WorldWideScience

Sample records for ca1 spine properties

  1. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  2. Extinction procedure induces pruning of dendritic spines in CA1 hippocampal field depending on strength of training in rats

    Science.gov (United States)

    Garín-Aguilar, María E.; Díaz-Cintra, Sofía; Quirarte, Gina L.; Aguilar-Vázquez, Azucena; Medina, Andrea C.; Prado-Alcalá, Roberto A.

    2012-01-01

    Numerous reports indicate that learning and memory of conditioned responses are accompanied by genesis of dendritic spines in the hippocampus, although there is a conspicuous lack of information regarding spine modifications after behavioral extinction. There is ample evidence that treatments that typically produce amnesia become innocuous when animals are submitted to a procedure of enhanced training. We now report that extinction of inhibitory avoidance (IA), trained with relatively low foot-shock intensities, induces pruning of dendritic spines along the length of the apical dendrites of hippocampal CA1 neurons. When animals are trained with a relatively high foot-shock there is a high resistance to extinction, and pruning in the proximal and medial segments of the apical dendrite are seen, while spine count in the distal dendrite remains normal. These results indicate that pruning is involved in behavioral extinction, while maintenance of spines is a probable mechanism that mediates the protecting effect against amnesic treatments produced by enhanced training. PMID:22438840

  3. Extinction procedure induces pruning of dendritic spines in CA1 hippocampal field depending on strength of training in rats

    Directory of Open Access Journals (Sweden)

    María Eugenia Garín-Aguilar

    2012-03-01

    Full Text Available Numerous reports indicate that learning and memory of conditioned responses are accompanied by genesis of dendritic spines in the hippocampus, although there is a conspicuous lack of information regarding spine modifications after behavioral extinction. There is ample evidence that treatments that typically produce amnesia become innocuous when animals are submitted to a procedure of enhanced training. We now report that extinction of inhibitory avoidance, trained with relatively low foot-shock intensities, induces pruning of dendritic spines along the length of the apical dendrites of hippocampal CA1 neurons. When animals are trained with a relatively high foot-shock there is a high resistance to extinction, and pruning in the proximal and medial segments of the apical dendrite are seen, while spine count in the distal dendrite remains normal. These results indicate that pruning is involved in behavioral extinction, while maintenance of spines is a probable mechanism that mediates the protecting effect against amnesic treatments produced by enhanced training.

  4. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters.

    Science.gov (United States)

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Haim, Abraham; Nelson, Randy J

    2011-08-01

    The prevalence of major depression has increased in recent decades; however, the underlying causes of this phenomenon remain unspecified. One environmental change that has coincided with elevated rates of depression is increased exposure to artificial light at night. Shift workers and others chronically exposed to light at night are at increased risk of mood disorders, suggesting that nighttime illumination may influence brain mechanisms mediating affect. We tested the hypothesis that exposure to dim light at night may impact affective responses and alter morphology of hippocampal neurons. Ovariectomized adult female Siberian hamsters (Phodopus sungorus) were housed for 8 weeks in either a light/dark cycle (LD) or a light/dim light cycle (DM), and then behavior was assayed. DM-hamsters displayed more depression-like responses in the forced swim and the sucrose anhedonia tests compared with LD-hamsters. Conversely, in the elevated plus maze DM-hamsters reduced anxiety-like behaviors. Brains from the same animals were processed using the Golgi-Cox method and hippocampal neurons within CA1, CA3, and the dentate gyrus were analyzed for morphological characteristics. In CA1, DM-hamsters significantly reduced dendritic spine density on both apical and basilar dendrites, an effect which was not mediated by baseline cortisol, as concentrations were equivalent between groups. These results demonstrate dim light at night is sufficient to reduce synaptic spine connections to CA1. Importantly, the present results suggest that night-time low level illumination, comparable to levels that are pervasive in North America and Europe, may contribute to the increasing prevalence of mood disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Role of the medial septum diagonal band of Broca cholinergic neurons in oestrogen-induced spine synapse formation on hippocampal CA1 pyramidal cells of female rats.

