly hydrated and so only containing a small proportion of amphibole, which can be exhausted during small degrees of partial melting. Our model maybe viable for other magmatic areas within orogenic plateaux, e.g. northern Tibet. Depletion of mantle amphibole may also help explain larger scale transitions from arc to within-plate chemistry in orogens, such as the Palaeogene Arabia-Eurasia system.

  12. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings (United States)

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.


    It is quite evident that it is not anomalous metal transport, nor unique depositional conditions, nor any single factor at the deposit scale, that dictates whether a mineral deposit becomes a giant or not. A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments. For giant orogenic, intrusion-related gold systems (IRGS) and Carlin-type gold deposits and iron oxide-copper-gold (IOCG) deposits, there are common factors among all of these at the lithospheric to crustal scale. All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or, in the case of most Phanerozoic orogenic giants, define the primary suture zones between tectonic terranes. Giant provinces of IRGS, IOCG, and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province. The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids, whereas the association of such melts with Carlin-type ores is more indirect and enigmatic. Giant orogenic gold provinces show no direct relationship to such magmatism, forming from metamorphic fluids, but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.

  13. Post-magmatic structural evolution of the Troodos Ophiolite Pillow Lavas revealed by microthermometry within vein precipitates, with application to Alpine-Mediterranean supra-subduction zone settings (United States)

    Kurz, W.; Quandt, D.; Micheuz, P.; Krenn, K.


    The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration

  14. Magmatic garnet in the Cordilleran-type Galiléia granitoids of the Araçuaí belt (Brazil): Evidence for crystallization in the lower crust (United States)

    Narduzzi, F.; Farina, F.; Stevens, G.; Lana, C.; Nalini, H. A.


    Magmatic garnet, together with epidote, is a rare mineral association in cordilleran-I-type granitoids and of special petrogenetic significance. The metaluminous to slightly peraluminous (ASI = 0.97-1.07) Galiléia batholith (Brazil) is a large (ca. 30,000 km2), Neoproterozoic (ca. 632-570 Ma) weakly foliated calc-alkaline granitoid body, characterized by the widespread occurrence of garnet (grossular 25-43 mol%) and epidote (pistacite 9.3-22.7 mol%). Field, petrographic and mineral chemical evidence indicates that garnet, epidote, biotite as well as white mica crystals (low-Si phengite), are magmatic. There is no difference in bulk rock major and trace element composition between the Galiléia granitoids and other garnet-free cordilleran-type granitoids worldwide. This evidence strongly suggests that the origin of the uncommon garnet + epidote parageneses is related to the conditions of magma crystallization, such as pressure, temperature and water content. Comparison between the mineral assemblages and mineral compositions from this study and those recorded in crystallization experiments on metaluminous calc-alkaline magmas, as well as within garnet-bearing metaluminous volcanic rocks and granitoids, indicates that the supersolidus coexistence of grossular-rich garnet, epidote and white mica is consistent with magma crystallization at pressures greater than 0.8 GPa (above 25 km depth) and at temperatures below 700 °C, i.e. near the water saturated solidus. Furthermore, resorption textures around garnet (plagioclase ± quartz coronas) and epidote suggest that these minerals have been partially consumed prior to complete crystallization. These findings demonstrate that at 630 Ma the crust underneath the Araçuaí Orogen was already at least 25-30 km thick and relatively cool. However, this contrasts with the marked high heat flow registered from the neighbour Carlos Chagas Batholith located 50 km to the east. In fact such granitoids record granulite

  15. Verification of Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Jacobsen, Lasse; Jacobsen, Morten; Møller, Mikael Harkjær


    of interesting theoretical properties distinguishing them from other time extensions of Petri nets. We shall give an overview of the recent theory developed in the verification of TAPN extended with features like read/transport arcs, timed inhibitor arcs and age invariants. We will examine in detail...... the boundaries of automatic verification and the connections between TAPN and the model of timed automata. Finally, we will mention the tool TAPAAL that supports modelling, simulation and verification of TAPN and discuss a small case study of alternating bit protocol....

  16. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling


    In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the

  17. Geochemical differences between along-arc and across-arc volcanics in west-central Nicaragua (United States)

    Geilert, Sonja; Freundt, Armin; Wörner, Gerhard; Kutterolf, Steffen


    The La Paz Centro - Malpaisillo Lineament (LPML) in west-central Nicaragua is a north-south striking, 20 km long chain of maars and cinder cones, which intersects the northwest-southeast striking main volcanic front. A tectonic control of LPML volcanism is likely but only evident for the Malpaisillo fissure at the northern end of the LPML. Previous work demonstrated geochemical variations implying changes in mantle-source composition (i.e., added slab components) along the Central American Volcanic Arc at spatial scales of some 10's of kilometers. Our study of the LPML shows that minor but systematic changes also occur across the arc within 20 km distance. Variations in trace element ratios such as Zr/Nb, Ba/Th, Ba/La, Th/Zr, U/La and La/Yb along the LPML, i.e. across the volcanic front indicate little change in the degree of partial melting but an increase particularly in the hemipelagic sediment component in the mantle source from the fore arc towards the arc front, followed by a decrease behind the arc. Interestingly, the slab component is most prominent just in front of the arc. About 60 km southeast of the LPML, the Nejapa-Miraflores volcanic and tectonic lineament, which marks a 20 km north-south offset in the arc, differs substantially from the LPML. There is a wide scatter in incompatible trace element ratios indicating a heterogeneous mantle source at small spatial scales (c. 1 km). This mantle heterogeneity may represent vertical rather than across-arc variations and is probably related to the arc offset, because in the absence of such offset at the LPML mantle source conditions vary much less but more systematically.

  18. Using arc voltage to locate the anode attachment in plasma arc cutting

    International Nuclear Information System (INIS)

    Osterhouse, D J; Heberlein, J V R; Lindsay, J W


    Plasma arc cutting is a widely used industrial process in which an electric arc in the form of a high velocity plasma jet is used to melt and blow away metal. The arc attaches inside the resulting cut slot, or kerf, where it both provides a large heat flux and determines the flow dynamics of the plasma. Knowledge of the position of the arc attachment is essential for understanding the phenomena present at the work piece. This work presents a new method of measuring the location of the arc attachment in which the arc voltage is measured during the cutting of a range of work piece thicknesses. The attachment location is then interpreted from the voltages. To support the validity of this method, the kerf shape, dross particle size and dross adhesion to the work piece are also observed. While these do not conclusively give an attachment location, they show patterns which are consistent with the attachment location found from the voltage measurements. The method is demonstrated on the cutting of mild steel, where the arc attachment is found to be stationary in the upper portion of the cut slot and in reasonable agreement with existing published findings. For a process optimized for the cutting of 12.7 mm mild steel, the attachment is found at a depth of 1.5–3.4 mm. For a slower process optimized for the cutting of 25.4 mm mild steel, the attachment is found at a depth of 3.4–4.8 mm, which enhances heat transfer further down in the kerf, allowing cutting of the thicker work piece. The use of arc voltage to locate the position of the arc attachment is unique when compared with existing methods because it is entirely independent of the heat distribution and visualization techniques. (paper)

  19. Investigating Magmatic Processes in the Lower Levels of Mantle-derived Magmatic Systems: The Age & Emplacement of the Kunene Anorthosite Complex (SW Angola) (United States)

    Hayes, B.; Bybee, G. M.; Owen-Smith, T.; Lehmann, J.; Brower, A. M.; Ashwal, L. D.; Hill, C. M.


