Sample records for cachoeirinha magmatic arc

  1. Magmatic sulphides in Quaternary Ecuadorian arc magmas (United States)

    Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus


    New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a

  2. Magmatism at different crustal levels in the ancient North Cascades magmatic arc (United States)

    Shea, E. K.; Bowring, S. A.; Miller, R. B.; Miller, J. S.


    The mechanisms of magma ascent and emplacement inferred from study of intrusive complexes have long been the subject of intense debate. Current models favor incremental construction based on integration of field, geochemical, geochronologic, and modeling studies. Much of this work has been focused on a single crustal level. However, study of magmatism throughout the crust is critical for understanding how magma ascends through and intrudes surrounding crustal material. Here, we present new geochronologic and geochemical work from intrusive complexes emplaced at a range of crustal depths in the Cretaceous North Cascades magmatic arc. These complexes were intruded between 92 and 87 Ma at depths of at ≤5 -10 km, ~20 km, and ~25 km during this time. U-Pb CA-TIMS geochronology in zircon can resolve Jack-Entiat intrusive complex, a highly elongate amalgamation of intrusions recording two episodes of magmatism between~92-88 Ma and ~80-77 Ma. Each of these complexes provides a window into crustal processes that occur at different depths. Our data suggest assembly of the Black Peak intrusive complex occurred via a series of small (0.5-2 km2) magmatic increments from ~92 Ma to ~87 Ma. Field relations and zircon trace element geochemistry indicate each of these increments were emplaced and crystallized as closed systems-we find no evidence for mixing between magmas in the complex. However, zircon inheritance becomes more common in younger intrusions, indicating assimilation of older plutonic material, possibly during magma production or transport. The Seven-Fingered Jack intrusive complex, emplaced around 15-20 km, preserves a much more discontinuous record of intrusion than the Black Peak. Our data indicate major magmatism in the complex occurred between ~92.1-91.1 Ma. Inheritance in the Seven-Fingered Jack is common, particularly along contacts between intrusions. The Tenpeak intrusive complex, assembled between ~92 Ma and 89 Ma, represents one of the deepest exhumed

  3. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy) (United States)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.


    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  4. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel


    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  5. The inception of a Paleotethyan magmatic arc in Iberia

    Directory of Open Access Journals (Sweden)

    M.F. Pereira


    Full Text Available This paper presents a compilation of recent U-Pb (zircon ages of late Carboniferous–early Permian (LC–EP calc-alkaline batholiths from Iberia, together with a petrogenetic interpretation of magma generation based on comparisons with Mesozoic and Tertiary Cordilleran batholiths and experimental melts. Zircon U-Pb ages distributed over the range ca. 315–280 Ma, indicate a linkage between calc-alkaline magmatism, Iberian orocline generation and Paleotethys subduction. It is also shown that Iberian LC–EP calc-alkaline batholiths present unequivocal subduction-related features comparable with typical Cordilleran batholiths of the Pacific Americas active margin, although geochemical features were partially obscured by local modifications of magmas at the level of emplacement by country rock assimilation. When and how LC–EP calc-alkaline batholiths formed in Iberia is then discussed, and a new and somewhat controversial interpretation for their sources and tectonic setting (plume-assisted relamination is suggested. The batholiths are proposed to have formed during the subduction of the Paleotethys oceanic plate (Pangaea self-subduction and, consequently, they are unrelated to Variscan collision. The origin of the Iberian batholiths is related to the Eurasian active margin and probably represents the inception of a Paleotethyan arc in the core of Pangaea.

  6. Crustal inheritance and arc magmatism: Magnetotelluric constraints from the Washington Cascades on top-down control (United States)

    Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.


    Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc

  7. Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc (United States)

    Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki


    Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.

  8. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V


    -slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic

  9. Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc (United States)

    Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.


    Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

  10. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel; Vezzoli, Luigina; Di Lorenzo, Riccardo; De Rosa, Rosanna; Acocella, Valerio


    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  11. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel


    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  12. Pluton emplacement and magmatic arc construction: A model from the Patagonian batholith (United States)

    Bruce, Robert; Nelson, Eric; Weaver, Stephen


    A model of batholithic construction in Andean arcs and its applicability to possibly similar environments in the past is described. Age and compositional data from the Patagonian batholith of southern Chile show a long history of magmatism in any given area (total age range is 15 to 157 Ma), but different regions appear to have different magmatic starting ages. Furthermore, mafic rocks seem to be the oldest components of any given region. An assembly line model involving semicontinuous magmatism and uplift was outlined, which has implications for other terranes: uplift rates will be proportional to observed ranges in age, and total uplift will be proportional to the age of the oldest pluton in any given area. It is suggested that misleading results would be obtained if only small areas of similar terranes in the Archean were available for study.

  13. Similar and Contrasting Response of Rifting and Transtension in the Gulf of California and Walker Lane to Preceding Arc Magmatism (United States)

    Henry, C. D.; Faulds, J. E.


    The Gulf of California (GC) and Walker Lane (WL) have undergone strikingly similar development with strike- slip faulting following initial extension. They differ significantly in the amount of Pacific-North American plate motion taken up by each: essentially all relative motion in the GC and ~25% in the WL. In both areas, ancestral arc magmatism preceded and probably focused deformation, perhaps because heating and/or hydration weakened the lithosphere. However, differences in migration of the Rivera (RTJ) and Mendocino triple junctions (MTJ) related to differences in the orientation of plate boundaries determined how strike-slip faulting developed. Abrupt southward jumps in the RTJ led to abrupt cessation of magmatism over arc lengths of as much as 1000 km and initiation of east-northeast extension within the future GC. The best known jump was at ~13 Ma, but an earlier jump occurred at ~18 Ma. Arc magmatism has been best documented in Baja California, Sonora, and Nayarit, although Baja constituted the most-trenchward fringe of the ancestral arc. New and published data indicate that Sinaloa underwent a similar history of arc magmatism. The greatest volume of the arc immediately preceding RTJ jumps was probably in mainland Mexico. Arc magmatism shut off following these jumps, extension began in the future GC, and strike-slip faulting either followed or accompanied extension in the GC. In contrast, the MTJ migrated progressively northward. New and published data indicate magmatism generally shut off coincident with this retreat, but distinct nodes or zones of magmatism, presumably unrelated to subduction, persisted or initiated after arc activity ceased. We have suggested that the WL has grown progressively northward, following the retreating arc, and that the northern WL is its youngest part. However, the timing of initiation of strike-slip faulting in most of the WL is poorly known and controversial. Testing our hypothesis requires determining initiation and

  14. Sediment underthrusting within a continental magmatic arc: Coast Mountains batholith, British Columbia (United States)

    Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.


    Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.

  15. Seismic anisotropy from compositional banding in granulites from the deep magmatic arc of Fiordland, New Zealand (United States)

    Cyprych, Daria; Piazolo, Sandra; Almqvist, Bjarne S. G.


    We present calculated seismic velocities and anisotropies of mafic granulites and eclogites from the Cretaceous deep lower crust (∼40-65 km) of Fiordland, New Zealand. Both rock types show a distinct foliation defined by cm-scale compositional banding. Seismic properties are estimated using the Asymptotic Expansion Homogenisation - Finite Element (AEH-FE) method that, unlike the commonly used Voigt-Reuss-Hill homogenisation, incorporates the phase boundary network into calculations. The predicted mean P- and S-wave velocities are consistent with previously published data for similar lithologies from other locations (e.g., Kohistan Arc), although we find higher than expected anisotropies (AVP ∼ 5.0-8.0%, AVS ∼ 3.0-6.5%) and substantial S-wave splitting along foliation planes in granulites. This seismic signature of granulites results from a density and elasticity contrast between cm-scale pyroxene ± garnet stringers and plagioclase matrix rather than from crystallographic orientations alone. Banded eclogites do not show elevated anisotropies as the contrast in density and elastic constants of garnet and pyroxene is too small. The origin of compositional banding in Fiordland granulites is primarily magmatic and structures described here are expected to be typical for the base of present day magmatic arcs. Hence, we identify a new potential source of anisotropy within this geotectonic setting.

  16. Isotopic and chemical evidence for three accretionary magmatic arcs ( 1.79 - 1.42 Ga) in the SW Amazon Craton, Mato Grosso State, Brazil

    International Nuclear Information System (INIS)

    Geraldes, Mauro Cesar; Teixeira, Wilson; Schmus, William Randall van


    Twenty-one U/Pb ages of granitoids in the SW Amazon craton define three crustal accretionary events during the Paleo-and Mesoproterozoic that represent significant portions of the Rio Negro-Juruena Province and the Rondonian/San Ignacio province. Two events refer to the Rio Negro-Juruena province: The Alto Jauru greenstone belt comprises acid volcanics and tonalite to granite gneisses with U/Pb ages from 1790 to 1750 Ma. Sm/Nd isotopic data (e N -d (t) from +2.6 to +2.2 and T DM from 2.0 to 1.80 Ga) indicate a volcanic arc with juvenile signatures for these units. The second event (Cachoeirinha arc) comprises granites to tonalites with U/Pb ages from 1580 to 1530 Ma. Sm/Nd results. (author)

  17. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  18. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change (United States)

    Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos


    Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21–25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5–0.1 kbar crystallization depths of hot (1100–1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision

  19. Magmatic versus tectonic influence in the Eolian arc: the case of Vulcano and Lipari islands revisited (United States)

    Ruch, Joel; Di Lorenzo, Riccardo; Vezzoli, Luigina Maria; De Rosa, Rosanna; Acocella, Valerio; Catalano, Stefano; Romagnoli, Gino


    The prevalent influence of magma versus tectonics for the edification and the evolution of volcanic zones is matter of debate. Here we focus on Vulcano and Lipari, two active volcanic islands located in the central sector of the Eolian arc (North of Sicily). Both systems are influenced by regional tectonics and affected by historical magmatic events taking place along a NS oriented structure, connecting both islands. We revisit and implement previous structural studies performed during the 1980's considering several new geophysical, geochemical and geodynamical findings. Four extensive structural campaigns have been performed on both islands and along the shorelines in 2012-2013 covering about 80% of the possible accessible outcrops. We collected ~500 measurements (e.g. faults, fractures and dikes) at 40 sites. Overall, most of the observed structures are oriented N-S and NNW-SSE, confirming previous studies, however, almost all features are strikingly dominated by an EW-oriented extensive regime, which is a novelty. These findings are supported by kinematic indicators and suggest a predominant dip-slip component (pitch from 80 and 130°) with alternating left and right kinematics. Marginal faulting in most recent formations have been observed, suggesting that the deformation may occur preferentially during transient deformation related to periods of magmatic activity, instead of resulting from continuous regional tectonic processes. Overall, fault and dike planes are characterized by a dominant eastward immersion, suggesting an asymmetric graben-like structure of the entire area. This may be explained by the presence of a topographic gradient connecting both islands to the deep Gioia basin to the East, leading to a preferential ample gravitational collapse. Finally, we propose a model in which the stress field rotates northward. It transits from a pure right lateral strike-slip regime along the Tindari fault zone (tectonic-dominant) to an extensive regime

  20. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism (United States)

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.


    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former

  1. Initial magmatism and evolution of the Izu-Bonin-Mariana Arc (United States)

    Arculus, R. J.


    Expedition 351 of the IODP targeted site U1438 in the Amami Sankaku Basin, northwestern Philippine Sea , 70 km west of the northern Kyushu-Palau Ridge (KPR). The latter formed a chain of stratovolcanoes of the Izu-Bonin-Mariana (IBM) arc, and a remnant arc following migration of the volcanic front eastwards during Shikoku backarc basin formation in the Miocene. Unravelling causes of subduction initiation drove the primary aims of the Expedition involving recovery of igneous basement below the KPR, and a history of the magmatic evolution of the KPR preserved in a clastic record. All these aims were achieved, but with some surprises. Out of 1600m drilled in 4700m water depth, 150m of igneous oceanic crust comprising low-K, tholeiitic basalt lava flows were recovered at U1438. The lavas are variably glassy to microphyric, Cr-spinel-olivine-plagioclase-clinopyroxene-bearing, have high V/Ti, very low absolute rare earth element abundances and low La/Yb, and radiogenic Hf at a given 143/144Nd compared to basalts of mid-ocean ridges. The basement is geochemically and petrologically similar to so-called "forearc basalts" recovered trenchward of the active IBM volcanic front, and of similar or older age (≥52Ma). Highly melt-depleted mantle source(s) were involved and high-temperature, low-pressure dehydration of the subducting Pacific Plate. Compositions of glass (formerly melt) inclusions in clinopyroxene-bearing clasts and sandstones in sediments overlying the basement show a change from medium-Fe (aka "calcalkaline") to low-Fe (tholeiitic) magmas during the Eocene-Oligocene evolution of the KPR. Widespread magmatism along- and across-strike of the nascent IBM system coupled with geologic constraints from the western Philippine Sea, indicate subduction initiation at the IBM arc likely propagated adjacent to Mesozoic-aged arcs/basins to the west of the KPR, following plate reorganization subsequent to the demise of the Izanagi-Pacific Ridge along eastern Asia at 60Ma

  2. Arc magmatism as a window to plate kinematics and subduction polarity: Example from the eastern Pontides belt, NE Turkey

    Directory of Open Access Journals (Sweden)

    Yener Eyuboglu


    Full Text Available The Eastern Pontides orogenic belt in the Black Sea region of Turkey offers a critical window to plate kinematics and subduction polarity during the closure of the Paleotethys. Here we provide a brief synthesis on recent information from this belt. We infer a southward subduction for the origin of the Eastern Pontides orogenic belt and its associated late Mesozoic–Cenozoic magmatism based on clear spatial and temporal variations in Late Cretaceous and Cenozoic arc magmatism, together with the existence of a prominent south-dipping reverse fault system along the entire southern coast of the Black Sea. Our model is at variance with some recent proposals favoring a northward subduction polarity, and illustrates the importance of arc magmatism in evaluating the geodynamic milieu associated with convergent margin processes.

  3. Arachania, A neo proterozoic magmatic arc and its fragments in south America and Africa

    International Nuclear Information System (INIS)

    Gaucher, C.; Bossi, J.; Frimmel, H.


    The name Arachania has been recently proposed for the block that comprises the Cuchilla Dionisio-Pelotas, Marmora, Tygerberg and correlative terranes at both sides of the south Atlantic, which is considered a fragment of the Kalahari Craton that a later stage (660-550 Ma) evolved into an active margin. The block played a key role in the amalgamation of southwestern Gondwana, which has been only recently recognized. Arachania is composed of three different lithotectonic elements: (1) a high-grade metamorphic basement of Namaquan age with evidence of older, Eburnean components that crop out mainly in southern Uruguay; (2) a voluminous calc alkaline granitic batholith s mostly within the 660-550 Ma age range, representing the roots of a Neo proterozoic magmatic arc; and (3) deep-water, turbiditic, Ediacaran sedimentary successions marking the eastern border of Arachania, often associated with mafic to ultramafic rocks

  4. The neoproterozoic Goias magmatic arc, central Brazil: a review and new Sm-Nd isotopic data

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Fuck, Reinhardt Adolfo; Gioia, Simone Maria Costa Lima


    In this study we review the main characteristics and geochronological/isotopic data of metaigneous rocks of the juvenile Neoproterozoic Goias Magmatic Arc in central Brazil. Some new Sm-Nd isotopic data are also presented for both the southern (Arenopolis) and northern (Mara Rosa) sections of the arc. In the south, granitoids of the Choupana-Turvania area yielded a Sm-Nd whole-rock isochron age of 863± 97 Ma and e Nd (T) of +4.1 T D M model ages vary between 0.94 and 1.13 Ga. Metavolcanic rocks in the Pontalina region have a Sm-Nd whole rock isochron age of 762 ± 77 Ma and e Nd (T) of +2.9. T DM values are between 0.96 and 1.10 Ga. In the northern section of the Goias Arc, mylonitic gneisses of the Serra Azul ridge, an important N30E shear zone, were investigated and have a Sm-Nd isochron age of 3058 ± 120 Ma and initial e Nd value of ca.+ 2.1. This data suggests that the Serra Azul ridge might represent either a mylonitized fragment of the Archaen terranes exposed just to the south, or the sialic basement of the Araguaia Belt supracrustal, along the eastern margin of the Amazon Craton. The geochronological data available so far indicate a long history of arc formation and amalgamation on the western margin of the Sao Francisco-Congo continent during the Neoproterozoic. The history of convergence of continental masses is partially coeval with the fragmentation of Rodinia, indicating that the western margin (present geographic reference) of that continent occupied a peripheral setting in the Rodinia super continent. (author)

  5. The neoproterozoic Goias magmatic arc, central Brazil: a review and new Sm-Nd isotopic data

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio Martins; Fuck, Reinhardt Adolfo; Gioia, Simone Maria Costa Lima [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail:


    In this study we review the main characteristics and geochronological/isotopic data of metaigneous rocks of the juvenile Neoproterozoic Goias Magmatic Arc in central Brazil. Some new Sm-Nd isotopic data are also presented for both the southern (Arenopolis) and northern (Mara Rosa) sections of the arc. In the south, granitoids of the Choupana-Turvania area yielded a Sm-Nd whole-rock isochron age of 863{+-} 97 Ma and e{sub Nd} (T) of +4.1 T{sub D}M model ages vary between 0.94 and 1.13 Ga. Metavolcanic rocks in the Pontalina region have a Sm-Nd whole rock isochron age of 762 {+-} 77 Ma and e{sub Nd} (T) of +2.9. T {sub DM} values are between 0.96 and 1.10 Ga. In the northern section of the Goias Arc, mylonitic gneisses of the Serra Azul ridge, an important N30E shear zone, were investigated and have a Sm-Nd isochron age of 3058 {+-} 120 Ma and initial e{sub Nd} value of ca.+ 2.1. This data suggests that the Serra Azul ridge might represent either a mylonitized fragment of the Archaen terranes exposed just to the south, or the sialic basement of the Araguaia Belt supracrustal, along the eastern margin of the Amazon Craton. The geochronological data available so far indicate a long history of arc formation and amalgamation on the western margin of the Sao Francisco-Congo continent during the Neoproterozoic. The history of convergence of continental masses is partially coeval with the fragmentation of Rodinia, indicating that the western margin (present geographic reference) of that continent occupied a peripheral setting in the Rodinia super continent. (author)

  6. O formato da educação especial na cidade de Cachoeirinha/RS


    Balbinot, Alexandre Dido


    This study aimed to evaluate the profile of the students from special education in Cachoeirinha/RS. Method: Escological study using secondary datas. Results: Of the enrollment of primary education Cachoeirinha 2,30% referred to the special education, all allocated to common regular education classes. Final considerations: The datas shows the current profile of students served in special education in Cachoeirinha and the evolution consistently forward to what is advocated by law, even though t...

  7. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc (United States)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang


    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  8. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter


    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  9. Zircon U-Pb and Hf isotopic constraints on the magmatic evolution of the Northern Luzon Arc

    Directory of Open Access Journals (Sweden)

    Yu-Ming Lai


    Full Text Available The complete volcanic sequences restored in the Coastal Range of Taiwan are key archives for better understanding the magmatic and tectonic evolution of the Northern Luzon Arc. This paper reports (1 new zircon U-Pb ages and Hf isotopic data of fourteen volcanic samples from different sequences of four major volcanoes in the Coastal Range, (2 Hf isotopic data of dated magmatic and detrital zircons from two offshore volcanic islands, Lutao and Lanyu. These data indicate that the arc magmatism in the Coastal Range started at ~15 Ma, most active at ~9 Ma, and ceased at ~4.2 Ma. Magmatic zircons from the arc rocks show a significant variation in Hf isotopic composition, with εHf(T values varying from +24.9 to +4.8. As pointed out by our previous studies, old continental zircons that show Cathaysian-type ages and Hf isotope features are common in samples from the Yuemei, Chimei, and Lanyu volcanoes, supporting the notion for the influence of the existence of an accreted micro-continent or continental fragment plays a role in the petrogenesis. Such inherited zircons are not observed in the Chengkuang’ao and Tuluanshan volcanoes and uncommon in Lutao, implying the discontinuity or a limited extent of the accreted continental fragment. The εHf(T values are high and positive from ~15 - 8 Ma (+25 to +15; ±5ε-unit variation, and became lower from ~6 to 4.2 Ma (+20 to +8; ±6ε units and the lowest from ~1.3 Ma (+19 to +5; ±7ε units. Such a temporal variation in zircon Hf isotopic ratios can be also identified in whole-rock Hf and Nd isotopic compositions, which decrease from ~6 Ma when the Northern Luzon Arc may have started colliding with the Eurasian continental margin.

  10. Natural tracers for identifying the origin of the thermal fluids emerging along the Aegean Volcanic arc (Greece): Evidence of Arc-Type Magmatic Water (ATMW) participation (United States)

    Dotsika, E.; Poutoukis, D.; Michelot, J. L.; Raco, B.


    The Aegean volcanic arc is the result of a lithosphere subduction process during the Quaternary time. Starting from the Soussaki area, from west to east, the arc proceeds through the islands of Egina, Methana, Milos, Santorini, the Columbus Bank, Kos and Nisyros. Volcano-tectonic activities are still pronounced at Santorini and Nisyros in form of seismic activity, craters of hydrothermal explosions, hot fumaroles and thermal springs. A significant number of cold water springs emerge in the vicinity of hot waters on these islands. Chemical and isotopic analyses were applied on water and fumaroles samples collected in different areas of the volcanic arc in order to attempt the assessment of these fluids. Stable isotopes of water and carbon have been used to evaluate the origin of cold and thermal water and CO 2. Chemical solute concentrations and isotopic contents of waters show that the fluids emerging in Egina, Soussaki, Methana and Kos areas represent geothermal systems in their waning stage, while the fluids from Milos, Santorini and Nisyros proceed from active geothermal systems. The δ 2H-δ 18O-Cl - relationships suggest that the parent hydrothermal liquids of Nisyros and Milos are produced through mixing of seawater and Arc-Type Magmatic Water (ATMW), with negligible to nil contribution of local ground waters and with very high participation of the magmatic component, which is close to 70% in both sites. A very high magmatic contribution to the deep geothermal system could occur at Santorini as well, perhaps with a percentage similar to Nisyros and Milos, but it cannot be calculated because of steam condensation heavily affecting the fumarolic fluids of Nea Kameni before the surface discharge. The parent hydrothermal liquid at Methana originates through mixing of local groundwaters, seawater and ATMW, with a magmatic participation close to 19%. All in all, the contribution of ATMW is higher in the central-eastern part of the Aegean volcanic arc than in the

  11. Evolution of the Late Cretaceous-Paleogene Cordilleran arc magmatism in NW Mexico: a review from updated geochronological studies. (United States)

    Valencia-Moreno, M.; Iriondo, A.; Perez-Segura, E.; Noguez-Alcantara, B.


    During most of the Mesozoic and Cenozoic, the locus of subduction related arc magmatism in northwestern Mexico was relatively mobile, probably due to changes in the mechanical conditions of the Farallon-North America plate convergence. The older Mesozoic events recognized in this region occurred in the Late Triassic and Jurassic, but the associated rocks are poorly preserved. However, a belt of Late Cretaceous through Paleogene magmatic rocks is well exposed along Baja California, Sonora and Sinaloa. Since the late 70's, it was noted that during the Early Cretaceous the igneous activity along this belt remained relatively static in the westernmost part, but migrated eastward in the Late Cretaceous, penetrating more than 1000 km into the continent. The arc magmatism reached western Sonora at about 90 Ma, and then it started to move faster inland, presumably due to flattening of the subducted oceanic slab. Recent U-Pb zircon data revealed unexpected old ages (89-95 Ma) near the eastern edge of Sonora, which are difficult to explain on the basis of the classic tectonic interpretations. A model based on two synchronic sites for magma emplacement may explain the age overlapping observed along the belt; however, a profound re-evaluation a proper geodynamic scenario to support this model is required. Even if restoration of the large Neogene crustal extension is made, particularly for central and northern Sonora, the relatively flat-subduction regime commonly accepted for the Laramide event appears unable to explain the anomalously broad expression of the magmatic belt in northwestern Mexico. An alternative model based on two synchronic sites of magma emplacement, as suggested by the new age data, may better explain the large volume of igneous rocks produced during this time in Sonora and most of Chihuahua. This mechanism may differ southwards in Sinaloa, where the magmatic belt becomes considerably narrower. Moreover, the possible existence of two spatially distinct sites

  12. Transfer of Metasupracrustal Rocks to Midcrustal Depths in the North Cascades Continental Magmatic Arc, Skagit Gneiss Complex, Washington (United States)

    Sauer, K. B.; Gordon, S. M.; Miller, R. B.; Vervoort, J. D.; Fisher, C. M.


    The metasupracrustal units within the north central Chelan block of the North Cascades Range, Washington, are investigated to determine mechanisms and timescales of supracrustal rock incorporation into the deep crust of continental magmatic arcs. Zircon U-Pb and Hf-isotope analyses were used to characterize the protoliths of metasedimentary and metaigneous rocks from the Skagit Gneiss Complex, metasupracrustal rocks from the Cascade River Schist, and metavolcanic rocks from the Napeequa Schist. Skagit Gneiss Complex metasedimentary rocks have (1) a wide range of zircon U-Pb dates from Proterozoic to latest Cretaceous and (2) a more limited range of dates, from Late Triassic to latest Cretaceous, and a lack of Proterozoic dates. Two samples from the Cascade River Schist are characterized by Late Cretaceous protoliths. Amphibolites from the Napeequa Schist have Late Triassic protoliths. Similarities between the Skagit Gneiss metasediments and accretionary wedge and forearc sediments in northwestern Washington and Southern California indicate that the protolith for these units was likely deposited in a forearc basin and/or accretionary wedge in the Early to Late Cretaceous (circa 134-79 Ma). Sediment was likely underthrust into the active arc by circa 74-65 Ma, as soon as 7 Ma after deposition, and intruded by voluminous magmas. The incorporation of metasupracrustal units aligns with the timing of major arc magmatism in the North Cascades (circa 79-60 Ma) and may indicate a link between the burial of sediments and pluton emplacement.

  13. Discovery of a Triassic magmatic arc source for the Permo-Triassic Karakaya subduction complex, NW Turkey (United States)

    Ayda Ustaömer, Petek; Ustaömer, Timur; Gerdes, Axel; Robertson, Alastair H. F.; Zulauf, Gernold


    The Permo-Triassic Karakaya Complex is well explained by northward subduction of Palaeotethys but until now no corresponding magmatic arc has been identified in the region. With the aim of determining the compositions and ages of the source units, ten sandstone samples were collected from the mappably distinct Ortaoba, Hodul, Kendirli and Orhanlar Units. Zircon grains were extracted from these sandstones and >1300 were dated by the U-Pb method and subsequently analysed for the Lu-Hf isotopic compositions by LA-MC-ICPMS at Goethe University, Frankfurt. The U-Pb-Hf isotope systematics are indicative of two different sediment provenances. The first, represented by the Ortaoba, Hodul and Kendirli Units, is dominated by igneous rocks of Triassic (250-220 Ma), Early Carboniferous-Early Permian (290-340 Ma) and Early to Mid-Devonian (385-400 Ma) ages. The second provenance, represented by the Orhanlar Unit, is indicative of derivation from a peri-Gondwanan terrane. In case of the first provenance, the Devonian and Carboniferous source rocks exibit intermediate eHf(t) values (-11 to -3), consistent with the formation at a continental margin where juvenile mantle-derived magmas mixed with (recycled) old crust having Palaeoproterozoic Hf model ages. In contrast, the Triassic arc magma exhibits higher eHf(t) values (-6 to +6), consistent with the mixing of juvenile mantle-derived melts with (recycled) old crust perhaps somewhat rejuvanated during the Cadomian period. We have therefore identified a Triassic magmatic arc as predicted by the interpretation of the Karakaya Complex as an accretionary complex related to northward subduction (Carboniferous and Devonian granites are already well documented in NW Turkey). Possible explanations for the lack of any outcrop of the source magmatic arc are that it was later subducted or the Karakaya Complex was displaced laterally from its source arc (both post 220 Ma). Strike-slip displacement (driven by oblique subduction?) can also

  14. The belt of metagabbros of La Pampa: Lower Paleozoic back-arc magmatism in south-central Argentina (United States)

    Chernicoff, Carlos J.; Zappettini, Eduardo O.; Villar, Luisa M.; Chemale, Farid, Jr.; Hernández, Laura


    Combined geological, geochronological, geochemical and geophysical studies have led to identification of a large (˜300 km long, ˜5 km wide) N-S trending belt of metagabbros in the province of La Pampa, south-central Argentina. This belt, though only poorly exposed in the localities of Valle Daza and Sierra de Lonco Vaca, stands out in the geophysical data (aeromagnetics and gravity). Modeling of the aeromagnetic data permits estimation of the geometry of the belt of metagabbros and surrounding rocks. The main rock type exposed is metagabbros with relict magmatic nucleii where layering is preserved. A counterclockwise P-T evolution affected these rocks, i.e., during the Middle Ordovician the protolith reached an initial granulite facies of metamorphism (M1), evolving to amphibolite facies (M2). During the Upper Devonian, a retrograde, greenschist facies metamorphism (M3) partially affected the metagabbros. The whole-rock Sm-Nd data suggest a juvenile source from a depleted mantle, with model ages ranging from 552 to 574 Ma, and positive Epsilon values of 6.51-6.82. A crystallization age of 480 Ma is based on geological considerations, i.e. geochronological data of the host rocks as well as comparisons with the Las Aguilas mafic-ultramafic belt of Sierra de San Luis (central Argentina). The geochemical studies indicate an enriched MORB and back-arc signature. The La Pampa metagabbros are interpreted to be originated as a result of the extension that took place in a back-arc setting coevally with the Famatinian magmatic arc (very poorly exposed in the western part of the study area). The extensional event was 'aborted' by the collision of the Cuyania terrane with Pampia-Gondwana in the Middle Ordovician, causing deformation and metamorphism throughout the arc-back-arc region. The similarities between the La Pampa metagabbros and the mafic-ultramafic Las Aguilas belt of the Sierra de San Luis are very conspicuous, for example, the age (Lower Paleozoic), geochemical

  15. Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc (United States)

    Haberland, Christian; Rietbrock, Andreas


    High-quality data from 1498 local earthquakes recorded by the PISCO '94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) and ANCORP '96 (Andean Continental Research Project, 1996) temporary seismological networks allowed the detailed determination of the three-dimensional (3-D) attenuation structure (Qp-1) beneath the recent magmatic arc in the western central Andes (20° to 24°S). Assuming a frequency-independent Qp-1 in a frequency band between 1 and 30 Hz, whole path attenuation (t*) was estimated from the amplitude spectra of the P waves using spectral ratios and a spectral inversion technique. The damped least squares inversion (tomography) of the data reveals a complex attenuation structure. Crust and mantle of the forearc and subducting slab are generally characterized by low attenuation (Qp > 1000). Crust and mantle beneath the magmatic arc show elevated attenuation. The strongest anomaly of extremely low Qp is found in the crust between 22° and 23°S beneath the recent volcanic arc (Qp < 100). N-S variations can be observed: The western flank of the crustal attenuation anomaly follows the curved course of the volcanic front. North of 21°S the attenuation is less developed. In the northern part of the study area the low-Qp zone penetrates in the forearc mantle down to the subducting slab. In the south a deeper zone of high attenuation is resolved between 23° and 24°S directly above the subducting slab. Low Qp in the mantle correlates with earthquake clusters. The strong crustal attenuation is confined to the distribution of young ignimbrites and silicic volcanism and is interpreted as a thermally weakened zone with partial melts. The attenuation pattern in the upper mantle might reflect the variable extent of the asthenosphere and maps variations of subduction-related hydration processes in the mantle wedge from slab-derived fluids.

  16. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc

    DEFF Research Database (Denmark)

    Bailey, John C; Jensen, E.S.; Hansen, A.


    magma formation beneath North Santorini throughout its 500 ka history is attributed to variable transfer of sedimentary components - either terrigenous or pelagic, as bulk sediments or high-temperature partial melts rather than fluids or low-temperature partial melts - from a rupture zone...... in the subducted slab to the overlying mantle. The three main magmatic series followed independent paths of assimilation of upper crustal materials during fractional crystallization. Assimilation was more pronounced at the basaltic stage. The long-lived histories of the three main magmatic series imply repetitive...... melting of isolated mantle regions, ascent of magmas through independent feeder systems, and their residence in separate crustal magma chambers....

  17. Les granitoïdes néoprotérozoïques de Khzama, Anti-Atlas central, Maroc: marqueurs de l'évolution d'un magmatisme d'arc à un magmatisme alcalineNeoproterozoic granitoids from Khzama, central Anti-Atlas, Morocco: evolution markers from arc magmatism to alkaline magmatism (United States)

    El-Khanchaoui, T.; Lahmam, M.; El-Boukhari, A.; El-Beraaouz, H.


    Petrological study and zircon typology provide important information that is related to the classification and genesis of Neoproterozoic granitoids in the Khzama area (northeast Siroua). The Pan-African granitoids show a transition from island-arc magmatism to alkaline magmatism. A space and time zonation of magmatism from the north to the south is evident. Early Pan-African granitoids were generated from various magma sources through different petrogenetic mechanisms. The first association corresponds to the low-K calc-alkaline plutons of Ait Nebdas, the second one correponds to high-K calc-alkaline post-collisional granites (Tamassirte-Tiferatine and Ifouachguel). Finally, shoshonitic magmatism (Irhiri) ends the magmatic evolution of the region. Thus, the late Pan-African granitic plutonism began with calc-alkaline associations and ended with K-alkaline magmatism in a transtensional setting, heralding the onset of the Moroccan Palæozoic cycle.

  18. Izu-Bonin rear-arc magmatism: Geochemical investigation of volcanoclastic material


    Sæbø, Andreas


    Studied samples from the Izu Bonin rear arc show a distinct geochemical pattern that resemble the modern continental crust. In contrast to the volcanic front, samples from the Izu Bonin rear arc show enrichment of LREE (La, Ce, Pr, Nd) and higher K2O at a given SiO2. This suggest that processes leading up to the geochemistry observed in the rear arc is fundamental in creating the modern continental crust. Additional isotopic and trace element analysis from volcanic material rec...

  19. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan (United States)

    Kersting; Arculus; Gust


    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.

  20. Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments (United States)

    Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu


    The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and

  1. The Alto Ribeira magmatic arc (Parana State-Southern Brazil): Geochemical and isotopic evidence of magmatic focus migration and its tectonic implications

    International Nuclear Information System (INIS)

    Prazeres Fihlo, H.J.; Baei, M.A.S.; Harara, O.M.M.; Passarelli, C.R.; Siga Jr, O; Reis Neto, J.M; Sato, K


    The present location of the geological units which comprise the Precambrian of the south-southeastern part of the Ribeira fold belt in Parana State, Brazil, is the result of a series of superposed tectono-metamorphic events. During this evolution, and especially at the end of the Neoproterozoic, between 640 and 550 Ma, an important crustal accretion event within the Brasiliano Megacycle was responsible for the generation of the Alto Ribeira magmatic arc (ARMA). This arc is now represented by a large volume of granitic rocks amongst which the Cunhaporanga (CPB) and Tres Corregos (TCB) granitic batholiths stand out. The SSE part of the Ribeira belt forms an long, NE strip with a mainly NE trend, formed by deformed middle to upper crustal rocks, metamorphosed in greenschist to amphibolite facies (Basei; Fiori, 1993; Hackspacher 1997; Campanha and Sadowski 1999). These rocks are intruded by the Neoproterozoic CPB, TCB and the Agudos Grandes batholith, and many granite stocks. The CPB and TCB are elongated bodies with NE-SW major axes which occur north and south, respectively, of the Itaiacoca metavolcano-sedimentary sequence. Together, they occupy about 6,500 km 2 . The southeastern contact between the CPB and the Itaiacoca country rocks is intrusive, while the northwestern contact of the BCT with this group is tectonic, represented by the Itapirapua shear zone. Its contact with rocks of the Agua Clara Formation of the Acungui Group is intrusive. The mineral assemblages in the rocks of the two main batholiths are typically calc-alkaline. The CPB is more homogeneous, being mainly composed of porphyritic to inequigranular, isotropic monzogranite which are accompanied by rare granodiorite. The TCB is more heterogeneous, and includes undeformed or deformed quartz monzonite, granodiorite and monzogranite, as well as rare tonalite and syenogranite. The rocks of the CPB (with 65 - 73% SiO 2 ) and the TCB (60-76% SiO 2 ) are meta- to weakly per-aluminous in

  2. Crustal rifting and magmatic underplating in the Izu-Ogasawara (Bonin) intra-oceanic arc detected by active source seismic studies (United States)

    Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.


    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu

  3. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America

    Directory of Open Access Journals (Sweden)

    Benjamim Bley de Brito Neves

    Full Text Available ABSTRACT: Magmatic arcs are an essential part of crust-forming events in planet Earth evolution. The aim of this work was to describe an early Ediacaran magmatic arc (ca. 635-580 Ma exposed in the northernmost portion of the Transversal Zone, central subprovince of Borborema Province, northeast Brazil. Our research took advantage of several syntheses by different authors, including theses and dissertations, carried out on magmatic rocks of the study area for the last 30 years. The ca. 750 km long and up to 140 km wide arc, trending ENE-WSW, is preserved to the south of the Patos Lineament, between 35º15' and 42º30'W and 7º15' and 8ºS. About 90 different stocks and batholiths of I-type granitic rocks were mapped along this orogenic zone, preferentially intruding low-grade schists of the Cryogenian-Ediacaran Piancó-Alto Brígida (SPAB belt. Three igneous supersuites are recognized: a epidote-bearing granodiorites and tonalites ("Conceição" type; b high-K calc-alkaline granites ("Itaporanga" type; c biotite granodiorites of trondhjemite affinity ("Serrita" type. A fourth group of peralkalic and shoshonitic rocks occurs to the south of the previous ones, reflecting special tectonic conditions. NNE-SSW trending Paleoproterozoic fold belts, surrounding Archean nuclei, characterize the continental part of the northern lower plate. The oceanic fraction of this lower plate was recycled by subduction and scarce remnants of which may be seen either within the enclosing low-grade schists or as xenoliths within the arc intrusions. The upper continental plate presents WSW-ENE structural trends and is composed of Neoproterozoic fold belts and Paleoproterozoic reworked basement inliers. Available data bear clear evidence of an Ediacaran magmatic arc built at the northern portion of the Transversal Zone in the Borborema Province, northeast Brazil.

  4. The mantle source of island arc magmatism during early subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc, Pakistan) (United States)

    Ewing, Tanya A.; Müntener, Othmar


    The Cretaceous-Paleogene Kohistan arc complex, northern Pakistan, is renowned as one of the most complete sections through a preserved paleo-island arc. The Jijal Complex represents a fragment of the plutonic roots of the Kohistan arc, formed during its early intraoceanic history. We present the first Hf isotope determinations for the Jijal Complex, made on rutile from garnet gabbros. These lithologies are zircon-free, but contain rutile that formed as an early phase. Recent developments in analytical capabilities coupled with a careful analytical and data reduction protocol allow the accurate determination of Hf isotope composition for rutile with <30 ppm Hf for the first time. Rutile from the analysed samples contains 5-35 ppm Hf, with sample averages of 13-17 ppm. Rutile from five samples from the Jijal Complex mafic section, sampling 2 km of former crustal thickness, gave indistinguishable Hf isotope compositions with εHf(i) ranging from 11.4 ± 3.2 to 20.1 ± 5.7. These values are within error of or only slightly more enriched than modern depleted mantle. The analysed samples record variable degrees of interaction with late-stage melt segregations, which produced symplectitic overprints on the main mineral assemblage as well as pegmatitic segregations of hydrous minerals. The indistinguishable εHf(i) across this range of lithologies demonstrates the robust preservation of the Hf isotope composition of rutile. The Hf isotope data, combined with previously published Nd isotope data for the Jijal Complex garnet gabbros, favour derivation from an inherently enriched, Indian Ocean type mantle. This implies a smaller contribution from subducted sediments than if the source was a normal (Pacific-type) depleted mantle. The Jijal Complex thus had only a limited recycled continental crustal component in its source, and represents a largely juvenile addition of new continental crust during the early phases of intraoceanic magmatism. The ability to determine the Hf

  5. Evolution of the East Philippine Arc: experimental constraints on magmatic phase relations and adakitic melt formation (United States)

    Coldwell, B.; Adam, J.; Rushmer, T.; MacPherson, C. G.


    Piston-cylinder experiments on a Pleistocene adakite from Mindanao in the Philippines have been used to establish near-liquidus and sub-liquidus phase relationships relevant to conditions in the East Philippines subduction zone. The experimental starting material belongs to a consanguineous suite of adakitic andesites. Experiments were conducted at pressures from 0.5 to 2 GPa and temperatures from 950 to 1,150°C. With 5 wt. % of dissolved H2O in the starting mix, garnet, clinopyroxene and orthopyroxene are liquidus phases at pressures above 1.5 GPa, whereas clinopyroxene and orthopyroxene are liquidus (or near-liquidus) phases at pressures 1.5 GPa) and subsequently involved the lower pressure fractionation of amphibole, plagioclase and subordinate clinopyroxene. Thus, the distinctive Y and HREE depletions of the andesitic adakites (which distinguish them from associated non-adakitic andesites) must be established relatively early in the fractionation process. Our experiments show that this early fractionation must have occurred at pressures >1.5 GPa and, thus, deeper than the Mindanao Moho. Published thermal models of the Philippine Sea Plate preclude a direct origin by melting of the subducting ocean crust. Thus, our results favour a model whereby basaltic arc melt underwent high-pressure crystal fractionation while stalled beneath immature arc lithosphere. This produced residual magma of adakitic character which underwent further fractionation at relatively low (i.e. crustal) pressures before being erupted.

  6. Petrogenesis and U-Pb and Sm-Nd geochronology of the Taquaral granite: record of an orosirian continental magmatic arc in the region of Corumba - MS

    Directory of Open Access Journals (Sweden)

    Letícia Alexandre Redes

    Full Text Available The Taquaral Granite is located on southern Amazon Craton in the region of Corumbá, westernmost part of the Brazilian state of Mato Grosso do Sul (MS, near Brazil-Bolivia frontier. This intrusion of batholitic dimensions is partially covered by sedimentary rocks of the Urucum, Tamengo Bocaina and Pantanal formations and Alluvial Deposits. The rock types are classified as quartz-monzodiorites, granodiorites, quartz-monzonites, monzo and syenogranites. There are two groups of enclaves genetically and compositionally different: one corresponds to mafic xenoliths and the second is identified as felsic microgranular enclave. Two deformation phases are observed: one ductile (F1 and the other brittle (F2. Geochemical data indicate intermediate to acidic composition for these rocks and a medium to high-K, metaluminous to peraluminous calk-alkaline magmatism, suggesting also their emplacement into magmatic arc settings. SHRIMP zircon U-Pb geochronological data of these granites reveals a crystallization age of 1861 ± 5.3 Ma. Whole rock Sm-Nd analyses provided εNd(1,86 Ga values of -1.48 and -1.28 and TDM model ages of 2.32 and 2.25 Ga, likely indicating a Ryacian crustal source. Here we conclude that Taquaral Granite represents a magmatic episode generated at the end of the Orosirian, as a part of the Amoguija Magmatic Arc.

  7. Late Cambrian magmatic arc activity in peri-Gondwana: geochemical evidence from the Basal Allochthonous Units of NW Iberia

    Energy Technology Data Exchange (ETDEWEB)

    Andonaegui, P.; Abati, J.; Díez-Fernández, R.


    The North African section of the Gondwana margin was the site of voluminous, arc-related magmatism during the Late Neoproterozoic (Avalonian–Cadomian orogen). The lower (and older) metasedimentary sequence that constitutes the Basal Units of the Allochthonous Complexes of NW Iberia was deposited in that setting. In these units, sedimentation was followed by the intrusion of tonalites and granodiorites in the late Cambrian (ca. 493–489Ma). In the Late Paleozoic, the collision of Gondwana and Laurussia (Variscan orogeny) deformed and metamorphosed the whole ensemble. New whole rock geochemical analysis performed in seven samples of metatonalites and fourteen samples of metagranodiorites are characterized by: i) slight enrichment in incompatible elements (Rb, Ba, Th, U), ii) negative anomalies in Nb, Ta, P, and Ti, and iii) negative anomalies in Eu. These chemical features are in agreement with a subduction-related setting for the genesis of both types of magma, which is also supported by chemical discrimination using tectonic setting diagrams. Positive anomalies of Pb suggest a crustal component. The new geochemical data reveal that the convergent orogen that ruled the paleogeography of the Gondwana periphery during the Neoproterozoic (Cadomian orogen) remained active bey.

  8. Crustal contributions to arc magmatism in the Andes of Central Chile (United States)

    Hildreth, W.; Moorbath, S.


    Fifteen andesite-dacite stratovolcanoes on the volcanic front of a single segment of the Andean arc show along-arc changes in isotopic and elemental ratios that demonstrate large crustal contributions to magma genesis. All 15 centers lie 90 km above the Benioff zone and 280??20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and seafloor are nearly constant along the segment. Nonetheless, from S to N along the volcanic front (at 57.5% SiO2) K2O rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Ce from 25 to 50 ppm, whereas FeO*/MgO declines from >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part reflecting suppression of HREE enrichment by deep-crustal garnet. Rb, Cs, Th, and U contents all rise markedly from S to N, but Rb/Cs values double northward - opposite to prediction were the regional alkali enrichment controlled by sediment subduction. K/Rb drops steeply and scatters greatly within many (biotite-free) andesitic suites. Wide diversity in Zr/Hf, Zr/Rb, Ba/Ta, and Ba/La within and among neighboring suites (which lack zircon and alkali feldspar) largely reflects local variability of intracrustal (not slab or mantle) contributions. Pb-isotope data define a limited range that straddles the Stacey-Kramers line, is bracketed by values of local basement rocks, in part plots above the field of Nazca plate sediment, and shows no indication of a steep (mantle+sedimentary) Pb mixing trend. 87Sr/86Sr values rise northward from 0.7036 to 0.7057, and 143Nd/144Nd values drop from 0.5129 to 0.5125. A northward climb in basal elevation of volcanic-front edifices from 1350 m to 4500 m elevation coincides with a Bougueranomaly gradient from -95 to -295 mgal, interpreted to indicate thickening of the crust from 30-35 km to 50-60 km. Complementary to the thickening crust, the mantle wedge beneath the front thins northward from about 60 km to 30-40 km (as slab depth is constant). The thick northern crust contains

  9. On the time-scales of magmatism at island-arc volcanoes. (United States)

    Turner, S P


    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.

  10. Recording the transition from flare-up to steady-state arc magmatism at the Purico-Chascon volcanic complex, northern Chile (United States)

    Burns, Dale H.; de Silva, Shanaka L.; Tepley, Frank; Schmitt, Axel K.; Loewen, Matthew W.


    The long-term evolution of continental magmatic arcs is episodic, where a few transient events of high magmatic flux or flare-ups punctuate the low-flux magmatism or "steady state" that makes up most of the arc history. How this duality manifests in terms of differences in crustal architecture, magma dynamics and chemistry, and the time scale over which transitions occur is poorly known. Herein we use multiscale geochemical and isotopic characteristics coupled with geothermobarometry at the Purico-Chascon Volcanic Complex (PCVC) in the Central Andes to identify a transition from flare-up to steady state arc magmatism over ∼800 kyr during which significant changes in upper crustal magmatic dynamics are recorded. The PCVC is one of the youngest volcanic centers related to a 10-1 Ma ignimbrite flare-up in the Altiplano-Puna Volcanic Complex of the Central Andes. Activity at the PCVC initiated 0.98 ± 0.03 Ma with the eruption of a large 80-100 km3 crystal-rich dacite ignimbrite. High, restricted 87Sr/86Sr isotope ratios between 0.7085 and 0.7090 in the bulk rock and plagioclase crystals from the Purico ignimbrite, combined with mineral chemistry and phase relationships indicate the dacite magma accumulated and evolved at relatively low temperatures around 800-850 °C in the upper crust at 4-8 km depth. Minor andesite pumice erupted late in the ignimbrite sequence records a second higher temperature (965 °C), higher pressure environment (17-20 km), but with similar restricted radiogenic bulk rock 87Sr/86Sr = 0.7089-0.7091 to the dacites. The compositional and isotopic characteristics of the Purico ignimbrite implicate an extensive zone of upper crustal mixing, assimilation, storage and homogenization (MASH) between ∼30 and 4 km beneath the PCVC ∼1 Ma. The final eruptions at the PCVC engine". High magmatic fluxes during the flare-up would lead to elevated geothermal gradients and efficient crustal processing leading to a dominantly "crustal" magmatism feeding the

  11. Magmatic dyke swarms of the south shetland islands volcanic arc, west-antarctica - tracers of geodynamic history (United States)

    Kraus, St.; Miller, H.


