WorldWideScience

Sample records for cabig large scale

  1. LARGE SCALE GLAZED

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    IN NEW TYPES OF LARGE SCALE AND VERY THIN, GLAZED CONCRETE FAÇADES IN BUILDING. IF SUCH ARE INTRODUCED IN AN ARCHITECTURAL CONTEXT THEY WILL HAVE A DISTINCTIVE IMPACT ON THE VISUAL EXPRESSION OF THE BUILDING. THE QUESTION IS WHAT KIND. THAT I WILL ATTEMPT TO ANSWER IN THIS ARTICLE THROUGH OBSERVATION......WORLD FAMOUS ARCHITECTS CHALLENGE TODAY THE EXPOSURE OF CONCRETE IN THEIR ARCHITECTURE. IT IS MY HOPE TO BE ABLE TO COMPLEMENT THESE. I TRY TO DEVELOP NEW AESTHETIC POTENTIALS FOR THE CONCRETE AND CERAMICS, IN LARGE SCALES THAT HAS NOT BEEN SEEN BEFORE IN THE CERAMIC AREA. IT IS EXPECTED TO RESULT...

  2. Large-Scale Disasters

    Science.gov (United States)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  3. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  4. Large scale tracking algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  5. Large scale traffic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.; Barrett, C.L. [Los Alamos National Lab., NM (United States)]|[Santa Fe Institute, NM (United States); Rickert, M. [Los Alamos National Lab., NM (United States)]|[Universitaet zu Koeln (Germany)

    1997-04-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.

  6. Discreteness and Large Scale Surjections

    OpenAIRE

    Austin, Kyle

    2015-01-01

    We study the concept of coarse disjointness and large scale $n$-to-$1$ functions. As a byproduct, we obtain an Ostrand-type characterization of asymptotic dimension for coarse structures. It is shown that properties like finite asymptotic dimension, coarse finitism, large scale weak paracompactness, ect. are all invariants of coarsely $n$-to-$1$ functions. Metrizability of large scale structures is also investigated.

  7. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  8. Japanese large-scale interferometers

    International Nuclear Information System (INIS)

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D

  9. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  10. Testing gravity on Large Scales

    OpenAIRE

    Raccanelli Alvise

    2013-01-01

    We show how it is possible to test general relativity and different models of gravity via Redshift-Space Distortions using forthcoming cosmological galaxy surveys. However, the theoretical models currently used to interpret the data often rely on simplifications that make them not accurate enough for precise measurements. We will discuss improvements to the theoretical modeling at very large scales, including wide-angle and general relativistic corrections; we then show that for wide and deep...

  11. Large scale cluster computing workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dane Skow; Alan Silverman

    2002-12-23

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community.

  12. Large-scale river regulation

    International Nuclear Information System (INIS)

    Recent concern over human impacts on the environment has tended to focus on climatic change, desertification, destruction of tropical rain forests, and pollution. Yet large-scale water projects such as dams, reservoirs, and inter-basin transfers are among the most dramatic and extensive ways in which our environment has been, and continues to be, transformed by human action. Water running to the sea is perceived as a lost resource, floods are viewed as major hazards, and wetlands are seen as wastelands. River regulation, involving the redistribution of water in time and space, is a key concept in socio-economic development. To achieve water and food security, to develop drylands, and to prevent desertification and drought are primary aims for many countries. A second key concept is ecological sustainability. Yet the ecology of rivers and their floodplains is dependent on the natural hydrological regime, and its related biochemical and geomorphological dynamics. (Author)

  13. Testing gravity on Large Scales

    Directory of Open Access Journals (Sweden)

    Raccanelli Alvise

    2013-09-01

    Full Text Available We show how it is possible to test general relativity and different models of gravity via Redshift-Space Distortions using forthcoming cosmological galaxy surveys. However, the theoretical models currently used to interpret the data often rely on simplifications that make them not accurate enough for precise measurements. We will discuss improvements to the theoretical modeling at very large scales, including wide-angle and general relativistic corrections; we then show that for wide and deep surveys those corrections need to be taken into account if we want to measure the growth of structures at a few percent level, and so perform tests on gravity, without introducing systematic errors. Finally, we report the results of some recent cosmological model tests carried out using those precise models.

  14. Conference on Large Scale Optimization

    CERN Document Server

    Hearn, D; Pardalos, P

    1994-01-01

    On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con­ ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program­ ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At­ tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com­ puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abro...

  15. Large-Scale Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  16. Large Scale Magnetostrictive Valve Actuator

    Science.gov (United States)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  17. Handbook of Large-Scale Random Networks

    CERN Document Server

    Bollobas, Bela; Miklos, Dezso

    2008-01-01

    Covers various aspects of large-scale networks, including mathematical foundations and rigorous results of random graph theory, modeling and computational aspects of large-scale networks, as well as areas in physics, biology, neuroscience, sociology and technical areas

  18. Architecture of Large-Scale Systems

    OpenAIRE

    Koschel, Arne; Astrova, Irina; Deutschkämer, Elena; Ester, Jacob; Feldmann, Johannes

    2013-01-01

    In this paper various techniques in relation to large-scale systems are presented. At first, explanation of large-scale systems and differences from traditional systems are given. Next, possible specifications and requirements on hardware and software are listed. Finally, examples of large-scale systems are presented.

  19. Conundrum of the Large Scale Streaming

    CERN Document Server

    Malm, T M

    1999-01-01

    The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

  20. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  1. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that cont

  2. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.;

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  3. Synthesis of Small and Large scale Dynamos

    CERN Document Server

    Subramanian, K

    2000-01-01

    Using a closure model for the evolution of magnetic correlations, we uncover an interesting plausible saturated state of the small-scale fluctuation dynamo (SSD) and a novel anology between quantum mechanical tunneling and the generation of large-scale fields. Large scale fields develop via the $\\alpha$-effect, but as magnetic helicity can only change on a resistive timescale, the time it takes to organize the field into large scales increases with magnetic Reynolds number. This is very similar to the results which obtain from simulations using full MHD.

  4. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    S F King

    2004-02-01

    We review experimental and theoretical developments in inflation and its application to structure formation, including the curvation idea. We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which the Higgs scalar field is responsible for large scale structure, show how such a theory is completely natural in the framework extra dimensions with an intermediate string scale.

  5. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  6. Large scale dynamos with ambipolar diffusion nonlinearity

    CERN Document Server

    Brandenburg, A; Brandenburg, Axel; Subramanian, Kandaswamy

    2000-01-01

    It is shown that ambipolar diffusion as a toy nonlinearity leads to very similar behaviour of large scale turbulent dynamos as full MHD. This is demonstrated using both direct simulations in a periodic box and a closure model for the magnetic correlation functions applicable to infinite space. Large scale fields develop via a nonlocal inverse cascade as described by the alpha-effect. However, because magnetic helicity can only change on a resistive timescale, the time it takes to organize the field into large scales increases with magnetic Reynolds number.

  7. Large-scale instabilities of helical flows

    OpenAIRE

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2016-01-01

    Large-scale hydrodynamic instabilities of periodic helical flows are investigated using $3$D Floquet numerical computations. A minimal three-modes analytical model that reproduce and explains some of the full Floquet results is derived. The growth-rate $\\sigma$ of the most unstable modes (at small scale, low Reynolds number $Re$ and small wavenumber $q$) is found to scale differently in the presence or absence of anisotropic kinetic alpha (\\AKA{}) effect. When an $AKA$ effect is present the s...

  8. Large-scale Complex IT Systems

    CERN Document Server

    Sommerville, Ian; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challenges and issues in the development of large-scale complex, software-intensive systems. Central to this is the notion that we cannot separate software from the socio-technical environment in which it is used.

  9. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.

  10. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data dissem

  11. Neutrino footprint in Large Scale Structure

    CERN Document Server

    Jimenez, Raul; Verde, Licia

    2016-01-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys, implying a direct determination of the absolute neutrino mass scale. The measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. Detection of a lack of small-scale power, however, could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties can be related to the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature can not be easily mimicked by systematic uncertainties or modifications in ...

  12. Large-scale instabilities of helical flows

    CERN Document Server

    Cameron, Alexandre; Brachet, Marc-Étienne

    2016-01-01

    Large-scale hydrodynamic instabilities of periodic helical flows are investigated using $3$D Floquet numerical computations. A minimal three-modes analytical model that reproduce and explains some of the full Floquet results is derived. The growth-rate $\\sigma$ of the most unstable modes (at small scale, low Reynolds number $Re$ and small wavenumber $q$) is found to scale differently in the presence or absence of anisotropic kinetic alpha (\\AKA{}) effect. When an $AKA$ effect is present the scaling $\\sigma \\propto q\\; Re\\,$ predicted by the $AKA$ effect theory [U. Frisch, Z. S. She, and P. L. Sulem, Physica D: Nonlinear Phenomena 28, 382 (1987)] is recovered for $Re\\ll 1$ as expected (with most of the energy of the unstable mode concentrated in the large scales). However, as $Re$ increases, the growth-rate is found to saturate and most of the energy is found at small scales. In the absence of \\AKA{} effect, it is found that flows can still have large-scale instabilities, but with a negative eddy-viscosity sca...

  13. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  14. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  15. Hierarchical Control for Large-Scale Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A class of large-seale systems, where the overall objective function is a nonlinear function of performance index of each subsystem, is investigated in this paper. This type of large-scale control problem is non-separable in the sense of conventional hierarchical control. Hierarchical control is extended in the paper to large-scale non-separable control problems, where multiobjective optimization is used as separation strategy. The large-scale non-separable control problem is embedded, under ;ertain conditions, into a family of the weighted Lagrangian formulation. The weighted Lagrangian formulation is separable with respect to subsystems and can be effectively solved using the interaction balance approach at the two lower levels in the proposed three-level solution structure. At the third level, the weighting vector for the weighted Lagrangian formulation is adjusted iteratively to search the optimal weighting vector with which the optimal of the original large-scale non-separable control problem is obtained. Theoretical base of the algorithm is established. Simulation shows that the algorithm is effective.

  16. Likelihood analysis of large-scale flows

    CERN Document Server

    Jaffe, A; Jaffe, Andrew; Kaiser, Nick

    1994-01-01

    We apply a likelihood analysis to the data of Lauer & Postman 1994. With P(k) parametrized by (\\sigma_8, \\Gamma), the likelihood function peaks at \\sigma_8\\simeq0.9, \\Gamma\\simeq0.05, indicating at face value very strong large-scale power, though at a level incompatible with COBE. There is, however, a ridge of likelihood such that more conventional power spectra do not seem strongly disfavored. The likelihood calculated using as data only the components of the bulk flow solution peaks at higher \\sigma_8, as suggested by other analyses, but is rather broad. The likelihood incorporating both bulk flow and shear gives a different picture. The components of the shear are all low, and this pulls the peak to lower amplitudes as a compromise. The velocity data alone are therefore {\\em consistent} with models with very strong large scale power which generates a large bulk flow, but the small shear (which also probes fairly large scales) requires that the power would have to be at {\\em very} large scales, which is...

  17. Gravitational Wilson Loop and Large Scale Curvature

    OpenAIRE

    Hamber, H.; Williams, R.

    2007-01-01

    In a quantum theory of gravity the gravitational Wilson loop, defined as a suitable quantum average of a parallel transport operator around a large near-planar loop, provides important information about the large-scale curvature properties of the geometry. Here we shows that such properties can be systematically computed in the strong coupling limit of lattice regularized quantum gravity, by performing local averages over loop bivectors, and over lattice rotations, using an assumed near-unifo...

  18. Large-scale neuromorphic computing systems

    Science.gov (United States)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  19. Large-scale neuromorphic computing systems.

    Science.gov (United States)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers. PMID:27529195

  20. Large-scale neuromorphic computing systems.

    Science.gov (United States)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  1. Study on the large scale dynamo transition

    CERN Document Server

    Nigro, Giuseppina

    2010-01-01

    Using the magnetohydrodynamic (MHD) description, we develop a nonlinear dynamo model that couples the evolution of the large scale magnetic field with turbulent dynamics of the plasma at small scale by electromotive force (e.m.f.) in the induction equation at large scale. The nonlinear behavior of the plasma at small scale is described by using a MHD shell model for velocity field and magnetic field fluctuations.The shell model allow to study this problem in a large parameter regime which characterizes the dynamo phenomenon in many natural systems and which is beyond the power of supercomputers at today. Under specific conditions of the plasma turbulent state, the field fluctuations at small scales are able to trigger the dynamo instability. We study this transition considering the stability curve which shows a strong decrease in the critical magnetic Reynolds number for increasing inverse magnetic Prandlt number $\\textrm{Pm}^{-1}$ in the range $[10^{-6},1]$ and slows an increase in the range $[1,10^{8}]$. We...

  2. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  3. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo...

  4. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  5. Quantum Signature of Cosmological Large Scale Structures

    CERN Document Server

    Capozziello, S; De Siena, S; Illuminati, F; Capozziello, Salvatore; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1998-01-01

    We demonstrate that to all large scale cosmological structures where gravitation is the only overall relevant interaction assembling the system (e.g. galaxies), there is associated a characteristic unit of action per particle whose order of magnitude coincides with the Planck action constant $h$. This result extends the class of physical systems for which quantum coherence can act on macroscopic scales (as e.g. in superconductivity) and agrees with the absence of screening mechanisms for the gravitational forces, as predicted by some renormalizable quantum field theories of gravity. It also seems to support those lines of thought invoking that large scale structures in the Universe should be connected to quantum primordial perturbations as requested by inflation, that the Newton constant should vary with time and distance and, finally, that gravity should be considered as an effective interaction induced by quantization.

  6. Large scale topic modeling made practical

    DEFF Research Database (Denmark)

    Wahlgreen, Bjarne Ørum; Hansen, Lars Kai

    2011-01-01

    Topic models are of broad interest. They can be used for query expansion and result structuring in information retrieval and as an important component in services such as recommender systems and user adaptive advertising. In large scale applications both the size of the database (number of docume......Topic models are of broad interest. They can be used for query expansion and result structuring in information retrieval and as an important component in services such as recommender systems and user adaptive advertising. In large scale applications both the size of the database (number...... problem is reduced by use of large and carefully curated term set. We demonstrate the performance of the proposed system and in the process break a previously claimed ’world record’ announced April 2010 both by speed and size of problem. We show that the use of a WordNet derived vocabulary can identify...

  7. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  8. Galaxy alignment on large and small scales

    Science.gov (United States)

    Kang, X.; Lin, W. P.; Dong, X.; Wang, Y. O.; Dutton, A.; Macciò, A.

    2016-10-01

    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.

  9. Galaxy alignment on large and small scales

    CERN Document Server

    Kang, X; Wang, Y O; Dutton, A; Macciò, A

    2014-01-01

    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some ex...

  10. Large-Scale PV Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  11. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  12. Wireless Secrecy in Large-Scale Networks

    CERN Document Server

    Pinto, Pedro C; Win, Moe Z

    2011-01-01

    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper provides an overview of the main properties of this new class of random graphs. We first analyze the local properties of the iS-graph, namely the degree distributions and their dependence on fading, target secrecy rate, and eavesdropper collusion. To mitigate the effect of the eavesdroppers, we propose two techniques that improve secure connectivity. Then, we analyze the global properties of the iS-graph, namely percolation on the infinite plane, and full connectivity on a finite region. These results help clarify how the presence of eavesdroppers can compromise secure communication in a large-scale network.

  13. ELASTIC: A Large Scale Dynamic Tuning Environment

    Directory of Open Access Journals (Sweden)

    Andrea Martínez

    2014-01-01

    Full Text Available The spectacular growth in the number of cores in current supercomputers poses design challenges for the development of performance analysis and tuning tools. To be effective, such analysis and tuning tools must be scalable and be able to manage the dynamic behaviour of parallel applications. In this work, we present ELASTIC, an environment for dynamic tuning of large-scale parallel applications. To be scalable, the architecture of ELASTIC takes the form of a hierarchical tuning network of nodes that perform a distributed analysis and tuning process. Moreover, the tuning network topology can be configured to adapt itself to the size of the parallel application. To guide the dynamic tuning process, ELASTIC supports a plugin architecture. These plugins, called ELASTIC packages, allow the integration of different tuning strategies into ELASTIC. We also present experimental tests conducted using ELASTIC, showing its effectiveness to improve the performance of large-scale parallel applications.

  14. Cedar-a large scale multiprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Gajski, D.; Kuck, D.; Lawrie, D.; Sameh, A.

    1983-01-01

    This paper presents an overview of Cedar, a large scale multiprocessor being designed at the University of Illinois. This machine is designed to accommodate several thousand high performance processors which are capable of working together on a single job, or they can be partitioned into groups of processors where each group of one or more processors can work on separate jobs. Various aspects of the machine are described including the control methodology, communication network, optimizing compiler and plans for construction. 13 references.

  15. Large Scale Research Project, Daidalos Evaluation Framework

    OpenAIRE

    Cleary, Frances; Ponce de Leon, Miguel; GARCÍA MORENO, Marta; ROMERO VICENTE, Antonio; Roddy, Mark

    2007-01-01

    For large scale research projects operational over a phased timeframe of 2 years or more, the need to take a step back and evaluate their stance and direction is an important activity in providing relevant feedback and recommendations to guide the project towards success in its consecutive phase. The identification of measurable goals and evaluation profile procedures to effectively work towards a useful evaluation of the project was one of the main aims of the Evaluation taskforce. As part o...

  16. Relationships in Large-Scale Graph Computing

    OpenAIRE

    Petrovic, Dan

    2012-01-01

    In 2009 Grzegorz Czajkowski from Google's system infrastructure team has published an article which didn't get much attention in the SEO community at the time. It was titled "Large-scale graph computing at Google" and gave an excellent insight into the future of Google's search. This article highlights some of the little known facts which lead to transformation of Google's algorithm in the last two years.

  17. Coordination in Large-Scale Agile Development

    OpenAIRE

    Morken, Ragnar Alexander T

    2014-01-01

    In the last decade agile software development methods has become one of themost popular topics within software engineering. Agile software developmentis well accepted in small projects among the practitioner community and inrecent years, there has also been several large-scale projects adopting agilemethodologies, but there is little understanding of how such projects achieveeective coordination, which is known to be a critical factor in software engineering.This thesis describe an explorator...

  18. Increasing Quality in large scale University Courses

    Directory of Open Access Journals (Sweden)

    Inga Saatz

    2013-07-01

    Full Text Available Quality of education should be stable or permanently increased – even if the number of students rises. Quality of education is often related to possibilities for active learning and individual facilitation. This paper deals with the question how high-quality learning within oversized courses could be enabled and it presents the approach of e-flashcards that enables active learning and individual facilitation within large scale university courses.

  19. Large scale inhomogeneities and the cosmological principle

    International Nuclear Information System (INIS)

    The compatibility of cosmologic principles and possible large scale inhomogeneities of the Universe is discussed. It seems that the strongest symmetry principle which is still compatible with reasonable inhomogeneities, is a full conformal symmetry in the 3-space defined by the cosmological velocity field, but even in such a case, the standard model is isolated from the inhomogeneous ones when the whole evolution is considered. (author)

  20. Large-Scale Clustering in Bubble Models

    CERN Document Server

    Borgani, S

    1993-01-01

    We analyze the statistical properties of bubble models for the large-scale distribution of galaxies. To this aim, we realize static simulations, in which galaxies are mostly randomly arranged in the regions surrounding bubbles. As a first test, we realize simulations of the Lick map, by suitably projecting the three-dimensional simulations. In this way, we are able to safely compare the angular correlation function implied by a bubbly geometry to that of the APM sample. We find that several bubble models provide an adequate amount of large-scale correlation, which nicely fits that of APM galaxies. Further, we apply the statistics of the count-in-cell moments to the three-dimensional distribution and compare them with available observational data on variance, skewness and kurtosis. Based on our purely geometrical constructions, we find that a well defined hierarchical scaling of higher order moments up to scales $\\sim 70\\hm$. The overall emerging picture is that the bubbly geometry is well suited to reproduce ...

  1. Large-Scale Visual Data Analysis

    Science.gov (United States)

    Johnson, Chris

    2014-04-01

    Modern high performance computers have speeds measured in petaflops and handle data set sizes measured in terabytes and petabytes. Although these machines offer enormous potential for solving very large-scale realistic computational problems, their effectiveness will hinge upon the ability of human experts to interact with their simulation results and extract useful information. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most most important tools in helping to understand such large-scale information. Our research at the Scientific Computing and Imaging (SCI) Institute at the University of Utah has focused on innovative, scalable techniques for large-scale 3D visual data analysis. In this talk, I will present state- of-the-art visualization techniques, including scalable visualization algorithms and software, cluster-based visualization methods and innovate visualization techniques applied to problems in computational science, engineering, and medicine. I will conclude with an outline for a future high performance visualization research challenges and opportunities.

  2. Very Large-Scale Integrated Processor

    Directory of Open Access Journals (Sweden)

    Shigeyuki Takano

    2013-01-01

    Full Text Available In the near future, improvements in semiconductor technology will allow thousands of resources to be implementable on chip. However, a limitation remains for both single large-scale processors and many-core processors. For single processors, this limitation arises from their  design complexity, and regarding the many-core processors, an application is partitioned to several tasks and these partitioned tasks are mapped onto the cores. In this article,  we propose a dynamic chip multiprocessor (CMP model that consists of simple modules (realizing a low design complexity and does not require the application partitioning since the scale of the processor is dynamically variable, looking like up or down scale on demand. This model is based on prior work on adaptive processors that can gather and release resources on chip to dynamically form a processor. The adaptive processor takes a linear topology that realizes a locality based placement and replacement using processing elements themselves through a stack shift of information on the linear topology of the processing element array. Therefore, for the scaling of the processor, a linear topology of the interconnection network has to support the stack shift before and after the up- or down-scaling. Therefore, we propose an interconnection network architecture called a dynamic channel segmentation distribution (dynamic CSD network. In addition the linear topology must be folded on-chip into two-dimensional plane. We also propose a new conceptual topology and its cluster which is a unit of the new topology and is replicated on the chip. We analyzed the cost in terms of the available number of clusters (adaptive processors with a minimum scale and delay in Manhattan-distance of the chip, as well as its peak Giga-Operations per Second (GOPS across the process technology scaling.

  3. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  4. Large-scale quasi-geostrophic magnetohydrodynamics

    International Nuclear Information System (INIS)

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  5. Large Scale Quasi-geostrophic Magnetohydrodynamics

    CERN Document Server

    Balk, Alexander M

    2014-01-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the "shallow water" beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra invariant. Its presence is shown to imply energy accumulation ...

  6. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  7. Large-scale planar lightwave circuits

    Science.gov (United States)

    Bidnyk, Serge; Zhang, Hua; Pearson, Matt; Balakrishnan, Ashok

    2011-01-01

    By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC) platform. We have combined hybrid integration of active components with monolithic integration of other critical functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process development has led to the integration of polarization controlling functionality. Most recently, all these technological advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical elements integrated on chips less than a square inch in size.

  8. Large Scale Quantum Simulations of Nuclear Pasta

    Science.gov (United States)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 pasta configurations. This work is supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  9. Large scale phononic metamaterials for seismic isolation

    Energy Technology Data Exchange (ETDEWEB)

    Aravantinos-Zafiris, N. [Department of Sound and Musical Instruments Technology, Ionian Islands Technological Educational Institute, Stylianou Typaldou ave., Lixouri 28200 (Greece); Sigalas, M. M. [Department of Materials Science, University of Patras, Patras 26504 (Greece)

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  10. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  11. Large scale breeder reactor pump dynamic analyses

    International Nuclear Information System (INIS)

    The lateral natural frequency and vibration response analyses of the Large Scale Breeder Reactor (LSBR) primary pump were performed as part of the total dynamic analysis effort to obtain the fabrication release. The special features of pump modeling are outlined in this paper. The analysis clearly demonstrates the method of increasing the system natural frequency by reducing the generalized mass without significantly changing the generalized stiffness of the structure. Also, a method of computing the maximum relative and absolute steady state responses and associated phase angles at given locations is provided. This type of information is very helpful in generating response versus frequency and phase angle versus frequency plots

  12. Accelerated large-scale multiple sequence alignment

    Directory of Open Access Journals (Sweden)

    Lloyd Scott

    2011-12-01

    Full Text Available Abstract Background Multiple sequence alignment (MSA is a fundamental analysis method used in bioinformatics and many comparative genomic applications. Prior MSA acceleration attempts with reconfigurable computing have only addressed the first stage of progressive alignment and consequently exhibit performance limitations according to Amdahl's Law. This work is the first known to accelerate the third stage of progressive alignment on reconfigurable hardware. Results We reduce subgroups of aligned sequences into discrete profiles before they are pairwise aligned on the accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been demonstrated on a large data set when compared to a 2.4 GHz Core2 processor. Conclusions Our parallel algorithm and architecture accelerates large-scale MSA with reconfigurable computing and allows researchers to solve the larger problems that confront biologists today. Program source is available from http://dna.cs.byu.edu/msa/.

  13. Large-scale ATLAS production on EGEE

    CERN Document Server

    Espinal, X; Walker, R

    2008-01-01

    In preparation for first data at the LHC, a series of Data Challenges, of increasing scale and complexity, have been performed. Large quantities of simulated data have been produced on three different Grids, integrated into the ATLAS production system. During 2006, the emphasis moved towards providing stable continuous production, as is required in the immediate run-up to first data, and thereafter. Here, we discuss the experience of the production done on EGEE resources, using submission based on the gLite WMS, CondorG and a system using Condor Glide-ins. The overall wall time efficiency of around 90% is largely independent of the submission method, and the dominant source of wasted cpu comes from data handling issues. The efficiency of grid job submission is significantly worse than this, and the glide-in method benefits greatly from factorising this out.

  14. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    Full Text Available Birds are highly mobile organisms and there is increasing evidence that studies at large spatial scales are needed if we are to properly understand their population dynamics. While classical metapopulation models have rarely proved useful for birds, more general metapopulation ideas involving collections of populations interacting within spatially structured landscapes are highly relevant (Harrison, 1994. There is increasing interest in understanding patterns of synchrony, or lack of synchrony, between populations and the environmental and dispersal mechanisms that bring about these patterns (Paradis et al., 2000. To investigate these processes we need to measure abundance, demographic rates and dispersal at large spatial scales, in addition to gathering data on relevant environmental variables. There is an increasing realisation that conservation needs to address rapid declines of common and widespread species (they will not remain so if such trends continue as well as the management of small populations that are at risk of extinction. While the knowledge needed to support the management of small populations can often be obtained from intensive studies in a few restricted areas, conservation of widespread species often requires information on population trends and processes measured at regional, national and continental scales (Baillie, 2001. While management prescriptions for widespread populations may initially be developed from a small number of local studies or experiments, there is an increasing need to understand how such results will scale up when applied across wider areas. There is also a vital role for monitoring at large spatial scales both in identifying such population declines and in assessing population recovery. Gathering data on avian abundance and demography at large spatial scales usually relies on the efforts of large numbers of skilled volunteers. Volunteer studies based on ringing (for example Constant Effort Sites [CES

  15. The Large-Scale Polarization Explorer (LSPE)

    CERN Document Server

    Aiola, S; Battaglia, P; Battistelli, E; Baù, A; de Bernardis, P; Bersanelli, M; Boscaleri, A; Cavaliere, F; Coppolecchia, A; Cruciani, A; Cuttaia, F; Addabbo, A D'; D'Alessandro, G; De Gregori, S; Del Torto, F; De Petris, M; Fiorineschi, L; Franceschet, C; Franceschi, E; Gervasi, M; Goldie, D; Gregorio, A; Haynes, V; Krachmalnicoff, N; Lamagna, L; Maffei, B; Maino, D; Masi, S; Mennella, A; Wah, Ng Ming; Morgante, G; Nati, F; Pagano, L; Passerini, A; Peverini, O; Piacentini, F; Piccirillo, L; Pisano, G; Ricciardi, S; Rissone, P; Romeo, G; Salatino, M; Sandri, M; Schillaci, A; Stringhetti, L; Tartari, A; Tascone, R; Terenzi, L; Tomasi, M; Tommasi, E; Villa, F; Virone, G; Withington, S; Zacchei, A; Zannoni, M

    2012-01-01

    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar sh...

  16. The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...

  17. Introducing Large-Scale Innovation in Schools

    Science.gov (United States)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  18. Introducing Large-Scale Innovation in Schools

    Science.gov (United States)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-02-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  19. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  20. Curvature constraints from Large Scale Structure

    CERN Document Server

    Di Dio, Enea; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-01-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter $\\Omega_K$ with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on the spatial curvature parameter estimation. We show that constraints on the curvature para...

  1. Radiations: large scale monitoring in Japan

    International Nuclear Information System (INIS)

    As the consequences of radioactive leaks on their health are a matter of concern for Japanese people, a large scale epidemiological study has been launched by the Fukushima medical university. It concerns the two millions inhabitants of the Fukushima Prefecture. On the national level and with the support of public funds, medical care and follow-up, as well as systematic controls are foreseen, notably to check the thyroid of 360.000 young people less than 18 year old and of 20.000 pregnant women in the Fukushima Prefecture. Some measurements have already been performed on young children. Despite the sometimes rather low measures, and because they know that some parts of the area are at least as much contaminated as it was the case around Chernobyl, some people are reluctant to go back home

  2. Large scale water lens for solar concentration.

    Science.gov (United States)

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation.

  3. The Large Scale Structure: Polarization Aspects

    Indian Academy of Sciences (India)

    R. F. Pizzo

    2011-12-01

    Polarized radio emission is detected at various scales in the Universe. In this document, I will briefly review our knowledge on polarized radio sources in galaxy clusters and at their outskirts, emphasizing the crucial information provided by the polarized signal on the origin and evolution of such sources. Successively, I will focus on Abell 2255, which is known in the literature as the first cluster for which filamentary polarized emission associated with the radio halo has been detected. By using RM synthesis on our multi-wavelength WSRT observations, we studied the 3-dimensional geometry of the cluster, unveiling the nature of the polarized filaments at the borders of the central radio halo. Our analysis points out that these structures are relics lying at large distance from the cluster center.

  4. Large-Scale Tides in General Relativity

    CERN Document Server

    Ip, Hiu Yan

    2016-01-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the "separate universe" paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation ...

  5. Large scale probabilistic available bandwidth estimation

    CERN Document Server

    Thouin, Frederic; Rabbat, Michael

    2010-01-01

    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a pa...

  6. Decomposition Methods for Large Scale LP Decoding

    CERN Document Server

    Barman, Siddharth; Draper, Stark C; Recht, Benjamin

    2012-01-01

    When binary linear error-correcting codes are used over symmetric channels, a relaxed version of the maximum likelihood decoding problem can be stated as a linear program (LP). This LP decoder can be used to decode at bit-error-rates comparable to state-of-the-art belief propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP decoding when implemented with standard LP solvers does not easily scale to the block lengths of modern error correcting codes. In this paper we draw on decomposition methods from optimization theory, specifically the Alternating Directions Method of Multipliers (ADMM), to develop efficient distributed algorithms for LP decoding. The key enabling technical result is a nearly linear time algorithm for two-norm projection onto the parity polytope. This allows us to use LP decoding, with all its theoretical guarantees, to decode large-scale error correcting codes efficiently. We present numerical results for two LDPC codes. The first is the rate-0.5 [2...

  7. Large scale mechanical metamaterials as seismic shields

    Science.gov (United States)

    Miniaci, Marco; Krushynska, Anastasiia; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

  8. CLASS: The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Essinger-Hileman, Thomas; Amiri, Mandana; Appel, John W; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseley, Samuel H; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70\\% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $\\ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmi...