    Our understanding of mantle-derived magmatic systems has shifted from a notion of upper crustal, melt-dominated magma chambers that feed short-lived volcanic eruptions, to a view of more long-lived trans-crustal, mush-dominated systems. Proterozoic massif-type anorthosite systems are voluminous, plagioclase-dominated plutonic suites with ubiquitous intermediate compositions (An 50 ± 10) that represent mantle-derived magmas initially ponded at Moho depths and crystallized polybarically until emplacement at mid-crustal levels. Thus, these systems provide unique insight into magma storage and processing in the lower reaches of the magma mush column, where such interpretation has previously relied on cumulate xenoliths in lavas, geophysical data and experimental/numerical modeling. We present new CA-ID-TIMS ages and a series of detailed field observations from the largest Proterozoic anorthosite massif on Earth, the Kunene Anorthosite Complex (KAC) of SW Angola. Field structures indicate that (i) the bulk of the material was emplaced in the form of crystal mushes, as both plutons and sheet-like intrusions; (ii) prolonged magmatism led to cumulate disaggregation (block structure development) and remobilization, producing considerable textural heterogeneity; (iii) crystal-rich magmatic flow induced localized recrystallization and the development of protoclastic (mortar) textures; and (iv) late residual melts were able to migrate locally prior to complete solidification. Dating of pegmatitic pods entrained from cumulate zones at the base of the crust (1500 ± 13 Ma) and their host anorthosites (1375-1438 Ma) reveals time periods in the range of 60-120 Myr between the earliest products of the system and the final mushes emplaced at higher crustal levels. Therefore, the KAC represents a complex, mushy magmatic system that developed over a long period of time. Not only do these observations help in refining our understanding of Proterozoic anorthosite petrogenesis, they

  20. Shear wave anisotropy in the Eastern Himalaya, Burmese arc and adjoining regions (United States)

    Mangalampally, R. K.; Saikia, D.; Singh, A.; Roy, S.; Panuganti, S. R.; Lyngdoh, A. C.


    developed due to the downwelling Indian lithosphere beneath Burmese Arc and APM related strain of the Indian plate, annihilating each other. Another strong possibility is a disturbed and highly heterogeneous mantle lithosphere beneath the Bengal Basin under the effect of the Kereguelen plume magmatism at 116 Ma.

  1. PNW River Reach Files -- 1:100k Watercourses (arcs) (United States)

    Pacific States Marine Fisheries Commission — This feature class includes the ARC features from the 2001 version of the PNW River Reach files Arc/INFO coverage. Separate, companion feature classes are also...

  2. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays, Phase I (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  3. Anomalous K-Pg-aged seafloor attributed to impact-induced mid-ocean ridge magmatism. (United States)

    Byrnes, Joseph S; Karlstrom, Leif


    Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~10 5 to 10 6 km 3 . Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time.

  4. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry


    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  5. Red-Sea rift magmatism near Al Lith, Kingdom of Saudi Arabia (United States)

    Pallister, J.S.


    A newly recognized Tertiary dike complex and comagmatic volcanic rocks exposed on the central Saudi Arabian coastal plain record early stages of magmatism related to Red Sea rifting. Intrusive and stratigraphic relationships, and new potassium-argon dating indicate episodic magmatism from about 30 Ma to the present. Additional stratigraphic and radiometric evidence suggests that limited rift-related magmatism may have began as early as about 50 Ma ago. An early phase of crustal extension in the region was accompanied by faulting and graben formation and by dike-swarm intrusion. The style of extension and intrusion changed approximately 20 Ma ago. Localized volcanism and sheeted dike injection ceased and were replaced by the intrusion of thick gabbro dikes. This change may mark the onset of sea-floor spreading in the central Red Sea.

  6. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region (United States)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay


    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  7. Proceedings of the workshop on vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.


    Topics included in the papers presented at this conference are: vacuum arc ion source development at GSI (Gesellschaft fuer Schwerionenforschung, Germany), ITEP (Institute for Theoretical and Experimental Physics, Russia), Lawrence Berkeley Laboratory, and ANSTO (Australian Nuclear Science and Technology Organization); triggers for vacuum arc sources; plasma distribution of cathodic arc deposition system; high ion charge states in vacuum arc ion sources; and gas and metal ion sources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  8. Thermal Plasma Generators with Water Stabilized Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan


    Roč. 2, č. 1 (2009), s. 99-104 ISSN 1876-5343 R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * plasma torch * Gerdien arc Subject RIV: BL - Plasma and Gas Discharge Physics

  9. ARC: Automated Resource Classifier for agglomerative functional ...

    Indian Academy of Sciences (India)


    Jun 16, 2007 ... In subsequent steps, this library was further enriched by collecting terms from archaeal representative Archaeoglobus fulgidus, Gene Ontology, and Gene Symbols. ARC is 94.04% successful on 6,75,663 annotated proteins from 348 prokaryotes. Three examples are provided to illuminate the current ...

  10. Roadmap for the ARC Grid Middleware

    DEFF Research Database (Denmark)

    Kleist, Josva; Eerola, Paula; Ekelöf, Tord


    The Advanced Resource Connector (ARC) or the NorduGrid middleware is an open source software solution enabling production quality computational and data Grids, with special emphasis on scalability, stability, reliability and performance. Since its first release in May 2002, the middleware is depl...

  11. An approach for optimizing arc welding applications

    International Nuclear Information System (INIS)

    Chapuis, Julien


    The dynamic and transport mechanisms involved in the arc plasma and the weld pool of arc welding operations are numerous and strongly coupled. They produce a medium the magnitudes of which exhibit rapid time variations and very marked gradients which make any experimental analysis complex in this disrupted environment. In this work, we study the TIG and MIG processes. An experimental platform was developed to allow synchronized measurement of various physical quantities associated with welding (process parameters, temperatures, clamping forces, metal transfer, etc.). Numerical libraries dedicated to applied studies in arc welding are developed. They enable the treatment of a large flow of data (signals, images) with a systematic and global method. The advantages of this approach for the enrichment of numerical simulation and arc process control are shown in different situations. Finally, this experimental approach is used in the context of the chosen application to obtain rich measurements to describe the dynamic behavior of the weld pool in P-GMAW. Dimensional analysis of these experimental measurements allows to identify the predominant mechanisms involved and to determine experimentally the characteristic times associated. This type of approach includes better description of the behavior of a macro-drop of molten metal or the phenomena occurring in the humping instabilities. (author)

  12. Arc -furnace Flicker Compensation in Ethiopia.

    African Journals Online (AJOL)

    series capacitors nor the translater scheme is appli- cable where more ... The arc furnace is of conventional design. The furnace ... power of the furnace. This reactor had three tappings and a short-circuiting switch. REQUIREMENTS OF THE COMPENSATOR. The fluctuations could be caused by the furnace on whichever ...