    Magmatic dykes are essential components of volcanic arcs, following joint systems and fracture zones. This work aims to reconstruct the deformational and intrusive history of the northern part of the Antarctic Peninsula by combining structural information with the geochemistry, isotopy and age of the dykes. On the South Shetland Islands volcanic activity began about 130 Ma ago. From Mid to Late Eocene (49-34 Ma) the northern Antarctic Peninsula and southern South America underwent extensional tectonics, which led to sea-floor spreading in the Drake Passage 28 Ma ago. Subsequent slab-rollback caused arc-extension and the opening of the Bransfield Rift as a backarc-basin between 4 and 1.3 Ma ago. Very slow subduction (1mm/a) at the South Shetland trench continues until the present day. Several changes of subduction direction caused crucial variations regarding the tectonic regime in the overlying South Shetland block, being the reason for the shifting strike of the dykes. Several dyke systems were mapped in areas of up to 100000m2, with the outcrop situation being good enough to observe plenty of relative age relationships. ICP-MS geochemical analysis on 132 dykes shows, as expected, that the majority of them correspond to a typical subduction-related calcalcalic suite, ranging from basalts to rhyolites. Nevertheless, some dykes show shoshonitic characteristics and are maybe related to an early stage extensional crustal regime. This is supported by the relative ages observed in the field, indicating, that these dykes belong to the oldest ones outcropping in the investigated area. In one case, the geochemical behaviour of the dyke corresponds clearly to adacitic conditions, being a hint on partially molten subducted oceanic crust. In several areas (e.g. Potter Peninsula, King George Island, and Hurd Peninsula, Livingston Island) a strong correlation between chemism and strike of the dykes - and therefore the tectonic regime at the time of intrusion - is observed. Ce

  12. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin


    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas

  13. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India (United States)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.


    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  14. The evolution of the magmatic arc of Southern Peru (200-60 Ma), Arequipa area: insight from geochemical modeling (United States)

    Demouy, S.; Benoit, M.; De Saint Blanquat, M.; Brunet, P.


    Cordilleran-type batholiths are built by prolonged arc activity along continental margins and may provide detailed magmatic records of the subduction system evolution. The magmas produced in subduction context involve both mantellic and crustal end members and are subject to various petrological processes. The MASH zones (Hildreth and Moorbath, 1988), at the basis of the continental crust, are the best places for the genesis of such hybrid magmas. The various geochemical signatures observed in the plutonic rocks, may also be attributed to source heterogeneities or generated by subsequent petrological processes. This study has focused in the Arequipa section of the Coastal Batholith of Southern Peru (200-60 Ma), in an area extending over 80x40 km. Major and trace elements as well as Sr and Nd isotopic analyses were performed in a set of 100 samples ranging from gabbro to granite. The obtained data highlight the wide heterogeneity of the geochemical signatures that is not related to the classification of the rocks. In first step, Rb/Sr systematic was used to isolate a set of samples plotting along a Paleocene isochron and defining a cogenetic suite. This suite appears to have evolved by simple fractional crystallization. By using reverse modeling, the parameters controlling the fractional crystallization process were defined, as partition coefficients, initial concentrations and amount of fractional crystallization. The other magmatic suites display a wide range of isotopic and geochemical signatures. To explain this heterogeneity, a model involving competition between fractional crystallization and magma mixing into MASH zones was proposed. A large range of hybrid magma types is potentially generated during the maturation of the system, but this range tends to disappear as fractionation and mixing occurs. Finally the model predicts the genesis of a homogeneous reservoir created at depth, from which magmas may evolve only by fractional crystallization. Therefore

  15. A possible connection between post-subduction arc magmatism and adakite-NEB rock association in Baja California, Mexico (United States)

    Castillo, P. R.


    Late Miocene to Recent arc-related magmatism occurs in Baja California, Mexico despite the cessation of plate subduction along its western margin at ~12.5 Ma. It includes calcalkaline and K-rich andesites, tholeiitic basalts and basaltic andesites, alkalic basalts similar to many ocean island basalts (OIB), magnesian and basaltic andesites with adakitic affinity (bajaiites), adakites, and Nb-enriched basalts (NEB). A popular model for the close spatial and temporal association of adakite (plus bajaiite) and NEB in Baja California is these are due to melting of the subducted Farallon/Cocos plate, which in turn is caused by the influx of hot asthenospheric mantle through a window created in the subducted slab directly beneath the Baja California peninsula [e.g., Benoit, M. et. al. (2002) J. Geol. 110, 627-648; Calmus, T. et al. (2003) Lithos 66, 77-105]. Here I propose an alternative model for the cause of post-subduction magmatism in Baja California in particular and origin of adakite-NEB rock association in general. The complicated tectonic configuration of the subducting Farallon/Cocos plate and westward motion of the North American continent caused western Mexico to override the hot, upwelling Pacific mantle that was decoupled from the spreading centers abandoned west of Baja California. The upwelling asthenosphere is best manifested east of the peninsula, beneath the Gulf of California, and is most probably due to a tear or window in the subducted slab there. The upwelling asthenosphere is compositionally heterogeneous and sends materials westward into the mantle wedge beneath the peninsula. These materials provide sources for post-subduction tholeiitic and alkalic magmas. Portions of tholeiitic magmas directly erupted at the surface produce tholeiitic lavas, but some get ponded beneath the crust. Re-melting and/or high-pressure fractional crystallization of the ponded tholeiitic magmas generate adakitic rocks. Alkalic magmas directly erupted at the surface

  16. Oxygen isotope regional pattern in granitoids from the Cachoeirinha Belt, northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.


    Four groups of granitoids are present within the Cachoeirinha belt and in the adjacent migmatitic basement, between 37 0 and 40 0 W long. and 7 0 and 8 0 15' S lat., States of Pernambuco and Paraiba: a) K 2 O - enriched, very porphyritic; b) a calc-alkalic slightly porphyritic group; c) group with trondjemitic affinities; and d) peralkalic group. Petrology and oxygen isotope geochemistry for over 100 samples from these groups were studied. Almost all plutons for which 5 or more samples were analyzed, exhibit a total range of gamma 18 O less than 2% o. A broad range of mean oxygen isotope composition is observed, varying from 6.93 to 12.79% o. There is a systematic regional trend in which the calc-alkalic granitoids (conceicao-type) found within the Cachoeirinha space are the most 18 O - enriched rocks (10.6 to 12.9% o) while the lowest mean gamma 18 O values (4.5 to 9.7% o) are found in the K 2 O - enriched granitoids (Itaporanga-type). Intermediate gamma 18 O values were recorded in the bodies with trondhjemitic affinities (8.9 to 9.8% o) which intruded metasediments of the Salgueiro Group and in the peralkalic granitoids of Catingueira (8.1 to 9.8% o) which intruded Cachoeirinha metamorphics. Among the potassic granitoids, mean gamma 18 O increases from Bodoco to Itaporanga (from west to east). As a whole, the W.R. gamma 18 O of these plutons correlate with the type of grade of metamorphism of the host rocks and, therefore, with the tectonic framework, increasing from those which intruded the gneiss-migmatites to those which intruded the low-grade metamorphics of the Cachoeirinha Group. The possible origin of each rock group is discussed in light of the oxygen isotope geochemistry. (Author) [pt

  17. 143Nd/144Nd and 87Sr/86Sr isotope ratio variations in magmatic rocks of Aleutian island arc as regard to the problem of their petrogenesis

    International Nuclear Information System (INIS)

    Zhuravlev, D.Z.; Chernyshev, I.V.; Tsvetkov, A.A.; Borsuk, A.M.; Agapova, A.A.; Serdyuk, N.I.


    The results of precision measurement of isotope composition of neodymium in rocks of Pre-Quaternary magmatic formations of the Aleutian island arc (AIA) (Commander Islands). It has been found summing the Nd and Sr analysis results in AIA magmatic rocks that AIA magmatic melts are of mantle origin. The AIA magma source the full its length off and for all the history of geological development remained isotopically homogeneousm Crust contamination of magmatic melts played a significant role only in the initial and early stages of the AIA development, in the later and conclusive stages this process has been sharply reduced. Sedimentary material practically did not take part in the magmaproduction process at the initial stage of the AIA development, it is hardly probable that its role increased at the later stages. The cause of important 87 Sr/ 86 Sr ratio variations in the rocks of one AIA petrographic type is the propylitization process with participation of sea water. Variance of 87 Sr/ 86 Sr ratios without taking into account other isotope systems data is not an indisputable proof of magma source heterogeneity

  18. Lithogeochemistry of rare-earth elements in the characterization of granitoids from the Cachoeirinha belt, Northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.


    Detailed rare-earth element study on about 40 samples from 14 granitic bodies distributed within and in adjacent areas of the Cachoeirinha belt, states of Pernambuco and Paraiba, between 37 0 and 40 0 W long. and 7 0 and 8 0 15' lat., was performed. These bodies include potassic, calc-alkalic, and peralkalic granitic associations, besides one with trondhjemitic affinities. The REE patterns for the potassic granitoids (Bodoco, Serra da Lagoinha and Itaporanga) which pierced basement migmatites, are strongly fractionated, mutually similar, LREE-enriched, and lack En anomaly. The calc-alkalic granitoids (Conceicao-type) intruded the low-grade metamorphics, and display strongly fractionated REE patterns, LREE-enriched relative to HREE, and exhibit a discrete, yet significative negative Eu anomaly. The granitoids with trondhjemitic affinities (Serrita-type) which intruded the Salgueiro schists, exhibit Σ REE much lower than in the previously mentioned granituids - REE patterns are strongly fractionated, LREE - enriched in relation to HREE, with discrete positive Eu anomaly and HREE approaching chondrite abundances. REE patterns of the peralkalic granitoids (Catingueira-type) ressemble those of rocks with trondhjemitic affinities and show a discrete positive Eu anomaly. The REE geochemistry agrees essentially with the major chemistry of the 4 granitoid associations, and is consistent with the 18 O/ 1 6O behavior which of ten varies sympathetically with Σ REE and S;O 2 . The presence of magmatic epidote, a high pressure phase, in three of these associations suggests that these rocks crystallized at a relatively great depth. (D.M.) [pt

  19. The contribution of the young Cretaceous Caribbean Oceanic Plateau to the genesis of late Cretaceous arc magmatism in the Cordillera Occidental of Ecuador (United States)

    Allibon, J.; Monjoie, P.; Lapierre, H.; Jaillard, E.; Bussy, F.; Bosch, D.; Senebier, F.


    The eastern part of the Cordillera Occidental of Ecuador comprises thick buoyant oceanic plateaus associated with island-arc tholeiites and subduction-related calc-alkaline series, accreted to the Ecuadorian Continental Margin from Late Cretaceous to Eocene times. One of these plateau sequences, the Guaranda Oceanic Plateau is considered as remnant of the Caribbean-Colombian Oceanic Province (CCOP) accreted to the Ecuadorian Margin in the Maastrichtien. Samples studied in this paper were taken from four cross-sections through two arc-sequences in the northern part of the Cordillera Occidental of Ecuador, dated as (Río Cala) or ascribed to (Macuchi) the Late Cretaceous and one arc-like sequence in the Chogòn-Colonche Cordillera (Las Orquídeas). These three island-arcs can clearly be identified and rest conformably on the CCOP. In all four localities, basalts with abundant large clinopyroxene phenocrysts can be found, mimicking a picritic or ankaramitic facies. This mineralogical particularity, although not uncommon in island arc lavas, hints at a contribution of the CCOP in the genesis of these island arc rocks. The complete petrological and geochemical study of these rocks reveals that some have a primitive island-arc nature (MgO values range from 6 to 11 wt.%). Studied samples display marked Nb, Ta and Ti negative anomalies relative to the adjacent elements in the spidergrams characteristic of subduction-related magmatism. These rocks are LREE-enriched and their clinopyroxenes show a tholeiitic affinity (FeO T-TiO 2 enrichment and CaO depletion from core to rim within a single crystal). The four sampled cross-sections through the island-arc sequences display homogeneous initial Nd, and Pb isotope ratios that suggest a unique mantellic source for these rocks resulting from the mixing of three components: an East-Pacific MORB end-member, an enriched pelagic sediment component, and a HIMU component carried by the CCOP. Indeed, the ankaramite and Mg

  20. Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria (United States)

    Georgiev, S.; von Quadt, A.; Heinrich, C. A.; Peytcheva, I.; Marchev, P.


    Eastern Srednogorie in Bulgaria is the widest segment of an extensive magmatic arc that formed by convergence of Africa and Europe during Mesozoic to Tertiary times. Northward subduction of the Tethys Ocean beneath Europe in the Late Cretaceous gave rise to a broad range of basaltic to more evolved magmas with locally associated Cu-Au mineralization along this arc. We used U-Pb geochronology of single zircons to constrain the temporal evolution of the Upper Cretaceous magmatism and the age of basement rocks through which the magmas were emplaced in this arc segment. High precision isotope dilution-thermal ionization mass spectrometry (ID-TIMS) was combined with laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) for spatial resolution within single zircon grains. Three tectono-magmatic regions are distinguished from north to south within Eastern Srednogorie: East Balkan, Yambol-Burgas and Strandzha. Late Cretaceous magmatic activity started at ~ 92 Ma in the northernmost East Balkan region, based on stratigraphic evidence and limited geochronology, with the emplacement of minor shallow intrusions and volcanic rocks onto pre-Cretaceous basement. In the southernmost Strandzha region, magmatism was initiated at ~ 86 Ma with emplacement of gabbroic to dioritic intrusions and related dikes into metamorphic basement rocks that have previously been overprinted by Jurassic-Lower Cretaceous metamorphism. The Yambol-Burgas region is an extensional basin between the East Balkan and the Strandzha regions, which broadens and deepens toward the Black Sea further east and is filled with a thick pile of marine sediments and submarine extrusive volcanic rocks accompanied by coeval intrusions. This dominantly mafic magmatism in the intermediate Yambol-Burgas region commenced at ~ 81 Ma and produced large volumes of potassium-rich magma until ~ 78 Ma. These shoshonitic to ultrapotassic basaltic to intermediate magmas formed by differentiation of ankaramitic (high

  1. Meso- and microscale structures related to post-magmatic deformation of the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352 (United States)

    Micheuz, P.; Kurz, W.; Ferre, E. C.


    IODP Expedition 352 aimed to drill through the entire volcanic sequence of the Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Analysis of structures within drill cores, combined with borehole and site survey seismic data, indicates that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic, associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement, deformation was accommodated by shear along cataclastic fault zones, and the formation of tension fractures, hybrid (tension and shear) fractures, and shear fractures. Veins commonly form by mineral filling of tension or hybrid fractures and, generally, show no or limited observable macroscale displacement along the fracture plane. The vein filling generally consists of (Low Mg-) calcite and/or various types of zeolite as well as clay. Vein frequency varies with depth but does not seem to correlate with the proximity of faults. This may indicate that these veins are genetically related to hydrothermal activity taking place shortly after magma cooling. Host-rock fragments are commonly embedded within precipitated vein material pointing to a high fluid pressure. Vein thickness varies from < 1 mm up to 15 mm. The wider veins appear to have formed in incremental steps of extension. Calcite veins tend to be purely dilational at shallow depths, but gradually evolve towards oblique tensional veins at depth, as shown by the growth of stretched calcite and/or zeolites (idiomorphic and/or stretched) with respect to vein margins. With increasing depth, the calcite grains exhibit deformation microstructures more frequently than at shallower core intervals. These microstructures include thin twinning (type I twins), increasing in width with depth (type I and type II twins), curved twins, and subgrain boundaries indicative of incipient plastic deformation.

  2. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs (United States)

    de Saint Blanquat, Michel; Horsman, Eric; Habert, Guillaume; Morgan, Sven; Vanderhaeghe, Olivier; Law, Richard; Tikoff, Basil


    The close relationship between crustal magmatism, an expression of heat dissipation, and tectonics, an expression of stress dissipation, leads to the question of their mutual relationships. Indeed, the low viscosity of magmas and the large viscosity contrast between magmas and surrounding rocks favor strain localization in magmas, and then possible "magmatic" initiation of structures at a wide range of scales. However, new data about 3-d pluton shape and duration of pluton construction perturb this simple geological image, and indicate some independence between magmatism and tectonics. In some cases we observe a direct genetic link and strong arguments for physical interactions between magmas and tectonics. In other cases, we observe an absence of these interactions and it is unclear how magma transfer and emplacement are related to lithospheric-plate dynamics. A simple explanation of this complexity follows directly from the pulsed, incremental assembly of plutons and its spatial and temporal characteristics. The size of each pluton is related to a magmatic pulsation at a particular time scale, and each of these coupled time/space scales is related to a specific process: in small plutons, we can observe the incremental process, the building block of plutons; in larger plutons, the incremental process is lost, and the pulsation, which consists of a cycle of injections at different timescales, must be related to the composition and thermal regime of the source region, itself driving magmatic processes (melting, segregation, and transfer) that interact with tectonic boundary conditions. The dynamics of pulsed magmatism observed in plutonic systems is then a proxy for deep lithospheric and magmatic processes. From our data and a review of published work, we find a positive corelation between volume and duration of pluton construction. The larger a pluton, the longer its construction time. Large/fast or small/slow plutons have not been identified to date. One

  3. Petrological and geochemical characterization of the plutonic rocks of the Sierra de La Aguada, Province of San Luis, Argentina: Genetic implications with the Famatinian magmatic arc

    Directory of Open Access Journals (Sweden)

    E. Cristofolini


    Full Text Available This study presents a synthesis on the geology of the crystalline complex that constitute the Sierra de la Aguada, San Luis province, Argentine, from an approach based on field relations, petrologic and structural features and geochemical characteristic. This mountain range exposes a basement dominated by intermediate to mafic calcalkaline igneous rocks and peraluminous felsic granitoids, both emplaced in low to medium grade metamorphic rocks stabilized under low amphibolite facies. All this lithological terrane has been grouped in the El Carrizal-La Aguada Complex. Field relations, petrographic characterization and geochemical comparison of the plutonic rocks from the study area with those belonging to the Ordovician Famatinian suit exposed in the Sierra Grande de San Luis, suggest a genetic and temporal relation linked to the development of the Famatinian magmatic arc.

  4. Record of Permian-Early Triassic continental arc magmatism in the western margin of the Jiamusi Block, NE China: petrogenesis and implications for Paleo-Pacific subduction (United States)

    Yang, Hao; Ge, Wenchun; Dong, Yu; Bi, Junhui; Wang, Zhihui; Ji, Zheng; Yang, H.; Ge, W. C.; Dong, Y.; Bi, J. H.; Wang, Z. H.; Ji, Z.


    In this paper, we report zircon U-Pb ages, Hf isotopes and whole-rock geochemical data for the Permian to Early Triassic granitoids from the western margin of the Jiamusi Block (WJB), NE China. The intermediate to felsic (SiO2 = 59.67-74.04 wt%) granitoids belong to calc-alkaline series and are characterized by enrichments in light rare earth elements and large ion lithophile elements with pronounced negative Nb, Ta and Ti anomalies, revealing typical continental magmatic arc geochemical signatures. The zircon U-Pb determinations on the granodiorite, monzogranite, syenogranite and quartz diorite samples yielded ages between ca. 275-245 Ma, which, together with the published coeval intrusive rocks, indicates that Permian to Early Triassic continental arc magmatism occurred extensively in the WJB. The low and mainly negative zircon ɛ Hf( t) values between -7.6 and +1.6 and the zircon Hf model ages of 1.2-1.8 Ga, which are significantly older than their crystallization ages, suggest that they were mainly derived from reworking of ancient crustal materials with a limited input of juvenile components. The geochemical systematics and petrogenetic considerations indicate that the studied granitoids were generated from a zone of melting, assimilation, storage, and homogenization, i.e., a MASHed zone at the base of Paleo- to Mesoproterozoic continental crust, where large portions of igneous rocks and minor clay-poor sediments involved in the source region. In combination with regional geological data, we argue that the Jiamusi Block was unlikely the rifted segment of the Songliao Block and two possible geodynamical models were proposed to interpret the formation of the ca. 275-245 Ma granitoids in the WJB. In the context of Permian global plate reconstruction, we suggest that Paleo-Pacific plate subduction was initiated in the Permian to Early Triassic beneath the Jiamusi Block, and even whole eastern NE China.

  5. Geochronology and Geochemistry of a Late Cretaceous Granitoid Suite, Santa Rosa Range, Nevada: Linking Arc Magmatism in Northwestern Nevada to the Sierra Nevada Batholith (United States)

    Brown, K.; Stuck, R.; Hart, W. K.


    Throughout the Mesozoic, an arc-trench system dominated the western margin of North America. One of the principal records of this system’s evolution is a discontinuous alignment of deeply eroded batholiths, which represent the once-active roots of ancient volcanic systems. Although these batholiths extend from Alaska to Mexico, there is a prominent (~500 km) gap located in present-day Nevada that contains scattered plutons that are hypothesized to be similar in age and origin to the larger batholiths. The current understanding of these isolated plutons, however, remains limited to regional isotopic studies aimed at identifying major crustal boundaries and structural studies focused on emplacement mechanisms. Therefore, detailed petrogenetic studies of the plutons exposed within the Santa Rosa Range (SRR) of NW Nevada will better characterize magmatism in this region, placing them within a regional context that explores the hypothesized links between the intrusions of NW Nevada to the Sierra Nevada batholith (SNB). A compilation of published geochronology from this region shows that plutons in the SRR are broadly coeval with the Cathedral Range Intrusive Epoch (~95-83 Ma) and the Shaver Sequence (~118-105 Ma) of the SNB. Preliminary Rb-Sr geochronology from the Granite Peak stock reveals a previously unrecognized period of magmatism (ca. 85.0 Ma) in this region. Therefore, ongoing work will more completely characterize the timing of magmatic pulses in this region and their relationships to the SNB. Preliminary petrographic, geochemical, and isotopic observations suggest that two distinct compositional/textural groups exist: the Santa Rosa/ Andorno group (SRA) and Granite Peak/ Sawtooth group (GPS). The chemical and isotopic variations between the two groups suggest that they were not consanguineous. Whereas the SRA group is generally more mafic (64-72 wt% SiO2) and metaluminous, the GPS group is more felsic (72- 76 wt% SiO2) and peraluminous. This observation is

  6. New U-Pb ages in the Diablillos Intrusive Complex, Southern Puna, Argentina: A long magmatic event in the Paleozoic Arc, SW Gondwana

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Agustin; Hauser, Natalia [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias. Lab. de Geocronologia; Becchio, Raul; Nieves, Alexis; Suzano, Nestor [Universidad Nacional de Salta (UNSa)-CONICET, Salta (Argentina)


    The Puna geological region comprises Salta, Jujuy and Catamarca provinces, northwestern Argentina. This 4000 meter above sea level high-plateau region lies between the Central Argentinian Andes. The Puna basement in the central Andes consists of Proterozoic–Paleozoic metamorphic rocks and granitoids. Diverse authors, proposed different models to explain the origin of the basement, where two orogenic events are recognized: the Pampean (Upper Precambrian–Lower Cambrian) and Famatinian (Upper Cambrian–Lower Silurian) (e.g. Ramos et al., 1986; Ramos, 1988; Loewy et al., 2004; for opposite points of view see Becchio et al., 1999; Bock et al., 2000; Buttner et al., 2005). Hence, Lucassen et al. (2000) proposed for the Central Andean basement, an evolution in a mobile belt, where the Pampean and Famatinian cycles are not distinct events but, they are one single, non-differentiable event from 600 to 400 Ma. The mobile belt culminated in low-P/ high-T metamorphism at approximately 525-500 Ma. Then, these were followed by a long-lasting high-thermal gradient regime in the mid-crust until Silurian times. Becchio et al., (2011) defined the Diablillos Intrusive Complex (CID, by its Spanish name), emplaced in the Inca Viejo Range. This range splits the Salares Ratones-Centenario with the Salar Diablillos (Fig.1). This Complex is located in the Eastern Magmatic Belt, Southern Puna, Argentina. Here we present new zircons U-Pb ages by LA-MC-ICPMS in the Diablillos Intrusive Complex, contributing to understanding the magmatic event in the lower Paleozoic arc, SW Gondwana. (author)

  7. New U-Pb ages in the Diablillos Intrusive Complex, Southern Puna, Argentina: A long magmatic event in the Paleozoic Arc, SW Gondwana

    International Nuclear Information System (INIS)

    Ortiz, Agustin; Hauser, Natalia


    The Puna geological region comprises Salta, Jujuy and Catamarca provinces, northwestern Argentina. This 4000 meter above sea level high-plateau region lies between the Central Argentinian Andes. The Puna basement in the central Andes consists of Proterozoic–Paleozoic metamorphic rocks and granitoids. Diverse authors, proposed different models to explain the origin of the basement, where two orogenic events are recognized: the Pampean (Upper Precambrian–Lower Cambrian) and Famatinian (Upper Cambrian–Lower Silurian) (e.g. Ramos et al., 1986; Ramos, 1988; Loewy et al., 2004; for opposite points of view see Becchio et al., 1999; Bock et al., 2000; Buttner et al., 2005). Hence, Lucassen et al. (2000) proposed for the Central Andean basement, an evolution in a mobile belt, where the Pampean and Famatinian cycles are not distinct events but, they are one single, non-differentiable event from 600 to 400 Ma. The mobile belt culminated in low-P/ high-T metamorphism at approximately 525-500 Ma. Then, these were followed by a long-lasting high-thermal gradient regime in the mid-crust until Silurian times. Becchio et al., (2011) defined the Diablillos Intrusive Complex (CID, by its Spanish name), emplaced in the Inca Viejo Range. This range splits the Salares Ratones-Centenario with the Salar Diablillos (Fig.1). This Complex is located in the Eastern Magmatic Belt, Southern Puna, Argentina. Here we present new zircons U-Pb ages by LA-MC-ICPMS in the Diablillos Intrusive Complex, contributing to understanding the magmatic event in the lower Paleozoic arc, SW Gondwana. (author)

  8. As mulheres de Cachoeirinha: família, produção e gênero numa comunidade rural do Sul mineiro


    Silva, Maria Angelica M. de Moura; Ribeiro, Eduardo Magalhaes


    This work analyzes the social relationships of gender, the differentiated valorization of the work accomplished by men and women in Minas’ family farming. The methodology of the research was based on a qualitative approach through the case study in Cachoeirinha community, situated 8 km away from the town of Lavras-MG. Cachoeirinha is mainly inhabited by family-farmers who combine agricultural and non-agricultural business together. Women dedicate themselves household chores, farming, kitche...

  9. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin (United States)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.


    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with cessation of subduction. The Bodie Hills are flanked to the east, north, and west by sedimentary basins that began to form in the late Miocene (locally >11 Ma). Fine to coarse sedimentary deposits within the BHVF include stream deposits in channels that cut across the hills and were partly filled by ~9.4 Ma Eureka Valley Tuff erupted 20 km to the northwest. Shallow dips and preservation of

  10. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China (United States)

    Zhang, Yu-Xiu; Li, Zhi-Wu; Yang, Wen-Guang; Zhu, Li-Dong; Jin, Xin; Zhou, Xiao-Yao; Tao, Gang; Zhang, Kai-Jun


    The Bangong Meso-Tethys plays a critical role in the development of the Tethyan realm and the initial elevation of the Tibetan Plateau. However, its precise subduction polarity, and history still remain unclear. In this study, we synthesize a report for the Late Jurassic-Early Cretaceous two-phase magmatic rocks in the Gaize region at the southern margin of the Qiangtang block located in central Tibet. These rocks formed during the Late Jurassic-earliest Cretaceous (161-142 Ma) and Early Cretaceous (128-106 Ma), peaking at 146 Ma and 118 Ma, respectively. The presence of inherited zircons indicates that an Archean component exists in sediments in the shallow Qiangtang crust, and has a complex tectonomagmatic history. Geochemical and Sr-Nd isotopic data show that the two-phase magmatic rocks exhibit characteristics of arc magmatism, which are rich in large-ion incompatible elements (LIIEs), but are strongly depleted in high field strength elements (HFSEs). The Late Jurassic-earliest Cretaceous magmatic rocks mixed and mingled among mantle-derived mafic magmas, subduction-related sediments, or crustally-derived felsic melts and fluids, formed by a northward and steep subduction of the Bangong Meso-Tethys ocean crust. The magmatic gap at 142-128 Ma marks a flat subduction of the Meso-Tethys. The Early Cretaceous magmatism experienced a magma MASH (melting, assimilation, storage, and homogenization) process among mantle-derived mafic magmas, or crustally-derived felsic melts and fluids, as a result of the Meso-Tethys oceanic slab roll-back, which triggered simultaneous back-arc rifting along the southern Qiangtang block margin.

  11. Contribution of slab melting to magmatism at the active rifts zone in the middle of the Izu-Bonin arc (United States)

    Hirai, Y.; Okamura, S.; Sakamoto, I.; Shinjo, R.; Wada, K.; Yoshida, T.


    The active rifts zone lies just behind the Quaternary volcanic front in the middle of the Izu-Bonin arc. Volcanism at the active rifts zone has been active since ca. 2 Ma, and late Quaternary basaltic lavas (< 0.1 Ma) and hydrothermal activity occur along the central axis of the rifts (Taylor, 1992; Ishizuka et al., 2003). In this paper we present new Sr, Nd, and Hf isotope and trace element data for the basalts erupted in the active rifts zone, including the Aogashima, Myojin and Sumisu rifts. Two geochemical groups can be identified within the active rift basalts: High-Zr basalts (HZB) and Low-Zr basalts (LZB). In the case of the Sumisu rift, the HZB exhibits higher in K2O, Na2O, Y, Zr and Ni, and also has higher Ce/Yb and Zr/Y, lower Ba/Th than the LZB. Depletion of Zr-Hf in the N-MORB spidergram characterizes the LZB from the Aogashima, Myojin and Sumisu rifts. The 176Hf/177Hf ratios are slightly lower in the HZB than in the LZB, decoupling of 176Hf/177Hf ratios and 143Nd/144Nd ratios. Estimated primary magma compositions suggest that primary magma segregation for the HZB occurred at depths less than 70 km ( 2 GPa), whereas the LZB more than 70 km (2 3 GPa). ODP Leg126 site 788, 790, and 791 reached the basaltic basement of the Sumisu rift (Gill et al., 1992). The geochemical data and stratigraphic relations of the basement indicate that the HZB is younger than the LZB. Geochemical modelling demonstrates that slab-derived melt mixed with mantle wedge produces the observed isotopic and trace elemental characteristics. The LZB volcanism at the early stage of the back-arc rifting is best explained by a partial melting of subducted slab saturated with trace quantities of zircon under low-temperature conditions in the mantle wedge. On the other hand, the HZB requires a partial melt of subducted slab accompanied by full dissolution of zircon under high-temperature conditions in the mantle wedge, which could have been caused by hot asthenospheric injection during the

  12. Late Cenozoic Magmatic and Tectonic Evolution of the Ancestral Cascade Arc in the Bodie Hills, California and Nevada: Insights from Integrated Geologic, Geophysical, Geochemical and Geochronologic Studies (United States)

    John, D. A.; du Bray, E. A.; Box, S. E.; Blakely, R. J.; Fleck, R. J.; Vikre, P. G.; Cousens, B.; Moring, B. C.


    Geologic mapping integrated with new geophysical, geochemical, and geochronologic data characterize the evolution of Bodie Hills volcanic field (BHVF), a long-lived eruptive center in the southern part of the ancestral Cascade arc. The ~700 km2 field was a locus of magmatic activity from ~15 to 8 Ma. It includes >25 basaltic andesite to trachyandesite stratovolcanoes and silicic trachyandesite to rhyolite dome complexes. The southeastern part of the BHVF is overlain by the ~3.9 to 0.1 Ma, post-arc Aurora Volcanic Field. Long-lived BHVF magmatism was localized by crustal-scale tectonic features, including the Precambrian continental margin, the Walker Lane, the Basin and Range Province, and the Mina deflection. BHVF eruptive activity occurred primarily during 3 stages: 1) dominantly trachyandesite stratovolcanoes (~15.0 to 12.9 Ma), 2) coalesced trachydacite and rhyolite lava domes and trachyandesite stratovolcanoes (~11.6 to 9.7 Ma), and 3) dominantly silicic trachyandesite to dacite lava dome complexes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Relatively mafic stratovolcanoes surrounded by debris flow aprons lie on the margins of the BHVF, whereas more silicic dome fields occupy its center. Detailed gravity and aeromagnetic data suggest the presence of unexposed cogenetic granitic plutons beneath the center of the BHVF. Isotopic compositions of BHVF rocks are generally more radiogenic with decreasing age (e.g., initial Sr isotope values increase from ~0.7049 to 0.7061), which suggests progressively greater magma contamination by crustal components during evolution of the BHVF. Approximately circular, polygenetic volcanoes and scarcity of dikes suggest a low differential horizontal stress field during BHVF formation. Extensive alluvial gravel deposits that grade laterally into fluvial gravels and finer grained lacustrine sediments and the westerly sourced Eureka Valley Tuff (EVT; ~9.4 Ma) blanket large parts of the BHVF. The earliest sediments

  13. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism (United States)

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.


    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the

  14. Meso- and microscale vein structures in fore-arc basalts and boninites related to post-magmatic tectonic deformation in the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352 (United States)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter


    The International Ocean Discovery Program (IODP) Expedition 352 aimed to drill through the entire volcanic sequence of the Izu-Bonin-Mariana fore arc. Two drill sites are situated on the outer fore arc composed of fore arc basalts (FAB) whereas two more sites are located on the upper trench slope penetrating the younger boninites. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured. Structures within the drill cores combined with borehole and site survey seismic data indicate that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement deformation was accommodated by shear along cataclastic fault zones and the formation of tension fractures, shear fractures and hybrid (tension and shear) fractures. Veins form by mineral filling of tension or hybrid fractures and show no or limited observable macroscale displacement along the fracture plane. (Low Mg-) Calcite and/or various types of zeolite are the major vein constituents, where the latter are considered to be alteration products of basaltic glass. Micrite contents vary significantly and are related to neptunian dikes. In boninites calcite develops mainly blocky shapes but veins with fibrous and stretched crystals also occur in places indicating antitaxial as well as ataxial growth, respectively. In FAB calcite forms consistently blocky crystals without any microscopic identifiable growth direction suggesting precipitation from a highly supersaturated fluid under dropping fluid pressure conditions. However, fluid pressure

  15. U-Pb SHRIMP and Sm-Nd geochronology of the paleoproterozoic Silvania magmatic arc in the neoproproterozoic Brasilia Belt, Goias, Central Brazil

    International Nuclear Information System (INIS)

    Fischel, D.P.; Pimentel, M.M.; Fuck, R.A; Armstrong, R


    The Brasilia Belt is a large Neoproterozoic orogen formed along the western margin of the Sao Francisco/Congo Craton in central Brazil. It comprises: (i) a thick Meso-Neoproterozoic metasedimentary/sedimentary pile with eastward tectonic vergence; (ii) a large Neoproterozoic juvenile arc in the west (Goias Magmatic Arc); and (iii) a micro-continent (or exotic sialic terrain) formed by Archean rock units (the Crixas -Goias granitegreenstones) and associated Proterozoic formations (Almeida et al. 1981, Fuck et al. 1993,1994, Pimentel et al. 2000a, b). The sialic basement on which the Brasilia Belt sediments were deposited is poorly understood, despite being well exposed in some areas of Goias and Tocantins. Gneiss and volcano-sedimentary units form most of this basement. Early studies have suggested that these rock units are dominantly Archean ( Danni et al. 1982, Marini et al. 1984). However, recent Sm- Nd isotopic studies have indicated that most of them are Paleoproterozoic (Sato 1998, Pimentel et al. 1999a, 2000b). Granite gneiss to the south and east of the Barro Alto mafic-ultramafic layered complex has been dated at 2128+/- 15 Ma (Correia et al. 1997). Calc-alkaline granite gneiss from Almas-Dianopolis is dated at ca. 2.2-2.45 Ga old (U-Pb SHRIMP on zircon and titanite, Cruz et al. 2000). The latter is probably the western extension of Paleoproterozoic rocks which underlie the San Francisco Craton to the east of the northern part of the Brasilia Belt. In central Goias, a large part of the Brasilia Belt is underlain by high-grade metamorphic rocks known as the Anapolis-Itaucu Complex, together with surrounding greenschist to amphibolite facies Mesoto Neoproterozoic cover metasediments of the Araxa group. These rocks represent the main constituent of the internal zone of the Brasilia Belt (Fuck et al. 1994, Pimentel et al. 2000b). Between the Araxa Group, and the easternmost part of the Anapolis-Itaucu Complex a volcano-sedimentary association known as Silvania

  16. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao


    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  17. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes (United States)

    Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.


    Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore

  18. Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data (United States)

    Yousefi, Seyyed Jabber; Ranjbar, Hojjatollah; Alirezaei, Saeed; Dargahi, Sara; Lentz, David R.


    The southern section of the Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) of Iran, known as Kerman Magmatic Arc (KMA) or Kerman copper belt, is a major host to porphyry Cu ± Mo ± Au deposits, collectively known as PCDs. In this study, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and spectral angle mapper (SAM) method, combined with field data, mineralogical studies, and spectral analysis are used to determine hydrothermal alteration patterns related to PCDs in the KMA. Gossans developed over some of these porphyry type deposits were mapped using Landsat 8 data. In the NKMA gossans are more developed than in the SKMA due to comparatively lower rate of erosion. The hydrothermal alteration pattern mapped by ASTER data were evaluated using mineralogical and spectral data. ASTER data proved to be useful for mapping the hydrothermal alteration in this semi-arid type of climate. Also Landsat 8 was useful for mapping the iron oxide minerals in the gossans that are associated with the porphyry copper deposits. Our multidisciplinary approach indicates that unlike the PCDs in the northern KMA that are associated with distinct and widespread propylitic alteration, those in the granitoid country rocks lack propylitic alteration or the alteration is only weakly and irregularly developed. The porphyry systems in southern KMA are further distinguished by development of quartz-rich phyllic alteration zones in the outer parts of the PCDs that could be mapped using remote sensing data. Consideration of variations in alteration patterns and specific alteration assemblages are critical in regional exploration for PCDs.


    Directory of Open Access Journals (Sweden)

    Leonardo Franklin Fornelos


    Full Text Available The environmental analyses, on the geographical approach, provide technical and scientific support for thezoning generation, used in environmental planning. In this perspective it’s necessary to evaluate theenvironmental vulnerabilities within the ecodynamical conception (Tricart, 1977, based on systems theory.One of the widely used evaluation methodologies, not only in the geographical environment, is the UniversalSoil Loss Equation (USLE, using maps to spatialize and quantify its factors. Whereas progress have beenmade in the generation of Remote Sensing products, through new sensors, this paper proposes the use ofSRTM elevation data to generate one of the USLE factors, the Lenght-Slope map. The studied area wascórrego Cachoeirinha watershed, located in the municipalities of Cáceres and Porto Estrela, Mato Grosso- Brazil. The implementation involved the drafting of rainfall erosivity, soil erodibility, lenght-slope factor,crop/vegetation factor and support practices maps. These maps were combined in ArcGis, allowing thequantification of soil losses in the watershed and the determination of different fragility degrees, in conformitywith the classification proposed by UNESCO (1980. The LS map generated from SRTM revealed moredetails on the hillside shapes. It’s emphasized the greater agility to produce the soil loss maps, consequentlythe vulnerability, using SRTM.

  20. Magmatic tritium

    International Nuclear Information System (INIS)

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.


    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ( 3 H) of deep origin ( 2 O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable 3 H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics

  1. Geochemistry and Nd-Sr isotopic signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, eastern precambrian shield of Bolivia: petrogenetic constraints for a mesoproterozoic magmatic arc setting

    International Nuclear Information System (INIS)

    Matos, Ramiro; Teixeira, Wilson; Bettencourt, Jorge Silva; Geraldes, Mauro Cesar


    The Pensamiento Granitoid Complex (PGC), located in the northern part of the eastern Precambrian shield of Bolivia, is tectonically assigned to the Rondonian-San Ignacio Province (1.55 - 1.30 Ga) of the Amazonian Craton that is made up by Archean and Proterozoic provinces. The Proterozoic ones result from accretionary orogens that become successively younger south westwards, such as the Rondonian/San Ignacio (1.37 - 1.32 Ga) and the Sunsas orogenies (1.20 - 1.00 Ga). The PGC crops out mainly on the 'Paragua craton' bounded to the south by the Sunsas belt, and composed of granites and subvolcanic terms, and subordinately of syenites, granodiorites, tonalites, trondhjemites and diorites as orogenic representatives of the Rondonian/San Ignacio Orogeny, intrusive into the Lomas Maneches (ca. 1.68 Ga) and Chiquitania (ca. 1.7 Ga) complexes. Thirteen whole rock chemical analyses for major, trace and REE elements were performed for the La Junta, San Martin, Diamantina, Porvernir, San Cristobal, Piso Firme plutons of the PGC. The negative trends of MgO, Al 2 O 3 and CaO contents with increasing SiO 2 suggest that fractional crystallization played an important role in the petrogenesis of the investigated rocks. The data also indicate a mainly peraluminous, sub-alkaline to high-K calc-alkaline composition, and fractionated LREE/HREE patterns are consistent with a magmatic arc character for these plutons. SHRIMP U-Pb zircon ages of the La Junta and San Martin syn- to late-kinematic plutons are 1347 ± 21 Ma and 1373 ± 20 Ma respectively, and the Sm-Nd T DM model ages are between 1.9 to 2.0 Ga, while ε Nd(1330) values range from +1.8 to -4.3, respectively. In addition, the late- to post-kinematic Diamantina pluton yields SHRIMP U-Pb zircon age of 1340 ± 20 Ma, and variable Sm-Nd T DM model ages (1.6 to 1.9 Ga) and ε Nd(1330) values (+0.4 to -1.2) that are comparable with previous results found for other coeval plutons. The Porvenir, San Cristobal and Piso Firme plutons

  2. Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean (United States)

    Dan, Wei; Wang, Qiang; Zhang, Xiu-Zheng; Zhang, Chunfu; Tang, Gong-Jian; Wang, Jun; Ou, Quan; Hao, Lu-Lu; Qi, Yue


    Recognizing the early-developed intra-oceanic arc is important in revealing the early evolution of East Paleo-Tethys Ocean. In this study, new SIMS zircon U-Pb dating, O-Hf isotopes, and whole-rock geochemical data are reported for the newly-discovered Late Devonian-Early Carboniferous arc in Qiangtang, central Tibet. New dating results reveal that the eastern Riwanchaka volcanic rocks were formed at 370-365 Ma and were intruded by the 360 Ma Gangma Co alkali feldspar granites. The volcanic rocks consist of basalts, andesites, dacites, and rhyodacites, whose geochemistry is similar to that typical of subduction-related volcanism. The basalts and andesites were generated by partial melting of the fluid and sediment-melt metasomatized mantle, respectively. The rhyodacites and dacites were probably derived from the fractional crystallization of andesites and from partial melting of the juvenile underplated mafic rocks, respectively. The Gangma Co alkali feldspar granites are A-type granites, and were possibly derived by partial melting of juvenile underplated mafic rocks in a post-collisional setting. The 370-365 Ma volcanic arc was characterized by basalts with oceanic arc-like Ce/Yb ratios and by rhyodacites with mantle-like or slightly higher zircon δ18O values, and it was associated with the contemporary ophiolites. Thus, we propose that it is the earliest intra-oceanic arc in the East Paleo-Tethys Ocean, and was accreted to the Northern Qiangtang Terrane during 365-360 Ma.

  3. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications (United States)

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.


    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  4. Structural, Geochemical, and Isotopic Studies on Magmatic Dyke Swarms of the South Shetland Islands Volcanic Arc, West Antarctica - Revealing the Geodynamic History (United States)

    Kraus, S.; Miller, H.


    Between 2000 and 2002 areas of up to 100,000 m2 have been mapped at several locations of the South Shetland Islands, mainly on King George and Livingston Islands. A structural analysis of the dykes and the host rocks was undertaken, and about 250 dykes were sampled for geochemical studies. On Livingston Island six different strike directions were identified, yielding a reliable relative time sequence as deduced from field-relationships. Geochemically, these dykes can be separated into five different groups, correlating with the different strike directions, one of those groups comprising two directions. Analysis of the structural data shows, that at least on Livingston Island only minor changes of the tensional situation occurred. Geochemical data reveal that all dykes of the South Shetland Islands belong to a calc-alkaline, arc-related suite, ranging from primitive basalts to highly differentiated rhyolites. Interpretation of Sr isotopic data of the dykes proves difficult, as there are indications for sea-water induced Sr-alteration. Nd isotopic analysis yield better results, revealing a three-stage development from the oldest dykes (ɛ Nd -0.2 to 0.6) on Livingston Island towards a second, younger group (ɛ Nd 2.8 to 4.2, also Livingston), terminating with a third one (ɛ Nd 5.2 to 7.6), which includes the youngest dykes on Livingston and all dykes on King George and also Penguin Island. Either two mantle sources were involved, or the amount of crustal contamination changed considerately with time. It may have been high during initial arc volcanism, because of a still unstretched crust, then decreasing continually with progressing volcanism. In any case, the pattern reflects a chronological sequence corresponding with other authors' hypothesis of a migrating arc volcanism from SW to NE, i.e. from Livingston (older dykes) towards King George Island (younger dykes). Pb isotopic data, plottet together with MORB- and sediment-samples dredged from the Drake Passage

  5. Miocene magmatism in the Bodie Hills volcanic field, California and Nevada: A long-lived eruptive center in the southern segment of the ancestral Cascades arc (United States)

    John, David A.; du Bray, Edward A.; Blakely, Richard J.; Fleck, Robert J.; Vikre, Peter; Box, Stephen E.; Moring, Barry C.


    The Middle to Late Miocene Bodie Hills volcanic field is a >700 km2, long-lived (∼9 Ma) but episodic eruptive center in the southern segment of the ancestral Cascades arc north of Mono Lake (California, U.S.). It consists of ∼20 major eruptive units, including 4 trachyandesite stratovolcanoes emplaced along the margins of the field, and numerous, more centrally located silicic trachyandesite to rhyolite flow dome complexes. Bodie Hills volcanism was episodic with two peak periods of eruptive activity: an early period ca. 14.7–12.9 Ma that mostly formed trachyandesite stratovolcanoes and a later period between ca. 9.2 and 8.0 Ma dominated by large trachyandesite-dacite dome fields. A final period of small silicic dome emplacement occurred ca. 6 Ma. Aeromagnetic and gravity data suggest that many of the Miocene volcanoes have shallow plutonic roots that extend to depths ≥1–2 km below the surface, and much of the Bodie Hills may be underlain by low-density plutons presumably related to Miocene volcanism.Compositions of Bodie Hills volcanic rocks vary from ∼50 to 78 wt% SiO2, although rocks with Bodie Hills rocks are porphyritic, commonly containing 15–35 vol% phenocrysts of plagioclase, pyroxene, and hornblende ± biotite. The oldest eruptive units have the most mafic compositions, but volcanic rocks oscillated between mafic and intermediate to felsic compositions through time. Following a 2 Ma hiatus in volcanism, postsubduction rocks of the ca. 3.6–0.1 Ma, bimodal, high-K Aurora volcanic field erupted unconformably onto rocks of the Miocene Bodie Hills volcanic field.At the latitude of the Bodie Hills, subduction of the Farallon plate is inferred to have ended ca. 10 Ma, evolving to a transform plate margin. However, volcanism in the region continued until 8 Ma without an apparent change in rock composition or style of eruption. Equidimensional, polygenetic volcanoes and the absence of dike swarms suggest a low differential horizontal stress regime

  6. The subduction erosion and mantle source region contamination model of Andean arc magmatism: Isotopic evidence from igneous rocks of central Chile

    International Nuclear Information System (INIS)

    Stern, Charles R


    Continental crust may be incorporated in mantle-derived Andean magmas as these magmas rise through the crust (Hildreth and Moorbath, 1988), or alternatively, crust may be tectonically transported into the mantle by subduction of trench sediments and subduction erosion of the continental margin, and then added into the mantle source region of Andean magmas (Stern, 1991). Since the mantle has relatively low Sr, Nd, and Pb concentrations compared to continental crust, differences in the isotopic compositions of magmas erupted in different region of the Andes may be produced by relatively small differences in the amount of subducted crust added to the mantle source region of these magmas. By comparison, significantly larger amounts of crust must be assimilated by mantle-derived magmas to produce isotopic differences of similar magnitude. Therefore, constraining the process by which continental crust is incorporated in Andean magmas has important implications for understanding the chemical cycling that takes place in the Andean subduction-related magma factory. Isotopic data suggest the incorporation of a greater proportion of crust in Andean magmas erupted at the northern portion of the Southern Volcanic Zone of central Chile compared to those erupted in the southern portion of the Southern Volcanic Zone of south central Chile (SSVZ) (Stern et al., 1984; Futa and Stern, 1988; Hildreth and Moorbath, 1988). The NSVZ occurs just south of the current locus of the subduction of the Juan Fernandez Ridge. The southward migration of the locus of subduction of this ridge has resulted in decreasing subduction angle below the NSVZ, the eastward migration of the volcanic front of the Andean arc, and an increase in the crustal thickness below the arc. These factors together have caused changes, since the middle Miocene, in the isotopic composition of Andean igneous rocks of central Chile. The data indicate a close chronologic relation between the southward migrations of the locus

  7. Magma-Tectonic Interactions along the Central America Volcanic Arc: Insights from the August 1999 Magmatic and Tectonic Event at Cerro Negro, Nicaragua (United States)

    La Femina, P.; Connor, C.; Strauch, W.