  9. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  10. Large-scale wind turbine structures

    Science.gov (United States)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  11. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  12. GPU-based large-scale visualization

    KAUST Repository

    Hadwiger, Markus

    2013-11-19

    Recent advances in image and volume acquisition as well as computational advances in simulation have led to an explosion of the amount of data that must be visualized and analyzed. Modern techniques combine the parallel processing power of GPUs with out-of-core methods and data streaming to enable the interactive visualization of giga- and terabytes of image and volume data. A major enabler for interactivity is making both the computational and the visualization effort proportional to the amount of data that is actually visible on screen, decoupling it from the full data size. This leads to powerful display-aware multi-resolution techniques that enable the visualization of data of almost arbitrary size. The course consists of two major parts: An introductory part that progresses from fundamentals to modern techniques, and a more advanced part that discusses details of ray-guided volume rendering, novel data structures for display-aware visualization and processing, and the remote visualization of large online data collections. You will learn how to develop efficient GPU data structures and large-scale visualizations, implement out-of-core strategies and concepts such as virtual texturing that have only been employed recently, as well as how to use modern multi-resolution representations. These approaches reduce the GPU memory requirements of extremely large data to a working set size that fits into current GPUs. You will learn how to perform ray-casting of volume data of almost arbitrary size and how to render and process gigapixel images using scalable, display-aware techniques. We will describe custom virtual texturing architectures as well as recent hardware developments in this area. We will also describe client/server systems for distributed visualization, on-demand data processing and streaming, and remote visualization. We will describe implementations using OpenGL as well as CUDA, exploiting parallelism on GPUs combined with additional asynchronous

  13. Multidimensional scaling for large genomic data sets

    Directory of Open Access Journals (Sweden)

    Lu Henry

    2008-04-01

    Full Text Available Abstract Background Multi-dimensional scaling (MDS is aimed to represent high dimensional data in a low dimensional space with preservation of the similarities between data points. This reduction in dimensionality is crucial for analyzing and revealing the genuine structure hidden in the data. For noisy data, dimension reduction can effectively reduce the effect of noise on the embedded structure. For large data set, dimension reduction can effectively reduce information retrieval complexity. Thus, MDS techniques are used in many applications of data mining and gene network research. However, although there have been a number of studies that applied MDS techniques to genomics research, the number of analyzed data points was restricted by the high computational complexity of MDS. In general, a non-metric MDS method is faster than a metric MDS, but it does not preserve the true relationships. The computational complexity of most metric MDS methods is over O(N2, so that it is difficult to process a data set of a large number of genes N, such as in the case of whole genome microarray data. Results We developed a new rapid metric MDS method with a low computational complexity, making metric MDS applicable for large data sets. Computer simulation showed that the new method of split-and-combine MDS (SC-MDS is fast, accurate and efficient. Our empirical studies using microarray data on the yeast cell cycle showed that the performance of K-means in the reduced dimensional space is similar to or slightly better than that of K-means in the original space, but about three times faster to obtain the clustering results. Our clustering results using SC-MDS are more stable than those in the original space. Hence, the proposed SC-MDS is useful for analyzing whole genome data. Conclusion Our new method reduces the computational complexity from O(N3 to O(N when the dimension of the feature space is far less than the number of genes N, and it successfully

  14. Population generation for large-scale simulation

    Science.gov (United States)

    Hannon, Andrew C.; King, Gary; Morrison, Clayton; Galstyan, Aram; Cohen, Paul

    2005-05-01

    Computer simulation is used to research phenomena ranging from the structure of the space-time continuum to population genetics and future combat.1-3 Multi-agent simulations in particular are now commonplace in many fields.4, 5 By modeling populations whose complex behavior emerges from individual interactions, these simulations help to answer questions about effects where closed form solutions are difficult to solve or impossible to derive.6 To be useful, simulations must accurately model the relevant aspects of the underlying domain. In multi-agent simulation, this means that the modeling must include both the agents and their relationships. Typically, each agent can be modeled as a set of attributes drawn from various distributions (e.g., height, morale, intelligence and so forth). Though these can interact - for example, agent height is related to agent weight - they are usually independent. Modeling relations between agents, on the other hand, adds a new layer of complexity, and tools from graph theory and social network analysis are finding increasing application.7, 8 Recognizing the role and proper use of these techniques, however, remains the subject of ongoing research. We recently encountered these complexities while building large scale social simulations.9-11 One of these, the Hats Simulator, is designed to be a lightweight proxy for intelligence analysis problems. Hats models a "society in a box" consisting of many simple agents, called hats. Hats gets its name from the classic spaghetti western, in which the heroes and villains are known by the color of the hats they wear. The Hats society also has its heroes and villains, but the challenge is to identify which color hat they should be wearing based on how they behave. There are three types of hats: benign hats, known terrorists, and covert terrorists. Covert terrorists look just like benign hats but act like terrorists. Population structure can make covert hat identification significantly more

  15. Large Scale Computer Simulation of Erthocyte Membranes

    Science.gov (United States)

    Harvey, Cameron; Revalee, Joel; Laradji, Mohamed

    2007-11-01

    The cell membrane is crucial to the life of the cell. Apart from partitioning the inner and outer environment of the cell, they also act as a support of complex and specialized molecular machinery, important for both the mechanical integrity of the cell, and its multitude of physiological functions. Due to its relative simplicity, the red blood cell has been a favorite experimental prototype for investigations of the structural and functional properties of the cell membrane. The erythrocyte membrane is a composite quasi two-dimensional structure composed essentially of a self-assembled fluid lipid bilayer and a polymerized protein meshwork, referred to as the cytoskeleton or membrane skeleton. In the case of the erythrocyte, the polymer meshwork is mainly composed of spectrin, anchored to the bilayer through specialized proteins. Using a coarse-grained model, recently developed by us, of self-assembled lipid membranes with implicit solvent and using soft-core potentials, we simulated large scale red-blood-cells bilayers with dimensions ˜ 10-1 μm^2, with explicit cytoskeleton. Our aim is to investigate the renormalization of the elastic properties of the bilayer due to the underlying spectrin meshwork.

  16. Curvature constraints from large scale structure

    Science.gov (United States)

    Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-06-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.

  17. Food appropriation through large scale land acquisitions

    International Nuclear Information System (INIS)

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300–550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190–370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations. (letter)

  18. Large-Scale Clustering of Cosmic Voids

    CERN Document Server

    Chan, Kwan Chuen; Desjacques, Vincent

    2014-01-01

    We study the clustering of voids using $N$-body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias $b_{\\rm c} $ is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for $b_{\\rm c} $ is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii $\\gtrsim$ 30 Mpc/$h$, especially when the void biasing model is extended to 1-loop order. However, the best fit bias parameters do not agree well with the peak-background split results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys; our method enables us to treat the bias pa...

  19. Large scale production of tungsten-188

    International Nuclear Information System (INIS)

    Tungsten-188 is produced in a fission nuclear reactor with double neutron capture on 186W. The authors have explored large scale production yield (100-200 mCi) of 188W from ORNL-High Flux Isotope Reactor (HFIR) and compared this data with the experimental data available from other reactors and the theoretical calculations. The experimental yield of 188W at EOB from the HFIR operating at 85 MWt power and for one cycle irradiation (∼21 days) at the thermal neutron flux of 2x1015, n.s-1 cm-2 is 4 mCi/mg of 186W. This value is lower than the theoretical value by almost a factor of five. However, for one day irradiation at the Brookhaven High Flux Beam Reactor, the yield of 188W is lower than the theoretical value by a factor of two. Factors responsible for these low production yields and the yields of 187W intermediate radionuclide from several targets is discussed

  20. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  1. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  2. Developing Large-Scale Bayesian Networks by Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale...

  3. Sensitivity technologies for large scale simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias (Rice University, Houston, TX); Wilcox, Lucas C. (Brown University, Providence, RI); Hill, Judith C. (Carnegie Mellon University, Pittsburgh, PA); Ghattas, Omar (Carnegie Mellon University, Pittsburgh, PA); Berggren, Martin Olof (University of UppSala, Sweden); Akcelik, Volkan (Carnegie Mellon University, Pittsburgh, PA); Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  4. Sensitivity technologies for large scale simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias (Rice University, Houston, TX); Wilcox, Lucas C. (Brown University, Providence, RI); Hill, Judith C. (Carnegie Mellon University, Pittsburgh, PA); Ghattas, Omar (Carnegie Mellon University, Pittsburgh, PA); Berggren, Martin Olof (University of UppSala, Sweden); Akcelik, Volkan (Carnegie Mellon University, Pittsburgh, PA); Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  5. Multitree Algorithms for Large-Scale Astrostatistics

    Science.gov (United States)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    Common astrostatistical operations. A number of common "subroutines" occur over and over again in the statistical analysis of astronomical data. Some of the most powerful, and computationally expensive, of these additionally share the common trait that they involve distance comparisons between all pairs of data points—or in some cases, all triplets or worse. These include: * All Nearest Neighbors (AllNN): For each query point in a dataset, find the k-nearest neighbors among the points in another dataset—naively O(N2) to compute, for O(N) data points. * n-Point Correlation Functions: The main spatial statistic used for comparing two datasets in various ways—naively O(N2) for the 2-point correlation, O(N3) for the 3-point correlation, etc. * Euclidean Minimum Spanning Tree (EMST): The basis for "single-linkage hierarchical clustering,"the main procedure for generating a hierarchical grouping of the data points at all scales, aka "friends-of-friends"—naively O(N2). * Kernel Density Estimation (KDE): The main method for estimating the probability density function of the data, nonparametrically (i.e., with virtually no assumptions on the functional form of the pdf)—naively O(N2). * Kernel Regression: A powerful nonparametric method for regression, or predicting a continuous target value—naively O(N2). * Kernel Discriminant Analysis (KDA): A powerful nonparametric method for classification, or predicting a discrete class label—naively O(N2). (Note that the "two datasets" may in fact be the same dataset, as in two-point autocorrelations, or the so-called monochromatic AllNN problem, or the leave-one-out cross-validation needed in kernel estimation.) The need for fast algorithms for such analysis subroutines is particularly acute in the modern age of exploding dataset sizes in astronomy. The Sloan Digital Sky Survey yielded hundreds of millions of objects, and the next generation of instruments such as the Large Synoptic Survey Telescope will yield roughly

  6. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  7. Integration of large scale wind power

    Energy Technology Data Exchange (ETDEWEB)

    Davidsen, Troels [Inopower A/S (Denmark)

    2011-07-01

    Since 2006, the Danish TSO Energinet.dk, has got large power consumption systems available for balancing the power grid during large Wind Power in feed situations. In 2011 a total of 250 MW electro boilers are installed. The power for the electro boilers is traded on the Nordpool power exchange in the day a head market and the ancillary services markets. (orig.)

  8. Fast large-scale reionization simulations

    NARCIS (Netherlands)

    Thomas, Rajat M.; Zaroubi, Saleem; Ciardi, Benedetta; Pawlik, Andreas H.; Labropoulos, Panagiotis; Jelic, Vibor; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Harker, Geraint J. A.; Koopmans, Leon V. E.; Pandey, V. N.; Schaye, Joop; Yatawatta, Sarod; Mellema, G.

    2009-01-01

    We present an efficient method to generate large simulations of the epoch of reionization without the need for a full three-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21-cm emission from neutral hydrogen. Dark matter h

  9. Large scale structure from viscous dark matter

    CERN Document Server

    Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...

  10. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  11. Baryon Oscillations in the Large Scale Structure

    OpenAIRE

    Cooray, Asantha

    2001-01-01

    We study the possibility for an observational detection of oscillations due to baryons in the matter power spectrum and suggest a new cosmological test using the angular power spectrum of halos. The "standard rulers" of the proposed test involve overall shape of the matter power spectrum and baryon oscillation peaks in projection, as a function of redshift. Since oscillations are erased at non-linear scales, traces at redshifts greater than 1 are generally preferred. Given the decrease in num...

  12. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    Pavel Ambrož; Alfred Schroll

    2000-09-01

    Precise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.

  13. Large-scale sparse singular value computations

    Science.gov (United States)

    Berry, Michael W.

    1992-01-01

    Four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture are presented. Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left and right-singular vectors) for sparse matrices arising from two practical applications: information retrieval and seismic reflection tomography are emphasized. The target architectures for implementations are the CRAY-2S/4-128 and Alliant FX/80. The sparse SVD problem is well motivated by recent information-retrieval techniques in which dominant singular values and their corresponding singular vectors of large sparse term-document matrices are desired, and by nonlinear inverse problems from seismic tomography applications which require approximate pseudo-inverses of large sparse Jacobian matrices.

  14. Fast Large-Scale Reionization Simulations

    CERN Document Server

    Thomas, Rajat M; Ciardi, Benedetta; Pawlik, Andreas H; Labropoulos, Panagiotis; Jelic, Vibor; Bernardi, Gianni; Brentjens, Michiel A; De Bruyn, A G; Harker, Geraint J A; Koopmans, Leon V E; Mellema, Garrelt; Pandey, V N; Schaye, Joop; Yatawatta, Sarod

    2008-01-01

    We present an efficient method to generate large simulations of the Epoch of Reionization (EoR) without the need for a full 3-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21cm emission from neutral hydrogen. Dark matter haloes are embedded with sources of radiation whose properties are either based on semi-analytical prescriptions or derived from hydrodynamical simulations. These sources could either be stars or power-law sources with varying spectral indices. Assuming spherical symmetry, ionized bubbles are created around these sources, whose radial ionized fraction and temperature profiles are derived from a catalogue of 1-D radiative transfer experiments. In case of overlap of these spheres, photons are conserved by redistributing them around the connected ionized regions corresponding to the spheres. The efficiency with which these maps are created allows us to span the large parameter space typically encountered in reionizati...

  15. Large Scale Demand Response of Thermostatic Loads

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana

    This study is concerned with large populations of residential thermostatic loads (e.g. refrigerators, air conditioning or heat pumps). The purpose is to gain control over the aggregate power consumption in order to provide balancing services for the electrical grid. Without affecting the temperat...

  16. Linking Large-Scale Reading Assessments: Comment

    Science.gov (United States)

    Hanushek, Eric A.

    2016-01-01

    E. A. Hanushek points out in this commentary that applied researchers in education have only recently begun to appreciate the value of international assessments, even though there are now 50 years of experience with these. Until recently, these assessments have been stand-alone surveys that have not been linked, and analysis has largely focused on…

  17. Large scale processing of dielectric electroactive polymers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu

    Efficient processing techniques are vital to the success of any manufacturing industry. The processing techniques determine the quality of the products and thus to a large extent the performance and reliability of the products that are manufactured. The dielectric electroactive polymer (DEAP...

  18. Networking in a Large-Scale Distributed Agile Project

    OpenAIRE

    Moe, Nils Brede; Šmite, Darja; Šāblis, Aivars; Börjesson, Anne-Lie; Andréasson, Pia

    2014-01-01

    Context: In large-scale distributed software projects the expertise may be scattered across multiple locations. Goal: We describe and discuss a large-scale distributed agile project at Ericsson, a multinational telecommunications company headquartered in Sweden. The project is distributed across four development locations (one in Sweden, one in Korea and two in China) and employs 17 teams. In such a large scale environment the challenge is to have as few dependences between teams as possible,...

  19. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier;

    2012-01-01

    to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...

  20. GPS for large-scale aerotriangulation

    Science.gov (United States)

    Rogowksi, Jerzy B.

    The application of GPS (Global Positioning System) measurements to photogrammetry is presented. The technology of establishment of a GPS network for aerotriangulation as a base for mapping at scales from 1:1000 has been worked out at the Institute of Geodesy and Geodetical Astronomy of the Warsaw University of Technology. This method consists of the design, measurement, and adjustment of this special network. The results of several pilot projects confirm the possibility of improving the aerotriangulation accuracy. A few-centimeter accuracy has been achieved.

  1. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier;

    2012-01-01

    to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examin-ing fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model......) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements...

  2. Managing Large-Scale Computational Markets

    OpenAIRE

    Andersson, Arne; Ygge, Fredrik

    1998-01-01

    General equilibrium theory has been proposed for resource allocation in computational markets. The basic procedure is that agents submit bids and that a resource (re)allocation is performed when a set of prices (one for each commodity) is found such that supply meets demand for each commodity. For successful implementation of large markets based on general equilibrium theory, efficient algorithms for finding the equilibrium are required. We discuss some drawbacks of current algorithms for lar...

  3. Adaptive Sampling for Large Scale Boosting

    OpenAIRE

    Dubout, Charles; Fleuret, Francois

    2014-01-01

    Classical Boosting algorithms, such as AdaBoost, build a strong classifier without concern for the computational cost. Some applications, in particular in computer vision, may involve millions of training examples and very large feature spaces. In such contexts, the training time of off-the-shelf Boosting algorithms may become prohibitive. Several methods exist to accelerate training, typically either by sampling the features or the examples used to train the weak learners. Even if some of th...

  4. Large Scale Weather Control Using Nuclear Reactors

    CERN Document Server

    Singh-Modgil, M

    2002-01-01

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  5. Large scale surface heat fluxes. [through oceans

    Science.gov (United States)

    Sarachik, E. S.

    1984-01-01

    The heat flux through the ocean surface, Q, is the sum of the net radiation at the surface, the latent heat flux into the atmosphere, and the sensible heat flux into the atmosphere (all fluxes positive upwards). A review is presented of the geographical distribution of Q and its constituents, and the current accuracy of measuring Q by ground based measurements (both directly and by 'bulk formulae') is assessed. The relation of Q to changes of oceanic heat content, heat flux, and SST is examined and for each of these processes, the accuracy needed for Q is discussed. The needed accuracy for Q varies from process to process, varies geographically, and varies with the time and space scale considered.

  6. Measurement of ionospheric large-scale irregularity

    Institute of Scientific and Technical Information of China (English)

    韩文焌; 郑怡嘉; 张喜镇

    1996-01-01

    Based on the observations of a meter-wave aperture synthesis radio telescope,as the scale length of ionospheric irregularity is greatly larger than the baseline length of interferometer,the phase error induced by the output signal of interferometer due to ionosphere is proportional to the baseline length and accordingly the expressions for extracting the information about ionosphere are derived.By using the ray theory and considering that the antenna is always tracking to the radio source in astronomical observation,the wave motion expression of traveling ionospheric disturbance observed in the total electron content is also derived,which is consistent with that obtained from the conception of thin-phase screen;then the Doppler velocity due to antenna tracking is introduced.Finally the inversion analysis for the horizontal phase velocity of TID from observed data is given.

  7. Benefits of transactive memory systems in large-scale development

    OpenAIRE

    Aivars, Sablis

    2016-01-01

    Context. Large-scale software development projects are those consisting of a large number of teams, maybe even spread across multiple locations, and working on large and complex software tasks. That means that neither a team member individually nor an entire team holds all the knowledge about the software being developed and teams have to communicate and coordinate their knowledge. Therefore, teams and team members in large-scale software development projects must acquire and manage expertise...

  8. Stochastic pattern transitions in large scale swarms

    Science.gov (United States)

    Schwartz, Ira; Lindley, Brandon; Mier-Y-Teran, Luis

    2013-03-01

    We study the effects of time dependent noise and discrete, randomly distributed time delays on the dynamics of a large coupled system of self-propelling particles. Bifurcation analysis on a mean field approximation of the system reveals that the system possesses patterns with certain universal characteristics that depend on distinguished moments of the time delay distribution. We show both theoretically and numerically that although bifurcations of simple patterns, such as translations, change stability only as a function of the first moment of the time delay distribution, more complex bifurcating patterns depend on all of the moments of the delay distribution. In addition, we show that for sufficiently large values of the coupling strength and/or the mean time delay, there is a noise intensity threshold, dependent on the delay distribution width, that forces a transition of the swarm from a misaligned state into an aligned state. We show that this alignment transition exhibits hysteresis when the noise intensity is taken to be time dependent. Research supported by the Office of Naval Research

  9. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.; Rouvreau, Sebastien; Toth, Balazs; Jomaas, Grunde

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  10. Goethite Bench-scale and Large-scale Preparation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the

  11. Python for large-scale electrophysiology

    Directory of Open Access Journals (Sweden)

    Martin A Spacek

    2009-01-01

    Full Text Available Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54 channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analyzing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation (dimstim; one for electrophysiological waveform visualization and spike sorting (spyke; and one for spike train and stimulus analysis (neuropy. All three are open source and available for download (http://swindale.ecc.ubc.ca/code. The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience.

  12. Large Scale CW ECRH Systems: Some considerations

    Directory of Open Access Journals (Sweden)

    Turkin Y.

    2012-09-01

    Full Text Available Electron Cyclotron Resonance Heating (ECRH is a key component in the heating arsenal for the next step fusion devices like W7-X and ITER. These devices are equipped with superconducting coils and are designed to operate steady state. ECRH must thus operate in CW-mode with a large flexibility to comply with various physics demands such as plasma start-up, heating and current drive, as well as configurationand MHD - control. The request for many different sophisticated applications results in a growing complexity, which is in conflict with the request for high availability, reliability, and maintainability. ‘Advanced’ ECRH-systems must, therefore, comply with both the complex physics demands and operational robustness and reliability. The W7-X ECRH system is the first CW- facility of an ITER relevant size and is used as a test bed for advanced components. Proposals for future developments are presented together with improvements of gyrotrons, transmission components and launchers.

  13. Optimization of Large-Scale Structural Systems

    DEFF Research Database (Denmark)

    Jensen, F. M.

    Within the last decade optimization of structures has moved out of the research environment into the industry. Commercial programs for salving both deterministic as well as reliability based optimization problems have become available. Structural optimization as a field has grown from finding...... solutions to small problems with one or two variables to the optimization of large structures such as bridges, ships and offshore structures. The methods used for salving these problems have evolved from being classical differential calculus and calculus of variation to very advanced numerical techniques....... In the same period of time the problems have grown in size and the ongoing research in the various engineering fields has introduced new areas to complicate the optimization task further. These are e.g. structural reliability theory (including new, more complex constraints), discrete optimization (introducing...

  14. Python for large-scale electrophysiology.

    Science.gov (United States)

    Spacek, Martin; Blanche, Tim; Swindale, Nicholas

    2008-01-01

    Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation ("dimstim"); one for electrophysiological waveform visualization and spike sorting ("spyke"); and one for spike train and stimulus analysis ("neuropy"). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience.

  15. EPFM verification by a large scale test

    International Nuclear Information System (INIS)

    Step B test was carried out as one of the elastic plastic fracture mechanics (EPFR) study in Japanese PTS integrity research project. In step B test bending load was applied to the large flat specimen with thermal shock. Tensile load was kept constant during the test. Estimated stable crack growth at the deepest point of the crack was 3 times larger than the experimental value in the previous analysis. In order to diminish the difference between them from the point of FEM modeling, more precise FEM mesh was introduced. According to the new analysis, the difference considerably decreased. That is, stable crack growth evaluation was improved by adopting precise FEM model near the crack tip and the difference was almost same order as that in the NKS4-1 test analysis by MPA. 8 refs., 17 figs., 5 tabs

  16. Superconducting materials for large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  17. A Large Scale Virtual Gas Sensor Array

    Science.gov (United States)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  18. Using Large-Scale Assessment Scores to Determine Student Grades

    Science.gov (United States)

    Miller, Tess

    2013-01-01

    Many Canadian provinces provide guidelines for teachers to determine students' final grades by combining a percentage of students' scores from provincial large-scale assessments with their term scores. This practice is thought to hold students accountable by motivating them to put effort into completing the large-scale assessment, thereby…

  19. Large-scale turbulence structures in shallow separating flows

    NARCIS (Netherlands)

    Talstra, H.

    2011-01-01

    The Ph.D. thesis “Large-scale turbulence structures in shallow separating flows” by Harmen Talstra is the result of a Ph.D. research project on large-scale shallow-flow turbulence, which has been performed in the Environmental Fluid Mechanics Laboratory at Delft University of Technology. The dynamic

  20. Safeguards instruments for Large-Scale Reprocessing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A. [Los Alamos National Lab., NM (United States); Case, R.S.; Sonnier, C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    Between 1987 and 1992 a multi-national forum known as LASCAR (Large Scale Reprocessing Plant Safeguards) met to assist the IAEA in development of effective and efficient safeguards for large-scale reprocessing plants. The US provided considerable input for safeguards approaches and instrumentation. This paper reviews and updates instrumentation of importance in measuring plutonium and uranium in these facilities.

  1. ACTIVE DIMENSIONAL CONTROL OF LARGE-SCALED STEEL STRUCTURES

    OpenAIRE

    Radosław Rutkowski

    2013-01-01

    The article discusses the issues of dimensional control in the construction process of large-scaled steel structures. The main focus is on the analysis of manufacturing tolerances. The article presents the procedure of tolerance analysis usage in process of design and manufacturing of large-scaled steel structures. The proposed solution could significantly improve the manufacturing process.

  2. INTERNATIONAL WORKSHOP ON LARGE-SCALE REFORESTATION: PROCEEDINGS

    Science.gov (United States)

    The purpose of the workshop was to identify major operational and ecological considerations needed to successfully conduct large-scale reforestation projects throughout the forested regions of the world. Large-scale" for this workshop means projects where, by human effort, approx...

  3. Links between small-scale dynamics and large-scale averages and its implication to large-scale hydrology

    Science.gov (United States)

    Gong, L.

    2012-04-01

    Changes to the hydrological cycle under a changing climate challenge our understanding of the interaction between hydrology and climate at various spatial and temporal scales. Traditional understanding of the climate-hydrology interaction were developed under a stationary climate and may not adequately summarize the interactions in a transient state when the climate is changing; for instance, opposite long-term temporal trend of precipitation and discharge has been observed in part of the world, as a result of significant warming and the nonlinear nature of the climate and hydrology system. The patterns of internal climate variability, ranging from monthly to multi-centennial time scales, largely determine the past and present climate. The response of these patterns of variability to human-induced climate change will determine much of the regional nature of climate change in the future. Therefore, understanding the basic patterns of variability is of vital importance for climate and hydrological modelers. This work showed that at the scale of large river basins or sub-continents, the temporal variation of climatic variables ranging from daily to inter-annual, could be well represented by multiple sets, each consists of limited number of points (when observations are used) or pixels (when gridded datasets are used), covering a small portion of the total domain area. Combined with hydrological response units, which divide the heterogeneity of the land surface into limited number of categories according to similarity in hydrological behavior, one could describe the climate-hydrology interaction and changes over a large domain with multiple small subsets of the domain area. Those points (when observations are used), or pixels (when gridded data are used), represent different patterns of the climate-hydrology interaction, and contribute uniquely to an averaged dynamic of the entire domain. Statistical methods were developed to identify the minimum number of points or

  4. EPFM Verification by a Large Scale Test

    International Nuclear Information System (INIS)

    Step B test was carried out as one of the EPFM study in Japanese PTS integrity research project. In step B test bending load was applied to the large flat specimen with thermal shock. Tensile load was kept constant during the test. Estimated stable crack growth at the deepest point of the crack was 3 times larger than the experimental value in the previous analysis. In order to diminish the difference between them from the point of FEM modeling, more precise FEM mesh was introduced. According to the new analysis, the difference considerably decreased. That is, stable crack growth evaluation was improved by adopting precise FEM model near the crack tip and the difference was almost same order as that in the NKS4-1 test analysis by MPA. In summary: As one of the test items of Japanese PTS project, a fundamental study of EPFM using a flat plate specimen was carried out. A semi-elliptical surface crack was prepared by fatigue and tensile and bending loads were applied with simultaneous thermal shock in the upper shelf region. According to the post test fracture surface observation, the stable crack growth at the deepest point was 0.9 mm. In the previous analysis estimated stable crack growth at the deepest point of the crack was 2.5 mm and it was considerably larger than the experimental value. This big difference may be caused by finite element mesh, triaxiality and scatter of fracture toughness. In this paper, from the point of mesh refinement, reanalysis was carried out. In the new analysis, the minimum node length is 0.5 mm near the crack tip and is almost 22 % of that of the previous mesh size. Material properties for the analysis are exactly same as those of the previous analysis. According to the new analysis, path independency is improved and estimated ductile crack growth becomes 2.0 mm. That is, overestimation of the ductile crack growth reduces by adopting finer mesh near the crack tip. The difference between the experimental crack growth and the estimated

  5. Dynamic scaling and large scale effects in turbulence in compressible stratified fluid

    Science.gov (United States)

    Pharasi, Hirdesh K.; Bhattacharjee, Jayanta K.

    2016-01-01

    We consider the propagation of sound in a turbulent fluid which is confined between two horizontal parallel plates, maintained at different temperatures. In the homogeneous fluid, Staroselsky et al. had predicted a divergent sound speed at large length scales. Here we find a divergent sound speed and a vanishing expansion coefficient at large length scales. Dispersion relation and the question of scale invariance at large distance scales lead to these results.

  6. Balancing modern Power System with large scale of wind power

    OpenAIRE

    Basit, Abdul; Altin, Müfit; Anca Daniela HANSEN; Sørensen, Poul Ejnar

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the s...

  7. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  8. Large-scale-vortex dynamos in planar rotating convection

    CERN Document Server

    Guervilly, Céline; Jones, Chris A

    2016-01-01

    Several recent studies have demonstrated how large-scale vortices may arise spontaneously in rotating planar convection. Here we examine the dynamo properties of such flows in rotating Boussinesq convection. For moderate values of the magnetic Reynolds number ($100 \\lesssim Rm \\lesssim 550$, with $Rm$ based on the box depth and the convective velocity), a large-scale (i.e. system-size) magnetic field is generated. The amplitude of the magnetic energy oscillates in time, out of phase with the oscillating amplitude of the large-scale vortex. The dynamo mechanism relies on those components of the flow that have length scales lying between that of the large-scale vortex and the typical convective cell size; smaller-scale flows are not required. The large-scale vortex plays a crucial role in the magnetic induction despite being essentially two-dimensional. For larger magnetic Reynolds numbers, the dynamo is small scale, with a magnetic energy spectrum that peaks at the scale of the convective cells. In this case, ...

  9. A unified large/small-scale dynamo in helical turbulence

    CERN Document Server

    Bhat, Pallavi; Brandenburg, Axel

    2015-01-01

    We use high resolution direct numerical simulations to show that helical turbulence can generate large-scale fields even in the presence of strong small-scale fields.During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large $k$. Nevertheless, the large-scale field can be clearly detected as an excess power at small $k$ in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. The strength of such kinematic large-scale field $\\overline{B}$ relative to the total rms field $B_{rms}$ decreases with increasing magnetic Reynolds number, $Re_{M}$. However, as the Lorentz force becomes important, the field orders itself by saturating on successively larger scales. The magnetic power spectrum in the saturated state shows peaks at both the forcing wavenumber $k=k_f$, and at the box scale, $k=1$. The magnetic integral scale for the positively polarized waves, increas...

  10. Probabilistic cartography of the large-scale structure

    CERN Document Server

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin

    2015-01-01

    The BORG algorithm is an inference engine that derives the initial conditions given a cosmological model and galaxy survey data, and produces physical reconstructions of the underlying large-scale structure by assimilating the data into the model. We present the application of BORG to real galaxy catalogs and describe the primordial and late-time large-scale structure in the considered volumes. We then show how these results can be used for building various probabilistic maps of the large-scale structure, with rigorous propagation of uncertainties. In particular, we study dynamic cosmic web elements and secondary effects in the cosmic microwave background.

  11. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  12. The large-scale dynamics of magnetic helicity

    CERN Document Server

    Linkmann, Moritz

    2016-01-01

    In this Letter we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a non-local inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic fields. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero-flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.

  13. Constraining cosmological ultra-large scale structure using numerical relativity

    CERN Document Server

    Braden, Jonathan; Peiris, Hiranya V; Aguirre, Anthony

    2016-01-01

    Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultra-large scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultra-large scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full General Relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically significant number of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given...

  14. Polymer Physics of the Large-Scale Structure of Chromatin.

    Science.gov (United States)

    Bianco, Simona; Chiariello, Andrea Maria; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments. PMID:27659986

  15. Some perspective on the Large Scale Scientific Computation Research

    Institute of Scientific and Technical Information of China (English)

    DU Qiang

    2004-01-01

    @@ The "Large Scale Scientific Computation (LSSC) Research"project is one of the State Major Basic Research projects funded by the Chinese Ministry of Science and Technology in the field ofinformation science and technology.

  16. Some perspective on the Large Scale Scientific Computation Research

    Institute of Scientific and Technical Information of China (English)

    DU; Qiang

    2004-01-01

    The "Large Scale Scientific Computation (LSSC) Research"project is one of the State Major Basic Research projects funded by the Chinese Ministry of Science and Technology in the field ofinformation science and technology.……

  17. Personalized Opportunistic Computing for CMS at Large Scale

    CERN Document Server

    CERN. Geneva

    2015-01-01

    **Douglas Thain** is an Associate Professor of Computer Science and Engineering at the University of Notre Dame, where he designs large scale distributed computing systems to power the needs of advanced science and...

  18. PetroChina to Expand Dushanzi Refinery on Large Scale

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ A large-scale expansion project for PetroChina Dushanzi Petrochemical Company has been given the green light, a move which will make it one of the largest refineries and petrochemical complexes in the country.

  19. New Visions for Large Scale Networks: Research and Applications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This paper documents the findings of the March 12-14, 2001 Workshop on New Visions for Large-Scale Networks: Research and Applications. The workshops objectives...

  20. A unified large/small-scale dynamo in helical turbulence

    Science.gov (United States)

    Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel

    2016-09-01

    We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.

  1. On Large Scale Inductive Dimension of Asymptotic Resemblance Spaces

    OpenAIRE

    Kalantari, Sh.; Honari, B.

    2014-01-01

    We introduce the notion of large scale inductive dimension for asymptotic resemblance spaces. We prove that the large scale inductive dimension and the asymptotic dimensiongrad are equal in the class of r-convex metric spaces. This class contains the class of all geodesic metric spaces and all finitely generated groups. This leads to an answer for a question asked by E. Shchepin concerning the relation between the asymptotic inductive dimension and the asymptotic dimensiongrad, for r-convex m...

  2. Water Implications of Large-Scale Land Acquisitions in Ghana

    OpenAIRE

    Timothy Olalekan Williams; Benjamin Gyampoh; Fred Kizito; Regassa Namara

    2012-01-01

    This paper examines the water dimensions of recent large-scale land acquisitions for biofuel production in the Ashanti, Brong-Ahafo and Northern regions of Ghana. Using secondary sources of data complemented by individual and group interviews, the paper reveals an almost universal lack of consideration of the implications of large-scale land deals for crop water requirements, the ecological functions of freshwater ecosystems and water rights of local smallholder farmers and other users. It do...

  3. Large Scale Relationship between Aquatic Insect Traits and Climate

    OpenAIRE

    Bhowmik, Avit Kumar; Schäfer, Ralf B.

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated tra...

  4. Land consolidation for large-scale infrastructure projects in Germany

    OpenAIRE

    Hendrickss, Andreas; Lisec, Anka

    2014-01-01

    Large-scale infrastructure projects require the acquisition of appropriate land for their construction and maintenance, while they often cause extensive fragmentations of the affected landscape and land plots as well as significant land loss of the immediately affected land owners. A good practice in this field comes from Germany. In Germany, the so-called “land consolidation for large-scale projects” is used to distribute the land loss among a larger group of land own...

  5. Normality of Ethernet Traffic at Large Time Scales

    Directory of Open Access Journals (Sweden)

    Zhiping Lu

    2013-01-01

    Full Text Available We contribute the quantitative descriptions of the large time scales for the Ethernet traffic to be Gaussian. We focus on the normality property of the accumulated traffic data under different time scales. The investigation is carried out graphically by the quantile-quantile (QQ plots and numerically by statistical tests. The present results indicate that the larger the time scale, the more normal the Ethernet traffic.

  6. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  7. Large deviations of inverse processes with nonlinear scalings

    OpenAIRE

    Duffield, N. G.; Whitt, W.