  13. Nonlinear Study of Industrial Arc Spring Dampers

    DEFF Research Database (Denmark)

    Lahriri, Said; Santos, Ilmar; Hartmann, Henning


    acting on the SFD are presented. It is worth mentioning, that the maps and diagrams can be used as design guidance. Finally, a comparison between the numerical results and experimental result is facilitated in form of waterfall diagrams. For this, a full scale model of the arc-spring damper was designed...

  14. ArcAid Interactive Archery Assistant

    Directory of Open Access Journals (Sweden)

    Jeroen Vervaeke


    Full Text Available This paper describes the design process of a bow aiming system, called ArcAid, which is an interactive archery assistant. The main goal of ArcAid is to introduce a way for beginner Robin Hoods to learn the art of archery to its fullest. In order to achieve this goal, our smartphone-based design focuses on a fun and interactive learning process that gives constant feedback to the user on how to hit a certain goal. A SPIKE high- end laser sensor is used for the distance measurement and the smartphone’s accelerometer is used to define the angle of inclination. To measure the force on the arrow and the displacement of the string, a flex sensor is attached upon one of the arcs of the bow. All sensor data is processed in an Arduino Nano microprocessor and feedback to the user is given by a dedicated smartphone app. In this paper, we mainly focus on the construction, mechanics and electronics of the ArcAid bow and on the design of the mobile app, which is the game controller. Furthermore, we briefly discuss some future development ideas.

  15. Hypergravity effects on glide arc plasma

    NARCIS (Netherlands)

    Šperka, J.; Souček, P.; van Loon, J.J.W.A.; Dowson, A.; Schwarz, C.; Krause, J.; Kroesen, G.; Kudrle, V.


    The behaviour of a special type of electric discharge - the gliding arc plasma - has been investigated in hypergravity (1g-18g) using the Large Diameter Centrifuge (LDC) at ESA/ESTEC. The discharge voltage and current together with the videosignal from a fast camera have been recorded during the

  16. Rejuvenating Allen's Arc with the Geometric Mean. (United States)

    Phillips, William A.


    Contends that, despite ongoing criticism, Allen's arc elasticity formula remains entrenched in the microeconomics principles curriculum. Reviews the evolution and continuing scrutiny of the formula. Argues that the use of the geometric mean offers pedagogical advantages over the traditional arithmetic mean approach. (CFR)

  17. Gravitational lens models of arcs in clusters

    International Nuclear Information System (INIS)

    Bergmann, A.G.; Petrosian, V.; Lynds, R.


    It is now well established that the luminous arcs discovered in clusters of galaxies, in particular those in Abell 370 and Cluster 2244-02, are produced by gravitational lensing of background sources. The arcs are modeled and constraints are placed on the distribution of the mass in the clusters and the shape and size of the sources. The models require, as expected, a large amount of dark matter in the clusters and a mass-to blue-light ratio for the cluster which exceeds 100 solar mass/solar luminosity and could be as high as 1000 solar mass/solar luminosity depending on cosmological parameters and the distribution of the dark matter. Furthermore, it is found that in the case of the arc in A370 the dark matter must have a different distribution than the luminous galaxies, while for the arc in Cl 2244 the dark matter can have a distribution similar to that of the light matter (galaxies) or a separate distribution. 30 refs

  18. Arc Welding Dictionary 3. Project HIRE. (United States)

    Gardner, David C.; And Others

    Designed as supplemental material to on-going instruction in the vocational program, this third of three picture dictionary booklets in the Arc Welding series is intended to assist the learning handicapped student to master the core vocabulary taught in the trade. Intended for individual or small group instruction with minimal supervision, this…

  19. Arc Welding Dictionary 2. Project HIRE. (United States)

    Gardner, David C.; And Others

    Designed as supplemental material to on-going instruction in the vocational program, this second of three picture dictionary booklets in the Arc Welding series is intended to assist the learning handicapped student to master the core vocabulary taught in the trade. Intended for individual or small group instruction with minimal supervision, this…

  20. Angelman Syndrome: Finding the Lost Arc


    Tai, Hwan-Ching; Schuman, Erin M.


    Angelman syndrome is a neurodevelopmental disorder caused by mutations in the maternally inherited UBE3A gene, which encodes a ubiquitin ligase. Greer et al. (2010) now identify a UBE3A substrate called Arc that promotes endocytosis of neuronal AMPA receptors, providing insight into synaptic defects that may underlie the cognitive deficits in Angelman syndrome.

  1. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. (United States)

    Kemp, A I S; Hawkesworth, C J; Foster, G L; Paterson, B A; Woodhead, J D; Hergt, J M; Gray, C M; Whitehouse, M J


    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  2. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland (United States)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.


    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry

  3. Optical signature of RF arcs in the ICRH frequency range

    NARCIS (Netherlands)

    Dumortier, P.; Huijser, T.; D'Inca, R.; Faugel, H.; Hangan, D.; Huygen, S.; Messiaen, A.; Onyshchenko, A.; Siegl, G.; Valk, N.C.J. van der; Vervier, M.


    RF arc detection is a key operational and safety issue for ICRF systems. Dedicated measurements on a RF test-stand were made in order to characterize the optical signature of RF arcs (time and spectrum) to assess the potential of optical arc detection on ICRF systems. Time-resolved intensity

  4. Theory of the arc discharge in air blast breakers

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, H.F.


    The complete set of equations obtaining in the arc's length element are given. The arc length is determined when the external circuit equations are closed by an expression for the arc inductance as a function of the radius and length, in addition to our relationships for the radius and voltage gradients.

  5. Faunal importance of the Eastern Arc Mountains of Kenya and ...

    African Journals Online (AJOL)

    At least 74 vertebrate species are strictly endemic to the Eastern Arc Mountains, split as follows: birds 10 species, mammals 11 species, reptiles 23 species and amphibians 30 species. A further 40 species are near-endemics, but range slightly more widely than the strict definition of the Arc. Eastern Arc Mountain blocks that ...

  6. Eastern Arc Mountains and their national and global importance ...

    African Journals Online (AJOL)

    The Eastern Arc Mountains comprise a chain of separate mountain blocks running from southern Kenya through Tanzania in a crescent or arc shape. In Tanzania, the Eastern Arc consists of North and South Pare, East and West Usambaras, Nguru, Ukaguru, Rubeho, Uluguru, Udzungwa and Mahenge Mountains.

  7. 29 CFR 1926.351 - Arc welding and cutting. (United States)


    ... 29 Labor 8 2010-07-01 2010-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding and... for arc welding and cutting, and are of a capacity capable of safely handling the maximum rated...