    Volcanic vent alignments form parallel to the direction of maximum horizontal stress, accommodating extensional strain via dike injection. Roughly east-west extension within the Central America Volcanic Arc is accommodated along north-northwest-trending basaltic vent alignments. In Nicaragua, these alignments are located in a northwest-trending zone of dextral shear, with shear accommodated along northeast trending bookshelf faults. The recent eruption of Cerro Negro volcano, Nicaragua and Marabios Range seismic swarm revealed the interaction of these fault systems. A low energy (VEI 1), small volume (0.001 km3 DRE) eruption of highly crystalline basalt occurred at Cerro Negro volcano, Nicaragua, August 5-7, 1999. This eruption followed three tectonic earthquakes (each Mw 5.2) in the vicinity of Cerro Negro hours before the onset of eruptive activity. The temporal and spatial pattern of microseismicity and focal mechanisms of the Mw 5.2 earthquakes suggests the activation of northeast-trending faults northwest and southeast of Cerro Negro within the Marabios Range. The eruption was confined to three new vents formed on the southern flank of Cerro Negro along a preexisting north-northwest trending alignment; the El Hoyo alignment of cinder cones, maars and explosion craters. Surface ruptures formed > 1 km south and southeast of the new vents suggest dike injection. Numerical simulations of conduit flow illustrate that the observed effusion rates (up to 65 ms-1) and fountain heights (50-300 m) can be achieved by eruption of magma with little or no excess fluid pressure, in response to tectonic strain. These observations and models suggest that 1999 Cerro Negro activity is an excellent example of tectonically induced small-volume eruptions in an arc setting.

  8. Tibetan Magmatism Database (United States)

    Chapman, James B.; Kapp, Paul


    A database containing previously published geochronologic, geochemical, and isotopic data on Mesozoic to Quaternary igneous rocks in the Himalayan-Tibetan orogenic system are presented. The database is intended to serve as a repository for new and existing igneous rock data and is publicly accessible through a web-based platform that includes an interactive map and data table interface with search, filtering, and download options. To illustrate the utility of the database, the age, location, and ɛHft composition of magmatism from the central Gangdese batholith in the southern Lhasa terrane are compared. The data identify three high-flux events, which peak at 93, 50, and 15 Ma. They are characterized by inboard arc migration and a temporal and spatial shift to more evolved isotopic compositions.

  9. Paleozoic tectonic evolution of the Dananhu-Tousuquan island arc belt, Eastern Tianshan: Constraints from the magmatism of the Yuhai porphyry Cu deposit, Xinjiang, NW China (United States)

    Wang, Yunfeng; Chen, Huayong; Han, Jinsheng; Chen, Shoubo; Huang, Baoqiang; Li, Chen; Tian, Qinglei; Wang, Chao; Wu, Jianxin; Chen, Mingxia


    The Yuhai intrusions (quartz diorite, granite and pyroxene diorite) are located in the eastern part of the Dananhu-Tousuquan island arc belt of the Eastern Tianshan, and associated with the early Paleozoic porphyry Cu mineralization. LA-ICP-MS zircon U-Pb dating yielded emplacement ages of 443.5 ± 4.1 Ma for the quartz diorite, 325.4 ± 2.5 Ma for the granite, and 291 ± 3.0 Ma for the pyroxene diorite. These rocks are tholeiitic to calc-alkaline and metaluminous, with A/CNK values ranging from 0.66 to 1.10. The Silurian ore-bearing Yuhai quartz diorite is rich in LREEs and LILEs (e.g., K, Ba, Pb and Sr), and depleted in HREEs and HFSEs (e.g., Nb, Ta and Ti). These rocks are MgO-rich (1.90-3.80 wt.%; Mg# = 37-72), with high Sr/Y, La/Yb and Ba/Th ratios, positive εNd(t) (6.31-6.84) and εHf(t) (13.26-16.40), low (87Sr/86Sr)i (0.7037-0.7039), and low Nb/U and Ta/U ratios. The data suggest that the quartz diorite was generated by the partial melting of subducted juvenile oceanic slab. The oxygen fugacity (ƒO2) of the quartz diorite, calculated by zircon Ce4+/Ce3+ ratios, is higher than that of the granite and pyroxene diorite, implying that the quartz diorite was more favorable to porphyry Cu mineralization. The Carboniferous Yuhai granite reveals similar geochemical features with the quartz diorite, except for the lower Mg# (27-33), and the more elevated Th/U and Th/La ratios. Furthermore, these rocks also show high εNd(t) (5.2-5.8) and εHf(t) (11.03-14.85) values, and low (87Sr/86Sr)i (0.7036-0.7037). These features indicate that the parental magma of the granite was probably derived from a juvenile lower crust with no significant mantle component involvement. Different from the Yuhai quartz diorite and granite, the early Permian Yuhai pyroxene diorite contains low SiO2 (50.76-55.74 wt.%) and high MgO (3.96-4.33 wt.%; Mg# = 40-44). The εNd(t), εHf(t) and (87Sr/86Sr)i values of the pyroxene diorite are 5.77-6.42, 7.99-12.10 and 0.7035-0.7040, respectively. The

  10. A geochemical study of Nea-Kameni hyalodacites (Santorini Volcano, Aegean island arc). Inferences concerning the origin and effects of solfataras and magmatic evolution (United States)

    Briqueu, Louis; Lancelot, Joël R.


    Since the Santorini Volcano (Aegean arc, eastern Mediterranean Sea) collapsed, volcanic activity has been located at the center of the flooded caldera. Over the past 800 years, five lava flows have formed one of the central islets (Nea-Kameni). Since 1951, when the last eruption occurred, a permanent fumarolic activity has remained. We present chemical analyses (major elements, trace-elements and Sr isotopic ratios) of ten samples from the five hyalodacitic lava flows, showing different stages of alteration, from a completely fresh lava up to one bearing native sulfur and other sublimates. Only the macroscopic aspect of these hyalodacites is affected by fumarolic activity. The elements that are mobile as a result of hydrothermal processes, such as the alkaline (K, Rb) or the chalcophile elements (Zn, Pb), show great homogeneity; the same can be said for the Sr isotopic compositions which range from 0.7046 to 0.7049. None of the analyzed samples has an Sr isotopic composition as high as those reported by Puchelt and Hoefs (1971) for rock samples collected in the same lava flows. If we take into account the marine surroundings of Nea-Kameni islet, these observations put severe restraints on the different hypotheses regarding the origin of the halogens (seawater or meteoric water). The contamination processes of these dacitic lavas are clearly less important than assumed by other authors according to previous Sr isotopic data. Finally, the homogeneity of the elements with low partition coefficients is sufficient to show that the magma has not undergone any perceptible evolution during the last 300 years.

  11. The Glória quartz-monzodiorite: isotopic and chemical evidence of arc-related magmatism in the central part of the Paleoproterozoic Mineiro belt, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Ciro A. Ávila


    Full Text Available The Glória quartz-monzodiorite, one of the mafic plutons of the Paleoproterozoic Mineiro belt, is intrusive into banded gneisses, amphibolites, schists and phyllites of the Rio das Mortes greenstone belt, in the southern portion of the São Francisco Craton, State of Minas Gerais, Brazil. The Glória quartz-monzodiorite yields a SHRIMP U-Pb zircon age of 2188 ± 29 Ma, suggesting a tectonic relationship with the pre-collisional phase of the Mineiro belt. According to the Nd isotopic evidence (epsilonNd(T = -3.4; T DM = 2.68 Ga the original magmas was formed by a mixture among Archean crustal material and Paleoproterozoic juvenile magma. The Glória quartz-monzodiorite shows metaluminous and calc-alkaline tendency with intermediate K content, comparable to that of volcanic-arc rocks. The primary mineralogical assemblage was partly modified by metamorphism, dated between 2131-2121 Ma in nearby coeval plutons. Such metamorphism is significantly older than the reported metamorphic episodes of the Mineiro belt in the Quadrilátero Ferrífero region (2059-2041 Ma in the eastern portion of the study area. This evidence, together with chemical and isotopic data from other mafic and felsic plutons coeval with the Glória quartz-monzodiorite, indicate a tectonic and magmatic migration within the Mineiro belt from west to east.O Quartzo Monzodiorito Glória é um corpo plutônicomáfico associado à evolução Paleoproterozóica do Cinturão Mineiro. Este é intrusivo em gnaisses bandados, anfibolitos, xistos e filitos do Greenstone Belt Rio das Mortes, na porção sudeste do Cráton São Francisco, Estado de Minas Gerais, Brasil. Este corpo possui idade de cristalização SHRIMP (em zircão de 2188 ± 29 Ma, enquanto os isótopos de Nd (épsilonNd(T = -3,4; T DM = 2,68 Ga apontam que sua fonte magmática envolveumaterial juvenil paleoproterozóico contaminada por protólitos arqueanos. As rochas do Quartzo Monzodiorito Glória são metaluminosas, c

  12. Insights into the Early to Late Oligocene Izu-Bonin Mariana Arc Magmatic History from Volcanic Minerals and Glass within Volcaniclastic Sediments of IODP Site U1438 and DSDP Site 296 (United States)

    Samajpati, E.; Hickey-Vargas, R.


    The Kyushu-Palau Ridge (KPR) is a remnant of the early Izu-Bonin-Mariana (IBM) island arc, separated by arc rifting and seafloor spreading. We examine and compare volcanic materials from two sites where the transition from IBM arc building to rifting is well sampled: DSDP Site 296 on the northern KPR crest, and recent IODP Site U1438 in the adjacent Amami-Sankaku basin to the west. The purpose of the study is to understand the origin and depositional regime of volcaniclastic sediments during the arc rifting stage. Site 1438 sedimentary Unit II and the upper part of Unit III (300 and 453 mbsf) correlate in time with sedimentary Units 1G and 2 of DSDP Site 296 (160 and 300 mbsf). The upper part of Site U1438 Unit III and Site 296 Unit 2 consist of early to late Oligocene coarse volcaniclastic sedimentary rocks. These are overlain by late Oligocene nannofossil chalks with volcanic sand and ash-rich layers at Site 296 Unit 1G, and tuffaceous silt, sand, siltstone and sandstone at Site 1438 Unit II. The chemical composition of volcanic glass shards, pyroxenes with melt inclusions and amphiboles separated from volcaniclastic sediments were analyzed by EPMA and LA-ICPMS. Glasses are found at Site 296 only, range from medium-K basalt to rhyolite and have trace element patterns typical of arc volcanics. Clinopyroxene and orthopyroxene are found as detrital grains in sediments from both sites. Mg-numbers range from 58 to 94. Interestingly, the alumina content of pyroxene grain populations from both sites increase and then decrease with decreasing Mg-number. This probably reflects control of Al contents in magma and pyroxene by suppressed plagioclase saturation, which apparently was a consistent feature of KPR volcanoes. Melt-inclusions within the pyroxenes are typically small (30-50 microns) and have similar chemical compositions within one grain. The melt inclusions range from basalt to rhyolite with moderate alkali content. Amphibole is more prevalent in late Oligocene

  13. Geochemistry and Nd-Sr isotopic signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, eastern precambrian shield of Bolivia: petrogenetic constraints for a mesoproterozoic magmatic arc setting;Geoquimica e assinaturas Nd-Sr do Complexo Granitoide Pensamiento, provincia Rondoniana-San Ignacio, pre-cambriano de Bolivia Oriental: caracterizacao petrogenetica de um arco magmatico no mesoproterozoico

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Ramiro, E-mail: rmatoss@igc.usp.b [Universidad Mayor de San Andre (UMSA), La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Geologicas y del Medio Ambiente; Teixeira, Wilson; Bettencourt, Jorge Silva, E-mail: wteixeir@usp.b, E-mail: jsbetten@usp.b [Universidade de Sao Paulo (IGC/USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica; Geraldes, Mauro Cesar, E-mail: geraldes@uerj.b [Universidade do Estado do Rio de Janeiro (FG/UERJ), RJ (Brazil). Faculdade de Geologia


    The Pensamiento Granitoid Complex (PGC), located in the northern part of the eastern Precambrian shield of Bolivia, is tectonically assigned to the Rondonian-San Ignacio Province (1.55 - 1.30 Ga) of the Amazonian Craton that is made up by Archean and Proterozoic provinces. The Proterozoic ones result from accretionary orogens that become successively younger south westwards, such as the Rondonian/San Ignacio (1.37 - 1.32 Ga) and the Sunsas orogenies (1.20 - 1.00 Ga). The PGC crops out mainly on the 'Paragua craton' bounded to the south by the Sunsas belt, and composed of granites and subvolcanic terms, and subordinately of syenites, granodiorites, tonalites, trondhjemites and diorites as orogenic representatives of the Rondonian/San Ignacio Orogeny, intrusive into the Lomas Maneches (ca. 1.68 Ga) and Chiquitania (ca. 1.7 Ga) complexes. Thirteen whole rock chemical analyses for major, trace and REE elements were performed for the La Junta, San Martin, Diamantina, Porvernir, San Cristobal, Piso Firme plutons of the PGC. The negative trends of MgO, Al{sub 2}O{sub 3} and CaO contents with increasing SiO{sub 2} suggest that fractional crystallization played an important role in the petrogenesis of the investigated rocks. The data also indicate a mainly peraluminous, sub-alkaline to high-K calc-alkaline composition, and fractionated LREE/HREE patterns are consistent with a magmatic arc character for these plutons. SHRIMP U-Pb zircon ages of the La Junta and San Martin syn- to late-kinematic plutons are 1347 {+-} 21 Ma and 1373 {+-} 20 Ma respectively, and the Sm-Nd T{sub DM} model ages are between 1.9 to 2.0 Ga, while {epsilon}{sub Nd(1330)} values range from +1.8 to -4.3, respectively. In addition, the late- to post-kinematic Diamantina pluton yields SHRIMP U-Pb zircon age of 1340 {+-} 20 Ma, and variable Sm-Nd T{sub DM} model ages (1.6 to 1.9 Ga) and {epsilon}{sub Nd(1330)} values (+0.4 to -1.2) that are comparable with previous results found for other coeval

  14. Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate (United States)

    Jiang, H.; Lee, C. T.


    The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO­­2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of

  15. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle (United States)

    Spencer, Christopher J.; Murphy, J. Brendan; Kirkland, Christopher L.; Liu, Yebo; Mitchell, Ross N.


    The geologic record exhibits periods of active and quiescent geologic processes, including magmatism, metamorphism and mineralization. This apparent episodicity has been ascribed either to bias in the geologic record or fundamental changes in geodynamic processes. An appraisal of the global geologic record from about 2.3 to 2.2 billion years ago demonstrates a Palaeoproterozoic tectono-magmatic lull. During this lull, global-scale continental magmatism (plume and arc magmatism) and orogenic activity decreased. There was also a lack of passive margin sedimentation and relative plate motions were subdued. A global compilation of mafic igneous rocks demonstrates that this episode of magmatic quiescence was terminated about 2.2 billion years ago by a flare-up of juvenile magmatism. This post-lull magmatic flare-up is distinct from earlier such events, in that the material extracted from the mantle during the flare-up yielded significant amounts of continental material that amalgamated to form Nuna — Earth's first hemispheric supercontinent. We posit that the juvenile magmatic flare-up was caused by the release of significant thermal energy that had accumulated over some time. This flux of mantle-derived energy could have provided a mechanism for dramatic growth of continental crust, as well as the increase in relative plate motions required to complete the transition to modern plate tectonics and the supercontinent cycle. These events may also be linked to Palaeoproterozoic atmospheric oxygenation and equilibration of the carbon cycle.

  16. Magma addition rates in continental arcs: New methods of calculation and global implications (United States)

    Ratschbacher, B. C.; Paterson, S. R.


    The transport of mass, heat and geochemical constituents (elements and volatiles) from the mantle to the atmosphere occurs via magma addition to the lithosphere. Calculation of magma addition rates (MARs) in continental arcs based on exposed proportions of igneous arc rocks is complex and rarely consistently determined. Multiple factors influence MAR calculations such as crust versus mantle contributions to magmas, a change in MARs across the arc and with depths throughout the arc crustal column, `arc tempos' with periods of high and low magmatic activity, the loss of previous emplaced arc rocks by subsequent magmatism and return to the mantle, arc migration, variations in the intrusive versus extrusive additions and evolving arc widths and thicknesses during tectonism. All of these factors need to be considered when calculating MARs.This study makes a new attempt to calculate MARs in continental arcs by studying three arc sections: the Famatinian arc, Argentina, the Sierra Nevada batholith, California and the Coast Mountain batholith, Washington and British Columbia. Arcs are divided into fore-arc, main arc and back arc sections and `boxes' with a defined width, length and thickness spanning upper middle and lower crustal levels are assigned to each section. Representative exposed crustal slices for each depth are then used to calculate MARs based on outcrop proportions for each box. Geochemical data is used to infer crustal recycling percentages and total thickness of the arc. Preliminary results show a correlation between MARs, crustal thicknesses and magmatic flare-up durations. For instance, the Famatinian arc shows a strong decrease in MARs between the main arc section (9.4 km3/Ma/arc-km) and the fore-arc (0.61 km3/Ma/arc-km) and back-arc (1.52 km3/Ma/arc-km) regions and an increase in the amount of magmatism with depth.Global MARs over geologic timescales have the potential to investigate mantle melt generation rates and the volatile outgassing contribution

  17. ARC Operations (United States)

    coordination on a regular basis. The overall ARC organizational structure is shown below. Organizational Structure Dynamics and Control of Vehicles Human Centered Modeling and Simulation High Performance

  18. Mesozoic to Cenozoic magmatic history of the Pamir (United States)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo


    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to shoshonitic monzonite, syenite, and granite that is adakitic (La/YbN = 13 to 57) with low Mg# (35-41). The Vanj complex displays a range of SiO2 (54-75 wt.%) and isotopic compositions (-7 to -3 εNd(i), 0.706 to

  19. Magmatism on the Moon (United States)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie


    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  20. Intra-Arc extension in Central America: Links between plate motions, tectonics, volcanism, and geochemistry (United States)

    Phipps Morgan, Jason; Ranero, Cesar; Vannucchi, Paola


    This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala-El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~10-15 mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~5-10 mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide' a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors. We are also exploring the potential implications of intra-arc extension for deformation processes along the subducting plate boundary and within the forearc ‘microplate'.

  1. Impacts of continental arcs on global carbon cycling and climate (United States)

    Lee, C. T.; Jiang, H.; Carter, L.; Dasgupta, R.; Cao, W.; Lackey, J. S.; Lenardic, A.; Barnes, J.; McKenzie, R.


    On myr timescales, climatic variability is tied to variations in atmospheric CO2, which in turn is driven by geologic sources of CO2 and modulated by the efficiency of chemical weathering and carbonate precipitation (sinks). Long-term variability in CO2 has largely been attributed to changes in mid-ocean ridge inputs or the efficiency of global weathering. For example, the Cretaceous greenhouse is thought to be related to enhanced oceanic crust production, while the late Cenozoic icehouse is attributed to enhanced chemical weathering associated with the Himalayan orogeny. Here, we show that continental arcs may play a more important role in controlling climate, both in terms of sources and sinks. Continental arcs differ from island arcs and mid-ocean ridges in that the continental plate through which arc magmas pass may contain large amounts of sedimentary carbonate, accumulated over the history of the continent. Interaction of arc magmas with crustal carbonates via assimilation, reaction or heating can significantly add to the mantle-sourced CO2 flux. Detrital zircons and global mapping of basement rocks shows that the length of continental arcs in the Cretaceous was more than twice that in the mid-Cenozoic; maps also show many of these arcs intersected crustal carbonates. The increased length of continental arc magmatism coincided with increased oceanic spreading rates, placing convergent margins into compression, which favors continental arcs. Around 50 Ma, however, nearly all the continental arcs in Eurasia and North America terminated as India collided with Eurasia and the western Pacific rolled back, initiating the Marianas-Tonga-Kermadec intra-oceanic subduction complex and possibly leading to a decrease in global CO2 production. Meanwhile, extinct continental arcs continued to erode, resulting in regionally enhanced chemical weathering unsupported by magmatic fluxes of CO2. Continental arcs, during their magmatic lifetimes, are thus a source of CO2, driving

  2. Hot subduction: Magmatism along the Hunter Ridge, SW Pacific

    International Nuclear Information System (INIS)

    Crawford, A.J.; Verbeeten, A.; Danyushevsky, L.V.; Sigurdsson, I.A.; Maillet, P.; Monzier, M.


    The Hunter 'fracture zone' is generally regarded as a transform plate boundary linking the oppositely dipping Tongan and Vanuatu subduction systems. Dredging along the Hunter Ridge and sampling of its northernmost extent, exposed as the island of Kadavu in Fiji, has yielded a diversity of magmatic suites, including arc tholeiites and high-Ca boninites, high-Mg lavas with some affinities to boninites and some affinities to adakites, and true adakitic lavas associated with remarkable low-Fe, high-Na basalts with 8-16 ppm Nb (herein high-Nb basalts). Lavas which show clear evidence of slab melt involvement in their petrogenesis occur at either end of the Hunter Ridge, whereas the arc tholeiites and high-Ca boninites appear to be restricted to the south central part of the ridge. Mineralogical and whole rock geochemical data for each of these suites are summarized, and a tectono-magmatic model for their genesis and distribution is suggested. Trace element features and radiogenic isotope data for the Hunter Ridge lavas indicate compositions analogue to Pacific MORB-like mantle

  3. Quaternary Magmatism in the Cascades - Geologic Perspectives (United States)

    Hildreth, Wes


    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  4. Semi-adakitic magmatism of the Satkatbong diorite, South Korea: Geochemical implications for post-adakitic magmatism in southeastern Eurasia (United States)

    Lim, Hoseong; Woo, Hyeon Dong; Myeong, Bora; Park, Jongkyu; Jang, Yun-Deuk


    The Satkatbong diorite (190 Ma) and the older Yeongdeok granite (250 Ma) in the Yeongnam massif, which is part of the southeastern margin of the Eurasian plate, are affected by a subduction system that is associated with the Izanagi and Farallon plates. The Satkatbong diorite is characterized by its abundant mafic magmatic enclaves (MMEs), mantle affinity, and intermediate adakitic Sr/Y vs. Y signature, whereas the Yeongdeok granite is distinctly adakitic and felsic and contains few MMEs. These differences in adakitic features might be due to differences in the lithospheric mantle material and/or different mafic MME sources. The results of rare earth element (REE) analyses and newly proposed Sr/La modeling in this study indicate that these two plutons were both generated by slab-mantle mixing and continental assimilation, whereas the Satkatbong diorite was additionally affected by the injection of a mafic source of MMEs, which "diluted" its adakitic chemistry. The young and hot subducting ridge passing toward the northeast due to the oblique subduction of the Izanagi and Farallon plates during the Early Mesozoic could have given rise to slab melting and asthenospheric influence through slab melting regions and a slab window, respectively. This implies that the adakitic Yeongdeok granite produced by slab melting and then the semi-adakitic Satkatbong diorite produced by asthenospheric influence, including other similar adakitic to semi-adakitic magmatism, might have occurred along the areas affected by ridge subduction. We suggest that this sequential magmatism would be applicable for many continental arcs which experienced ridge subduction being one of the mechanisms of adakite to semi-adakite magmatism.

  5. Adakite-like and Normal Arc Magmas: Distinct Fractionation Paths in the East Serbian Segment of the Balkan-Carpathian Arc


    Kolb, M.; Von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Fowler, S. J.; Cvetković, V.


    New age and whole-rock 87Sr/86Sr and 143Nd/144Nd isotopic data are used to assess petrogenetic and regional geodynamic processes associated with Late Cretaceous subvolcanic intrusions within the sparsely studied Timok Magmatic Complex (TMC) and Ridanj-Krepoljin Zone (RKZ) of eastern Serbia. The TMC and RKZ form part of the Apuseni-Banat-Timok-Srednogorie (ABTS) magmatic belt, a Cu-Au mineralized calc-alkaline magmatic arc related to closure of the Tethys Ocean that extends through Romania, Se...

  6. A reworked Lake Zone margin: Chronological and geochemical constraints from the Ordovician arc-related basement of the Hovd Zone (western Mongolia)

    Czech Academy of Sciences Publication Activity Database

    Soejono, I.; Buriánek, D.; Janoušek, V.; Svojtka, Martin; Čáp, P.; Erban, V.; Ganpurev, D.

    294/295, December (2017), s. 112-132 ISSN 0024-4937 Institutional support: RVO:67985831 Keywords : Ordovician magmatic arc * Mid-Silurian intra-plate magmatism * Hovd Zone * Reworked Lake Zone Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.677, year: 2016

  7. Diagenesis of arc-derived sandstones of Cretaceous formations in the Queen Charlotte Islands, British Columbia, Canada(MEMORIAL VOLUME TO THE LATE PROFESSOR TERUHIKO SAMESHIMA)


    Yagishita, Koji


    Diagenesis of sediments derived from a magmatic arc provenance may greatly differ from that of sediments derived from an intracratonic- or foreland-type provenance. Sediments from the magmatic arc are compositionally immature and rich in volcanic and sedimentary rock fragments. Sandstone samples of mid- to Upper Cretaceous formations in the Queen Charlotte Islands, British Columbia, Canada, contain either large amounts of pseudomatrix or authigenic cements. An inverse relationship between the...

  8. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass (United States)

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.


    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  9. Retrowedge-related Carboniferous units and coeval magmatism in the northwestern Neuquén province, Argentina (United States)

    Zappettini, Eduardo O.; Chernicoff, Carlos J.; Santos, Joao O. S.; Dalponte, Marcelo; Belousova, Elena; McNaughton, Neal


    The studied Carboniferous units comprise metasedimentary (Guaraco Norte Formation), pyroclastic (Arroyo del Torreón Formation), and sedimentary (Huaraco Formation) rocks that crop out in the northwestern Neuquén province, Argentina. They form part of the basement of the Neuquén Basin and are mostly coeval with the Late Paleozoic accretionary prism complex of the Coastal Cordillera, south-central Chile. U-Pb SHRIMP dating of detrital zircon yielded a maximum depositional age of 374 Ma (Upper Devonian) for the Guaraco Norte Formation and 389 Ma for the Arroyo del Torreón Formation. Detrital magmatic zircon from the Guaraco Norte Formation are grouped into two main populations of Devonian and Ordovician (Famatinian) ages. In the Arroyo del Torreón Formation, zircon populations are also of Devonian and Ordovician (Famatinian), as well as of Late Neoproterozoic and Mesoproterozoic ages. In both units, there is a conspicuous population of Devonian magmatic zircon grains (from 406 ± 4 Ma to 369 ± 5 Ma), indicative of active magmatism at that time range. The ɛHf values of this population range between -2.84 and -0.7, and the TDM-(Hf) are mostly Mesoproterozoic, suggesting that the primary sources of the Devonian magmatism contained small amounts of Mesoproterozoic recycled crustal components. The chemical composition of the Guaraco Norte Formation corresponds to recycled, mature polycyclic sediment of mature continental provenance, pointing to a passive margin with minor inputs from continental margin magmatic rocks. The chemical signature of the Huaraco Formation indicates that a magmatic arc was the main provenance for sediments of this unit, which is consistent with the occurrence of tuff—mostly in the Arroyo del Torreón Formation and very scarcely in the Huaraco Formation—with a volcanic-arc signature, jointly indicating the occurrence of a Carboniferous active arc magmatism during the deposition of the two units. The Guaraco Norte Formation is interpreted

  10. Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited (United States)

    Abati, J.; Castineiras, P.G.; Arenas, R.; Fernandez-Suarez, J.; Barreiro, J.G.; Wooden, J.L.


    Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro-Ordovician magmatic arc developed in the peri-Gondwanan realm. The obtained zircon ages confirm that voluminous calc-alkaline magmatism peaked around 500Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis. ?? 2007 Blackwell Publishing Ltd.

  11. Arc saw development report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.; Beitel, G.A.


    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  12. Carbonatite magmatism in northeast India (United States)

    Kumar, D.; Mamallan, R.; Dwivedy, K. K.

    The Shillong Plateau of northeast India is identified as an alkaline province in view of the development of several carbonatite complexes e.g. the Sung Valley (Jaintia Hills), Jasra (Karbi-Anglong), Samchampi and Barpung (Mikir Hills) and lamprophyre dyke swarms (Swangkre, Garo-Khasi Hills). On the basis of limited KAr data, magmatic activity appears to have taken place over a protracted period, ranging from the Late Jurassic to the Early Cretaceous. The carbonatite complexes of the Shillong Plateau share several common traits: they are emplaced along rift zones, either within Archaean gneisses or Proterozoic metasediments and granites, and exhibit enrichment in the light rare-earth elements, U, Th, Nb, Zr, Ti, K and Na. The enrichment in incompatible trace elements can best be accounted for if the parental magmas were of alkali basaltic type (e.g. mela-nephelinite or carbonate-rich alkali picrite).

  13. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27-32°LS): an example of geodynamic switching (United States)

    Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario


    We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.

  14. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting (United States)

    Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki


    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.

  15. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models (United States)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.


    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  16. Paired Magmatic-Metallogenic Belts in Myanmar - an Andean Analogue? (United States)

    Gardiner, Nicholas; Robb, Laurence; Searle, Michael; Morley, Christopher


    contrasting minerals endowment. The Mogok-Mandalay-Mergui (MMM) Belt hosts crustal-melt S-type granites with significant tin-tungsten mineralization, and contains the historically major tungsten deposit of Mawchi. The Wuntho-Popa Arc comprises I-type granites and granodiorites with porphyry-type copper-gold and epithermal gold mineralization, and includes the world-class Monywa copper mine. Recent U-Pb radiometric age dating has shown the potential for the two belts to be both active from the Late Cretaceous to Eocene. The spatial juxtaposition of these two sub-parallel belts, the implication of contemporary magmatism, and their distinct but consistent metallogenic endowment bears strong similarities to the metallogenic belts of the South American Cordillera. Here we investigate whether they together represent the magmatic and metallogenic expression of an Andean-type setting in Myanmar during the subduction of Neo-Tethys. In this analogue the Wuntho-Popa Arc represents a proximal I-type magmatic belt sited immediately above the eastwards-verging Neo-Tethys subduction zone. Exhibiting porphyry-type copper-gold and epithermal gold mineralization, this would therefore be the Myanmar equivalent of the Andean coastal copper belts. Conversely, the parallel MMM Belt, comprised of more distal crustal-melt S-type tin granites, would have an analogue in the Bolivian tin belt.

  17. Isotopic signature of Madeira basaltic magmatism

    International Nuclear Information System (INIS)

    Kogarko, L.N.; Karpenko, S.F.; Bibikova, E.V.; Mato, Zh.


    Chemical composition of the basalts of Madeira Island is studied. To assess the isotopic sources of magmatism the Pb-Sr, Sm-Nd, U-Th-Pb systems were investigated in a number of basalts. It is shown that the island's rocks are characterized by the mostly deplet sources in relation to Pb-Sr and Sm-Nd systems ( 87 Sr/ 86 Sr - 0.70282-0.70292, 143 Nd/ 144 Nd - 0.52303-0.51314). Isotopic composition of lead testifies that the magmatism reservoir is some enriched. It is concluded that the magmatism of Madeira Island is a new example of world ocean island's volcanism [ru

  18. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, Michel


    The strongly incompatible behaviour of uranium in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behavior, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth, which crystallized uraninite, dated at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: per-alkaline, high-K met-aluminous calc-alkaline, L-type peraluminous and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass of their volcanic equivalents represent the best U source. Per-alkaline granites or syenites are associated with the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction under the present economic conditions and make them unfavorable U sources for other deposit types. By contrast, felsic per-alkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals (U-thorite, allanite, Nb oxides) become metamict. The volcanic rocks of the same geochemistry may be

  19. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, M.


    Uranium strongly incompatible behaviour in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behaviour, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth which crystallized uraninite appeared at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous ones and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass in their volcanic equivalents represent the best U source. Peralkaline granites or syenites represent the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction at the present economic conditions and make them unfavourable U sources for other deposit types. By contrast, felsic peralkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals [U-thorite, allanite, Nb oxides] become metamict. The volcanic rocks of the same geochemistry may be also a

  20. Age of Izu-Bonin-Mariana arc basement


    Ishizuka, O; Hickey-Vargas, R; Arculus, RJ; Yogodzinski, GM; Savov, IP; Kusano, Y; McCarthy, A; Brandl, PA; Sudo, M


    Documenting the early tectonic and magmatic evolution of the Izu–Bonin–Mariana (IBM) arc system in the Western Pacific is critical for understanding the process and cause of subduction initiation along the current convergent margin between the Pacific and Philippine Sea plates. Forearc igneous sections provide firm evidence for seafloor spreading at the time of subduction initiation (52 Ma) and production of “forearc basalt”. Ocean floor drilling (International Ocean Discovery Program Expedit...

  1. Weak Tectono-Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Valerio Acocella


    Full Text Available The tectono-magmatic relationships along obliquely convergent plate boundaries, where strain partitioning promotes strike-slip structures along the volcanic arc, are poorly known. Here it is unclear if and, in case, how the strike-slip structures control volcanic processes, distribution and size. To better define the possible tectono-magmatic relationships along strike-slip arcs, we merge available information on the case study of Sumatra (Indonesia with field structural data. The Sumatra arc (entire volcanic belt consists of 48 active volcanoes. Of these, 46% lie within 10 km from the dextral Great Sumatra Fault (GSF, which carries most horizontal displacement on the overriding plate, whereas 27% lie at >20 km from the GSF. Among the volcanoes at <10 km from GSF, 48% show a possible structural relation to the GSF, whereas only 28% show a clear structural relation, lying in pull-aparts or releasing bends; these localized areas of transtension (local extensional zone do not develop magmatic segments. There is no relation between the GSF along-strike slip rate variations and the volcanic productivity. The preferred N30°-N40°E volcano alignment and elongation are subparallel to the convergence vector or to the GSF. The structural field data, collected in the central and southern GSF, show, in addition to the dextral motions along NW-SE to N-S striking faults, also normal motions (extending WNW-ESE or NE-SW, suggesting local reactivations of the GSF. Overall, the collected data suggest a limited tectonic control on arc volcanism. The tectonic control is mostly expressed by the mean depth of the slab surface below the volcanoes (130 ± 20 km and, subordinately, local extension along the GSF. The latter, when WNW-ESE oriented (more common, may be associated with the overall tectonic convergence, as suggested by the structural data; conversely, when NE-SW oriented (less common, the extension may result from co- and post-seismic arc normal extension

  2. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology. (United States)

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W


    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  3. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate (United States)

    ten Brink, Uri S.; Marshak, S.; Granja, Bruna J.L.


    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  4. Arc-continent collision of the Coastal Range in Taiwan: Geochronological constraints from U-Pb ages of zircons (United States)

    Geng, Wei; Zhang, Xun-Hua; Huang, Long


    The oblique arc-continent collision between the Luzon arc and the southeastern margin of the Eurasian continent caused the uplift of Taiwan. The Coastal Range in eastern Taiwan is the northern section of the Luzon arc in the collision zone and thus records important information about the arc-continent collision. In this paper, we determine and analyze the U-Pb ages of magmatic zircons from the volcanic arc and clastic zircons from the fore-arc basin in the Coastal Range. For the volcanic arc in the Coastal Range, the eruption ages range from 16.8-5 Ma. Given that the initial subduction of the South China Sea oceanic crust (17 Ma) occurred before the Luzon arc formed, we conclude that the volcanic activity of the Coastal Range began at 16.8 ± 1.3 Ma; it was most active from 14 to 8 Ma and continued until approximately 5 Ma. The U-Pb chronology also indicates that the initial stage of arc-continent collision of the Coastal Range started at approximately 5 Ma, when the northern section of the Luzon arc moved away from the magmatic chamber because of the kinematics of the Philippine Sea Plate.

  5. The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Santosh, M.; Eroğlu-Gümrük, Tuğba; Akbulut, Kübra; Yi, Keewook; Chatterjee, Nilanjan


    The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. 39Ar/40Ar hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (∼46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs

  6. Geochemical studies on island arc volcanoes

    International Nuclear Information System (INIS)

    Notsu, Kenji


    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87 Sr/ 86 Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87 Sr/ 86 Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3 He/ 4 He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO 2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO 2 , SO 2 and HCl) simultaneously in the volcanic plume spectra. (author)

  7. Episodic nature of continental arc activity since 750 Ma: A global compilation (United States)

    Cao, Wenrong; Lee, Cin-Ty A.; Lackey, Jade Star


    Continental arcs have been recently hypothesized to outflux large amounts of CO2 compared to island arcs so that global flare-ups in continental arc magmatism might drive long-term greenhouse events. Quantitative testing of this hypothesis, however, has been limited by the lack of detailed studies on the spatial distribution of continental arcs through time. Here, we compile a worldwide database of geological maps and associated literature to delineate the surface exposure of granitoid plutons, allowing reconstruction of how the surface area addition rate of granitoids and the length of continental arcs have varied since 750 Ma. These results were integrated into an ArcGIS framework and plate reconstruction models. We find that the spatial extent of continental arcs is episodic with time and broadly matches the detrital zircon age record. Most vigorous arc magmatism occurred during the 670-480 Ma and the 250-50 Ma when major greenhouse events are recognized. Low continental arc activity characterized most of the Cryogenian, middle-late Paleozoic, and Cenozoic when climate was cold. Our results indicate that plate tectonics is not steady, with fluctuations in the nature of subduction zones possibly related in time to the assembly and dispersal of continents. Our results corroborate the hypothesis that variations in continental arc activity may play a first order role in driving long-term climate change. The dataset presented here provides a quantitative basis for upscaling continental arc processes to explore their effects on mountain building, climate, and crustal growth on a global scale.

  8. Unraveling the diversity in arc volcanic eruption styles: Examples from the Aleutian volcanic arc, Alaska (United States)

    Larsen, Jessica F.


    The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.

  9. Variation in forearc basin development along the Sunda Arc, Indonesia (United States)

    van der Werff, W.

    The present forearc basin configuration along the Sunda Arc initially appears to have been controlled by extension and differential subsidence of basement blocks in response to the late Eocene collision of India with Asia. The late Oligocene increase in convergence between the South-east Asian and Indian Plates associated with a new pulse of subduction, resulted in basement uplift and the formation of a regional unconformity that can be recognized along the entire Sunda Arc. From the early to late Miocene, the Sumba and Savu forearc sectors along the eastern Sunda Arc may have been characterized by forearc extension. Submarine fan deposition on the arcward side of the evolving accretionary prism represents the first phase in forearc basin deposition. These fans were subsequently covered by basin and slope sediments derived from the evolving magmatic arc. Structural response to increased late Miocene compression varied along strike of the Sunda Arc. North of Bali, Lombok and Sumbawa, the incipient collision between Australia and the western Banda Arc caused back-arc thrusting and basin inversion. Towards the south of Java, an increase in both the size of the accretionary prism and convergence rates resulted in uplift and large scale folding of the outer forearc basin strata. Along the west coast of Sumatra, increased compression resulted in uplift along the inner side of the forearc along older transcurrent faults. Uplift of West Sumatra was followed by the deposition of a westward prograding sequence of terrigenous sediments that resulted in the development of a broad shelf. Initial forearc basin subsidence relates to the age of the subducting oceanic lithosphere, on top of which the basin is situated. Along the western Sunda Arc, both fexural loading of the evolving accretionary prism, and across arc strike-slip faulting represent additional factors that result in forearc subsidence.

  10. Monitoring ARC services with GangliARC

    International Nuclear Information System (INIS)

    Cameron, D; Karpenko, D


    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  11. Cretaceous magmatism in North-Eastern India and Gondwanaland ...

    Indian Academy of Sciences (India)


    Cretaceous magmatism of NEI: Major Objectives. • Age and duration of Sylhet Traps and its connection to Kerguelene hotspot and Gondwanaland breakup? • Age of carbonatite magmatism associated with the traps? • Relationship of basaltic-carbonatite magmatism with. Aptian (~116 Ma) Mass Extinction event? • Nature of ...

  12. Composite Sunrise Butte pluton: Insights into Jurassic–Cretaceous collisional tectonics and magmatism in the Blue Mountains Province, northeastern Oregon (United States)

    Johnson, Kenneth H.; Schwartz, J.J.; Žák, Jiří; Verner, Krystof; Barnes, Calvin G.; Walton, Clay; Wooden, Joseph L.; Wright, James E.; Kistler, Ronald W.


    The composite Sunrise Butte pluton, in the central part of the Blue Mountains Province, northeastern Oregon, preserves a record of subduction-related magmatism, arc-arc collision, crustal thickening, and deep-crustal anatexis. The earliest phase of the pluton (Desolation Creek unit) was generated in a subduction zone environment, as the oceanic lithosphere between the Wallowa and Olds Ferry island arcs was consumed. Zircons from this unit yielded a 206Pb/238U age of 160.2 ± 2.1 Ma. A magmatic lull ensued during arc-arc collision, after which partial melting at the base of the thickened Wallowa arc crust produced siliceous magma that was emplaced into metasedimentary rocks and serpentinite of the overthrust forearc complex. This magma crystallized to form the bulk of the Sunrise Butte composite pluton (the Sunrise Butte unit; 145.8 ± 2.2 Ma). The heat necessary for crustal anatexis was supplied by coeval mantle-derived magma (the Onion Gulch unit; 147.9 ± 1.8 Ma).The lull in magmatic activity between 160 and 148 Ma encompasses the timing of arc-arc collision (159–154 Ma), and it is similar to those lulls observed in adjacent areas of the Blue Mountains Province related to the same shortening event. Previous researchers have proposed a tectonic link between the Blue Mountains Province and the Klamath Mountains and northern Sierra Nevada Provinces farther to the south; however, timing of Late Jurassic deformation in the Blue Mountains Province predates the timing of the so-called Nevadan orogeny in the Klamath Mountains. In both the Blue Mountains Province and Klamath Mountains, the onset of deep-crustal partial melting initiated at ca. 148 Ma, suggesting a possible geodynamic link. One possibility is that the Late Jurassic shortening event recorded in the Blue Mountains Province may be a northerly extension of the Nevadan orogeny. Differences in the timing of these events in the Blue Mountains Province and the Klamath–Sierra Nevada Provinces suggest that

  13. Crustal Accretion at Subduction Initiation Along Izu-Bonin-Mariana Arc and the Link to SSZ Ophiolites (United States)

    Ishizuka, O.; Tani, K.; Reagan, M. K.; Kanayama, K.; Umino, S.; Harigane, Y.; Sakamoto, I.


    The Izu-Bonin-Mariana (IBM) forearc preserves the earliest arc magmatic history from subduction initiation to the establishment of the arc. Recent investigations have established a bottom to top igneous stratigraphy of: 1) mantle peridotite, 2) gabbroic rocks, 3) a sheeted dyke complex, 4) basaltic pillow lavas (forearc basalts: FAB), 5) boninites and magnesian andesites, 6) tholeiites and calcalkaline arc lavas. This stratigraphy has many similarities to supra-subduction zone (SSZ) ophiolites. One of the most important common characteristics between the SSZ ophiolites and the forearc crust is the occurrence of MORB-like basaltic lavas underlying or accompanying boninites and early arc volcanic suites. A key observation from the IBM forearc is that FAB differs from nearby back-arc lavas in chemical characteristics, including a depletion in moderately incompatible elements. This indicates that FAB is not a pre-existing oceanic basement of the arc, but the first magmatic product after subduction initiation. Sheeted dikes of FAB composition imply that this magmatism was associated with seafloor spreading, possibly triggered by onset of slab sinking. Recognition of lavas with transitional geochemical characteristics between the FAB and the boninites strongly implies genetic linkage between these two magma types. The close similarity of the igneous stratigraphy of SSZ ophiolites to the IBM forearc section strongly implies a common magmatic evolutionary path, i.e., decompressional melting of a depleted MORB-type mantle is followed by melting of an even more depleted mantle with the addition of slab-derived fluid/melt to produce boninite magma. Similarity of magmatic process between IBM forearc and Tethyan ophiolites appears to be reflected on common characteristics of upper mantle section. Peridotite from both sections show more depleted characteristics compared to upper mantle rocks from mid-ocean ridges. Age determinations reveal that first magmatism at the IBM arc

  14. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism? (United States)

    Li, Chusi; Zhang, Mingjie; Fu, Piaoer; Qian, Zhuangzhi; Hu, Peiqing; Ripley, Edward M.


    The Permian Kalatongke Ni-Cu deposits in the Central Asian Orogenic Belt are among the most important Ni-Cu deposits in northern Xinjiang, western China. The deposits are hosted by three small mafic intrusions comprising mainly norite and diorite. Its tectonic context, petrogenesis, and ore genesis have been highly contested. In this paper, we present a new model involving slab window magmatism for the Kalatongke intrusions. The origin of the associated sulfide ores is explained in the context of this new model. Minor amounts of olivine in the intrusions have Fo contents varying between 71 and 81.5 mol%, which are similar to the predicted values for olivine crystallizing from coeval basalts in the region. Analytic modeling based on major element concentrations suggests that the parental magma of the Kalatongke intrusions and the coeval basalts represent fractionated liquids produced by ˜15% of olivine crystallization from a primary magma, itself produced by 7-8% partial melting of depleted mantle peridotite. Positive ɛ Nd values (+4 to +10) and significant negative Nb anomalies for both intrusive and extrusive rocks can be explained by the mixing of magma derived from depleted mantle with 6-18% of a partial melt derived from the lower part of a juvenile arc crust with a composition similar to coeval A-type granites in the region, plus up to 10% contamination with the upper continental crust. Our model suggests that a slab window was created due to slab break-off during a transition from oceanic subduction to arc-arc or arc-continent collision in the region in the Early Permian. Decompression melting in the upwelling oceanic asthenosphere produced the primary magma. When this magma ascended to pond in the lower parts of a juvenile arc crust, it underwent olivine crystallization and at the same time triggered partial melting of the arc crust. Mixing between these two magmas followed by contamination with the upper crust after the magma ascended to higher crustal

  15. Petrography and geochemistry of magmatic units from the western cordillera of Ecuador (0 deg. 30'S): tectonic implications

    International Nuclear Information System (INIS)

    Cosma, L.; Mamberti, M.; Gabriele, P.; Desmet, A.


    The cost and western Cordillera of Ecuador are made of accreted oceanic terranes, separated from from the continental margin by a suture zone containing tectonic slices of mafic rocks. The western Cordillera contains three distinct magmatic units. Ultramafic and mafic cumulates from the suture zone (San Juan slice) represent likely the plutonic roots of oceanic plateau basalts. The mafic cumulates are LREE(depleted and Ta and Pb enriched (primitive mantle). Their Nd and Pb isotopic compositions suggest that they derived from an enriched OIB type mantle source. Pre-Coniacian arc-tholeiites present flat REE patterns, low Pb and Th contents, and high ξ Nd(T=100Ma) (+7.5 to + 7.9) which are indicative of their derivation from a mantle source. These arc-tholeiites developed likely in an intra-oceanic setting. The Eocene calc-alkaline lavas differ from the arc-tholeiites because they are LREE-enriched and have lower ξ Nd(T=50Ma) ratios. Their high Pb and Th contents are probably related to crustal assimilation during the magmas ascent. Their Pb isotopic compositions support involvement of subducted pelagic sediments in their genesis. These lavas represent likely the remnants of a continental calc-alkaline magmatic arc. The continental-arc setting of the Eocene lavas demonstrates that these volcanic rocks postdate the accretion of the western Cordillera, upon which they rest unconformably. Therefore, the accretion of the western Cordillera may have occurred in late Paleocene times, as for part of the oceanic terranes of coastal Ecuador. Nevertheless, the occurrence of a collisional event during late Santonian-early Campanian times is strongly suggested by: the arrival of detrital quartz on oceanic series of the western Cordillera by Campanian-Maastrichtian times, a regional unconformity locally dates early Campanian, the arc-jump observed on coastal Ecuador in Santonian times, and finally a thermal event recognised in the eastern Cordillera around 85-80 Ma. (authors)

  16. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.