    Science.gov (United States)

    Lâm, Thiên-Trí; Leranth, Csaba

    2003-05-01

    Oestrogen is known to influence pyramidal cell spine synapse plasticity in the CA1 subfield of the hippocampus. Apart from direct oestrogen action on the hippocampus, oestrogen effects mediated by subcortical structures are known to be important. The purpose of this study was to investigate whether the medial septum diagonal band of Broca (MSDB) takes part in mediating oestrogen effects to the hippocampus. Special attention was given to the role of cholinergic MSDB neurons that project to the hippocampus, as a rather large population of them contains oestrogen receptors and, consequently, may be sensitive to oestrogen signals. Adult female rats were ovariectomized. Oestradiol- and cholesterol-filled cannulae (control) were implanted into the MSDB. To selectively eliminate the cholinergic population of MSDB neurons of oestrogen-treated animals, a group of rats was injected with 192 IgG-saporin (SAP) into the lateral ventricle 1 week before the cannula implant. Immunostaining with anti-choline acetyltransferase and parvalbumin (PA) showed that cholinergic but not PA-containing GABAergic neurons were substantially reduced in the MSDB of SAP rats. Comparative electron microscopic unbiased stereological analysis on the spine synapse density of CA1 area pyramidal cells was performed between all animal groups. Rats that received oestradiol-filled cannulae showed a higher (30%) spine synapse density than control animals. Oestrogen-treated rats that had received SAP treatment showed no significant difference to controls. Thus, this observation indicates that septo-hippocampal cholinergic neurons are involved in mediating oestrogen effects to the hippocampus. The relevance of this observation to mnemonic functions and Alzheimer's disease is discussed.

  6. Synthesis and Microstructure Properties of (Bi,Pb2Sr2Ca1Cu2Oy Ceramic Superconductor

    Directory of Open Access Journals (Sweden)

    nurmalita .

    2015-11-01

    Full Text Available Properties of (Bi, Pb2Sr2Ca1Cu2Oy ceramic superconductors were prepared by the melt textured growth methods in order to investigate the effects of the slow cooling time on the microstructur.  Phase analyses of the samples by X-ray diffraction (XRD has been carried out to assess the effects of the slow cooling time. From XRD analyses, the addition to the sample of  the slow cooling time degrades formation of the high-Tc Bi-2212 phase. The possible reasons for the observed degradation in the microstructure properties due to the slow cooling time addition were discussed.

  7. Single-trial properties of place cells in control and CA1 NMDA receptor subunit 1-KO mice

    NARCIS (Netherlands)

    Cabral, H.O.; Fouquet, C.; Rondi-Reig, L.; Pennartz, C.M.A.; Battaglia, F.P.

    2014-01-01

    The NMDA receptor plays a key role in synaptic plasticity and its disruption leads to impaired spatial representation in the CA1 area of the hippocampus, with place cells exhibiting larger place fields (McHugh et al., 1996). Place fields are defined by the spatial and nonspatial inputs of a given

  8. Loading rate effect on mechanical properties of cervical spine ligaments.

    Science.gov (United States)

    Trajkovski, Ana; Omerovic, Senad; Krasna, Simon; Prebil, Ivan

    2014-01-01

    Mechanical properties of cervical spine ligaments are of great importance for an accurate finite element model when analyzing the injury mechanism. However, there is still little experimental data in literature regarding fresh human cervical spine ligaments under physiological conditions. The focus of the present study is placed on three cervical spine ligaments that stabilize the spine and protect the spinal cord: the anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The ligaments were tested within 24-48 hours after death, under two different loading rates. An increase trend in failure load, failure stress, stiffness and modulus was observed, but proved not to be significant for all ligament types. The loading rate had the highest impact on failure forces for all three ligaments (a 39.1% average increase was found). The observed increase trend, compared to the existing increase trends reported in literature, indicates the importance of carefully applying the existing experimental data, especially when creating scaling factors. A better understanding of the loading rate effect on ligaments properties would enable better case-specific human modelling.

  9. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons.