  8. 29 CFR 1915.56 - Arc welding and cutting. (United States)


    ... 29 Labor 7 2010-07-01 2010-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship repairing... specifically designed for arc welding and cutting and are of a capacity capable of safely handling the maximum...

  9. The Late Paleozoic magmatic evolution of the Aqishan-Yamansu belt, Eastern Tianshan: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of igneous rocks (United States)

    Zhao, Liandang; Chen, Huayong; Zhang, Li; Zhang, Weifeng; Yang, Juntao; Yan, Xuelu


    The Aqishan-Yamansu belt in the Eastern Tianshan (Xinjiang, NW China) is an important mineralization belt. The belt mainly comprises Carboniferous volcanic, volcaniclastic and clastic rocks, and hosts many intermediate-felsic intrusions and Fe (-Cu) deposits. The biotite diorite, felsic brecciated tuff, granodiorite and syenite from the western Aqishan-Yamansu belt are newly zircon U-Pb dated to be 316.7 ± 1.4 Ma, 315.6 ± 2.6 Ma, 305.8 ± 1.9 Ma and 252.5 ± 1.4 Ma, respectively. The mafic rocks (mafic brecciated tuff and diabase porphyry) are tholeiitic to calc-alkaline series, LILE-rich (e.g., Rb, Ba and Pb), HFSE-depleted (e.g., Nb and Ta), and have high Mg#(44-60), Nb/Ta (15.0-20.0), Ba/La (>30) and Ba/Nb (>57) values/ratios, and low Th/Yb ratios (2.10) and positive εNd(t) (>5.7), combined with variable Nb/Ta ratios (9.52-21.4), Y/Nb ratios (1.47-39.7) and Pb isotopes (206Pb/204Pb = 16.225-17.640, 207Pb/204Pb = 15.454-15.520, 208Pb/204Pb = 37.097-38.025) suggest that these rocks were magma mixing products between juvenile crustal-derived magmas and minor mantle-derived magmas. Combined published works with our new ages, geochemical and isotopic data, we propose that the Aqishan-Yamansu belt was an Early Carboniferous fore-arc basin during the southward subduction of the Kangguer oceanic slab beneath the Yili-Central Tianshan block. With the continuing southward subduction, the Aqishan-Yamansu fore-arc basin initiated to close, which generated the mafic and intensive intermediate-felsic magmatism associated with regional Fe (-Cu) mineralization.

  10. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding. (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao


    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Power quality analysis of DC arc furnace operation using the Bowman model for electric arc (United States)

    Gherman, P. L.


    This work is about a relatively new domain. The DC electric arc is superior to the AC electric arc and it’s not used in Romania. This is why we analyzed the work functions of these furnaces by simulation and model checking of the simulation results.The conclusions are favorable, to be carried is to develop a real-time control system of steel elaboration process.

  12. Critical evaluation of 40Ar/39Ar ages for the Central Atlantic Magmatic Province: Timing, duration and possible migration of magmatic centers (United States)

    Baksi, Ajoy K.

    Recent reports suggest the Central Atlantic Magmatic Province (CAMP), initially covering sections of North America, Africa and South America, was formed within a relatively short period of time around 200 Ma. All relevant 40Ar/39Ar ages are corrected for interlaboratory differences, mini or marginal plateau values are rejected as accurate estimates of crystallization age, and results scrutinized for the presence of excess argon and/or alteration effects. Twenty-one accurate ages span ˜230 to 175 Ma, with a marked concentration at ˜200 Ma. Magmatism in North America and contiguous parts of Africa in Pangaea (N = 7) average 199.7 Ma; in South America, seven samples yield an average age of 198.3 Ma. The age difference appears to be statistically significant, and in the southern areas, a second phase of magmatism (N = 3) centers around 192 Ma. From a temporal viewpoint, a genetic link between CAMP and the Triassic-Jurassic boundary extinction event appears likely.

  13. Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    Energy Technology Data Exchange (ETDEWEB)

    Mancinelli, B. R., E-mail: [Grupo de Descargas Eléctricas, Departamento Ingeniería Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651 (2600) Venado Tuerto, Santa Fe (Argentina); Minotti, F. O.; Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ingeniería Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651 (2600) Venado Tuerto, Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina); Prevosto, L. [Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)


    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10{sup 4} A/s.

  14. Volcanism in slab tear faults is larger than in island-arcs and back-arcs. (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido


    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  15. Shielded Metal Arc Welding and Carbon Arc Cutting--Air. Teacher Edition [and] Student Edition [and] Student Workbook. Third Edition. (United States)

    Harper, Eddie; Knapp, John

    This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…

  16. Arc petrogenesis in southern Ireland and the Isle of Man: Implications for Ordovician accretionary history and constraints from Late Caledonian plutonism (United States)

    Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; McConnell, Brian; Buhre, Stephan


    Peri-Laurentian and peri-Gondwanan magmatic arcs and microcontinents, and their attendant sedimentary basins were assembled during the Caledonian Orogeny (c. 490 - 400 Ma) to form the Irish and British lithosphere. Accretion of these terranes to Laurentia and subsequent closure of the Iapetus Ocean initiated the generation of widespread Late Caledonian plutons (c. 425 - 400 Ma). Petrogenetic investigation of Ordovician arc-related rocks aims to test possible terrane affinities, using geochemical data from the arcs and related rocks as well as isotopic signatures preserved within Late Caledonian granites. SIMS zircon U-Pb geochronology has provided middle to early Ordovician ages for volcanic rocks with arc affinities from Avoca (Ireland, c. 463 Ma) and a newly discovered volcanic sequence from Port-e-Vullen (Isle of Man, c. 473 Ma). Granitic rocks from Leinster (Ireland), interpreted as arc plutons, yielded late to middle Ordovician ages of c. 457 - 454 Ma (Croghan Kinshelagh) and c. 462 - 459 Ma (Graiguenamanagh), similar to the c. 457 Ma age of the Dhoon Granite (Isle of Man). Oxygen isotopic compositions of zircons from the Ordovician volcanic and plutonic rocks are close to or slightly heavier than mantle values (δ18O generally < 7 ‰). Lu-Hf zircon compositions suggest different terrane affinities: relatively juvenile ɛHfT values (c. +8.5 - +5.3) for the Avoca volcanics are similar to those of the older unit of the Croghan Kinshelagh Granite, whereas the Port-e-Vullen volcanics and the Graiguenamanagh Granite have less radiogenic ɛHfT values (c. +4.4 - +1.3). The present-day geographic distribution of these rocks and petrogenetic inferences from their North American correlatives invite comparison with the Avalonian and the Ganderian microcontinent, respectively[1]. These constraints are supported by inherited zircons and corresponding isotopic analyses. ɛHfT values (c. +11.5 - +1.5) from magmatic zircons of the Dhoon Granite and the younger unit of the

  17. A comparison of eruption mechanisms in subaerial and submarine arc environments (Invited) (United States)

    Cashman, K. V.; Chadwick, W.; Fiske, R. S.; Deardorff, N.