    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  17. Back-arc basin development: Constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China) (United States)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Pan, Fa-Bin; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Tao, Lu; Zhang, Li-Qi; Wu, Jing


    The Lajishan belt of the Central Qilian block was a back-arc basin during Early Paleozoic. The basaltic magmatism and temporal evolution in this basin provide an opportunity to study the development of back-arc basin in an active continental margin. In this study, we carry out an integrated study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic arc-like and OIB-like basalts. The Lajishan arc-like basalts are enriched in large ion lithophile element (LILE) and show negative Nb and Ta anomalies whereas the OIB-like basalts have high LILE abundances and show positive Nb and Ta anomalies. The arc-like basalts have initial 87Sr/86Sr values of 0.7050-0.7054 and εNd(t) values of +0.51-+2.63, and the OIB-like basalts have initial 87Sr/86Sr values of 0.7049-0.7050 and εNd(t) values of +0.66-+1.57. The geochemical and Sr-Nd isotopic compositions suggest that the arc-like basalts are derived from partial melting of a depleted mantle source metasomatized by slab-derived components at shallow depth levels, and the OIB-like basalts also originated from a metasomatized mantle wedge source. U-Pb zircon dating yielded the ages of 494 ± 4 Ma for the arc-like basalts and 468 ± 6 Ma for the OIB-like basalts. We argue that the arc-like basalts are products of back-arc extension before the back-arc rifting initiated in earlier stage, resulting from the northward subduction of the Qaidam-West Qinling oceanic slab, while the OIB-like basalts represent products of further back-arc spreading in response to rollback of the Qaidam-West Qinling oceanic lithospheric slab. The association of arc-like and OIB-like basalts in the Lajishan belt records the development of back-arc basin from initial rifting to subsequent spreading, offering insight into how basaltic magmatism generates in the formation of back-arc basin in subduction zone setting.

  18. Towards an integrated magmatic, structural and metamorphic model for the 1.1-0.9 Ga Sveconorwegian orogeny (United States)

    Slagstad, Trond; Roberts, Nick M. W.; Røhr, Torkil S.; Marker, Mogens K.


    Orogeny involves magmatic, metamorphic, deformational and erosional processes that are caused by or lead to crustal thickening and the development of high topography. In general, these processes operate along the margins of continental plates, either as a result of subduction of oceanic crust (accretionary) or collision between two or more continental plates (collisional). Many of these processes are common to accretionary and collisional orogeny, and do not uniquely discriminate between the two. With only a fragmented geological record, unravelling the style of orogenesis in ancient orogens may, therefore, be far from straightforward. Adding to the complexity, modern continental margins, e.g., the southern Asian margin, display significant variation in orogenic style along strike, rendering along-strike comparisons and correlations unreliable. The late Mesoproterozoic Sveconorwegian province in SW Baltica is traditionally interpreted as the eastward continuation of the Grenville province in Canada, resulting from collision with Amazonia and forming a central part in the assembly of the Rodinia supercontinent. We recently proposed that the Sveconorwegian segment of this orogen formed as a result of accretionary processes rather than collision. This hypothesis was based mainly on considerations of the Sveconorwegian magmatic evolution. Here, we show how the metamorphic/structural record supports (or at least may be integrated in) our model as well. The key elements in our accretionary model are: 1) formation of the Sirdal Magmatic Belt (SMB) between 1070 and 1020 Ma, most likely representing a continental arc batholith. Coeval deformation and high-grade metamorphism farther east in the orogen could represent deformation in the retroarc. 2) cessation of SMB magmatism at 1020 Ma followed by UHT conditions at 1010-1005 Ma, with temperatures in excess of 1000°C at 7.5 kbar. Subduction of a spreading ridge at ca. 1020 Ma would result in an end to arc magmatism and

  19. Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): Implications for the geodynamic evolution of the Celebes basin

    International Nuclear Information System (INIS)

    Rangin, C.; Maury, R.C.; Bellon, H.; Cotten, J.; Polve, M.; Priadi, B.; Soeria-Atmadja, R.; Joron, J.L.


    Eocene BABB basalts intruded by tholeiitic and calk-alkalic island arc magmatic rocks are reported from the north arm of Sulawesi (Indonesia). Age and geochemical similarities between these basalts and those drilled in the Celebes Sea indicate this North Sulawesi volcanic arc was built on the same oceanic crust. The 25 deg late Neogene clockwise rotation of the north arm of Sulawesi following its collision with fragments of Australia (Sula, Buton) is not sufficient to explain the asymmetrical magnetic anomalies in the Celebes basin. The North Sulawesi island arc could be interpreted as having progressively retreated northward on its own Celebes sea back arc basin, during an episode of Palaeogene-early Neogene tectonic erosion along the trench. (authors)

  20. IODP Expedition 351 Izu-Bonin-Mariana Arc Origins: Preliminary Results (United States)

    Ishizuka, O.; Arculus, R. J.; Bogus, K.


    Understanding how subduction zones initiate and continental crust forms in intraoceanic arcs requires knowledge of the inception and evolution of a representative intraoceanic arc, such as the Izu-Bonin-Mariana (IBM) Arc system. This can be obtained by exploring regions adjacent to an arc, where unequivocal pre-arc crust overlain by undisturbed arc-derived materials exists. IODP Exp. 351 (June-July 2014) specifically targeted evidence for the earliest evolution of the IBM system following inception. Site U1438 (4711 m water depth) is located in the Amami Sankaku Basin (ASB), west of the Kyushu-Palau Ridge (KPR), a paleo-IBM arc. Primary objectives of Exp. 351 were: 1) determine the nature of the crust and mantle pre-existing the IBM arc; 2) identify and model the process of subduction initiation and initial arc crust formation; 3) determine the compositional evolution of the IBM arc during the Paleogene; 4) establish geophysical properties of the ASB. Seismic reflection profiles indicate a ~1.3 km thick sediment layer overlying ~5.5 km thick igneous crust, presumed to be oceanic. This igneous crust seemed likely to be the basement of the IBM arc. Four holes were cored at Site U1438 spanning the entire sediment section and into basement. The cored interval comprises 5 units: uppermost Unit I is hemipelagic sediment with intercalated ash layers, presumably recording explosive volcanism mainly from the Ryukyu and Kyushu arcs; Units II and III host a series of volcaniclastic gravity-flow deposits, likely recording the magmatic history of the IBM Arc from arc initiation until 25 Ma; Siliceous pelagic sediment (Unit IV) underlies these deposits with minimal coarse-grained sediment input and may pre-date arc initiation. Sediment-basement contact occurs at 1461 mbsf. A basaltic lava flow section dominantly composed of plagioclase and clinopyroxene with rare chilled margins continues to the bottom of the Site (1611 mbsf). The expedition successfully recovered pre-IBM Arc

  1. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada (United States)

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.


    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  2. Petrogenesis of the Mairupt microgranite: A witness of an Uppermost Silurian magmatism in the Rocroi Inlier, Ardenne Allochton (United States)

    Cobert, Corentin; Baele, Jean-Marc; Boulvais, Philippe; Poujol, Marc; Decrée, Sophie


    Magmatism in the Rocroi inlier (Ardenne Allochton, southeastern Avalonia during eo-Hercynian times) consists of a swarm of bimodal dykes (diabase and/or microgranite) emplaced in Middle to Upper Cambrian siliciclastics (Revin Group). Felsic volcanites interbedded within the Upper Silurian/Lower Devonian transgressive strata on the eastern edge of the inlier were interpreted as belonging to the same magmatic event. This was subsequently invalidated by zircon U-Pb dating of the Mairupt and Grande Commune magmatic rocks, which yielded an Upper Devonian age. Here we report a reevaluation of the age of the Mairupt microgranite based on LA-ICP-MS in situ U-Pb zircon geochronology, which yields a concordant age of 420.5 ± 2.9 Ma (Late Silurian/Early Devonian). This new dating restores the consistency between the different magmatic occurrences in the Rocroi inlier. The geochemical and petrographical data furthermore indicate a major crustal contribution, which fits well within the context of crust thinning of the Ardenne margin (southeastern Avalonia) in the transtensional Rheno-Hercynian back-arc basin.

  3. Magmatism and deformation during continental breakup (United States)

    Keir, Derek


    The rifting of continents and the transition to seafloor spreading is characterised by extensional faulting and thinning of the lithosphere, and is sometimes accompanied by voluminous intrusive and extrusive magmatism. In order to understand how these processes develop over time to break continents apart, we have traditionally relied on interpreting the geological record at the numerous fully developed, ancient rifted margins around the world. In these settings, however, it is difficult to discriminate between different mechanisms of extension and magmatism because the continent-ocean transition is typically buried beneath thick layers of volcanic and sedimentary rocks, and the tectonic and volcanic activity that characterised breakup has long-since ceased. Ongoing continental breakup in the African and Arabian rift systems offers a unique opportunity to address these problems because it exposes several sectors of tectonically active rift sector development spanning the transition from embryonic continental rifting in the south to incipient seafloor spreading in the north. Here I synthesise exciting, multidisciplinary observational and modelling studies using geophysical, geodetic, petrological and numerical techniques that uniquely constrain the distribution, time-scales, and interactions between extension and magmatism during the progressive breakup of the African Plate. This new research has identified the previously unrecognised role of rapid and episodic dike emplacement in accommodating a large proportion of extension during continental rifting. We are now beginning to realise that changes in the dominant mechanism for strain over time (faulting, stretching and magma intrusion) impact dramatically on magmatism and rift morphology. The challenge now is to take what we're learned from East Africa and apply it to the rifted margins whose geological record documents breakup during entire Wilson Cycles.

  4. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Soejono, I.; Janoušek, V.; Žáčková, E.; Sláma, Jiří; Konopásek, J.; Machek, Matěj; Hanžl, P.


    Roč. 106, č. 6 (2017), s. 2109-2129 ISSN 1437-3254 Institutional support: RVO:67985530 ; RVO:67985831 Keywords : Cadomian magmatic arc * Brunovistulian Domain * Bohemian Massif * Gondwana margin * U–Pb geochronology * geochemistry Subject RIV: DB - Geology ; Mineralogy; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Geology; Volcanology (GFU-E) Impact factor: 2.283, year: 2016

  5. IODP Expedition 351 Lithostratigraphy: Volcaniclastic Record of Izu-Bonin-Mariana (IBM) Arc Initiation (United States)

    Barth, A. P.; Brandl, P. A.; Li, H.; Hickey-Vargas, R.; Jiang, F.; Kanayama, K.; Kusano, Y.; Marsaglia, K. M.; McCarthy, A.; Meffre, S.; Savov, I. P.; Tepley, F. J., III; Yogodzinski, G. M.


    The destruction of lithospheric plates by subduction is a fundamentally important process leading to arc magmatism and the creation of continental crust, yet subduction initiation and early magmatic arc evolution remain poorly understood. For many arc systems, onset of arc volcanism and early evolution are obscured by metamorphism or the record is deeply buried; however, initial products of arc systems may be preserved in forearc and backarc sedimentary records. IODP Expedition 351 recovered this history from the dispersed ash and pyroclast record in the proximal rear-arc of the northern IBM system west of the Kyushu-Palau Ridge. Drilling at Site U1438 in the Amami Sankaku Basin recovered a thick volcaniclastic record of subduction initiation and the early evolution of the Izu-Bonin Arc. A 160-m thick section of Neogene sediment overlies 1.3 kilometers of Paleogene volcaniclastic rocks with andesitic average composition; this volcaniclastic section was deposited on mafic volcanic basement rocks. The thin upper sediment layer is primarily terrigenous, biogenic and volcaniclastic mud and ooze with interspersed ash layers. The underlying Eocene to Oligocene volcaniclastic rocks are 33% tuffaceous mudstone, 61% tuffaceous sandstone, and 6% conglomerate with volcanic and rare sedimentary clasts commonly up to pebble and rarely to cobble size. The clastic section is characterized by repetitive conglomerate and sandstone-dominated intervals with intervening mudstone-dominated intervals, reflecting waxing and waning of coarse arc-derived sediment inputs through time. Volcanic lithic clasts in sandstones and conglomerates range from basalt to rhyolite in composition and include well-preserved pumice, reflecting a lithologically diverse and compositionally variable arc volcanic source.

  6. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin


    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  7. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif (United States)

    Soejono, Igor; Janoušek, Vojtěch; Žáčková, Eliška; Sláma, Jiří; Konopásek, Jiří; Machek, Matěj; Hanžl, Pavel


    Cadomian magmatic complexes of the Brunovistulian Domain crop out at the eastern termination of the Bohemian Massif. However, the age, nature and geotectonic affinity of some of pre-Variscan (meta-)igneous rock complexes from this domain are still unknown. Geochronological and geochemical study of the granitic rocks across the Brunovistulian Domain reveals new information about the timing and nature of this magmatic activity originally situated along the northern margin of Gondwana. Zircon U-Pb data (601 ± 3 Ma, Brno Massif; 634 ± 6 Ma, paraautochtonous core of the Svratka Dome; 568 ± 3 Ma, Bíteš orthogneiss) from the allochtonous Moravicum indicate the prolonged magmatic activity within the Brunovistulian Domain during the Ediacaran. The major- and trace-element and Sr-Nd isotopic signatures show heterogeneous geochemical characteristics of the granitic rocks and suggest a magmatic-arc geotectonic setting. The two-stage Depleted Mantle Nd model ages ( c. 1.3-2.0 Ga) indicate derivation of the granitic rocks from a relatively primitive crustal source, as well as from an ancient and evolved continental crust of the Brunovistulian Domain. These results constrain the magmatic-arc activity to c. 635-570 Ma and provide a further evidence for a long-lived (at least c. 65 Myr) and likely episodic subduction-related magmatism at the northern margin of Gondwana. The presence of granitic intrusions derived from variously mature crustal sources at different times suggests heterogeneous crustal segments to having been involved in the magmatic-arc system during its multistage evolution.

  8. Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications

    International Nuclear Information System (INIS)

    Poma, Stella; Zappettini, Eduardo O; Quenardelle, Sonia; Santos, Joao O; Koukharsky, Magdalena; Belousova, Elena; McNaughton, Neil


    We have carried out zircon U-Pb SHRIMP dating and Hf isotope determinations as well as geochemical analyses on three plutonic units of Gondwanan magmatism that crop out in NW Argentina. Two episodes of different age and genesis have been identified. The older one includes gabbros and diorites (Rio Grande Unit) of 267±3 Ma and granitoids (belonging to the Llullaillaco Unit) of 263±1 Ma (late Permian, Guadalupian); the parent magmas were generated in an intraplate environment and derived from an enriched mantle but were subsequently contaminated by crustal components. The younger rocks are granodiorites with arc signature (Chuculaqui Unit) and an age of 247±2 Ma (middle Triassic-Anisian). Hf isotope signature of the units indicates mantle sources as well as crustal components. Hf model ages obtained are consistent with the presence of crustal Mesoproterozoic (mainly Ectasian to Calymnian (T DM(c) =1.24 to 1.44 Ga-negative ε Hf m) and juvenile Cryogenian sources (T DM =0.65 to 0.79 Ga-positiveε Hf(T) , supporting the idea of a continuous, mostly Mesoproterozoic, basement under the Central Andes, as an extension of the Arequipa-Antofalla massif. The tectonic setting and age of the Gondwanan magmatism in NW Argentina allow to differentiate: a. Permian intra-plate magmatism developed under similar conditions to the upper section of the Choiyoi magmatism exposed in the Frontal Cordillera and San Rafael Block, Argentina; b. Triassic magmatism belonging to a poorly known subduction-related magmatic arc segment of mostly NS trend with evidence of porphyry type mineralization in Chile, allowing to extend this metallotect into Argentina

  9. From source to surface: Tracking magmatic boron and chlorine input into the geothermal systems of the Taupo Volcanic Zone, New Zealand (United States)

    Bégué, Florence; Deering, Chad D.; Gravley, Darren M.; Chambefort, Isabelle; Kennedy, Ben M.


    The magmatic contribution into geothermal fluids in the central Taupo Volcanic Zone (TVZ), New Zealand, has been attributed to either andesitic, 'arc-type' fluids, or rhyolitic, 'rift-type' fluids to explain the compositional diversity of discharge waters. However, this model relies on outdated assumptions related to geochemical trends associated with the magma at depth of typical arc to back-arc settings. Current tectonic models have shown that the TVZ is situated within a rifting arc and hosts magmatic systems dominated by distinct rhyolite types, that are likely to have evolved under different conditions than the subordinate andesites. Therefore, a new appraisal of the existing models is required to further understand the origin of the spatial compositional diversity observed in the geothermal fluids and its relationship to the structural setting. Here, we use volatile concentrations (i.e. H2O, Cl, B) from rhyolitic and andesitic mineral-hosted melt inclusions to evaluate the magmatic contribution to the TVZ geothermal systems. The andesite and two different types of rhyolites (R1 and R2) are each distinct in Cl/H2O and B/Cl, which will affect volatile solubility and phase separation (vapor vs. hydrosaline liquid) of the exsolved volatile phase. Ultimately, these key differences in the magmatic volatile constituents will play a significant role in governing the concentration of Cl discharged into geothermal systems. We estimate bulk fluid compositions (B and Cl) in equilibrium with the different melt types to show the potential contribution of 'parent' fluids to the geothermal systems throughout the TVZ. The results of this analysis show that the variability in fluid compositions partly reflects degassing from previously unaccounted for distinct magma source compositions. We suggest the geothermal systems that appear to have an 'arc-type' andesitic fluid contribution are actually derived from a rhyolite melt in equilibrium with a highly crystalline andesite

  10. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N (United States)

    Anderson, Melissa O.; Chadwick, William W.; Hannington, Mark D.; Merle, Susan G.; Resing, Joseph A.; Baker, Edward T.; Butterfield, David A.; Walker, Sharon L.; Augustin, Nico


    The relationships between tectonic processes, magmatism, and hydrothermal venting along ˜600 km of the slow-spreading Mariana back-arc between 12.7°N and 18.3°N reveal a number of similarities and differences compared to slow-spreading mid-ocean ridges. Analysis of the volcanic geomorphology and structure highlights the complexity of the back-arc spreading center. Here, ridge segmentation is controlled by large-scale basement structures that appear to predate back-arc rifting. These structures also control the orientation of the chains of cross-arc volcanoes that characterize this region. Segment-scale faulting is oriented perpendicular to the spreading direction, allowing precise spreading directions to be determined. Four morphologically distinct segment types are identified: dominantly magmatic segments (Type I); magmatic segments currently undergoing tectonic extension (Type II); dominantly tectonic segments (Type III); and tectonic segments currently undergoing magmatic extension (Type IV). Variations in axial morphology (including eruption styles, neovolcanic eruption volumes, and faulting) reflect magma supply, which is locally enhanced by cross-arc volcanism associated with N-S compression along the 16.5°N and 17.0°N segments. In contrast, cross-arc seismicity is associated with N-S extension and increased faulting along the 14.5°N segment, with structures that are interpreted to be oceanic core complexes—the first with high-resolution bathymetry described in an active back-arc basin. Hydrothermal venting associated with recent magmatism has been discovered along all segment types.

  11. Devonian alkaline magmatic belt along the northern margin of the North China Block: Petrogenesis and tectonic implications (United States)

    Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min


    Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.

  12. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling (United States)

    Li, Jianhua; Dong, Shuwen; Cawood, Peter A.; Zhao, Guochun; Johnston, Stephen T.; Zhang, Yueqiao; Xin, Yujia


    In the Mesozoic, South China was situated along the convergent margin between the Asian and Pacific plates, providing an excellent laboratory to understand the interactions between deformation, sedimentation and magmatism in a retroarc environment. The crustal architecture of northwest South China is displayed along the ∼600-km-long SINOPROBE deep seismic reflection profiles and reveals from east to west: (1) highly folded and truncated reflectors in the upper crust of the Yangtze Fold Zone, which correspond to thin- and thick-skinned thrust systems, and document large-scale intraplate structural imbrication and shortening; (2) a crustal-scale flat-ramp-flat structure, termed the Main Yangtze decollement, which forms a weak, viscous layer to accommodate strain decoupling and material transport in the thin- and thick-skinned systems; and (3) nearly flat-lying reflectors in the Sichuan Basin, which support interpretation of the basin as a weakly deformed depocentre. The Yangtze Fold Zone and the Sichuan Basin represent a retro-arc foreland basin system that is >800 km away from the continental-margin magmatic arc. We suggest that tectonic processes across the arc and retro-arc systems, including arc magma flare-up, basin sedimentation, retroarc thrust propagation, lithosphere underthrusting, root foundering, and extension-related magmatism were interrelated and governed mass transfer. Age data and geological relations link the tectonic processes to evolving geodynamics of the subducting Paleo-Pacific plate.

  13. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.


    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  14. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.


    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  15. Metal halide arc discharge lamp having short arc length (United States)

    Muzeroll, Martin E. (Inventor)


    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  16. Copahue volcano and its regional magmatic setting (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin


    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  17. Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): Implications for the geodynamic evolution of the Celebes basin; Basaltes de bassin arriere-arc de l`Eocene-Miocene et tholeiites d`arc insulaire associees du nord Sulawesi (Indonesie): implications pour l`evolution geodynamique du bassin des Celebes

    Energy Technology Data Exchange (ETDEWEB)

    Rangin, C. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Maury, R.C.; Bellon, H.; Cotten, J. [Universite de Bretagne Occidentale, 29 - Brest (France); Polve, M. [Universite Paul Sabatier, 31 - Toulouse (France); Priadi, B.; Soeria-Atmadja, R. [Department of Geology, ITB, Bandung (Indonesia); Joron, J.L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules


    Eocene BABB basalts intruded by tholeiitic and calk-alkalic island arc magmatic rocks are reported from the north arm of Sulawesi (Indonesia). Age and geochemical similarities between these basalts and those drilled in the Celebes Sea indicate this North Sulawesi volcanic arc was built on the same oceanic crust. The 25 deg late Neogene clockwise rotation of the north arm of Sulawesi following its collision with fragments of Australia (Sula, Buton) is not sufficient to explain the asymmetrical magnetic anomalies in the Celebes basin. The North Sulawesi island arc could be interpreted as having progressively retreated northward on its own Celebes sea back arc basin, during an episode of Palaeogene-early Neogene tectonic erosion along the trench. (authors) 37 refs.

  18. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling (United States)

    Chiaradia, Massimo; Müntener, Othmar; Beate, Bernardo; Fontignie, Denis


    In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geochemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt-mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geochemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW-SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and back-arc (Sumaco) chains. All rocks display typical subduction-related geochemical signatures, such as Nb and Ta negative anomalies and LILE enrichment. They show a relative depletion of fluid-mobile elements and a general increase in incompatible elements from the front to the back-arc suggesting derivation from progressively lower degrees of partial melting of the mantle wedge induced by decreasing amounts of fluids released from the slab. We observe widespread petrographic evidence of interaction of primary melts with mafic xenoliths as well as with clinopyroxene- and/or amphibole-bearing cumulates and of magma mixing at all frontal and main arc volcanic centers. Within each volcanic center, rocks display correlations between evolution indices and radiogenic isotopes, although absolute variations of radiogenic isotopes are small and their values are overall rather primitive (e.g., ɛNd = +1.5 to +6, 87Sr/86Sr = 0

  19. Tomographically-imaged subducted slabs and magmatic history of Caribbean and Pacific subduction beneath Colombia (United States)

    Bernal-Olaya, R.; Mann, P.; Vargas, C. A.; Koulakov, I.


    We define the length and geometry of eastward and southeastward-subducting slabs beneath northwestern South America in Colombia using ~100,000 earthquake events recorded by the Colombian National Seismic Network from 1993 to 2012. Methods include: hypocenter relocation, compilation of focal mechanisms, and P and S wave tomographic calculations performed using LOTOS and Seisan. The margins of Colombia include four distinct subduction zones based on slab dip: 1) in northern Colombia, 12-16-km-thick oceanic crust subducts at a modern GPS rate of 20 mm/yr in a direction of 110 degrees at a shallow angle of 8 degrees; as a result of its low dip, Pliocene-Pleistocene volcanic rocks are present 400 km from the frontal thrust; magmatic arc migration to the east records 800 km of subduction since 58 Ma ago (Paleocene) with shallow subduction of the Caribbean oceanic plateau starting ~24-33 Ma (Miocene); at depths of 90-150 km, the slab exhibits a negative velocity anomaly we associate with pervasive fracturing; 2) in the central Colombia-Panama area, we define an area of 30-km-thick crust of the Panama arc colliding/subducting at a modern 30/mm in a direction of 95 degrees; the length of this slab shows subduction/collision initiated after 20 Ma (Middle Miocene); we call this feature the Panama indenter since it has produced a V-shaped indentation of the Colombian margin and responsible for widespread crustal deformation and topographic uplift in Colombia; an incipient subduction area is forming near the Panama border with intermediate earthquakes at an eastward dip of 70 degrees to depths of ~150 km; this zone is not visible on tomographic images; 3) a 250-km-wide zone of Miocene oceanic crust of the Nazca plate flanking the Panama indenter subducts at a rate of 25 mm/yr in a direction of 55 degrees and at a normal dip of 40 degrees; the length of this slab suggests subduction began at ~5 Ma; 4) the Caldas tear defines a major dip change to the south where a 35 degrees

  20. A geochemical approach to distinguishing competing tectono-magmatic processes preserved in small eruptive centres (United States)

    McGee, Lucy E.; Brahm, Raimundo; Rowe, Michael C.; Handley, Heather K.; Morgado, Eduardo; Lara, Luis E.; Turner, Michael B.; Vinet, Nicolas; Parada, Miguel-Ángel; Valdivia, Pedro


    Small eruptive centres (SECs) representing short-lived, isolated eruptions are effective samples of mantle heterogeneity over a given area, as they are generally of basaltic composition and show evidence of little magmatic processing. This is particularly powerful in volcanic arcs where the original melting process generating stratovolcanoes is often obscured by additions from the down-going slab (fluids and sediments) and the overlying crust. The Pucón area of southern Chile contains active and dormant stratovolcanoes, Holocene, basaltic SECs and an arc-scale strike-slip fault (the Liquiñe Ofqui Fault System: LOFS). The SECs show unexpected compositional heterogeneity considering their spatial proximity. We present a detailed study of these SECs combining whole rock major and trace element concentrations, U-Th isotopes and olivine-hosted melt inclusion major element and volatile contents to highlight the complex inter-relations in this small but active area. We show that heterogeneity preserved at individual SECs relates to different processes: some start in the melting region with the input of slab-derived fluids, whilst others occur later in a centre's magmatic history with the influence of crustal contamination prior to olivine crystallisation. These signals are deduced through the combination of the different geochemical tools used in this study. We show that there is no correlation between composition and distance from the arc front, whilst the local tectonic regime has an effect on melt composition: SECs aligned along the LOFS have either equilibrium U-Th ratios or small Th-excesses instead of the large—fluid influenced—U-excesses displayed by SECs situated away from this feature. One of the SECs is modelled as being generated from fluid-enriched depleted mantle, a source which it may share with the stratovolcano Villarrica, whilst another SEC with abundant evidence of crustal contamination may share its plumbing system with its neighbouring

  1. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton (United States)

    Yang, Fan; Santosh, M.; Tang, Li


    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  2. Modulation of magmatic processes by carbon dioxide (United States)

    Caricchi, L.; Sheldrake, T. E.; Blundy, J. D.


    Volatile solubility in magmas increases with pressure, although the solubility of CO2 is much lower than that of H2O. Consequently, magmas rising from depth release CO2-rich fluids, which inevitably interact with H2O-poor magmas in the upper crust (CO2-flushing). CO2-flushing triggers the exsolution of H2O-rich fluids, leading to an increase of volume and magma crystallisation. While the analyses of eruptive products demonstrates that this process operates in virtually all magmatic system, its impact on magmatic and volcanic processes has not been quantified. Here we show that depending on the initial magma crystallinity, and the depth of magma storage, CO2-flushing can lead to volcanic eruptions or promote conditions that favour the impulsive release of mineralising fluids. Our calculations show that the interaction between a few hundred ppm of carbonic fluids, and crystal-poor magmas stored at shallow depths, produces rapid pressurisation that can potentially lead to an eruption. Further addition of CO2 increases magma compressibility and crystallinity, reducing the potential for volcanic activity, promoting the formation of ore deposits. Increasing the depth of fluid-magma interaction dampens the impact of CO2-flushing on the pressurisation of a magma reservoir. CO2-flushing may result in surface inflation and increases in surface CO2 fluxes, which are commonly considered signs of an impending eruption, but may not necessarily result in eruption depending on the initial crystallnity and depth of the magmatic reservoir. We propose that CO2-flushing is a powerful agent modulating the pressurisation of magma reservoirs and the release of mineralising fluids from upper crustal magma reservoirs.

  3. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.


    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  4. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.


    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  5. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Yener Eyuboglu


    Full Text Available The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine–Himalayan belt. The late Mesozoic–Cenozoic geodynamic evolution of this belt remains controversial. Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved. The adakitic lithologies comprise porphyries and hyaloclastites. The porphyries are represented by biotite-rich andesites, hornblende-rich andesite and dacite. The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud. The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area. We report zircon U-Pb ages of 48.71 ± 0.74 Ma for the adakitic rocks, and 44.68 ± 0.84 Ma for the non-adakitic type, suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism. We evaluate the origin, magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt. Our results have important bearing on the late Mesozoic–Cenozoic geodynamic evolution of the eastern Mediterranean region.

  6. Exotic Members of Southern Alaska's Jurassic Arc (United States)

    Todd, E.; Jones, J. V., III; Karl, S. M.; Box, S.; Haeussler, P. J.


    The Jurassic Talkeetna arc and contemporaneous plutonic rocks of the Alaska-Aleutian Range batholith (ARB) are key components of the Peninsular terrane of southern Alaska. The Talkeetna arc, considered to be a type example of an intra-oceanic arc, was progressively accreted to northwestern North America in the Jurassic to Late Cretaceous, together with associated components of the Wrangellia Composite terrane. Older Paleozoic and Mesozoic rock successions closely associated with the ARB suggest that at least part of the Peninsular terrane might be an overlap succession built on pre-existing crust, possibly correlative with the Wrangellia terrane to the east. However, the relationship between the Talkeetna arc, ARB, and any pre-existing crust remains incompletely understood. Field investigations focused on the petrogenesis of the ARB near Lake Clark National Park show that Jurassic to Late Cretaceous plutonic rocks commonly host a diverse range of mineralogically distinct xenolith inclusions, ranging in size from several cm to hundreds of meters. The modal fraction of these inclusions ranges from 50% in some outcrops. They are generally mafic in composition and, with few exceptions, are more mafic than host plutonic rocks, although they are observed as both igneous (e.g., gabbro cumulate, diorite porphyry) and metamorphic types (e.g., amphibolite, gneiss and quartzite). Inclusion shapes range from angular to rounded with sharp to diffuse boundaries and, in some instances, are found as planar, compositionally distinct bands or screens containing high-temperature ductile shear fabrics. Other planar bands are more segmented, consistent with lower-temperature brittle behavior. Comparison of age, geochemical fractionation trends, and isotope systematics between the inclusions and host plutons provides a critical test of whether they are co-genetic with host plutons. Where they are related, mafic inclusions provide clues about magmatic evolution and fractionation history

  7. Single-Arc IMRT?

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Webb, Steve


    The idea of delivering intensity-modulated radiation therapy (IMRT) with a multileaf collimator in a continuous dynamic mode during a single rotation of the gantry has recently gained momentum both in research and industry. In this note we investigate the potential of this Single-Arc IMRT technique at a conceptual level. We consider the original theoretical example case from Brahme et al that got the field of IMRT started. Using analytical methods, we derive deliverable intensity 'landscapes' for Single-Arc as well as standard IMRT and Tomotherapy. We find that Tomotherapy provides the greatest flexibility in shaping intensity landscapes and that it allows one to deliver IMRT in a way that comes close to the ideal case in the transverse plane. Single-Arc and standard IMRT make compromises in different areas. Only in relatively simple cases that do not require substantial intensity modulation will Single-Arc be dosimetrically comparable to Tomotherapy. Compared with standard IMRT, Single-Arc could be dosimetrically superior in certain cases if one is willing to accept the spreading of low dose values over large volumes of normal tissue. In terms of treatment planning, Single-Arc poses a more challenging optimization problem than Tomotherapy or standard IMRT. We conclude that Single-Arc holds potential as an efficient IMRT technique especially for relatively simple cases. In very complex cases, Single-Arc may unduly compromise the quality of the dose distribution, if one tries to keep the treatment time below 2 min or so. As with all IMRT techniques, it is important to explore the tradeoff between plan quality and the efficiency of its delivery carefully for each individual case. (note)

  8. Resolving the crustal composition paradox by 3.8 billion years of slab failure magmatism and collisional recycling of continental crust (United States)

    Hildebrand, Robert S.; Whalen, Joseph B.; Bowring, Samuel A.


    In the standard paradigm, continental crust is formed mainly by arc magmatism, but because the compositions of magma rising from the mantle are basaltic and continental crust is estimated to contain about 60% SiO2 and much less MgO than basalt, the two do not match. To resolve this paradox, most researchers argue that large amounts of magmatic fractionation produce residual cumulates at the base of the crust, which because arcs are inferred to have magmatically thickened crust, form eclogites that ultimately founder and sink into the mantle. Not only are there problems with the contrasting bulk compositions, but the standard model also fails because prior to collision most modern arcs do not have thick crust, as documented by their eruption close to sea level, and in cases of ancient arc sequences, their intercalation with marine sedimentary rocks. Our study of Cretaceous batholiths in the North American Cordillera resolves the crustal composition paradox because we find that most are not arc-derived as commonly believed; but instead formed during the waning stages of collision and consequent slab failure. Because the batholiths typically have silica contents >60% and are derived directly from the mantle, we argue that they are the missing link in the formation of continental crust. Slab failure magmas worldwide are compositionally similar to tonalite-trondhjemite-granodiorite suites as old as 3.8 Ga, which points to their collective formation by slab failure and long-lived plate tectonics. Our model also provides (1) an alternative solution to interpret compiled detrital zircon arrays, because episodic peaks that coincide with periods of supercontinent amalgamation are easily interpreted to represent collisions with formation of new crust by slab failure; and (2) that models of early whole-earth differentiation are more reasonable than those invoking progressive growth of continental crust.

  9. Geochemical modeling of magmatic gas scrubbing

    Directory of Open Access Journals (Sweden)

    B. Gambardella


    Full Text Available The EQ3/6 software package, version 7.2 was successfully used to model scrubbing of magmatic gas by pure water at 0.1 MPa, in the liquid and liquid-plus-gas regions. Some post-calculations were necessary to account for gas separation effects. In these post-calculations, redox potential was considered to be fixed by precipitation of crystalline a-sulfur, a ubiquitous and precocious process. As geochemical modeling is constrained by conservation of enthalpy upon water-gas mixing, the enthalpies of the gas species of interest were reviewed, adopting as reference state the liquid phase at the triple point. Our results confirm that significant emissions of highly acidic gas species (SO2(g, HCl(g, and HF(g are prevented by scrubbing, until dry conditions are established, at least locally. Nevertheless important outgassing of HCl(g can take place from acid, HCl-rich brines. Moreover, these findings support the rule of thumb which is generally used to distinguish SO2-, HCl-, and HF-bearing magmatic gases from SO2-, HCl-, and HF-free hydrothermal gases.

  10. Magma interaction in the root of an arc batholith (United States)

    Chapman, T.; Robbins, V.; Clarke, G. L.; Daczko, N. R.; Piazolo, S.


    Fiordland, New Zealand, preserves extensive Cretaceous arc plutons, emplaced into parts of the Delamerian/Ross Orogen. Dioritic to gabbroic material emplaced at mid to lower crustal levels are exposed in the Malaspina Pluton (c. 1.2 GPa) and the Breaksea Orthogneiss (c. 1.8 GPa). Distinct magmatic pulses can be mapped in both of these plutons consistent with cycles of melt advection. Relationships are consistent with predictions from lower crustal processing zones (MASH and hot zones) considered important in the formation of Cordilleran margins. Metamorphic garnet growth is enhanced along magmatic contacts, such as where hornblende gabbronorite is cut by garnet-clinopyroxene-bearing diorite. Such features are consistent with cycles of incremental emplacement, younger magma having induced localised garnet granulite metamorphism in wall rock of older material. Temperature estimates and microstructures preserved in garnet granulite are consistent with sub-solidus, water-poor conditions in both the Malaspina and Breaksea Orthogneiss. The extent and conditions of the metamorphism implies conditions and duration was incapable of partially melting older wall rock material. The nature of interactions in intermediate to basic compositions are assessed in terms of magma genesis in the Cretaceous batholith. Most of the upper crustal felsic I-type magmatism along the margin being controlled by high-pressure garnet-clinopyroxene fractionation.

  11. Petrographic and Geochemical Investigation of Andesitic Arc Volcanism: Mount Kerinci, Sunda Arc, Indonesia (United States)

    Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.


    the volcanic chain will enable along-arc variations in magmatic processes in Sumatra to be assessed more thoroughly, providing fundamental insights into the evolution of not only Kerinci, but magma genesis in Sumatra in general. Keywords: Sunda Arc, andesite, arc volcanism, petrogenesis.

  12. Intense magmatic degassing through the lake of Copahue volcano, 2013-2014 (United States)

    Tamburello, G.; Agusto, M.; Caselli, A.; Tassi, F.; Vaselli, O.; Calabrese, S.; Rouwet, D.; Capaccioni, B.; Di Napoli, R.; Cardellini, C.; Chiodini, G.; Bitetto, M.; Brusca, L.; Bellomo, S.; Aiuppa, A.


    Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d-1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d-1, CO2 ~ 638 t d-1, HCl ~ 66 t d-1, H2 ~ 3.3 t d-1, and HBr ~ 0.05 t d-1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahue's unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d-1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.

  13. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran (United States)

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.


    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  14. Petrology, geochemistry and radiometric ages of high silica Adakitic Domes of Neogene continental arc, south of Quchan

    International Nuclear Information System (INIS)

    Ghasemi, H.; Sadeghian, M.; Khanalizadeh, A.; Tanha, A.


    Neogene high silica adakitic domes of south Quchan, cropped out in the northern part of the Quchan-Esfarayen Cenozoic magmatic arc (north of Sabzevar ophiolitic and metamorphic belt). In this volcanic belt, magmatic activities has been started since Eocene (about 40 Ma ago) and continued to Plio-Pleistocene (about 2 Ma ago). The ages of volcanic rocks range from Eocene to Plio-Pleistocene from south (in adjacent to the Sabzevar ophiolitic belt) to north (in south of Quchan) respectively. Northern part of this high silica adakitic arc is composed of pyroclastic units and several domes contain trachyandesites, trachytes, dacites and rhyodacites (2-12 Ma ago) which are usually overlain an olivine basaltic- basaltic basement of Eocene to Lower Miocene (19-20 Ma ago). Existence of Eocene volcanic enclaves and gneissic, siltstone, marl and pellitic enclaves, appearance and disappearance of some mineral phases, corrosions and chemical dis equilibriums of some phenocrysts and sieve textures are some evidences of magmatic contamination. 87 Sr/ 86 Sr ratio ranges from 0.7041 to 0.7057 confirms this contamination. A clear positive anomaly in LREE and LILE and a negative anomaly in HREE found in the rocks of Neogene domes. Negative anomalies in HFSE (e.g. P, Nb, Ti) which is the indicator of arc settings, also found in these rocks. Calc-alkaline nature, continental arc subduction setting, presence of an eclogitic or garnet-amphibolitic source rock (resulted from metamorphism of Sabzevar subducted oceanic crust as a source of magma generation), high silica adakitic nature of magmatism and the role of fractional crystallization, assimilation and magmatic contamination in the genesis and evolution of magma in these domes, indicated by the geochemical evidences. These adakitic magmas were the latest melts resulted from partial melting of young and hot Sabzevar Neotethyan subducted oceanic crust and its overlaying mantle wedge, which have been emplaced and manifested in the form of

  15. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand

    DEFF Research Database (Denmark)

    van der Meer, Quinten; Waight, Tod Earle; Scott, James


    –100Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i)=18.6, 207Pb/204Pb(i)=15.62, 208Pb/204Pb(i)=38.6, 87Sr/86Sr(i)=0.7063–0.7074, εNd(i)=−2.1 −+0.1 and εHf(i)=−0.2 −+2.3) and are interpreted as melts originating from subduction-modified lithosphere....... Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92–84Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i)=18.7 to 19.4, 207Pb/204Pb(i)=15.60 to 15.65, 208Pb/204Pb(i)=38.6 to 39.4, 87Sr/86Sr(i)=0.7031 to 0.7068, εNd(i)=+4.5 to +8.0 and εHf(i)=+5.1 to +8...... from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98–82Ma) occurred outboard of Gondwana’s former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i)≈20.5, 207Pb...

  16. Consolidating NASA's Arc Jets (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald


    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  17. ALICE-ARC integration

    International Nuclear Information System (INIS)

    Anderlik, C; Gregersen, A R; Kleist, J; Peters, A; Saiz, P


    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  18. Diversity and Petrogenesis of Bonin Rear-Arc (United States)

    Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.; Gill, J.


    The Izu Bonin subduction zone has a history of abundant rhyolite production that is relevant to the development of intermediate to silicic middle crust. This study presents major and trace elemental compositions (via electron microprobe and LA-ICP-MS) of unaltered volcanic glass and phenocrysts from select medium- to high-K tephra intervals from IODP Site 1437 (Expedition 350, Izu Bonin Rear Arc). These data provide a time-resolved record of regional explosive magmatism ( 4.4Ma to present). Tephra from Site 1437 is basaltic to rhyolitic glass with accompanying phenocrysts, including hornblende. Glass compositions form a medium-K magmatic series with LREE enrichment (LaN/YbN = 2.5-6) whose trace element ratios and isotopic compositions are distinct from magmas with similar SiO2 contents in the main Izu Bonin volcanic front. Other workers have shown progressive enrichment in K and other trace element ratios moving from volcanic front westwards through the extensional region to the western seamounts in the rear arc. The <4.4 Ma rear-arc rhyolites from Site 1437 show pronounced negative Eu anomalies, high LaN/SmN (2-3.5), Ba/La <25 and Th of 1.5-4 ppm. These rhyolites show the highest variability for a given SiO2 content among all rear-arc magmas (rhyolites have 1.5-3.5 wt% K2O, Zr/Y of 1-8, LaN of 5-9 ppm) consistent with variability in literature reports of other rhyolite samples dredged from surrounding seamounts. Rhyolites have been dredged from several nearby seamounts with other high-K rhyolites dredged as close as nearby Meireki Seamount ( 3.8 Ma) and further afield in the Genroku seamount chain ( 1.88 Ma), which we compare to Site 1437 rhyolites. An extremely low-K rhyolite sill (13.6 Ma) was drilled lower in the section at Site U1437, suggesting that the mechanism for producing rhyolites in the Western Seamounts region changed over time. Rhyolites are either produced by differentiation of mafic magmas, by melting of pre-existing arc crust (as hypothesized in

  19. Moho and magmatic underplating in continental lithosphere

    DEFF Research Database (Denmark)

    Thybo, Hans; Artemieva, Irina M.


    interacts with the surrounding crustal rocks which leads to smearing of geophysical signals from the underplated material. In terms of processes, there is no direct discriminator between the traditional concept of underplated material and lower crustal magmatic intrusions in the form of batholiths and sill......Underplating was originally proposed as the process of magma ponding at the base of the crust and was inferred from petrologic considerations. This process not only may add high density material to the deep crust, but also may contribute low density material to the upper parts of the crust by magma...... fractionation during cooling and solidification in the lower crust. Separation of the low density material from the high-density residue may be a main process of formation of continental crust with its characteristic low average density, also during the early evolution of the Earth. Despite the assumed...

  20. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.


    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  1. The magmatic model for the origin of Archean Au-quartz vein ore systems: an assessment of the evidence

    International Nuclear Information System (INIS)

    Spooner, E.T.C.


    The magmatic model for the origin of Archean Au-quartz vein ore systems suggests that Au was derived by partition between silicate (± sulphide) melts of certain compositions and H 2 O-CO 2 -NaCl magmatic fluids. Supporting evidence includes partial/structural geological relationships, timing relationships, H and C isotope geochemistry, probable primary Au enrichment in the Lamaque stocks, and fluid inclusion volatile geochemistry. Evidence is currently negative with respect to various within- and sub-greenstone belt metamorphic/deep crustal fluid models for primary Au mineralization; however a U-Pb age for vein stage 3 sphene from the Camflo deposit, Quebec which is ∼ 55-60 Ma younger than the host stock at 2685-2680 Ma indicates dissolution/reprecipitation of Au by late, (?) upper crustal saline fluids. Evidence is accumulating that epithermal-meso thermal Au-Ag mineralization in island arc and cordilleran settings may also have been magmatically derived ± high level fluid mixing from calc-alkaline, shoshonitic and other igneous compositions. (author)

  2. Post-magmatic tectonic deformation of the outer Izu-Bonin-Mariana forearc system: initial results of IODP Expedition 352 (United States)

    Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific


    IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and

  3. Arc Heated Scramjet Test Facility (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  4. Efficient cooling of rocky planets by intrusive magmatism (United States)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.


    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  5. The Origin of Tholeiitic and Calc-Alkaline Trends in Arc Magmas (United States)

    Luffi, P. I.; Lee, C.


    It has long been recognized that tholeiitic (TH, high-Fe/Mg) and calc-alkaline (CA, low-Fe/Mg) magmatic series define the two most important igneous differentiation trends shaping Earth's crust. While oceanic crust formation at mid-ocean ridges is typically confined to a TH trend, arc magmatism at convergent margins, considered to significantly contribute to continent formation, generates both TH and CA trends. Thus, the origin of these trends - a key issue to understanding how continental crust forms - is matter of ongoing debate. Prevalent factors thought to contribute to the TH-CA duality are: 1) redox conditions (oxygen fugacity, fO2) and H2O contents in magmas, which control the onset and abundance of high-Fe/Mg oxide mineral fractionation; 2) crystallization depths that regulate the fractionating solid assemblage and thereby the solid/liquid Kd(Fe-Mg). Relying on an extensive geochemical dataset of modern arc volcanics and thermodynamic phase equilibria modeling, here we examine the validity and relative importance of these factors in arc petrogenesis. First, to discriminate igneous rocks more efficiently, we formulate an improved CA/TH index solely based on FeO-MgO systematics. We then confirm on a quantitative basis that, on regional scales, arcs formed on thick crust tend to be more calk-alkaline than those emplaced on thinner crust are, and show that the effect of fO2 on the CA/TH index in arc magmas is more significant than that of H2O. Importantly, we demonstrate that CA trends typical for continental arcs only form when crystal fractionation is accompanied by the assimilation of oxidized crustal components; in the absence of buffering oxidized assimilants fractionating magmas follow a TH trend more common in island arcs, irrespective of their H2O content and initial fO2 level. We find that high-pressure fractionation of amphibole and garnet in arc magmas occurs too late to have a significant influence on the CA/TH index; in addition, garnet-melt and

  6. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.


    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  7. Thermal Arc Spray Overview (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati


    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  8. Circular arc structures

    KAUST Repository

    Bo, Pengbo; Pottmann, Helmut; Kilian, Martin; Wang, Wen Ping; Wallner, Johannes


    and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where

  9. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva


    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  10. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd


    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.


    African Journals Online (AJOL)

    INTRODUCTION. The project, carried out by the 1985 Conservation. Team at Durban Girls1 High School, consisted of three main aims- Awareness, Recreation and conservation, which were incorporated into the naming of the ARC trail. The trail is situated in suburban Durban where it was felt that it was important to ...

  12. ARC Software and Models (United States)

    Archives RESEARCH ▼ Research Areas Ongoing Projects Completed Projects SOFTWARE CONTACT ▼ Primary Contacts Researchers External Link MLibrary Deep Blue Software Archive Most research conducted at the ARC produce software code and methodologies that are transferred to TARDEC and industry partners. These

  13. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P


    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  14. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt (United States)

    Ciobanu, Cristiana L.; Cook, Nigel J.; Stein, Holly


    The 1,500-km-long Banatitic Magmatic and Metallogenetic Belt (BMMB) of Romania, Serbia and Bulgaria is a complex calc-alkaline magmatic arc of Late Cretaceous age. It hosts a variety of magmatic-hydrothermal Cu, Au, Mo, Zn, Pb and Fe deposits, including Europe's only world-class porphyry-copper deposits. Regional metallogeny can be linked to subduction of the Vardar Ocean during the Late Cretaceous, as part of the closure of the Neotethys Ocean that had separated Europe and Africa in the Mesozoic. Porphyry Cu-(Au)-(Mo) and intimately associated epithermal massive sulphides dominate in the central segments of the belt in southernmost Banat (Romania), Serbia and north-west Bulgaria. These districts are the economically most important today, including major active Cu-Au mines at Moldova Nouă in Romania, Majdanpek, Veliki Krivelj and Bor in Serbia, and Elatsite, Assarel and Chelopech in Bulgaria. More numerous (and mostly mined in the past) are Fe, Cu and Zn-Pb skarns, which occur mainly at the two ends of the belt, in Eastern Bulgaria and in Romania. This paper summarises some of the deposit characteristics within the geodynamic framework of terminal Vardar subduction. Heterogeneous terranes of the belt, including the Apuseni Mountains at the western end, are aligned parallel to the Vardar front following continental collision of the Dacia and Tisza blocks. All available geochronological data (numerous K-Ar and some U-Pb and Re-Os ages) are compiled, and are complemented by a new high-precision Re-Os date for the Dognecea skarn deposit, south-west Romania (76.6±0.3 Ma). These data indicate that magmatism extended over at least 25 million years, from about 90 to 65 Ma in each segment of the belt. Within Apuseni Mountains and Banat, where magma emplacement was related to syn-collisional extension in the orogenic belt of Carpathians, ore formation seems to be restricted in time and maybe constrained by a shared tectonic event.