    1998-01-01

    We show, under regularity conditions, that a nonnegative nondecreasing real-valued stochastic process satisfies a large deviation principle (LDP) with nonlinear scaling if and only if its inverse process does. We also determine how the associated scaling and rate functions must be related. A key condition for the LDP equivalence is for the composition of two of the scaling functions to be regularly varying with nonnegative index. We apply the LDP equivalence to develop equiv...

  8. A Cloud Computing Platform for Large-Scale Forensic Computing

    Science.gov (United States)

    Roussev, Vassil; Wang, Liqiang; Richard, Golden; Marziale, Lodovico

    The timely processing of massive digital forensic collections demands the use of large-scale distributed computing resources and the flexibility to customize the processing performed on the collections. This paper describes MPI MapReduce (MMR), an open implementation of the MapReduce processing model that outperforms traditional forensic computing techniques. MMR provides linear scaling for CPU-intensive processing and super-linear scaling for indexing-related workloads.

  9. Temporal Variation of Large Scale Flows in the Solar Interior

    Indian Academy of Sciences (India)

    Sarbani Basu; H. M. Antia

    2000-09-01

    We attempt to detect short-term temporal variations in the rotation rate and other large scale velocity fields in the outer part of the solar convection zone using the ring diagram technique applied to Michelson Doppler Imager (MDI) data. The measured velocity field shows variations by about 10 m/s on the scale of few days.

  10. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from sm...

  11. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  12. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    Science.gov (United States)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  13. Large-scale ER-damper for seismic protection

    Science.gov (United States)

    McMahon, Scott; Makris, Nicos

    1997-05-01

    A large scale electrorheological (ER) damper has been designed, constructed, and tested. The damper consists of a main cylinder and a piston rod that pushes an ER-fluid through a number of stationary annular ducts. This damper is a scaled- up version of a prototype ER-damper which has been developed and extensively studied in the past. In this paper, results from comprehensive testing of the large-scale damper are presented, and the proposed theory developed for predicting the damper response is validated.

  14. Clearing and Labeling Techniques for Large-Scale Biological Tissues.

    Science.gov (United States)

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-06-30

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  15. A relativistic view on large scale N-body simulations

    International Nuclear Information System (INIS)

    We discuss the relation between the output of Newtonian N-body simulations on scales that approach or exceed the particle horizon to the description of general relativity. At leading order, the Zeldovich approximation is correct on large scales, coinciding with the general relativistic result. At second order in the initial metric potential, the trajectories of particles deviate from the second order Newtonian result and hence the validity of second order Lagrangian perturbation theory initial conditions should be reassessed when used in very large simulations. We also advocate using the expression for the synchronous gauge density as a well behaved measure of density fluctuations on such scales. (paper)

  16. Cost Overruns in Large-scale Transportation Infrastructure Projects

    DEFF Research Database (Denmark)

    Cantarelli, Chantal C; Flyvbjerg, Bent; Molin, Eric J. E;

    2010-01-01

    Managing large-scale transportation infrastructure projects is difficult due to frequent misinformation about the costs which results in large cost overruns that often threaten the overall project viability. This paper investigates the explanations for cost overruns that are given in the literature...

  17. How large-scale subsidence affects stratocumulus transitions (discussion paper)

    NARCIS (Netherlands)

    Van der Dussen, J.J.; De Roode, S.R.; Siebesma, A.P.

    2015-01-01

    Some climate modeling results suggest that the Hadley circulation might weaken in a future climate, causing a subsequent reduction in the large-scale subsidence velocity in the subtropics. In this study we analyze the cloud liquid water path (LWP) budget from large-eddy simulation (LES) results of t

  18. Large Scale Survey Data in Career Development Research

    Science.gov (United States)

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  19. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  20. Magnetic fields of our Galaxy on large and small scales

    CERN Document Server

    Han, Jinlin

    2007-01-01

    Magnetic fields have been observed on all scales in our Galaxy, from AU to kpc. With pulsar dispersion measures and rotation measures, we can directly measure the magnetic fields in a very large region of the Galactic disk. The results show that the large-scale magnetic fields are aligned with the spiral arms but reverse their directions many times from the inner-most arm (Norma) to the outer arm (Perseus). The Zeeman splitting measurements of masers in HII regions or star-formation regions not only show the structured fields inside clouds, but also have a clear pattern in the global Galactic distribution of all measured clouds which indicates the possible connection of the large-scale and small-scale magnetic fields.

  1. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  2. A relativistic signature in large-scale structure

    Science.gov (United States)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  3. Topology of large scale structure as test of modified gravity

    CERN Document Server

    Wang, Xin; Park, Changbom

    2010-01-01

    The genus of the iso-density contours is a robust measure of the topology of large-scale structure, and relatively insensitive to galaxies biasing and redshift-space distortions. We show that the growth of density fluctuations is scale-dependent even in the linear regime in some modified gravity theories, which opens a possibility of testing the theories observationally. We propose to use the genus of the iso-density contours, an intrinsic measure of the topology of large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity density fluctuations are growing at the same rate on all scales in the linear regime and the topology of large-scale structure is conserved in time in comoving space because structures are growing homologously. In this theory we expect the genus-smoothing scale relation is time-independent. However, in modified gravity models where structures grow with different rates on different scales, the genus-smoothing scale relation should change in ti...

  4. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    -scale versus small-scale farming literature. Chapter 2 examines the underlying causes for the failure of large-scale jatropha plantations on ‘marginal’ land. Chapter 3 compares the productivity of a factory-operated plantation with outgrower-operated plots, while Chapter 4 analyses the effects of a public......-scale land acquisition which has mostly been framed as ‘land grabbing’ throughout developing countries particularly since the mid-2000s. Against this background, outgrower schemes and contract farming are increasingly being promoted to avoid the displacement of smallholder farmers from their land due...... to ‘land grabbing’ for large-scale farming (i.e. outgrower schemes and contract farming could modernise agricultural production while allowing smallholders to maintain their land ownership), to integrate them into global agro-food value chains and to increase their productivity and welfare. However...

  5. Large-Scale Inverse Problems and Quantification of Uncertainty

    CERN Document Server

    Biegler, Lorenz; Ghattas, Omar

    2010-01-01

    Large-scale inverse problems and associated uncertainty quantification has become an important area of research, central to a wide range of science and engineering applications. Written by leading experts in the field, Large-scale Inverse Problems and Quantification of Uncertainty focuses on the computational methods used to analyze and simulate inverse problems. The text provides PhD students, researchers, advanced undergraduate students, and engineering practitioners with the perspectives of researchers in areas of inverse problems and data assimilation, ranging from statistics and large-sca

  6. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising...... with high wind power penetration. This paper presents a review of the electricity storage technologies relevant for large power systems. The paper also presents an estimation of the economic feasibility of electricity storage using the west Danish power market area as a case....

  7. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  8. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela;

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  9. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Swen [ORNL; Elwasif, Wael R [ORNL; Naughton, III, Thomas J [ORNL; Vallee, Geoffroy R [ORNL

    2014-01-01

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  10. Over-driven control for large-scale MR dampers

    International Nuclear Information System (INIS)

    As semi-active electro-mechanical control devices increase in scale for use in real-world civil engineering applications, their dynamics become increasingly complicated. Control designs that are able to take these characteristics into account will be more effective in achieving good performance. Large-scale magnetorheological (MR) dampers exhibit a significant time lag in their force–response to voltage inputs, reducing the efficacy of typical controllers designed for smaller scale devices where the lag is negligible. A new control algorithm is presented for large-scale MR devices that uses over-driving and back-driving of the commands to overcome the challenges associated with the dynamics of these large-scale MR dampers. An illustrative numerical example is considered to demonstrate the controller performance. Via simulations of the structure using several seismic ground motions, the merits of the proposed control strategy to achieve reductions in various response parameters are examined and compared against several accepted control algorithms. Experimental evidence is provided to validate the improved capabilities of the proposed controller in achieving the desired control force levels. Through real-time hybrid simulation (RTHS), the proposed controllers are also examined and experimentally evaluated in terms of their efficacy and robust performance. The results demonstrate that the proposed control strategy has superior performance over typical control algorithms when paired with a large-scale MR damper, and is robust for structural control applications. (paper)

  11. Large-scale dynamos in rigidly rotating turbulent convection

    CERN Document Server

    Käpylä, P J; Brandenburg, A

    2008-01-01

    The existence of large-scale dynamos in rigidly rotating turbulent convection without shear is studied using three-dimensional numerical simulations of penetrative rotating compressible convection. We demonstrate that rotating convection in a Cartesian domain can drive a large-scale dynamo even in the absence of shear. The large-scale field contains a significant fraction of the total field in the saturated state. The simulation results are compared with one-dimensional mean-field dynamo models where turbulent transport coefficients, as determined using the test field method, are used. The reason for the absence of large-scale dynamo action in earlier studies is shown to be due to too slow rotation: whereas the alpha-effect can change sign, its magnitude stays approximately constant as a function of rotation, and the turbulent diffusivity decreases monotonically with increasing rotation. Only when rotation is rapid enough a large-scale dynamo can be excited. The one-dimensional mean-field model with dynamo co...

  12. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  13. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  14. Ultra-large scale cosmology with next-generation experiments

    CERN Document Server

    Alonso, David; Ferreira, Pedro G; Maartens, Roy; Santos, Mario G

    2015-01-01

    Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for a range of future large-scale structure surveys: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and continuum surveys of radio galaxies. Our forecasts show that next-generation experiments, reaching out to redshifts z ~ 4, will not be able to detect previously-undetected general-relativistic effects from the single-tracer power spectra alone, although they may be able to measure the lensing magnification in the auto-correlation. We also perform a rigorous joint forecast for the detection of primordial non-...

  15. Imprint of thawing scalar fields on large scale galaxy overdensity

    CERN Document Server

    Dinda, Bikash R

    2016-01-01

    We calculate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. As we need to consider the fluctuations in scalar field on these large scales, the general relativistic corrections in thawing scalar field models are distinctly different from $\\Lambda$CDM and the difference can be upto $15-20\\%$ at some scales. Also there is an interpolation between suppression and enhancement of power in scalar field models compared to the $\\Lambda$CDM model on smaller scales and this happens in a specific redshift range that is quite robust to the form of the scalar field potentials or the choice of different cosmological parameters. This can be useful to distinguish scalar field models from $\\Lambda$CDM with future optical/radio surveys.

  16. Angular averaged consistency relations of large-scale structures

    CERN Document Server

    Valageas, Patrick

    2013-01-01

    The cosmological dynamics of gravitational clustering satisfies an approximate invariance with respect to the cosmological parameters that is often used to simplify analytical computations. We describe how this approximate symmetry gives rise to angular averaged consistency relations for the matter density correlations. This allows one to write the $(\\ell+n)$ density correlation, with $\\ell$ large-scale linear wave numbers that are integrated over angles, and $n$ fixed small-scale nonlinear wave numbers, in terms of the small-scale $n$-point density correlation and $\\ell$ prefactors that involve the linear power spectra at the large-scale wave numbers. These relations, which do not vanish for equal-time statistics, go beyond the already known kinematic consistency relations. They could be used to detect primordial non-Gaussianities, modifications of gravity, limitations of galaxy biasing schemes, or to help designing analytical models of gravitational clustering.

  17. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    CERN Document Server

    Chuss, D T; Amiri, M; Appel, J; Bennett, C L; Colazo, F; Denis, K L; Dünner, R; Essinger-Hileman, T; Eimer, J; Fluxa, P; Gothe, D; Halpern, M; Harrington, K; Hilton, G; Hinshaw, G; Hubmayr, J; Iuliano, J; Marriage, T A; Miller, N; Moseley, S H; Mumby, G; Petroff, M; Reintsema, C; Rostem, K; U-Yen, K; Watts, D; Wagner, E; Wollack, E J; Xu, Z; Zeng, L

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe $\\sim$70% of the sky. A variable-delay polarization modulator (VPM) modulates the polarization at $\\sim$10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that span both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously d...

  18. No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation

    CERN Document Server

    Abolhasani, Ali Akbar

    2010-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the classical evolution of the system we show analytically as well as numerically that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which completely dominate over the original adiabatic curvature perturbations. However, we show that the quantum back-reactions of the waterfall field inhomogeneities produced during the phase transition become important before the classical non-linear back-reactions become relevant. The cumulative qua...

  19. Large Scale Anomalies of the Cosmic Microwave Background with Planck

    DEFF Research Database (Denmark)

    Frejsel, Anne Mette

    This thesis focuses on the large scale anomalies of the Cosmic Microwave Background (CMB) and their possible origins. The investigations consist of two main parts. The first part is on statistical tests of the CMB, and the consistency of both maps and power spectrum. We find that the Planck data...... is very consistent, while the WMAP 9 year release appears more contaminated by non-CMB residuals than the 7 year release. The second part is concerned with the anomalies of the CMB from two approaches. One is based on an extended inflationary model as the origin of one specific large scale anomaly, namely....... Here we find evidence that the Planck CMB maps contain residual radiation in the loop areas, which can be linked to some of the large scale CMB anomalies: the point-parity asymmetry, the alignment of quadrupole and octupole and the dipolemodulation....

  20. Privacy Preserving Large-Scale Rating Data Publishing

    Directory of Open Access Journals (Sweden)

    Xiaoxun Sun

    2013-02-01

    Full Text Available Large scale rating data usually contains both ratings of sensitive and non-sensitive issues, and the ratings of sensitive issues belong to personal privacy. Even when survey participants do not reveal any of their ratings, their survey records are potentially identifiable by using information from other public sources. In order to protect the privacy in the large-scale rating data, it is important to propose new privacy principles which consider the properties of the rating data. Moreover, given the privacy principle, how to efficiently determine whether the rating data satisfied the required privacy principle is crucial as well. Furthermore, if the privacy principle is not satisfied, an efficient method is needed to securely publish the large-scale rating data. In this paper, all these problem will be addressed.

  1. Large Scale Magnetohydrodynamic Dynamos from Cylindrical Differentially Rotating Flows

    CERN Document Server

    Ebrahimi, F

    2015-01-01

    For cylindrical differentially rotating plasmas threaded with a uniform vertical magnetic field, we study large-scale magnetic field generation from finite amplitude perturbations using analytic theory and direct numerical simulations. Analytically, we impose helical fluctuations, a seed field, and a background flow and use quasi-linear theory for a single mode. The predicted large-scale field growth agrees with numerical simulations in which the magnetorotational instability (MRI) arises naturally. The vertically and azimuthally averaged toroidal field is generated by a fluctuation-induced EMF that depends on differential rotation. Given fluctuations, the method also predicts large-scale field growth for MRI-stable rotation profiles and flows with no rotation but shear.

  2. Human pescadillo induces large-scale chromatin unfolding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; FANG Yan; HUANG Cuifen; YANG Xiao; YE Qinong

    2005-01-01

    The human pescadillo gene encodes a protein with a BRCT domain. Pescadillo plays an important role in DNA synthesis, cell proliferation and transformation. Since BRCT domains have been shown to induce chromatin large-scale unfolding, we tested the role of Pescadillo in regulation of large-scale chromatin unfolding. To this end, we isolated the coding region of Pescadillo from human mammary MCF10A cells. Compared with the reported sequence, the isolated Pescadillo contains in-frame deletion from amino acid 580 to 582. Targeting the Pescadillo to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity maps to the BRCT domain of Pescadillo. These data provide a new clue to understanding the vital role of Pescadillo.

  3. Coupling between convection and large-scale circulation

    Science.gov (United States)

    Becker, T.; Stevens, B. B.; Hohenegger, C.

    2014-12-01

    The ultimate drivers of convection - radiation, tropospheric humidity and surface fluxes - are altered both by the large-scale circulation and by convection itself. A quantity to which all drivers of convection contribute is moist static energy, or gross moist stability, respectively. Therefore, a variance analysis of the moist static energy budget in radiative-convective equilibrium helps understanding the interaction of precipitating convection and the large-scale environment. In addition, this method provides insights concerning the impact of convective aggregation on this coupling. As a starting point, the interaction is analyzed with a general circulation model, but a model intercomparison study using a hierarchy of models is planned. Effective coupling parameters will be derived from cloud resolving models and these will in turn be related to assumptions used to parameterize convection in large-scale models.

  4. Comparative Analysis of Different Protocols to Manage Large Scale Networks

    Directory of Open Access Journals (Sweden)

    Anil Rao Pimplapure

    2013-06-01

    Full Text Available In recent year the numbers, complexity and size is increased in Large Scale Network. The best example of Large Scale Network is Internet, and recently once are Data-centers in Cloud Environment. In this process, involvement of several management tasks such as traffic monitoring, security and performance optimization is big task for Network Administrator. This research reports study the different protocols i.e. conventional protocols like Simple Network Management Protocol and newly Gossip based protocols for distributed monitoring and resource management that are suitable for large-scale networked systems. Results of our simulation studies indicate that, regardless of the system size and failure rates in the monitored system, gossip protocols incur a significantly larger overhead than tree-based protocols for achieving the same monitoring quality i.e., estimation accuracy or detection delay.

  5. Punishment sustains large-scale cooperation in prestate warfare

    OpenAIRE

    Mathew, Sarah; Boyd, Robert

    2011-01-01

    Understanding cooperation and punishment in small-scale societies is crucial for explaining the origins of human cooperation. We studied warfare among the Turkana, a politically uncentralized, egalitarian, nomadic pastoral society in East Africa. Based on a representative sample of 88 recent raids, we show that the Turkana sustain costly cooperation in combat at a remarkably large scale, at least in part, through punishment of free-riders. Raiding parties comprised several hundred warriors an...

  6. Systematic Literature Review of Agile Scalability for Large Scale Projects

    Directory of Open Access Journals (Sweden)

    Hina saeeda

    2015-09-01

    Full Text Available In new methods, “agile” has come out as the top approach in software industry for the development of the soft wares. With different shapes agile is applied for handling the issues such as low cost, tight time to market schedule continuously changing requirements, Communication & Coordination, team size and distributed environment. Agile has proved to be successful in the small and medium size project, however, it have several limitations when applied on large size projects. The purpose of this study is to know agile techniques in detail, finding and highlighting its restrictions for large size projects with the help of systematic literature review. The systematic literature review is going to find answers for the Research questions: 1 How to make agile approaches scalable and adoptable for large projects?2 What are the existing methods, approaches, frameworks and practices support agile process in large scale projects? 3 What are limitations of existing agile approaches, methods, frameworks and practices with reference to large scale projects? This study will identify the current research problems of the agile scalability for large size projects by giving a detail literature review of the identified problems, existed work for providing solution to these problems and will find out limitations of the existing work for covering the identified problems in the agile scalability. All the results gathered will be summarized statistically based on these finding remedial work will be planned in future for handling the identified limitations of agile approaches for large scale projects.

  7. A Model of Plasma Heating by Large-Scale Flow

    CERN Document Server

    Pongkitiwanichakul, P; Boldyrev, S; Mason, J; Perez, J C

    2015-01-01

    In this work we study the process of energy dissipation triggered by a slow large scale motion of a magnetized conducting fluid. Our consideration is motivated by the problem of heating the solar corona, which is believed to be governed by fast reconnection events set off by the slow motion of magnetic field lines anchored in the photospheric plasma. To elucidate the physics governing the disruption of the imposed laminar motion and the energy transfer to small scales, we propose a simplified model where the large-scale motion of magnetic field lines is prescribed not at the footpoints but rather imposed volumetrically. As a result, the problem can be treated numerically with an efficient, highly-accurate spectral method, allowing us to use a resolution and statistical ensemble exceeding those of the previous work. We find that, even though the large-scale deformations are slow, they eventually lead to reconnection events that drive a turbulent state at smaller scales. The small-scale turbulence displays many...

  8. The CLASSgal code for Relativistic Cosmological Large Scale Structure

    CERN Document Server

    Di Dio, Enea; Lesgourgues, Julien; Durrer, Ruth

    2013-01-01

    We present some accurate and efficient computations of large scale structure observables, obtained with a modified version of the CLASS code which is made publicly available. This code includes all relativistic corrections and computes both the power spectrum Cl(z1,z2) and the corresponding correlation function xi(theta,z1,z2) in linear perturbation theory. For Gaussian initial perturbations, these quantities contain the full information encoded in the large scale matter distribution at the level of linear perturbation theory. We illustrate the usefulness of our code for cosmological parameter estimation through a few simple examples.

  9. Optimal Dispatching of Large-scale Water Supply System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.

  10. Reliability Evaluation considering Structures of a Large Scale Wind Farm

    OpenAIRE

    Shin, Je-Seok; Cha, Seung-Tae; Wu, Qiuwei; Kim, Jin-O

    2012-01-01

    Wind energy is one of the most widely used renewable energy resources. Wind power has been connected to the grid as large scale wind farm which is made up of dozens of wind turbines, and thescale of wind farm is more increased recently. Due to intermittent and variable wind source, reliability evaluation on wind farm is necessarily required. Also, because large scale offshore wind farm has along repair time and a high repair cost as well as a high investment cost, it is essential to take into...

  11. Large-scale liquid scintillation detectors for solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, Jay B.; Calaprice, Frank P. [Princeton University Princeton, Princeton, NJ (United States)

    2016-04-15

    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed. (orig.)

  12. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Morteza Hajizadeh-Oghaz; Reza Shoja Razavi; Mohammadreza Loghman Estarki

    2014-08-01

    Yttria–stabilized zirconia nanopowders were synthesized on a relatively large scale using Pechini method. In the present paper, nearly spherical yttria-stabilized zirconia nanopowders with tetragonal structure were synthesized by Pechini process from zirconium oxynitrate hexahydrate, yttrium nitrate, citric acid and ethylene glycol. The phase and structural analyses were accomplished by X-ray diffraction; morphological analysis was carried out by field emission scanning electron microscopy and transmission electron microscopy. The results revealed nearly spherical yttria–stabilized zirconia powder with tetragonal crystal structure and chemical purity of 99.1% by inductively coupled plasma optical emission spectroscopy on a large scale.

  13. Report of the LASCAR forum: Large scale reprocessing plant safeguards

    International Nuclear Information System (INIS)

    This report has been prepared to provide information on the studies which were carried out from 1988 to 1992 under the auspices of the multinational forum known as Large Scale Reprocessing Plant Safeguards (LASCAR) on safeguards for four large scale reprocessing plants operated or planned to be operated in the 1990s. The report summarizes all of the essential results of these studies. The participants in LASCAR were from France, Germany, Japan, the United Kingdom, the United States of America, the Commission of the European Communities - Euratom, and the International Atomic Energy Agency

  14. Reactor vessel integrity analysis based upon large scale test results

    International Nuclear Information System (INIS)

    The fracture mechanics analysis of a nuclear reactor pressure vessel is discussed to illustrate the impact of knowledge gained by large scale testing on the demonstration of the integrity of such a vessel. The analysis must be able to predict crack initiation, arrest and reinitiation. The basis for the capability to make each prediction, including the large scale test information which is judged appropriate, is identified and the confidence in the applicability of the experimental data to a vessel is discussed. Where there is inadequate data to make a prediction with confidence or where there are apparently conflicting data, recommendations for future testing are presented. 15 refs., 6 figs.. 1 tab

  15. Practical Large Scale Syntheses of New Drug Candidates

    Institute of Scientific and Technical Information of China (English)

    Hui-Yin Li

    2001-01-01

    @@ This presentation will be focus on Practical large scale syntheses of lead compounds and drug candidates from three major therapeutic areas from DuPont Pharmaceuticals Research Laboratory: 1). DMP777-a selective, non-toxic, orally active human elastase inhibitor; 2). DMP754-a potent glycoprotein IIb/IIIa antagonist; 3). R-Wafarin-the pure enantiomeric form of wafarin. The key technology used for preparation these drug candidates is asymmetric hydrogenation under very mild reaction conditions, which produced very high quality final products at large scale (>99% de, >99 A% and >99 wt%). Some practical and GMP aspects of process development will be also discussed.

  16. Practical Large Scale Syntheses of New Drug Candidates

    Institute of Scientific and Technical Information of China (English)

    Hui-Yin; Li

    2001-01-01

    This presentation will be focus on Practical large scale syntheses of lead compounds and drug candidates from three major therapeutic areas from DuPont Pharmaceuticals Research Laboratory: 1). DMP777-a selective, non-toxic, orally active human elastase inhibitor; 2). DMP754-a potent glycoprotein IIb/IIIa antagonist; 3). R-Wafarin-the pure enantiomeric form of wafarin. The key technology used for preparation these drug candidates is asymmetric hydrogenation under very mild reaction conditions, which produced very high quality final products at large scale (>99% de, >99 A% and >99 wt%). Some practical and GMP aspects of process development will be also discussed.……

  17. Cinlar Subgrid Scale Model for Large Eddy Simulation

    CERN Document Server

    Kara, Rukiye

    2016-01-01

    We construct a new subgrid scale (SGS) stress model for representing the small scale effects in large eddy simulation (LES) of incompressible flows. We use the covariance tensor for representing the Reynolds stress and include Clark's model for the cross stress. The Reynolds stress is obtained analytically from Cinlar random velocity field, which is based on vortex structures observed in the ocean at the subgrid scale. The validity of the model is tested with turbulent channel flow computed in OpenFOAM. It is compared with the most frequently used Smagorinsky and one-equation eddy SGS models through DNS data.

  18. Large-scale quantification of CVD graphene surface coverage

    Science.gov (United States)

    Ambrosi, Adriano; Bonanni, Alessandra; Sofer, Zdeněk; Pumera, Martin

    2013-02-01

    The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale fabrication of graphene by the CVD process.The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale

  19. A thermal energy storage process for large scale electric applications

    OpenAIRE

    Desrues, T; Ruer, J; Marty, P.; Fourmigué, JF

    2009-01-01

    Abstract A new type of thermal energy storage process for large scale electric applications is presented, based on a high temperature heat pump cycle which transforms electrical energy into thermal energy and stores it inside two large regenerators, followed by a thermal engine cycle which transforms the stored thermal energy back into electrical energy. The storage principle is described, and its thermodynamic cycle is analyzed, leading to the theoretical efficiency of the storage...

  20. Large scale cross-drive correlation of digital media

    OpenAIRE

    Bruaene, Joseph Van

    2016-01-01

    Approved for public release; distribution is unlimited Traditional digital forensic practices have focused on individual hard disk analysis. As the digital universe continues to grow, and cyber crimes become more prevalent, the ability to make large scale cross-drive correlations among a large corpus of digital media becomes increasingly important. We propose a methodology that builds on bulk-analysis techniques to avoid operating system- and file-system specific parsing. In addition, we a...

  1. GroFi: Large-scale fiber placement research facility

    OpenAIRE

    Krombholz, Christian; Kruse, Felix; Wiedemann, Martin

    2016-01-01

    GroFi is a large research facility operated by the German Aerospace Center’s Center for Lightweight-Production-Technology in Stade. A combination of different layup technologies namely (dry) fiber placement and tape laying, allows the development and validation of new production technologies and processes for large-scale composite components. Due to the use of coordinated and simultaneously working layup units a high flexibility of the research platform is achieved. This allows the investiga...

  2. Distributed approximate spectral clustering for large-scale datasets

    OpenAIRE

    Gao, Fei

    2011-01-01

    Many kernel-based clustering algorithms do not scale up to high-dimensional large datasets. The similarity matrix, on which these algorithms rely, calls for O(N2) complexity in both time and space. In this thesis, we present the design of an approximation algorithm to cluster high-dimensional large datasets. The proposed design enables great reduction of the similarity matrix’s computing time as well as its space requirements without significantly impacting the accuracy of the clustering. The...

  3. Local and Regional Impacts of Large Scale Wind Energy Deployment

    Science.gov (United States)

    Michalakes, J.; Hammond, S.; Lundquist, J. K.; Moriarty, P.; Robinson, M.

    2010-12-01

    The U.S. is currently on a path to produce 20% of its electricity from wind energy by 2030, almost a 10-fold increase over present levels of electricity generated from wind. Such high-penetration wind energy deployment will entail extracting elevated energy levels from the planetary boundary layer and preliminary studies indicate that this will have significant but uncertain impacts on the local and regional environment. State and federal regulators have raised serious concerns regarding potential agricultural impacts from large farms deployed throughout the Midwest where agriculture is the basis of the local economy. The effects of large wind farms have been proposed to be both beneficial (drying crops to reduce occurrences of fungal diseases, avoiding late spring freezes, enhancing pollen viability, reducing dew duration) and detrimental (accelerating moisture loss during drought) with no conclusive investigations thus far. As both wind and solar technologies are deployed at scales required to replace conventional technologies, there must be reasonable certainty that the potential environmental impacts at the micro, macro, regional and global scale do not exceed those anticipated from carbon emissions. Largely because of computational limits, the role of large wind farms in affecting regional-scale weather patterns has only been investigated in coarse simulations and modeling tools do not yet exist which are capable of assessing the downwind affects of large wind farms may have on microclimatology. In this presentation, we will outline the vision for and discuss technical and scientific challenges in developing a multi-model high-performance simulation capability covering the range of mesoscale to sub-millimeter scales appropriate for assessing local, regional, and ultimately global environmental impacts and quantifying uncertainties of large scale wind energy deployment scenarios. Such a system will allow continuous downscaling of atmospheric processes on wind

  4. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  5. Turbulent large-scale structure effects on wake meandering

    Science.gov (United States)

    Muller, Y.-A.; Masson, C.; Aubrun, S.

    2015-06-01

    This work studies effects of large-scale turbulent structures on wake meandering using Large Eddy Simulations (LES) over an actuator disk. Other potential source of wake meandering such as the instablility mechanisms associated with tip vortices are not treated in this study. A crucial element of the efficient, pragmatic and successful simulations of large-scale turbulent structures in Atmospheric Boundary Layer (ABL) is the generation of the stochastic turbulent atmospheric flow. This is an essential capability since one source of wake meandering is these large - larger than the turbine diameter - turbulent structures. The unsteady wind turbine wake in ABL is simulated using a combination of LES and actuator disk approaches. In order to dedicate the large majority of the available computing power in the wake, the ABL ground region of the flow is not part of the computational domain. Instead, mixed Dirichlet/Neumann boundary conditions are applied at all the computational surfaces except at the outlet. Prescribed values for Dirichlet contribution of these boundary conditions are provided by a stochastic turbulent wind generator. This allows to simulate large-scale turbulent structures - larger than the computational domain - leading to an efficient simulation technique of wake meandering. Since the stochastic wind generator includes shear, the turbulence production is included in the analysis without the necessity of resolving the flow near the ground. The classical Smagorinsky sub-grid model is used. The resulting numerical methodology has been implemented in OpenFOAM. Comparisons with experimental measurements in porous-disk wakes have been undertaken, and the agreements are good. While temporal resolution in experimental measurements is high, the spatial resolution is often too low. LES numerical results provide a more complete spatial description of the flow. They tend to demonstrate that inflow low frequency content - or large- scale turbulent structures - is

  6. The Large-Scale Structure of Scientific Method

    Science.gov (United States)

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  7. The large scale microwave background anisotropy in decaying particle cosmology

    International Nuclear Information System (INIS)

    We investigate the large-scale anisotropy of the microwave background radiation in cosmological models with decaying particles. The observed value of the quadrupole moment combined with other constraints gives an upper limit on the redshift of the decay z/sub d/ < 3-5. 12 refs., 2 figs

  8. Main Achievements of Cotton Large-scale Transformation System

    Institute of Scientific and Technical Information of China (English)

    LI Fu-guang; LIU Chuan-liang; WU Zhi-xia; ZHANG Chao-jun; ZHANG Xue-yan

    2008-01-01

    @@ Cotton large-scale transformation methods system was established based on innovation of cotton transformation methods.It obtains 8000 transgenic cotton plants per year by combining Agrobacteriurn turnefaciens-mediated,pollen-tube pathway and biolistic methods together efficiently.More than 1000 transgenie lines are selected from the transgenic plants with molecular assistant breeding and conventional breeding methods.

  9. Efficient Selection of Multiple Objects on a Large Scale

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    2012-01-01

    The task of multiple object selection (MOS) in immersive virtual environments is important and still largely unexplored. The diffi- culty of efficient MOS increases with the number of objects to be selected. E.g. in small-scale MOS, only a few objects need to be simultaneously selected. This may ...

  10. Large-scale search for dark-matter axions

    Energy Technology Data Exchange (ETDEWEB)

    Kinion, D; van Bibber, K

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  11. Breakdown of large-scale circulation in turbulent rotating convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, B.J.

    2008-01-01

    Turbulent rotating convection in a cylinder is investigated both numerically and experimentally at Rayleigh number Ra=109 and Prandtl number σ=6.4. In this letter we discuss two topics: the breakdown under rotation of the domain-filling large-scale circulation (LSC) typical for confined convection,

  12. Chirping for large-scale maritime archaeological survey

    DEFF Research Database (Denmark)

    Grøn, Ole; Boldreel, Lars Ole

    2014-01-01

    -resolution subbottom profilers. This paper presents a strategy for cost-effective, large-scale mapping of previously undetected sediment-embedded sites and wrecks based on subbottom profiling with chirp systems. The mapping strategy described includes (a) definition of line spacing depending on the target; (b...

  13. Steel Enterprises to the Global Large-Scale

    Institute of Scientific and Technical Information of China (English)

    He Xin

    2009-01-01

    @@ From the market structure, the steel industry was consid-ered as backbone of a country's industries in the past. In a single country, generally there will be phenomenon of monopoly, therefore, compared to other industries, global-ization and large-scale of steel industry have been lagged behind.