    Science.gov (United States)

    Vila-Luna, S; Cabrera-Isidoro, S; Vila-Luna, L; Juárez-Díaz, I; Bata-García, J L; Alvarez-Cervera, F J; Zapata-Vázquez, R E; Arankowsky-Sandoval, G; Heredia-López, F; Flores, G; Góngora-Alfaro, J L

    2012-01-27

    the basal but not the apical dendrites of CA1 pyramidal neurons from rats chronically treated with caffeine, in comparison with their age- and littermate-matched controls. Altogether, the present findings strengthen the epidemiological observations suggesting that prolonged caffeine intake prevents the cognitive decline associated with aging, and open the possibility that this process could be mediated by promoting the growth of dendrites and spines in neurons of the adult mammalian brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Dramatic variation of the multiferroic properties in Sr doped Ca1-xSrxMn7O12

    Directory of Open Access Journals (Sweden)

    Parul Jain

    2017-05-01

    Full Text Available CaMn7O12 is a magnetic multiferroic material, in which large ferroelectric polarization has reportedly been induced by magnetic ordering. In this work, we observe remarkable changes in the spontaneous ferroelectric polarization PS as well as the magnetization M with only 2% Sr doping. In Ca0.98Sr0.02Mn7O12, PS dramatically becomes more than double the PS in the un-doped material and concomitantly M is reduced to less than half of its value therein. Increase of PS together with the decrease of M points out clearly the coupling of PS and M in CaMn7O12. We stress here that as Ca and Sr are isovalent, no charge carriers (electrons and holes are added in the system due to Sr-doping. X-ray diffraction shows that all our Sr-doped materials Ca1-xSrxMn7O12 (x = 0.01, 0.02, 0.05, 0.10 are free from secondary phases. From our work, it becomes clear why SrMn7O12 exhibits no or weak ferroelectricity.

  11. Measuring F-actin properties in dendritic spines

    Directory of Open Access Journals (Sweden)

    Mikko eKoskinen

    2014-08-01

    Full Text Available During the last decade, numerous studies have demonstrated that the actin cytoskeleton plays a pivotal role in the control of dendritic spine shape. Synaptic stimulation rapidly changes the actin dynamics and many actin regulators have been shown to play roles in neuron functionality. Accordingly, defects in the regulation of the actin cytoskeleton in neurons have been implicated in memory disorders. Due to the small size of spines, it is difficult to detect changes in the actin structures in dendritic spines by conventional light microscopy imaging. Instead, to know how tightly actin filaments are bundled together, and how fast the filaments turnover, we need to use advanced microscopy techniques, such as fluorescence recovery after photobleaching (FRAP, photoactivatable green fluorescent protein (PAGFP fluorescence decay and fluorescence anisotropy. Fluorescence anisotropy, which measures the Förster resonance energy transfer (FRET between two GFP fluorophores, has been proposed as a method to measure the level of actin polymerization. Here, we propose a novel idea that fluorescence anisotropy could be more suitable to study the level of actin filament bundling instead of actin polymerization. We validate the method in U2OS cell line where the actin structures can be clearly distinguished and apply the method to analyze how actin filament organization in dendritic spines changes during neuronal maturation. In addition to fluorescence anisotropy validation, we take a critical look at the properties and limitations of FRAP and PAGFP fluorescence decay methods and offer our proposals for the analysis methods for these approaches. These three methods complement each other, each providing additional information about actin dynamics and organization in dendritic spines.

  12. Strain rate dependent properties of younger human cervical spine ligaments.

    Science.gov (United States)

    Mattucci, Stephen F E; Moulton, Jeffrey A; Chandrashekar, Naveen; Cronin, Duane S

    2012-06-01

    The cervical spine ligaments play an essential role in limiting the physiological ranges of motion in the neck; however, traumatic loading such as that experienced in automotive crash scenarios can lead to ligament damage and result in neck injury. The development of detailed neck models to evaluate the response and the potential for injury requires accurate ligament mechanical properties at relevant loading rates. The objective of this study was to measure the mechanical properties of the cervical spine ligaments, by performing tensile tests at elongation rates relevant to car crash scenarios, using younger specimens (≤50 years), in simulated in vivo conditions, and to provide a comprehensive investigation of gender and spinal level effects. The five ligaments investigated were the anterior longitudinal ligament, posterior longitudinal ligament, capsular ligament, ligamentum flavum, and interspinous ligament. Ligaments were tested in tension at quasi-static (0.5 s(-1)), medium (20 s(-1)) and high (150-250 s(-1)) strain rates. The high strain rates represented typical car crash scenarios as determined using an existing cervical spine finite element model. In total, 261 ligament tests were performed, with approximately even distribution within elongation rate, spinal level, and gender. The measured force-displacement data followed expected trends compared to previous studies. The younger ligaments investigated in this study demonstrated less scatter, and were both stiffer and stronger than comparable data from older specimens reported in previous studies. Strain rate effects were most significant, while spinal level effects were limited. Gender effects were not significant, but consistent trends were identified, with male ligaments having a higher stiffness and failure force than female ligaments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Intermittent fasting promotes prolonged associative interactions during synaptic tagging/capture by altering the metaplastic properties of the CA1 hippocampal neurons.