  15. Phase equilibria constraints on models of subduction zone magmatism (United States)

    Myers, James D.; Johnston, Dana A.

    Petrologic models of subduction zone magmatism can be grouped into three broad classes: (1) predominantly slab-derived, (2) mainly mantle-derived, and (3) multi-source. Slab-derived models assume high-alumina basalt (HAB) approximates primary magma and is derived by partial fusion of the subducting slab. Such melts must, therefore, be saturated with some combination of eclogite phases, e.g. cpx, garnet, qtz, at the pressures, temperatures and water contents of magma generation. In contrast, mantle-dominated models suggest partial melting of the mantle wedge produces primary high-magnesia basalts (HMB) which fractionate to yield derivative HAB magmas. In this context, HMB melts should be saturated with a combination of peridotite phases, i.e. ol, cpx and opx, and have liquid-lines-of-descent that produce high-alumina basalts. HAB generated in this manner must be saturated with a mafic phase assemblage at the intensive conditions of fractionation. Multi-source models combine slab and mantle components in varying proportions to generate the four main lava types (HMB, HAB, high-magnesia andesites (HMA) and evolved lavas) characteristic of subduction zones. The mechanism of mass transfer from slab to wedge as well as the nature and fate of primary magmas vary considerably among these models. Because of their complexity, these models imply a wide range of phase equilibria. Although the experiments conducted on calc-alkaline lavas are limited, they place the following limitations on arc petrologic models: (1) HAB cannot be derived from HMB by crystal fractionation at the intensive conditions thus far investigated, (2) HAB could be produced by anhydrous partial fusion of eclogite at high pressure, (3) HMB liquids can be produced by peridotite partial fusion 50-60 km above the slab-mantle interface, (4) HMA cannot be primary magmas derived by partial melting of the subducted slab, but could have formed by slab melt-peridotite interaction, and (5) many evolved calc

  16. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.


    Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier). The latest Cretaceous-early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ∼ 120-130 million years of oceanic magmatism in geological history of the northern Neotethys.

  17. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.


    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with

  18. Age of Izu-Bonin-Mariana arc basement (United States)

    Ishizuka, Osamu; Hickey-Vargas, Rosemary; Arculus, Richard J.; Yogodzinski, Gene M.; Savov, Ivan P.; Kusano, Yuki; McCarthy, Anders; Brandl, Philipp A.; Sudo, Masafumi


    Documenting the early tectonic and magmatic evolution of the Izu-Bonin-Mariana (IBM) arc system in the Western Pacific is critical for understanding the process and cause of subduction initiation along the current convergent margin between the Pacific and Philippine Sea plates. Forearc igneous sections provide firm evidence for seafloor spreading at the time of subduction initiation (52 Ma) and production of "forearc basalt". Ocean floor drilling (International Ocean Discovery Program Expedition 351) recovered basement-forming, low-Ti tholeiitic basalt crust formed shortly after subduction initiation but distal from the convergent margin (nominally reararc) of the future IBM arc (Amami Sankaku Basin: ASB). Radiometric dating of this basement gives an age range (49.3-46.8 Ma with a weighted average of 48.7 Ma) that overlaps that of basalt in the present-day IBM forearc, but up to 3.3 m.y. younger than the onset of forearc basalt activity. Similarity in age range and geochemical character between the reararc and forearc basalts implies that the ocean crust newly formed by seafloor spreading during subduction initiation extends from fore- to reararc of the present-day IBM arc. Given the age difference between the oldest forearc basalt and the ASB crust, asymmetric spreading caused by ridge migration might have taken place. This scenario for the formation of the ASB implies that the Mesozoic remnant arc terrane of the Daito Ridges comprised the overriding plate at subduction initiation. The juxtaposition of a relatively buoyant remnant arc terrane adjacent to an oceanic plate was more favourable for subduction initiation than would have been the case if both downgoing and overriding plates had been oceanic.

  19. Magmatic intrusions in the lunar crust (United States)

    Michaut, C.; Thorey, C.


    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  20. A tale of two arcs? Plate tectonics of the Izu-Bonin-Mariana (IBM) arc using subducted slab constraints (United States)

    Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V. S.


    the East Asian Sea. The Philippine Sea plate moved northwards, overrunning the East Asian Sea and the two arcs collided between 15 to 20 Ma. From 15 Ma to the present, IBM arc magmatism was produced by Pacific subduction beneath the Philippine Sea.

  1. Drilling to investigate processes in active tectonics and magmatism


    J. Shervais; J. Evans; V. Toy; J. Kirkpatrick; A. Clarke; J. Eichelberger


    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park C...

  2. Formation of continental crust by intrusive magmatism (United States)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.


    How were the continents formed in the Earth? No global numerical simulation of our planet ever managed to generate continental material self-consistently. In the present study, we show that the latest developments of the convection code StagYY enable to estimate how to produce the early continents, more than 3 billion years ago. In our models, melting of pyrolitic rocks generates a basaltic melt and leaves behind a depleted solid residue (a harzburgite). The melt generated in the mantle is transported to the surface. Only basaltic rocks melting again can generate continental crust. Should the basaltic melt always reach the open air and cool down? Should the melt be intruded warm in the pre-existing crust? The present study shows that both processes have to be considered to produce continents. Indeed, granitoids can only be created in a tight window of pressure-temperature. If all basalt is quickly cooled by surface volcanism, the lithosphere will be too cold. If all basalt is intruded warm below the crust then the lithosphere will be too warm. The key is to have both volcanism and plutonism (intrusive magmatism) to reach the optimal temperature and form massive volumes of continental material.

  3. Distinctly different parental magmas for plutons and lavas in the central Aleutian arc (United States)

    Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.


    While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively

  4. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.


    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting

  5. Arc cathode spots

    International Nuclear Information System (INIS)

    Schrade, H.O.


    Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory

  6. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane (United States)

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.


    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  7. Reestablishment of the Ancestral Cascades Arc in Western Nevada and Eastern California by Rollback of the Shallow Farallon Slab (United States)

    Henry, C. D.; Cousens, B.; John, D. A.; Colgan, J. P.


    The character and even existence of an ancestral Tertiary Cascades arc in western Nevada and eastern California south of the modern arc are controversial. Based on extensive published and new data on the regional distribution, timing, style, and composition of magmatism, we conclude that an ancestral arc was established by WSW migration of magmatism into western NV and the northeastern Sierra Nevada in the Oligocene and Miocene as a result of progressive rollback of the shallow subducted slab. Magma migration started with the well-known southward sweep through NE NV and NW UT between ~46 and 36 Ma. By ~30 Ma, migration of the leading edge and central belt of activity was much more WSW, especially after removing younger ~E-W extension. Locally sourced, initially dispersed and small volume, intermediate to mafic lavas erupted in western NV and northeastern CA by ~30 Ma and the eastern Sierra Nevada by ~28 Ma, contemporaneous with the much more voluminous ignimbrite flare-up in central NV. As migration continued, the ignimbrite flare-up tapered off. A voluminous, NNW-trending, dominantly effusive volcanic belt developed by ~22-18 Ma in western NV and was continuous from the Bodie Hills (CA/NV) to the Warner Range (northeast CA) by ~16-15 Ma. The volcanic belt was dominated by intermediate to mafic magmas compositionally similar to those of the modern south Cascades arc but reflecting melting of an old, subduction-modified lithosphere (Cousens et al. 2008; Geosphere). Extensive middle Miocene bimodal rocks related to the Yellowstone hotspot cover these rocks in NW NV, NE CA, and SE OR, but 30-23 Ma, intermediate to mafic and lesser silicic rocks are voluminous wherever older rocks are exposed below the middle Miocene rocks. Between ~25 Ma and the present, magmatism migrated WSW at an average rate of ~8 km/Ma but was at least partly stepwise, as exemplified by an ~50 km westward step at 2 Ma in the Lassen area (Guffanti et al. 1990, JGR). The magmatic belt was as much

  8. Aperture modulated arc therapy

    International Nuclear Information System (INIS)

    Crooks, S M; Wu, Xiaodong; Takita, C; Watzich, M; Xing Lei


    We show that it is possible to translate an intensity modulated radiation therapy (IMRT) treatment plan and deliver it as a single arc. This technique is referred to in this paper as aperture modulation arc therapy (AMAT). During this arc, the MLC leaves do not conform to the projection of the target PTV and the machine output of the accelerator has a constant value. Dose was calculated using the CORVUS 4.0 IMRT system, which uses a pencil beam dose algorithm, and treatments were delivered using a Varian 2100C/D Clinac. Results are presented for a head and neck and a prostate case, showing the equivalence of the IMRT and the translated AMAT delivery. For a prostate AMAT delivery, coronal plane film dose for the IMRT and AMAT deliveries agreed within 7.19 ± 6.62%. For a meningioma the coronal plane dose distributions were similar to a value of 4.6 ± 6.62%. Dose to the isocentre was measured as being within 2% of the planned value in both cases

  9. Circular arc structures

    KAUST Repository

    Bo, Pengbo


    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  10. Volcano geodesy in the Cascade arc, USA (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin


    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  11. Volcano geodesy in the Cascade arc, USA (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben


    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  12. U-series isotopes in arc magma

    Energy Technology Data Exchange (ETDEWEB)

    Hawkesworth, C.; Turner, S.; McDermott, F.; Peate, D.; Van Calsteren, P.


    Thorium is not readily mobilized in the fluid component along destructive plate margins. Uranium is mobilized, and the resultant fractionation in U/Th can be used to estimate the rates of transfer slab derived components through the mantle wedge. The variations in Th/Yb, and by implication in the fractionation-corrected Th abundances of arc magmas largely depend on the contributions from subducted sediments. It is inferred that the distinctive high Th/Ta ratios of subduction related magmas primarily reflect the Th/Ta ratios of the subducted sediments, and that such high Th/Ta ratios are generated by processes other than those associated with recent subduction-related magmatism. Uranium and thorium isotopes have also been used to evaluate magma residence times within the crust. Thus, separated minerals and groundmass from six rocks erupted in the last 4,000 years from Soufriere on St. Vincent in the Lesser Antilles, scatter about a 50,000 year errorchron on the U-Th equiline diagram (Heath et al., 1977). Models are currently being developed to investigate how such apparent ages may relate to calculated replenishment times in steady state systems. Bulk continental crust has a lower U/Th ratio (0.25) than at least some estimates for the bulk Earth (0.26) and the depleted upper mantle (0.39). However, the island arc rocks with low U/Th ratios appear to have inherited those from subducted sediments, and arc rocks with a low sediment contribution have significantly higher U/Th. Consequently, the U/Th ratios of new crustal material generated along destructive plate margins are significantly higher than those of bulk continental crust. The low average U/Th of bulk crust may be primarily due to different crust generation processes in the Archaean, when U would be less mobile because conditions were less oxidising, and when residual garnet may have had more of a role in crust generation processes. Extended abstract. 4 figs., 23 refs.

  13. Crust-mantle contribution to Andean magmatism

    International Nuclear Information System (INIS)

    Ruiz, J; Hildreth, W; Chesley, J


    There has long been great interest in quantifying the contributions of the continental crust to continental arc magmas, such as those of the Andes using osmium isotopes (Alves et al., 1999; Borg et al., 2000; Brandon et al., 1996; McInnes et al., 1999). In general, Andean volcanic rocks of all compositions show relatively low Sr-isotope ratios and positive to mildly negative epsilon Nd values. Nonetheless, in the Southern Volcanic Zone of central Chile, basalt-andesite-dacite volcanoes along the Quaternary volcanic front were shown (by Hildreth and Moorbath, 1988) to have latitudinally systematic chemical variations, as well as a monotonic increase in 87Sr/Sr86 from ca. 0.7035 to 0.7055 and a decrease in epsilon Nd values from ca. +3 to -1. The isotopic variations correlate with basement elevation of the volcanic edifices and with Bouguer gravity anomalies, both of which are thought to reflect along-arc variations in thickness and average age of the underlying crust. Volcanoes with the most evolved isotopic signatures were fed through the thickest crust. Correlation of chemical and isotopic variations with crustal thickness was interpreted to be caused by Melting (of deep-crustal host rocks), Assimilation, Storage, and Homogenization (MASH) of mantle-derived magmas in long-lived lower-crustal reservoirs beneath each center prior to eruption. We have now determined Os-isotope ratios for a sample suite from these volcanoes (33-36 S lat.), representing a range of crustal thickness from ca. 60-35 km. The samples range in MgO from ca. 8-4% and in SiO2 from 51-57%. The most evolved eruptive products occur above the thickest crust and have 87Sr/86Sr ratios of 0.7054 and epsilon Nd values of -1.5. The 187Os/188Os ratios correlate with the other isotopic systems and with crustal thickness. Volcanoes on the thinnest crust have 187Os/188Os ratios of 0.18-0.21. Those on the thickest crust have 187Os/188Os ratios as high as 0.64. All the Os values are much too radiogenic to

  14. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology (United States)

    Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying


    The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages

  15. Intraplate mafic magmatism: New insights from Africa and N. America (United States)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.


    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread

  16. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  17. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)


    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  18. Correlation methods in cutting arcs

    International Nuclear Information System (INIS)

    Prevosto, L; Kelly, H


    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  19. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes (United States)

    Afanasyev, Andrey; Blundy, Jon; Melnik, Oleg; Sparks, Steve


    Many active or dormant volcanoes show regions of high electrical conductivity at depths of a few kilometres beneath the edifice. We explore the possibility that these regions represent lenses of high-salinity brine separated from a single-phase magmatic fluid containing H2O and NaCl. Since chloride-bearing fluids are highly conductive and have an exceptional capacity to transport metals, these regions can be an indication of an active hydrothermal ore-formation beneath volcanoes. To investigate this possibility we have performed hydrodynamic simulations of magma degassing into permeable rock. In our models the magma source is located at 7 km depth and the fluid salinity approximates that expected for fluids released from typical arc magmas. Our model differs from previous models of a similar process because it is (a) axisymmetric and (b) includes a static high-permeability pathway that links the magma source to the surface. This pathway simulates the presence of a volcanic conduit and/or plexus of feeder dykes that are typical of most volcanic systems. The presence of the conduit leads to a number of important hydrodynamic consequences, not observed in previous models. Importantly, we show that an annular brine lens capped by crystallised halite is likely to form above an actively degassing sub-volcanic magma body and can persist for more than 250 kyr after degassing ceases. Parametric analysis shows that brine lenses are more prevalent when the fluid is released at temperatures above the wet granite solidus, when magmatic fluid salinity is high, and when the high-permeability pathway is narrow. The calculated depth, form and electrical conductivity of our modelled system shares many features with published magnetotelluric images of volcano subsurfaces. The formation and persistence of sub-volcanic brine lenses has implications for geothermal systems and hydrothermal ore formation, although these features are not explored in the presented model.

  20. Geochemical Variation of Subducting Pacific Crust Along the Izu-Bonin Arc System and its Implications on the Generation of Arc Magmas (United States)

    Durkin, K.; Castillo, P.; Abe, N.; Kaneko, R.; Straub, S. M.; Garcia, E. S. M.; Yan, Q.; Tamura, Y.


    Subduction zone magmatism primarily occurs due to flux melting of the mantle wedge that has been metasomatized by the slab component. The latter is enriched in volatiles and fluid-mobile elements and derived mainly from subducted sediments and altered oceanic crust (AOC). Subduction input has been linked to arc output in many studies, but this relationship is especially well documented in sedimented arc-trench systems. However, the Izu-Bonin system is sediment-poor, therefore the compositional and latitudinal variations (especially in Pb isotopes) of its arc magmas must be sourced from the subduction component originating primarily from the AOC. Pb is a very good tracer of recycled AOC that may contribute 50% or more of arc magma Pb. Izu-Bonin arc chemistry suggests a subduction influx of Indian-type crust, but the subducting crust sampled at ODP Site 1149 is Pacific-type. The discrepancy between subduction input and arc output calls into question the importance of the AOC as a source of the subduction component, and raises major concerns with our understanding of slab input. During the R/V Revelle 1412 cruise in late 2014, we successfully dredged vertical fault scarps at several sites from 27.5 N to 34.5 N, spanning a range of crustal ages that include a suggested compositional change at ~125 Ma. Major element data show an alkali enrichment towards the north of the study transect. Preliminary incompatible trace element data (e.g. Ba, Zr and Sr) data support this enrichment trend. Detailed mass balance calculations supported by Sr, Nd, Hf and especially Pb isotope analyses will be performed to evaluate whether the AOC controls the Pb isotope chemistry of the Izu-Bonin volcanic arc.

  1. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.


    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  2. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead-zinc mineralization (Gangdese, Tibet) (United States)

    Zhou, Jinsheng; Yang, Zhusen; Hou, Zengqian; Liu, Yingchao; Zhao, Xiaoyan; Zhang, Xiong; Zhao, Miao; Ma, Wang


    In addition to well-known subduction processes, the collision of two continents also generates abundant ore deposits, as in the case of the Tibetan Plateau, which is the youngest and most spectacular collisional belt on Earth. During the building history of the Gangdese magmatic belt, several magmatic flare-up events developed, however, significant magmatic-hydrothermal lead-zinc mineralization dominantly accompanied the magmatism during the syncollisional period ( 65-41 Ma). Based on integrated geochemical and isotopic data, we provide insights into the genesis and evolution of syncollisional magmas, and their implications for significant magmatic-hydrothermal lead-zinc mineralization. The Sr-Nd isotopic compositions of most syncollisional igneous rocks (87Sr/86Sr = 0.7034-0.7123; εNd(t) = - 9.0 to + 1.8) indicate a mixing origin between mantle-derived basaltic magmas and ancient crustal melts, and fractional crystallization is a fundamental mechanism by which syncollisional magmas evolve towards intermediate to silicic compositions. Most lead-zinc mineralization-related plutons are high silica (76.14% wt.% SiO2 on average), high oxygen fugacity (average ΔFMQ + 2.5) granites with highly evolved chemical signatures [average Eun/Eun* = 0.33, high Rb/Sr (average = 3.9)], and they represent the final products from primary magmas. Due to the contribution of ancient crustal melts to the genesis of mineralization-related parent magmas, the spatial distribution of Pb-Zn deposits within the northern Gangdese magmatic belt is controlled by the lithospheric architecture. In compressional environments, magmas have low evacuation efficiency and long magma chamber lifespan, which is favorable for basaltic parents evolved to high silica granites through sufficient fractional crystallization. This scenario contributes to our understanding of the significant magmatic-hydrothermal lead-zinc mineralization that occurred in the syncollisional period.

  3. Argon isotopes as recorders of magmatic processes (United States)

    Layer, P. W.; Gardner, J. E.; Mora Chaparro, J. C.; Arce, J. L.


    Argon isotopic ratios vary enough between different reservoirs (atmosphere, crust, mantle) and diffuse fast enough through most minerals at magmatic temperatures (700-1200 C) to make them ideal for looking at magma chamber dynamics. Indeed, diffusion is sufficiently fast to allow short time scales to be deciphered, setting argon apart from many other isotopic methods. A mineral's ability to retain "excess" argon (40Ar/36Ar ratios greater than the atmospheric value and apparent ages older than the known eruption age) during post-eruption cooling is key to Ar studies. Previous work shows that both phenocrysts (crystallizing in the magma chamber; e.g. Mt St. Helens; Layer and Gardner, 2001) and xenocrysts (introduced into the magma chamber; e.g Toba; Gardner et al., 2002) preserve excess argon, which enables magma chamber processes to be deciphered through the variable diffusion rates between crystal phases. Single crystal 40Ar/39Ar step-heating of biotite from the 10.5 ka eruption of Nevado de Toluca volcano, Mexico indicates that they are xenocrystic and resided for only a short (< 1 year) time in the magma before it erupted. The biotite has reaction rims of hornblende, orthopyroxene and plagioclase, and failed to grow experimentally at pressure-temperature conditions of the magma, confirming the xenocrystic nature of this phase. Single-step fusion of plagioclase phenocrysts from eruptions of El Chichon volcano, Mexico, shows evidence of excess (mantle) argon, whereas hornblende from the same eruptions contains little or none. In this case, faster diffusion of Ar in plagioclase than in hornblende allow plagioclase to incorporate excess argon during magma recharge; hornblende does not. Combining such results with other isotopic systems may in fact better determine magma chamber processes. At El Chichon, Sr isotopes suggest magma recharges ocurred (Tepley et al., 2000), whereas the argon isotopes suggest such pulses occurred just before each eruption. The fast and

  4. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. (United States)

    Reubi, Olivier; Blundy, Jon


    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.

  5. Electric arc welding gun (United States)

    Luttrell, Edward; Turner, Paul W.


    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  6. Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Southern Kermadec Arc, New Zealand (United States)

    de Ronde, C. E.; Massoth, G. J.; Christenson, B. W.; Butterfield, D. A.; Ishibashi, J.; Hannington, M. D.; Ditchburn, B. G.; Embley, R. W.; Lupton, J. E.; Kamenetsky, D.; Reyes, A. G.; Lahr, J.; Takai, K.


    Brothers volcano is one of several hydrothermally active volcanoes that occur along the Kermadec active arc front, NE of New Zealand. It forms an elongate edifice 13 km long by 8 km across that strikes NW-SE. The volcano has a caldera with a basal diameter of ~3 km and a floor at 1,850 m below sea level, surrounded by 290 to 530 m high walls. A volcanic cone of dacite rises 350 m from the caldera floor and partially coalesces with the southern caldera wall. Three hydrothermal sites have been located; on the NW caldera wall, on the SE caldera wall, and on the dacite cone. The NW caldera vent site is a long-term hydrothermal system that is today dominated by evolved seawater but has had episodic injections of magmatic fluid. The SE caldera site represents the main upflow of a relatively well-established magmatic-hydrothermal system on the seafloor where sulfide-rich chimneys are extant. The cone site is a nascent magmatic-hydrothermal system where crack zones localize upwelling acidic waters. Each of these different vent sites represent diverse parts of an evolving hydrothermal system, any one of which may be typical of submarine volcanic arcs. Hydrothermal venting is today occurring at the NW caldera and cone sites. The former is characterized by high-temperature (up to 302°C) venting with pH down to 2.8, low Mg and SO4 values, Cl between 510 and 760 mM, elevated Si and increasing Fe and Mn values with increasing Cl concentrations, consistent with a mostly Cl-enriched endmember. By contrast, vent fluids from the cone site are gas-rich (up to 220 mM total gas), have temperatures 30 ppm) zones in some chimneys formed over a short period of time, coincident with pulses of magmatic fluid into the hydrothermal system.

  7. Source and tectonic implications of tonalite-trondhjemite magmatism in the Klamath Mountains (United States)

    Barnes, C.G.; Petersen, S.W.; Kistler, R.W.; Murray, R.; Kays, M.A.


    In the Klamath Mountains, voluminous tonalite-trondhjemite magmatism was characteristic of a short period of time from about 144 to 136 Ma (Early Cretaceous). It occurred about 5 to l0 m.y. after the ??? 165 to 159 Ma Josephine ophiolite was thrust beneath older parts of the province during the Nevadan orogeny (thrusting from ??? 155 to 148 Ma). The magmatism also corresponds to a period of slow or no subduction. Most of the plutons crop out in the south-central Klamath Mountains in California, but one occurs in Oregon at the northern end of the province. Compositionally extended members of the suite consist of precursor gabbroic to dioritic rocks followed by later, more voluminous tonalitic and trondhjemitic intrusions. Most plutons consist almost entirely of tonalite and trondhjemite. Poorlydefined concentric zoning is common. Tonalitic rocks are typically of the Iow-Al type but trondhjemites are generally of the high-Al type, even those that occur in the same pluton as low-Al tonalite??. The suite is characterized by low abundances of K2O, Rb, Zr, and heavy rare earth elements. Sr contents are generally moderate ( ???450 ppm) by comparison with Sr-rich arc lavas interpreted to be slab melts (up to 2000 ppm). Initial 87Sr/ 86Sr, ??18O, and ??Nd are typical of mantle-derived magmas or of crustally-derived magmas with a metabasic source. Compositional variation within plutons can be modeled by variable degrees of partial melting of a heterogeneous metabasaltic source (transitional mid-ocean ridge to island arc basalt), but not by fractional crystallyzation of a basaltic parent. Melting models require a residual assemblage of clinopyroxene+garnet??plagioclase??amphibole; residual plagioclase suggests a deep crustal origin rather than melting of a subducted slab. Such models are consistent with the metabasic part of the Josephine ophiolite as the source. Because the Josephine ophiolite was at low T during Nevadan thrusting, an external heat source was probably

  8. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland (United States)

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans


    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  9. Along and Across Arc Variation of the Central Andes by Single Crystal Trace Element Analaysis (United States)

    Michelfelder, G.; Sundell, T.; Wilder, A.; Salings, E. E.


    Along arc and across arc geochemical variations at continental volcanic arcs are influenced by a number of factors including the composition and thickness of the continental crust, mantle heterogeneity, and fluids from the subducted slab. Whole rock geochemical trends along and across the arc front of the Central Volcanic Zone (CVZ) have been suggested to be primarily influenced by the composition and thickness of the crust. In the CVZ, Pb isotopic domains relate volcanic rock compositions to the crustal basement and systematically varies with crustal age. It has been shown repeatedly that incompatible trace element trends and trace element ratios can be used to infer systematic geochemical changes. However, there is no rule linking magmatic process or chemical heterogeneity/ homogeneity as a result of large crustal magma storage reservoirs such as MASH zones to the observed variation. Here we present a combination of whole rock major- and trace element data, isotopic data and in situ single crystal data from plagioclase, pyroxene and olivine for six stratovolcanoes along the arc front and in the back arc of the CVZ. We compare geochemical trends at the whole and single crystal scale. These volcanoes include lava flows and domes from Cerro Uturuncu in the back-arc, Aucanquilcha, Ollagüe, San Pedro-San Pablo, Lascar, and Lazufre from the arc front. On an arc-wide scale, whole rock samples of silicic lavas from these six composite volcanoes display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front reflecting melting of young, mafic composition source rocks with the continental crust becoming increasingly older and more felsic toward the east. These trends are paralleled in the trace element compositions of plagioclase

  10. Across and along arc geochemical variations in altered volcanic rocks: Evidence from mineral chemistry of Jurassic lavas in northern Chile, and tectonic implications (United States)

    Rossel, Pablo; Oliveros, Verónica; Ducea, Mihai N.; Hernandez, Laura


    Postmagmatic processes mask the original whole-rock chemistry of most Mesozoic igneous rocks from the Andean arc and back-arc units preserved in Chile. Mineral assemblages corresponding to subgreenschist metamorphic facies and/or propylitic hydrothermal alteration are ubiquitous in volcanic and plutonic rocks, suggesting element mobility at macroscopic and microscopic scale. However, fresh primary phenocrysts of clinopyroxene and plagioclase do occur in some of the altered rocks. We use major and trace element chemistry of such mineral phases to infer the geochemical variations of four Jurassic arc and four back-arc units from northern Chile. Clinopyroxene belonging to rocks of the main arc and two units of the bark-arc are augites with low contents of HFSE and REE; they originated from melting of an asthenospheric mantle source. Clinopyroxenes from a third back-arc unit show typical OIB affinities, with high Ti and trace element contents and low Si. Trace elemental variations in clinopyroxenes from these arc and back-arc units suggest that olivine and clinopyroxene were the main fractionating phases during early stages of magma evolution. The last back-arc unit shows a broad spectrum of clinopyroxene compositions that includes depleted arc-like augite, high Al and high Sr-Ca diopside (adakite-like signature). The origin of these lavas is the result of melting of a mixture of depleted mantle plus Sr-rich sediments and subsequent high pressure fractionation of garnet. Thermobarometric calculations suggest that the Jurassic arc and back-arc magmatism had at least one crustal stagnation level where crystallization and fractionation took place, located at ca. ~ 8-15 km. The depth of this stagnation level is consistent with lower-middle crust boundary in extensional settings. Crystallization conditions calculated for high Al diopsides suggest a deeper stagnation level that is not consistent with a thinned back-arc continental crust. Thus minor garnet fractionation

  11. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes (United States)

    Fischer, T.


    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  12. Modulation of magmatic processes by CO2 flushing (United States)

    Caricchi, Luca; Sheldrake, Tom E.; Blundy, Jon


    Magmatic systems are the engines driving volcanic eruptions and the source of fluids responsible for the formation of porphyry-type ore deposits. Sudden variations of pressure, temperature and volume in magmatic systems can produce unrest, which may culminate in a volcanic eruption and/or the abrupt release of ore-forming fluids. Such variations of the conditions within magmatic systems are commonly ascribed to the injection of new magma from depth. However, as magmas fractionating at depth or rising to the upper crust release CO2-rich fluids, the interaction between carbonic fluids and H2O-rich magmas stored in the upper crust (CO2 flushing), must also be a common process affecting the evolution of subvolcanic magma reservoirs. Here, we investigate the effect of gas injection on the stability and chemical evolution of magmatic systems. We calculate the chemical and physical evolution of magmas subjected to CO2-flushing using rhyolite-MELTS. We compare the calculations with a set of melt inclusion data for Mt. St. Helens, Merapi, Etna, and Stromboli volcanoes. We provide an approach that can be used to distinguish between melt inclusions trapped during CO2 flushing, magma ascent and decompression, or those affected by post-entrapment H2O-loss. Our results show that CO2 flushing is a widespread process in both felsic and mafic magmatic systems. Depending upon initial magma crystallinity and duration of CO2 input, flushing can either lead to volcanic eruption or fluid release. We suggest that CO2 flushing is a fundamental process modulating the behaviour and chemical evolution of crustal magmatic systems.

  13. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.


    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  14. Study of the subduction-related magmatism and of the continental erosion, by uranium-series: constraints on the processes and the timescale

    International Nuclear Information System (INIS)

    Dosseto, A.


    (The first part of this research thesis in geochemistry proposes an overview of knowledge and a description of the contribution of uranium-series to the magmatism in subduction zones. The second part addresses the continental erosion, and more particularly the alteration regimes and the dynamics of transfer of sediments constrained by uranium-series. Already published articles complete this report: U-Th-Pa-Ra study of the Kamchatka arc: new constraints on genesis of arc basalts; Dehydration and partial melting in subduction zones: constraints from U-series disequilibria; Timescale and conditions of chemical weathering under tropical climate: study of the Amazon basin with U-series; Timescale and conditions of chemical weathering in the Bolivian Andes and their fore-land basin

  15. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera (United States)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.


    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  16. Toward Assessing the Causes of Volcanic Diversity in the Cascades Arc (United States)

    Till, C. B.; Kent, A. J.; Abers, G. A.; Pitcher, B.; Janiszewski, H. A.; Schmandt, B.


    A fundamental unanswered question in subduction system science is the cause of the observed diversity in volcanic arc style at an arc-segment to whole-arc scale. Specifically, we have yet to distinguish the predominant mantle and crustal processes responsible for the diversity of arc volcanic phenomenon, including the presence of central volcanoes vs. dispersed volcanism; episodicity in volcanic fluxes in time and space; variations in magma chemistry; and differences in the extent of magmatic focusing. Here we present a thought experiment using currently available data to estimate the relative role of crustal magmatic processes in producing the observed variations in Cascades arc volcanism. A compilation of available major element compositions of Quaternary arc volcanism and estimates of eruptive volumes are used to examine variations in the composition of arc magmas along strike. We then calculate the Quaternary volcanic heat flux into the crust, assuming steady state, required to produce the observed distribution of compositions via crystallization of mantle-derived primitive magmas vs. crustal melting using experiment constraints on possible liquid lines of descent and crustal melting scenarios. For pure crystallization, heat input into the crust scales with silica content, with dacitic to rhyolite compositions producing significantly greater latent heat relative to basalts to andesites. In contrast, the heat required to melt lower crustal amphibolite decreases with increasing silica and is likely provided by the latent heat of crystallization. Thus we develop maximum and minimum estimates for heat added to the crust at a given SiO2 range. When volumes are considered, we find that the average Quaternary volcanic heat flux at latitudes south of South Sister to be more than twice that to the north. Distributed mafic volcanism produces only a quarter to half the heat flux calculated for the main edifices at a given latitude because of their lesser eruptive volumes

  17. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea (United States)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.


    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  18. Impact of Magmatism on the Geodynamic Evolution of Southern Georgia on the Example of the Lesser Caucasus Artvin-Bolnisi Block. (United States)

    Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio


    The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit

  19. Arc fault detection system (United States)

    Jha, K.N.


    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  20. Arc fault detection system (United States)

    Jha, Kamal N.


    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  1. The ARCS radial collimator

    International Nuclear Information System (INIS)

    Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.


    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use

  2. Geochronology of the Thompson Creek Mo Deposit: Evidence for the Formation of Arc-related Mo Deposits (United States)

    Lawrence, C. D.; Coleman, D. S.; Stein, H. J.


    The Thompson Creek Mo deposit in central ID, has been categorized as an arc-related Mo deposit due to the location, grade of Mo, and relative lack of enrichments in F, Rb, and Nb, compared to the Climax-type Mo deposits. Geochronology from this arc-related deposit provides an opportunity to compare and contrast magmatism, and mineralization to that in Climax-type deposits. Distinct pulses of magmatism were required to form the Thompson Creek Mo deposit, which is consistent with recent geochronology from Climax-type deposits. Molybdenite Re-Os geochronology from five veins requires at least three pulses of magmatism and mineralization between 89.39 +/- 0.37 and 88.47 +/- 0.16 Ma. Zircon U-Pb ages from these mineralized samples overlap with molybdenite mineralization, but show a much wider range (91.01 +/- 0.37 to 87.27 +/- 0.69). Previous work from Climax-type Mo deposits suggest a correlation between a super eruption, and the subsequent rapid (<1 Ma) onset, and completion of Mo mineralizing intrusions. The longer life (3-4 Ma) for the Thompson Creek Mo deposit suggests that the mineralizing intrusions for arc-related Mo deposits may not need to have as high [Mo] as the Climax-type deposits. This study also finds a shift in the source of magmatism from the pre- to syn-mineralizing intrusions. Zircons from pre-mineralizing intrusions have much higher (15-60 pg) concentrations of radiogenic Pb than zircons from mineralized intrusions, which all have less than 15 pg, though whole rock [U] are similar.

  3. Plasma's sweeping arc

    International Nuclear Information System (INIS)

    Pichon, Max


    Full text: It is purely elemental, returning materials to their basic atoms through extreme heat and then recondensing them in useful ways. Plasma arc gasification is the latest advanced waste treatment (AWT)concept to hit our shores, courtesy of Zenergy Australia. According to its fans, plasma technology can eliminate all domestic waste to landfill and turn it into beneficial by-products. Japan has toyed with it for a decade, but the idea is now creating a bit of buzz, in the US in particular. Consultancy URS last year undertook a review of 16 advanced technologies for the City of Los Angeles and determined plasma arc gasification was one of the most promising. The Waste Management Association of Australia (VVMAA), however, is cautious - too many AWT projects here have failed to live up to their promises. Plasma arc gasification works on the same principle as a welding machine. An inert gas is passed through an electrical arc between two electrodes and becomes ionised (called plasma), reaching temperatures as high as 13,900°C. It is then injected into the plasma converter holding the waste. Zenergy is working with US technology company Plasma Waste Recycling (PWR), which says it can convert 80 per cent of waste to syngas, a mixture of carbon monoxide and hydrogen that can be used to generate renewable electricity. The inorganic compounds in the waste come out as a solid, either molten metal to be cast as scrap steel or a slag that can be used as a building material aggregate or spun into mineral wool. “The plasma arc process is the next generation for AWT plants as there is no incineration involved, no fly ash, no bottom ash and nothing left to landfill,” said Zenergy Australia's Paul Prasad. He estimates a plant could convert up to 175,000 tonnes of household waste a year into energy or reusable by-products. Technically, it also gets around Australia's fears over incineration, though whether that is really the case in practice remains to be seen. Prasad says

  4. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye


    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  5. Post-Eocene volcanics of the Abazar district, Qazvin, Iran: Mineralogical and geochemical evidence for a complex magmatic evolution (United States)

    Asiabanha, A.; Bardintzeff, J. M.; Kananian, A.; Rahimi, G.


    The style of volcanism of post-Eocene volcanism in the Alborz zone of northern Iran is different to that of Eocene volcanism (Karaj Formation). Indeed, the volcanic succession of the Abazar district, located in a narrow volcanic strip within the Alborz magmatic assemblage, is characterized by distinct mineralogical and chemical compositions linked to a complex magmatic evolution. The succession was produced by explosive eruptions followed by effusive eruptions. Two main volcanic events are recognized: (1) a thin rhyolitic ignimbritic sheet underlain by a thicker lithic breccia, and (2) lava flows including shoshonite, latite, and andesite that overlie the first event across a reddish soil horizon. Plagioclase in shoshonite (An 48-92) shows normal zoning, whereas plagioclase in latite and andesite (An 48-75) has a similar composition but shows reverse and oscillatory zoning. QUILF temperature calculations for shoshonites and andesites yield temperatures of 1035 °C and 1029 °C, respectively. The geothermometers proposed by Ridolfi et al. (2010) and Holland and Blundy (1994) yield temperatures of 960 °C and 944 °C for latitic lava, respectively. The samples of volcanic rock show a typical geochemical signature of the continental arc regime, but the andesites clearly differ from the shoshonites, the latites and the rhyolites. The mineralogical and chemical characteristics of these rocks are explained by the following petrogenesis: (1) intrusion of a hot, mantle-depth mafic (shoshonitic) magma, which differentiated in the magma chamber to produce a latitic and then a rhyolitic liquid; (2) rhyolitic ignimbritic eruptions from the top of the magma chamber, following by shoshonitic and then latitic extrusions; (3) magma mingling between the latitic and andesitic magmas, as indicated by the occurrence of andesite clasts within the latite; and (4) andesitic effusions. The youngest volcanic events in the Alborz zone show a close chemical relationship with continental arc

  6. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition (United States)

    Wang, Xinyu; Yuan, Chao; Zhang, Yunying; Long, Xiaoping; Sun, Min; Wang, Lixing; Soldner, Jeremie; Lin, Zhengfan


    Voluminous Paleozoic intrusions occur in the Beishan Orogenic Collage (BOC) and their genesis and tectonic background are important to reconstruct the accretion-collision processes in the southernmost Altaids. Paleozoic is an important period for arc development in the BOC, where the Gongpoquan and Huaniushan arcs are located. There are two pulses of magmatism in the Huaniushan and Gongpoquan arcs, i.e., the ca. 470-423 Ma I-type and ca. 424-395 Ma S- and A-type granitoids. In this study, we focus on two peraluminous granitic plutons in the Gongpoquan arc, i.e., the Baitoushan muscovite granite and Haergen two-mica granite, aiming at unraveling their petrogenesis and tectonic background. Zircon LA-ICP-MS U-Pb dating yields emplacement ages of ca. 409-395 Ma and ca. 409 Ma for the Baitoushan and Haergen plutons, respectively. Both the granitic plutons are strongly peraluminous with A/CNK ratios of 1.10-1.20, indicative of S-type affinities. The rocks are characterized by high SiO2 and K2O contents with high CaO/Na2O ratios. Moreover, the rocks possess low MgO contents, Rb/Sr and Rb/Ba ratios, together with their relatively high initial 87Sr/86Sr ratios (0.7139-0.7152) and less radiogenic εNd(t) values (-3.15 to -5.17), implying a clay-poor and plagioclase-rich crustal source. Compared with earlier pulse of arc-related magmatism (ca. 470-423 Ma), the latter pulse of magmatism (ca. 424-395 Ma) consists mainly of "normal granite" characterized by higher SiO2 (>66%) and K2O contents, weaker fractionated REE patterns and lower δEu values, and gabbroic to dioritic intrusions are only sporadic. Moreover, the granitoids of the latter pulse show variable but more crust-like Sr-Nd isotopic compositions ((87Sr/86Sr)0 = 0.7038-0.7327; εNd(t) = -6.70 to +0.33) than the earlier ones ((87Sr/86Sr)0 = 0.7024-0.7080; εNd(t) = -2.56 to +8.86), indicating that the Early Devonian (ca. 424-395 Ma) experienced extensive crustal melting with minor involvement of mantle materials

  7. Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry (United States)

    Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.


    Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from

  8. Origin of sulfur and crustal recycling of copper in polymetallic (Cu-Au-Co-Bi-U ± Ag) iron-oxide-dominated systems of the Great Bear Magmatic Zone, NWT, Canada (United States)

    Acosta-Góngora, P.; Gleeson, S. A.; Samson, I. M.; Corriveau, L.; Ootes, L.; Jackson, S. E.; Taylor, B. E.; Girard, I.


    The Great Bear Magmatic Zone, in northwest Canada, contains numerous polymetallic mineral occurrences, prospects, and deposits of the iron oxide copper-gold deposit (IOCG) family. The mineralization is hosted by the Treasure Lake Group and igneous rocks of the Great Bear arc and was deposited concomitantly with the arc magmatism (ca. 1.88 to 1.87 Ga). In situ δ 34S ( n = 48) and δ 65Cu ( n = 79) analyses were carried out on ore-related sulfides from a number of these systems. The δ 34S values mainly vary between 0 and +5‰, consistent with derivation of sulfur from the mantle. Lower δ 34S values (-7.7 to +1.4‰) from the Sue-Dianne breccia may indicate SO2 disproportionation of a magmatic hydrothermal fluid. The δ 65Cu values vary between -1.2 and -0.3‰, and are lower than the igneous δ 65Cu range of values (0.0 ± 0.27‰). The S and Cu isotopic data are decoupled, which suggests that Cu (and possibly some S) was dissolved and remobilized from supracrustal rocks during early stages of alteration (e.g., sodic alteration) and then precipitated by lower temperature, more oxidizing fluids (e.g., Ca-Fe-K alteration). A limited fluid inclusion dataset and δ 13C and δ 18O values are also presented. The δ 18Ofluid values are consistent with a magmatic origin or a host-rock equilibrated meteoric water source, whereas the δ 13Cfluid values support a marine carbonate source. Combined, the S and Cu isotopic data indicate that while the emplacement of the Great Bear magmatic bodies may have driven fluid convection and may be the source of fluids and sulfur, metals such as Cu could have been recycled from crustal sources.

  9. Timing of maturation of a Neoproterozoic oceanic arc during Pan-African Orogeny: the Asmlil complex (Anti-Atlas, South Morocco) (United States)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Watlet, Arnaud; Vandycke, Sara


    Many intra-oceanic paleo-arcs are exposed in the Pan-African belt surrounding the West African Craton. In the Moroccan Anti-Atlas, remnants of Intra-Oceanic Subduction Zone (IOSZ) are preserved in few erosional windows moulded along the Anti-Atlas Major fault. These complexes highlight a Neoproterozoic paleo-suture made of 760 My back-arc ophiolites thrusted to the south onto a dismembered band of oceanic arc relics. The Asmlil arc complex, located in the southern part of the Bou Azzer inlier, is made of (i) 755 to 745 My- intermediate banded gneiss interpreted as metavolcanic products of a juvenile oceanic arc. This latter has been intruded by (ii) medium-grained hornblende-gabbro and dioritic magmas, in turn intruded by (iii) medium- to coarse grained hornblenditic-granodioritic decametric intrusions under sub-magmatic HT conditions. Hornblende-gabbros are made of garnet + amphibole/cpx relics + epidote + rutile paragenesis. Calculated pseudosections yielded P ~ 11-12 kbar for T ranging between 600 and 720°C for garnet growth. Measured Zr-in-rutile thermometer gave slightly higher temperature ranging between 710-790°C. On the field, garnet-rich leucocratic veinlets suggest that moderate partial melting of the mafic rock or localized dehydration reactions took place under garnet-granulite conditions (>800°C for hydrated chemical system). New geochronological data on garnet-bearing leucogabbros constrain their emplacement at 700 ±7 My (U-Pb zircon with low Th/U volcanic to subvolcanic massifs. Second event occurred around 700 My and results from mafic products intruding previous arc. A last event also dated at 660-650 My in the Sirwa window marks the emplacement of hot hornblenditic arc-magmas into older arc massifs during the tectonic extrusion of the arc section. This late event is also related to intense melt production at different level of the arc contributing to differentiation of the whole arc complex. We thus interpreted the Asmlil complex as the final

  10. 129I in volcanic fluids: Testing for the presence of marine sediments in the Central American volcanic arc

    International Nuclear Information System (INIS)

    Snyder, Glen; Fehn, Udo


    The long half-life and the geochemical behavior of the 129 I system suggest that this cosmogenic radioisotope can contribute significantly to the understanding of processes associated with subduction zones and volcanic arc systems. Because iodine is not incorporated into igneous rocks, the age-signal associated with 129 I permits the determination of the origin of volatiles within arc volcanic systems. We report here results of a study to test the application of 129 I in fluids collected from hotsprings, crater lakes, fumaroles and geothermal wells from the Central American volcanic arc. Both the Momotombo geothermal field in Nicaragua and the Miravalles geothermal field in Costa Rica show 129 I/I ratios consistent with magmatic contributions from subducted marine pelagic sediments (minimum iodine ages of 25-30 Ma). In addition, several wells provide iodine isotopic ratios indicative of an older end-member, presumably located in the shallow crust (minimum iodine age = 65 Ma)

  11. Magmatic densities control erupted volumes in Icelandic volcanic systems (United States)

    Hartley, Margaret; Maclennan, John


    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  12. Bimodal magmatism produced by progressively inhibited crustal assimilation 2 (PICA)

    NARCIS (Netherlands)

    Meade, F.C.; Troll, V.R.; Ellam, R.M.; Freda, C.; Font Morales, L.; Donaldson, C.H.; Klonowska, I.


    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous

  13. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley


    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  14. Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: Implications for Gondwana (United States)

    Yellappa, T.; Rao, J. Mallikharjuna


    Granitoid intrusions occur widely in the Southern Granulite Terrain (SGT) of India, particularly within the Cauvery Suture Zone (CSZ), which is considered as the trace of the Neoproterozoic Mozambique ocean closure. Here we present the petrological and geochemical features of 19 granite plutons across the three major tectonic blocks of the terrain. Our data show a wide variation in the compositions of these intrusions from alkali feldspathic syenite to granite. The whole rock geochemistry of these intrusions displays higher concentrations of SiO2, FeO*, K2O, Ba, Zr, Th, LREE and low MgO, Na2O, Ti, P, Nb, Y and HREE's. The granitoids are metaluminous to slightly peraluminous in nature revealing both I-type and A-type origin. In tectonic discrimination plots, the plutons dominantly show volcanic arc and syn-collisional as well as post-collisional affinity. Based on the available age data together with geochemical constrains, we demonstrate that the granitic magmatism in the centre and south of the terrain is mostly associated with the Neoproterozoic subduction-collision-accretion-orogeny, followed by extensional mechanism of Gondwana tectonics events. Similar widespread granitic activity has also been documented in the Arabian Nubian shield, Madagascar, Sri Lanka and Antarctica, providing similarities for the reconstruction of the crustal fragments of Gondwana supercontinent followed by Pan-African orogeny.

  15. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari


    Full Text Available Volcanic rocks of interest are situated in the middle part of the Urumieh-Dokhtar Magmatic Arc (UDMA. They are parts of a vast magmatic province located in the north of Bitlis-Zagros suture zone. Having a prevailing porphyritic texture, these rocks include phenocrysts of plagioclase, amphibole and biotite in a matrix composed of feldspar, quartz, opaque, glass and microlite and mineralogically show composition of dacite to andesite. Minerals are mostly fresh. Effects of alteration are limited to weak chloritization and saussuritization in some amphiboles and rim of plagioclases, respectively. All of the analyzed biotites in the Miocene-Pliocene volcanic rocks in the east of Kamu are of Mg-biotite. According to a widespread classification of micas to 6 general end-members, biotites of interest are averagely composed of 55.45% phlogopite, 15.90% talc, 12.72% Ti-phlogopite, 11.44% eastonite, 3.71% ferri-eastonite and 0.78% muscovite. Chemical composition of biotites indicates a calk-alkaline magmatic series for the magma from which biotites are crystallized. Estimation of the oxygen fugacity of magma, based on chemical composition and Fe3+ content of biotite, shows that the oxygen fugacity was limited to FMQ buffer in quality and was about 10-15 bar in quantity. This value accords the oxygen fugacity for intermediate-acidic volcanic rocks.