  14. Large-scale search for dark-matter axions

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C.A., LLNL; Kinion, D.; Stoeffl, W.; Van Bibber, K.; Daw, E.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McBride, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peng, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Rosenberg, L.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Xin, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Laveigne, J. [Florida Univ., Gainesville, FL (United States); Sikivie, P. [Florida Univ., Gainesville, FL (United States); Sullivan, N.S. [Florida Univ., Gainesville, FL (United States); Tanner, D.B. [Florida Univ., Gainesville, FL (United States); Moltz, D.M. [Lawrence Berkeley Lab., CA (United States); Powell, J. [Lawrence Berkeley Lab., CA (United States); Clarke, J. [Lawrence Berkeley Lab., CA (United States); Nezrick, F.A. [Fermi National Accelerator Lab., Batavia, IL (United States); Turner, M.S. [Fermi National Accelerator Lab., Batavia, IL (United States); Golubev, N.A. [Russian Academy of Sciences, Moscow (Russia); Kravchuk, L.V. [Russian Academy of Sciences, Moscow (Russia)

    1998-01-01

    Early results from a large-scale search for dark matter axions are presented. In this experiment, axions constituting our dark-matter halo may be resonantly converted to monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. Sensitivity at the level of one important axion model (KSVZ) has been demonstrated.

  15. Dual Decomposition for Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Vandenberghe, Lieven

    2013-01-01

    Dual decomposition is applied to power balancing of exible thermal storage units. The centralized large-scale problem is decomposed into smaller subproblems and solved locallyby each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption through a negotiation...

  16. Water Implications of Large-Scale Land Acquisitions in Ghana

    Directory of Open Access Journals (Sweden)

    Timothy Olalekan Williams

    2012-06-01

    The paper offers recommendations which can help the government to achieve its stated objective of developing a "policy framework and guidelines for large-scale land acquisitions by both local and foreign investors for biofuels that will protect the interests of investors and the welfare of Ghanaian farmers and landowners".

  17. The Role of Plausible Values in Large-Scale Surveys

    Science.gov (United States)

    Wu, Margaret

    2005-01-01

    In large-scale assessment programs such as NAEP, TIMSS and PISA, students' achievement data sets provided for secondary analysts contain so-called "plausible values." Plausible values are multiple imputations of the unobservable latent achievement for each student. In this article it has been shown how plausible values are used to: (1) address…

  18. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the homogeniza

  19. Large-scale prediction of drug-target relationships

    DEFF Research Database (Denmark)

    Kuhn, Michael; Campillos, Mónica; González, Paula;

    2008-01-01

    also provides a more global view on drug-target relations. Here we review recent attempts to apply large-scale computational analyses to predict novel interactions of drugs and targets from molecular and cellular features. In this context, we quantify the family-dependent probability of two proteins to...

  20. Large Scale Magnetic Fields: Density Power Spectrum in Redshift Space

    Indian Academy of Sciences (India)

    Rajesh Gopal; Shiv K. Sethi

    2003-09-01

    We compute the density redshift-space power spectrum in the presence of tangled magnetic fields and compare it with existing observations. Our analysis shows that if these magnetic fields originated in the early universe then it is possible to construct models for which the shape of the power spectrum agrees with the large scale slope of the observed power spectrum. However requiring compatibility with observed CMBR anisotropies, the normalization of the power spectrum is too low for magnetic fields to have significant impact on the large scale structure at present. Magnetic fields of a more recent origin generically give density power spectrum ∝ 4 which doesn’t agree with the shape of the observed power spectrum at any scale. Magnetic fields generate curl modes of the velocity field which increase both the quadrupole and hexadecapole of the redshift space power spectrum. For curl modes, the hexadecapole dominates over quadrupole. So the presence of curl modes could be indicated by an anomalously large hexadecapole, which has not yet been computed from observation. It appears difficult to construct models in which tangled magnetic fields could have played a major role in shaping the large scale structure in the present epoch. However if they did, one of the best ways to infer their presence would be from the redshift space effects in the density power spectrum.

  1. Large-Scale Innovation and Change in UK Higher Education

    Science.gov (United States)

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  2. International Large-Scale Assessments: What Uses, What Consequences?

    Science.gov (United States)

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  3. The Cosmology Large Angular Scale Surveyor (CLASS) Telescope Architecture

    Science.gov (United States)

    Chuss, David T.; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Colazo, Felipe; Crowe, Erik; Denis, Kevin L.; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Stevenson, Thomas; Miller, Nathan J.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    We describe the instrument architecture of the Johns Hopkins University-led CLASS instrument, a groundbased cosmic microwave background (CMB) polarimeter that will measure the large-scale polarization of the CMB in several frequency bands to search for evidence of inflation.

  4. CACHE Guidelines for Large-Scale Computer Programs.

    Science.gov (United States)

    National Academy of Engineering, Washington, DC. Commission on Education.

    The Computer Aids for Chemical Engineering Education (CACHE) guidelines identify desirable features of large-scale computer programs including running cost and running-time limit. Also discussed are programming standards, documentation, program installation, system requirements, program testing, and program distribution. Lists of types of…

  5. Large-scale data analysis using the Wigner function

    Science.gov (United States)

    Earnshaw, R. A.; Lei, C.; Li, J.; Mugassabi, S.; Vourdas, A.

    2012-04-01

    Large-scale data are analysed using the Wigner function. It is shown that the 'frequency variable' provides important information, which is lost with other techniques. The method is applied to 'sentiment analysis' in data from social networks and also to financial data.

  6. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...

  7. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  8. Flexibility in design of large-scale methanol plants

    Institute of Scientific and Technical Information of China (English)

    Esben Lauge Sφrensen; Helge Holm-Larsen; Haldor Topsφe A/S

    2006-01-01

    This paper presents a cost effective design for large-scale methanol production. It is demonstrated how recent technological progress can be utilised to design a methanol plant,which is inexpensive and easy to operate, while at the same time very robust towards variations in feed-stock composition and product specifications.

  9. Resilience of Florida Keys coral communities following large scale disturbances

    Science.gov (United States)

    The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...

  10. AC loss in large-scale superconducting cables

    NARCIS (Netherlands)

    Mulder, G.B.J.

    1993-01-01

    A review is given of recent work on ac losses, carried out at our institute. The emphasis is on large-scale conductors for fusion applications, such as the `cable-in-conduit¿ prototype conductors to be used for NET. Calculation methods for the ac losses are presented together with some experimental

  11. Main Achievements of Cotton Large-scale Transformation System

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cotton large-scale transformation methods system was established based on innovation of cotton transformation methods.It obtains 8000 transgenic cotton plants per year by combining Agrobacterium tumefaciens-mediated,pollen-tube pathway and biolistic methods together efficiently.More than

  12. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  13. Large-scale magnetic fields in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Alexakis, Alexandros

    2013-02-22

    High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations, the energy dissipation rate [symbol: see text] follows the scaling [Symbol: see text] proportional U(rms)(3)/ℓ even when the large-scale magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic energy showed a transition to the [Symbol: see text] proportional U(rms)(2) B(rms)/ℓ scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum k(-5/3) while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k(-3/2) as observed in the solar wind.

  14. Ecohydrological modeling for large-scale environmental impact assessment.

    Science.gov (United States)

    Woznicki, Sean A; Nejadhashemi, A Pouyan; Abouali, Mohammad; Herman, Matthew R; Esfahanian, Elaheh; Hamaamin, Yaseen A; Zhang, Zhen

    2016-02-01

    Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (cold, cold-transitional, cool, and warm) of streams that broadly dictate the distribution of aquatic biota in Michigan. The Soil and Water Assessment Tool (SWAT) was used to simulate streamflow and water quality in seven watersheds and the Hydrologic Index Tool was used to calculate 171 ecologically relevant flow regime variables. Unique variables were selected for each thermal class using a Bayesian variable selection method. The variables were then used in development of adaptive neuro-fuzzy inference systems (ANFIS) models of EPT, FIBI, HBI, and IBI. ANFIS model accuracy improved when accounting for stream thermal class rather than developing a global model. PMID:26595397

  15. Large deviations for two scale chemical kinetic processes

    CERN Document Server

    Li, Tiejun

    2015-01-01

    We formulate the large deviations for a class of two scale chemical kinetic processes motivated from biological applications. The result is successfully applied to treat a genetic switching model with positive feedbacks. The corresponding Hamiltonian is convex with respect to the momentum variable as a by-product of the large deviation theory. This property ensures its superiority in the rare event simulations compared with the result obtained by formal WKB asymptotics. The result is of general interest to understand the large deviations for multiscale problems.

  16. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    International Nuclear Information System (INIS)

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from ∼10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  17. Large-scale Structure in f(T) Gravity

    CERN Document Server

    Li, Baojiu; Barrow, John D

    2011-01-01

    In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard LCDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.

  18. Honeycomb: Visual Analysis of Large Scale Social Networks

    Science.gov (United States)

    van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.

    The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.

  19. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  20. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­‐scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  1. Large-scale data mining pilot project in human genome

    Energy Technology Data Exchange (ETDEWEB)

    Musick, R.; Fidelis, R.; Slezak, T.

    1997-05-01

    This whitepaper briefly describes a new, aggressive effort in large- scale data Livermore National Labs. The implications of `large- scale` will be clarified Section. In the short term, this effort will focus on several @ssion-critical questions of Genome project. We will adapt current data mining techniques to the Genome domain, to quantify the accuracy of inference results, and lay the groundwork for a more extensive effort in large-scale data mining. A major aspect of the approach is that we will be fully-staffed data warehousing effort in the human Genome area. The long term goal is strong applications- oriented research program in large-@e data mining. The tools, skill set gained will be directly applicable to a wide spectrum of tasks involving a for large spatial and multidimensional data. This includes applications in ensuring non-proliferation, stockpile stewardship, enabling Global Ecology (Materials Database Industrial Ecology), advancing the Biosciences (Human Genome Project), and supporting data for others (Battlefield Management, Health Care).

  2. Supermassive black holes, large scale structure and holography

    CERN Document Server

    Mongan, T R

    2013-01-01

    A holographic analysis of large scale structure in the universe estimates the mass of supermassive black holes at the center of large scale structures with matter density varying inversely as the square of the distance from their center. The estimate is consistent with two important test cases involving observations of the supermassive black hole with mass 3.6\\times10^{-6} times the galactic mass in Sagittarius A^{*} near the center of our Milky Way and the 2\\times10^{9} solar mass black hole in the quasar ULAS J112001.48+064124.3 at redshift z=7.085. It is also consistent with upper bounds on central black hole masses in globular clusters M15, M19 and M22 developed using the Jansky Very Large Array in New Mexico.

  3. Cluster Galaxy Dynamics and the Effects of Large Scale Environment

    CERN Document Server

    White, Martin; Smit, Renske

    2010-01-01

    We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters. We pay particular attention to velocity dispersions, matching galaxies to subhalos which are explicitly tracked in the simulation. We find that not only do halos persist as subhalos when they fall into a larger host, groups of subhalos retain their identity for long periods within larger host halos. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and ...

  4. Distant galaxy clusters in the XMM Large Scale Structure survey

    CERN Document Server

    Willis, J P; Bremer, M N; Pierre, M; Adami, C; Ilbert, O; Maughan, B; Maurogordato, S; Pacaud, F; Valtchanov, I; Chiappetti, L; Thanjavur, K; Gwyn, S; Stanway, E R; Winkworth, C

    2012-01-01

    (Abridged) Distant galaxy clusters provide important tests of the growth of large scale structure in addition to highlighting the process of galaxy evolution in a consistently defined environment at large look back time. We present a sample of 22 distant (z>0.8) galaxy clusters and cluster candidates selected from the 9 deg2 footprint of the overlapping X-ray Multi Mirror (XMM) Large Scale Structure (LSS), CFHTLS Wide and Spitzer SWIRE surveys. Clusters are selected as extended X-ray sources with an accompanying overdensity of galaxies displaying optical to mid-infrared photometry consistent with z>0.8. Nine clusters have confirmed spectroscopic redshifts in the interval 0.80.8 clusters.

  5. Quantum noise in large-scale coherent nonlinear photonic circuits

    CERN Document Server

    Santori, Charles; Beausoleil, Raymond G; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo

    2014-01-01

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A netlist-based circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasi-probability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total, and functions as a 4-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important...

  6. Large-scale anisotropy in stably stratified rotating flows

    CERN Document Server

    Marino, R; Rosenberg, D L; Pouquet, A

    2014-01-01

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible ...

  7. Large-scale BAO signatures of the smallest galaxies

    CERN Document Server

    Dalal, Neal; Seljak, Uros

    2010-01-01

    Recent work has shown that at high redshift, the relative velocity between dark matter and baryonic gas is typically supersonic. This relative velocity suppresses the formation of the earliest baryonic structures like minihalos, and the suppression is modulated on large scales. This effect imprints a characteristic shape in the clustering power spectrum of the earliest structures, with significant power on 100 Mpc scales featuring highly pronounced baryon acoustic oscillations. The amplitude of these oscillations is orders of magnitude larger at z=20 than previously expected. This characteristic signature can allow us to distinguish the effects of minihalos on intergalactic gas at times preceding and during reionization. We illustrate this effect with the example of 21 cm emission and absorption from redshifts during and before reionization. This effect can potentially allow us to probe physics on kpc scales using observations on 100 Mpc scales. We present sensitivity forecasts for FAST and Arecibo. Depending...

  8. Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures

    Science.gov (United States)

    Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta

    2016-01-01

    Several recent studies discuss of role of skewness of the turbulent velocity fluctuations in near-wall shear layers, in the context of quantifying the correlation between large-scale motions and amplitude variations of small-scale fluctuations—referred to as "modulation." The present study is based on the premise that the skewness of the small-scale fluctuations should be accounted for explicitly in the process of defining their envelope, which characterizes their amplitude variations. This leads to the notion of two envelopes, one for positive and the other for negative small-scale fluctuations, and hence also to two corresponding correlation coefficients. Justification for this concept is provided first by an examination of a high-frequency synthetic signal subjected to realistic skewness-inducing modulation. A new formalism is provided for deriving the two envelopes, and its fidelity is demonstrated for the synthetic test case. The method is then applied to a channel flow at a friction Reynolds number of 4200, for which direct numerical simulation (DNS) data are available. The large-scale and small-scale fields are separated by the empirical mode decomposition method, and the modulation of the small-scale fluctuations by the large scales is examined. Separate maps of the correlation coefficient and of two-point correlations, the latter linking the large-scale motions and the envelopes of the small-scale motions, are derived for the two envelopes pertaining to positive and negative small-scale fluctuations, and these demonstrate a significant sensitivity to the envelope-definition process, especially close to the wall where the skewness of the small-scale fluctuations is the dominant contributor to the total value.

  9. Impact of Large-scale Geological Architectures On Recharge

    Science.gov (United States)

    Troldborg, L.; Refsgaard, J. C.; Engesgaard, P.; Jensen, K. H.

    Geological and hydrogeological data constitutes the basis for assessment of ground- water flow pattern and recharge zones. The accessibility and applicability of hard ge- ological data is often a major obstacle in deriving plausible conceptual models. Nev- ertheless focus is often on parameter uncertainty caused by the effect of geological heterogeneity due to lack of hard geological data, thus neglecting the possibility of alternative conceptualizations of the large-scale geological architecture. For a catchment in the eastern part of Denmark we have constructed different geologi- cal models based on different conceptualization of the major geological trends and fa- cies architecture. The geological models are equally plausible in a conceptually sense and they are all calibrated to well head and river flow measurements. Comparison of differences in recharge zones and subsequently well protection zones emphasize the importance of assessing large-scale geological architecture in hydrological modeling on regional scale in a non-deterministic way. Geostatistical modeling carried out in a transitional probability framework shows the possibility of assessing multiple re- alizations of large-scale geological architecture from a combination of soft and hard geological information.

  10. A visualization framework for large-scale virtual astronomy

    Science.gov (United States)

    Fu, Chi-Wing

    Motivated by advances in modern positional astronomy, this research attempts to digitally model the entire Universe through computer graphics technology. Our first challenge is space itself. The gigantic size of the Universe makes it impossible to put everything into a typical graphics system at its own scale. The graphics rendering process can easily fail because of limited computational precision, The second challenge is that the enormous amount of data could slow down the graphics; we need clever techniques to speed up the rendering. Third, since the Universe is dominated by empty space, objects are widely separated; this makes navigation difficult. We attempt to tackle these problems through various techniques designed to extend and optimize the conventional graphics framework, including the following: power homogeneous coordinates for large-scale spatial representations, generalized large-scale spatial transformations, and rendering acceleration via environment caching and object disappearance criteria. Moreover, we implemented an assortment of techniques for modeling and rendering a variety of astronomical bodies, ranging from the Earth up to faraway galaxies, and attempted to visualize cosmological time; a method we call the Lightcone representation was introduced to visualize the whole space-time of the Universe at a single glance. In addition, several navigation models were developed to handle the large-scale navigation problem. Our final results include a collection of visualization tools, two educational animations appropriate for planetarium audiences, and state-of-the-art-advancing rendering techniques that can be transferred to practice in digital planetarium systems.

  11. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  12. Searching for Large Scale Structure in Deep Radio Surveys

    CERN Document Server

    Baleisis, A; Loan, A J; Wall, J V; Baleisis, Audra; Lahav, Ofer; Loan, Andrew J.; Wall, Jasper V.

    1997-01-01

    (Abridged Abstract) We calculate the expected amplitude of the dipole and higher spherical harmonics in the angular distribution of radio galaxies. The median redshift of radio sources in existing catalogues is z=1, which allows us to study large scale structure on scales between those accessible to present optical and infrared surveys, and that of the Cosmic Microwave Background (CMB). The dipole is due to 2 effects which turn out to be of comparable magnitude: (i) our motion with respect to the CMB, and (ii) large scale structure, parameterised here by a family of Cold Dark Matter power-spectra. We make specific predictions for the Green Bank (87GB) and Parkes-MIT-NRAO (PMN) catalogues. For these relatively sparse catalogues both the motion and large scale structure dipole effects are expected to be smaller than the Poisson shot-noise. However, we detect dipole and higher harmonics in the combined 87GB-PMN catalogue which are far larger than expected. We attribute this to a 2 % flux mismatch between the two...

  13. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  14. Modelling large-scale halo bias using the bispectrum

    CERN Document Server

    Pollack, Jennifer E; Porciani, Cristiano

    2011-01-01

    We study the relation between the halo and matter density fields -- commonly termed bias -- in the LCDM framework. In particular, we examine the local model of biasing at quadratic order in matter density. This model is characterized by parameters b_1 and b_2. Using an ensemble of N-body simulations, we apply several statistical methods to estimate the parameters. We measure halo and matter fluctuations smoothed on various scales and find that the parameters vary with smoothing scale. We argue that, for real-space measurements, owing to the mixing of wavemodes, no scale can be found for which the parameters are independent of smoothing. However, this is not the case in Fourier space. We measure halo power spectra and construct estimates for an effective large-scale bias. We measure the configuration dependence of the halo bispectra B_hhh and reduced bispectra Q_hhh for very large-scale k-space triangles. From this we constrain b_1 and b_2. Using the lowest-order perturbation theory, we find that for B_hhh the...

  15. Multivariate Clustering of Large-Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi-Rad, T; Critchlow, T

    2003-06-13

    Simulations of complex scientific phenomena involve the execution of massively parallel computer programs. These simulation programs generate large-scale data sets over the spatio-temporal space. Modeling such massive data sets is an essential step in helping scientists discover new information from their computer simulations. In this paper, we present a simple but effective multivariate clustering algorithm for large-scale scientific simulation data sets. Our algorithm utilizes the cosine similarity measure to cluster the field variables in a data set. Field variables include all variables except the spatial (x, y, z) and temporal (time) variables. The exclusion of the spatial dimensions is important since ''similar'' characteristics could be located (spatially) far from each other. To scale our multivariate clustering algorithm for large-scale data sets, we take advantage of the geometrical properties of the cosine similarity measure. This allows us to reduce the modeling time from O(n{sup 2}) to O(n x g(f(u))), where n is the number of data points, f(u) is a function of the user-defined clustering threshold, and g(f(u)) is the number of data points satisfying f(u). We show that on average g(f(u)) is much less than n. Finally, even though spatial variables do not play a role in building clusters, it is desirable to associate each cluster with its correct spatial region. To achieve this, we present a linking algorithm for connecting each cluster to the appropriate nodes of the data set's topology tree (where the spatial information of the data set is stored). Our experimental evaluations on two large-scale simulation data sets illustrate the value of our multivariate clustering and linking algorithms.

  16. Multivariate Clustering of Large-Scale Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi-Rad, T; Critchlow, T

    2003-03-04

    Simulations of complex scientific phenomena involve the execution of massively parallel computer programs. These simulation programs generate large-scale data sets over the spatiotemporal space. Modeling such massive data sets is an essential step in helping scientists discover new information from their computer simulations. In this paper, we present a simple but effective multivariate clustering algorithm for large-scale scientific simulation data sets. Our algorithm utilizes the cosine similarity measure to cluster the field variables in a data set. Field variables include all variables except the spatial (x, y, z) and temporal (time) variables. The exclusion of the spatial space is important since 'similar' characteristics could be located (spatially) far from each other. To scale our multivariate clustering algorithm for large-scale data sets, we take advantage of the geometrical properties of the cosine similarity measure. This allows us to reduce the modeling time from O(n{sup 2}) to O(n x g(f(u))), where n is the number of data points, f(u) is a function of the user-defined clustering threshold, and g(f(u)) is the number of data points satisfying the threshold f(u). We show that on average g(f(u)) is much less than n. Finally, even though spatial variables do not play a role in building a cluster, it is desirable to associate each cluster with its correct spatial space. To achieve this, we present a linking algorithm for connecting each cluster to the appropriate nodes of the data set's topology tree (where the spatial information of the data set is stored). Our experimental evaluations on two large-scale simulation data sets illustrate the value of our multivariate clustering and linking algorithms.

  17. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  18. Design and fabrication of a large-scale oedometer

    Institute of Scientific and Technical Information of China (English)

    Maryam Mokhtari; Nader Shariatmadari; Ali Akbar Heshmati R; Hossein Salehzadeh

    2015-01-01

    The most common apparatus used to investigate the load−deformation parameters of homogeneous fine-grained soils is a Casagrande-type oedometer. A typical Casagrande oedometer cell has an internal diameter of 76 mm and a height of 19 mm. However, the dimensions of this kind of apparatus do not meet the requirements of some civil engineering applications like studying load−deformation characteristics of specimens with large-diameter particles such as granular materials or municipal solid waste materials. Therefore, it is decided to design and develop a large-scale oedometer with an internal diameter of 490 mm. The new apparatus provides the possibility to evaluate the load−deformation characteristics of soil specimens with different diameter to height ratios. The designed apparatus is able to measure the coefficient of lateral earth pressure at rest. The details and capabilities of the developed oedometer are provided and discussed. To study the performance and efficiency, a number of consolidation tests were performed on Firoozkoh No. 161 sand using the newly developed large scale oedometer made and also the 50 mm diameter Casagrande oedometer. Benchmark test results show that measured consolidation parameters by large scale oedometer are comparable to values measured by Casagrande type oedometer.

  19. Intensive agriculture erodes β-diversity at large scales.

    Science.gov (United States)

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. PMID:22727063

  20. Robust regression for large-scale neuroimaging studies.

    Science.gov (United States)

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies.

  1. Large-scale magnetic fields from inflation in teleparallel gravity

    CERN Document Server

    Bamba, Kazuharu; Luo, Ling-Wei

    2013-01-01

    Generation of large-scale magnetic fields in inflationary cosmology is studied in teleparallelism, where instead of the scalar curvature in general relativity, the torsion scalar describes the gravity theory. In particular, we investigate a coupling of the electromagnetic field to the torsion scalar during inflation, which leads to the breaking of conformal invariance of the electromagnetic field. We demonstrate that for a power-law type coupling, the current magnetic field strength of $\\sim 10^{-9}$ G on 1 Mpc scale can be generated, if the backreaction effects and strong coupling problem are not taken into consideration.

  2. Reliability Evaluation considering Structures of a Large Scale Wind Farm

    DEFF Research Database (Denmark)

    Shin, Je-Seok; Cha, Seung-Tae; Wu, Qiuwei;

    2012-01-01

    Wind energy is one of the most widely used renewable energy resources. Wind power has been connected to the grid as large scale wind farm which is made up of dozens of wind turbines, and the scale of wind farm is more increased recently. Due to intermittent and variable wind source, reliability...... wind farm which is able to enhance a capability of delivering a power instead of controlling an uncontrollable output of wind power. Therefore, this paper introduces a method to evaluate the reliability depending upon structures of wind farm and to reflect the result to the planning stage of wind farm....

  3. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  4. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  5. GroFi: Large-scale fiber placement research facility

    OpenAIRE

    Krombholz, Christian; Kruse, Felix; Wiedemann, Martin

    2016-01-01

    GroFi is a large research facility operated by the German Aerospace Center’s Center for Lightweight-Production-Technology in Stade. A combination of dierent layup technologies namely (dry) ber placement and tape laying, allows the development and validation of new production technologiesand processes for large-scale composite components. Due to the use of coordinated and simultaneously working layup units a high exibility of the research platform is achieved. This allows the investigation of ...

  6. Large-scale glaciation on Earth and on Mars

    OpenAIRE

    Greve, Ralf

    2007-01-01

    This habilitation thesis combines ten publications of the author which are concerned with the large-scale dynamics and thermodynamics of ice sheets and ice shelves. Ice sheets are ice masses with a minimum area of 50,000 km2 which rest on solid land, whereas ice shelves consist of floating ice nourished by the mass flow from an adjacent ice sheet, typically stabilized by large bays. Together, they represent the major part of the cryosphere of the Earth. Furthermore, ice on Earth occurs in the...

  7. Floodplain management in Africa: Large scale analysis of flood data

    Science.gov (United States)

    Padi, Philip Tetteh; Baldassarre, Giuliano Di; Castellarin, Attilio

    2011-01-01

    To mitigate a continuously increasing flood risk in Africa, sustainable actions are urgently needed. In this context, we describe a comprehensive statistical analysis of flood data in the African continent. The study refers to quality-controlled, large and consistent databases of flood data, i.e. maximum discharge value and times series of annual maximum flows. Probabilistic envelope curves are derived for the African continent by means of a large scale regional analysis. Moreover, some initial insights on the statistical characteristics of African floods are provided. The results of this study are relevant and can be used to get some indications to support flood management in Africa.

  8. Synthesis and sensing application of large scale bilayer graphene

    Science.gov (United States)

    Hong, Sung Ju; Yoo, Jung Hoon; Baek, Seung Jae; Park, Yung Woo

    2012-02-01

    We have synthesized large scale bilayer graphene by using Chemical Vapor Deposition (CVD) in atmospheric pressure. Bilayer graphene was grown by using CH4, H2 and Ar gases. The growth temperature was 1050^o. Conventional FET measurement shows ambipolar transfer characteristics. Results of Raman spectroscopy, Atomic Force microscope (AFM) and Transmission Electron Microscope (TEM) indicate the film is bilayer graphene. Especially, adlayer structure which interrupt uniformity was reduced in low methane flow condition. Furthermore, large size CVD bilayer graphene film can be investigated to apply sensor devices. By using conventional photolithography process, we have fabricated device array structure and studied sensing behavior.

  9. Scaling differences between large interplate and intraplate earthquakes

    OpenAIRE

    Scholz, C.H.; Aviles, C. A.; Wesnousky, S. G.

    1986-01-01

    A study of large intraplate earthquakes with well-determined source parameters shows that these earthquakes obey a scaling law similar to large interplate earthquakes, in which M_0 ∝ L^2 or u = αL, where L is rupture length and u is slip. In contrast to interplate earthquakes, for which α ≈ 1 × 10^(−5), for for the intraplate events α ≈ 6 × 10^(−5), which implies that these earthquakes have stress drops about 6 times higher than interplate events. This result is independent of focal mechanism...

  10. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.

    Science.gov (United States)

    Hunana, P; Zank, G P; Shaikh, D

    2006-08-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as "nearly incompressible hydrodynamics," is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term "locally incompressible" to describe the equations. This term should be distinguished from the term "nearly incompressible," which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  11. A first large-scale flood inundation forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode

  12. Active power reserves evaluation in large scale PVPPs

    DEFF Research Database (Denmark)

    Crăciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso;

    2013-01-01

    The present trend on investing in renewable ways of producing electricity in the detriment of conventional fossil fuel-based plants will lead to a certain point where these plants have to provide ancillary services and contribute to overall grid stability. Photovoltaic (PV) power has the fastest...... growth among all renewable energies and managed to reach high penetration levels creating instabilities which at the moment are corrected by the conventional generation. This paradigm will change in the future scenarios where most of the power is supplied by large scale renewable plants and parts...... of the ancillary services have to be shared by the renewable plants. The main focus of the proposed paper is to technically and economically analyze the possibility of having active power reserves in large scale PV power plants (PVPPs) without any auxiliary storage equipment. The provided reserves should...

  13. Electron drift in a large scale solid xenon

    CERN Document Server

    Yoo, J

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7\\,cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163\\,K), the drift speed is 0.193 $\\pm$ 0.003 cm/$\\mu$s while the drift speed in the solid phase (157\\,K) is 0.397 $\\pm$ 0.006 cm/$\\mu$s at 900 V/cm over 8.0\\,cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  14. Bayesian large-scale structure inference and cosmic web analysis

    CERN Document Server

    Leclercq, Florent

    2015-01-01

    Surveys of the cosmic large-scale structure carry opportunities for building and testing cosmological theories about the origin and evolution of the Universe. This endeavor requires appropriate data assimilation tools, for establishing the contact between survey catalogs and models of structure formation. In this thesis, we present an innovative statistical approach for the ab initio simultaneous analysis of the formation history and morphology of the cosmic web: the BORG algorithm infers the primordial density fluctuations and produces physical reconstructions of the dark matter distribution that underlies observed galaxies, by assimilating the survey data into a cosmological structure formation model. The method, based on Bayesian probability theory, provides accurate means of uncertainty quantification. We demonstrate the application of BORG to the Sloan Digital Sky Survey data and describe the primordial and late-time large-scale structure in the observed volume. We show how the approach has led to the fi...

  15. The complexity nature of large-scale software systems

    Institute of Scientific and Technical Information of China (English)

    Yan Dong; Qi Guo-Ning; Gu Xin-Jian

    2006-01-01

    In software engineering, class diagrams are often used to describe the system's class structures in Unified Modelling Language (UML). A class diagram, as a graph, is a collection of static declarative model elements, such as classes, interfaces, and the relationships of their connections with each other. In this paper, class graphs are examined within several Java software systems provided by Sun and IBM, and some new features are found. For a large-scale Java software system, its in-degree distribution tends to an exponential distribution, while its out-degree and degree distributions reveal the power-law behaviour. And then a directed preferential-random model is established to describe the corresponding degree distribution features and evolve large-scale Java software systems.

  16. Alignment of quasar polarizations with large-scale structures

    CERN Document Server

    Hutsemékers, Damien; Pelgrims, Vincent; Sluse, Dominique

    2014-01-01

    We have measured the optical linear polarization of quasars belonging to Gpc-scale quasar groups at redshift z ~ 1.3. Out of 93 quasars observed, 19 are significantly polarized. We found that quasar polarization vectors are either parallel or perpendicular to the directions of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to randomly oriented polarization vectors is of the order of 1%. We also found that quasars with polarization perpendicular to the host structure preferentially have large emission line widths while objects with polarization parallel to the host structure preferentially have small emission line widths. Considering that quasar polarization is usually either parallel or perpendicular to the accretion disk axis depending on the inclination with respect to the line of sight, and that broader emission lines originate from quasars seen at higher inclinations, we conclude that quasar spin axes are likely parallel ...

  17. The Large Scale Synthesis of Aligned Plate Nanostructures

    Science.gov (United States)

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-07-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ‧ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential.

  18. Series Design of Large-Scale NC Machine Tool

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi

    2007-01-01

    Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However, up until now, functional combination is still the main method for product system design in China. Therefore, in terms of a concept of product generation and product interaction we are in a weak position compared with the requirements of global markets. Today, the idea of serial product design has attracted much attention in the design field and the definition of product generation as well as its parameters has already become the standard in serial product designs. Although the design of a large-scale NC machine tool is complicated, it can be further optimized by the precise exercise of object design by placing the concept of platform establishment firmly into serial product design. The essence of a serial product design has been demonstrated by the design process of a large-scale NC machine tool.

  19. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  20. Critical Analysis of Middleware Architectures for Large Scale Distributed Systems

    CERN Document Server

    Pop, Florin; Costan, Alexandru; Andreica, Mugurel Ionut; Tirsa, Eliana-Dina; Stratan, Corina; Cristea, Valentin

    2009-01-01

    Distributed computing is increasingly being viewed as the next phase of Large Scale Distributed Systems (LSDSs). However, the vision of large scale resource sharing is not yet a reality in many areas - Grid computing is an evolving area of computing, where standards and technology are still being developed to enable this new paradigm. Hence, in this paper we analyze the current development of middleware tools for LSDS, from multiple perspectives: architecture, applications and market research. For each perspective we are interested in relevant technologies used in undergoing projects, existing products or services and useful design issues. In the end, based on this approach, we draw some conclusions regarding the future research directions in this area.

  1. Building a Large-Scale Knowledge Base for Machine Translation

    CERN Document Server

    Knight, K; Knight, Kevin; Luk, Steve K.

    1994-01-01

    Knowledge-based machine translation (KBMT) systems have achieved excellent results in constrained domains, but have not yet scaled up to newspaper text. The reason is that knowledge resources (lexicons, grammar rules, world models) must be painstakingly handcrafted from scratch. One of the hypotheses being tested in the PANGLOSS machine translation project is whether or not these resources can be semi-automatically acquired on a very large scale. This paper focuses on the construction of a large ontology (or knowledge base, or world model) for supporting KBMT. It contains representations for some 70,000 commonly encountered objects, processes, qualities, and relations. The ontology was constructed by merging various online dictionaries, semantic networks, and bilingual resources, through semi-automatic methods. Some of these methods (e.g., conceptual matching of semantic taxonomies) are broadly applicable to problems of importing/exporting knowledge from one KB to another. Other methods (e.g., bilingual match...