    Science.gov (United States)

    Dasgupta, Ananya; Kim, Joonki; Manakkadan, Anoop; Arumugam, Thiruma V; Sajikumar, Sreedharan

    2017-12-19

    Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation. Copyright © 2017. Published by Elsevier Inc.

  15. Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons [v2; ref status: indexed, http://f1000r.es/2gk

    Directory of Open Access Journals (Sweden)

    Matthew Sykes

    2013-12-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2-/- and wildtype (C57BI/6j mice (n=10 per genotype undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.

  16. Structural and superconducting properties of Sr for Ba substituted La1.5Nd0.5Ca1(Ba2-xSrx)Cu5Oz system

    Science.gov (United States)

    Bhalodia, J. A.; Mankadia, S. R.; Dalsaniya, S. M.; Okram, G. S.

    2013-06-01

    An attempt is made to investigate the effect of isovalent substitution (i. e. Sr+2 for Ba+2) and chemical pressure effect (i.e. smaller cation substitution) on the structure and superconductivity of La1.5Nd0.5Ca1(Ba2-xSrx)Cu5Oz,x = 0.0-1.0, (LNCBSCO) system. A series of LNCBSCO system has been synthesized by a solid-state reaction route. All the compounds crystallize with the tetragonal LaBa2Cu3Oz type structure with the space group P4/mmm. The structural parameters of the prepared samples are obtained using X-ray diffraction (XRD) with Rietveld analysis. The electrical properties are also carefully investigated using the four-probe temperature dependent resistivity (R-T) technique. The oxygen content is estimated through Iodometric titration. All the samples show the well superconducting behavior with decreasing Tc values ranging from 79 K to 60 K for x = 0.0 to x = 0.8. Tc exhibits a strong correlation with doping concentration. We discuss possible reasons and inherent of the Tc(x) suppression.

  17. Unexpected formation of scheelite-structured Ca1-xCdxWO4 (0 ≤ x ≤ 1) continuous solid solutions with tunable photoluminescent and electronic properties.

    Science.gov (United States)

    Wang, Yunjian; Wu, Changjiang; Geng, Lei; Chen, Shifu

    2017-08-30

    Design of a solid solution with tunable functionality is an attractive strategy toward realizing novel devices with multi-functionalities. In this work, a series of Ca1-xCdxWO4 solid solutions in the entire range 0 ≤ x ≤ 1 with tetragonal scheelite structure have been successfully prepared for the first time. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectroscopies indicated that all the nanocrystals have a tetragonal scheelite structure without wolframite phase. Structural refinement data revealed that the lattice volume decreased with the replacement of Ca2+ by Cd2+ ions. UV-Vis diffuse reflectance spectra indicated that optical band gap reduced with the replacement of Ca2+ by Cd2+ ions. Scanning electron microscopic (SEM) images showed that morphologies of the nanocrystals changed with the chemical compositions. The structure evolution of the solid solutions was further investigated by high-resolution transmission electron microscopy (HRTEM). Moreover, the influence of chemical compositions on the photoluminescent and electric performance has been performed and discussed. The reported synthetic approach and findings reported here are important to understand the structure and structure-property relation of scheelite-structured tungstate and molybdate compounds, which has potential applications in the design of other kinds of novel functional materials.

  18. Biomechanical properties of human thoracic spine disc segments

    Directory of Open Access Journals (Sweden)