    The past few decades of research on submarine arc volcanism have produced exciting new observations that allow us to address long-standing questions about the role of seawater on submarine eruption dynamics. Although conduit processes in submarine arc volcanoes are probably similar to those in their subaerial counterparts, as illustrated by similarities in bubble and crystal textures in erupted pyroclasts, the effect of the overlying water column on syn- and post-eruptive processes can be dramatic. Perhaps most important is a blurring of the distinction between primary and secondary emplacement of pyroclastic material as a consequence of rapid remobilization of primary deposits down submarine slopes. As a result, it may prove difficult to distinguish between submarine pyroclastic (primary) and volcaniclastic (secondary) deposits in the geologic record. Other subaerial eruptive categories are also less distinct in the submarine environment. Plume rise is suppressed by the efficiency of steam condensation, from loss of buoyancy due to mixing with seawater, and by the rapid deceleration of solid pyroclasts in the overlying water column. Together these processes contribute to efficient segregation of fine and coarse pyroclasts very close to the vent. As magmatic steam contained within pyroclasts also condenses and drives rapid ingestion of seawater, most pyroclasts will sink, which promotes cone growth over development of widespread pyroclastic deposits. An exception is material that is sufficiently fine-grained to be carried by water currents. Efficient winnowing of fines from both fall and flow deposits renders the grain-size distinction between these deposit types less distinctive than in subaerial deposits. Finally, seawater-induced spalling of fragments from effusive extrusions accompanied by vigorous degassing can produce a local fall deposit, thus blurring the distinction between explosive and effusive eruptive mechanisms. Together these observations suggest

  18. Driven Motion and Instability of an Atmospheric Pressure Arc

    International Nuclear Information System (INIS)

    Max Karasik


    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes

  19. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik


    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  20. Diagnostics of compact clusters of galaxies by giant luminous arcs

    International Nuclear Information System (INIS)

    Kovner, I.


    The diagnosis of cluster potentials using giant luminous arcs is addressed. The properties of the arrival time surface near an arc are considered, and the results of Monte Carlo simulations of two-arc cases for a small quadrupole lens are described and applied to known cases. It is concluded that the distributions of two arc extents can be usefully applied when cluster cores have simple morphology. The extents, together with the arc width, give an estimate of the ellipticity of the lens. 37 references

  1. Arc Motion in an Obliquely Imposed Alternating Magnetic Field

    International Nuclear Information System (INIS)

    Akiho, R; Takeda, K; Sugimoto, M


    The arc motion is theoretically investigated under an alternating magnetic field imposed obliquely to the arc. The arc is known to oscillate on a 2-D plane when the alternating magnetic field is imposed perpendicularly to the arc. If the alternating magnetic field is imposed obliquely to the arc, then it is expected that the arc oscillates not on the 2-D plane but in a 3-D space. For this study, 3-D simulation was performed on the motion of the plasma gas under an alternating magnetic field crossing obliquely to the arc. It was also assumed that a stream line of the plasma gas represented the arc profile. The momentum equation for the plasma gas was solved together with the continuity equation. Governing parameters for the gas motion are θ (crossing angle), v 0 (initial velocity of the plasma gas), and λ. Parameter λ is defined as λ = (I a B 0 )/Q 0 . Numerical results are reported under different operating conditions such as magnetic flux densities and the angles between the arc and the magnetic flux. If the crossing angle is larger than 4/π, the arc might be extinguished because of the drastic increase of the arc length.

  2. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny (United States)

    Richards, Jeremy P.


    Global data for measured Fe2O3/FeO ratios and Cu contents in unaltered volcanic and intrusive arc rocks indicate that, on average, they are slightly more oxidized than other magmas derived from depleted upper mantle (such as MORB), but contain similar Cu contents across their compositional ranges. Although Cu scatters to elevated values in some intermediate composition samples, the bulk of the data show a steady but gentle trend to lower concentrations with differentiation, reaching modal values of 50-100 ppm in andesitic rocks. These data suggest that Cu is mildly compatible during partial melting and fractionation processes, likely reflecting minor degrees of sulfide saturation throughout the magmatic cycle. However, the volume of sulfides must be small such that significant proportions of the metal content remain in the magma during fractionation to intermediate compositions. Previous studies have shown that andesitic magmas containing 50 ppm Cu can readily form large porphyry-type Cu deposits upon emplacement in the upper crust. A review of the literature suggests that the elevated oxidation state in the asthenospheric mantle wedge source of arc magmas (ΔFMQ ≈ + 1 ± 1) derives from the subduction of seawater-altered and oxidized oceanic crust, and is transmitted into the mantle wedge via prograde metamorphic dehydration fluids carrying sulfate and other oxidizing components. Progressive hydration and oxidation of the mantle wedge may take up to 10 m.y. to reach a steady state from the onset of subduction, explaining the rarity of porphyry deposits in primitive island arcs, and the late formation of porphyries in continental arc magmatic cycles. Magmas generated from this metasomatized and moderately oxidized mantle source will be hydrous basalts containing high concentrations of sulfur, mainly dissolved as sulfate or sulfite. Some condensed sulfides (melt or minerals) may be present due to the high overall fS2, despite the moderately high oxidation state

  3. Late Palaeozoic magmatism in the northern New England Orogen - evidence from U-Pb SHRIMP dating in the Yarrol and Connors provinces, central Queensland

    International Nuclear Information System (INIS)

    Withnall, I.W.; Hutton, L.J.; Hayward, M.A.; Blake, P.; Fanning, C.M.; Burch, G.


    Full text: The northern part of the New England Orogen in central Queensland has been divided into three provinces, which are from east to west, the Wandilla, Yarrol and Connors Provinces. Previous workers suggested that the provinces are elements in an Early Carboniferous west-dipping subduction system with the Wandilla Province representing the accretionary wedge, the Yarrol Province a forearc basin and the Connors Province the volcanic arc. Farther west, a fourth province, the Drummond Basin, is interpreted as a back-arc basin. The Connors Province crops out in two areas, the Auburn Arch in the south and Connors Arch in the north. Prior to the present study, some workers recognised two superimposed volcanic arcs, one in the Late Devonian and a second in the Early Permian. Other workers have challenged this model suggesting that the rocks in the Connors Province were mainly Late Carboniferous to Early Permian and that they recorded a period of continental extension. U-Pb SHRIMP dating in the Connors Province has confirmed the existence of at least episodic Early Carboniferous magmatism from the Tournaisian to Namurian in both the Auburn and Connors Arches. We suggest that the Tournaisian rocks are vestiges of the Early Carboniferous volcanic arc suggested by earlier workers. Ages of ∼350Ma and ∼349Ma in the Connors Province are similar to ages for volcanics in Cycle 1 in the Drummond Basin and to volcanics in the lower part of the Rockhampton Group in the Yarrol Province. Magmatism in the Drummond Basin and Yarrol Province continued into the Visean although no early Visean rocks have yet been recognised in the Connors Province. The mid-Carboniferous (late Visean) may represent an important change in the evolution of the region. East of the Auburn Arch, in the Yarrol Province, this time corresponds to the boundary between the Rockhampton Group and Lorray Formation, and is marked by a sudden increase in regional radiometric response. It represents the start of

  4. 226Ra-230Th Disequilibria in Magmas from Llaima and Lonquimay Volcanoes, Chile: On the Roles and Rates of Subvolcanic Magmatic Processes. (United States)

    Reubi, O.; Cooper, L. B.; Dungan, M. A.; Bourdon, B.