  2. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik;

    2013-01-01

    with this imbalance and to reduce its high dependence on oil production. For this reason, it is interesting to analyse the extent to which transport electrification can further the renewable energy integration. This paper quantifies this issue in Inner Mongolia, where the share of wind power in the electricity supply...... was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power......Renewable energy is one of the possible solutions when addressing climate change. Today, large-scale renewable energy integration needs to include the experience to balance the discrepancy between electricity demand and supply. The electrification of transportation may have the potential to deal...

  3. Algorithmic and Statistical Perspectives on Large-Scale Data Analysis

    CERN Document Server

    Mahoney, Michael W

    2010-01-01

    In recent years, ideas from statistics and scientific computing have begun to interact in increasingly sophisticated and fruitful ways with ideas from computer science and the theory of algorithms to aid in the development of improved worst-case algorithms that are useful for large-scale scientific and Internet data analysis problems. In this chapter, I will describe two recent examples---one having to do with selecting good columns or features from a (DNA Single Nucleotide Polymorphism) data matrix, and the other having to do with selecting good clusters or communities from a data graph (representing a social or information network)---that drew on ideas from both areas and that may serve as a model for exploiting complementary algorithmic and statistical perspectives in order to solve applied large-scale data analysis problems.

  4. Individual skill differences and large-scale environmental learning.

    Science.gov (United States)

    Fields, Alexa W; Shelton, Amy L

    2006-05-01

    Spatial skills are known to vary widely among normal individuals. This project was designed to address whether these individual differences are differentially related to large-scale environmental learning from route (ground-level) and survey (aerial) perspectives. Participants learned two virtual environments (route and survey) with limited exposure and tested on judgments about relative locations of objects. They also performed a series of spatial and nonspatial component skill tests. With limited learning, performance after route encoding was worse than performance after survey encoding. Furthermore, performance after route and survey encoding appeared to be preferentially linked to perspective and object-based transformations, respectively. Together, the results provide clues to how different skills might be engaged by different individuals for the same goal of learning a large-scale environment. PMID:16719662

  5. Unstable `black branes' from scaled membranes at large $D$

    CERN Document Server

    Dandekar, Yogesh; Minwalla, Shiraz; Saha, Arunabha

    2016-01-01

    It has recently been demonstrated that the dynamics of black holes at large $D$ can be recast as a set of non gravitational membrane equations. These membrane equations admit a simple static solution with shape $S^{D-p-2} \\times R^{p,1}$. In this note we study the equations for small fluctuations about this solution in a limit in which amplitude and length scale of the fluctuations are simultaneously scaled to zero as $D$ is taken to infinity. We demonstrate that the resultant nonlinear equations, which capture the Gregory- Laflamme instability and its end point, exactly agree with the effective dynamical `black brane' equations of Emparan Suzuki and Tanabe. Our results thus identify the `black brane' equations as a special limit of the membrane equations and so unify these approaches to large $D$ black hole dynamics.

  6. Large-scale innovation and change in UK higher education

    Directory of Open Access Journals (Sweden)

    Stephen Brown

    2013-09-01

    Full Text Available This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ technology to deliver such changes. Key lessons that emerged from these experiences are reviewed covering themes of pervasiveness, unofficial systems, project creep, opposition, pressure to deliver, personnel changes and technology issues. The paper argues that collaborative approaches to project management offer greater prospects of effective large-scale change in universities than either management-driven top-down or more champion-led bottom-up methods. It also argues that while some diminution of control over project outcomes is inherent in this approach, this is outweighed by potential benefits of lasting and widespread adoption of agreed changes.

  7. Large-scale conditions of Tibet Plateau vortex departure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the circumfluence situation of the out- and in-Tibet Plateau Vortex (TPV) from 1998-2004 and its weather-influencing system,multiple synthesized physical fields in the middle-upper troposphere of the out- and in-TPV are computationally analyzed by using re-analysis data from National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) of United States.Our research shows that the departure of TPV is caused by the mutual effects among the weather systems in Westerlies and in the subtropical area,within the middle and the upper troposphere.This paper describes the large-scale meteorological condition and the physics image of the departure of TPV,and the main differences among the large-scale conditions for all types of TPVs.This study could be used as the scientific basis for predicting the torrential rain and the floods caused by the TPV departure.

  8. Dark Energy from Large-Scale Structure Lensing Information

    CERN Document Server

    Lu, Tingting; Doré, Olivier

    2009-01-01

    Wide area Large-Scale Structure (LSS) surveys are planning to map a substantial fraction of the visible universe to quantify dark energy through Baryon Acoustic Oscillations (BAO). At increasing redshift, for example that probed by proposed 21-cm intensity mapping surveys, gravitational lensing potentially limits the fidelity (Hui et al., 2007) because it distorts the apparent matter distribution. In this paper we show that these distortions can be reconstructed, and actually used to map the distribution of intervening dark matter. The lensing information for sources at z=1-3 allows accurate reconstruction of the gravitational potential on large scales, l <~ 100, which is well matched for Integrated Sachs-Wolfe (ISW) effect measurements of dark energy and its sound speed, and a strong constraint for modified gravity models of dark energy. We built an optimal quadratic lensing estimator for non-Gaussian sources, which is necessary for LSS. The phenomenon of "information saturation" (Rimes & Hamilton, 20...

  9. Applications of large-scale density functional theory in biology.

    Science.gov (United States)

    Cole, Daniel J; Hine, Nicholas D M

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095

  10. Generation Expansion Planning Considering Integrating Large-scale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob;

    2013-01-01

    necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production......Generation expansion planning (GEP) is the problem of finding the optimal strategy to plan the Construction of new generation while satisfying technical and economical constraints. In the deregulated and competitive environment, large-scale integration of wind generation (WG) in power system has...... optimization decision. A multi-objective PSO (MOPSO) algorithm was introduced to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of the proposed bi-level planning approach and the MOPSO...

  11. Deep Feature Learning and Cascaded Classifier for Large Scale Data

    DEFF Research Database (Denmark)

    Prasoon, Adhish

    allows usage of such classifiers in large scale problems. We demonstrate its application for segmenting tibial articular cartilage in knee MRI scans, with number of training voxels being more than 2 million. In the next phase of the study we apply the cascaded classifier to a similar but even more......This thesis focuses on voxel/pixel classification based approaches for image segmentation. The main application is segmentation of articular cartilage in knee MRIs. The first major contribution of the thesis deals with large scale machine learning problems. Many medical imaging problems need huge...... image, respectively and this system is referred as triplanar convolutional neural network in the thesis. We applied the triplanar CNN for segmenting articular cartilage in knee MRI and compared its performance with the same state-of-the-art method which was used as a benchmark for cascaded classifier...

  12. Large-scale quantum networks based on graphs

    Science.gov (United States)

    Epping, Michael; Kampermann, Hermann; Bruß, Dagmar

    2016-05-01

    Society relies and depends increasingly on information exchange and communication. In the quantum world, security and privacy is a built-in feature for information processing. The essential ingredient for exploiting these quantum advantages is the resource of entanglement, which can be shared between two or more parties. The distribution of entanglement over large distances constitutes a key challenge for current research and development. Due to losses of the transmitted quantum particles, which typically scale exponentially with the distance, intermediate quantum repeater stations are needed. Here we show how to generalise the quantum repeater concept to the multipartite case, by describing large-scale quantum networks, i.e. network nodes and their long-distance links, consistently in the language of graphs and graph states. This unifying approach comprises both the distribution of multipartite entanglement across the network, and the protection against errors via encoding. The correspondence to graph states also provides a tool for optimising the architecture of quantum networks.

  13. Large-scale flow generation by inhomogeneous helicity

    CERN Document Server

    Yokoi, Nobumitsu

    2015-01-01

    The effect of kinetic helicity (velocity--vorticity correlation) on turbulent momentum transport is investigated. The turbulent kinetic helicity (pseudoscalar) enters into the Reynolds stress (mirrorsymmetric tensor) expression in the form of a helicity gradient as the coupling coefficient for the mean vorticity and/or the angular velocity (axial vector), which suggests the possibility of mean-flow generation in the presence of inhomogeneous helicity. This inhomogeneous helicity effect, which was previously confirmed at the level of a turbulence- or closure-model simulation, is examined with the aid of direct numerical simulations of rotating turbulence with non-uniform helicity sustained by an external forcing. The numerical simulations show that the spatial distribution of the Reynolds stress is in agreement with the helicity-related term coupled with the angular velocity, and that a large-scale flow is generated in the direction of angular velocity. Such a large-scale flow is not induced in the case of hom...

  14. Efficient algorithms for collaborative decision making for large scale settings

    DEFF Research Database (Denmark)

    Assent, Ira

    2011-01-01

    Collaborative decision making is a successful approach in settings where data analysis and querying can be done interactively. In large scale systems with huge data volumes or many users, collaboration is often hindered by impractical runtimes. Existing work on improving collaboration focuses...... on avoiding redundancy for users working on the same task. While this improves the effectiveness of the user work process, the underlying query processing engine is typically considered a "black box" and left unchanged. Research in multiple query processing, on the other hand, ignores the application...... to bring about more effective and more efficient retrieval systems that support the users' decision making process. We sketch promising research directions for more efficient algorithms for collaborative decision making, especially for large scale systems....

  15. Optimal algorithms for scheduling large scale application on heterogeneous systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper studies optimal algorithms for scheduling large-scale application on heterogeneous systems using Divis ible Load Theory.A more realistic and general model,i.e.,both processors and communication links may have different speeds and arbitrary start-up costs,and communication is in non-blocking mode,is introduced.Under such environment, the following results are obtained:①Mathematic model and closed-form expressions both for the processing time and the fraction of load for each processor are derived;②the influence of start-up costs on the optimal processing time is analyzed;③for a given heterogeneous systems and a large-scale computing problem,optimal algorithms are proposed.

  16. Optimization of Survivability Analysis for Large-Scale Engineering Networks

    CERN Document Server

    Poroseva, S V

    2012-01-01

    Engineering networks fall into the category of large-scale networks with heterogeneous nodes such as sources and sinks. The survivability analysis of such networks requires the analysis of the connectivity of the network components for every possible combination of faults to determine a network response to each combination of faults. From the computational complexity point of view, the problem belongs to the class of exponential time problems at least. Partially, the problem complexity can be reduced by mapping the initial topology of a complex large-scale network with multiple sources and multiple sinks onto a set of smaller sub-topologies with multiple sources and a single sink connected to the network of sources by a single link. In this paper, the mapping procedure is applied to the Florida power grid.

  17. Applications of large-scale density functional theory in biology

    Science.gov (United States)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  18. Network of Experts for Large-Scale Image Categorization

    OpenAIRE

    Ahmed, Karim; Baig, Mohammad Haris; Torresani, Lorenzo

    2016-01-01

    We present a tree-structured network architecture for large-scale image classification. The trunk of the network contains convolutional layers optimized over all classes. At a given depth, the trunk splits into separate branches, each dedicated to discriminate a different subset of classes. Each branch acts as an expert classifying a set of categories that are difficult to tell apart, while the trunk provides common knowledge to all experts in the form of shared features. The training of our ...

  19. The Large-Scale Sugarcane Stripper with Automatic Feeding

    OpenAIRE

    Jiaxiang Lin; Wenjie Yan; Jiaping Lin

    2012-01-01

    This study mainly introduce the large-scale sugarcane stripper with automatic feeding, which including the automatic feeding module, cleaning leaves module, collecting module and control module. The machine is an important part of the segmental type sugarcane harvester, using to solve the highest labor intensity problem of cleaning leaves. Collecting the hilly areas sugarcane and cleaning their leaves, can greatly improve the labor productivity and changing the current mode of sugarcane harvest.

  20. Split Architecture for Large Scale Wide Area Networks

    OpenAIRE

    John, Wolfgang; Devlic, Alisa; Ding, Zhemin; Jocha, David; Kern, Andras; Kind, Mario; Köpsel, Andreas; Nordell, Viktor; Sharma, Sachin; Sköldström, Pontus; Staessens, Dimitri; Takacs, Attila; Topp, Steffen; Westphal, F. -Joachim; Woesner, Hagen

    2014-01-01

    This report defines a carrier-grade split architecture based on requirements identified during the SPARC project. It presents the SplitArchitecture proposal, the SPARC concept for Software Defined Networking (SDN) introduced for large-scale wide area networks such as access/aggregation networks, and evaluates technical issues against architectural trade-offs. First we present the control and management architecture of the proposed SplitArchitecture. Here, we discuss a recursive control archit...

  1. Large-Scale Post-Crisis Corporate Sector Restructuring

    OpenAIRE

    Mark R. Stone

    2000-01-01

    This paper summarizes the objectives, tasks, and modalities of large-scale, post-crisis corporate restructuring based on nine recent episodes with a view to organizing the policy choices and drawing some general conclusions. These episodes suggest that government-led restructuring efforts should integrate corporate and bank restructuring in a holistic and transparent strategy based on clearly defined objective and including sunset provisions.

  2. Learning Compact Visual Attributes for Large-Scale Image Classification

    OpenAIRE

    Su, Yu; Jurie, Frédéric

    2012-01-01

    International audience Attributes based image classification has received a lot of attention recently, as an interesting tool to share knowledge across different categories or to produce compact signature of images. However, when high classification performance is expected, state-of-the-art results are typically obtained by combining Fisher Vectors (FV) and Spatial Pyramid Matching (SPM), leading to image signatures with dimensionality up to 262,144 [1]. This is a hindrance to large-scale ...

  3. Soil carbon management in large-scale Earth system modelling

    DEFF Research Database (Denmark)

    Olin, S.; Lindeskog, M.; Pugh, T. A. M.;

    2015-01-01

    Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to...... modelling C–N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles....

  4. Large scale ocean models beyond the traditional approximation

    OpenAIRE

    Lucas, Carine; Mcwilliams, Jim; Rousseau, Antoine

    2016-01-01

    International audience This works corresponds to classes given by A. Rousseau in February 2014 in Toulouse, in the framework of the CIMI labex. The objective is to describe and question the models that are traditionaly used for large scale oceanography, whether in 2D or 3D. Starting from fundamental equations (mass and momentum conservation), it is explained how-thanks to approximations for which we provide justifications-one can build simpler models that allow a realistic numerical implem...

  5. Large-scale Alfvén vortices

    Energy Technology Data Exchange (ETDEWEB)

    Onishchenko, O. G., E-mail: onish@ifz.ru [Institute of Physics of the Earth, 10 B. Gruzinskaya, 123242 Moscow, Russian Federation and Space Research Institute, 84/32 Profsouznaya str., 117997 Moscow (Russian Federation); Pokhotelov, O. A., E-mail: pokh@ifz.ru [Institute of Physics of the Earth, 10 B. Gruzinskaya, 123242 Moscow (Russian Federation); Horton, W., E-mail: wendell.horton@gmail.com [Institute for Fusion Studies and Applied Research Laboratory, University of Texas at Austin, Austin, Texas 78713 (United States); Scullion, E., E-mail: scullie@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Fedun, V., E-mail: v.fedun@sheffield.ac.uk [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S13JD (United Kingdom)

    2015-12-15

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  6. Large-Scale Cortical Dynamics of Sleep Slow Waves

    OpenAIRE

    Botella-Soler, Vicente; Valderrama, Mario; Crépon, Benoît; Navarro, Vincent; Le Van Quyen, Michel

    2012-01-01

    Slow waves constitute the main signature of sleep in the electroencephalogram (EEG). They reflect alternating periods of neuronal hyperpolarization and depolarization in cortical networks. While recent findings have demonstrated their functional role in shaping and strengthening neuronal networks, a large-scale characterization of these two processes remains elusive in the human brain. In this study, by using simultaneous scalp EEG and intracranial recordings in 10 epileptic subjects, we exam...

  7. A Large-Scale Study of Online Shopping Behavior

    OpenAIRE

    Nalchigar, Soroosh; Weber, Ingmar

    2012-01-01

    The continuous growth of electronic commerce has stimulated great interest in studying online consumer behavior. Given the significant growth in online shopping, better understanding of customers allows better marketing strategies to be designed. While studies of online shopping attitude are widespread in the literature, studies of browsing habits differences in relation to online shopping are scarce. This research performs a large scale study of the relationship between Internet browsing hab...

  8. Unsupervised Deep Hashing for Large-scale Visual Search

    OpenAIRE

    Xia, Zhaoqiang; Feng, Xiaoyi; Peng, Jinye; Hadid, Abdenour

    2016-01-01

    Learning based hashing plays a pivotal role in large-scale visual search. However, most existing hashing algorithms tend to learn shallow models that do not seek representative binary codes. In this paper, we propose a novel hashing approach based on unsupervised deep learning to hierarchically transform features into hash codes. Within the heterogeneous deep hashing framework, the autoencoder layers with specific constraints are considered to model the nonlinear mapping between features and ...

  9. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems

    OpenAIRE

    Demchak, Barry; Krüger, Ingolf

    2012-01-01

    The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection.

  10. Experimental simulation of microinteractions in large scale explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Luo, R.; Yuen, W.W.; Theofanous, T.G. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    This paper presents data and analysis of recent experiments conducted in the SIGMA-2000 facility to simulate microinteractions in large scale explosions. Specifically, the fragmentation behavior of a high temperature molten steel drop under high pressure (beyond critical) conditions are investigated. The current data demonstrate, for the first time, the effect of high pressure in suppressing the thermal effect of fragmentation under supercritical conditions. The results support the microinteractions idea, and the ESPROSE.m prediction of fragmentation rate. (author)

  11. Measuring Large-Scale Social Networks with High Resolution

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr;

    2014-01-01

    This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions....... The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection....

  12. Foundations of Large-Scale Multimedia Information Management and Retrieval

    CERN Document Server

    Chang, Edward Y

    2011-01-01

    "Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception" covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and

  13. Electrochemical cells for medium- and large-scale energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  14. Combining p-values in large scale genomics experiments

    OpenAIRE

    Dmitri V Zaykin; Zhivotovsky, Lev A.; Czika, Wendy; Shao, Susan; Wolfinger, Russell D.

    2007-01-01

    In large-scale genomics experiments involving thousands of statistical tests, such as association scans and microarray expression experiments, a key question is: Which of the L tests represent true associations (TAs)? The traditional way to control false findings is via individual adjustments. In the presence of multiple TAs, p-value combination methods offer certain advantages. Both Fisher’s and Lancaster’s combination methods use an inverse gamma transformation. We identify the relation of ...

  15. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  16. Petascale computations for Large-scale Atomic and Molecular collisions

    OpenAIRE

    McLaughlin, Brendan M.; Ballance, Connor P.

    2014-01-01

    Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schroedinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. Various examples are shown of our theoretical results compared with those obtained from Sync...

  17. Fast transient stability simulation of large scale power systems

    OpenAIRE

    Kumar, Sreerama R; Ramanujam, R.; Khincha, HP; Jenkins, L

    1992-01-01

    This paper describes a computationally efficient algorithm for transient stability simulation of large scale power system dynamics. The simultaneous implicit approach proposed by H.V. Dommel and N. Sato [l] has become the state-of-the –arc technique for production grade transient stability simulation programs. This paper proposes certain modifications to the Dommel-Sato method with which significant improvement in computational efficiency could be achieved. Preliminary investigations on a sta...

  18. Large Scale Synthesis of Carbon Nanofibres on Sodium Chloride Support

    OpenAIRE

    Ravindra Rajarao; Badekai Ramachandra Bhat

    2012-01-01

    Large scale synthesis of carbon nanofibres (CNFs) on a sodium chloride support has been achieved. CNFs have been synthesized using metal oxalate (Ni, Co and Fe) as catalyst precursors at 680 C by chemical vapour deposition method. Upon pyrolysis, this catalyst precursors yield catalyst nanoparticles directly. The sodium chloride was used as a catalyst support, it was chosen because of its non‐toxic and water soluble nature. Problems, such as the detrimental effect of CNFs, the detrimental ef...

  19. Topic modeling for large-scale text data

    Institute of Scientific and Technical Information of China (English)

    Xi-ming LI; Ji-hong OUYANG; You LU

    2015-01-01

    This paper develops a novel online algorithm, namely moving average stochastic variational inference (MASVI), which applies the results obtained by previous iterations to smooth out noisy natural gradients. We analyze the convergence property of the proposed algorithm and conduct a set of experiments on two large-scale collections that contain millions of documents. Experimental results indicate that in contrast to algorithms named ‘stochastic variational inference’ and‘SGRLD’, our algorithm achieves a faster convergence rate and better performance.

  20. Large-scale dynamics of sandy coastlines: diffusivity and instability

    OpenAIRE

    Falqués Serra, Albert; Calvete Manrique, Daniel

    2005-01-01

    The dynamics of small-amplitude perturbations of an otherwise rectilinear coastline due to the wave-driven alongshore sediment transport is examined at large time and length scales (years and kilometers). A linear stability analysis is performed by using an extended one-line shoreline model with two main improvements: (1) the curvature of the coastline features is accounted for and (2) the coastline features are assumed to extend offshore as a bathymetric perturbation up to a finite distance....

  1. HECTR analyses of large-scale premixed hydrogen combustion experiments

    International Nuclear Information System (INIS)

    The HECTR (Hydrogen Event: Containment Transient Response) computer code is a reactor accident analysis tool designed to calculate the transport and combustion of hydrogen and the transient response of the containment. As part of the assessment effort, HECTR has been used to analyze the Nevada Test Site (NTS) large-scale premixed hydrogen combustion experiments. The results of these analyses and the critical review of the combustion model in HECTR is presented in this paper

  2. Large scale optimization algorithms : applications to solution of inverse problems

    OpenAIRE

    Repetti, Audrey

    2015-01-01

    An efficient approach for solving an inverse problem is to define the recovered signal/image as a minimizer of a penalized criterion which is often split in a sum of simpler functions composed with linear operators. In the situations of practical interest, these functions may be neither convex nor smooth. In addition, large scale optimization problems often have to be faced. This thesis is devoted to the design of new methods to solve such difficult minimization problems, while paying attenti...

  3. Domain nesting for multi-scale large eddy simulation

    Science.gov (United States)

    Fuka, Vladimir; Xie, Zheng-Tong

    2016-04-01

    The need to simulate city scale areas (O(10 km)) with high resolution within street canyons in certain areas of interests necessitates different grid resolutions in different part of the simulated area. General purpose computational fluid dynamics codes typically employ unstructured refined grids while mesoscale meteorological models more often employ nesting of computational domains. ELMM is a large eddy simulation model for the atmospheric boundary layer. It employs orthogonal uniform grids and for this reason domain nesting was chosen as the approach for simulations in multiple scales. Domains are implemented as sets of MPI processes which communicate with each other as in a normal non-nested run, but also with processes from another (outer/inner) domain. It should stressed that the duration of solution of time-steps in the outer and in the inner domain must be synchronized, so that the processes do not have to wait for the completion of their boundary conditions. This can achieved by assigning an appropriate number of CPUs to each domain, and to gain high efficiency. When nesting is applied for large eddy simulation, the inner domain receives inflow boundary conditions which lack turbulent motions not represented by the outer grid. ELMM remedies this by optional adding of turbulent fluctuations to the inflow using the efficient method of Xie and Castro (2008). The spatial scale of these fluctuations is in the subgrid-scale of the outer grid and their intensity will be estimated from the subgrid turbulent kinetic energy in the outer grid.

  4. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2016-08-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  5. Large-scale flow experiments for managing river systems

    Science.gov (United States)

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  6. Quasars and the large-scale structure of the Universe

    International Nuclear Information System (INIS)

    A problem of studying the Universe large-scale structure is discussed. Last years the Zeldovitch hypothesis turns out the most fruitful in this area. According to the hypothesis formation of plane large-scale inhomogeneities, so-called pancakes, occurs under action of gravitation and shock waves arising at that. Numerical simulation of development processes of such long-wave gravitational instability by means of an electron computer has confirmed a hypothesis of pancakes as of stretched large-scale formations which can create cell structure in distribution of Galaxies. However the investigation into the Universe structure encounters a number of difficulties main of which is the absence of statistically reliable data on distances to galaxies. To overcome the difficulties scientists suggest to use quasars, which owing to extreme luminosity, are seen almost from the Universe boundary accessible for observations. The quasars present a possibility for revealing inhomogeneity in distributions of galaxies and for investigation of galaxy structures subjecting them to powerful radiation on a ray of sight

  7. Alignment of quasar polarizations with large-scale structures

    Science.gov (United States)

    Hutsemékers, D.; Braibant, L.; Pelgrims, V.; Sluse, D.

    2014-12-01

    We have measured the optical linear polarization of quasars belonging to Gpc scale quasar groups at redshift z ~ 1.3. Out of 93 quasars observed, 19 are significantly polarized. We found that quasar polarization vectors are either parallel or perpendicular to the directions of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to randomly oriented polarization vectors is on the order of 1%. We also found that quasars with polarization perpendicular to the host structure preferentially have large emission line widths while objects with polarization parallel to the host structure preferentially have small emission line widths. Considering that quasar polarization is usually either parallel or perpendicular to the accretion disk axis depending on the inclination with respect to the line of sight, and that broader emission lines originate from quasars seen at higher inclinations, we conclude that quasar spin axes are likely parallel to their host large-scale structures. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 092.A-0221.Table 1 is available in electronic form at http://www.aanda.org

  8. Survey of large-scale isotope applications: nuclear technology field

    Energy Technology Data Exchange (ETDEWEB)

    Dewitt, R.

    1977-01-21

    A preliminary literature survey of potential large-scale isotope applications was made according to topical fields; i.e., nuclear, biological, medical, environmental, agricultural, geological, and industrial. Other than the possible expansion of established large-scale isotope applications such as uranium, boron, lithium, and hydrogen, no new immediate isotope usage appears to be developing. Over the long term a change in emphasis for isotope applications was identified which appears to be more responsive to societal concerns for health, the environment, and the conservation of materials and energy. For gram-scale applications, a variety of isotopes may be required for use as nonradioactive ''activable'' tracers. A more detailed survey of the nuclear field identified a potential need for large amounts (tons) of special isotopic materials for advanced reactor components and structures. At this need for special materials and the development of efficient separation methods progresses, the utilization of isotopes from nuclear wastes for beneficial uses should also progress.

  9. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances.

    Directory of Open Access Journals (Sweden)

    V Thomas Parker

    Full Text Available Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host.

  10. Large scale structure around a z=2.1 cluster

    CERN Document Server

    Hung, Chao-Ling; Chiang, Yi-Kuan; Capak, Peter; Cowley, Michael J; Darvish, Behnam; Kacprzak, Glenn G; Kovac, K; Lilly, Simon J; Nanayakkara, Themiya; Spitler, Lee R; Tran, Kim-Vy H; Yuan, Tiantian

    2016-01-01

    The most prodigious starburst galaxies are absent in massive galaxy clusters today, but their connection with large scale environments is less clear at $z\\gtrsim2$. We present a search of large scale structure around a galaxy cluster core at $z=2.095$ using a set of spectroscopically confirmed galaxies. We find that both color-selected star-forming galaxies (SFGs) and dusty star-forming galaxies (DSFGs) show significant overdensities around the $z=2.095$ cluster. A total of 8 DSFGs (including 3 X-ray luminous active galactic nuclei, AGNs) and 34 SFGs are found within a 10 arcmin radius (corresponds to $\\sim$15 cMpc at $z\\sim2.1$) from the cluster center and within a redshift range of $\\Delta z=0.02$, which leads to galaxy overdensities of $\\delta_{\\rm DSFG}\\sim12.3$ and $\\delta_{\\rm SFG}\\sim2.8$. The cluster core and the extended DSFG- and SFG-rich structure together demonstrate an active cluster formation phase, in which the cluster is accreting a significant amount of material from large scale structure whi...

  11. Critical thinking, politics on a large scale and media democracy

    Directory of Open Access Journals (Sweden)

    José Antonio IBÁÑEZ-MARTÍN

    2015-06-01

    Full Text Available The first approximation to the social current reality offers us numerous motives for the worry. The spectacle of violence and of immorality can scare us easily. But more worrying still it is to verify that the horizon of conviviality, peace and wellbeing that Europe had been developing from the Treaty of Rome of 1957 has compromised itself seriously for the economic crisis. Today we are before an assault to the democratic politics, which is qualified, on the part of the media democracy, as an exhausted system, which is required to be changed into a new and great politics, a politics on a large scale. The article analyses the concept of a politics on a large scale, primarily attending to Nietzsche, and noting its union with the great philosophy and the great education. The study of the texts of Nietzsche leads us to the conclusion of how in them we often find an interesting analysis of the problems and a misguided proposal for solutions. We cannot think to suggest solutions to all the problems, but we outline various proposals about changes of political activity, that reasonably are defended from the media democracy. In conclusion, we point out that a politics on a large scale requires statesmen, able to suggest modes of life in common that can structure a long-term coexistence.

  12. Star formation associated with a large-scale infrared bubble

    CERN Document Server

    Xu, Jin-Long

    2014-01-01

    Using the data from the Galactic Ring Survey (GRS) and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we performed a study for a large-scale infrared bubble with a size of about 16 pc at a distance of 2.0 kpc. We present the 12CO J=1-0, 13CO J=1-0 and C18O J=1-0 observations of HII region G53.54-0.01 (Sh2-82) obtained at the the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed distribution of associated molecular material. The large-scale infrared bubble shows a half-shell morphology at 8 um. H II regions G53.54-0.01, G53.64+0.24, and G54.09-0.06 are situated on the bubble. Comparing the radio recombination line velocities and associated 13CO J=1-0 components of the three H II regions, we found that the 8 um emission associated with H II region G53.54-0.01 should belong to the foreground emission, and only overlap with the large-scale infrared bubble in the line of sight. Three extended green objects (EGOs, the candidate massive young stellar objects), ...

  13. Line segment extraction for large scale unorganized point clouds

    Science.gov (United States)

    Lin, Yangbin; Wang, Cheng; Cheng, Jun; Chen, Bili; Jia, Fukai; Chen, Zhonggui; Li, Jonathan

    2015-04-01

    Line segment detection in images is already a well-investigated topic, although it has received considerably less attention in 3D point clouds. Benefiting from current LiDAR devices, large-scale point clouds are becoming increasingly common. Most human-made objects have flat surfaces. Line segments that occur where pairs of planes intersect give important information regarding the geometric content of point clouds, which is especially useful for automatic building reconstruction and segmentation. This paper proposes a novel method that is capable of accurately extracting plane intersection line segments from large-scale raw scan points. The 3D line-support region, namely, a point set near a straight linear structure, is extracted simultaneously. The 3D line-support region is fitted by our Line-Segment-Half-Planes (LSHP) structure, which provides a geometric constraint for a line segment, making the line segment more reliable and accurate. We demonstrate our method on the point clouds of large-scale, complex, real-world scenes acquired by LiDAR devices. We also demonstrate the application of 3D line-support regions and their LSHP structures on urban scene abstraction.

  14. Power suppression at large scales in string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna, via Irnerio 46, Bologna, 40126 (Italy); Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX, 77843-4242 (United States)

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  15. Power suppression at large scales in string inflation

    International Nuclear Information System (INIS)

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters

  16. An emerging infectious disease triggering large-scale hyperpredation.

    Directory of Open Access Journals (Sweden)

    Marcos Moleón

    Full Text Available Hyperpredation refers to an enhanced predation pressure on a secondary prey due to either an increase in the abundance of a predator population or a sudden drop in the abundance of the main prey. This scarcely documented mechanism has been previously studied in scenarios in which the introduction of a feral prey caused overexploitation of native prey. Here we provide evidence of a previously unreported link between Emergent Infectious Diseases (EIDs and hyperpredation on a predator-prey community. We show how a viral outbreak caused the population collapse of a host prey at a large spatial scale, which subsequently promoted higher-than-normal predation intensity on a second prey from shared predators. Thus, the disease left a population dynamic fingerprint both in the primary host prey, through direct mortality from the disease, and indirectly in the secondary prey, through hyperpredation. This resulted in synchronized prey population dynamics at a large spatio-temporal scale. We therefore provide evidence for a novel mechanism by which EIDs can disrupt a predator-prey interaction from the individual behavior to the population dynamics. This mechanism can pose a further threat to biodiversity through the human-aided disruption of ecological interactions at large spatial and temporal scales.

  17. BILGO: Bilateral greedy optimization for large scale semidefinite programming

    KAUST Repository

    Hao, Zhifeng

    2013-10-03

    Many machine learning tasks (e.g. metric and manifold learning problems) can be formulated as convex semidefinite programs. To enable the application of these tasks on a large-scale, scalability and computational efficiency are considered as desirable properties for a practical semidefinite programming algorithm. In this paper, we theoretically analyze a new bilateral greedy optimization (denoted BILGO) strategy in solving general semidefinite programs on large-scale datasets. As compared to existing methods, BILGO employs a bilateral search strategy during each optimization iteration. In such an iteration, the current semidefinite matrix solution is updated as a bilateral linear combination of the previous solution and a suitable rank-1 matrix, which can be efficiently computed from the leading eigenvector of the descent direction at this iteration. By optimizing for the coefficients of the bilateral combination, BILGO reduces the cost function in every iteration until the KKT conditions are fully satisfied, thus, it tends to converge to a global optimum. In fact, we prove that BILGO converges to the global optimal solution at a rate of O(1/k), where k is the iteration counter. The algorithm thus successfully combines the efficiency of conventional rank-1 update algorithms and the effectiveness of gradient descent. Moreover, BILGO can be easily extended to handle low rank constraints. To validate the effectiveness and efficiency of BILGO, we apply it to two important machine learning tasks, namely Mahalanobis metric learning and maximum variance unfolding. Extensive experimental results clearly demonstrate that BILGO can solve large-scale semidefinite programs efficiently.

  18. Large scale stochastic spatio-temporal modelling with PCRaster

    Science.gov (United States)

    Karssenberg, Derek; Drost, Niels; Schmitz, Oliver; de Jong, Kor; Bierkens, Marc F. P.