  16. Magnesium Isotopes as a Tracer of Crustal Materials in Volcanic Arc Magmas in the Northern Cascade Arc

    Directory of Open Access Journals (Sweden)

    Aaron W. Brewer


    Full Text Available Fifteen North Cascade Arc basalts and andesites were analyzed for Mg isotopes to investigate the extent and manner of crustal contributions to this magmatic system. The δ26Mg of these samples vary from within the range of ocean island basalts (the lightest being −0.33 ± 0.07‰ to heavier compositions (as heavy as −0.15 ± 0.06‰. The observed range in chemical and isotopic composition is similar to that of other volcanic arcs that have been assessed to date in the circum-pacific subduction zones and in the Caribbean. The heavy Mg isotope compositions are best explained by assimilation and fractional crystallization within the deep continental crust with a possible minor contribution from the addition of subducting slab-derived fluids to the primitive magma. The bulk mixing of sediment into the primitive magma or mantle source and the partial melting of garnet-rich peridotite are unlikely to have produced the observed range of Mg isotope compositions. The results show that Mg isotopes may be a useful tracer of crustal input into a magma, supplementing traditional methods such as radiogenic isotopic and trace element data, particularly in cases in which a high fraction of crustal material has been added.

  17. 238U-230Th radioactive disequilibria in the volcanic products from Izu arc volcanoes, Japan

    International Nuclear Information System (INIS)

    Kurihara, Yuichi; Takahashi, Masaomi; Sato, Jun


    The timescale of magmatic processes of Izu arc volcanoes, Japan, was estimated by the 238 U- 230 Th disequilibria in the volcanic products from the volcanoes. The majority of the 230 Th/ 238 U activity ratios of the products were less than unity, being enriched in 238 U relative to 230 Th. The ( 230 Th/ 232 Th)-( 238 U/ 232 Th)diagram for younger Fuji and Izu-Oshima volcanoes formed a whole rock isochrons, and the ages were 1x10 4 and 2x10 4 years, respectively. The ( 230 Th/ 232 Th) - ( 238 U/ 232 Th) data set for younger Fuji volcano formed a cluster on the diagram, while those of Izu-Oshima formed another cluster apparently apart from each other, suggesting that the concentration of U and Th may possibly be un-uniform in the mantle beneath Izu arc. (author)

  18. Re-evaluating Gondwana breakup: Magmatism, movement and microplates (United States)

    Ferraccioli, F.; Jordan, T. A.


    Gondwana breakup is thought to have initiated in the Early- to Mid-Jurassic between South Africa and East Antarctica. The critical stages of continental extension and magmatism which preceded breakup remain controversial. It is agreed that extensive magmatism struck this region 180 Ma, and that significant extension occurred in the Weddell Sea Rift System (WSRS) and around the Falkland Plateau. However, the timing and volume of magmatism, extent and mechanism of continental extension, and the links with the wider plate circuit are poorly constrained. Jordan et al (Gondwana Research 2017) recently proposed a two-stage model for the formation of the WSRS: initial extension and movement of the Ellsworth Whitmore Mountains microplate along the margin of the East Antarctic continent on a sinistral strike slip fault zone, followed by transtensional extension closer to the continental margin. Here we identify some key questions raised by the two-stage model, and identify regions where these can be tested. Firstly, is the magmatism inferred to have facilitated extension in the WSRS directly linked to the onshore Dufek Intrusion? This question relates to both the uncertainty in the volume of magmatism and potentially the timing of extension, and requires improved resolution of aeromagnetic data in the eastern WSRS. Secondly, did extension in the WSRS terminate against a single strike slip fault zone or into a distributed fault system? By integrating new and existing aeromagnetic data along the margin of East Antarctica we evaluate the possibility of a distributed shear zone penetrating the East Antarctic continent, and identify critical remaining data gaps. Finally we question how extension within the WSRS could fit into the wider plate circuit. By integrating the two-stage model into Gplates reconstructions we identify regions of overlap and areas where tracers of past plate motion could be identified.

  19. Active Magmatic Underplating in Western Eger Rift, Central Europe (United States)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst


    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  20. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka


    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  1. A reworked Lake Zone margin: Chronological and geochemical constraints from the Ordovician arc-related basement of the Hovd Zone (western Mongolia) (United States)

    Soejono, Igor; Buriánek, David; Janoušek, Vojtěch; Svojtka, Martin; Čáp, Pavel; Erban, Vojtěch; Ganpurev, Nyamtsetseg


    The primary relationships and character of the boundaries between principal lithotectonic domains in the Mongolian tract of the Central Asian Orogenic Belt (CAOB) are still poorly constrained. This brings much uncertainty in understanding of the orogeny configuration and the complete accretionary history. The plutonic Khuurai Tsenkher Gol Complex and the mainly metasedimentary Bij Group represent associated medium- to high-grade basement complexes exposed in the Hovd Zone close to its boundary with the Lake Zone in western Mongolia. The Khuurai Tsenkher Gol Complex is composed of variously deformed acid to basic magmatic rocks intimately associated with the metamorphosed sedimentary and volcanic rocks of the Bij Group. Results of our field work, new U-Pb zircon ages and whole-rock geochemical data suggest an existence of two separate magmatic events within the evolution of the Khuurai Tsenkher Gol Complex. Early to Mid-Ordovician (476 ± 5 Ma and 467 ± 4 Ma protoliths) normal- to high-K calc-alkaline orthogneisses, metadiorites and metagabbros predominate over Mid-Silurian (430 ± 3 Ma) tholeiitic-mildly alkaline quartz monzodiorites. Whereas the geochemical signature of the former suite unequivocally demonstrates its magmatic-arc origin, that of the latter quartz monzodiorite suggests an intra-plate setting. As shown by Sr-Nd isotopic data, the older arc-related magmas were derived from depleted mantle and/or were generated by partial melting of juvenile metabasic crust. Detrital zircon age populations of the metasedimentary rocks together with geochemical signatures of the associated amphibolites imply that the Bij Group was a volcano-sedimentary sequence, formed probably in the associated fore-arc wedge basin. Moreover, our data argue for an identical provenance of the Altai and Hovd domains, overall westward sediment transport during the Early Palaeozoic and the east-dipping subduction polarity. The obvious similarities of the Khuurai Tsenkher Gol Complex

  2. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352 (United States)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.


    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  3. Electric arc radius and characteristics

    International Nuclear Information System (INIS)

    Fang, T.M.


    The heat transfer equation of an arc discharge has been solved. The arc is assumed to be a cylinder with negligible axial variation and the dominant heat transfer process is conduction radially inside the column and radiation/convection at the outside edge. The symmetric consideration allows a simple one-dimensional formulation. By taking into account proper variation of the electrical conductivity as function of temperature, the heat balance equation has been solved analytically. The radius of the arc and its current-field characteristics have also been obtained. The conventional results that E approx. I 0 5385 and R approx. I 0 7693 with E being the applied field, I the current, and R the radius of the cylindrical arc, have been proved to be simply limiting cases of our more general characteristics. The results can be applied quite widely including, among others, the neutral beam injection project in nuclear fusion and MHD energy conversion

  4. PC-based arc ignition and arc length control system for gas tungsten arc welding

    International Nuclear Information System (INIS)

    Liu, Y.; Cook, G.E.; Barnett, R.J.; Springfield, J.F.


    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard

  5. Regional and temporal variability of melts during a Cordilleran magma pulse: Age and chemical evolution of the jurassic arc, eastern mojave desert, California (United States)

    Barth, A.P.; Wooden, J.L.; Miller, David; Howard, Keith A.; Fox, Lydia; Schermer, Elizabeth R.; Jacobson, C.E.


    Intrusive rock sequences in the central and eastern Mojave Desert segment of the Jurassic Cordilleran arc of the western United States record regional and temporal variations in magmas generated during the second prominent pulse of Mesozoic continental arc magmatism. U/Pb zircon ages provide temporal control for describing variations in rock and zircon geochemistry that reflect differences in magma source components. These source signatures are discernible through mixing and fractionation processes associated with magma ascent and emplacement. The oldest well-dated Jurassic rocks defining initiation of the Jurassic pulse are a 183 Ma monzodiorite and a 181 Ma ignimbrite. Early to Middle Jurassic intrusive rocks comprising the main stage of magmatism include two high-K calc-alkalic groups: to the north, the deformed 183–172 Ma Fort Irwin sequence and contemporaneous rocks in the Granite and Clipper Mountains, and to the south, the 167–164 Ma Bullion sequence. A Late Jurassic suite of shoshonitic, alkali-calcic intrusive rocks, the Bristol Mountains sequence, ranges in age from 164 to 161 Ma and was emplaced as the pulse began to wane. Whole-rock and zircon trace-element geochemistry defines a compositionally coherent Jurassic arc with regional and secular variations in melt compositions. The arc evolved through the magma pulse by progressively greater input of old cratonic crust and lithospheric mantle into the arc magma system, synchronous with progressive regional crustal thickening.

  6. Arc modeling for welding analysis

    International Nuclear Information System (INIS)

    Glickstein, S.S.


    A one-dimensional model of the welding arc that considers heat generation by the Joule effect and heat losses by radiation and conduction has been used to study the effects of various gases and gas mixtures currently employed for welding applications. Minor additions of low ionization potential impurities to these gases are shown to significantly perturb the electrical properties of the parent gas causing gross changes in the radial temperature distribution of the arc discharge. Such changes are reflected in the current density distribution and ultimately in the input energy distribution to the weldment. The result is observed as a variation in weld penetration. Recently published experiments and analyses of welding arcs are also evaluated and shown to contain erroneous data and results. Contrary to previous beliefs, the inclusion of a radiation loss term in the basic energy balance equation is important and cannot be considered as negligible in an argon arc at temperatures as low as 10,000 0 K. The one-dimensional analysis of the welding arc as well as the evaluation of these earlier published reports helps to explain the effects of various gases used for welding, improves our understanding of the physics of the welding arc, and provides a stepping stone for a more elaborate model which can be applied to help optimize welding parameters

  7. Temporal evolution of the Western and Central volcanism of the Aeolian Island Arc (Italy, southern Tyrhhenian Sea) (United States)

    Leocat, E.; Gillot, P.-Y.; Peccerillo, A.


    The Aeolian Archipelago is a volcanic arc in the Southern Tyrrhenian Sea located on the continental margin of the Calabro-Peloritan basement. The Aeolian volcanism occurs in a very complex geodynamic setting linked to the convergence of the European and African plates. For that reason, it is strongly related to regional tectonic lineaments, such as the NW-SE trending Tindari-Letojani (TL) fault. The archipelago consists of seven main islands and several seamounts, which extend around the Marsili Basin, forming a ring-like shape, typical for an island arc. While the seamounts began their activities around 1 Ma , the emerged part is active since about 400 ka. The magmatic products of the whole arc range from typical island arc calc-alkaline (CA) and shoshonitic series, to slightly silica undersaturated potassic alkaline series that are typical of post-collisional settings. Furthermore, the TL fault, along which the Lipari and Vulcano islands are developed, separates a calc-alkaline western sector (Alicudi, Filicudi and Salina islands) from the calc-alkaline to potassic eastern system (Panarea and Stromboli islands) (Peccerillo,1999). This makes of the Aeolian Islands a complex volcanism, with a still controversial origin. In this context, the aim of this work is to constrain the sources and spatio-temporal evolution of this magmatism. We present here new K-Ar ages based on the accurate Cassignol-Gillot technique devoted to the dating of very young rocks (Gillot et Cornette, 1986). These geochronological data were used together with new geochemical data on the same samples. In this study, we attempt to understand the origin of those magmatic events and the relationship between the deep processes and the shallow structures. Our results allow us to define specific periods of very quick geomechemical changes. In the case of Filicudi island, the first rocks range in composition from CA basalts to andesites. This period ended with the edification of the Mte Guardia at 189

  8. Geochronological synthesis of magmatism, metamorphism and metallogeny of Costa Rica, Central America

    International Nuclear Information System (INIS)

    Alvarado, Guillermo E.; Gans, Phillipe B.


    A comprehensive compilation of 651 (since 1968) radiometric ages determinations (415 40 Ar/ 39 Ar, 211 K/Ar, 5 U/Th, 4 Rb/Sr, 2 U/Pb, and 13 fission track thermochronology ages using zircon) have provided a complete picture of the igneous stratigraphy of Costa Rica, and information about the age of the major metamorphic and metallogenic events in the region. Igneous rocks of Late Jurassic to Middle Eocene age (∼ 160 to ∼ 41 Ma), mainly accreted ophiolites. The actual subduction zone was established, represented by volcano-sedimentary rocks of basic to felsic composition, at the beginning of Campanian time (∼ 71 Ma). However, voluminous subalkaline, primary volcanic rocks have appeared only after ∼ 29 Ma. Intrusive to hypabyssal granitic to gabboic plutons, stocks, equivalent dykes and sills, are widely exposed in the Talamanca range (∼ 12,4 - 7,8 Ma), hills of Escazu (∼ 6,0 - 5,9 Ma), and Fila Costena (∼ 18,3 - 16,8 and ∼ 14,8 - 11,1 Ma), Tapanti-Montes del Aguacate-Carpintera (∼ 4,2 - 2,2 Ma) and Guacimal (∼ 6,4 - 5,2 Ma). Arc rocks between 29 and 11 Ma (called Photo-Volcanic Front) are known in the San Carlos plains and in southern Costa Rica. The location and age of the igneous rocks have indicated that there was a 20 degrees counterclockwise rotation of the arc (termed as Proto-Volcanic Front) between 15 and 8 Ma, with a pole of rotation that has centered on southern Costa Rica. This rotation is attributed to deformation in the overriding plate (shortening in the south coeval with extension in the NW), accompanied by trench retreat in the south. At ∼ 3,45 Ma, arc-related volcanism has shut off in southern part of the region, but local acid-adakite volcanism has persisted in the Talamanca range (4,2 - 0,95 Ma) due to the subduction of the Cocos Ridge. The Paleo-Volcanic Front is represented by arc-related rocks (8 - 3,5 Ma) along the length of Costa Rica, parallel to but in front of the modern arc. This activity was followed by the

  9. Magmatic gases in fluid inclusions from hydrothermal ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Graney, J.; Kesler, S. (University of Michigan, MI (United States))


    In this study, magmatic gases in fluid inclusions from hydrothermal ore deposits have been analyzed. The gas composition of fluid inclusions from a wide range of extinct hydrothermal systems as represented by different ore deposit types was determined using a quadrupole mass spectrometer. Most samples used for analysis consisted of transparent quartz, although barite, jasperoid, opal, sphalerite, pyrite, chalcopyrite, and bornite were also analyzed. H2O was the dominant volatile component in fluid inclusions, and composed 95-99 mole percent of the inclusion fluid. CO2 comprised most of the remaining volatile component and the other gases were generally present in amounts smaller than 0.1 mole percent. Analysis from porphyry and acid-sulfate deposits, in which magmatic gas contributions are considered to be largest, plotted closest to the fumarolic gas compositions. These inclusion fluid volatile component comparisons have shown that there are systematic differences in inclusion fluids from different hydrothermal systems. 9 refs., 3 figs.

  10. Magmatic formations in the Okhotsk--Chukotka volcanogenic belt

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, A.P.


    The relationship between the Okhotsk-Chukotka volcanogenic belt of Northeast USSR and the stage of evolution of magnetism and tectonic development of the region are examined. Recognizing the associations of effusive and intrusive rocks that are typical of the southern part of the volcanogenic belt and that are joined together by some characteristic features, a basic plan is presented for examination of the problem of magnetic formations. On the basis of the distinctive characteristics of epigeosynclinal tectonic development of the territory and the sequence of formation of the magmatic rocks within it, three main groups: volcanic, coleanoplutonic, and plutonic, can be distinguished; and a general scheme of development of these types in space and time within the volcanogenic belt can be developed. According to this scheme, four main stages can be recognized in the Mesozoic and Cenozoic magmatic evolution of the Okhotsk-Chukotka belt. This scheme of classification takes into consideration the factor of the structural development of this tectonomagmatic element.

  11. Physically based arc-circuit interaction

    International Nuclear Information System (INIS)

    Zhong-Lie, L.


    An integral arc model is extended to study the interaction of the gas blast arc with the test circuit in this paper. The deformation in the waveshapes of arc current and voltage around the current zero has been formulated to first approximation by using a simple model of arc voltage based on the arc core energy conservation. By supplementing with the time scale for the radiation, the time rates of arc processes were amended. Both the contributions of various arc processes and the influence of circuit parameters to the arc-circuit interaction have been estimated by this theory. Analysis generated a new method of calculating test circuit parameters which improves the accurate simulation of arc-circuit interaction. The new method agrees with the published experimental results

  12. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hrubcová, Pavla; Geissler, W.H.; Bräuer, K.; Vavryčuk, Václav; Tomek, Č.; Kämpf, H.


    Roč. 36, č. 12 (2017), s. 2846-2862 ISSN 0278-7407 R&D Projects: GA ČR GA17-19297S; GA ČR GC16-19751J Institutional support: RVO:67985530 Keywords : active intraplate magmatic underplating * mantle-derived fluids * high-velocity lower crust * reflection-free magma body Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 3.784, year: 2016

  13. The Magmatic Plumbing System of the Campi Flegrei Caldera. (United States)

    Lucia, C.; Ilenia, A.; Massimo, D.; Valeria, D.; Mauro, D.; Giovanni, O.


    The Campi Flegrei caldera is a nested and resurgent structure generated by at least two major collapses. Large sectors of the structural boundary of both calderas resulted from partial reactivation of pre-existing faults generated by regional tectonism. Its magmatic system is still active with the last eruption occurring in 1538 A.D. (Monte Nuovo), widespread fumaroles and hot springs activity, and the unrest episodes in the last 35 years, with a maximum net uplift of about 3.5 m in the Pozzuoli area. The definition of the history of the magmatic feeding system of this caldera, in terms of composition, time- scale and depth of crystallization, relation between composition of the erupted magma and structural position of the vent, and magma chamber processes, is of extreme importance for a better understanding of the dynamic conditions of the present day magma chamber and for evaluating of the extent to which the behavior of the magmatic system can be predicted. The Campi Flegrei caldera magmatic plumbing system is characterized by deep and shallow reservoirs. Campi Flegrei magmas originated in a subduction modified mantle source, stagnate at mid crustal level (20- 10 km depth), where they differentiated and are contaminated with the continental crust. From the "deep reservoir" shoshonitic to latitic magmas rise towards the surface along the NE aligned regional fault reactivated during the caldera collapse, whereas trachytic magmas rise mostly along faults and fractures bordering the resurgent block and the southern part of the Campi Flegrei caldera. Repeated arrival of trachytic to phonolitic magmas form shallow reservoirs at 4-3 km depth, in which differentiation and mixing processes occur before and during the eruption.

  14. Failed magmatic eruptions: Late-stage cessation of magma ascent (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.


    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  15. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang


    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  16. Age and tectonomagmatic setting of the Eocene Çöpler-Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey (United States)

    İmer, Ali; Richards, Jeremy P.; Creaser, Robert A.


    The Çöpler epithermal Au deposit and related subeconomic porphyry Cu-Au deposit is hosted by the middle Eocene Çöpler-Kabataş magmatic complex in central eastern Anatolia. The intrusive rocks of the complex were emplaced into Late Paleozoic-Mesozoic metamorphosed sedimentary basement rocks near the northeastern margin of the Tauride-Anatolide Block. Igneous biotite from two samples of the magmatic complex yielded 40Ar/39Ar plateau ages of 43.75 ± 0.26 Ma and 44.19 ± 0.23, whereas igneous hornblende from a third sample yielded a plateau age of 44.13 ± 0.38. These ages closely overlap with 40Ar/39Ar ages of hydrothermal sericite (44.44 ± 0.28 Ma) and biotite (43.84 ± 0.26 Ma), and Re-Os ages from two molybdenite samples (44.6 ± 0.2 and 43.9 ± 0.2 Ma) suggesting a short-lived (history at Çöpler. No suitable minerals were found that could be used to date the epithermal system, but it is inferred to be close in age to the precursor porphyry system. The Çöpler-Kabataş intrusive rocks show I-type calc-alkaline affinities. Their normalized trace element patterns show enrichments in large ion lithophile and light rare earth elements and relative depletions in middle and heavy rare earth elements, resembling magmas generated in convergent margins. However, given its distance from the coeval Eocene Maden-Helete volcanic arc, the complex is interpreted to be formed in a back-arc setting, in response to Paleocene slab roll-back and upper-plate extension. The tectonomagmatic environment of porphyry-epithermal mineralization at Çöpler is comparable to some other isolated back-arc porphyry systems such as Bajo de la Alumbrera (Argentina) or Bingham Canyon (USA).

  17. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.


    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  18. Equilibrium motion of quict auroral arcs

    International Nuclear Information System (INIS)

    Lyatskij, V.B.; Leont'ev, S.V.


    Ionospheric plasma convection across auroral arc is investigated. It is shown that the existence of plasma area of increased concentration adjoining arc results not only from the arc but also is a factor supporting its existence. Under stable conditions the arc and plasma zone connected to it will move at a velocity different from a velocity of plasma convection. Arc velocity will be higher or lower as compared with convection velocity depending on arc orientation relative to an external electric field. At that the plasma zone is located either in front of or behind aurora polaris [ru

  19. Principles of arc flash protection

    Energy Technology Data Exchange (ETDEWEB)

    Hirschmann, R. B.


    Recent developments in NFPA 70E, the electrical safety standards in the United States and Canada, designed to provide for a safe industrial work environment, are discussed. The emphasis in this instance is on arc explosions. Development of an arc flash protective program is discussed under various major components of an electrical safety program. These are: appropriate qualifications and training for workers, safe work practices, appropriate hazard assessment practices for any task exceeding 50V where there is the potential of an arc flash accident, flash protection equipment commensurate with the hazard associated with the task to be performed, layering in protective clothing over all body surfaces, and strict adherence to rules regarding use of safety garments and equipment.

  20. Magnetically enhanced vacuum arc thruster

    International Nuclear Information System (INIS)

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I


    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  1. Magnetically enhanced vacuum arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)


    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  2. Crustal evolution of Eocene paleo arc around Ogasawara region obtained by seismic reflection survey (United States)

    Yamashita, M.; Takahashi, N.; Kodaira, S.; Miura, S.; Ishizuka, O.; Tatsumi, Y.


    The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. The existence of two paleo arc which consists of Oligocene and Eocene paleo age is known in IBM forearc region by geological and geophysical studies. The Ogasawara ridge is also known to locate the initial structure of arc evolution from geologic sampling of research submersible. In this region, IODP drilling site: IBM-2 is proposed in order to understand the temporal and spatial change in arc crust composition from 50 to 40Ma magmatism. Site IBM-2 consists of two offset drilling holes (BON-1, BON-2). BON-1 designed to first encounter forearc basalt and will reach the sheeted dykes. BON-2 will start in boninites and finish in fore arc basalts. The purpose of these drilling is sampling the full volcanic stratigraphy from gabbro to boninite. There is no seismic data around BON-1 and BON-2, therefore it is need to conduct the multi-channel seismic reflection survey. Japan Agency for Marine-Earth Science and Technology carried out multi-channel seismic reflection survey and wide-angle reflection survey using 7,800 air gun, 5 km streamer with 444 ch hydrophones and 40 OBSs in March 2011. We obtained two seismic reflection profiles of lines KT06 and KT07 along the paleo arc around Ogasawara ridge. Line KT06 located the north side of Ogasawara ridge. Line KT07 located the trench side of Ogasawara ridge. Lines KT06 is also deployed the OBSs every 5 km interval. Thin sediments are covered with basement in both survey lines. There are some sediment filled in depression topography. The low-frequency reflection from the top of subducting Pacific plate is recognized in line KT06. The continuity of this reflection is not clear due to the complicated bathymetry. The displacement of basement in northern side of Ogasawara ridge is identified along the lineament of bathymetry in Line 06. This structure is

  3. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey - (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.


    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  4. Nature's refineries — Metals and metalloids in arc volcanoes (United States)

    Henley, R.W.; Berger, Byron R.


    Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium

  5. Unzipping of the volcano arc, Japan (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.


    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  6. Crustal development in relation to granitic magmatism in regard to D/H partition between coexisting hornblende and biotite in the Svecofennian belt

    Directory of Open Access Journals (Sweden)

    Kuroda, Y.


    Full Text Available Tie-lines in the σD-XFe diagram of hornblende and biotite in Japanese island arc granites give commonly a similar slope to that derived from the equation of Suzuoki-Epstein's experimental work ( 1976. This indicates that in the process of granite intrusion in the island arc environment, the water/rock ratio is high enough to allow the presence of molecular water within and around the rock mass crystallizing from the magma. However, the tie-lines of the anorogenic rapakivi granites of Finland (age 1.65-1.54 Ga are quite different from those of island arc granites, i.e. the σD of hornblende is much lower than that of biotite and the XFe values of both of the minerals are almost the same and high (0.8-0.9. Thus, the tie-lines are nearly vertical. Moreover, the OH contents of hornblende and biotite are very low and this suggests the absence of molecular water in the ascending and crystallizing granitic magma. This probably suggests that the D/H fractionation factor between the hydrous silicates and hydroxyl (OH in the magma without molecular water is different from that of the island arc granites with plenty of molecular water. For the Svecofennian granitic rocks which are older than the rapakivi, e.g. the Turku, Uppsala, Vänge and Revsund masses, the σD-XFe relationships of hornblende and biotite change systematically following the chronological order of the intrusion. The σD-XFe relationships of the granitic rocks around Turku are close to those of the island arc granites, those of the Uppsala and Vänge granites show the intermediate patterns between the Turku and Revsund, and those of the Revsund granites are rather similar to rapakivi. It is considered that the geological settings of granitic magmatism in the Svecofennian belt of the Baltic shield developed from a more mobile to a more continental one.

  7. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling


    the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how

  8. Late Miocene (Proto-Gulf) Extension and Magmatism on the Sonoran Margin (United States)

    Gans, P.; MacMillan, I.; Roldan-Quintana, J.


    Constraints on the magnitude and character of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California extensional province are key to understanding how and when Baja California was captured by the Pacific plate and how strain was partitioned during the early stages of this transtensional rift system. Our new geologic mapping in southwestern Sonora and 40Ar/39Ar dating of pre-, syn-, and post-tectonic volcanic units indicate that late Miocene deformation and volcanic activity were largely restricted to a NW-trending, 100-120 km wide belt adjacent to the coast. Inboard of this belt, NW-SE extension is mainly older (>15 Ma) and occurred in an intra-arc or back-arc setting. Proto-Gulf deformation within the coastal belt was profoundly transtensional, with NW-striking, dextral strike slip faults operating in concert with N-S and NNE-striking normal and oblique slip faults to produce an inferred NW or NNW tectonic transport direction. The total amount of late Miocene NW directed dextral shear within the coastal belt is still poorly constrained, but may exceed 100 km. The locus of deformation and volcanic activity migrated westward or northwestward within the Sonoran coastal belt. in the eastern portion (Sierra Libre and Sierra El Bacatete) major volcanic activity commenced at ˜13.0 Ma and peaked at 12.0 Ma, and major faulting and tilting is bracketed between 12.0 and 10.6 Ma. Further west in the Sierra El Aguaje/San Carlos region, major volcanic activity commenced at 11.5 Ma and peaked at 10.5 Ma, and most faulting and tilting is bracketed between 10.7 and 9.3 Ma. On the coastal mountains northwest of San Carlos, rift related faulting and tilting continued after 8.5 Ma. Voluminous late Miocene (13-8 Ma) volcanic rocks within the Sonoran coastal belt were erupted from numerous centers (e.g. Sierra Libre, Guaymas, Sierra El Aguaje). These thick volcanic sections are compositionally diverse (basalt to rhyolite, with abundant dacite and

  9. First report of (U-Th)/He thermochronometric data across Northeast Japan Arc: implications for the long-term inelastic deformation (United States)

    Sueoka, Shigeru; Tagami, Takahiro; Kohn, Barry P.


    (U-Th)/He thermochronometric analyses were performed across the southern part of the Northeast Japan Arc for reconstructing the long-term uplift and denudation history in the region. Apatite (U-Th-Sm)/He ages ranged from 64.3 to 1.5 Ma, while zircon (U-Th)/He ages ranged between 39.6 and 11.0 Ma. Apatite (U-Th-Sm)/He ages showed obvious contrast among the morphostructural provinces; older ages of 64.3-49.6 Ma were obtained in the Abukuma Mountains on the fore-arc side, whereas younger ages of 11.4-1.5 Ma were determined in the Ou Backbone Range (OBR) along the volcanic front and the Asahi Mountains on the back-arc side. The age contrasts are basically interpreted to reflect the differences in the uplift and the denudation histories of the provinces considering the thermal effects of magmatism and timing of the known uplift episodes. Denudation rates were calculated to be histories at the scale of an island arc, as well as continental orogens. However, careful discussion of magmatic thermal effects is required.[Figure not available: see fulltext.

  10. A rotating arc plasma invertor

    International Nuclear Information System (INIS)

    Reusch, M.F.; Jayaram, K.


    A device is described for the inversion of direct current to alternating current. The main feature is the use of a rotating plasma arc in crossed electric and magnetic fields as a switch. This device may provide an economic alternative to other inversion methods in some circumstances

  11. Study of gliding arc discharge plasma

    International Nuclear Information System (INIS)

    Yang Chi; Lin Lie; Wu Bin


    The electric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharges. Using two-channel model, the rules of arc moving due to effect of the airflow is simulated. The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma. (authors)

  12. Rapid arc - clinical rationale and results

    International Nuclear Information System (INIS)

    Cozzi, Lucca


    The presentation will focus on the background of Intensity modulation volumetric arc therapy Rapid Arc from Varian Medical Systems aiming to highlight the technical and clinical rational also from an historical perspective to the founding pillars of fast delivery with a minimum number of arcs and a minimum number of monitor units

  13. 3D upper crustal seismic structure across Santorini volcanic field: Constraints on magmatic and tectonic interactions (United States)

    Heath, B.; Hooft, E. E. E.; Toomey, D. R.; Papazachos, C. V.; Walls, K.; Paulatto, M.; Morgan, J. V.; Nomikou, P.; Warner, M.


    To investigate magmatic-tectonic interactions at an arc volcano, we collected a dense, active-source, seismic dataset across the Santorini Volcano, Greece, with 90 ocean bottom seismometers, 65 land seismometers, and 14,300 marine sound sources. We use over 140,000 travel-time picks to obtain a P-wave tomography model of the upper crustal structure of the Santorini volcano and surrounding tectonically extended region. Regionally, the shallow (Bouguer gravity anomalies and preliminary shallow attenuation results (using waveform amplitudes and t* values). We find regional Pliocene and younger faults bounding basement grabens and horsts to be predominately oriented in a NE-SW direction with Santorini itself located in a graben bounded by faults striking in this direction. In contrast, volcanic vents and dikes expressed at the surface seem to strike about 20° clockwise relative to these regional faults. In the northern caldera of Santorini, a 4-km wide region of anomalously low velocities and high attenuation directly overlies an inferred source of 2011-2012 inflation (4-4.5 km depth), however it is located at shallower depths ( 1-2km). The imaged low-velocity anomaly may correspond to hydrothermal activity (due to increased porosity and alteration) and/or brecciation from a prior episode of caldera collapse. It is bounded by anomalously fast velocities (at 1-2 km depth) that parallel the regional fault orientation and are correspondingly rotated 20° to surface dikes. At 4-5 km depth beneath the northern caldera basin, low-velocity anomalies and attenuated seismic arrivals provide preliminary evidence for a magma body; the low-velocity anomaly is elongated in the same direction as regional volcanic vents. The difference in strike of volcanic and tectonic features indicates oblique extension and potential time-variation in the minimum stress direction.

  14. Magmatic context of Bou Skour copper deposit (Eastern Anti-Atlas, Morocco): Petrogrography, geochemistry and alterations (United States)

    EL Azmi, Daoud; Aissa, M.; Ouguir, H.; Mahdoudi, M. L.; El Azmi, M.; Ouadjo, A.; Zouhair, M.


    The Bou Skour copper deposit is located in the western part of the Saghro massif (Eastern Anti-Atlas), about 50 km East of the city of Ouarzazate. It is subdivided into several areas that are, from North to South: “Panthère”, “Chaigne”, “Anne Marie”, “Chapeau de fer” and “Patte d'Oie”. The latter is economically the most important and is the object of this study. The “Patte d'Oie” district consists mainly of extrusive and intrusive igneous rocks. The extrusive rocks are represented by andesites spatially associated with pyroclastic terms (ignimbrites and pyroclastic breccias). This volcanic unit is intruded by a pink granite pluton and a I-type granodiorite with equigranular texture (Bou Skour granodiorite) showing to the border a microgranular facies (microgranodiorite). All these magmatic formations are intersected by rhyolitic dykes (NNE-SSW) and doleritic dykes (WNW-ESE to NW-SE). The granodiorite and andesite have undergone a polyphase hydrothermal alteration: (i) potassic alteration, (ii) phyllitic alteration, (iii) silicification, (iv) argillic alteration and (v) propylitic alteration. The analysis of geochemical data of granodiorite, granite, andesite and dolerite confirmed: (i) their petrographic natures, (ii) the medium-K calc-alkaline affiliation of andesite and granodiorite, which would have been set up into an active geotectonic environment, probably of island arc or collision, during the Pan-African orogeny, (iii) The high-K calc-alkaline character of granite indicating a post-collision development during the Pan-African orogeny and (iv) The alkaline affinity of the dolerite which is linked to an extensive post-orogenic setting (post-Pan-African). The copper mineralization of “Patte d'Oie” area is hosted, exclusively, in the andesitic and granodioritic facies. It is represented, essentially, by chalcopyrite and bornite minerals and is, probably, related to a porphyry system (disseminated and stockwork mineralization

  15. Neoproterozoic alkaline magmatism in Ilha do Cardoso, southeastern coast of Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Weber, Werner; Basei, Miguel A.S.; Siga Junior, Oswaldo; Sato, Kei


    This work focuses on the geology and geochronology of rocks cropping out on Cardoso Island, on the southeastern coast of Sao Paulo State, close to the boundary with Parana State. The island, with an area of about 151 km 2 is a protected area administered by the Forest Institute of the Secretariat for the Environment of the State of Sao Paulo. It is mountainous, with a peak at 814 m, and is covered by dense Atlantic Forest vegetation. The island is made up mainly of an igneous complex with light grey leucocratic, inequigranular, medium to coarse-grained syenites. The Tres Irmaos Syenite (STI), composed of pyroxene, hornblende, and perthitic to mesoperthitic microcline, predominates has magmatic flow structures, and it cut by the pinkish grey, leucocratic medium-grained Cambriu alkali-feldspar granites (GC). Geochemical analysis of STI and GC demonstrate their metaluminous alkaline nature and late orogenic to anorogenic character. The bodies formed between 620 and 570 Ma according to U-Pb dating of zircons and cooled between 597 and 531 Ma (K-Ar in amphiboles). Whole rock Sm-Nd analyses yield Meso- and Paleoproterozoic TDM ages (1,500 - 2,200 Ma). A belt of low-grade metasedimentary rocks occurs in the northern part of the island. Quartz schist, quartz-mica schist and mica-quartz schist, often-containing andalusite and cordierite, predominate. Geochemical and geochronological data suggest that the sources of the metasediments were continental arc andesites of whose protoliths separated from the mantle between 1,800 and 2,200 Ma during the Paleoproterozoic. These metasediments probably continue on the continent in the Taquari region and extend southwards in narrow strips between the granitoids of the Paranagua Domain. (author)

  16. STRUVE arc and EUPOS® stations (United States)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana


    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  17. Influence of arc current and pressure on non-chemical equilibrium air arc behavior (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU


    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  18. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling (United States)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley


    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented

  19. The Porgera gold deposit, Papua, New Guinea, 1: association with alkalic magmatism in a continent-island-arc collision zone

    International Nuclear Information System (INIS)

    Richards, J.P.; Chappell, B.W.; McCulloch, M.T.; McDougall, I.


    The meso thermal to epithermal Porgera gold deposit is spatially and temporally associated with shallow level (≤ 2 km emplacement depth) stocks and dykes of the Porgera Intrusive Complex (PIC). Gold mineralization immediately followed emplacement of the PIC, and is dated between 5 and 6 Ma ago. The Porgera intrusive suite is comprised of fine- to medium-grained, porphyritic to euhedral granular, volatile-rich, sodic alkali basalts/gabbros, hawaiites, and mugearites (TAS chemical classification scheme). The rocks display chemical and isotopic characteristics similar to those of intra plate alkalic basalts, but their unusually high volatile contents result in stabilization of hornblende as a phenocryst and intergranular phase in more evolved rock types. The observed order of cotectic crystallization is olivine - clinopyroxene - hornblende -plagioclase, with ubiquitous spinel (chromite/magnetite) and fluor-apatite. (author)

  20. A historical overview of Moroccan magmatic events along northwest edge of the West African Craton (United States)

    Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane


    Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in

  1. On the Hydrogranular Dynamics of Magmatic Gravity Currents (United States)

    McIntire, M. Z.; Bergantz, G. W.; Schleicher, J.; Burgisser, A.


    Magmatic processes are generally governed by multi-phase interactions of silicate liquid, crystals, and bubbles. However, the modes of dissipation and the manner that stress is transmitted are poorly understood. We use a model of a simple but widely applicable gravity current as a means to exemplify the hydrogranular dynamics in crystal-rich magmas. Viscous and lubrication forces are of special interest because they have a dual role in dispersal and mixing in a crystal-rich gravity current. For example, lubrication forces provide an initial apparent yield strength by inducing a negative pore pressure as crystals move apart. However, once the gravity current is underway, lubrication forces reduce the dissipation due to collision and frictional contact.The gravity current is initiated by a combination of toppling and sliding along a well-defined granular fault. This produces three distinct regimes: a quasi-static base, an overlying particle hump that translates in a quasi-plastic fashion by grain-passing and rolling until the angle of repose is reached, and a viscous particle current. The current initially forms a leading vortex at the head, but the loss of crystals by sedimentation-assisted granular capture by an upward growing particle front drains energy from the flow. The vortex is soon abandoned, but persists in the reservoir as a fossil feature of orphaned crystals in a smear of previous intercumulate fluid. The kinetic energy of the most active crystals decays in a dual fashion, initially linearly, then parabolically with a near symmetrical increase and loss of kinetic energy.There is very little entrainment and mixing between intercumulate and reservoir fluids from magmatic gravity currents. Only a thin seam of reservoir melt is captured by the base of the flow as it descends across the floor. Hence magmatic gravity currents, while producing modest amounts of crystal sorting, are not effective agents of mixing as lubrication and viscous forces inhibit

  2. Magmatic development of the outer Vøring Margin (United States)

    Breivik, Asbjorn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio


    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired on the Vøring and Lofoten margins. One profile crosses from the Vøring Plateau to the Vøring Spur, an oceanic plateau north of the EJMFZ. The P-wave data were modeled by ray-tracing in a 2D velocity model of the crust. The process behind the excess magmatism can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This profile and two other profiles farther north show a positive H-VP correlation, consistent with a hot mantle reservoir of finite extent under the margin at breakup. However, during the first two million years, magma production appears to be augmented by a secondary process. By 51-51.5 Ma melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows at least two inversion events, with the main episode tentatively in the Upper Miocene, apparently through igneous growth to create the up to 15 km crustal thickness. The H-VP correlation of the spur is low, indicating constant and moderate-degree mantle melting not tied to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, discounting that compressional flexure at the EJMFZ shaped the high. We also find no evidence for the proposed Early Eocene triple junction in the area.

  3. Geochemical Relationships between Volcanic and Plutonic Upper to Mid Crustal Exposures of the Rosario Segment, Alisitos Arc (Baja California, Mexico): An Outstanding Field Analog to the Izu-Bonin-Mariana Arc (United States)

    Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.


    Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.

  4. Magmatic carbon dioxide emissions at Mammoth Mountain, California (United States)

    Farrar, Christopher D.; Neil, John M.; Howle, James F.


    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts

  5. Pb-Sr-Nd-O isotopic characterization of Mesozoic rocks throughout the northern end of the Peninsular Ranges batholith: Isotopic evidence for the magmatic evolution of oceanic arc–continental margin accretion during the Late Cretaceous of southern California (United States)

    Kistler, Ronald W.; Wooden, Joseph L.; Premo, Wayne R.; Morton, Douglas M.


    Within the duration of the U.S. Geological Survey (USGS)–based Southern California Areal Mapping Project (SCAMP), many samples from the northern Peninsular Ranges batholith were studied for their whole-rock radioisotopic systematics (rubidium-strontium [Rb-Sr], uranium-thorium-lead [U-Th-Pb], and samarium-neodymium [Sm-Nd]), as well as oxygen (O), a stable isotope. The results of three main studies are presented separately, but here we combine them (>400 analyses) to produce a very complete Pb-Sr-Nd-O isotopic profile of an arc-continent collisional zone—perhaps the most complete in the world. In addition, because many of these samples have U-Pb zircon as well as argon mineral age determinations, we have good control of the timing for Pb-Sr-Nd-O isotopic variations.The ages and isotopic variations help to delineate at least four zones across the batholith from west to east—an older western zone (126–108 Ma), a transitional zone (111–93 Ma), an eastern zone (94–91 Ma), and a much younger allochthonous thrust sheet (ca. 84 Ma), which is the upper plate of the Eastern Peninsular Ranges mylonite zone. Average initial 87Sr/86 Sr (Sri), initial 206Pb/204Pb (206 Pbi), initial 208Pb/204Pb (average 208Pbi), initial epsilon Nd (average εNdi), and δ18O signatures range from 0.704, 18.787, 38.445, +3.1, and 4.0‰–9.0‰, respectively, in the westernmost zone, to 0.7071, 19.199, 38.777, −5, and 9‰–12‰, respectively, in the easternmost zone. The older western zone is therefore the more chemically and isotopically juvenile, characterized mostly by values that are slightly displaced from a mantle array at ca. 115 Ma, and similar to some modern island-arc signatures. In contrast, the isotopic signatures in the eastern zones indicate significant amounts of crustal involvement in the magmatic plumbing of those plutons. These isotopic signatures confirm previously published results that interpreted the Peninsular Ranges batholith as a progressively

  6. Amphibole Fractional Crystallization and Delamination in Arc Roots: Implications for the `Missing' Nb Reservoir in the Earth (United States)

    Galster, F.; Chatterjee, R. N.; Stockli, D. F.


    Most geologic processes should not fractionate Nb from Ta but Earth's major silicate reservoirs have subchondritic Nb/Ta values. Nb/Ta of >10000 basalts and basaltic andesites from different tectonic settings (GEOROC) cluster around 16, indistinguishable from upper mantle values. In contrast, Nb/Ta in more evolved arc volcanics have progressively lower values, reaching continental crust estimates, and correlate negatively with SiO2 (see figure) and positively with TiO2 and MgO. This global trend suggests that differentiation processes in magmatic arcs could explain bulk crustal Nb/Ta estimates. Understanding processes that govern fractionation of Nb from Ta in arcs can provide key insights on continental crust formation and help identify Earth's `missing' Nb reservoir. Ti-rich phases (rutile, titanite and ilmenite) have DNb/DTa values in the evolved liquid. Lack of correlation between Nb/Ta and K2O in global volcanic rocks implies that biotite plays a minor role in fractionating Nb from Ta during differentiation. Experimental petrology and evidence from exposed arc sections indicate that amphibole fractionation and delamination of island arc roots can explain the andesitic composition of bulk continental crust. Experimental studies have shown that amphibole Mg# correlate with DNb/DTa and amphibole could effectively fractionate Nb from Ta. Preliminary data from lower to middle crustal amphiboles from preserved arcs show sub- to super-chondritic Nb/Ta up to >60. This suggests that delamination of amphibole-rich cumulates can be a viable mechanism for the preferential removal of Nb from the continental crust. Future examination of Nb/Ta ratios in lower crustal amphiboles from various preserved arcs will provide improved constraints on the Nb-Ta paradox of the silicate Earth.

  7. Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Shevenell, Lisa [ATLAS Geosciences, Inc., Reno, NV (United States); Coolbaugh, Mark [ATLAS Geosciences, Inc., Reno, NV (United States); Hinz, Nick [Univ. of Nevada, Reno, NV (United States); Stelling, Pete [Western Washington Univ., Bellingham, WA (United States); Melosh, Glenn [GEODE, Santa Rosa, CA (United States); Cumming, William [Cumming Geoscience, Santa Rosa, CA (United States)


    This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production. To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.

  8. Microstructural Study on Oxygen Permeated Arc Beads

    Directory of Open Access Journals (Sweden)

    Kuan-Heng Liu


    Full Text Available We simulated short circuit of loaded copper wire at ambient atmosphere and successfully identified various phases of the arc bead. A cuprous oxide flake was formed on the surface of the arc bead in the rapid solidification process, and there were two microstructural constituents, namely, Cu-κ eutectic structure and solutal dendrites. Due to the arc bead formed at atmosphere during the local equilibrium solidification process, the phase of arc bead has segregated to the cuprous oxide flake, Cu-κ eutectic, and Cu phase solutal dendrites, which are the fingerprints of the arc bead permeated by oxygen.

  9. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia (United States)

    Wei, Ruihua; Gao, Yongfeng; Xu, Shengchuan; Santosh, M.; Xin, Houtian; Zhang, Zhenmin; Li, Weilong; Liu, Yafang


    and Y, comparable to the features of typical A2-type granites including their high ratios of FeOT/MgO, Ga/Al and Y/Nb. Our study suggests that the A-type granite was derived from a distinct magma source rather than through fractional crystallization of the coeval calc-alkaline magmas. Their Nd-Pb isotopic compositions are similar to those of calc-alkaline arc rocks and are compatible with partial melting of pre-existing juvenile basaltic crust in the continental arc. Notably, the widespread eruptions of A2-type rhyolitic magmas (305.3 Ma-303.4 Ma) following a short period of magmatic quiescence was temporally and spatially associated with bimodal magmatism with mantle-derived gabbro-diorites and A-type granites (304.3 Ma-299.03 Ma) in the pre-existing arc volcanic-plutonic belt (329 Ma-306 Ma). Such a marked change in the magma affinity likely indicates subducted slab break-off resulting in a change of the regional stress field to an extensional setting within the Carboniferous continental arc that runs E-W for few thousands of kilometers. Thus, the onset of the late magmatism (305-299 Ma) likely represents the maximum age for the cessation of the northward subduction in the Hegenshan ophiolite-arc-accretion belt.

  10. Eocene extensional exhumation of basement and arc rocks along southwesternmost Peru, Central Andes. (United States)

    Noury, Mélanie; Bernet, Matthias; Sempéré, Thierry


    The overthickened crust of the current Central Andes is commonly viewed as the result of tectonic shortening. However, in the present-day terrestrial forearc and arc of southwesternmost Peru, crustal thickness increases from 30 km along the coastline to >60 km below the active arc, whereas the upper crust exhibits little to no evidence of crustal shortening and, in constrast, many extensional features. How (and when) crustal overthickness was acquired in this region is thus little understood. Because crustal overthickening often results in extensional collapse and/or significant erosion, here we address this issue through a regional-scale study of exhumation using fission-track thermochronology. The limited fission-track data previously available in the area suggested that exhumation began during the Mesozoic. In this study, we present new apatite and zircon fission-track data obtained along the current terrestrial forearc of southwesternmost Peru. This relatively restricted area presents the interest of providing extensive outcrops of Precambrian to Ordovician basement and Early Jurassic to Late Cretaceous arc plutons. In order to compare the chronology of exhumation of these units, we performed extensive sampling for fission-track dating, as well as structural mapping. Our results indicate that the basement rocks and Jurassic plutons that crop out in the Arequipa region, where the crust is now >50 km-thick, experienced a rapid cooling through the 240-110°C temperature range between ~65 and ~35 Ma. This period of rapid exhumation coincided in time with the accumulation of terrestrial forearc deposits (the Lower Moquegua Group), that exhibit many syn-sedimentary extensional features and are bounded by conspicuous normal faults, specifically along the region where intense activity of the main arc between ~90 and ~60 Ma had led to voluminous magma emplacement. This close succession of (1) intense magmatic activity and (2) regional-scale exhumation associated with

  11. The Chinese North Tianshan Orogen was a rear-arc (or back-arc) environment in the Late Carboniferous: constraint from the volcanic rocks in the Bogda Mountains (United States)

    Xie, W.