    226Ra excesses in mafic arc magmas are generally attributed to recent (contamination had a secondary influence on 226Ra-230Th disequilibria. Magmas with the highest AFC contribution have 226Ra-230Th close to equilibrium, implying that (226Ra-230Th) are mostly affected by either differentiation on time scales of ~8 kyr, or more likely, mixing with mush bodies several kyr old. Lonquimay magmas (52 to 64 wt% SiO2) are almost aphyric. Their evolution was controlled by fractional crystallization with limited crustal contamination. (226Ra-230Th) range from moderate 226Ra excesses to small deficits, and are negatively correlated with Ba/Th and MgO. These observations are difficult to reconcile with only slab-fluid addition and mantle melting. We posit that this (226Ra-230Th) range results from diffusive Ra-exchange between young recharge melts and an old crystal mush. A similar process may also explain 226Ra deficits at some other SVZ volcanoes. Thus (226Ra-230Th) in erupted magmas reflect modification of mantle-derived signatures by open-system magmatic processes in the crust. 1Sigmarsson et al., 2002, Earth and Planet. Sc. Lett. 196, 189-196. 2 Reubi et al., 2011, Earth and Planet. Sc. Lett. 303, 37-47.

  5. Proterozoic evolution of the western margin of the Wyoming craton: Implications for the tectonic and magmatic evolution of the northern Rocky Mountains (United States)

    Foster, D.A.; Mueller, P.A.; Mogk, D.W.; Wooden, J.L.; Vogl, J.J.


    Defining the extent and age of basement provinces west of the exposed western margin of the Archean Wyoming craton has been elusive because of thick sedimentary cover and voluminous Cretaceous-Tertiary magmatism. U-Pb zircon geochronological data from small exposures of pre-Belt supergroup basement along the western side of the Wyoming craton, in southwestern Montana, reveal crystallization ages ranging from ???2.4 to ???1.8 Ga. Rock-forming events in the area as young as ???1.6 Ga are also indicated by isotopic (Nd, Pb, Sr) signatures and xenocrystic zircon populations in Cretaceous-Eocene granitoids. Most of this lithosphere is primitive, gives ages ???1.7-1.86 Ga, and occurs in a zone that extends west to the Neoproterozoic rifted margin of Laurentia. These data suggest that the basement west of the exposed Archean Wyoming craton contains accreted juvenile Paleoproterozoic arc-like terranes, along with a possible mafic underplate of similar age. This area is largely under the Mesoproterozoic Belt basin and intruded by the Idaho batholith. We refer to this Paleoproterozoic crust herein as the Selway terrane. The Selway terrane has been more easily reactivated and much more fertile for magma production and mineralization than the thick lithosphere of the Wyoming craton, and is of prime importance for evaluating Neoproterozoic continental reconstructions. ?? 2006 NRC Canada.

  6. Calymmian magmatism in the basement of the Jauru Terrain (Rondonian - San Ignacio Province), Amazon Craton: U-Pb and Sm-Nd geochemistry and geochronology

    Energy Technology Data Exchange (ETDEWEB)

    Fachetti, Frankie James Serrano; Costa, Ana Claudia Dantas da; Silva, Carlos Humberto da, E-mail:, E-mail:, E-mail: [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Instituto de Ciencias Exatas e da Terra


    The Taquarussu Orthogneiss and the Guadalupe Granodiorite, part of the Rondonian-San Ignacio Province basement, southwest of the Amazonian Craton, correspond to oriented bodies with a NW trend. The rocks show granodiorite composition with minor occurrences of coarse grained monzogranites consisting essentially of plagioclase, quartz, microcline, orthoclase and biotite. The accessory minerals are amphibole, titanite, garnet, apatite, epidote, zircon and opaque. The geochemical data indicate that the rocks are classified as granodiorites and monzogranites, with an intermediate to acid magmatism, sub-alkaline character, from the calc-alkaline to the high-K calc-alkaline series, with alumina ratios ranging from metaluminous to lightly peraluminous. The rocks were classified as generated in volcanic islands arc environment and the U-Pb data (SHRIMP zircon) show a concord age 1575 ± 6 Ma. The Sm-Nd model age (T{sub DM}) is 1.63 Ga with εNd (t = 1.57 Ga) ranging from -1.52 to +0.78. These data indicate that these rocks are probably a juvenile crust with a possible contamination of crustal rocks. (author)

  7. The timing and sources of intraplate magmatism related to continental breakup in southern New Zealand

    DEFF Research Database (Denmark)

    van der Meer, Quinten

    related I- to I/S-type plutons of the Rahu suite up to 105 Ma. Isolated plutonism continued on a smaller scale after 105 Ma. O and Hf isotopes in zircon from later felsic plutons indicate waning subduction related magmatism up to 101 Ma. This is followed by the regional dominance of intraplate signatures...

  8. Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps

    DEFF Research Database (Denmark)

    Berger, Alfons; Thomsen, Tonny B.; Ovtcharova, Maria


    and numerous dykes cross-cutting the different units, allow reconstruction of a more refined chronology of the calc-alkaline and alkaline magmatic series. High precision zircon geochronology yields an age of 33.00 +/- A 0.04 Ma for the central tonalitic part of the Miagliano Pluton and 30.39 +/- A 0.50 Ma...

  9. Sr-Nd-Pb isotopes of the post-paleozoic magmatism from eastern Paraguay

    International Nuclear Information System (INIS)

    Comin-Chiaramonti, P; Gasparon, M; Gomes, C.B; Antonini, P


    The Parana Angola-Namibia igneous province (PAN) is characterized by Early Cretaceous flood tholeiites and tholeiitic dyke swarms associated with alkaline rocks of Early and Late Cretaceous ages, respectively, and with scarce post-Mesozoic magmatic rocks (Comin-Chiaramonti et al., 1997; 1999; Marques et al., 1999). The Eastern Paraguay, at the westernmost side of the Parana Basin, is of special interest because: (1) it is located between two main cratonic blocks, i.e. the southernmost tip of the Amazon Craton, and the northermost exposure of the Rio de La Plata Craton; (2) it was the site of repeated Na-K-alkaline magmatism since Late-Permian-Triassic times (i.e.: 250-240 Ma, Na-alkaline; c. 145 Ma, K-alkaline; 128-126 Ma, K-alkaline; 120-90 Ma, Na-alkaline; 61-33 Ma, Na-alkaline; cf. Comin-Chiaramonti and Gomes, 1996; Comin-Chiaramonti et al., 1999), and of Early Cretaceous tholeiitic magmatism, both low- and high-Ti variants, L-Ti and H-Ti, respectively (133-131 Ma; cf. Marzoli et al., 1999); (3) the younger sodic magmatic rocks are closely associated in space to the potassic analogues (Comin- Chiaramonti et al., 1999). The paper aims discussing the most important Sr- Nd-Pb isotope features of the alkaline and tholeiitic magmas from Eastern Paraguay in comparison with the PAN analogues (au)