    2013-04-01

    software from the eScience Technology Platform (eSTeP), developed at the Netherlands eScience Center. This will allow us to scale up to hundreds of machines, with thousands of compute cores. A key requirement is not to change the user experience of the software. PCRaster operations and the use of the Python framework classes should work in a similar manner on machines ranging from a laptop to a supercomputer. This enables a seamless transfer of models from small machines, where model development is done, to large machines used for large-scale model runs. Domain specialists from a large range of disciplines, including hydrology, ecology, sedimentology, and land use change studies, currently use the PCRaster Python software within research projects. Applications include global scale hydrological modelling and error propagation in large-scale land use change models. The software runs on MS Windows, Linux operating systems, and OS X.

  19. Foundational perspectives on causality in large-scale brain networks.

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  20. Foundational perspectives on causality in large-scale brain networks

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  1. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  2. Scaling in large Prandtl number turbulent thermal convection

    CERN Document Server

    Dubrulle, B

    2011-01-01

    We study the scaling properties of heat transfer $Nu$ in turbulent thermal convection at large Prandtl number $Pr$ using a quasi-linear theory. We show that two regimes arise, depending on the Reynolds number $Re$. At low Reynolds number, $Nu Pr^{-1/2}$ and $Re$ are a function of $Ra Pr^{-3/2}$. At large Reynolds number $Nu Pr^{1/3}$ and $Re Pr$ are function only of $Ra Pr^{2/3}$ (within logarithmic corrections). In practice, since $Nu$ is always close to $Ra^{1/3}$, this corresponds to a much weaker dependence of the heat transfer in the Prandtl number at low Reynolds number than at large Reynolds number. This difference may solve an existing controversy between measurements in SF6 (large $Re$) and in alcohol/water (lower $Re$). We link these regimes with a possible global bifurcation in the turbulent mean flow. We further show how a scaling theory could be used to describe these two regimes through a single universal function. This function presents a bimodal character for intermediate range of Reynolds num...

  3. Examination of large-scale structures in turbulent microchannel flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Olsen, Michael G. [Iowa State University, Department of Mechanical Engineering, Ames, IA (United States)

    2006-05-15

    Microscopic particle image velocimetry was performed on turbulent flow in microchannels of various diameters and aspect ratios to evaluate the characteristics of large-scale turbulent structures. Spatial correlations of velocity fluctuations were measured along the channel centerlines and at four other locations, and characteristic turbulent length scales were defined. For square microchannels, excellent agreement was observed between the measured length scales and results for macro-scale duct flow. Along the centerline of the square microchannels the normalized longitudinal length scale, 2Lx{sub uu} /W, ranged from 0.30 to 0.37, the lateral length scale, 2Ly{sub uu} /W, ranged from 0.16 to 0.18, and the ratio between the two length scales, Lx{sub uu} /Ly{sub uu} ranged from 1.88 to 2.00, results which agree well with macroscale results. Results for non-square microchannels indicate that as aspect ratio increases, the ratio Lx{sub uu} /Ly{sub uu} also increases, ranging from 2.29 for an aspect ratio of 2.09 up to 3.75 for an aspect ratio of 5.68. Measurements were repeated at various distances from the side walls of the microchannels. For the square microchannels the turbulent structures are smaller near the side walls than near the center of the microchannel with 2Lx{sub uu} /W ranging from 0.30 to 0.38 along the centerline, but dropping to 0.04-0.06 at y/(W/2)=0.94. Similar results were observed for the rectangular microchannels. For the rectangular microchannels 2Lx{sub uu} /W ranged from 0.32 to 0.42, compared to 0.30-0.38 for the square microchannels. (orig.)

  4. Fatigue testing of large scale details of a large size aluminium surface effect ship

    NARCIS (Netherlands)

    Dijkstra, O.D.; Vredeveldt, A.W.; Janssen, G.Th.M.; Ortmans, P.

    1998-01-01

    The paper presents the results of two large scale fatigue tests on a detail of an aluminium surface effect ship. The overall dimensions of the specimens were: length 4.8 m, height 3.2 m and width 1.5 m (equal to the main frame spacing). The specimens consist of an aluminium structure of welded plate

  5. LARGE-SCALE CO2 TRANSPORTATION AND DEEP OCEAN SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Sarv

    1999-03-01

    Technical and economical feasibility of large-scale CO{sub 2} transportation and ocean sequestration at depths of 3000 meters or grater was investigated. Two options were examined for transporting and disposing the captured CO{sub 2}. In one case, CO{sub 2} was pumped from a land-based collection center through long pipelines laid on the ocean floor. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating structure for vertical injection to the ocean floor. In the latter case, a novel concept based on subsurface towing of a 3000-meter pipe, and attaching it to the offshore structure was considered. Budgetary cost estimates indicate that for distances greater than 400 km, tanker transportation and offshore injection through a 3000-meter vertical pipe provides the best method for delivering liquid CO{sub 2} to deep ocean floor depressions. For shorter distances, CO{sub 2} delivery by parallel-laid, subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines and tankers were 1.5 and 1.4 dollars per ton of stored CO{sub 2}, respectively. At these prices, economics of ocean disposal are highly favorable. Future work should focus on addressing technical issues that are critical to the deployment of a large-scale CO{sub 2} transportation and disposal system. Pipe corrosion, structural design of the transport pipe, and dispersion characteristics of sinking CO{sub 2} effluent plumes have been identified as areas that require further attention. Our planned activities in the next Phase include laboratory-scale corrosion testing, structural analysis of the pipeline, analytical and experimental simulations of CO{sub 2} discharge and dispersion, and the conceptual economic and engineering evaluation of large-scale implementation.

  6. The Large-scale Component of Mantle Convection

    Science.gov (United States)

    Cserepes, L.

    Circulation in the Earth's mantle occurs on multiple spatial scales: this review dis- cusses the character of its large-scale or global components. Direct and strong evi- dence concerning the global flow comes, first of all, from the pattern of plate motion. Further indirect observational data which can be transformed into flow velocities by the equation of motion are the internal density heterogeneities revealed by seismic to- mography, and the geoid can also be used as an observational constraint. Due to their limited spatial resolution, global tomographic data automatically filter out the small- scale features and are therefore relevant to the global flow pattern. Flow solutions obtained from tomographic models, using the plate motion as boundary condition, re- veal that subduction is the downwelling of the global mantle circulation and that the deep-rooted upwellings are concentrated in 2-3 superplumes. Spectral analysis of the tomographic heterogeneities shows that the power of global flow appears dominantly in the lowest spherical harmonic orders 2-5. Theoretical convection calculations con- tribute substantially to the understanding of global flow. If basal heating of the mantle is significant, numerical models can reproduce the basic 2 to 5 cell pattern of con- vection even without the inclusion of surface plates. If plates are superimposed on the solution with their present arrangement and motion, the dominance of these low spherical harmonic orders is more pronounced. The cells are not necessarily closed, rather they show chaotic time-dependence, but they are normally bordered by long downwelling features, and they have usually a single superplume in the cell interior. Swarms of small plumes can develop in the large cells, especially when convection is partially layered due to an internal boundary such as the 670 km discontinuity (source of small plumes). These small plumes are usually tilted by the background large-scale flow which shows that they are

  7. Very large-scale motions in a turbulent pipe flow

    Science.gov (United States)

    Lee, Jae Hwa; Jang, Seong Jae; Sung, Hyung Jin

    2011-11-01

    Direct numerical simulation of a turbulent pipe flow with ReD=35000 was performed to investigate the spatially coherent structures associated with very large-scale motions. The corresponding friction Reynolds number, based on pipe radius R, is R+=934, and the computational domain length is 30 R. The computed mean flow statistics agree well with previous DNS data at ReD=44000 and 24000. Inspection of the instantaneous fields and two-point correlation of the streamwise velocity fluctuations showed that the very long meandering motions exceeding 25R exist in logarithmic and wake regions, and the streamwise length scale is almost linearly increased up to y/R ~0.3, while the structures in the turbulent boundary layer only reach up to the edge of the log-layer. Time-resolved instantaneous fields revealed that the hairpin packet-like structures grow with continuous stretching along the streamwise direction and create the very large-scale structures with meandering in the spanwise direction, consistent with the previous conceptual model of Kim & Adrian (1999). This work was supported by the Creative Research Initiatives of NRF/MEST of Korea (No. 2011-0000423).

  8. Large scale environments of z<0.4 active galaxies

    CERN Document Server

    Lietzen, H; Nurmi, P; Liivamägi, L J; Saar, E; Tago, E; Takalo, L O; Einasto, M

    2011-01-01

    Properties of galaxies depend on their large-scale environment. As the influence of active galactic nuclei (AGN) in galaxy evolution is becoming more evident, their large scale environments may help us understand the evolutionary processes leading to activity. The effect of activity can be seen particularly by showing if different types of active galaxies are formed by similar mechanisms. Our aim is to study the supercluster-scale environments of active galaxies up to redshift 0.4. Our data includes quasars, BL Lac objects, Seyfert and radio galaxies. We use a three-dimensional low-resolution luminosity-density field constructed of a sample of luminous red galaxies in the seventh data release of the Sloan Digital Sky Survey. We calculate the average density of this field in a volume of a 3\\,$h^{-1}$Mpc sphere around each AGN for estimating the environmental density levels of different types of AGN. This analysis gives us the distribution of AGN in the global environment of superclusters, filaments, and voids....

  9. Using Large Scale Structure to test Multifield Inflation

    CERN Document Server

    Ferraro, Simone

    2014-01-01

    Primordial non-Gaussianity of local type is known to produce a scale-dependent contribution to the galaxy bias. Several classes of multi-field inflationary models predict non-Gaussian bias which is stochastic, in the sense that dark matter and halos don't trace each other perfectly on large scales. In this work, we forecast the ability of next-generation Large Scale Structure surveys to constrain common types of primordial non-Gaussianity like $f_{NL}$, $g_{NL}$ and $\\tau_{NL}$ using halo bias, including stochastic contributions. We provide fitting functions for statistical errors on these parameters which can be used for rapid forecasting or survey optimization. A next-generation survey with volume $V = 25 h^{-3}$Mpc$^3$, median redshift $z = 0.7$ and mean bias $b_g = 2.5$, can achieve $\\sigma(f_{NL}) = 6$, $\\sigma(g_{NL}) = 10^5$ and $\\sigma(\\tau_{NL}) = 10^3$ if no mass information is available. If halo masses are available, we show that optimally weighting the halo field in order to reduce sample variance...

  10. Large scale petroleum reservoir simulation and parallel preconditioning algorithms research

    Institute of Scientific and Technical Information of China (English)

    SUN Jiachang; CAO Jianwen

    2004-01-01

    Solving large scale linear systems efficiently plays an important role in a petroleum reservoir simulator, and the key part is how to choose an effective parallel preconditioner. Properly choosing a good preconditioner has been beyond the pure algebraic field. An integrated preconditioner should include such components as physical background, characteristics of PDE mathematical model, nonlinear solving method, linear solving algorithm, domain decomposition and parallel computation. We first discuss some parallel preconditioning techniques, and then construct an integrated preconditioner, which is based on large scale distributed parallel processing, and reservoir simulation-oriented. The infrastructure of this preconditioner contains such famous preconditioning construction techniques as coarse grid correction, constraint residual correction and subspace projection correction. We essentially use multi-step means to integrate totally eight types of preconditioning components in order to give out the final preconditioner. Million-grid cell scale industrial reservoir data were tested on native high performance computers. Numerical statistics and analyses show that this preconditioner achieves satisfying parallel efficiency and acceleration effect.

  11. Systematic renormalization of the effective theory of Large Scale Structure

    Science.gov (United States)

    Akbar Abolhasani, Ali; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-05-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  12. Large scale PV plants - also in Denmark. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P. (PA Energy, Malling (Denmark)); Vedde, J. (SiCon. Silicon and PV consulting, Birkeroed (Denmark))

    2011-04-15

    Large scale PV (LPV) plants, plants with a capacity of more than 200 kW, has since 2007 constituted an increasing share of the global PV installations. In 2009 large scale PV plants with cumulative power more that 1,3 GWp were connected to the grid. The necessary design data for LPV plants in Denmark are available or can be found, although irradiance data could be improved. There seems to be very few institutional barriers for LPV projects, but as so far no real LPV projects have been processed, these findings have to be regarded as preliminary. The fast growing number of very large scale solar thermal plants for district heating applications supports these findings. It has further been investigated, how to optimize the lay-out of LPV plants. Under the Danish irradiance conditions with several winter months with very low solar height PV installations on flat surfaces will have to balance the requirements of physical space - and cost, and the loss of electricity production due to shadowing effects. The potential for LPV plants in Denmark are found in three main categories: PV installations on flat roof of large commercial buildings, PV installations on other large scale infrastructure such as noise barriers and ground mounted PV installations. The technical potential for all three categories is found to be significant and in the range of 50 - 250 km2. In terms of energy harvest PV plants will under Danish conditions exhibit an overall efficiency of about 10 % in conversion of the energy content of the light compared to about 0,3 % for biomass. The theoretical ground area needed to produce the present annual electricity consumption of Denmark at 33-35 TWh is about 300 km2 The Danish grid codes and the electricity safety regulations mention very little about PV and nothing about LPV plants. It is expected that LPV plants will be treated similarly to big wind turbines. A number of LPV plant scenarios have been investigated in detail based on real commercial offers and

  13. Large-scale quantum photonic circuits in silicon

    Science.gov (United States)

    Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk

    2016-08-01

    Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards

  14. Summarizing Large-Scale Database Schema Using Community Detection

    Institute of Scientific and Technical Information of China (English)

    Xue Wang; Xuan Zhou; Shan Wang

    2012-01-01

    Schema summarization on large-scale databases is a challenge.In a typical large database schema,a great proportion of the tables are closely connected through a few high degree tables.It is thus difficult to separate these tables into clusters that represent different topics.Moreover,as a schema can be very big,the schema summary needs to be structured into multiple levels,to further improve the usability.In this paper,we introduce a new schema summarization approach utilizing the techniques of community detection in social networks.Our approach contains three steps.First,we use a community detection algorithm to divide a database schema into subject groups,each representing a specific subject.Second,we cluster the subject groups into abstract domains to form a multi-level navigation structure.Third,we discover representative tables in each cluster to label the schema summary.We evaluate our approach on Freebase,a real world large-scale database.The results show that our approach can identify subject groups precisely.The generated abstract schema layers are very helpful for users to explore database.

  15. Extending large-scale forest inventories to assess urban forests.

    Science.gov (United States)

    Corona, Piermaria; Agrimi, Mariagrazia; Baffetta, Federica; Barbati, Anna; Chiriacò, Maria Vincenza; Fattorini, Lorenzo; Pompei, Enrico; Valentini, Riccardo; Mattioli, Walter

    2012-03-01

    Urban areas are continuously expanding today, extending their influence on an increasingly large proportion of woods and trees located in or nearby urban and urbanizing areas, the so-called urban forests. Although these forests have the potential for significantly improving the quality the urban environment and the well-being of the urban population, data to quantify the extent and characteristics of urban forests are still lacking or fragmentary on a large scale. In this regard, an expansion of the domain of multipurpose forest inventories like National Forest Inventories (NFIs) towards urban forests would be required. To this end, it would be convenient to exploit the same sampling scheme applied in NFIs to assess the basic features of urban forests. This paper considers approximately unbiased estimators of abundance and coverage of urban forests, together with estimators of the corresponding variances, which can be achieved from the first phase of most large-scale forest inventories. A simulation study is carried out in order to check the performance of the considered estimators under various situations involving the spatial distribution of the urban forests over the study area. An application is worked out on the data from the Italian NFI.

  16. Large-Scale Mass Distribution in the Illustris-Simulation

    CERN Document Server

    Haider, Markus; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Torrey, Paul; Hernquist, Lars

    2015-01-01

    Observations at low redshifts thus far fail to account for all of the baryons expected in the Universe according to cosmological constraints. A large fraction of the baryons presumably resides in a thin and warm-hot medium between the galaxies, where they are difficult to observe due to their low densities and high temperatures. Cosmological simulations of structure formation can be used to verify this picture and provide quantitative predictions for the distribution of mass in different large-scale structure components. Here we study the distribution of baryons and dark matter at different epochs using data from the Illustris Simulation. We identify regions of different dark matter density with the primary constituents of large-scale structure, allowing us to measure mass and volume of haloes, filaments and voids. At redshift zero, we find that 49 % of the dark matter and 23 % of the baryons are within haloes. The filaments of the cosmic web host a further 45 % of the dark matter and 46 % of the baryons. The...

  17. Large-scale direct shear testing of geocell reinforced soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height).Three types of specimens,silty gravel soil,geoceli reinforced silty gravel soil and geoceli reinforood cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior,the shear strength and the strengthening mechanism of geocell reinforced soils.The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well.The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement.The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa.The tests with the reinforcement of geocell result in an increase of 244% in cohesion,and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil.The friction angle does not change markedly.The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.

  18. Large-Angular Scales CMB Anisotropy from Excited Initial Mode

    CERN Document Server

    Sojasi, A; Yusofi, E

    2015-01-01

    According to the inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of the new physics hypothesis. Initial state of quantum fluctuations is one of the important options at high energy scale, which can affect on the observables such as CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. Indeed, considering the recent Planck constraint on spectral index, motivated us to examine the effect of new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy in large-angular scales. In so doing, it was revealed that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit $ \\ell<200 $ the tiny deviation is appeared. Also, it was shown that the power spectrum of CMB anisotropy is dependent on the slow-roll parameter $\\epsilon $.

  19. Punishment sustains large-scale cooperation in prestate warfare.

    Science.gov (United States)

    Mathew, Sarah; Boyd, Robert

    2011-07-12

    Understanding cooperation and punishment in small-scale societies is crucial for explaining the origins of human cooperation. We studied warfare among the Turkana, a politically uncentralized, egalitarian, nomadic pastoral society in East Africa. Based on a representative sample of 88 recent raids, we show that the Turkana sustain costly cooperation in combat at a remarkably large scale, at least in part, through punishment of free-riders. Raiding parties comprised several hundred warriors and participants are not kin or day-to-day interactants. Warriors incur substantial risk of death and produce collective benefits. Cowardice and desertions occur, and are punished by community-imposed sanctions, including collective corporal punishment and fines. Furthermore, Turkana norms governing warfare benefit the ethnolinguistic group, a population of a half-million people, at the expense of smaller social groupings. These results challenge current views that punishment is unimportant in small-scale societies and that human cooperation evolved in small groups of kin and familiar individuals. Instead, these results suggest that cooperation at the larger scale of ethnolinguistic units enforced by third-party sanctions could have a deep evolutionary history in the human species. PMID:21670285

  20. MHD simulations of small and large scale dynamos

    CERN Document Server

    Brandenburg, A; Dobler, W

    2003-01-01

    Isotropic homogeneous hydromagnetic turbulence is studied using numerical simulations at resolutions of up to 1024^3 meshpoints. It is argued that, in contrast to the kinematic regime, the nonlinear regime is characterized by a spectral magnetic power that is decreasing with increasing wavenumber, regardless of whether or not the turbulence has helicity. This means that the root-mean-square field strength converges to a limiting value at large magnetic Reynolds numbers. The total (magnetic and kinetic) energy spectrum tends to be somewhat shallower than k^{-5/3}, in agreement with the findings of other groups. In the presence of helicity, an inverse cascade develops, provided the scale separation between the size of the computational box and the scale of the energy carrying eddies exceeds a ratio of at least two. Finally, the constraints imposed by magnetic helicity conservation on mean-field theory are reviewed and new results of simulations are presented.

  1. Large scale protein separations: engineering aspects of chromatography.

    Science.gov (United States)

    Chisti, Y; Moo-Young, M

    1990-01-01

    The engineering considerations common to large scale chromatographic purification of proteins are reviewed. A discussion of the industrial chromatography fundamentals is followed by aspects which affect the scale of separation. The separation column geometry, the effect of the main operational parameters on separation performance, and the physical characteristics of column packing are treated. Throughout, the emphasis is on ion exchange and size exclusion techniques which together constitute the major portion of commercial chromatographic protein purifications. In all cases, the state of current technology is examined and areas in need of further development are noted. The physico-chemical advances now underway in chromatographic separation of biopolymers would ensure a substantially enhanced role for these techniques in industrial production of products of new biotechnology.

  2. Cosmic Ray Acceleration during Large Scale Structure Formation

    CERN Document Server

    Blasi, P

    2004-01-01

    Clusters of galaxies are storage rooms of cosmic rays. They confine the hadronic component of cosmic rays over cosmological time scales due to diffusion, and the electron component due to energy losses. Hadronic cosmic rays can be accelerated during the process of structure formation, because of the supersonic motion of gas in the potential wells created by dark matter. At the shock waves that result from this motion, charged particles can be energized through the first order Fermi process. After discussing the most important evidences for non-thermal phenomena in large scale structures, we describe in some detail the main issues related to the acceleration of particles at these shock waves, emphasizing the possible role of the dynamical backreaction of the accelerated particles on the plasmas involved.

  3. SOLVING TRUST REGION PROBLEM IN LARGE SCALE OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    Bing-sheng He

    2000-01-01

    This paper presents a new method for solving the basic problem in the “model trust region” approach to large scale minimization: Compute a vector x such that 1/2xTHx + cTx = min, subject to the constraint ‖x‖2≤a. The method is a combination of the CG method and a projection and contraction (PC) method. The first (CG) method with x0 = 0 as the start point either directly offers a solution of the problem, or--as soon as the norm of the iterate greater than a, --it gives a suitable starting point and a favourable choice of a crucial scaling parameter in the second (PC) method. Some numerical examples are given, which indicate that the method is applicable.

  4. The large-scale properties of simulated cosmic magnetic fields

    CERN Document Server

    Marinacci, Federico; Mocz, Philip; Pakmor, Ruediger

    2015-01-01

    We perform uniformly sampled large-scale cosmological simulations including magnetic fields with the moving mesh code AREPO. We run two sets of MHD simulations: one including adiabatic gas physics only; the other featuring the fiducial feedback model of the Illustris simulation. In the adiabatic case, the magnetic field amplification follows the $B \\propto \\rho^{2/3}$ scaling derived from `flux-freezing' arguments, with the seed field strength providing an overall normalisation factor. At high baryon overdensities the amplification is enhanced by shear flows and turbulence. Feedback physics and the inclusion of radiative cooling change this picture dramatically. Gas collapses to much larger densities and the magnetic field is amplified strongly, reaching saturation and losing memory of the initial seed field. At lower densities a dependence on the seed field strength and orientation, which in principle can be used to constrain models of cosmological magnetogenesis, is still present. Inside the most massive ha...

  5. Dynamic Modeling, Optimization, and Advanced Control for Large Scale Biorefineries

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail

    of the L1 adaptive output feedback controller [10] are developed: one for biomass pretreatment temperature [11] and another one for pH in enzymatic hydrolysis [12]. Biomass conversion is highly sensitive to these process parameters, which exhibit nonlinear behavior and can change nominal values...... years PhD project that was run by Technical University of Denmark (DTU) in collaboration with the largest Danish energy company DONG Energy A/S between 2012 and 2015. The company owns a demonstration scale second generation biorefinery in Kalundborg, Denmark, also known as the Inbicon demonstration...... plant [3]. The goal of the project is to utilize realtime data extracted from the large scale facility to formulate and validate first principle dynamic models of the plant. These models are then further exploited to derive model-based tools for process optimization, advanced control and real...

  6. Forced vibration test of the Hualien large scale SSI model

    International Nuclear Information System (INIS)

    A Large-Scale Seismic Test (LSST) Program has been conducted at Hualien, Taiwan (Tang et al., 1991), to obtain earthquake-induced soil-structure interaction (SSI) data in a stiff soil site environment The Hualien program is a follow on of the Lotung program which is of soft soil site. Forced vibration tests of the Hualien 1/4-scale containment SSI test model were conducted in October, 1992 before backfill (without embedment) and in February, 1993 after backfill (with embedment) for the purpose of defining basic dynamic characteristics of the soil-structure system. Two horizontal directions excitation (NS, EW) are applied on the roof floor and on the basemat. Vertical excitation is applied on the basemat only. This paper describes the results of the forced vibration tests of the model without embedment. (author)

  7. Large-scale asymmetric synthesis of a cathepsin S inhibitor.

    Science.gov (United States)

    Lorenz, Jon C; Busacca, Carl A; Feng, XuWu; Grinberg, Nelu; Haddad, Nizar; Johnson, Joe; Kapadia, Suresh; Lee, Heewon; Saha, Anjan; Sarvestani, Max; Spinelli, Earl M; Varsolona, Rich; Wei, Xudong; Zeng, Xingzhong; Senanayake, Chris H

    2010-02-19

    A potent reversible inhibitor of the cysteine protease cathepsin-S was prepared on large scale using a convergent synthetic route, free of chromatography and cryogenics. Late-stage peptide coupling of a chiral urea acid fragment with a functionalized aminonitrile was employed to prepare the target, using 2-hydroxypyridine as a robust, nonexplosive replacement for HOBT. The two key intermediates were prepared using a modified Strecker reaction for the aminonitrile and a phosphonation-olefination-rhodium-catalyzed asymmetric hydrogenation sequence for the urea. A palladium-catalyzed vinyl transfer coupled with a Claisen reaction was used to produce the aldehyde required for the side chain. Key scale up issues, safety calorimetry, and optimization of all steps for multikilogram production are discussed. PMID:20102230

  8. Testing statistical significance of large quasar groups with sheets model of large scale structure

    CERN Document Server

    Pilipenko, Sergey

    2013-01-01

    We argue that the largest group of quasars (LQG) U1.27 discovered by Clowes et al. (2013), in the SDSS DR7 catalogue does not contradict the hypothesis of Poisson distribution of quasars. We found that random catalogues with the same shape and number of QSOs as the real sample may contain groups which resemble U1.27. By simulating quasar catalogues with embedded model of the large scale structure we also found that the size of LQGs selected by MST and similar methods does not correspond to the scale of homogeneity of the Universe and can be explained by the percolation process.

  9. Statistical Modeling of Large-Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi-Rad, T; Baldwin, C; Abdulla, G; Critchlow, T

    2003-11-15

    With the advent of massively parallel computer systems, scientists are now able to simulate complex phenomena (e.g., explosions of a stars). Such scientific simulations typically generate large-scale data sets over the spatio-temporal space. Unfortunately, the sheer sizes of the generated data sets make efficient exploration of them impossible. Constructing queriable statistical models is an essential step in helping scientists glean new insight from their computer simulations. We define queriable statistical models to be descriptive statistics that (1) summarize and describe the data within a user-defined modeling error, and (2) are able to answer complex range-based queries over the spatiotemporal dimensions. In this chapter, we describe systems that build queriable statistical models for large-scale scientific simulation data sets. In particular, we present our Ad-hoc Queries for Simulation (AQSim) infrastructure, which reduces the data storage requirements and query access times by (1) creating and storing queriable statistical models of the data at multiple resolutions, and (2) evaluating queries on these models of the data instead of the entire data set. Within AQSim, we focus on three simple but effective statistical modeling techniques. AQSim's first modeling technique (called univariate mean modeler) computes the ''true'' (unbiased) mean of systematic partitions of the data. AQSim's second statistical modeling technique (called univariate goodness-of-fit modeler) uses the Andersen-Darling goodness-of-fit method on systematic partitions of the data. Finally, AQSim's third statistical modeling technique (called multivariate clusterer) utilizes the cosine similarity measure to cluster the data into similar groups. Our experimental evaluations on several scientific simulation data sets illustrate the value of using these statistical models on large-scale simulation data sets.

  10. On the Phenomenology of an Accelerated Large-Scale Universe

    Directory of Open Access Journals (Sweden)

    Martiros Khurshudyan

    2016-10-01

    Full Text Available In this review paper, several new results towards the explanation of the accelerated expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated expansion of is one of the long standing problems in modern cosmology, and physics in general. There are several well defined approaches to solve this problem. One of them is an assumption concerning the existence of dark energy in recent universe. It is believed that dark energy is responsible for antigravity, while dark matter has gravitational nature and is responsible, in general, for structure formation. A different approach is an appropriate modification of general relativity including, for instance, f ( R and f ( T theories of gravity. On the other hand, attempts to build theories of quantum gravity and assumptions about existence of extra dimensions, possible variability of the gravitational constant and the speed of the light (among others, provide interesting modifications of general relativity applicable to problems of modern cosmology, too. In particular, here two groups of cosmological models are discussed. In the first group the problem of the accelerated expansion of large-scale universe is discussed involving a new idea, named the varying ghost dark energy. On the other hand, the second group contains cosmological models addressed to the same problem involving either new parameterizations of the equation of state parameter of dark energy (like varying polytropic gas, or nonlinear interactions between dark energy and dark matter. Moreover, for cosmological models involving varying ghost dark energy, massless particle creation in appropriate radiation dominated universe (when the background dynamics is due to general relativity is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale universe involving generalized

  11. High Fidelity Simulations of Large-Scale Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Onunkwo, Uzoma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benz, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  12. Enabling Large-Scale Biomedical Analysis in the Cloud

    Directory of Open Access Journals (Sweden)

    Ying-Chih Lin

    2013-01-01

    Full Text Available Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable.

  13. Scale invariant behavior in a large N matrix model

    Science.gov (United States)

    Narayanan, Rajamani; Neuberger, Herbert

    2016-01-01

    Eigenvalue distributions of properly regularized Wilson-loop operators are used to study the transition from UV behavior to IR behavior in gauge theories coupled to matter that potentially have an IR fixed point. We numerically demonstrate the emergence of scale invariance in a matrix model that describes S U (N ) gauge theory coupled to two flavors of massless adjoint fermions in the large N limit. The eigenvalue distribution of Wilson loops of varying sizes cannot be described by a universal lattice beta function connecting the UV to the IR.

  14. Hijacking Bitcoin: Large-scale Network Attacks on Cryptocurrencies

    OpenAIRE

    Apostolaki, Maria; Zohar, Aviv; Vanbever, Laurent

    2016-01-01

    Bitcoin is without a doubt the most successful cryptocurrency in circulation today, making it an extremely valuable target for attackers. Indeed, many studies have highlighted ways to compromise one or several Bitcoin nodes. In this paper, we take a different perspective and study the effect of large-scale network-level attacks such as the ones that may be launched by Autonomous Systems (ASes). We show that attacks that are commonly believed to be hard, such as isolating 50% of the mining pow...

  15. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  16. Practical Optimal Control of Large-scale Water Distribution Network

    Institute of Scientific and Technical Information of China (English)

    Lv Mou(吕谋); Song Shuang

    2004-01-01

    According to the network characteristics and actual state of the water supply system in China, the implicit model, which can be solved by the hierarchical optimization method, was established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software has been developed successfully. The application of this model to the city of Hangzhou (China) was compared to experiential strategy. The results of this study showed that the developed model is a promising optimization method to control the large-scale water supply systems.

  17. Large scale obscuration and related climate effects open literature bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  18. Application of methanol synthesis reactor to large-scale plants

    Institute of Scientific and Technical Information of China (English)

    LOU Ren; XU Rong-liang; LOU Shou-lin

    2006-01-01

    The developing status of world large-scale methanol production technology is analyzed and Linda's JW low-pressure methanol synthesis reactor with uniform temperature is described. JW serial reactors have been successfully introduced in and applied in Harbin Gasification Plant and the productivity has been increased by 50% and now nine sets of equipments are successfully running in Harbin Gasification Plant,Jiangsu Xinya, Shandong Kenli,Henan Zhongyuan, Handan Xinyangguang,' Shanxi Weihua and Inner Mongolia Tianye. Now it has manufacturing the reactors of 300,000 t/a for Liaoning Dahua. Some solutions for the structure problems of 1000 ~5000 t/d methanol synthesis rectors are put forward.

  19. An Atmospheric Large-Scale Cold Plasma Jet

    Institute of Scientific and Technical Information of China (English)

    吕晓桂; 任春生; 马腾才; 冯岩; 王德真

    2012-01-01

    This letter reports on the generation and characteristics of a large-scale dielectric barrier discharge plasma jet at atmospheric pressure. With appropriate parameters, diffuse plasma with a 50×5 mm2 cross-sectional area is obtained. The characteristics of the discharges are diag- nosed by using electrical and optical methods. In addition to being generated in helium, plasma is also generated in a mixed gas of helium and oxygen. The oxygen atomic radiant intensity (3p5P→ 3s5S, 3p3P→3s3S transition) is not proportional to the proportion of oxygen in the gas mixture, as shown by the experimental results.

  20. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred

    2010-08-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one billion elements. We investigate communication protocols for the GPU cluster to compensate for the slow Gigabit Ethernet network between the GPU compute nodes and to maintain overall efficiency. A diesel engine intake-port and a nozzle, meshed in different resolutions, give good real world examples for the scalability tests on the GPU cluster. © 2010 IEEE.

  1. Large scale solar cooling plants in America, Asia and Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holter, Christian; Olsacher, Nicole [S.O.L.I.D. GmbH, Graz (Austria)

    2010-07-01

    Large scale solar cooling plants with an area between 120 - 1600 m{sup 2} are representative examples to illustrate S.O.L.I.D.'s experiences. The selected three reference solar cooling plants are located on three different continents: America, Asia and Europe. Every region has different framework conditions and its unforeseen challenges but professional experience and innovative ideas form the basis that each plant is operating well and satisfying the customer's demand. This verifies that solar cooling already is a proven technology. (orig.)

  2. ROSA-IV large scale test facility (LSTF) system description

    International Nuclear Information System (INIS)

    The ROSA-IV Program's large scale test facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during a small break loss-of-coolant accident (LOCA) or an operational transient. This document provides the necessary background information to interpret the experimental data obtained from the LSTF experiments. The information provided includes LSTF test objectives and approach, the LSTF design philosopy, the component and geometry description, the instrumentation and data acquisition system description, and the outline of experiments to be performed. (author)

  3. Large-Scale Environmental Effects of the Cluster Distribution

    CERN Document Server

    Plionis, M

    2001-01-01

    Using the APM cluster distribution we find interesting alignment effects: (1) Cluster substructure is strongly correlated with the tendency of clusters to be aligned with their nearest neighbour and in general with the nearby clusters that belong to the same supercluster, (2) Clusters belonging in superclusters show a statistical significant tendency to be aligned with the major axis orientation of their parent supercluster. Furthermore we find that dynamically young clusters are more clustered than the overall cluster population. These are strong indications that cluster develop in a hierarchical fashion by merging along the large-scale filamentary superclusters within which they are embedded.