    The Tianshan Orogen is a key area for understanding the Paleozoic tectonics and long-lasting evolution of the Central Asian Orogenic Belt (CAOB). However, considerable debate persists as to its tectonic setting during the late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools (Ma et al., 1997; Gu et al., 2000; Xiao et al., 2004; Han et al., 2010; Shu et al., 2011; Chen et al., 2011; Xia et al., 2012). With aims of providing constraints on this issue, petrology, mineralogy, geochronological and geochemistry for the Late Carboniferous volcanics from the Bogda Mountains have been carried out. We find two suits of high-Al basalt (HAB, 315-319 Ma) and a suit of submarine pillow basalt ( 311 Ma) in this region. Both of the two basalts belong to the tholeiitic magma (the tholeiitic index THI > 1) and contain low pre-eruptive magmatic H2O (coexisted with the Bogda HABs is I-type intermediate ignimbrites and rhyolite lavas. The rhyolites are formed by partial melting of a hydrated and juvenile arc crust and the ignimbrites are affected by magma mingling and feldspar fractionation (Xie et al., 2016c). The two basalts both have the MORB-like Sr-Nd-Hf-Pb isotopes and arc-like trace element compositions. We discuss that they may have been generated from a dry and depleted mantle source metasomatized by coexisted felsic volcanics were likely formed in a rear-arc or back-arc environment, probably related to southward subduction of the Paleo-Tianshan Ocean (Xie et al., 2016a, b, c).

  12. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias


    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and mana......The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed...... and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed...

  13. Plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan: Fragments of middle to lower crust of the Izu-Bonin-Mariana Arc? (United States)

    Ichiyama, Yuji; Ito, Hisatoshi; Hokanishi, Natsumi; Tamura, Akihiro; Arai, Shoji


    A Paleogene accretionary complex, the Mineoka-Setogawa Belt, is distributed around the Izu Collision Zone, central Japan. Plutonic rocks of gabbro, diorite and tonalite compositions are included as fragments and dykes in an ophiolitic mélange in this belt. Zircon U-Pb dating of the plutonic rocks indicates that they were formed at ca. 35 Ma simultaneously. These ages are consistent with Eocene-Oligocene tholeiite and calc-alkaline arc magmatism in the Izu-Bonin-Mariana (IBM) Arc and exclude several previous models for the origin of the Mineoka-Setogawa ophiolitic rocks. The geochemical characteristics of these plutonic rocks are similar to those of the Eocene-Oligocene IBM tholeiite and calc-alkaline volcanic rocks as well as to the accreted middle crust of the IBM Arc, the Tanzawa Plutonic Complex. Moreover, their lithology is consistent with those of the middle and lower crust of the IBM Arc estimated from the seismic velocity structure. These lines of evidence strongly indicate that the plutonic rocks in the Mineoka-Setogawa ophiolitic mélange are fragments of the middle to lower crust of the IBM Arc. Additionally, the presence of the Mineoka-Setogawa intermediate to felsic plutonic rocks supports the hypothesis that intermediate magma can form continental crust in intra-oceanic arcs.

  14. Erosion properties of unipolar arcs

    International Nuclear Information System (INIS)

    Chekalin, Eh.K.


    Processes modelling the formation of unipolar arcs on the elements of the first wall in limiters of the vacuum chamber and on active elements of tokamak divertor, are experimentally investigated. Erosion, processes that take place at two types of non-stationary cathode spots are considered. Experimental data prove the possibility of reducing erosion intensity by coating the surface of electrodes by oxide films, reduction of the temperature of electrode and discharge current

  15. Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc (United States)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.


    We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu

  16. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  17. Magmatic activity stages of the El'brus volcanic center (Great Caucasus): isotope geochronological data

    International Nuclear Information System (INIS)

    Chernyshev, I.V.; Lebedev, V.A.; Bubnov, S.N.; Arakelyants, M.M.; Gol'tsman, Yu.V.


    The age of volcanites in the Elbrus volcanic center was determined by the methods of K-Ar- and Rb-Sr-dating to ascertain stages of magmatic activity in the area. The data obtained suggest existence of at least two stages of magmatic activity: Middle Neopleistocene (225-180 thous. years) and Late Neopleistocene-Holocene ( [ru

  18. Magmatic Hydrothermal Fluids: Experimental Constraints on the Role of Magmatic Sulfide Crystallization and Other Early Magmatic Processes in Moderating the Metal Content of Ore-Forming Fluids (United States)

    Piccoli, P. M.; Candela, P. A.


    It has been recognized for some time that sulfide phases, although common in intermediate-felsic volcanic rocks, are not as common in their plutonic equivalents. That sulfide crystallization, or the lack thereof, is important in the protracted magmatic history of porphyry Cu and related systems is supported by the work of e.g., Rowins (2000). Candela and Holland (1986) suggested that sulfide crystallization could moderate the ore metal concentrations in porphyry environments. Experiments show clearly that Au and Cu can partition into Cl-bearing vapor and brine. This effect can be enhanced by S (Simon, this session). However, in some instances enhances this effect. That is, the partitioning of Au and Cu into vapor+brine is highly efficient (e.g. Simon et al. 2003; Frank et al 2003). This suggests that if sulfides do not sequester ore metals early during the history of a magma body from the melt, they will partition strongly into the volatile phases. Whether volatile release occurs in the porphyry ore environment, or at deeper levels upon magma rise, is a yet unsolved question. Little is known about deep release of volatiles (during magma transport at lower- to mid-crustal levels). Saturation of melts with a CO2-bearing fluid could happen at levels much deeper than those typical of ore formation. CO2 is released preferentially, so a high CO2 concentration in fluids in the porphyry ore environment argues against deep fluid release. Of course, this depends upon the specific processes of crystallization and fluid release, which may be complex. Our experiments on sulfides have concentrated on pyrrhotite and Iss. Our partitioning data for Po/melt exhibit wide variations from metal to metal: Cu (2600); Co (170); Au (140); Ni (100); Bi, Zn and Mn (2). These results suggest that crystallization of Po can contribute to variable ore metal ratios (e.g. Cu/Au). Other sulfides behave differently. If a melt is Iss (Cpy) saturated, then Cu will be buffered at a high value, and Au

  19. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T


    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  20. Bifurcation theory of ac electric arcing

    International Nuclear Information System (INIS)

    Christen, Thomas; Peinke, Emanuel


    The performance of alternating current (ac) electric arcing devices is related to arc extinction or its re-ignition at zero crossings of the current (so-called ‘current zero’, CZ). Theoretical investigations thus usually focus on the transient behaviour of arcs near CZ, e.g. by solving the modelling differential equations in the vicinity of CZ. This paper proposes as an alternative approach to investigate global mathematical properties of the underlying periodically driven dynamic system describing the electric circuit containing the arcing device. For instance, the uniqueness of the trivial solution associated with the insulating state indicates the extinction of any arc. The existence of non-trivial attractors (typically a time-periodic state) points to a re-ignition of certain arcs. The performance regions of arcing devices, such as circuit breakers and arc torches, can thus be identified with the regions of absence and existence, respectively, of non-trivial attractors. Most important for applications, the boundary of a performance region in the model parameter space is then associated with the bifurcation of the non-trivial attractors. The concept is illustrated for simple black-box arc models, such as the Mayr and the Cassie model, by calculating for various cases the performance boundaries associated with the bifurcation of ac arcs. (paper)

  1. Physical characteristics of welding arc ignition process (United States)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei


    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  2. Magmatic and non-magmatic history of the Tyrrhenain backarc Basin: new constraints from geophysical and geological data (United States)

    Prada, Manel; Sallares, Valenti; Ranero, Cesar R.; Zitellini, Nevio; Grevemeyer, Ingo


    The Western Mediterranean region is represented by a system of backarc basins associated to slab rollback and retreat of subduction fronts. The onset of formation of these basins took place in the Oligocene with the opening of the Valencia Through, the Liguro-Provençal and the Algero-Balearic basins, and subsequently, by the formation of the Alboran and Tyrrhenian basins during the early Tortonian. The opening of these basins involved rifting that in some regions evolved until continental break up, that is the case of the Liguro-Provençal, Algero-Balearic, and Tyrrhenian basins. Previous geophysical works in the first two basins revealed a rifted continental crust that transitions to oceanic crust along a region where the basement nature is not clearly defined. In contrast, in the Tyrrhenian Basin, recent analysis of new geophysical and geological data shows a rifted continental crust that transitions along a magmatic-type crust to a region where the mantle is exhumed and locally intruded by basalts. This basement configuration is at odds with current knowledge of rift systems and implies rapid variations of strain and magma production. To understand these processes and their implications on lithospheric backarc extension we first need to constrain in space and time these observations by further analysis of geophysical and geological data. Here we present two analyses; the first one is focused on the spatial variability of magmatism along the Cornaglia Terrace axis, where magmatic-type crust has been previously interpreted. The comparison of three different seismic refraction transects, acquired across the basin axis from North to South, allows to infer that the highest magmatic activity occurred beneath the central and most extended region of the terrace; while it was less important in the North and almost non-existent in the South. The second analysis focuses on the presence of exhumed mantle in the deepest region of the Tyrrhenian, previously interpreted by

  3. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft

    Directory of Open Access Journals (Sweden)

    Jamal Rasouli


    -related arc magmatism. The systematic variation for the major elements implies involvement of fractional crystallization in the evolution of JBPC. The trends are consistent with the fractionation of plagioclase feldspar and ferromagnesian minerals as indicated by decreasing MgO, CaO, FeOt and TiO2 with increasing SiO2 despie the content of (K2O+Na2O. It generally increases with increasing SiO2 for intermediate compositions (67 wt% SiO2 ≤ and then decreases for more felsic granitic rocks, indicating that sodic feldspar was a major fractionating phase for alkali-granite and granite suit (Rasouli, 2015. Overall REE abundances slightly decrease with increasing SiO2 consistent with plagioclase fractionation. The distribution of voluminous volcanic rocks in the studied area implies that the JBPC could be a part of the mature magmatic arc. The field petrography and geochemical studies indicated that the JPBC originated from both crustal and mantle derived magmas: The increase in temperature and excess fluid pressure caused by subduction trigged melting of mantle edge and formation of basaltic magma and its ascending and introducing into the crust was followed by partial melting (Rasouli, 2015. The juxtaposed series of mafic-felsic pulses formed a mixed magma. Finally this magma is emplaced at broad, shallow magma chamber (9-12 km, where the differentiation took place by fractional crystallization and produced a wide variety of rocks form quartz-diorite to alkali granite. In such shallow magma reservoirs, the emplacement of magma took place as sill (Fridrich et al, 1991. Combining field observations and petrofabric studies displayed a deep caldera as a feeder zone for Eocene volcanic rocks (Rasouli, 2015. The JBPC is located in a shear zone and multiple magmatic pulses were injected as sills. The magmatic fabrics show active tectonic controls on magmatism during and after magma emplacement. The transpressional tectonic regime is well compatible with our data. References Fridrich, C

  4. The magmatism and metamorphism at the Malayer area, Western Iran (United States)

    Ahadnejad, V.; Valizadeh, M. V.; Esmaeily, D.


    The Malayer area is located in the NW-SE aligned Sanandaj-Sirjan metamorphic belt, western Iran and consists mainly of Mesozoic schists so-called Hamadan Phyllites, Jurassic to Tertiary intrusive rocks and related contact metamorphic aureoles, aplites and pegmatites. The Sanandj-Sirjan Zone is produced by oblique collisional event between Arabian plate and Central Iran microcontinent. Highest level of regional metamorphism in the area is greenschist facies and injection of felsic magmas is caused contact metamorphism. Magmatism is consist of a general northwest trend large felsic to intermediate intrusive bodies. The main trend of structural features i.e. faults, fractures and other structural features is NW-SE. The Malayer granitoid complex is ellipsoid in shape and has NW-SE foliation especially at the corners of the intrusions. Petrography of the magmatic rocks revealed recrystallization of quartz and feldspars, bending of biotite, and aligment of minerals paralle to the main trend of magmatic and metamorphic country rocks. These indicated that intrusion of felsic magma is coincide to the regional metamorphism and is syn-tectoinc. Non-extensive contact metamorphism aureoles and rareness of pegmatite and aplite in the area are interpreted as injection of felsic magmas into the high-strain metamorphic zone. The regional metamorphic rocks mainly consist of meta-sandstone, slate, phyllite, schist. These gray to dark metasedimentary rocks are consist of quartz, muscovite, turmaline, epidote, biotite and chlorite. Sheeted minerals form extended schistosity and study of porphyroblast-matrix relationships shows that injection of granitic magma into the country rocks is syn to post-tectonic. Syn-tectonic indicating porphyroblast growth synchronous with the development of the external fabric. The thermal contact area of the granite can be observed in the contact margin of granite and regional metamorphic rocks, where it produced hornfelses, andalusit-garnet schists and

  5. The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Litvak, Vanesa D.; Poma, Stella; Alonso, Ricardo N.; Hinton, Richard; EIMF


    The tectonic and geodynamic setting of the southern Central Andean convergent margin changed significantly between the Late Cretaceous and the Late Miocene, influencing magmatic activity and its geochemical composition. Here we investigate how these changes, which include changing slab-dip angle and convergence angles and rates, have influenced the contamination of the arc magmas with crustal material. Whole rock geochemical data for a suite of Late Cretaceous to Late Miocene arc rocks from the Pampean flat-slab segment (29-31 °S) of the southern Central Andes is presented alongside petrographic observations and high resolution age dating. In-situ U-Pb dating of magmatic zircon, combined with Ar-Ar dating of plagioclase, has led to an improved regional stratigraphy and provides an accurate temporal constraint for the geochemical data. A generally higher content of incompatible trace elements (e.g. Nb/Zr ratios from 0.019 to 0.083 and Nb/Yb from 1.5 to 16.4) is observed between the Late Cretaceous ( 72 Ma), when the southern Central Andean margin is suggested to have been in extension, and the Miocene when the thickness of the continental crust increased and the angle of the subducting Nazca plate shallowed. Trace and rare earth element compositions obtained for the Late Cretaceous to Late Eocene arc magmatic rocks from the Principal Cordillera of Chile, combined with a lack of zircon inheritance, suggest limited assimilation of the overlying continental crust by arc magmas derived from the mantle wedge. A general increase in incompatible, fluid-mobile/immobile (e.g., Ba/Nb) and fluid-immobile/immobile (e.g., Nb/Zr) trace element ratios is attributed to the influence of the subducting slab on the melt source region and/or the influx of asthenospheric mantle. The Late Oligocene ( 26 Ma) to Early Miocene ( 17 Ma), and Late Miocene ( 6 Ma) arc magmatic rocks present in the Frontal Cordillera show evidence for the bulk assimilation of the Permian-Triassic (P

  6. The age, nature and likely genesis of the Cambrian Khantaishir arc, Lake Zone, Mongolia (United States)

    Janoušek, Vojtěch; Jiang, Yingde; Schulmann, Karel; Buriánek, David; Hanžl, Pavel; Lexa, Ondrej; Ganchuluun, Turbat; Battushig, Altanbaatar


    Recent discovery of the huge Cambrian arc in the Khantaishir Mountain Range (SE Mongolian Altai) suggests that the principal Neoproterozoic and Devonian-Carboniferous episodes of crustal growth in the Central Asian Orogenic Belt (CAOB) (Sengör et al. 1993) have to be revised. This probably the largest arc system known in the Mongolian tract of the CAOB is seemingly intrusive into the Neoproterozoic accretionary wedge (the Lake Zone) in the N and underthrust southwards below the Palaeozoic volcanosedimentary prism (Gobi Altai Zone). The arc shows a section from deep, ultramafic cumulates to shallower crustal levels of the magmatic system and thus provides an excellent opportunity to study this important period of crustal growth in the Mongolian CAOB. The magmatic rocks are intermediate to ultrabasic (SiO2 = 39.2-61.8 wt. %), rather primitive (mg# = 45-60) Amp-Bt tonalites to coarse-grained Amp gabbros and hornblendites. They are Na-rich (Na2O/K2O = 1.3-9.7 by wt.), exclusively metaluminous and mostly subalkaline, except for the ultrabasic types that enter the alkaline domain due to accumulation of Amp crystals. The P-T conditions calculated using the Amp thermobarometer of Ridolfi et al. (2010) show that the gabbro crystallized at 930-950 ° C and 0.36-0.43 GPa. The (normal-) calc-alkaline chemistry and characteristic trace-element enrichment in hydrous-fluid mobile large-ion lithophile elements (LILE: Rb, Ba, Th, U, K and Pb) over high-field strength elements (HFSE: Nb and Ta) confirm an origin within an igneous arc. The newly obtained LA ICP-MS zircon ages for three tonalites-diorites range between 516 ± 2 Ma and 494 ± 3 Ma. While zircons in two of them give high initial ɛHf values (+8 to +14), implying a derivation by (near) closed-system fractionation from little modified, depleted-mantle derived magmas, the third contains significantly different component (ɛHf = +3 to +6). The latter component may have come from a distinct, less depleted

  7. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang


    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  8. Auroral arc classification scheme based on the observed arc-associated electric field pattern

    International Nuclear Information System (INIS)

    Marklund, G.


    Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-assocaited field) and asymmetric and reversal arcs. In this paper rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the arc electric field pattern from the two current continuity mechanisms, polarisation electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarisation arcs, Birkeland current arcs and combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented. (author)

  9. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle. (United States)

    Lee, Changyeol; Wada, Ikuko


    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  10. Prototype arc saw design and cutting trials

    International Nuclear Information System (INIS)

    Allison, G.S.


    A program was initiated to develop the arc saw as a tool capable of removing the end fittings from spent nuclear fuel bundles. A special arc saw for this purpose was designed, installed at the Pacific Northwest Laboratory and satisfactorily operated to remove end fittings from simulated, nonradioactive fuel bundles. The design of the arc saw included consideration of the cutting environment, power supply size, control equipment, and work piece size. Several simulated fuel bundles were cut to demonstrate that the arc saw met design specifications. Although the arc saw development program was curtailed before significant performance data could be collected, tests indicate that the arc saw is a good means of cropping spent fuel bundles and is well suited to remote operation and maintenance

  11. Magmatism and petroleum exploration in the Brazilian Paleozoic basins

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz Filho, Antonio; Antonioli, Luzia [Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Rua Sao Francisco Xavier, no 524/2030, CEP 20550-900, Rio de Janeiro, RJ (Brazil); Mizusaki, Ana Maria Pimentel [Universidade Federal do Rio Grande do Sul, Instituto de Geociencias, Avenida Bento Goncalves, no 9500, Campus do Vale, CEP 91509-900, Porto Alegre, RS (Brazil)


    Petroleum exploration in the Paleozoic sedimentary basins of Brazil has proven very challenging for explorationists. Except for the Solimoes Basin, in which transcurrent tectonism formed prospective structural highs, Brazilian Paleozoic basins lack intense structural deformation, and hence the detection and prospecting of place is often difficult. Magmatic intrusive and associated rocks in all these basins have traditionally been considered heat sources and hydrocarbon traps. The role of tholeiitic basic dikes in the generation, migration and accumulation of petroleum in the Anhembi oil occurrence (Sao Paulo State) is discussed herein. It follows that similar geological settings in other Paleozoic basins can be regarded as promising sites for oil accumulation that warrant investigation via modern geological and geophysical methods. (author)

  12. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina (United States)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.


    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  13. Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran

    Directory of Open Access Journals (Sweden)

    Mollai Habib


    Full Text Available Paleocene to Oligocene tectonic processes in northwest Iran resulted in extensive I-type calc-alkaline and alkaline magmatic activity in the Ahar region. Numerous skarn deposits formed in the contact between Upper Cretaceous impure carbonate rocks and Oligocene-Miocene plutonic rocks. This study presents new field observations of skarns in the western Alborz range and is based on geochemistry of igneous rocks, mineralogy of the important skarn deposits, and electron microprobe analyses of skarn minerals. These data are used to interpret the metasomatism during sequential skarn formation and the geotectonic setting of the skarn ore deposit related igneous rocks. The skarns were classified into exoskarn, endoskarn and ore skarn. Andraditic garnet is the main skarn mineral; the pyroxene belongs to the diopside-hedenbergite series. The skarnification started with pluton emplacement and metamorphism of carbonate rocks followed by prograde metasomatism and the formation of anhydrous minerals like garnet and pyroxene. The next stage resulted in retro gradation of anhydrous minerals along with the formation of oxide minerals (magnetite and hematite followed by the formation of hydrosilicate minerals like epidote, actinolite, chlorite, quartz, sericite and sulfide mineralization. In addition to Fe, Si and Mg, substantial amounts of Cu, along with volatile components such as H2S and CO2 were added to the skarn system. Skarn mineralogy and geochemistry of the igneous rocks indicate an island arc or subduction-related origin of the Fe-Cu skarn deposit.

  14. Short lived radionuclides in gases and magmas: contribution to the study of degassing and of the dynamics of magmatic reservoirs

    International Nuclear Information System (INIS)

    Gauthier, P.J.


    Crystallization and magma degassing at Stromboli (Italy) and Merapi (Indonesia) volcanoes are studied through 230 Th- 226 Ra- 210 Pb and 210 Pb- 210 Bi- 210 Po disequilibria in lavas and gases. An attempt to date crystallization by internal isochrones in ( 226 Ra)/Ba - ( 230 Th)/Ba and ( 210 Pb)/Pb - ( 226 Ra)/Pb diagrams reveals the complex evolution of these arc magmas. Several models (instantaneous but non simultaneous crystallization of the different mineral phases; continuous crystallization) are proposed to explain the lack of simple isochrones. The influence of other magmatic processes (assimilation, magma reinjection, degassing...) is discussed. The role played by radon loss from magmas (controlled by the ex solution of major gas species) on 210 Pb- 226 Ra disequilibria in lavas is examined through a model of dynamic degassing. At Stromboli, the magma reservoir has reached a steady-state and is rapidly renewed, thus explaining (Pb/Ra) ratios close to 1. At Merapi, the evolution of the reservoir is controlled by a succession of low dynamics degassing periods ( 2 analyses in the volcanic plume. The contribution of Etna as a source of atmospheric pollution is estimated during periods of contrasted volcanic activity and is compared to the volcanic emissions worldwide. (author)

  15. Uranium metallogeny, magmatism and structure in southeast China

    International Nuclear Information System (INIS)

    Simpson, P.R.


    Granite magmatism and the associated uranium metallogeny in southeast China are considered in relation to a plate tectonic model previously developed for Jiangxi Province which envisages the suturing of three separate continental fault blocks or plates which are thought to have existed as separate continental microplates until the Permian, namely the Sino-Korean, Yangtze and South China Plates. In Jiangxi Province, most of the granitic magmas, including those considered in the paper to be associated with U ore deposits, can be shown to be systematically distributed in relation to the postulated destructive plate margins which are thought to have existed along all the plate boundaries between the continental microplates. The granitic intrusions in Jiangxi range from those more proximal to the inferred location of the subduction zone in a modified Andean type model, such as porphyries of Cu, Cu-Mo and W-Cu type, to more distal granites of U-W-Sn-F-Nb-REE type. They range in age from Indosinian to Yanshanian (but mainly the latter) and are intruded in tensional settings along major lithospheric fracture zones, with sinistral strike slip, many of which continued to move both during and after granite emplacement. These U, W, Sn, F, Nb and REE rich metalliferous granites, which all intruded post-tectonically long after the principal metamorphic events, which are Jinningian (Late Proterozoic on the Yangtze Plate) and Caledonian (South China Plate), and the younger suturing events, are considered in the study to be essentially of juvenile magmatic rather than crustal origin. Such a tectonic model helps to account for the well developed and structurally zoned metallogeny of southeast China and the genesis of the Southeast China Uranium Province. Selected examples of U ore deposits which occur within the Southeast China Uranium Province are considered in order to develop the basis for a genetic model for U which would be more generally applicable to this region and possibly

  16. Crustal structure of Tolfa domes complex (northern Latium - Italy) inferred from receiver functions analysis: an interplay between tectonics and magmatism (United States)

    Buttinelli, M.; Bianchi, I.; Anselmi, M.; Chiarabba, C.; de Rita, D.; Quattrocchi, F.


    The Tolfa-Cerite volcanic district developed along the Tyrrhenian passive margin of central Italy, as part of magmatic processes started during the middle Pliocene. In this area the uncertainties on the deep crustal structures and the definition of the intrusive bodies geometry are focal issues that still need to be addressed. After the onset of the spreading of the Tyrrhenian sea during the Late Miocene, the emplacement of the intrusive bodies of the Tolfa complex (TDC), in a general back-arc geodynamical regime, generally occurred in a low stretching rate, in correspondence of the junctions between major lithospheric discontinuities. Normal faults, located at the edge of Mio-Pliocene basins, were used as preferential pathways for the rising of magmatic masses from the mantle to the surface. We used teleseismic recordings at the TOLF and MAON broad band station of the INGV seismic network (located between the Argentario promontory and Tolfa-Ceriti dome complexes -TDC-) to image the principal seismic velocity discontinuities by receiver function analysis (RF's). Together with RF’s velocity models of the area computed using the teleseismic events recorded by a temporary network of eight stations deployed around the TDC, we achieve a general crustal model of this area. The geometry of the seismic network has been defined to focus on the crustal structure beneath the TDC, trying to define the main velocity changes attributable to the intrusive bodies, the calcareous basal complex, the deep metamorphic basement, the lower crust and the Moho. The analysis of these data show the Moho at a depth of 23 km in the TDC area and 20 km in the Argentario area. Crustal models also show an unexpected velocity decrease between 12 and 18 km, consistent with a slight dropdown of the Vp/Vs ratio, imputable to a regional mid-crustal shear zone inherited from the previous alpine orogenesis, re-activated in extensional tectonic by the early opening phases of the Tyrrhenian sea. Above

  17. On the formation of auroral arcs

    International Nuclear Information System (INIS)

    Stasiewicz, K.


    A new mechanism for auroral arc formation is presented. The characteristic linear shape of auroral arcs is determined by magnetically connected plasma clouds in the distant equatorial magnetosphere. These clouds originate as high speed plasma beams in the magnetotail and in the solar wind. It is found that the free energy for driving an auroral arc is provided by the difference of pressure between the cloud and the ambient plasma. (author)

  18. Programming ArcGIS with Python cookbook

    CERN Document Server

    Pimpler, Eric


    Programming ArcGIS with Python Cookbook, Second Edition, is written for GIS professionals who wish to revolutionize their ArcGIS workflow with Python. Whether you are new to ArcGIS or a seasoned professional, you almost certainly spend time each day performing various geoprocessing tasks. This book will teach you how to use the Python programming language to automate these geoprocessing tasks and make you a more efficient and effective GIS professional.

  19. Arc saw and its application to decommissioning

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.


    The arc saw is a toothless, circular saw that cuts by arc erosion. A model was built to study the arc saw's usefulness in cutting up radioactively contaminated metal scrap. It was chosen because it cuts with very little contact to the work piece and because cutting is not affected by material hardness. After installation of several improvements it was found it could cut almost any combination of metals and that clamping or fixturing requirements were minimum. Cutting proceeds rapidly and efficiently

  20. Nomenclature of SLC Arc beamline components

    International Nuclear Information System (INIS)

    Silva, J.; Weng, W.T.


    This note defines I and C formal names for beamline components in the Arc as specified in the TRANSPORT decks ARCN FINAL and ARCS FINAL of June 5, 1985. The formal name consists of three fields: the primary name, the zone and the unit number. The general principles and guidelines are explained in Reference 1. The rationale and the final resolutions of the naming conventions for the Arc are explained

  1. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc

    International Nuclear Information System (INIS)

    Chen, Tang; Wang, Cheng; Liao, Meng-Ran; Xia, Wei-Dong


    A model including the cathode, near-cathode region, and arc column was constructed. Specifically, a thermal perturbation layer at the arc fringe was calculated in order to couple sheath/presheath modelling with typical arc column modelling. Comparative investigation of two modes of attachment of a dc (100, 150, 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten was conducted. Computational data revealed that there exists two modes of arc discharge: the spot mode, which has an obvious cathode surface temperature peak in the arc attachment centre; and the diffuse mode, which has a flat cathode surface temperature distribution and a larger arc attachment area. The modelling results of the arc attachment agree with previous experimental observations for the diffuse mode. A further 3D simulation is obviously needed to investigate the non-axisymmetrical features, especially for the spot mode. (paper)

  2. The Kinematics of Central American Fore-Arc Motion in Nicaragua: Geodetic, Geophysical and Geologic Study of Magma-Tectonic Interactions (United States)

    La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.


    A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the

  3. Automatic Control Of Length Of Welding Arc (United States)

    Iceland, William F.


    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  4. Investigations Of A Pulsed Cathodic Vacuum Arc (United States)

    Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.


    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.

  5. The Abundance of Large Arcs From CLASH (United States)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team


    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  6. Teaching with ArcGIS Pro


    Theller, Larry


    For Fall semester 2016 the ABE department moved the course ASM 540 Basic GIS from ArcGIS Desktop 10.2 to ArcGIS Pro 1.3. This software from ESRI has a completely new look and feel, (ribbon-based rather than cascading menus) and is a true 64 bit application, capable of multi-threading, and built on Python 3. After ArcGIS Desktop 10.5 is released, desktop ends and the future release will be ArcGIS Pro; so it makes sense to switch sooner rather than later. This talk will discuss some issues and...

  7. Investigations Of A Pulsed Cathodic Vacuum Arc

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Denniss, P.; Mckenzie, D.R.; Bilek, M.M.M.


    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed

  8. The dual-electrode DC arc furnace-modelling brush arc conditions


    Reynolds, Q.G.


    The dual-electrode DC arc furnace, an alternative design using an anode and cathode electrode instead of a hearth anode, was studied at small scale using computational modelling methods. Particular attention was paid to the effect of two key design variables, the arc length and the electrode separation, on the furnace behaviour. It was found that reducing the arc length to brush arc conditions was a valid means of overcoming several of the limitations of the dual-electrode design, namely high...

  9. Magmatism and Tectonics in the Meso-Archean Pongola Supergroup, South Africa (United States)

    Wilson, Allan


    vents is a feature of this uniquely preserved magmatic record. New precise zircon U-Pb ages give an indication that the entire basin formed in a remarkably short period of geological time between 2980 ±10 Ma and 2954 ±9 Ma, although complications arising from inherited zircons cannot be ruled out. While komatiites are not present in the Pongola a sequence of volcaniclastic rocks with well-preserved bombs of picrite composition and contained within a sandy matrix gives rise to a geochemical signature high in Cr and Ni which is the first evidence of an ultramafic component to this succession. Evidence of rapid deposition, a preponderance of intermediate lavas, discordance of bounding (earlier) crustal blocks and consistent structural trends in the area, are similar to features found in continental arc basins currently observed in the south-western USA, and may present an alternative model to those currently accepted for Archean terranes in early-formed cratons.

  10. Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics (United States)

    Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M.


    This work reports evidence of recent tectonically controlled plutonic magmatism related to Neogene volcanism in a broad area of Northeast Peloponnesus (Greece) that is straddled by the Hellenic Volcanic Arc and comprises the Argolid, the Argolic and Saronic gulfs and eastern Corinthia including the province of Crommyonia at the western half of Megaris peninsula (western Attica). We assess the contemporary stress field based on formal inversion of well-constrained crustal earthquake focal mechanisms and determine that it is principally extensional and NE-SW oriented, with σ1 strike and plunge being N64° and 77°, respectively and σ3 strikes and plunge N210° and 10°. This generates WNW-ESE and NW-SE faults, the former being dominant in the Saronic Gulf and the latter in the Argolic. In addition, the analysis predicts E-W and N330° faults with non-trivial right- and left-lateral heave, respectively, which are consistent with the R and R΄ directions of Riedel shear theory and explain a number of observed earthquake focal mechanisms and earthquake epicentre alignments. We also present a semi-quantitative analysis of observed aeromagnetic anomalies by performing numerical modelling of the radially averaged power spectrum with an efficient anomaly separation scheme based on a new type of 2-D Fourier domain filter introduced herein, the Radial Extended Meyer Window. This analysis identifies an extensive complex of magnetized rock formations buried at depths greater than 3 km which, given the geology and geotectonic setting of the area, can hardly be explained with anything other than calc-alkaline intrusions (plutons). At northeastern Corinthia and Crommyonia, this type of intrusive activity is unexceptional, mainly concentrated in the Gulf of Megara-Sousaki areas and consistent with the low-intensity, small-scale Pliocene dacitic volcanism observed therein. Conversely, large-scale elongate anomalies of E-W and N330° orientation have been identified in the Argolid

  11. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.


    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  12. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C


    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  13. Analogue modeling of arc and backarc deformation in the New Hebrides arc and North Fiji Basin

    NARCIS (Netherlands)

    Schellart, W. P.; Lister, G. S.; Jessell, M. W.

    In most backarc basins, extension is perpendicular to the arc. Thus individual spreading ridges extend approximately parallel to the arc. In the North Fiji Basin, however, several ancient and active spreading ridges strike 70°-90° to the New Hebrides arc. These high-angle spreading ridges relocated

  14. Jurassic ash-flow sheets, calderas, and related intrusions of the Cordilleran volcanic arc in southeastern Arizona: implications for regional tectonics and ore deposits (United States)

    Lipman, P.W.; Hagstrum, J.T.


    Volcanologic, petrologic, and paleomagnetic studies of widespread Jurassic ash-flow sheets in the Huachuca-southern Dragoon Mountains area have led to identification of four large source calderas and associated comagnetic intracaldera intrusions. Stratigraphic, facies, and contact features of the caldera-related tuffs also provide constraints on the locations, lateral displacements, and very existence for some major northwest-trending faults and inferred regional thrusts in southeastern Arizona. Silicic alkalic compositions of the Jurassic caldera-related, ash-flow tuffs; bimodal associated mafic magmatism; and interstratified coarse sedimentary deposits provide evidence for synvolcanic extension and rifting within the Cordilleran magmatic arc. Gold-copper mineralization is associated with subvolcanic intrusions at several of the Jurassic calderas. -from Authors

  15. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan


    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  16. The Magmatic Budget of Rifted Margins: is it Related to Inheritance? (United States)

    Manatschal, G.; Tugend, J.; Gillard, M.; Sauter, D.


    High quality reflection and refraction seismic surveys show a divergent style of margin architecture often referred to as magma-poor or magma-rich. More detailed studies show, however, that the evolution of these margins can be similar, despite the variable quantity and distribution of magmatism. These observations suggest that simple relations between magmatic and extensional systems are inappropriate to describe the magmatic history of rifted margins. Moreover, the study of magmatic additions indicates that they may occur, prior to, during or after lithospheric breakup. Furthermore, the observation that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far the inherited composition and temperature of the decompressing mantle may control the magmatic budget during rifting. In our presentation we will review examples from present-day and fossil rifted margins to discuss their structural and magmatic evolution and whether they are considered as magma-rich or magma-poor. The key questions that we aim to address are: 1) whether decompression melting is the driving force, or rather the consequence of extension, 2) how far the magmatic budget is controlled by inherited mantle composition and temperature, and 3) how important magma storage is during initial stages of rifting. Eventually, we will discuss to what extent the evolution of margins may reflect the interplay between inheritance (innate/"genetic code") and the actual physical processes (acquired/external factors).

  17. Evaluating optical hazards from plasma arc cutting. (United States)

    Glassford, Eric; Burr, Gregory


    The Health Hazard Evaluation Program of the National Institute for Occupational Safety and Health evaluated a steel building materials manufacturer. The employer requested the evaluation because of concerns about optical radiation hazards from a plasma arc cutting system and the need to clarify eye protection requirements for plasma operators, other employees, and visitors. The strength of the ultraviolet radiation, visible radiation (light), and infrared radiation generated by the plasma arc cutter was measured at various distances from the source and at different operating amperages. Investigators also observed employees performing the plasma arc cutting. Optical radiation above safe levels for the unprotected eyes in the ultraviolet-C, ultraviolet-B, and visible light ranges were found during plasma arc cutting. In contrast, infrared and ultraviolet-A radiation levels during plasma arc cutting were similar to background levels. The highest non-ionizing radiation exposures occurred when no welding curtains were used. A plasma arc welding curtain in place did not eliminate optical radiation hazards to the plasma arc operator or to nearby employees. In most instances, the measured intensities for visible light, UV-C, and UV-B resulted in welding shade lens numbers that were lower than those stipulated in the OSHA Filter Lenses for Protection Against Radiant Energy table in 29 CFR 1910.133(a)(5). [1] Investigators recommended using a welding curtain that enclosed the plasma arc, posting optical radiation warning signs in the plasma arc cutter area, installing audible or visual warning cues when the plasma arc cutter was operating, and using welding shades that covered the plasma arc cutter operator's face to protect skin from ultraviolet radiation hazards.

  18. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance (United States)

    Bettencourt, Jorge Silva; Juliani, Caetano; Xavier, Roberto P.; Monteiro, Lena V. S.; Bastos Neto, Artur C.; Klein, Evandro L.; Assis, Rafael R.; Leite, Washington Barbosa, Jr.; Moreto, Carolina P. N.; Fernandes, Carlos Marcello Dias; Pereira, Vitor Paulo


    The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04-2.97 Ga), metavolcanic-sedimentary units (2.76-2.74 Ga), granitoids (3.07-2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74-2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb-Y-Sn-Be-U. The latter, as well as Sn-W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0-1.87 Ga), two calc-alkaline volcanic sequences (2.0-1.95 Ga to 1.89-1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu-Au and Cu-Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98-1.75 Ga), generated in ocean-ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Col

  19. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars (United States)

    Crumpler, L. S.


    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  20. Volumetric modulated arc therapy: IMRT in a single gantry arc

    International Nuclear Information System (INIS)

    Otto, Karl


    In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg. of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship

  1. C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions (United States)

    Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.


    Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702

  2. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA (United States)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.


    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  3. production of manual arc welding electrodes with local raw materials

    African Journals Online (AJOL)


    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between ... major objectives: to form fusible slags, to stabilize the arc and to produce an inert gas shielding ... Current fusion welding techniques rely.

  4. Isotopic clues to magmatic source regions for neogene Andean volcanic rocks in the El Teniente area near 38oS latitude

    International Nuclear Information System (INIS)

    Kay, Suzanne Mahlburg; Kurtz, A.C


    The origin of isotopic variations in Central Andean arc lavas is a long-standing problem that involves identifying mantle and crustal source regions. Advances have come from analyzing temporal and spatial variations in constrained tectonic settings. The purpose here is to highlight the similarities of temporal variations in an east-west transect of Neogene magmatic units near 34 O S latitude with those from a south-north transect along the modern Southern Volcanic Zone (SVZ, e.g. Hildreth and Moorbath 1988, Tormey et al. 1991). The comparison shows the importance of crustal thickening processes associated with compressional shortening and of lithospheric scale adjustments associated with eastward migration of the arc front on magma sources. Sr, Nd and Pb isotopic analyses of 27 Neogene volcanic and plutonic samples from the El Teniente area are presented in Table 1 and plotted along with some analyses from Skewes and Stern (1994) and Stern and Skewes (1995) in Figure 2. The data show a clear progression from older samples with more 'depleted' isotopic signatures (lower 87 Sr/ 86 Sr and Pb isotopic ratios, higher εNd) to younger samples with more 'enriched' signatures (higher 87 Sr/ 86 Sr and Pb isotopic ratios, lower εNd). In detail, four temporal and spatial groups marked by discontinuities in isotopic trends can be defined. Within each group, εNd tends to decrease and 87 Sr/ 86 Sr ratios to increase with SiO2 concentration (au)

  5. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy (United States)

    Liu, Liming; Chen, Minghua


    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  6. Arcing and surface damage in DITE

    International Nuclear Information System (INIS)

    Goodall, D.H.J.; McCracken, G.M.


    An investigation into the arcing damage on surfaces exposed to plasmas in the DITE tokamak is described. It has been found that arcing occurs on the fixed limiters, on probes inserted into the plasma and on parts of the torus structure. For surfaces parallel to the toroidal field most of the arcs run across the surface orthogonal to the field direction. Observations in the scanning electron microscope show that the arc tracks are formed by a series of melted craters characteristic of cathode arc spots. The amount of metal removed from the surface is consistent with the concentration of metal observed in the plasma. In plasmas with hydrogen gas puffing during the discharge or with injection of low Z impurities, the arc tracks are observed to be much shallower than in normal low density discharges. Several types of surface damage other than arc tracks have also been observed on probes. These phenomena occur less frequently than arcing and appear to be associated with abnormal discharge conditions. (author)

  7. The next-generation ARC middleware

    DEFF Research Database (Denmark)

    Appleton, O.; Cameron, D.; Cernak, J.


    The Advanced Resource Connector (ARC) is a light-weight, non-intrusive, simple yet powerful Grid middleware capable of connecting highly heterogeneous computing and storage resources. ARC aims at providing general purpose, flexible, collaborative computing environments suitable for a range of use...

  8. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    A classical combinatorial fact is that the simplicial complex consisting of disjointly embedded chords in a convex planar polygon is a sphere. For any surface F with non-empty boundary, there is an analogous complex Arc(F) consisting of suitable equivalence classes of arcs in F connecting its bou...

  9. Verification of Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Jacobsen, Lasse; Jacobsen, Morten; Møller, Mikael Harkjær


    of interesting theoretical properties distinguishing them from other time extensions of Petri nets. We shall give an overview of the recent theory developed in the verification of TAPN extended with features like read/transport arcs, timed inhibitor arcs and age invariants. We will examine in detail...

  10. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.


    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  11. Risk assessment of metal vapor arcing (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)


    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  12. Implementing RapidArc into clinical routine

    DEFF Research Database (Denmark)

    Van Esch, Ann; Huyskens, Dominique P; Behrens, Claus F


    With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto...

  13. Arc generators of low-temperature plasma

    International Nuclear Information System (INIS)

    Krolikowski, Cz.; Niewiedzial, R.; Siwiec, J.


    This paper is a review of works concerning investigation and use of low-temperature plasma in arc plasma generators made in Electric Power Institute of PP. There are discussed: analytical approach to a problem of volt-current and operational characteristics of DC arc plasma generators, determination of limits of their stable work and possibilities of their use to technological aims. (author)

  14. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone (United States)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.


    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects

  15. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion. (United States)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.


    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  16. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.


    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  17. Low voltage arc formation in railguns (United States)

    Hawke, R.S.


    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  18. Neogene displacements in the Solomon Islands Arc (United States)

    Ridgway, J.


    The geology and present configuration of the Solomon Island arc can be explained in terms of the Neogene displacement of a single linear chain of islands. The central part of an original arc consisting of Bougainville, Choiseul, Santa Ysabel, Guadalcanal and San Cristobal was displaced to the northeast as a consequence of the attempted subduction of the Woodlark spreading system. Malaita arose on the northeastern side of the arc as a result of interaction between the arc and the Pacific Ocean floor and the volcanic islands of the New Georgia group formed to the southwest in response to the subduction of a spreading ridge, thus giving rise to the present double chain structure of the arc.

  19. Metal transfer during vacuum consumable arc remelting

    International Nuclear Information System (INIS)

    Zanner, F.J.


    A description of the vacuum consumable arc remelt process as related to solidification and a review of vacuum arc literature is presented. Metal transfer at arc lengths less than or equal to 3 cm was found to occur when liquid metal spikes hanging from the cathode form a low resistance bridge (drop short) by touching the anode and subsequently rupturing. During the bridge lifetime (0.0003 to 0.020 s) the arc is extinguished and all of the electrical power is directed through the molten bridge. The formation and rupture of these molten metal bridges are confirmed with electrical resistance measurements. At long arc lengths (greater than 10 cm) the spikes separate before touching the anode

  20. Stability of alternating current gliding arcs

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Salewski, Mirko; Leipold, Frank


    on Ohm’s law indicates that the critical length of alternating current (AC) gliding arc discharge columns can be larger than that of a corresponding direct current (DC) gliding arc. This finding is supported by previously published images of AC and DC gliding arcs. Furthermore, the analysis shows......A gliding arc is a quenched plasma that can be operated as a non-thermal plasma at atmospheric pressure and that is thus suitable for large-scale plasma surface treatment. For its practical industrial use the discharge should be extended stably in ambient air. A simple analytical calculation based...... that the critical length can be increased by increasing the AC frequency, decreasing the serial resistance and lowering the gas flow rate. The predicted dependence of gas flow rate on the arc length is experimentally demonstrated. The gap width is varied to study an optimal electrode design, since the extended non...

  1. Drilling to investigate processes in active tectonics and magmatism (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.


    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  2. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control (United States)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.


    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  3. Geophysical Observations Supporting Research of Magmatic Processes at Icelandic Volcanoes (United States)

    Vogfjörd, Kristín. S.; Hjaltadóttir, Sigurlaug; Roberts, Matthew J.


    Magmatic processes at volcanoes on the boundary between the European and North American plates in Iceland are observed with in-situ multidisciplinary geophysical networks owned by different national, European or American universities and research institutions, but through collaboration mostly operated by the Icelandic Meteorological Office. The terrestrial observations are augmented by space-based interferometric synthetic aperture radar (InSAR) images of the volcanoes and their surrounding surface. Together this infrastructure can monitor magma movements in several volcanoes from the base of the crust up to the surface. The national seismic network is sensitive enough to detect small scale seismicity deep in the crust under some of the voclanoes. High resolution mapping of this seismicity and its temporal progression has been used to delineate the track of the magma as it migrates upwards in the crust, either to form an intrusion at shallow levels or to reach the surface in an eruption. Broadband recording has also enabled capturing low frequency signals emanating from magmatic movements. In two volcanoes, Eyjafjallajökull and Katla, just east of the South Iceland Seismic Zone (SISZ), seismicity just above the crust-mantle boundary has revealed magma intruding into the crust from the mantle below. As the magma moves to shallower levels, the deformation of the Earth‘s surface is captured by geodetic systems, such as continuous GPS networks, (InSAR) images of the surface and -- even more sensitive to the deformation -- strain meters placed in boreholes around 200 m below the Earth‘s surface. Analysis of these signals can reveal the size and shape of the magma as well as the temporal evolution. At near-by Hekla volcano flanking the SISZ to the north, where only 50% of events are of M>1 compared to 86% of earthquakes in Eyjafjallajökull, the sensitivity of the seismic network is insufficient to detect the smallest seismicity and so the volcano appears less

  4. Magmatic and fragmentation controls on volcanic ash surface chemistry (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.


    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  5. The characteristic of twin-electrode TIG coupling arc pressure

    International Nuclear Information System (INIS)

    Leng Xuesong; Zhang Guangjun; Wu Lin


    The coupling arc of twin-electrode TIG (T-TIG) is a particular kind of arc, which is achieved through the coupling of two arcs generated from two insulated electrodes in the same welding torch. It is therefore different from the single arc of conventional TIG in its physical characteristics. This paper studies the distribution of T-TIG coupling arc pressure, and analyses the influences of welding current, arc length, the distance between electrode tips and electrode shape upon arc pressure on the basis of experiment. It is expected that the T-TIG welding method can be applied in high efficiency welding according to its low arc pressure

  6. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano (United States)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.


    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  7. Observational constraints on the identification of shallow lunar magmatism : insights from floor-fractured craters


    Jozwiak, Lauren; Head, James; Neumann, G. A.; Wilson, Lionel


    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity so...

  8. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere. (United States)

    Roy, Mousumi; Jordan, Thomas H; Pederson, Joel


    The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.

  9. Updated Magmatic Flux Rate Estimates for the Hawaii Plume (United States)

    Wessel, P.


    Several studies have estimated the magmatic flux rate along the Hawaiian-Emperor Chain using a variety of methods and arriving at different results. These flux rate estimates have weaknesses because of incomplete data sets and different modeling assumptions, especially for the youngest portion of the chain (little or no quantification of error estimates for the inferred melt flux, making an assessment problematic. Here we re-evaluate the melt flux for the Hawaii plume with the latest gridded data sets (SRTM30+ and FAA 21.1) using several methods, including the optimal robust separator (ORS) and directional median filtering techniques (DiM). We also compute realistic confidence limits on the results. In particular, the DiM technique was specifically developed to aid in the estimation of surface loads that are superimposed on wider bathymetric swells and it provides error estimates on the optimal residuals. Confidence bounds are assigned separately for the estimated surface load (obtained from the ORS regional/residual separation techniques) and the inferred subsurface volume (from gravity-constrained isostasy and plate flexure optimizations). These new and robust estimates will allow us to assess which secondary features in the resulting melt flux curve are significant and should be incorporated when correlating melt flux variations with other geophysical and geochemical observations.

  10. Dating the magmatism of Maio, Cape Verde Islands

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J G [Newcastle upon Tyne Univ. (UK). School of Physics; Le Bas, M J [Leicester Univ. (UK). Dept. of Geology; Furnes, H [Bergen Univ. (Norway). Geologisk Inst.


    Conventional K-Ar and /sup 40/Ar//sup 39/Ar studies of Mesozoic ocean floor basalts and Tertiary plutonic and volcanic rocks from Maio, Cape Verde Islands, have been determined to elucidate the magmatic evolution of this ocean island. Pillow lavas of the Basement Complex yield a minimum age of 113 +- 8 Ma though thermal overprinting of their formation age by the younger Central Intrusive Complex (CIC) and subsequent sheet intrusions is in some cases almost total. Activity in the CIC began before 20 Ma and plutons continued to develop until about 8 Ma, the youngest ages possibly indicating a cooling history of more than 2 Ma for these bodies relative to their volcanic counterparts. Sheet intrusion occurred throughout the period 20 to 9 Ma though the peak of this activity probably occurred 11 Ma ago. Field relations allow the time of thrusting(s) on the Monte Branco Thrust to be bracketed between 9 and 7 Ma. Volcanic activity began in the Tertiary, probably before 12 Ma, and culminated in the development of a stratovolcano at 7 Ma.