  10. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. (United States)

    Borg, Lars E; Shearer, Charles K; Asmerom, Yemane; Papike, James J


    Primordial solidification of the Moon (or its uppermost layer) resulted in the formation of a variety of rock types that subsequently melted and mixed to produce the compositional diversity observed in the lunar sample suite. The initial rocks to crystallize from this Moon-wide molten layer (the magma ocean) contained olivine and pyroxene and were compositionally less evolved than the plagioclase-rich rocks that followed. The last stage of crystallization, representing the last few per cent of the magma ocean, produced materials that are strongly enriched in incompatible elements including potassium (K), the rare earth elements (REE) and phosphorus (P)--termed KREEP. The decay of radioactive elements in KREEP, such as uranium and thorium, is generally thought to provide the thermal energy necessary for more recent lunar magmatism. The ages of KREEP-rich samples are, however, confined to the earliest periods of lunar magmatism between 3.8 and 4.6 billion years (Gyr) ago, providing no physical evidence that KREEP is directly involved in more recent lunar magmatism. But here we present evidence that KREEP magmatism extended for an additional 1 Gyr, based on analyses of the youngest dated lunar sample.

  11. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard


    Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32° S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (∼73 Ma) to Eocene (∼39 Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (∼36 Ma) to Early Miocene (∼17 Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ∼20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (-3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2

  12. Numerical modeling of transferred arc melting bath heating; Modelisation numerique du chauffage de bains par arc transfere

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, A. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Trenty, L.; Guillot, J.B. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Delalondre, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches


    This paper presents the modeling of a transferred electric arc inside a bath of melted metal. After a recall of the context of the study, the problem of the modeling, which involves magnetohydrodynamic coupling inside the arc and the bath, is described. The equations that govern the phenomena inside the arc and the bath are recalled and the approach used for the modeling of the anode region of the arc is explained using a 1-D sub-model. The conditions of connection between arc and bath calculations are explained and calculation results obtained with a 200 kW laboratory furnace geometry are presented. (J.S.) 8 refs.

  13. Development of dismantlement technologies - plasma cutting, contact-arc cutting and contact-arc grinding of metal

    International Nuclear Information System (INIS)

    Bach, F.-W.; Kremer, G.; Ruemenapp, T.


    Paper describes possible procedures to cut contaminated large-size components in the course of the NPP dismantling, namely: the plasma arc cutting, the contact-arc-metal-cutting (CAMC), and the contact-arc metal grinding (CAMG). These techniques are usable when high thickness and sophisticated geometry of components, in this connection they are realized by relatively simple control systems. One considers application of some of the listed procedures (plasma arc cutting, contact-arc-metal-cutting) when dismantling the Karlsruhe multipurpose research reactor [ru

  14. Origin of the ca. 50 Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet (United States)

    Liu, An-Lin; Wang, Qing; Zhu, Di-Cheng; Zhao, Zhi-Dan; Liu, Sheng-Ao; Wang, Rui; Dai, Jin-Gen; Zheng, Yuan-Chuan; Zhang, Liang-Liang


    The origin of the Eocene shoshonitic rocks within the upper part of the extensive Linzizong volcanic succession (i.e., the Pana Formation) in the Gangdese arc, southern Tibet remains unclear, inhibiting the detailed investigations on the crust-mantle interaction and mantle dynamics that operate the generation of the coeval magmatic flare-up in the arc. We report mineral composition, zircon U-Pb age and zircon Hf isotope, whole-rock element and Sr-Nd-Hf isotope data for the Pana Formation volcanic rocks from Pangduo, eastern Gangdese arc in southern Tibet. The Pana volcanic rocks from Pangduo include basalts, basaltic andesites, and dacites. SIMS and LA-ICPMS zircon U-Pb dating indicates that the Pangduo dacites were erupted at 50 ± 1 Ma, representing the volcanic equivalent of the coeval Gangdese Batholith that define a magmatic flare-up at 51 ± 1 Ma. The Pangduo volcanic rocks are exclusively shoshonitic, differing from typical subduction-related calc-alkaline volcanic rocks. The basalts have positive whole-rock ƐNd(t) (+1.7) and ƐHf(t) (+3.8) with high Zr abundances (121-169 ppm) and Zr/Y ratios (4.3-5.2), most likely derived from the partial melting of an enriched garnet-bearing lithospheric mantle that was metasomatized by subduction-related components with input from asthenosphere. Compared to the basalts, similar trace elemental patterns and decreased whole-rock ƐNd(t) (-3.5 to -3.3) and ƐHf(t) (-2.5 to -1.6) of the basaltic andesites can be attributed to the input of the ancient basement-derived material of the central Lhasa subterrane into the basaltic magmas. The coherent whole-rock Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)i = 0.7064-0.7069, ƐNd(t) = -6.0 to -5.2, ƐHf(t) = -5.6 to -5.0) and varying zircon ƐHf(t) (-6.0 to +4.1) of the dacites can be interpreted by the partial melting of a hybrid lower crust source (juvenile and ancient lower crust) with incorporation of basement-derived components. Calculations of zircon-Ti temperature and whole

  15. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.


    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  16. Examining properties of arc sprayed nanostructured coatings

    Directory of Open Access Journals (Sweden)

    A. Czupryński


    Full Text Available The article presents the results of examining properties of arc sprayed coating obtained with nano-alloy on the iron matrix with a high amount of fine carbide precipitates sprayed on non-alloyed steel plates intended for high temperature operation. Powder metal cored wire EnDOtec DO*390N 1,6 mm diameter, was used to produce, dense, very high abrasion and erosion resistant coatings approx. 1,0 mm thick. Nano-material coatings characterization was done to determine abrasion resistance, erosion resistance, adhesion strength, hardness as well as metallographic examinations. Results have proved high properties of arc sprayed nano-material coatings and have shown promising industrial applications.

  17. Soundness of Timed-Arc Workflow Nets

    DEFF Research Database (Denmark)

    Mateo, Jose Antonio; Srba, Jiri; Sørensen, Mathias Grund


    Analysis of workflow processes with quantitative aspects like timing is of interest in numerous time-critical applications. We suggest a workflow model based on timed-arc Petri nets and study the foundational problems of soundness and strong (time-bounded) soundness. We explore the decidability...... of these problems and show, among others, that soundness is decidable for monotonic workflow nets while reachability is undecidable. For general timed-arc workflow nets soundness and strong soundness become undecidable, though we can design efficient verification algorithms for the subclass of bounded nets. Finally......, we demonstrate the usability of our theory on the case studies of a Brake System Control Unit used in aircraft certification, the MPEG2 encoding algorithm, and a blood transfusion workflow. The implementation of the algorithms is freely available as a part of the model checker TAPAAL....