    B D Stemper

    2010-01-01

    Full Text Available Background : The objective was to determine the age-dependent compressive and tensile properties of female and male thoracic spine segments using postmortem human subjects (PMHS. Materials and Methods : Forty-eight thoracic disc segments at T4-5, T6-7, T8-9, and T10-11 levels from 12 PMHS T3-T11 spinal columns were divided into groups A and B based on specimen age and loaded in compression and tension. Stiffness and elastic modulus were computed. Stiffness was defined as the slope in the linear region of the force-displacement response. Elastic modulus was defined as the slope of the stress strain curve. Analysis of Variance (ANOVA was used to determine significant differences (P< 0.05 in the disc cross-sectional area, stiffness, and elastic modulus based on gender, spinal level, and group. Results : Specimen ages in group A (28 ± 8 years were significantly lower than in group B (70 ± 7 years. Male discs had significantly greater area (7.2 ± 2.0 sq cm than female discs (5.9 ± 1.8 sq cm. Tensile and compressive stiffness values were significantly different between the two age groups, but not between gender and level. Specimens in group A had greater tensile (486 ± 108 N/mm and compressive (3300 ± 642 N/mm stiffness values compared to group B specimens (tension: 397 ± 124 N/mm, compression: 2527 ± 734 N/mm. Tensile and compressive elastic modulus values depended upon age group and gender, but not on level. Group A specimens had significantly greater tensile and compressive moduli (2.9 ± 0.8 MPa, 19.5 ± 4.1 MPa than group B specimens (1.7 ± 0.6 MPa, 10.6 ± 3.4 MPa. Female specimens showed significantly greater tensile and compressive moduli (2.6 ± 1.0 MPa, 16.6 ± 6.4 MPa than male specimens (2.0 ± 0.7 MPa, 13.7 ± 5.0 MPa. Discussion: Using the two groups to represent "young" and "old" specimens, this study showed that the mechanical response decreases in older specimens, and the decrease is greater in compressive than distractive

  19. Thermoelectric properties of Ca(1-x)Gd(x)MnO(3-δ) (0.00, 0.02, and 0.05) systems.

    Science.gov (United States)

    Bhaskar, Ankam; Liu, Chia-Jyi; Yuan, J J

    2012-01-01

    Polycrystalline samples of Ca(1-x)Gd(x)MnO(3-δ) (x = 0.00, 0.02, and 0.05) have been studied by X-ray diffraction (XRD), electrical resistivity (ρ), thermoelectric power (S), and thermal conductivity (κ). All the samples were single phase with an orthorhombic structure. The Seebeck coefficient of all the samples was negative, indicating that the predominant carriers are electrons over the entire temperature range. The iodometric titration measurements indicate that the electrical resistivity of Ca(1-x)Gd(x)MnO(3-δ) correlated well with the average valence of Mn(v+) and oxygen deficiency. Among the doped samples, Ca₀.₉₈Gd₀.₀₂MnO(3-δ) had the highest dimensionless figure of merit 0.018 at 300 K, representing an improvement of about 125% with respect to the undoped GaMnO(3-δ) sample at the same temperature.

  20. Thermoelectric Properties of Ca1−xGdxMnO3−δ (0.00, 0.02, and 0.05 Systems

    Directory of Open Access Journals (Sweden)

    Ankam Bhaskar

    2012-01-01

    Full Text Available Polycrystalline samples of Ca1−GdMnO3− (=0.00, 0.02, and 0.05 have been studied by X-ray diffraction (XRD, electrical resistivity (ρ, thermoelectric power (S, and thermal conductivity (κ. All the samples were single phase with an orthorhombic structure. The Seebeck coefficient of all the samples was negative, indicating that the predominant carriers are electrons over the entire temperature range. The iodometric titration measurements indicate that the electrical resistivity of Ca1−GdMnO3− correlated well with the average valence of Mn+ and oxygen deficiency. Among the doped samples, Ca0.98Gd0.02MnO3− had the highest dimensionless figure of merit 0.018 at 300 K, representing an improvement of about 125% with respect to the undoped GaMnO3− sample at the same temperature.

  1. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    OpenAIRE

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike Timing-Dependent Plasticity (STDP) is a cellular model of hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15-20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased l...

  2. Thermoelectric properties of Ca1-xYxMnO3 and Ca0.9Y0.1-yFeyMnO3 perovskite compounds

    DEFF Research Database (Denmark)

    Thuy, Nguyen Thi; Minh, Dang Le; Van Nong, Ngo

    2012-01-01

    Polycrystalline Ca1-xYxMnO3 (x = 0.0; 0.1; 0.3; 0.5; 0.7) and Ca0.9Y0.1-yFeyMnO3 (y = 0.00; 0.01; 0.03; 0.05) compounds were prepared by solid-state reaction. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as identical to the orthorhombic structure. The thermoelectric ...

  3. Thermoelectric Properties of Ca1−xGdxMnO3−δ (0.00, 0.02, and 0.05) Systems

    Science.gov (United States)

    Bhaskar, Ankam; Liu, Chia-Jyi; Yuan, J. J.