  11. The Mozambique Ridge: a document of massive multistage magmatism (United States)

    Fischer, Maximilian D.; Uenzelmann-Neben, Gabriele; Jacques, Guillaume; Werner, Reinhard


    The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ˜131 and ˜125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.

  12. K/Ar dating of the Eastern Rhodope Paleogene magmatism

    Energy Technology Data Exchange (ETDEWEB)

    Lilov, P.; Yanev, Y.; Marchev, P.


    Paleogene magmatic rocks from the Eastern Rhodope Mountains have seldom been an object of radiogeochronological studies and very few data are available from the geological literature. Until now their dating relied heavily on paleontological data from fossil-bearing sediments, alternating with the lava flows. However, there are also many cross bodies (extrusions, dikes and intrusions) as well as volcanic areas of no sediments or of fossil-free sediments which require the combined use of both methods. This paper aims at characterizing geochronologically the Eastern Rhodope Paleogene volcanism. The K/Ar method was used to date reference volcanoes (mostly with well-defined positions in the Paleogene sequence) associated with the various phases of volcanic activity, as well as some separate intrusive bodies. Nomenclature of volcanics followed the classification of the Soviet Petrographic Commission and that of Peccerillo and Taylor as supplemented by Marchey. The paper characterizes only two of the three main volcanic districts, the Momcilgrad-Arda and the Borovica districts. The third one, Susica district, has restricted exposures near the state boundary between Bulgari and Greece and was excluded from the study. The results obtained are compared with the geochronological scales proposed by Odin and Cavelier and Pomerol which correlate radiogeochronological and paleontological data (nannoplancton data included).

  13. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia (United States)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.


    -metamorphic domes at Russian North-East. Paper 2. Magmatism, metamorphism and migmatization in Late Mesozoic domes // Pacific geology. 1996. V. 15. № 1. P. 84-93. (in Russian) 13. Bering Strait Geologic Field Party, Koolen metamorphic complex, NE Russia: implications for the tectonic evolution of the Bering Strait region // Tectonics, vol. 16, no. 5, p. 713-729 14. Bondarenko G.E., Luchitskaya M.V. Mesozoic tectonic evolution of Alarmaut rise // Byul. MOIP. Otd. Geol. V. 78. Is. 3. P. 25-38. (in Russian) 15. Katkov S.M., Strikland A., Miller E.L. Age of granite batholiths in the Anyui-Chukotka Foldbelt // Doklady. Earth Sciences. 2007. Vol. 414. № 4. P. 515-518. 16. Amato J.M., Wright J.E. Potassic mafic magtism in the Kigluaik gneiss dome, northern Alaska: a geochemical study of arc magmatism in an extensional tectonic setting // J. Geophys. Res. 1997. Vol.102. N B4. P.8065-8084 17. Tikhomirov P.L., Luchitskaya M.V., Kravchenko-Berezhnoy I.R. Comparison of Cretaceous granitoids of the Chaun tectonic zone to those of the Taigonos Peninsula, NE Asia: rock chemistry, composition of rock forming minerals, and conditions of formation // Stephan Mueller series. Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov (in press) 28. Velikoslavinsky S.D. Geochemical typification of acid magmatic rocks of leading geodynamic settings // Petrology. 2003. V. 11. № 4. P.363-380. (in Russian) 19. Pearce J.A. Sources and settings of granitic rocks // Episodes. 1996. V. 19. N. 4. P. 120-125

  14. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura


    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  15. Intensity-modulated arc therapy simplified

    International Nuclear Information System (INIS)

    Wong, Eugene; Chen, Jeff Z.; Greenland, Jonathan


    Purpose: We present a treatment planning strategy for intensity-modulated radiation therapy using gantry arcs with dynamic multileaf collimator, previously termed intensity-modulated arc therapy (IMAT). Methods and Materials: The planning strategy is an extension of the photon bar arc and asymmetric arc techniques and is classified into three levels of complexity, with increasing number of gantry arcs. This principle allows us to generalize the analysis of the number of arcs required for intensity modulation for a given treatment site. Using a phantom, we illustrate how the current technique is more flexible than the photon bar arc technique. We then compare plans from our strategy with conventional three-dimensional conformal treatment plans for three sites: prostate (prostate plus seminal vesicles), posterior pharyngeal wall, and chest wall. Results: Our strategy generates superior IMAT treatment plans compared to conventional three-dimensional conformal plans. The IMAT plans spare critical organs well, and the trade-off for simplicity is that the dose uniformity in the target volume may not rival that of true inverse treatment plans. Conclusions: The analyses presented in this paper give a better understanding of IMAT plans. Our strategy is easier to understand and more efficient in generating plans than inverse planning systems; our plans are also simpler to modify, and quality assurance is more intuitive


    Directory of Open Access Journals (Sweden)

    N. Ageyev Vladimir


    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  17. Pre-Cenozoic basement rocks of the Proto-Philippine Sea Plate: Constraints for the birthplace of the Izu-Bonin-Mariana Arc (United States)

    Tani, K.; Ishizuka, O.; Horie, K.; Barth, A. P.; Harigane, Y.; Ueda, H.


    The Izu-Bonin-Mariana Arc is widely regarded to be a typical intra-oceanic arc, with the oceanic Pacific Plate subducting beneath the Philippine Sea Plate, an evolving complex of active and inactive arcs and back-arc basins. However, little is known about the origin of the proto-Philippine Sea Plate, which existed along with the Pacific Plate at the time of subduction initiation in the Eocene. To investigate the crustal structures of the proto-Philippine Sea Plate, we conducted manned-submersible and dredge surveys in the Daito Ridges and the Kyushu-Palau Ridge. The Daito Ridges comprise the northwestern Philippine Sea Plate along with what are regarded as remnants of the proto-Philippine Sea Plate. Submersible observations and rock sampling revealed that the Daito Ridges expose deep crustal sections of gabbroic, granitic, metamorphic, and ultra-mafic rocks, along with volcanic rocks ranging from basalt to andesite. Mesozoic magmatic zircon U-Pb ages have been obtained from the plutonic rocks, and whole-rock geochemistry of the igneous rocks indicates arc origins. Furthermore, mafic schist collected from the Daito Ridge has experienced amphibolite facies metamorphism, with phase assemblages suggesting that the crust was thicker than 20 km at the time. Similar amphibolite-facies metamorphic rocks with Proterozoic zircons have been recovered in the southern Kyushu-Palau Ridge, indicating that such distinctively older basement rocks exist as isolated tectonic blocks within the present Philippine Sea Plate. These finds show that the parts of the Daito Ridges and Kyushu-Palau Ridge represent developed crustal sections of the Pre-Cenozoic arc that comprises part of the proto-Philippine Sea Plate, and, together with the tectonic reconstruction of the proto-Philippine Sea Plate (Deschamps and Lallemand 2002, JGR), they suggest that subduction of the Izu-Bonin-Mariana Arc initiated at the continental margin of the Southeast Asia.

  18. Plasma instability of a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.


    Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity

  19. Arc pressure control in GTA welding

    International Nuclear Information System (INIS)

    Cook, G.E.; Wells, F.M.; Levick, P.C.


    Relationships are established between the peak current of a pulsed, rectangular current waveform and the pulse current duty cycle under conditions of constant arc power. By appropriate choice of these interrelated parameters, it is shown that the arc pressure may be varied over a wide range even though the arc power is held constant. The methodology is suggested as a means of countering the effect of gravity in 5-G welding, while maintaining constant heat input to the weld. Combined with appropriate penetration sensors, the methodology is additionally suggested as a means of controlling penetration

  20. Arc saw and its application to decommissioning

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.


    The arc saw is a toothless, circular saw that cuts by arc erosion. A model was built to study the arc saw's usefulness in cutting up radioactively contaminated metal scrap. It was chosen because it cuts with very little contact to the work piece and because cutting is not affected by material hardness. After installation of several improvements it was found it could cut almost any combination of metals and that clamping or fixturing requirements were minimum. Cutting proceeds rapidly and efficiently. 10 figures

  1. Implementation av spridningsmodell i ArcGIS


    Jou, Javid


    The project involves implementing a finished dispersion model into ArcGIS. The goal of the tool is to show how dangerous and toxic substances will travel in the ground after long periods. The goal of the project is to understand GIS in general, what it is used for and gain an insight into how developing tools for ArcGIS is, what challenges might exists. Understanding the type of data that can be stored and accessed in ArcGIS a long with the tools and functionality offered by the system when u...

  2. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc (United States)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana


    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  3. A Parent Magma for the Nakhla Martian Meteorite: Reconciliation of Estimates from 1-Bar Experiments, Magmatic Inclusions in Olivine, and Magmatic Inclusions in Augite (United States)

    Treiman, Allan H.; Goodrich, Cyrena Anne


    The composition of the parent magma for the Nakhla (martian) meteorite has been estimated from mineral-melt partitioning and from magmatic inclusions in olivine and in augite. These independent lines of evidence have converged on small range of likely compositions. Additional information is contained in the original extended abstract.

  4. Modelling Subduction Zone Magmatism Due to Hydraulic Fracture (United States)

    Lawton, R.; Davies, J. H.


    The aim of this project is to test the hypothesis that subduction zone magmatism involves hydraulic fractures propagating from the oceanic crust to the mantle wedge source region (Davies, 1999). We aim to test this hypothesis by developing a numerical model of the process, and then comparing model outputs with observations. The hypothesis proposes that the water interconnects in the slab following an earthquake. If sufficient pressure develops a hydrofracture occurs. The hydrofracture will expand in the direction of the least compressive stress and propagate in the direction of the most compressive stress, which is out into the wedge. Therefore we can calculate the hydrofracture path and end-point, given the start location on the slab and the propagation distance. We can therefore predict where water is added to the mantle wedge. To take this further we have developed a thermal model of a subduction zone. The model uses a finite difference, marker-in-cell method to solve the heat equation (Gerya, 2010). The velocity field was prescribed using the analytical expression of cornerflow (Batchelor, 1967). The markers contained within the fixed grid are used to track the different compositions and their properties. The subduction zone thermal model was benchmarked (Van Keken, 2008). We used the hydrous melting parameterization of Katz, (2003) to calculate the degree of melting caused by the addition of water to the wedge. We investigate models where the hydrofractures, with properties constrained by estimated water fluxes, have random end points. The model predicts degree of melting, magma productivity, temperature of the melt and water content in the melt for different initial water fluxes. Future models will also include the buoyancy effect of the melt and residue. Batchelor, Cambridge UP, 1967. Davies, Nature, 398: 142-145, 1999. Gerya, Cambridge UP, 2010. Katz, Geochem. Geophys. Geosy, 4(9), 2003 Van Keken Phys. Earth. Planet. In., 171:187-197, 2008.

  5. 49 CFR 195.226 - Welding: Arc burns. (United States)


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...

  6. Permo-Triassic arc-like granitoids along the northern Lancangjiang zone, eastern Tibet: Age, geochemistry, Sr-Nd-Hf isotopes, and tectonic implications (United States)

    Wang, Xinyu; Wang, Shifeng; Wang, Chao; Tang, Wenkun


    Large volumes of Permo-Triassic granitoids are exposed along the Northern Lancangjiang zone, eastern Tibet, and these rocks provide insights into the tectonic evolution of the Paleo-Tethys Ocean. We conducted detailed geological fieldwork and geochemical analysis of the Xiaochangdu and Kagong plutons that crop out along the Northern Lancangjiang magmatic belt. Zircon U-Pb data constrain the emplacement of the Xiaochangdu quartz diotites to between 263 and 257 Ma, and the Kagong granites and diorites to between 234 and 232 Ma. The Xiaochangdu quartz diorites are enriched in light rare earth (LREE) and large ion lithophile elements (LILE), depleted in high field strength elements (HFSE), have low (87Sr/86Sr)i ratios, and near-positive εNd(t) (-0.26 to 1.58) and εHf(t) (0.68-8.83) values, similar to typical subduction- related mantle-derived arc magmas. They are also characterized by high Al2O3 concentrations and low Nb/U (3.48-7.59) and Ce/Pb (3.22-4.86) ratios, indicating that their mantle source was modified by subducted pelagic sediments; Coeval granites and diorites from the Kagong pluton exhibit low A/CNK values, high LREE/HREE (heavy rare earth element) ratios, enrichment in LILE, and depletion in HFSE, also characteristic of typical arc magmas. Their variable SiO2 contents (57%- 75%), (87Sr/86Sr)i ratios, and εNd(t) (1.02-4.49) and εHf(t) (2.52-6.93) values, and relatively high zircon saturation temperatures (721-827 °C), suggest underplating of mantle-derived mafic melts beneath the lower crust. Their magmatic evolution can be explained using a MASH model. In combination with regional geological studies, our geochemical and geochronological results suggest that the late Permian Xiaochangdu and Late Triassic Kagong arc-like granitoids represent a section of a Permo-Triassic magmatic arc that was associated with the eastward subduction of the Paleo-Tethys oceanic slab beneath the Northern Qiangtang-Changdu terrane. Combined with other geological evidence

  7. Sitka, Alaska 9 arc-second DEM (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 9 arc-second resolution in geographic coordinates. This grid is strictly for...

  8. Retinal injury from a welding arc

    International Nuclear Information System (INIS)

    Naidoff, M.A.; Sliney, D.H.


    An 18-year-old man stared at a welding arc for approximately ten minutes, sustaining moderate facial erythema, keratoconjunctivitis, marked visual loss, a pupillary abnormality, and a retinal injury accompanied by a dense central scotoma and peripheral field constriction. A residual, partially pigmented foveal lesion remained after 16 months, with normal visual acuity. Since the degree of keratoconjunctivitis and facial erythema was known, we substantiated the duration of exposure to the arc by weighting the known action spectrum of moderate ultraviolet erythema with the ultraviolet spectral irradiance measurements of the arc. From the radiometric measurements of the visible brightness and visible and near infrared spectrum of the arc and from knowledge of pupil size, we calculated the retinal exposure dose rate, which was less than normally considered necessary to produce a chorioretinal burn. This case may provide a clinical example of photic maculopathy recently reported in experimental investigations

  9. Sitka, Alaska 1 arc-second DEM (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  10. Arc tracks on nanostructured surfaces after microbreakdowns

    International Nuclear Information System (INIS)

    Sinelnikov, D; Bulgadaryan, D; Kolodko, D; Kurnaev, V; Hwangbo, D; Ohno, N; Kajita, S


    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope. (paper)

  11. Sitka, Alaska 3 arc-second DEM (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 3 arc-second resolution in geographic coordinates. This grid is strictly for...

  12. Seward, Alaska 3 arc-second DEM (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is...

  13. Seldovia, Alaska 1 arc-second DEM (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seldovia, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  14. Garnet pyroxenite from Nilgiri Block, southern India: Vestiges of a Neoarchean volcanic arc (United States)

    Samuel, Vinod O.; Kwon, Sanghoon; Santosh, M.; Sajeev, K.


    Southern peninsular India preserves records of Late Neoarchean-Early Paleoproterozoic continental building and cratonization. A transect from the Paleoarchean Dharwar Craton to the Neoarchean arc magmatic complex in the Nilgiri Block across the intervening Moyar Suture Zone reveals an arc-accretionary complex composed of banded iron formation (BIF), amphibolite, metatuff, garnet-kyanite schist, metagabbro, pyroxenite and charnockite. Here we investigate the petrology, geochronology and petrogenesis of the pyroxenite and garnet-clinopyroxenite. The pyroxenite is mainly composed of orthopyroxene and clinopyroxene with local domains/pockets enriched in a clinopyroxene-garnet assemblage. Thermobarometric calculations and phase equilibria modeling suggest that the orthopyroxene- and clinopyroxene-rich domains formed at 900-1000 °C, 1-1.2 GPa whereas the garnet- and clinopyroxene-rich domains record higher pressure of about 1.8-2 GPa at similar temperature conditions (900-1000 °C). Zircon U-Pb SHRIMP dating show weighted mean 207Pb-206Pb age of 2532 ± 22 Ma, with metamorphic overgrowth at 2520 ± 27 Ma and 2478 ± 27 Ma. We propose a tectonic model involving decoupling and break-off of the oceanic plate along the southern flanks of the Dharwar Craton, which initiated oceanic plate subduction. Slab melting eventually built the Nilgiri volcanic arc on top of the over-riding plate along the flanks of the Dharwar Craton. Our study supports an active plate tectonic regime at the end of the Archean Era, aiding in the growth of paleo-continents and their assembly into stable cratons.

  15. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems (United States)

    Weis, P.


    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  16. Basins in ARC-continental collisions (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio


    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  17. Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina) (United States)

    Agusto, M.; Tassi, F.; Caselli, A. T.; Vaselli, O.; Rouwet, D.; Capaccioni, B.; Caliro, S.; Chiodini, G.; Darrah, T.


    Copahue volcano is part of the Caviahue-Copahue Volcanic Complex (CCVC), which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina-Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe-Ofqui strike slip and the northern Copahue-Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from - 8.8‰ to - 6.8‰ vs. V-PDB), δ15N values (+ 5.3‰ to + 5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°-220 °C. On the contrary, rock-fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006-2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and

  18. Metal Vapor Arcing Risk Assessment Tool (United States)

    Hill, Monika C.; Leidecker, Henning W.


    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  19. Managing Data and ArcGIS


    Farr, Lucy


    Glenn Jobson (CRASSH) produced and edited this video in collaboration with the Incremental project. ESRI's ArcGIS data, and other vector data system, are highly vulnerable to partial or complete data loss over time because as the company makes frequent software updates, and the data themselves have so many moving parts. In this presentation, Lucy Farr (McDonald Institute for Archaeological Research) describes her experiences using ArcGIS, lessons learnt, and recommendations for best practi...

  20. ATLAS DDM integration in ARC

    International Nuclear Information System (INIS)

    Behrmann, G; Cameron, D; Ellert, M; Kleist, J; Taga, A


    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous resources in several countries and yet must present a single access point for all data stored within the centre. The middleware framework used in NDGF differs significantly from other Grids, specifically in the way that all data movement and registration is performed by services outside the worker node environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF

  1. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry

    Directory of Open Access Journals (Sweden)

    Houshang Pourkaseb


    used as an indicator for characterizing the conditions involved during the evaluation of magma crystallization i.e., pressure, temperature, liquid water content and oxygen fugacity. Most recent studies on the porphyry copper intrusions in the Urumieh- Dokhtar magmatic arc by (Zarasvandi et al., 2015a, indicate that all of the mineralized porphyry systems (Dalli porphyry is included consistently show high levels of La/Sm and Sm/Yb, with concave upward patterns in the rare earth elements’ spider diagrams. Importantly, such features indicate high crustal assimilation in a relatively thickened crust and provide insight into the contribution of hornblende during the development of mineralized porphyry systems in the Urumieh- Dokhtar belt. The results of this study indicate that amphiboles of Dalli intrusions belong to the calsic group and range in composition from magnesio- hornblende, to edenite, magnesiohastingsite, and tschermakite. (Ridolfi et al., 2010, indicating that the alumina content of amphibole could be used for geobarometry. The calculations of geobarometry for quartz diorite intrusions of Dalli indicate that they formed in the pressure range of 136 to 287 (MPa. Also, calculation of magmatic water content using amphibole geochemistry indicates that the water content of quartz diorite intrusions in the Dalli were between 4.6- 5.7 (wt. %. The results of plagioclase chemistry indicate that there is a little zoning in this mineral. Also, the plagioclase composition varies from Or0.01 to Ab 0.48, An 0.50, Or 0.018, Ab 0.62 and An 0.35. They mostly have Andesine and Labradorite compositions. Discussion Amphibole minerals of the Dalli intrusions are calcic type and exhibit geochemical signatures of subduction zones. Also, characterizing the source of ore-hosting intrusions with amphibole chemistry indicate that parental magma of Dalli intrusion were generated from mixing of mantle melts with crustal materials. It seems that in an ongoing process of closure of Neo

  2. Klystron Gun Arcing and Modulator Protection

    International Nuclear Information System (INIS)

    Gold, S


    The demand for 500 kV and 265 amperes peak to power an X-Band klystron brings up protection issues for klystron faults and the energy dumped into the arc from the modulator. This situation is made worse when more than one klystron will be driven from a single modulator, such as the existing schemes for running two and eight klystrons. High power pulsed klystrons have traditionally be powered by line type modulators which match the driving impedance with the load impedance and therefore current limit at twice the operating current. Multiple klystrons have the added problems of a lower modulator source impedance and added stray capacitance, which converts into appreciable energy at high voltages like 500kV. SLAC has measured the energy dumped into klystron arcs in a single and dual klystron configuration at the 400 to 450 kV level and found interesting characteristics in the arc formation. The author will present measured data from klystron arcs powered from line-type modulators in several configurations. The questions arise as to how the newly designed solid-state modulators, running multiple tubes, will react to a klystron arc and how much energy will be dumped into the arc

  3. Recent ARC developments: Through modularity to interoperability

    International Nuclear Information System (INIS)

    Smirnova, O; Cameron, D; Ellert, M; Groenager, M; Johansson, D; Kleist, J; Dobe, P; Joenemo, J; Konya, B; Fraagaat, T; Konstantinov, A; Nilsen, J K; Saada, F Ould; Qiang, W; Read, A; Kocan, M; Marton, I; Nagy, Zs; Moeller, S; Mohn, B


    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  4. Recent ARC developments: Through modularity to interoperability

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, O; Cameron, D; Ellert, M; Groenager, M; Johansson, D; Kleist, J [NDGF, Kastruplundsgade 22, DK-2770 Kastrup (Denmark); Dobe, P; Joenemo, J; Konya, B [Lund University, Experimental High Energy Physics, Institute of Physics, Box 118, SE-22100 Lund (Sweden); Fraagaat, T; Konstantinov, A; Nilsen, J K; Saada, F Ould; Qiang, W; Read, A [University of Oslo, Department of Physics, P. O. Box 1048, Blindern, N-0316 Oslo (Norway); Kocan, M [Pavol Jozef Safarik University, Faculty of Science, Jesenna 5, SK-04000 Kosice (Slovakia); Marton, I; Nagy, Zs [NIIF/HUNGARNET, Victor Hugo 18-22, H-1132 Budapest (Hungary); Moeller, S [University of Luebeck, Inst. Of Neuro- and Bioinformatics, Ratzeburger Allee 160, D-23538 Luebeck (Germany); Mohn, B, E-mail: [Uppsala University, Department of Physics and Astronomy, Div. of Nuclear and Particle Physics, Box 535, SE-75121 Uppsala (Sweden)


    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  5. Geology, petrology, U-Pb (SHRIMP) geochronology of the Morrinhos granite - Paragua terrane, SW Amazonian craton: implications for the magmatic evolution of the San Ignacio orogeny

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Ohana; Ruiz, Amarildo Salina; Sousa, Maria Zelia Aguiar de, E-mail:, E-mail:, E-mail: [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Instituto de Ciencias Exatas e da Terra. Dept. de Geologia Geral; Batata, Maria Elisa Froes, E-mail: [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Grupo de Pesquisa em Evolucao Crustal e Tectonica; Lafon, Jean-Michel [Universidade Federal do Para (GEOCIAM/UFPA), Belem, PR (Brazil). Inst. Nacional de Cencia e Tecnologia de Geociencias da Amazonia


    Morrinhos granite is a batholith body that is slightly elongated in the NNW direction and approximately 1,140 km{sup 2} long; it is located in the municipality of Vila Bela da Santissima Trindade of the state of Mato Grosso, Brazil, in the Paragua Terrane, Rondonian-San Ignacio Province, in the SW portion of the Amazonian Craton. This intrusion displays a compositional variation from tonalite to monzogranite, has a medium to coarse inequigranular texture and is locally porphyritic; biotite is the predominant mafic in one of the facies, and hornblende is predominant in the other, with both metamorphosed into the green schist facies. The studied rocks characterize an intermediate to acidic sequence that was formed by a subalkaline magmatism; the series is alkali-calcic to metaluminous to slightly peraluminous, and the rocks evolved through fractioned crystallization mechanisms. The structural data show two deformation phases represented by penetrative foliation (S{sub 1}) and open folds (D{sub 2}), and both phases were most likely related to the San Ignacio Orogeny. The geochronological (U-Pb SHRIMP) and isotopic (Sm-Nd) investigations of these rocks indicated a crystallization age of 1350±12Ma, T{sub DM} of approximately 1.77 Ga and εNd{sub (1.35}) with a negative value of -2.57, suggesting that their generation was related to a partial melting process of a Paleoproterozoic (Statherian) continental crust. The results herein indicate that the Morrinhos granite was generated in a continental magmatic arc in a late- to post-orogenic stage of the San Ignacio Orogeny, and it can be recognized as belonging to the Pensamiento Intrusive Suite. (author)

  6. Breakup Style and Magmatic Underplating West of the Lofoten Islands, Norway, Based on OBS Data. (United States)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.; Murai, Y.; Flueh, E. R.


    The breakup of the Northeast Atlantic in the Early Eocene was magma-rich, forming the major part of the North Atlantic Igneous Province (NAIP). This is seen as extrusive and intrusive magmatism in the continental domain, and as a thicker than normal oceanic crust produced the first few million years after continental breakup. The maximum magma productivity and the duration of excess magmatism varies along the margins of Northwest Europe and East Greenland, to some extent as a function of the distance from the Iceland hotspot. The Vøring Plateau off mid-Norway is the northernmost of the margin segments in northwestern Europe with extensive magmatism. North of the plateau, magmatism dies off towards the Lofoten Margin, marking the northern boundary of the NAIP here. In 2003, as part of the Euromargins Program we collected an Ocean Bottom Seismometer (OBS) profile from mainland Norway, across the Lofoten Islands, and out into the deep ocean. Forward velocity modeling using raytracing reveals a continental margin that shows transitional features between magma-rich and magma-poor rifting. On one hand, we detect an up to 2 km thick and 40-50 km wide magmatic underplate of the outer continent, on the other hand, continental thinning is greater and intrusive magmatism less than farther south. Continental breakup also appears to be somewhat delayed compared to breakup on the Vøring Plateau, consistent with increased extension. This indicates that magmatic diking, believed to quickly lead to continental breakup of volcanic margins and thus to reduce continental thinning, played a much lesser role here than at the plateau. Early post-breakup oceanic crust is up to 8 km thick, less than half of that observed farther south. The most likely interpretation of these observations, is that the source for the excess magmatism of the NAIP was not present at the Lofoten Margin during rifting, and that the excess magmatism actually observed was the result of lateral transport from the

  7. Crustal growth of the Izu-Ogasawara arc estimated from structural characteristics of Oligocene arc (United States)

    Takahashi, N.; Yamashita, M.; Kodaira, S.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.


    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out seismic surveys using a multichannel reflection system and ocean bottom seismographs, and we have clarified crustal structures of whole Izu-Ogasawara (Bonin)-Marina (IBM) arc since 2002. These refection images and velocity structures suggest that the crustal evolution in the intra-oceanic island arc accompanies with much interaction of materials between crust and mantle. Slow mantle velocity identified beneath the thick arc crusts suggests that dense crustal materials transformed into the mantle. On the other hand, high velocity lower crust can be seen around the bottom of the crust beneath the rifted region, and it suggests that underplating of mafic materials occurs there. Average crustal production rate of the entire arc is larger than expected one and approximately 200 km3/km/Ma. The production rate of basaltic magmas corresponds to that of oceanic ridge. Repeated crustal differentiation is indispensable to produce much light materials like continental materials, however, the real process cannot still be resolved yet. We, therefore, submitted drilling proposals to obtain in-situ middle crust with P-wave velocity of 6 km/s. In the growth history of the IBM arc, it is known by many papers that boninitic volcanisms preceded current bimodal volcanisms based on basaltic magmas. The current volcanisms accompanied with basaltic magmas have been occurred since Oligocene age, however, the tectonic differences to develop crustal architecture between Oligocene and present are not understood yet. We obtained new refraction/reflection data along an arc strike of N-S in fore-arc region. Then, we estimate crustal structure with severe change of the crustal thickness from refraction data, which are similar to that along the volcanic front. Interval for location of the thick arc crust along N-S is very similar to that along the volcanic front. The refection image indicates that the basement of the fore-arc


    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon


    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  9. Late Carboniferous to Early Permian magmatic pulses in the Uliastai continental margin linked to slab rollback: Implications for evolution of the Central Asian Orogenic Belt (United States)

    Chai, Hui; Wang, Qingfei; Tao, Jixiong; Santosh, M.; Ma, Tengfei; Zhao, Rui


    The Paleo Asian Ocean underwent a protracted closure history during Late Paleozoic. Here we investigate the magmatic evolution during this process based on a detailed study in the Baiyinwula region along the Uliastai continental margin. The major rock types in this area are Late Carboniferous-Early Permian volcanic sequences and coeval intrusions. We identified four stages of magmatic evolution based on the diverse assemblages and their precise isotopic ages. The first stage is represented by andesites with a zircon 206Pb/238U age of ca. 326 ± 12 Ma. These rocks are metaluminous to weakly peraluminous, high-K calc-alkaline, and possess high Na2O/K2O ratios in the range of 1.23 to 2.45. They also display enrichment of large ion lithophile elements (LILE) and depletion of high field strength elements (HFSE), with markedly positive zircon εHf (t) varying from 8.1 to 15.6.The geochemical features of these andesites are similar to those of typical arc volcanic rocks. The second stage includes granodiorites emplaced at 318.6 + 1.8 Ma. The rocks are high-K calc-alkaline with A/CNK values ranging from 0.95 to 1.06, and show enrichment in LILE and depletion in HFSE. They show geochemical affinities to adakites, with high Sr and low Y and Yb contents, indicating magma derivation from thickened lower crust. Zircon grains from these rocks display positive initial εHf (t) values ranging from 11.1 to 14.6 with corresponding two-stage Hf model ages (TDM2) of 394-622 Ma. The third stage consists of syenogranite together with a volcanic suite ranging in composition from rhyolite todacite, which formed during 303.4 ± 1.2 to 285.1 ± 2.2 Ma. They possess elevated silica and alkali contents, high FeOt/MgO and Ga/Al ratios, low Al2O3, MgO and CaO contents, and high Rb, Y, Nb, Ce, Zr, Y, and Ga contents, strong negative Ba, Sr and Eu anomalies, showing I- to A-type granitic affinities. Zircons in these rocks show elevated Hf isotopic compositions (εHf (t) = 9.9 to 14.6) with TDM2

  10. Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes (United States)

    Sinton, J. M.


    rise to various Hawaiian lithologies. This analysis indicates that the important magmatic process that links geologic mapping to volcanic stage is thermal state of the volcano, as manifest by depth of magma evolution. The only criterion for rejuvenation volcanism is the presence of a significant time break (more than several hundred thousand years) preceding eruption.

  11. Shallow magmatic degassing into the hydrothermal system of Copahue, Argentina (United States)

    Varekamp, J.; Ouimette, A.; Kreulen, R.; Delpino, D.; Bermudez, A.


    Copahue volcano has a crater lake and acid hot springs that discharge into the Rio Agrio river system. These fluids are very concentrated (up to 6 percent sulfate), rich in rock-forming elements (up to 2000 ppm Mg) and small spheres of native sulfur float in the crater lake. The stable isotope composition of the waters (delta 18O =-2.1 to + 3.6 per mille; delta D = -49 to -26 per mille) indicates that the hot spring waters are at their most concentrated about 70 percent volcanic brine and 30 percent glacial meltwater. The crater lake waters have similar mixing proportions but added isotope effects from intense evaporation. Further dilution of the waters in the Rio Agrio gives values closer to local meteoric waters (delta 18O = -11 per mille; delta D = -77 per mille), whereas evaporation in closed ponds led to very heavy water (up to delta 18O = +12 per mille). The delta 34S value of dissolved sulfate is +14.2 per mille, whereas the native sulfur has values of -8.2 to -10.5 per mille. The heavy sulfate probably formed when SO2 disproportionated into bisulfate and native sulfur. We measured the sulfate fluxes in the Rio Agrio, and from these flux values and the stoichiometry of the disproportionation reaction we calculated the rate of liquid sulfur storage inside the volcano (6000 m3/year). During the eruptions of 1995/2000, large amounts of that stored liquid sulfur were ejected as pyroclastic sulfur. The calculated rate of rock dissolution (from rock- forming element fluxes in the Rio Agrio) suggests that the void space generated by rock dissolution is largely filled by native sulfur. The isotopic signature of the magmatic sulfur can be reconstituted at about +7 per mille, which is a source signature with superposed effects of shallow degassing. Lead isotope and 129Iodine data from the fluids indicate that subducted components may have played a role in the Copahue magma formation. Primary glass inclusions in plagioclase and olivine have 1110-1670 ppm Cl, 90-400 ppm

  12. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism (United States)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel


    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  13. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts (United States)

    Liu, Yanan; Samaha, Naji-Tom; Baker, Don R.


    the MELTS software to calculate the saturation of natural magmas with a sulfide phase and evolution of the SCSS during magmatic differentiation.

  14. Magma Mixing: Magmatic Enclaves in Morne Micotrin, Dominica (United States)

    Hickernell, S.; Frey, H. M.; Manon, M. R. F.; Waters, L. E.


    Magmatic enclaves in volcanic rocks provide direct evidence of magma mingling/mixing within a magma reservoir and may reinvigorate the system and trigger eruption, as documented at the Soufriere Hills in Montserrat. Lava domes on the neighboring island of Dominica also contain multiple enclave populations and may be evidence for similar magma chamber processes. The central dome of Micotrin is at the head of the Roseau Valley, which was filled with 3 km3 of pyroclastic deposits from eruptions spanning 65 - 25 ka. There appear to be two distinct types of enclaves in the crystal-rich Micotrin andesites (60 wt% SiO2), fine-grained and coarse-grained. Fine-grained mafic enclaves (52 wt% SiO2) vary in size from 1 to 15 cm in diameter, whereas the coarse-grained enclaves are generally larger and range from 3-20 cm. Fine-grained enclaves are saturated in plag (35%) + opx (35%) + cpx (20%) + oxides (10%). Average pyroxenes are 0.01 to 0.02 cm in size, whereas plagioclase averages 0.05 cm and up to 0.1 cm. The texture of the fine-grained enclaves is cumulate-like, devoid of microlites and matrix glass. Coarse-grained enclaves lack cpx and have different modal abundances and textures: plag (75%) + opx (10%) + oxides (5%) + plag microlites (10%). Plagioclase are 0.1 cm in size and orthopyroxenes average 0.05 cm. The coarse-grained enclaves are highly vesicular, a notable difference from the host as well as the fine-grained enclaves. The boundaries of both the fine- and coarse-grained enclaves are quite sharp and distinct and there do not appear to be enclave minerals disaggregated in the host rock. Temperatures were determined by two oxides. The fine-grained enclaves had two populations of magnetite, yielding 847 + 21° and 920 + 17°C. The coarse-grained enclave was 890 + 42 °C, but the oxides were extensively exsolved. Plagioclase composition in both coarse and fine-grained samples was comparable, ranging from An50 to An80. Despite compositional similarity the textures of

  15. Magmatic Volatiles as an Amplifier of Centrifugal Volcanism (United States)

    Pratt, V. R.


    There is a striking correlation between negated Length of Day -LOD and the 60-70 year period in 20th century global climate, associated by some with the so-called Atlantic Multidecadal Oscillation or AMO. A number of authors have suggested mechanisms by which the former might cause the latter. One such that this author finds quite compelling is that gravity fluctuations at low latitudes increase essentially linearly with LOD fluctuations and therefore moves magma towards or away from the surface as LOD decreases or increases, i.e. angular velocity increases or decreases, respectively. At AGU FM2016 we proposed the term "centrifugal volcanism" for this mechanism and listed four possible objections to it, explaining three to our satisfaction. The remaining objection is the very obvious one that the 4 ms increase in LOD between 1880 and 1910 seems far too small to be able to account for the observed variation of about a quarter of a degree. A basic mechanism underlying many violent eruptions is the strong positive feedback between reduction of pressure in magma and evaporation of dissolved volatiles found in some magmas, driving the magma outwards and thereby further reducing the pressure. The normal state of magma is equilibrium. Any fluctuation in gravity, even a very small one, can be sufficient to shift this equilibrium sufficiently far to set this positive feedback in motion. The relevant electrical analogy would be an operational amplifier whose amplification is greatly increased by a positive feedback. We therefore propose that the same mechanism responsible for some violent eruptions also serves to amplify the tiny changes in gravity sufficiently to increase or decrease the vertical component of the movement of magma in general. This movement, felt throughout the planet albeit most strongly at low latitudes, influences the temperature at ocean bottoms wherever there is a significant level of magmatic volatiles. This in turn creates thermals that are large

  16. Petrologic Modeling of Magmatic Evolution in The Elysium Volcanic Province (United States)

    Susko, D.; Karunatillake, S.; Hood, D.


    The Elysium Volcanic Province (EVP) on Mars is a massive expanse of land made up of many hundreds of lava flows of various ages1. The variable surface ages within this volcanic province have distinct elemental compositions based on the derived values from the Gamma Ray Spectrometer (GRS) suite2. Without seismic data or ophiolite sequences on Mars, the compositions of lavas on the surface provide some of the only information to study the properties of the interior of the planet. The Amazonian surface age and isolated nature of the EVP in the northern lowlands of Mars make it ideal for analyzing the mantle beneath Elysium during the most recent geologic era on Mars. The MELTS algorithm is one of the most commonly used programs for simulating compositions and mineral phases of basaltic melt crystallization3. It has been used extensively for both terrestrial applications4 and for other planetary bodies3,5. The pMELTS calibration of the algorithm allows for higher pressure (10-30 kbars) regimes, and is more appropriate for modeling melt compositions and equilibrium conditions for a source within the martian mantle. We use the pMELTS program to model how partial melting of the martian mantle could evolve magmas into the surface compositions derived from the GRS instrument, and how the mantle beneath Elysium has changed over time. We attribute changes to lithospheric loading by long term, episodic volcanism within the EVP throughout its history. 1. Vaucher, J. et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204, 418-442 (2009). 2. Susko, D. et al. A record of igneous evolution in Elysium, a major martian volcanic province. Scientific Reports 7, 43177 (2017). 3. El Maarry, M. R. et al. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? Journal of Volcanology and Geothermal Research 185, 116-122 (2009). 4. Ding, S. & Dasgupta, R. The

  17. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei


    The Na-rich intermediate-to-felsic granitic rocks provide insights into the generation of magmas in subduction zones. This paper presents zircon LA-ICP-MS U-Pb ages as well as whole-rock geochemical, mineral chemical, and in situ zircon Hf isotopic data on Na-rich granitic rocks from the Tengchong Block, SW China. The granodiorites and associated mafic magmatic enclaves (MMEs) from the Menglian batholith yield zircon U-Pb ages of 116.1 ± 0.8 to 117.8 ± 0.6 Ma and 117.7 ± 0.7 Ma, respectively. Both host granodiorites and enclaves show calc-alkaline and sodium-rich nature, enrichment in large-ion lithophile elements (LILEs), and variable depletion in zircon Hf isotopic compositions. Euhedral amphiboles in both granodiorites and associated enclaves are magnesian-hornblende with high Mg and Ca and contain euhedral plagioclase inclusions of labradorite to andesine (An36-57) composition. The granodiorite was most likely derived through the mixing of partial melts derived from juvenile basaltic lower crust and a minor evolved component of ancient crustal sources. The quartz monzodiorite-granodiorites and associated MMEs from the Xiaotang-Mangdong batholith yield zircon U-Pb ages of 120.3 ± 1.3 to 122.6 ± 0.8 Ma and 120.7 ± 1.5 Ma. These rocks are also sodium-rich and show calc-alkaline trend with negative zircon Hf isotopic compositions (- 5.55 to + 0.58). The MMEs in the host intrusions are monzogabbro with variable and depleted zircon Hf isotopic compositions. The amphiboles in the both host intrusions and the enclaves show Al-rich ferro-tschermakite composition. We infer that the quartz monzodiorite-granodiorites were derived from magmas generated by the melting of ancient basaltic rocks in the lower arc crust induced by the underplating of mantle-derived mafic magmas. The formation of the different types of Na-rich granitic rocks is correlated to the subduction of Bangong-Nujiang Tethyan ocean. A comparison with magmatism in the northern magmatic belt suggests

  18. Carboniferous-Permian tectonic transition envisaged in two magmatic episodes at the Kuruer Cu-Au deposit, Western Tianshan (NW China) (United States)

    Yu, Jie; Li, Nuo; Qi, Nan; Guo, Jian-Ping; Chen, Yan-Jing


    Carboniferous and Middle Permian magmatism was formed in a continental arc and post-collisional settings, respectively, with the latter episode responsible for the Cu-Au mineralization.

  19. Paleogene and Neogene magmatism in the Valle del Cura region: New perspective on the evolution of the Pampean flat slab, San Juan province, Argentina (United States)

    Litvak, Vanesa D.; Poma, Stella; Kay, Suzanne Mahlburg


    The Valle del Cura region is characterized by a thick volcanic and volcaniclastic sequence that records the Tertiary arc and backarc magmatic evolution of the Argentine Main Cordillera over the modern Pampean flatslab at 29.5-30°S. During the Eocene, a retroarc basin developed, represented by the Valle del Cura Formation synorogenic volcanosedimentary sequence, which includes rhyolites and dacitic tuffs. These silicic volcanic rocks have weak arc chemical signatures and high lithophile element concentrations and are isotopically enriched relative to the late Oligocene-early Miocene volcanic rocks that followed them. Their chemical characteristics fit with eruption through a thin crust. The Valle de Cura Formation was followed by the Oligocene-early Miocene Doña Ana Group volcanic sequence, which erupted at and near the arc front west of the border with Chile. The Doña Ana Group volcanic rocks have calc-alkaline chemical characteristics consistent with parental magmas forming in a mantle wedge and erupting through a normal thickness crust (35 km). Subsequent shallowing of the downgoing Nazca plate caused the volcanic front to migrate eastward. The volcanic sequences of the middle Miocene Cerro de las Tórtolas Formation erupted at this new arc front, essentially at the Argentine border. Two stages are recognized: an older one (16-14 Ma) in which magmas appear to have erupted through a normal thickness crust (30-35 km) and a younger one (13-10 Ma) in which the steeper REE pattern suggests the magmas last equilibrated with higher pressure residual mineral assemblages in a thicker crust. Isotopic ratios in the younger group are consistent with an increase in original crustal components and crust introduced into the mantle source by forearc subduction erosion. A peak in forearc subduction erosion near 12-10 Ma is consistent with when the main part of the Juan Fernandez Ridge began to subduct beneath the region. In addition to late Miocene Tambo Formation dacitic

  20. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance (United States)

    Su, Wenbo; Cai, Keda; Sun, Min; Wan, Bo; Wang, Xiangsong; Bao, Zihe; Xiao, Wenjiao


    The Yili-Central Tianshan Block, as a Late Paleozoic major continental silver of the Central Asian Orogenic Belt, holds a massive volume of Carboniferous volcanic rocks, occurring as subparallel magmatic belts. However, the petrogenesis and tectonic implications of these volcanic rocks remain enigmatic. This study compiled isotopic age data for mapping their temporal-spatial character, and conducted petrogenetic study of these magmatic belts, aiming to understand their tectonic implications. Our compiled dataset reveals four magmatic belts in the Yili-Central Tianshan Block, including the Keguqinshan-Tulasu belt and the Awulale belt in the north, and the Wusun Mountain belt and the Haerk-Nalati belt in the south. In addition, our new zircon U-Pb dating results define two significant Early Carboniferous eruptive events (ca. 355-350 Ma and 325 Ma) in the Wusun Mountain belt. Volcanic rocks of the early significant eruptive event (ca. 355-350 Ma) in the Wusun Mountain comprise basalt, trachy-andesite, andesite, dacite and rhyolite, which are similar to the typical rock assemblage of a continental arc. Their positive εNd(t) values (+0.3 to +1.5) and relatively high Th/Yb and Nb/Yb ratios suggest the derivation from a mantle source with additions of slab-derived components. The gabbroic dykes and rhyolites of the late volcanic event (ca. 325 Ma) form a bimodal rock association, and they show alkaline features, with relatively low Th/Yb and Th/Nb ratios, and higher positive εNd(t) values (εNd(t) = +3.3-+5.0). It is interpreted that the gabbroic dykes and rhyolites may have been derived from mantle and juvenile crustal sources, respectively. The isotopic and trace elemental variations with time elapse of the Wusun Mountain magmatic belt show an important clue for strengthening depletion of the magma sources. Considering the distinctive temporal-spatial character of the Carboniferous volcanic rocks, two separate subduction systems in the southern and northern margins of

  1. Investigating Magmatic Processes in the Lower Levels of Mantle-derived Magmatic Systems: The Age & Emplacement of the Kunene Anorthosite Complex (SW Angola) (United States)

    Hayes, B.; Bybee, G. M.; Owen-Smith, T.; Lehmann, J.; Brower, A. M.; Ashwal, L. D.; Hill, C. M.


    Our understanding of mantle-derived magmatic systems has shifted from a notion of upper crustal, melt-dominated magma chambers that feed short-lived volcanic eruptions, to a view of more long-lived trans-crustal, mush-dominated systems. Proterozoic massif-type anorthosite systems are voluminous, plagioclase-dominated plutonic suites with ubiquitous intermediate compositions (An 50 ± 10) that represent mantle-derived magmas initially ponded at Moho depths and crystallized polybarically until emplacement at mid-crustal levels. Thus, these systems provide unique insight into magma storage and processing in the lower reaches of the magma mush column, where such interpretation has previously relied on cumulate xenoliths in lavas, geophysical data and experimental/numerical modeling. We present new CA-ID-TIMS ages and a series of detailed field observations from the largest Proterozoic anorthosite massif on Earth, the Kunene Anorthosite Complex (KAC) of SW Angola. Field structures indicate that (i) the bulk of the material was emplaced in the form of crystal mushes, as both plutons and sheet-like intrusions; (ii) prolonged magmatism led to cumulate disaggregation (block structure development) and remobilization, producing considerable textural heterogeneity; (iii) crystal-rich magmatic flow induced localized recrystallization and the development of protoclastic (mortar) textures; and (iv) late residual melts were able to migrate locally prior to complete solidification. Dating of pegmatitic pods entrained from cumulate zones at the base of the crust (1500 ± 13 Ma) and their host anorthosites (1375-1438 Ma) reveals time periods in the range of 60-120 Myr between the earliest products of the system and the final mushes emplaced at higher crustal levels. Therefore, the KAC represents a complex, mushy magmatic system that developed over a long period of time. Not only do these observations help in refining our understanding of Proterozoic anorthosite petrogenesis, they

  2. arcControlTower: the System for Atlas Production and Analysis on ARC

    International Nuclear Information System (INIS)

    Filipcic, Andrej


    PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses a specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControlTower load parameters, the jobs can be controlled by ARC client tools. The system could be extended to other submission systems using central distribution.

  3. Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge (United States)

    Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin


    In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.

  4. Post-magmatic structural evolution of the Troodos Ophiolite Pillow Lavas revealed by microthermometry within vein precipitates, with application to Alpine-Mediterranean supra-subduction zone settings (United States)

    Kurz, W.; Quandt, D.; Micheuz, P.; Krenn, K.


    The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration

  5. Operator Bias in the Estimation of Arc Efficiency in Gas Tungsten Arc Welding

    Directory of Open Access Journals (Sweden)

    Fredrik Sikström


    Full Text Available In this paper the operator bias in the measurement process of arc efficiency in stationary direct current electrode negative gas tungsten arc welding is discussed. An experimental study involving 15 operators (enough to reach statistical significance has been carried out with the purpose to estimate the arc efficiency from a specific procedure for calorimetric experiments. The measurement procedure consists of three manual operations which introduces operator bias in the measurement process. An additional relevant experiment highlights the consequences of estimating the arc voltage by measuring the potential between the terminals of the welding power source instead of measuring the potential between the electrode contact tube and the workpiece. The result of the study is a statistical evaluation of the operator bias influence on the estimate, showing that operator bias is negligible in the estimate considered here. On the contrary the consequences of neglecting welding leads voltage drop results in a significant under estimation of the arc efficiency.

  6. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)


    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  7. Japan-U. S. seminar on magmatic contributions to hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Muffler, L. (U. S. Geological Survey, CA (United States)); Hedenquist, J. (Geological Survey of Japan, Tsukuba (Japan)); Kesler, S. (University of Michigan, MI (United States)); Izawa, E. (Kyushu University, Fukuoka (Japan). Faculty of Engineering)


    A multidisciplinary Seminar on Magmatic Contributions to Hydrothermal Systems'' was held at Ebino and Kagoshima at Kyushu, November, 1991. The principal purpose of the Ebino/Kagoshima Seminar was to bring together a small group of individuals which have been conducting active research on magmatic contributions to hydrothermal sy