  4. Large-Scale Self-Consistent Nuclear Mass Calculations

    CERN Document Server

    Stoitsov, M V; Dobaczewski, J; Nazarewicz, W

    2006-01-01

    The program of systematic large-scale self-consistent nuclear mass calculations that is based on the nuclear density functional theory represents a rich scientific agenda that is closely aligned with the main research directions in modern nuclear structure and astrophysics, especially the radioactive nuclear beam physics. The quest for the microscopic understanding of the phenomenon of nuclear binding represents, in fact, a number of fundamental and crucial questions of the quantum many-body problem, including the proper treatment of correlations and dynamics in the presence of symmetry breaking. Recent advances and open problems in the field of nuclear mass calculations are presented and discussed.

  5. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  6. Solar cycle changes of large-scale solar wind structure

    OpenAIRE

    Manoharan, P. K

    2011-01-01

    In this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985 - 2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the sour...

  7. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    Science.gov (United States)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  8. Petascale computations for Large-scale Atomic and Molecular collisions

    CERN Document Server

    McLaughlin, Brendan M

    2014-01-01

    Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schroedinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. Various examples are shown of our theoretical results compared with those obtained from Synchrotron Radiation facilities and from Satellite observations. We also indicate future directions and implementation of the R-matrix codes on emerging GPU architectures.

  9. Search for Large Scale Anisotropies with the Pierre Auger Observatory

    Science.gov (United States)

    Bonino, R.; Pierre Auger Collaboration

    The Pierre Auger Observatory studies the nature and the origin of Ultra High Energy Cosmic Rays (>3\\cdot1018 eV). Completed at the end of 2008, it has been continuously operating for more than six years. Using data collected from 1 January 2004 until 31 March 2009, we search for large scale anisotropies with two complementary analyses in different energy windows. No significant anisotropies are observed, resulting in bounds on the first harmonic amplitude at the 1% level at EeV energies.

  10. Simple Method for Large-Scale Fabrication of Plasmonic Structures

    CERN Document Server

    Makarov, Sergey V; Mukhin, Ivan S; Shishkin, Ivan I; Mozharov, Alexey M; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01

    A novel method for single-step, lithography-free, and large-scale laser writing of nanoparticle-based plasmonic structures has been developed. Changing energy of femtosecond laser pulses and thickness of irradiated gold film it is possible to vary diameter of the gold nanoparticles, while the distance between them can be varied by laser scanning parameters. This method has an advantage over the most previously demonstrated methods in its simplicity and versatility, while the quality of the structures is good enough for many applications. In particular, resonant light absorbtion/scattering and surface-enhanced Raman scattering have been demonstrated on the fabricated nanostructures.

  11. Large scale obscuration and related climate effects open literature bibliography

    International Nuclear Information System (INIS)

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ''Nuclear Winter Controversy'' in the early 1980's. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest

  12. Testing Dark Energy Models through Large Scale Structure

    CERN Document Server

    Avsajanishvili, Olga; Arkhipova, Natalia A; Kahniashvili, Tina

    2015-01-01

    We explore the scalar field quintessence freezing model of dark energy with the inverse Ratra-Peebles potential. We study the cosmic expansion and the large scale structure growth rate. We use recent measurements of the growth rate and the baryon acoustic oscillation peak positions to constrain the matter density $\\Omega_\\mathrm{m}$ parameter and the model parameter $\\alpha$ that describes the steepness of the scalar field potential. We solve jointly the equations for the background expansion and for the growth rate of matter perturbations. The obtained theoretical results are compared with the observational data. We perform the Baysian data analysis to derive constraints on the model parameters.

  13. Quantum computation for large-scale image classification

    Science.gov (United States)

    Ruan, Yue; Chen, Hanwu; Tan, Jianing; Li, Xi

    2016-10-01

    Due to the lack of an effective quantum feature extraction method, there is currently no effective way to perform quantum image classification or recognition. In this paper, for the first time, a global quantum feature extraction method based on Schmidt decomposition is proposed. A revised quantum learning algorithm is also proposed that will classify images by computing the Hamming distance of these features. From the experimental results derived from the benchmark database Caltech 101, and an analysis of the algorithm, an effective approach to large-scale image classification is derived and proposed against the background of big data.

  14. Large-Scale Purification of Peroxisomes for Preparative Applications.

    Science.gov (United States)

    Cramer, Jana; Effelsberg, Daniel; Girzalsky, Wolfgang; Erdmann, Ralf

    2015-09-01

    This protocol is designed for large-scale isolation of highly purified peroxisomes from Saccharomyces cerevisiae using two consecutive density gradient centrifugations. Instructions are provided for harvesting up to 60 g of oleic acid-induced yeast cells for the preparation of spheroplasts and generation of organellar pellets (OPs) enriched in peroxisomes and mitochondria. The OPs are loaded onto eight continuous 36%-68% (w/v) sucrose gradients. After centrifugation, the peak peroxisomal fractions are determined by measurement of catalase activity. These fractions are subsequently pooled and subjected to a second density gradient centrifugation using 20%-40% (w/v) Nycodenz. PMID:26330621

  15. Scale invariant behavior in a large N matrix model

    CERN Document Server

    Narayanan, Rajamani

    2016-01-01

    Eigenvalue distributions of properly regularized Wilson loop operators are used to study the transition from ultra-violet (UV) behavior to infra-red (IR) behavior in gauge theories coupled to matter that potentially have an IR fixed point (FP). We numerically demonstrate emergence of scale invariance in a matrix model that describes $SU(N)$ gauge theory coupled to two flavors of massless adjoint fermions in the large $N$ limit. The eigenvalue distribution of Wilson loops of varying sizes cannot be described by a universal lattice beta-function connecting the UV to the IR.

  16. Controlled growth of large-scale silver nanowires

    Institute of Scientific and Technical Information of China (English)

    Xiao Cong-Wen; Yang Hai-Tao; Shen Cheng-Min; Li Zi-An; Zhang Huai-Ruo; Liu Fei; Yang Tian-Zhong; Chen Shu-Tang; Gao Hong-Jun

    2005-01-01

    Large-scale silver nanowires with controlled aspect ratio were synthesized via reducing silver nitrate with 1, 2-propanediol in the presence of poly (vinyl pyrrolidone) (PVP). Scanning electron microscopy, transmission electron microscopy and x-ray powder diffraction were employed to characterize these silver nanowires. The diameter of the silver nanowires can be readily controlled in the range of 100 to 400 nm by varying the experimental conditions. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy results show that there exists no chemical bond between the silver and the nitrogen atoms. The interaction between PVP and silver nanowires is mainly through the oxygen atom in the carbonyl group.

  17. Large-Scale Spray Releases: Additional Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  18. Large-scale structure non-Gaussianities with modal methods

    Science.gov (United States)

    Schmittfull, Marcel

    2016-10-01

    Relying on a separable modal expansion of the bispectrum, the implementation of a fast estimator for the full bispectrum of a 3d particle distribution is presented. The computational cost of accurate bispectrum estimation is negligible relative to simulation evolution, so the bispectrum can be used as a standard diagnostic whenever the power spectrum is evaluated. As an application, the time evolution of gravitational and primordial dark matter bispectra was measured in a large suite of N-body simulations. The bispectrum shape changes characteristically when the cosmic web becomes dominated by filaments and halos, therefore providing a quantitative probe of 3d structure formation. Our measured bispectra are determined by ~ 50 coefficients, which can be used as fitting formulae in the nonlinear regime and for non-Gaussian initial conditions. We also compare the measured bispectra with predictions from the Effective Field Theory of Large Scale Structures (EFTofLSS).

  19. Planck intermediate results. XLII. Large-scale Galactic magnetic fields

    CERN Document Server

    Adam, R; Alves, M I R; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Couchot, F; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dolag, K; Doré, O; Ducout, A; Dupac, X; Elsner, F; Enßlin, T A; Eriksen, H K; Ferrière, K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; Gjerløw, E; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Harrison, D L; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hobson, M; Hornstrup, A; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leahy, J P; Leonardi, R; Levrier, F; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Masi, S; Melchiorri, A; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Nørgaard-Nielsen, H U; Oppermann, N; Orlando, E; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Scott, D; Spencer, L D; Stolyarov, V; Stompor, R; Strong, A W; Sudiwala, R; Sunyaev, R; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature were largely constrained by synchrotron emission and Faraday rotation measures. We select three different but representative models and compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties. We then compare the resulting simulated emission to the observed dust emission and find that the dust predictions do not match the morphology in the Planck data, particularly the vertical profile in latitude. We show how the dust data can then be used to further improve these magnetic field models, particu...

  20. Planning under uncertainty solving large-scale stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  1. On the superposition of heterogeneous traffic at large time scales

    Directory of Open Access Journals (Sweden)

    Sidney I. Resnick

    2011-01-01

    Full Text Available Various empirical and theoretical studies indicate that cumulative network traffic is a Gaussian process. However, depending on whether the intensity at which sessions are initiated is large or small relative to the session duration tail, [25] and [15] have shown that traffic at large time scales can be approximated by either fractional Brownian motion (fBm or stable Lévy motion. We study distributional properties of cumulative traffic that consists of a finite number of independent streams and give an explanation of why Gaussian examples abound in practice but not stable Lévy motion. We offer an explanation of how much vertical aggregation is needed for the Gaussian approximation to hold. Our results are expressed as limit theorems for a sequence of cumulative traffic processes whose session initiation intensities satisfy growth rates similar to those used in [25].

  2. Morphological fluctuations of large-scale structure the PSCz survey

    CERN Document Server

    Kerscher, M; Schmalzing, J; Beisbart, C; Buchert, T; Wagner, H

    2001-01-01

    In a follow-up study to a previous analysis of the IRAS 1.2Jy catalogue, we quantify the morphological fluctuations in the PSCz survey. We use a variety of measures, among them the family of scalar Minkowski functionals. We confirm the existence of significant fluctuations that are discernible in volume-limited samples out to 200Mpc/h. In contrast to earlier findings, comparisons with cosmological N-body simulations reveal that the observed fluctuations roughly agree with the cosmic variance found in corresponding mock samples. While two-point measures, e.g. the variance of count-in-cells, fluctuate only mildly, the fluctuations in the morphology on large scales indicate the presence of coherent structures that are at least as large as the sample.

  3. Innovation cycle for small- and large-scale change.

    Science.gov (United States)

    Scott, Kathy; Steinbinder, Amy

    2009-01-01

    In today's complex healthcare systems, transformation requires 2 major efforts: (1) a fundamental changes in the underlying beliefs and assumptions that perpetuate the current system and (2) a fundamental redesign of the multiplicity of diverse and complex subsystems that result in unpredictable aggregate behavior and outcomes. Through an Intelligent Complex Adaptive System framework combined with an innovation process a transformation process and cycle was created for a large healthcare system that resulted in both small- and large-scale changes. This process not only challenges the underlying beliefs and assumptions but also creates new possibilities and prototypes for care delivery through a change-management process that is inclusive and honors the contributions of the entire team.

  4. Towards large-scale plasma-assisted synthesis of nanowires

    International Nuclear Information System (INIS)

    Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.

  5. Large-scale characterization of the murine cardiac proteome.

    Science.gov (United States)

    Cosme, Jake; Emili, Andrew; Gramolini, Anthony O

    2013-01-01

    Cardiomyopathies are diseases of the heart that result in impaired cardiac muscle function. This dysfunction can progress to an inability to supply blood to the body. Cardiovascular diseases play a large role in overall global morbidity. Investigating the protein changes in the heart during disease can uncover pathophysiological mechanisms and potential therapeutic targets. Establishing a global protein expression "footprint" can facilitate more targeted studies of diseases of the heart.In the technical review presented here, we present methods to elucidate the heart's proteome through subfractionation of the cellular compartments to reduce sample complexity and improve detection of lower abundant proteins during multidimensional protein identification technology analysis. Analysis of the cytosolic, microsomal, and mitochondrial subproteomes separately in order to characterize the murine cardiac proteome is advantageous by simplifying complex cardiac protein mixtures. In combination with bioinformatic analysis and genome correlation, large-scale protein changes can be identified at the cellular compartment level in this animal model. PMID:23606244

  6. Galaxy clustering and the origin of large-scale flows

    Science.gov (United States)

    Juszkiewicz, R.; Yahil, A.

    1989-01-01

    Peebles's 'cosmic virial theorem' is extended from its original range of validity at small separations, where hydrostatic equilibrium holds, to large separations, in which linear gravitational stability theory applies. The rms pairwise velocity difference at separation r is shown to depend on the spatial galaxy correlation function xi(x) only for x less than r. Gravitational instability theory can therefore be tested by comparing the two up to the maximum separation for which both can reliably be determined, and there is no dependence on the poorly known large-scale density and velocity fields. With the expected improvement in the data over the next few years, however, this method should yield a reliable determination of omega.

  7. Large scale simulations of the great 1906 San Francisco earthquake

    Science.gov (United States)

    Nilsson, S.; Petersson, A.; Rodgers, A.; Sjogreen, B.; McCandless, K.

    2006-12-01

    As part of a multi-institutional simulation effort, we present large scale computations of the ground motion during the great 1906 San Francisco earthquake using a new finite difference code called WPP. The material data base for northern California provided by USGS together with the rupture model by Song et al. is demonstrated to lead to a reasonable match with historical data. In our simulations, the computational domain covered 550 km by 250 km of northern California down to 40 km depth, so a 125 m grid size corresponds to about 2.2 Billion grid points. To accommodate these large grids, the simulations were run on 512-1024 processors on one of the supercomputers at Lawrence Livermore National Lab. A wavelet compression algorithm enabled storage of time-dependent volumetric data. Nevertheless, the first 45 seconds of the earthquake still generated 1.2 TByte of disk space and the 3-D post processing was done in parallel.

  8. Optimization of large-scale fabrication of dielectric elastomer transducers

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager

    Polypower A/S employs a large-scale process for manufacturing DE films with one-sided corrugated surfaces. The DEs are manufactured by coating an elastomer mixture to a corrugated carrier web, thereby imprinting the corrugations onto the elastomer. The corrugated elastomer is then sputtered with metal...... electrodes on the corrugated surface, and due to these corrugated surfaces the metal electrodes maintain conductivities up to more than 100% strain of the elastomer film. The films are then laminated in multiple layers to fabricate DE transducers. However, the current manufacturing process is not trouble......-free, and two issues in particular have great influence on the performance of DE transducers. The first issue is the release of the corrugated elastomer film from the carrier web, due to the large surface area and flexible nature of the elastomer film, while the second issue relates to the lamination of DE...

  9. On transport in formations of large heterogeneity scales

    International Nuclear Information System (INIS)

    It has been suggested that in transport through heterogeneous aquifers, the effective dispersivity increases with the travel distance, since plumes encounter heterogeneity of increasing scales. This conclusion is underlain, however, by the assumption of ergodicity. If the plume is viewed as made up of different particles, this means that these particles move independently from a statistical point of view. To satisfy ergodicity the solute body has to be of a much larger extent than heterogeneity scales. Thus, if the latter are increasing for ever and the solute body is finite, ergodicity cannot be obeyed. To demonstrate this thesis we relate to the two-dimensional heterogeneity associated with transmissivity variations in the horizontal plane. First, the effective dispersion coefficient is defined as half the rate of change of the expected value of the solute body second spatial moment relative to its centroid. Subsequently the asymptotic large time limit of dispersivity is evaluated in terms of the log transmissivity integral scale and of the dimensions of the initial solute body in the direction of mean flow and normal to it. It is shown that for a thin plume aligned with the mean flow the effective dispersivity is zero and the effect of heterogeneity is a slight and finite expansion determined solely by the solute body size. In the case of a solute body transverse to the mean flow the effective dispersivity is different from zero, but has a maximal value which is again dependent on the solute body size and not on the heterogeneity scale. It is concluded that from a theoretical standpoint and for the definition of dispersivity adopted here for non-ergodic conditions, the claim of ever-increasing dispersivity with travel distance is not valid for the scale of heterogeneity analyzed here. (Author) (21 refs., 6 figs.)

  10. Large-Scale Graphene Film Deposition for Monolithic Device Fabrication

    Science.gov (United States)

    Al-shurman, Khaled

    Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors. The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an urgent need for a new platform material to replace Si. Graphene is considered a promising material with enormous potential applications in many electronic and optoelectronics devices due to its superior properties. There are several techniques to produce graphene films. Among these techniques, chemical vapor deposition (CVD) offers a very convenient method to fabricate films for large-scale graphene films. Though CVD method is suitable for large area growth of graphene, the need for transferring a graphene film to silicon-based substrates is required. Furthermore, the graphene films thus achieved are, in fact, not single crystalline. Also, graphene fabrication utilizing Cu and Ni at high growth temperature contaminates the substrate that holds Si CMOS circuitry and CVD chamber as well. So, lowering the deposition temperature is another technological milestone for the successful adoption of graphene in integrated circuits fabrication. In this research, direct large-scale graphene film fabrication on silicon based platform (i.e. SiO2 and Si3N4) at low temperature was achieved. With a focus on low-temperature graphene growth, hot-filament chemical vapor deposition (HF-CVD) was utilized to synthesize graphene film using 200 nm thick nickel film. Raman spectroscopy was utilized to examine graphene formation on the bottom side of the Ni film

  11. Disinformative data in large-scale hydrological modelling

    Directory of Open Access Journals (Sweden)

    A. Kauffeldt

    2013-07-01

    Full Text Available Large-scale hydrological modelling has become an important tool for the study of global and regional water resources, climate impacts, and water-resources management. However, modelling efforts over large spatial domains are fraught with problems of data scarcity, uncertainties and inconsistencies between model forcing and evaluation data. Model-independent methods to screen and analyse data for such problems are needed. This study aimed at identifying data inconsistencies in global datasets using a pre-modelling analysis, inconsistencies that can be disinformative for subsequent modelling. The consistency between (i basin areas for different hydrographic datasets, and (ii between climate data (precipitation and potential evaporation and discharge data, was examined in terms of how well basin areas were represented in the flow networks and the possibility of water-balance closure. It was found that (i most basins could be well represented in both gridded basin delineations and polygon-based ones, but some basins exhibited large area discrepancies between flow-network datasets and archived basin areas, (ii basins exhibiting too-high runoff coefficients were abundant in areas where precipitation data were likely affected by snow undercatch, and (iii the occurrence of basins exhibiting losses exceeding the potential-evaporation limit was strongly dependent on the potential-evaporation data, both in terms of numbers and geographical distribution. Some inconsistencies may be resolved by considering sub-grid variability in climate data, surface-dependent potential-evaporation estimates, etc., but further studies are needed to determine the reasons for the inconsistencies found. Our results emphasise the need for pre-modelling data analysis to identify dataset inconsistencies as an important first step in any large-scale study. Applying data-screening methods before modelling should also increase our chances to draw robust conclusions from subsequent

  12. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    Science.gov (United States)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  13. HTS cables open the window for large-scale renewables

    Science.gov (United States)

    Geschiere, A.; Willén, D.; Piga, E.; Barendregt, P.

    2008-02-01

    In a realistic approach to future energy consumption, the effects of sustainable power sources and the effects of growing welfare with increased use of electricity need to be considered. These factors lead to an increased transfer of electric energy over the networks. A dominant part of the energy need will come from expanded large-scale renewable sources. To use them efficiently over Europe, large energy transits between different countries are required. Bottlenecks in the existing infrastructure will be avoided by strengthening the network. For environmental reasons more infrastructure will be built underground. Nuon is studying the HTS technology as a component to solve these challenges. This technology offers a tremendously large power transport capacity as well as the possibility to reduce short circuit currents, making integration of renewables easier. Furthermore, power transport will be possible at lower voltage levels, giving the opportunity to upgrade the existing network while re-using it. This will result in large cost savings while reaching the future energy challenges. In a 6 km backbone structure in Amsterdam Nuon wants to install a 50 kV HTS Triax cable for a significant increase of the transport capacity, while developing its capabilities. Nevertheless several barriers have to be overcome.

  14. Approaches for Scaling DBSCAN Algorithm to Large Spatial Databases

    Institute of Scientific and Technical Information of China (English)

    周傲英; 周水庚; 曹晶; 范晔; 胡运发

    2000-01-01

    The huge amount of information stored in databases owned by corporations (e.g., retail, financial, telecom) has spurred a tremendous interest in the area of knowledge discovery and data mining. Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and other business applications. Although researchers have been working on clustering algorithms for decades, and a lot of algorithms for clustering have been developed, there is still no efficient algorithm for clustering very large databases and high dimensional data. As an outstanding representative of clustering algorithms, DBSCAN algorithm shows good performance in spatial data clustering. However, for large spatial databases, DBSCAN requires large volume of memory support and could incur substantial I/O costs because it operates directly on the entire database. In this paper, several approaches are proposed to scale DBSCAN algorithm to large spatial databases. To begin with, a fast DBSCAN algorithm is developed, which considerably speeds up the original DBSCAN algorithm. Then a sampling based DBSCAN algorithm, a partitioning-based DBSCAN algorithm, and a parallel DBSCAN algorithm are introduced consecutively. Following that, based on the above-proposed algorithms, a synthetic algorithm is also given. Finally, some experimental results are given to demonstrate the effectiveness and efficiency of these algorithms.

  15. Experience analyzing wind data for large-scale integration

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhi; Dai, RenChang; Freeman, Lavelle A.; Miller, Nicholas W.; Shao, Miaolei [GEe Energy Consulting Group, Schenectady, NY (United States)

    2010-07-01

    Wind is a major piece of the green energy effort, and will certainly play a more important role in the future power industry. GE Energy has conducted a numer of large-scale renewable integration studies in North America. The objective of these studies is to understand how integrating large amounts of variable energy resources into the supply mix affects grid operation and economics. As part of this effort, various statistical analyses were performed to characterize the variability and uncertainty of wind generation. Based on the results of this characterization, further engineering and economic studies are performed to assess operational requirements, costs, and savings attributable to wind resources. For these analyses, a large amount of input data is usually required, and is often obtained in different formats. These data sets are not very intuitive at first glance, and need extensive effort to be developed into something informative. Based on project experience, different methods have been developed to explore and extrapolate the information hidden within large amounts of raw data. Algorithms and macros have been written to validate and correct data, to create summary information, and to produce derived data sets for further analyses. Informative plots and charts have also been programmed into various applications to provide quick, useful analysis when needed. This article introduces some illustrative and easy-to-analyze ways to look at these data using readily available tools. (orig.)

  16. Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities

    CERN Document Server

    Traxler, A; Garaud, P; Radko, T; Brummell, N

    2010-01-01

    Double-diffusive instabilities are often invoked to explain enhanced transport in stably-stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean's thermocline and typically increases diapycnal mixing by two orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations, using our calculated turbulent fluxes...

  17. The large scale magnetic fields of thin accretion disks

    CERN Document Server

    Cao, Xinwu

    2013-01-01

    Large scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared to the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number Pm is around unity. In this work, we revisit this problem considering the angular momentum of the disk is removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-bet...

  18. Large scale CMB anomalies from thawing cosmic strings

    CERN Document Server

    Ringeval, Christophe; Yokoyama, Jun'ichi; Bouchet, Francois R

    2015-01-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) x 10^(-6) match the amplitude of th...

  19. Evaluating Unmanned Aerial Platforms for Cultural Heritage Large Scale Mapping

    Science.gov (United States)

    Georgopoulos, A.; Oikonomou, C.; Adamopoulos, E.; Stathopoulou, E. K.

    2016-06-01

    When it comes to large scale mapping of limited areas especially for cultural heritage sites, things become critical. Optical and non-optical sensors are developed to such sizes and weights that can be lifted by such platforms, like e.g. LiDAR units. At the same time there is an increase in emphasis on solutions that enable users to get access to 3D information faster and cheaper. Considering the multitude of platforms, cameras and the advancement of algorithms in conjunction with the increase of available computing power this challenge should and indeed is further investigated. In this paper a short review of the UAS technologies today is attempted. A discussion follows as to their applicability and advantages, depending on their specifications, which vary immensely. The on-board cameras available are also compared and evaluated for large scale mapping. Furthermore a thorough analysis, review and experimentation with different software implementations of Structure from Motion and Multiple View Stereo algorithms, able to process such dense and mostly unordered sequence of digital images is also conducted and presented. As test data set, we use a rich optical and thermal data set from both fixed wing and multi-rotor platforms over an archaeological excavation with adverse height variations and using different cameras. Dense 3D point clouds, digital terrain models and orthophotos have been produced and evaluated for their radiometric as well as metric qualities.

  20. Large-scale Modeling of Inundation in the Amazon Basin

    Science.gov (United States)

    Luo, X.; Li, H. Y.; Getirana, A.; Leung, L. R.; Tesfa, T. K.

    2015-12-01

    Flood events have impacts on the exchange of energy, water and trace gases between land and atmosphere, hence potentially affecting the climate. The Amazon River basin is the world's largest river basin. Seasonal floods occur in the Amazon Basin each year. The basin being characterized by flat gradients, backwater effects are evident in the river dynamics. This factor, together with large uncertainties in river hydraulic geometry, surface topography and other datasets, contribute to difficulties in simulating flooding processes over this basin. We have developed a large-scale inundation scheme in the framework of the Model for Scale Adaptive River Transport (MOSART) river routing model. Both the kinematic wave and the diffusion wave routing methods are implemented in the model. A new process-based algorithm is designed to represent river channel - floodplain interactions. Uncertainties in the input datasets are partly addressed through model calibration. We will present the comparison of simulated results against satellite and in situ observations and analysis to understand factors that influence inundation processes in the Amazon Basin.

  1. Large-scale native preparation of in vitro transcribed RNA.

    Science.gov (United States)

    Keel, Amanda Y; Easton, Laura E; Lukavsky, Peter J; Kieft, Jeffrey S

    2009-01-01

    Biophysical studies of RNA require concentrated samples that are chemically and structurally homogeneous. Historically, the most widely used methods for preparing these samples involve in vitro transcription, denaturation of the RNA, purification based on size, and subsequent refolding. These methods are useful but are inherently slow and do not guarantee that the RNA is properly folded. Possible mis-folding is of particular concern with large, complexly folded RNAs. To address these problems, we have developed methods for purifying in vitro transcribed RNAs in their native, folded states. These methods also have the advantage of being rapid and readily scaled to virtually any size RNA or transcription amount. Two methods are presented: the first is an affinity chromatography approach and the second is a weak ion-exchange chromatography approach. Both use equipment and materials readily available to almost any lab and hence should provide flexibility for those seeking alternate approaches to large-scale purification of RNA in the folded state. PMID:20946782

  2. Simulating the Large-Scale Structure of HI Intensity Maps

    CERN Document Server

    Seehars, Sebastian; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel

    2015-01-01

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations, the halo model, and a phenomenological prescription for assigning HI mass to halos. The simulations span a redshift range of 0.35 < z < 0.9 in redshift bins of width $\\Delta z \\approx 0.05$ and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects on the angular clustering of HI. We apply and compare several estimators for the angular power spectrum and its covariance. We verify that they agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.

  3. Simulating the large-scale structure of HI intensity maps

    Science.gov (United States)

    Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel

    2016-03-01

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 20483 particles (particle mass 1.6 × 1011 Msolar / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (108 Msolar / h assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 lesssim z lesssim 0.9 in redshift bins of width Δ z ≈ 0.05 and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.

  4. Online education in a large scale rehabilitation institution.

    Science.gov (United States)

    Mazzoleni, M Cristina; Rognoni, Carla; Pagani, Marco; Imbriani, Marcello

    2012-01-01

    Large scale multiple venue institutions face problems when delivering educations to their healthcare staff. The present study is aimed at evaluating the feasibility of relying on e-learning for at least part of the training of the Salvatore Maugeri Foundation healthcare staff. The paper reports the results of the delivery of e-learning courses to the personnel during a span of time of 7 months in order to assess the attitude to online courses attendance, the proportion between administered online education and administered traditional education, the economic sustainability of the online education delivery process. 37% of the total healthcare staff have attended online courses and 46% of nurses have proved to be the very active. The ratio between total number of credits and total number of courses for online and traditional education are respectively 18268/5 and 20354/96. These results point out that eLearning is not at all a niche tool used (or usable) by a limited number of people. Economic sustainability, assessed via personnel work hour saving, has been demonstrated. When distance learning is appropriate, online education is an effective, sustainable, well accepted mean to support and promote healthcare staff's education in a large scale institution. PMID:22491113

  5. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  6. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  7. Large Scale and Performance tests of the ATLAS Online Software

    Institute of Scientific and Technical Information of China (English)

    Alexandrov; H.Wolters; 等

    2001-01-01

    One of the sub-systems of the Trigger/DAQ system of the future ATLAS experiment is the Online Software system.It encompasses the functionality needed to configure,control and monitor the DAQ.Its architecture is based on a component structure described in the ATLAS Trigger/DAQ technical proposal.Resular integration tests ensure its smooth operation in test beam setups during its evolutionary development towards the final ATLAS online system.Feedback is received and returned into the development process.Studies of the system.behavior have been performed on a set of up to 111 PCs on a configuration which is getting closer to the final size,Large scale and performance tests of the integrated system were performed on this setup with emphasis on investigating the aspects of the inter-dependence of the components and the performance of the communication software.Of particular interest were the run control state transitions in various configurations of the run control hierarchy.For the purpose of the tests,the software from other Trigger/DAQ sub-systems has been emulated.This paper presents a brief overview of the online system structure,its components and the large scale integration tests and their results.

  8. State-of-the-art of large scale biogas plants

    International Nuclear Information System (INIS)

    A survey of the technological state of large scale biogas plants in Europe treating manure is given. 83 plants are in operation at present. Of these, 16 are centralised digestion plants. Transport costs at centralised digestion plants amounts to between 25 and 40 percent of the total operational costs. Various transport equipment is used. Most large scale digesters are CSTRs, but serial, contact, 2-step, and plug-flow digesters are also found. Construction materials are mostly steel and concrete. Mesophilic digestion is most common (56%), thermophilic digestion is used in 17% of the plants, combined mesophilic and thermophilic digestion is used in 28% of the centralised plants. Mixing of digester content is performed with gas injection, propellers, and gas-liquid displacement. Heating is carried out using external or internal heat exchangers. Heat recovery is only used in Denmark. Gas purification equipment is commonplace, but not often needed. Several plants use separation of the digested manure, often as part of a post-treatment/-purification process or for the production of 'compost'. Screens, sieve belt separaters, centrifuges and filter presses are employed. The use of biogas varies considerably. In some cases, combined heat and power stations are supplying the grid and district heating systems. Other plants use only either the electricity or heat. (au)

  9. Large-scale mapping of mutations affecting zebrafish development

    Directory of Open Access Journals (Sweden)

    Neuhauss Stephan C

    2007-01-01

    Full Text Available Abstract Background Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. Results We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. Conclusion By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.

  10. A Novel Approach Towards Large Scale Cross-Media Retrieval

    Institute of Scientific and Technical Information of China (English)

    Bo Lu; Guo-Ren Wang; Ye Yuan

    2012-01-01

    With the rapid development of Internet and multimedia technology,cross-media retrieval is concerned to retrieve all the related media objects with multi-modality by submitting a query media object.Unfortunately,the complexity and the heterogeneity of multi-modality have posed the following two major challenges for cross-media retrieval:1) how to construct a unified and compact model for media objects with multi-modality,2) how to improve the performance of retrieval for large scale cross-media database.In this paper,we propose a novel method which is dedicate to solving these issues to achieve effective and accurate cross-media retrieval.Firstly,a multi-modality semantic relationship graph (MSRG) is constructed using the semantic correlation amongst the media objects with multi-modality.Secondly,all the media objects in MSRG are mapped onto an isomorphic semantic space.Further,an efficient indexing MK-tree based on heterogeneous data distribution is proposed to manage the media objects within the semantic space and improve the performance of cross-media retrieval.Extensive experiments on real large scale cross-media datasets indicate that our proposal dramatically improves the accuracy and efficiency of cross-media retrieval,outperforming the existing methods significantly.

  11. What determines large scale clustering: halo mass or environment?

    CERN Document Server

    Pujol, Arnau; Jiménez, Noelia; Gaztañaga, Enrique

    2015-01-01

    We study the large scale halo bias b as a function of the environment (defined here as the background dark matter density fluctuation, d) and show that environment, and not halo mass m, is the main cause of large scale clustering. More massive haloes have a higher clustering because they live in denser regions, while low mass haloes can be found in a wide range of environments, and hence they have a lower clustering. Using a Halo Occupation Distribution (HOD) test, we can predict b(m) from b(d), but we cannot predict b(d) from b(m), which shows that environment is more fundamental for bias than mass. This has implications for the HOD model interpretation of the galaxy clustering, since when a galaxy selection is affected by environment, the standard HOD implementation fails. We show that the effects of environment are very important for colour selected samples in semi-analytic models of galaxy formation. In these cases, bias can be better recovered if we use environmental density instead of mass as the HOD va...