  18. Electrical Safety and Arc Flash Protections

    Energy Technology Data Exchange (ETDEWEB)

    R. Camp


    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  19. Electrical Safety and Arc Flash Protections

    International Nuclear Information System (INIS)

    Camp, R.


    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  20. Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U-Pb ages and Lu-Hf isotopes (United States)

    Santosh, M.; Yang, Qiong-Yan; Ram Mohan, M.; Tsunogae, T.; Shaji, E.; Satyanarayanan, M.


    The Southern Granulite Terrane (SGT) in India preserves the records of the formation and recycling of continental crust from Mesoarchean through Paleoproterozoic to Neoproterozoic and Cambrian, involving multiple subduction-accretion-collision associated with major orogenic cycles. A chain of unmetamorphosed and undeformed alkaline magmatic intrusions occurs along the northern margin of the SGT aligned along paleo-suture zones. Here we investigate two representative plutons from this suite, the Angadimogar syenite (AM) and the Peralimala alkali granite (PM) through field, petrological, geochemical, zircon U-Pb and Lu-Hf studies. Magma mixing and mingling textures and mineral assemblages typical of alkaline rocks are displayed by these plutons. The whole-rock major and trace element data characterize their alkaline nature. In trace element discrimination diagrams, the AM rocks straddle between the VAG (volcanic-arc granites) and WPG (within plate granites) fields with most of the samples confined to the VAG field, whereas the PM rocks are essentially confined to the WPG field. The diversity in some of the geochemical features between the two plutons is interpreted to be the reflection of source heterogeneities. Most zircon grains from the AM and PM plutons display oscillatory zoning typical of magmatic crystallization although some grains, particularly those from the PM pluton, show core-rim structures with dark patchy zoned cores surrounded by irregular thin rims resulting from fluid alteration. The weighted mean 206Pb/238U ages of the magmatic zircons from three samples of the AM syenite are in the range of 781.8 ± 3.8 Ma to 798 ± 3.6 Ma and those from two samples of the PM alkali granite yield ages of 797.5 ± 3.7 Ma and 799 ± 6.2 Ma. A mafic magmatic enclave from the AM pluton shows weighted mean 206Pb/238U age of 795 ± 3.3 Ma. The AM and PM plutons also carry rare xeneocrystic zircons which define upper intercept concordia ages of 3293 ± 13 Ma and 2530

  1. Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece: Fingerprinting Geochemical Affinities of Magmatic Precursors

    Directory of Open Access Journals (Sweden)

    Christina Stouraiti


    Full Text Available The ophiolitic rocks of the Attic-Cycladic crystalline belt are considered of key importance for understanding the Mesozoic tectonic evolution of the Aegean region. Unresolved questions concern their tectono-stratigraphic relationships across the region. The mode of occurrence of the Cycladic ophiolites varies, as they appear as: (a dismembered blocks (olistoliths within the supra-detachment units of Paros and Naxos; (b mélange formations in the upper structural unit of western Samos and Skyros; and (c meta-ophiolitic mélange in the Cycladic Blueschist Unit (CBU from central Samos. The trace element geochemistry and Pb-Sr-Nd isotopes of the mafic ophiolitic rocks indicate four geochemical groups: (a the upper unit metabasites from Paros and western Samos (Kallithea display an evolved basaltic composition (Mg# 40.2–59.6, with low Zr/Nb values (5–16 and high Ce/Y values (1.3 to 2.6 compared to MORB, indicating island-arc tholeiite affinities; (b Naxos upper unit metabasalts show spider diagrams patterns indicating ocean island basalt (OIB-type affinities; (c Central Samos metagabbros (CBU are primitive rocks with Back-Arc Basin basalt affinities; (d the Skyros metadolerites and Tinos (Mt Tsiknias and S. Evia (CBU metagabbros, cluster as a separate geochemical group; they exhibit high MgO values (>10 wt %, very low TiO2 values (0.1–0.2 wt %, Y and Yb, and depleted trace element N-MORB normalized patterns, similar to volcanic rocks formed in modern oceanic fore-arc settings, such as boninites. A combination of the Pb- and Sr-isotopic compositions of Cycladic metabasites indicate that the Pb and Sr incorporated in the Cycladic ophiolites correspond to mixtures of magmatic fluids with seawater (206Pb/204Pb = 18.51–18.80; 207Pb/204Pb = 15.59–15.7; 208Pb/204Pb = 39.03–39.80 and initial 87Sr/86Sr80 = 0.705–0.707. Furthermore, peridotite relicts from Samos, Paros, and Naxos—irrespective of the structural unit—display chemical

  2. Power Supply For 25-Watt Arc Lamp (United States)

    Leighty, B. D.


    Dual-voltage circuitry both strikes and maintains arc. New power supply designed (and several units already in use) that replaces relay/choke combination with solid-state starter. New power supply consists of two main sections. First section (low voltage power supply section) is 84-volt directcurrent supply. Second section (high-voltage starter circuit) is CockroftWalton voltage multiplier. Used as light sources for schlieren, shadowgraph, and other flow-visualization techniques.

  3. Delivery quality assurance with ArcCHECK

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Christopher; Klein, Michael; Barnett, Rob [London Regional Cancer Program, London Health Sciences Centre, London, Ontario (Canada); Yartsev, Slav, E-mail: [London Regional Cancer Program, London Health Sciences Centre, London, Ontario (Canada)


    Radiation therapy requires delivery quality assurance (DQA) to ensure that treatment is accurate and closely follows the plan. We report our experience with the ArcCHECK phantom and investigate its potential optimization for the DQA process. One-hundred seventy DQA plans from 84 patients were studied. Plans were classified into 2 groups: those with the target situated on the diodes of the ArcCHECK (D plans) and those with the target situated at the center (C plans). Gamma pass rates for 8 target sites were examined. The parameters used to analyze the data included 3%/3 mm with the Van Dyk percent difference criteria (VD) on, 3%/3 mm with the VD off, 2%/2 mm with the VD on, and x/3 mm with the VD on and the percentage dosimetric agreement “x” for diode plans adjusted. D plans typically displayed maximum planned dose (MPD) on the cylindrical surface containing ArcCHECK diodes than center plans, resulting in inflated gamma pass rates. When this was taken into account by adjusting the percentage dosimetric agreement, C plans outperformed D plans by an average of 3.5%. ArcCHECK can streamline the DQA process, consuming less time and resources than radiographic films. It is unnecessary to generate 2 DQA plans for each patient; a single center plan will suffice. Six of 8 target sites consistently displayed pass rates well within our acceptance criteria; the lesser performance of head and neck and spinal sites can be attributed to marginally lower doses and increased high gradient of plans.