  12. Large-scale spatial population databases in infectious disease research.

    Science.gov (United States)

    Linard, Catherine; Tatem, Andrew J

    2012-01-01

    Modelling studies on the spatial distribution and spread of infectious diseases are becoming increasingly detailed and sophisticated, with global risk mapping and epidemic modelling studies now popular. Yet, in deriving populations at risk of disease estimates, these spatial models must rely on existing global and regional datasets on population distribution, which are often based on outdated and coarse resolution data. Moreover, a variety of different methods have been used to model population distribution at large spatial scales. In this review we describe the main global gridded population datasets that are freely available for health researchers and compare their construction methods, and highlight the uncertainties inherent in these population datasets. We review their application in past studies on disease risk and dynamics, and discuss how the choice of dataset can affect results. Moreover, we highlight how the lack of contemporary, detailed and reliable data on human population distribution in low income countries is proving a barrier to obtaining accurate large-scale estimates of population at risk and constructing reliable models of disease spread, and suggest research directions required to further reduce these barriers. PMID:22433126

  13. Large-scale spatial population databases in infectious disease research

    Directory of Open Access Journals (Sweden)

    Linard Catherine

    2012-03-01

    Full Text Available Abstract Modelling studies on the spatial distribution and spread of infectious diseases are becoming increasingly detailed and sophisticated, with global risk mapping and epidemic modelling studies now popular. Yet, in deriving populations at risk of disease estimates, these spatial models must rely on existing global and regional datasets on population distribution, which are often based on outdated and coarse resolution data. Moreover, a variety of different methods have been used to model population distribution at large spatial scales. In this review we describe the main global gridded population datasets that are freely available for health researchers and compare their construction methods, and highlight the uncertainties inherent in these population datasets. We review their application in past studies on disease risk and dynamics, and discuss how the choice of dataset can affect results. Moreover, we highlight how the lack of contemporary, detailed and reliable data on human population distribution in low income countries is proving a barrier to obtaining accurate large-scale estimates of population at risk and constructing reliable models of disease spread, and suggest research directions required to further reduce these barriers.

  14. A large-scale shock surrounding a powerful radio galaxy

    CERN Document Server

    Croston, J H; Mingo, B; Evans, D A; Dicken, D; Morganti, R; Tadhunter, C N

    2010-01-01

    We report the Chandra detection of a large-scale shock, on scales of 200 kpc, in the cluster surrounding the powerful radio galaxy 3C 444 (PKS 2211-17). Our 20-ks Chandra observation allows us to identify a clear surface brightness drop around the outer edge of the radio galaxy, which is likely to correspond to a spheroidal shock propagating into the intracluster medium. We measure a temperature jump across the surface brightness drop of a factor ~1.7, which corresponds to a Mach number of ~1.7. This is likely to be an underestimate due to the need to average over a fairly large region when measuring the temperature of the post-shock gas. We also detect clear cavities corresponding to the positions of the radio lobes, which is only the second such detection associated with an FRII radio galaxy. We estimate that the total energy transferred to the environment is at least 8.2 x 10^60 ergs, corresponding to a jet power of >2.2 x 10^45 ergs s^-1 (assuming a timescale based on the measured shock speed). We also co...

  15. Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing

    Science.gov (United States)

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2016-04-01

    We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing.

  16. Large N and double scaling limits in two dimensions

    International Nuclear Information System (INIS)

    Recently, the author has constructed a series of four-dimensional non-critical string theories with eight supercharges, dual to theories of light electric and magnetic charges, for which exact formulas for the central charge of the space-time supersymmetry algebra as a function of the world-sheet couplings were obtained. The basic idea was to generalize the old matrix model approach, replacing the simple matrix integrals by the four-dimensional matrix path integrals of N=2 supersymmetric Yang-Mills theory, and the Kazakov critical points by the Argyres-Douglas critical points. In the present paper, we study qualitatively similar toy path integrals corresponding to the two-dimensional N=2 supersymmetric non-linear σ model with target space CPN and twisted mass terms. This theory has some very strong similarities with N=2 super Yang-Mills, including the presence of critical points in the vicinity of which the large-N expansion is IR divergent. The model being exactly solvable at large N, we can study non-BPS observables and give full proofs that double scaling limits exist and correspond to universal continuum limits. A complete characterization of the double scaled theories is given. We find evidence for dimensional transmutation of the string coupling in some non-critical string theories. We also identify en passant some non-BPS particles that become massless at the singularities in addition to the usual BPS states. (authors)

  17. Large scale and performance tests of the ATLAS online software

    International Nuclear Information System (INIS)

    One of the sub-systems of the Trigger/DAQ system of the future ATLAS experiment is the Online Software system. It encompasses the functionality needed to configure, control and monitor the DAQ. Its architecture is based on a component structure described in the ATLAS Trigger/DAQ technical proposal. Regular integration tests ensure its smooth operation in test beam setups during its evolutionary development towards the final ATLAS online system. Feedback is received and returned into the development process. Studies of the system behavior have been performed on a set of up to 111 PCs on a configuration which is getting closer to the final size. Large scale and performance test of the integrated system were performed on this setup with emphasis on investigating the aspects of the inter-dependence of the components and the performance of the communication software. Of particular interest were the run control state transitions in various configurations of the run control hierarchy. For the purpose of the tests, the software from other Trigger/DAQ sub-systems has been emulated. The author presents a brief overview of the online system structure, its components and the large scale integration tests and their results

  18. Parallel Index and Query for Large Scale Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

  19. Halo detection via large-scale Bayesian inference

    Science.gov (United States)

    Merson, Alexander I.; Jasche, Jens; Abdalla, Filipe B.; Lahav, Ofer; Wandelt, Benjamin; Jones, D. Heath; Colless, Matthew

    2016-08-01

    We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect haloes of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (HADES), and a Bayesian chain rule (the Blackwell-Rao estimator), which we use to connect the inferred density field to the properties of dark matter haloes. To demonstrate the capability of our approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information, we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful detection of haloes in the mock catalogue increases as a function of the signal to noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.

  20. ANTITRUST ISSUES IN THE LARGE-SCALE FOOD DISTRIBUTION SECTOR

    Directory of Open Access Journals (Sweden)

    Enrico Adriano Raffaelli

    2014-12-01

    Full Text Available In light of the slow modernization of the Italian large-scale food distribution sector, of the fragmentation at national level, of the significant roles of the cooperatives at local level and of the alliances between food retail chains, the ICA during the recent years has developed a strong interest in this sector.After having analyzed the peculiarities of the Italian large-scale food distribution sector, this article shows the recent approach taken by the ICA toward the main antitrust issues in this sector.In the analysis of such issues, mainly the contractual relations between the GDO retailers and their suppliers, the introduction of Article 62 of Law no. 27 dated 24th March 2012 is crucial, because, by facilitating and encouraging complaints by the interested parties, it should allow the developing of normal competitive dynamics within the food distribution sector, where companies should be free to enter the market using the tools at their disposal, without undue restrictions.

  1. Structural organization of large and very-large scales in turbulent pipe flow simulation

    Science.gov (United States)

    Baltzer, Jon; Adrian, Ronald; Wu, Xiaohua

    2012-11-01

    The physical structures of velocity are examined in a recent DNS of fully developed incompressible turbulent pipe flow at ReD = 24 580 (R+ = 684 . 8) with a periodic domain length of 30 pipe radii R (Wu, Baltzer, & Adrian, J. Fluid Mech., 2012). In this simulation, the long motions of negative velocity fluctuation correspond to large fractions of energy present at very long streamwise wavelengths (>= 3 R). We study how long motions are composed of smaller motions. We characterize the spatial arrangements of very large scale motions (VLSMs) and find that they possess dominant helix angles (azimuthal inclinations relative to streamwise) that are revealed by 2D and 3D two-point spatial correlations of velocity. The correlations also reveal that the shorter, large scale motions (LSMs) that concatenate to comprise the VLSMs are themselves more streamwise aligned. We show that the largest VLSMs possess a form similar to roll cells and that they appear to play an important role in organizing the flow, while smaller scales of motion are necessary to create the strong streaks of velocity fluctuation that characterize the flow. Supported by NSF Award CBET-0933848.

  2. Evolution of scaling emergence in large-scale spatial epidemic spreading

    CERN Document Server

    Wang, Lin; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Background: Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and ...

  3. Large-scale mass distribution in the Illustris simulation

    Science.gov (United States)

    Haider, M.; Steinhauser, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Hernquist, L.

    2016-04-01

    Observations at low redshifts thus far fail to account for all of the baryons expected in the Universe according to cosmological constraints. A large fraction of the baryons presumably resides in a thin and warm-hot medium between the galaxies, where they are difficult to observe due to their low densities and high temperatures. Cosmological simulations of structure formation can be used to verify this picture and provide quantitative predictions for the distribution of mass in different large-scale structure components. Here we study the distribution of baryons and dark matter at different epochs using data from the Illustris simulation. We identify regions of different dark matter density with the primary constituents of large-scale structure, allowing us to measure mass and volume of haloes, filaments and voids. At redshift zero, we find that 49 per cent of the dark matter and 23 per cent of the baryons are within haloes more massive than the resolution limit of 2 × 108 M⊙. The filaments of the cosmic web host a further 45 per cent of the dark matter and 46 per cent of the baryons. The remaining 31 per cent of the baryons reside in voids. The majority of these baryons have been transported there through active galactic nuclei feedback. We note that the feedback model of Illustris is too strong for heavy haloes, therefore it is likely that we are overestimating this amount. Categorizing the baryons according to their density and temperature, we find that 17.8 per cent of them are in a condensed state, 21.6 per cent are present as cold, diffuse gas, and 53.9 per cent are found in the state of a warm-hot intergalactic medium.

  4. Local Large-Scale Structure and the Assumption of Homogeneity

    Science.gov (United States)

    Keenan, Ryan C.; Barger, Amy J.; Cowie, Lennox L.

    2016-10-01

    Our recent estimates of galaxy counts and the luminosity density in the near-infrared (Keenan et al. 2010, 2012) indicated that the local universe may be under-dense on radial scales of several hundred megaparsecs. Such a large-scale local under-density could introduce significant biases in the measurement and interpretation of cosmological observables, such as the inferred effects of dark energy on the rate of expansion. In Keenan et al. (2013), we measured the K-band luminosity density as a function of distance from us to test for such a local under-density. We made this measurement over the redshift range 0.01 0.07, we measure an increasing luminosity density that by z ~ 0.1 rises to a value of ~ 1.5 times higher than that measured locally. This implies that the stellar mass density follows a similar trend. Assuming that the underlying dark matter distribution is traced by this luminous matter, this suggests that the local mass density may be lower than the global mass density of the universe at an amplitude and on a scale that is sufficient to introduce significant biases into the measurement of basic cosmological observables. At least one study has shown that an under-density of roughly this amplitude and scale could resolve the apparent tension between direct local measurements of the Hubble constant and those inferred by Planck team. Other theoretical studies have concluded that such an under-density could account for what looks like an accelerating expansion, even when no dark energy is present.

  5. Scalable pattern recognition for large-scale scientific data mining

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, C.; Musick, R.

    1998-03-23

    Our ability to generate data far outstrips our ability to explore and understand it. The true value of this data lies not in its final size or complexity, but rather in our ability to exploit the data to achieve scientific goals. The data generated by programs such as ASCI have such a large scale that it is impractical to manually analyze, explore, and understand it. As a result, useful information is overlooked, and the potential benefits of increased computational and data gathering capabilities are only partially realized. The difficulties that will be faced by ASCI applications in the near future are foreshadowed by the challenges currently facing astrophysicists in making full use of the data they have collected over the years. For example, among other difficulties, astrophysicists have expressed concern that the sheer size of their data restricts them to looking at very small, narrow portions at any one time. This narrow focus has resulted in the loss of ``serendipitous`` discoveries which have been so vital to progress in the area in the past. To solve this problem, a new generation of computational tools and techniques is needed to help automate the exploration and management of large scientific data. This whitepaper proposes applying and extending ideas from the area of data mining, in particular pattern recognition, to improve the way in which scientists interact with large, multi-dimensional, time-varying data.

  6. A Global View of Large-Scale Precipitation Variability.

    Science.gov (United States)

    Rasmusson, Eugene M.; Arkin, Phillip A.

    1993-08-01

    Observational studies and model experiments make abundantly clear the need for a global perspective in order to understand the nature and causes of persistent regional precipitation anomalies. Rainfall in the deep tropics is particularly important as a forcing mechanism for the atmosphere's large-scale circulation and climate. Analysis of systematic space-based observations and surface marine data over the past three decades has vastly improved our understanding of tropical convective regimes and their relationship to surface conditions. The characteristics of the annual cycle of tropical convection and its relationship to sea surface temperature field and the general circulation of the tropics are reviewed. The hierarchal nature of tropical precipitation variability on time/space scales ranging from synoptic cloud clusters through the intraseasonal Madden-Julian Oscillation to multiyear El Niño-Southern Oscillation cycle is discussed. Links between tropical convection and extratropical precipitation on time scales ranging from synoptic to multiyear are examined, with emphasis on conditions over the North Pacific-North American sector during winter.Precipitation variability over a number of regions bordering the Atlantic basin are related to Atlantic sector modes of SST and circulation variability. Systematic modes of Atlantic variability and their relationship to regional precipitation variability are described with emphasis on the tropics.Changes in landscape characteristics (vegetative cover, soil moisture, surface roughness), whether natural or human induced, result in changes in the surface radiation balance and the fluxes of heat and moisture. Our current understanding of the role of land surface processes in sustaining or intensifying anomalous precipitation regimes is briefly discussed. Identification of an anthropogenic trend in the presence of decadal-scale natural variations in precipitation is a formidable challenge. Three examples of large

  7. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼*) galaxies out to projected separations of 60 h-1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy

  8. Climatological context for large-scale coral bleaching

    Science.gov (United States)

    Barton, A. D.; Casey, K. S.

    2005-12-01

    Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will

  9. Penetration of Large Scale Electric Field to Inner Magnetosphere

    Science.gov (United States)

    Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.

    2015-12-01

    The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI

  10. Alignment between galaxies and large-scale structure

    Institute of Scientific and Technical Information of China (English)

    A. Faltenbacher; Cheng Li; Simon D. M. White; Yi-Peng Jing; Shu-De Mao; Jie Wang

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale struc-ture. For this purpose, we develop two new statistical tools, namely the alignment cor-relation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy cat-alog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L L*) galaxies out to projected separations of 60 h-1Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ~ 25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen-tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy

  11. Statistics of Caustics in Large-Scale Structure Formation

    Science.gov (United States)

    Feldbrugge, Job L.; Hidding, Johan; van de Weygaert, Rien

    2016-10-01

    The cosmic web is a complex spatial pattern of walls, filaments, cluster nodes and underdense void regions. It emerged through gravitational amplification from the Gaussian primordial density field. Here we infer analytical expressions for the spatial statistics of caustics in the evolving large-scale mass distribution. In our analysis, following the quasi-linear Zel'dovich formalism and confined to the 1D and 2D situation, we compute number density and correlation properties of caustics in cosmic density fields that evolve from Gaussian primordial conditions. The analysis can be straightforwardly extended to the 3D situation. We moreover, are currently extending the approach to the non-linear regime of structure formation by including higher order Lagrangian approximations and Lagrangian effective field theory.

  12. Using Large Scale Test Results for Pedagogical Purposes

    DEFF Research Database (Denmark)

    Dolin, Jens

    2012-01-01

    educational system and the different theoretical foundations of PISA and most teachers’ pedagogically oriented, formative assessment, thus explaining the teacher resentment towards LSTs. Finally, some principles for linking LSTs to teachers’ pedagogical practice will be presented.......The use and influence of large scale tests (LST), both national and international, has increased dramatically within the last decade. This process has revealed a tension between the legitimate need for information about the performance of the educational system and teachers to inform policy, and...... the teachers’ and students’ use of this information for pedagogical purposes in the classroom. We know well how the policy makers interpret and use the outcomes of such tests, but we know less about how teachers make use of LSTs to inform their pedagogical practice. An important question is whether...

  13. Optimal Wind Energy Integration in Large-Scale Electric Grids

    Science.gov (United States)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  14. On the Hyperbolicity of Large-Scale Networks

    CERN Document Server

    Kennedy, W Sean; Saniee, Iraj

    2013-01-01

    Through detailed analysis of scores of publicly available data sets corresponding to a wide range of large-scale networks, from communication and road networks to various forms of social networks, we explore a little-studied geometric characteristic of real-life networks, namely their hyperbolicity. In smooth geometry, hyperbolicity captures the notion of negative curvature; within the more abstract context of metric spaces, it can be generalized as d-hyperbolicity. This generalized definition can be applied to graphs, which we explore in this report. We provide strong evidence that communication and social networks exhibit this fundamental property, and through extensive computations we quantify the degree of hyperbolicity of each network in comparison to its diameter. By contrast, and as evidence of the validity of the methodology, applying the same methods to the road networks shows that they are not hyperbolic, which is as expected. Finally, we present practical computational means for detection of hyperb...

  15. Large Scale 3D Image Reconstruction in Optical Interferometry

    CERN Document Server

    Schutz, Antony; Mary, David; Thiébaut, Eric; Soulez, Ferréol

    2015-01-01

    Astronomical optical interferometers (OI) sample the Fourier transform of the intensity distribution of a source at the observation wavelength. Because of rapid atmospheric perturbations, the phases of the complex Fourier samples (visibilities) cannot be directly exploited , and instead linear relationships between the phases are used (phase closures and differential phases). Consequently, specific image reconstruction methods have been devised in the last few decades. Modern polychromatic OI instruments are now paving the way to multiwavelength imaging. This paper presents the derivation of a spatio-spectral ("3D") image reconstruction algorithm called PAINTER (Polychromatic opticAl INTErferometric Reconstruction software). The algorithm is able to solve large scale problems. It relies on an iterative process, which alternates estimation of polychromatic images and of complex visibilities. The complex visibilities are not only estimated from squared moduli and closure phases, but also from differential phase...

  16. Lightweight computational steering of very large scale molecular dynamics simulations

    International Nuclear Information System (INIS)

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages

  17. Hashkat: Large-scale simulations of online social networks

    CERN Document Server

    Ryczko, Kevin; Buhagiar, Nicholas; Tamblyn, Isaac

    2016-01-01

    Hashkat (http://hashkat.org) is a free, open source, agent based simulation software package designed to simulate large-scale online social networks (e.g. Twitter, Facebook, LinkedIn, etc). It allows for dynamic agent generation, edge creation, and information propagation. The purpose of hashkat is to study the growth of online social networks and how information flows within them. Like real life online social networks, hashkat incorporates user relationships, information diffusion, and trending topics. Hashkat was implemented in C++, and was designed with extensibility in mind. The software includes Shell and Python scripts for easy installation and usability. In this report, we describe all of the algorithms and features integrated into hashkat before moving on to example use cases. In general, hashkat can be used to understand the underlying topology of social networks, validate sampling methods of such networks, develop business strategy for advertising on online social networks, and test new features of ...

  18. Automatic Installation and Configuration for Large Scale Farms

    CERN Document Server

    Novák, J

    2005-01-01

    Since the early appearance of commodity hardware, the utilization of computers rose rapidly, and they became essential in all areas of life. Soon it was realized that nodes are able to work cooperatively, in order to solve new, more complex tasks. This conception got materialized in coherent aggregations of computers called farms and clusters. Collective application of nodes, being efficient and economical, was adopted in education, research and industry before long. But maintainance, especially in large scale, appeared as a problem to be resolved. New challenges needed new methods and tools. Development work has been started to build farm management applications and frameworks. In the first part of the thesis, these systems are introduced. After a general description of the matter, a comparative analysis of different approaches and tools illustrates the practical aspects of the theoretical discussion. CERN, the European Organization of Nuclear Research is the largest Particle Physics laboratory in the world....

  19. Towards online multiresolution community detection in large-scale networks.

    Directory of Open Access Journals (Sweden)

    Jianbin Huang

    Full Text Available The investigation of community structure in networks has aroused great interest in multiple disciplines. One of the challenges is to find local communities from a starting vertex in a network without global information about the entire network. Many existing methods tend to be accurate depending on a priori assumptions of network properties and predefined parameters. In this paper, we introduce a new quality function of local community and present a fast local expansion algorithm for uncovering communities in large-scale networks. The proposed algorithm can detect multiresolution community from a source vertex or communities covering the whole network. Experimental results show that the proposed algorithm is efficient and well-behaved in both real-world and synthetic networks.

  20. An optimal design methodology for large-scale gas liquefaction

    International Nuclear Information System (INIS)

    Highlights: ► Configuration selection and parametric optimization carried out simultaneously for gas liquefaction systems. ► Effective Heat Transfer Factor proposed to indicate the performance of heat exchanger networks. ► Relatively high exergy efficiency of liquefaction process achievable under some general assumptions. -- Abstract: This paper presents an optimization methodology for thermodynamic design of large scale gas liquefaction systems. Such a methodology enables configuration selection and parametric optimization to be implemented simultaneously. Exergy efficiency and genetic algorithm have been chosen as an evaluation index and an evaluation criterion, respectively. The methodology has been applied to the design of expander cycle based liquefaction processes. Liquefaction processes of hydrogen, methane and nitrogen are selected as case studies and the simulation results show that relatively high exergy efficiencies (52% for hydrogen and 58% for methane and nitrogen) are achievable based on very general consumptions.

  1. Large scale oil lease automation and electronic custody transfer

    International Nuclear Information System (INIS)

    Typically, oil field production operations have only been automated at fields with long term production profiles and enhanced recovery. The automation generally consists of monitoring and control at the wellhead and centralized facilities. However, Union Pacific Resources Co. (UPRC) has successfully implemented a large scale automation program for rapid-decline primary recovery Austin Chalk wells where purchasers buy and transport oil from each individual wellsite. This project has resulted in two significant benefits. First, operators are using the system to re-engineer their work processes. Second, an inter-company team created a new electronic custody transfer method. This paper will describe: the progression of the company's automation objectives in the area; the field operator's interaction with the system, and the related benefits; the research and development of the new electronic custody transfer method

  2. Traffic assignment models in large-scale applications

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær

    Transport models are becoming more and more disaggregate to facilitate a realistic representation of individuals and their travel patterns. In line with this development, the PhD study focuses on facilitating the deployment of traffic assignment models in fully disaggregate activity-based model...... focuses on large-scale applications and contributes with methods to actualise the true potential of disaggregate models. To achieve this target, contributions are given to several components of traffic assignment modelling, by (i) enabling the utilisation of the increasingly available data sources......-perceptions in the choice set generation for complex multi-modal networks, and (iv) addressing the difficulty of choice set generation by making available a theoretical framework, and corresponding operational solution methods, which consistently distinguishes between used and unused paths. The availability of data...

  3. Bonus algorithm for large scale stochastic nonlinear programming problems

    CERN Document Server

    Diwekar, Urmila

    2015-01-01

    This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...

  4. Optimization of large scale food production using Lean Manufacturing principles

    DEFF Research Database (Denmark)

    Engelund, Eva Høy; Friis, Alan; Breum, Gitte

    2009-01-01

    This paper discusses how the production principles of Lean Manufacturing (Lean) can be applied in a large-scale meal production. Lean principles are briefly presented, followed by a field study of how a kitchen at a Danish hospital has implemented Lean in the daily production. In the kitchen......, the main purposes of implementing Lean were to rationalise internal procedures and to increase production efficiency following a change from cook-serve production to cook-chill, and a reduction in the number of employees. It was also important that product quality and working environment should...... not be negatively affected by the rationalisation of production procedures. The field study shows that Lean principles can be applied in meal production and can result in increased production efficiency and systematic improvement of product quality without negative effects on the working environment. The results...

  5. Large scale cosmic-ray anisotropy with KASCADE

    CERN Document Server

    Antoni, T; Badea, A F; Bekk, K; Bercuci, A; Blümer, H; Bozdog, H; Brancus, I M; Büttner, C; Daumiller, K; Doll, P; Engel, R; Engler, J; Fessler, F; Gils, H J; Glasstetter, R; Haungs, A; Heck, D; Hörandel, J R; Kampert, K H; Klages, H O; Maier, G; Mathes, H J; Mayer, H J; Milke, J; Müller, M; Obenland, R; Oehlschläger, J; Ostapchenko, S; Petcu, M; Rebel, H; Risse, A; Risse, M; Roth, M; Schatz, G; Schieler, H; Scholz, J; Thouw, T; Ulrich, H; Van, J; Buren; Vardanyan, A S; Weindl, A; Wochele, J; Zabierowski, J

    2004-01-01

    The results of an analysis of the large scale anisotropy of cosmic rays in the PeV range are presented. The Rayleigh formalism is applied to the right ascension distribution of extensive air showers measured by the KASCADE experiment.The data set contains about 10^8 extensive air showers in the energy range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right ascension distributions in this energy range. This accounts for all showers as well as for subsets containing showers induced by predominantly light respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary energy.

  6. Statistics of Caustics in Large-Scale Structure Formation

    CERN Document Server

    Feldbrugge, Job; van de Weygaert, Rien

    2014-01-01

    The cosmic web is a complex spatial pattern of walls, filaments, cluster nodes and underdense void regions. It emerged through gravitational amplification from the Gaussian primordial density field. Here we infer analytical expressions for the spatial statistics of caustics in the evolving large-scale mass distribution. In our analysis, following the quasi-linear Zeldovich formalism and confined to the 1D and 2D situation, we compute number density and correlation properties of caustics in cosmic density fields that evolve from Gaussian primordial conditions. The analysis can be straightforwardly extended to the 3D situation. We moreover, are currently extending the approach to the non-linear regime of structure formation by including higher order Lagrangian approximations and Lagrangian effective field theory.

  7. CONSTRAINING PRIMORDIAL MAGNETIC FIELDS THROUGH LARGE-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Kahniashvili, Tina; Natarajan, Aravind; Battaglia, Nicholas [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Maravin, Yurii [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Tevzadze, Alexander G., E-mail: tinatin@andrew.cmu.edu [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia)

    2013-06-10

    We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev-Zel'dovich effect, and Ly{alpha} data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for n{sub B} in (- 3; -1.5).

  8. High pressure sheet metal forming of large scale body structures

    Energy Technology Data Exchange (ETDEWEB)

    Trompeter, M.; Krux, R.; Homberg, W.; Kleiner, M. [Dortmund Univ. (Germany). Inst. of Forming Technology and Lightweight Construction

    2005-07-01

    An important trend in the automotive industry is the weight reduction of car bodies by lightweight construction. One approach to realise lightweight structures is the use of load optimised sheet metal parts (e.g. tailored blanks), especially for crash relevant car body structures. To form such parts which are mostly complex and primarily made of high strength steels, the use of working media based forming processes is favorable. The paper presents the manufacturing of a large scale structural component made of tailor rolled blanks (TRB) by high pressure sheet metal forming (HBU). The paper focuses mainly on the tooling system, which is integrated into a specific 100 MN hydroform press at the IUL. The HBU tool basically consists of a multipoint blankholder, a specially designed flange draw-in sensor, which is necessary to determine the material flow, and a sealing system. Furthermore, the paper presents a strategy for an effective closed loop flange draw-in control. (orig.)

  9. Split Bregman method for large scale fused Lasso

    CERN Document Server

    Ye, Gui-Bo

    2010-01-01

    rdering of regression or classification coefficients occurs in many real-world applications. Fused Lasso exploits this ordering by explicitly regularizing the differences between neighboring coefficients through an $\\ell_1$ norm regularizer. However, due to nonseparability and nonsmoothness of the regularization term, solving the fused Lasso problem is computationally demanding. Existing solvers can only deal with problems of small or medium size, or a special case of the fused Lasso problem in which the predictor matrix is identity matrix. In this paper, we propose an iterative algorithm based on split Bregman method to solve a class of large-scale fused Lasso problems, including a generalized fused Lasso and a fused Lasso support vector classifier. We derive our algorithm using augmented Lagrangian method and prove its convergence properties. The performance of our method is tested on both artificial data and real-world applications including proteomic data from mass spectrometry and genomic data from array...

  10. Solar cycle, solar rotation and large-scale circulation

    International Nuclear Information System (INIS)

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: solar (activity) cycle; Hale cycle; long-term activity variations; dynamos; differential rotation; rotation of the convective zone; Carrington rotation; oblateness; meridional flow; and giant cells or large-scale circulation. (B.R.H.)

  11. Theoretical expectations for bulk flows in large-scale surveys

    Science.gov (United States)

    Feldman, Hume A.; Watkins, Richard

    1994-01-01

    We calculate the theoretical expectation for the bulk motion of a large-scale survey of the type recently carried out by Lauer and Postman. Included are the effects of survey geometry, errors in the distance measurements, clustering properties of the sample, and different assumed power spectra. We considered the power spectrum calculated from the Infrared Astronomy Satellite (IRAS)-QDOT survey, as well as spectra from hot + cold and standard cold dark matter models. We find that measurement uncertainty, sparse sampling, and clustering can lead to a much larger expectation for the bulk motion of a cluster sample than for the volume as a whole. However, our results suggest that the expected bulk motion is still inconsistent with that reported by Lauer and Postman at the 95%-97% confidence level.

  12. Large-scale comparative visualisation of sets of multidimensional data

    CERN Document Server

    Vohl, Dany; Fluke, Christopher J; Poudel, Govinda; Georgiou-Karistianis, Nellie; Hassan, Amr H; Benovitski, Yuri; Wong, Tsz Ho; Kaluza, Owen; Nguyen, Toan D; Bonnington, C Paul

    2016-01-01

    We present encube $-$ a qualitative, quantitative and comparative visualisation and analysis system, with application to high-resolution, immersive three-dimensional environments and desktop displays. encube extends previous comparative visualisation systems by considering: 1) the integration of comparative visualisation and analysis into a unified system; 2) the documentation of the discovery process; and 3) an approach that enables scientists to continue the research process once back at their desktop. Our solution enables tablets, smartphones or laptops to be used as interaction units for manipulating, organising, and querying data. We highlight the modularity of encube, allowing additional functionalities to be included as required. Additionally, our approach supports a high level of collaboration within the physical environment. We show how our implementation of encube operates in a large-scale, hybrid visualisation and supercomputing environment using the CAVE2 at Monash University, and on a local deskt...

  13. Preliminary design study of a large scale graphite oxidation loop

    International Nuclear Information System (INIS)

    A preliminary design study of a large scale graphite oxidation loop was performed in order to assess feasibility and to estimate capital costs. The nominal design operates at 50 atmospheres helium and 1800 F with a graphite specimen 30 inches long and 10 inches in diameter. It was determined that a simple single walled design was not practical at this time because of a lack of commercially available thick walled high temperature alloys. Two alternative concepts, at reduced operating pressure, were investigated. Both were found to be readily fabricable to operate at 1800 F and capital cost estimates for these are included. A design concept, which is outside the scope of this study, was briefly considered

  14. Interloper bias in future large-scale structure surveys

    CERN Document Server

    Pullen, Anthony R; Dore, Olivier; Raccanelli, Alvise

    2015-01-01

    Next-generation spectroscopic surveys will map the large-scale structure of the observable universe, using emission line galaxies as tracers. While each survey will map the sky with a specific emission line, interloping emission lines can masquerade as the survey's intended emission line at different redshifts. Interloping lines from galaxies that are not removed can contaminate the power spectrum measurement, mixing correlations from various redshifts and diluting the true signal. We assess the potential for power spectrum contamination, finding that an interloper fraction worse than 0.2% could bias power spectrum measurements for future surveys by more than 10% of statistical errors, while also biasing inferences based on the power spectrum. We also construct a formalism for predicting biases for cosmological parameter measurements, and we demonstrate that a 0.3% interloper fraction could bias measurements of the growth rate by more than 10% of the error, which can affect constraints from upcoming surveys o...

  15. Design Performance Standards for Large Scale Wind Farms

    DEFF Research Database (Denmark)

    Gordon, Mark

    2009-01-01

    This document presents, discusses and provides a general guide on electrical performance standard requirements for connection of large scale onshore wind farms into HV transmission networks. Experiences presented here refer mainly to technical requirements and issues encountered during the process...... of connection into the Eastern Australian power system under the Rules and guidelines set out by AEMC and NEMMCO (AEMO). Where applicable some international practices are also mentioned. Standards are designed to serve as a technical envelope under which wind farm proponents design the plant and maintain...... ongoing technical compliance of the plant during its operational lifetime. This report is designed to provide general technical information for the wind farm connection engineer to be aware of during the process of connection, registration and operation of wind power plants interconnected into the HV TSO...

  16. MUST code verification on the large scale benchmark problem

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woon; Lee, Young Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ser Gi [Kyung Hee Univ., Yongin (Korea, Republic of)

    2012-10-15

    The MUST (Multi-group Unstructured geometry SN Transport) code has been developed to deal with a complex geometry using unstructured tetrahedral elements as a computational mesh, and has been tested on several test problems. In this paper, we applied the MUST code to the large scale (a few km size) benchmark problem, which is the DS02 Fat Man problem. Compared to the other test problems, the geometry is rather simple. However, we should consider the ray effects because the epicenter (burst point of the bomb) is modeled as a point source in the air. The source spectra, geometry data, and material compositions for the calculations are available in the DS02 report. The calculated neutron, secondary gamma, and primary gamma doses are compared with the reference results in the DS02 report.

  17. Computational solutions to large-scale data management and analysis.

    Science.gov (United States)

    Schadt, Eric E; Linderman, Michael D; Sorenson, Jon; Lee, Lawrence; Nolan, Garry P

    2010-09-01

    Today we can generate hundreds of gigabases of DNA and RNA sequencing data in a week for less than US$5,000. The astonishing rate of data generation by these low-cost, high-throughput technologies in genomics is being matched by that of other technologies, such as real-time imaging and mass spectrometry-based flow cytometry. Success in the life sciences will depend on our ability to properly interpret the large-scale, high-dimensional data sets that are generated by these technologies, which in turn requires us to adopt advances in informatics. Here we discuss how we can master the different types of computational environments that exist - such as cloud and heterogeneous computing - to successfully tackle our big data problems.

  18. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems.

    Science.gov (United States)

    Demchak, Barry; Krüger, Ingolf

    2012-07-01

    The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime, thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime. PMID:25383258

  19. Isolating relativistic effects in large-scale structure

    CERN Document Server

    Bonvin, Camille

    2014-01-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons' direction, is distorted by inhomogeneities in our universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  20. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice......Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...