    2012-01-01

    Polycrystalline samples of Ca1−xGdxMnO3−δ (x = 0.00, 0.02, and 0.05) have been studied by X-ray diffraction (XRD), electrical resistivity (ρ), thermoelectric power (S), and thermal conductivity (κ). All the samples were single phase with an orthorhombic structure. The Seebeck coefficient of all the samples was negative, indicating that the predominant carriers are electrons over the entire temperature range. The iodometric titration measurements indicate that the electrical resistivity of Ca1−xGdxMnO3−δ correlated well with the average valence of Mnv+ and oxygen deficiency. Among the doped samples, Ca0.98Gd0.02MnO3−δ had the highest dimensionless figure of merit 0.018 at 300 K, representing an improvement of about 125% with respect to the undoped GaMnO3−δ sample at the same temperature. PMID:22997488

  4. Electrical Properties of Ba3Ca1.18Nb1.82O9-  Proton-Conducting Electrolyte Prepared by a Combustion Method

    KAUST Repository

    Bi, Lei

    2013-10-07

    Ba3Ca1.18Nb1.82O9-δ (BCN18), regarded as a promising proton-conducting electrolyte material for solid oxide fuel cells, is usually synthesized by a solid-state reaction because of the limited choice of Nb precursors. This study presents a wet chemical route for preparing BCN18 powders that were then sintered into pellets. Electrochemical impedance spectroscopy studies indicated that BCN18 pellets show proton conductivity, since their total conductivity in wet air was significantly larger than that in dry air. However, a detailed analysis showed that only the BCN18 bulk behaves as a proton conductor, while its grain boundary conductivity did not increase in wet air.

  5. Influence of the on-line ELF-EMF stimulation on the electrophysiological properties of the rat hippocampal CA1 neurons in vitro

    Science.gov (United States)

    Zheng, Yu; Ma, Wei; Dong, Lei; Dou, Jun-rong; Gao, Yang; Xue, Jing

    2017-10-01

    The extremely low frequency electromagnetic fields (ELF-EMFs) have been shown to have an environmentally negative effect on humans' health; however, its treatment effect is beneficial for patients suffering from neurological disorders. Despite this success, the application of ELF-EMF has exceeded in the understanding of its internal mechanism. Recently, it was found that on-line magnetic stimulation may offer advantages over off-line magnetic exposure and has proven to be effective in activating the prefrontal cortex pyramidal neurons in vitro. Here, we perform computational simulations of the stimulation coils in COMSOL modeling to describe the uniformity of the distribution of the on-line magnetic field. Interestingly, the modeling data and actual measurements showed that the densities of the magnetic flux that was generated by the on-line stimulation coils were similar. The on-line magnetic stimulator induced sodium channel currents as well as field excitatory postsynaptic potentials of the rat hippocampal CA1 neurons and successfully demonstrated its extensive applications to activate neuronal tissue. These findings further raise the possibility that the instrument of on-line magnetic stimulation may be an effective alternative for studies in the field of bioelectromagnetics.

  6. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers

    2008-01-01

    of synapses) in subregions of the hippocampus by quantifying number of neurons and synapses. Adult male Sprague-Dawley rats were injected with imipramine or saline (i.p.) daily for 14 days. Unbiased stereological methods were used to quantify the number of neurons and synapses. No differences in the volume...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our...... results indicate that administration of imipramine for 14 days in normal rats could significantly increase the excitatory spine synapses, and change the relative distribution of spine and shaft synapses. We speculate that the present findings may be explained by the establishment of new synaptic...

  7. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1−xRuO3-buffered SrTiO3 substrates

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    (001)-oriented BiFeO 3 (BFO) thin films were grown on Sr xCa 1-xRuO 3- (SCRO; x = 1, 0.67, 0.33, 0) buffered SrTiO 3 (001) substrates using pulsed laser deposition. The microstructural, electrical, ferroelectric, and piezoelectric properties of the thin films were considerably affected by the buffer layers. The interface between the BFO films and the SCRO-buffer layer was found to play a dominant role in determining the electrical and piezoelectric behaviors of the films. We found that films grown on SrRuO 3-buffer layers exhibited minimal electrical leakage while films grown on Sr 0.33Ca 0.67RuO 3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed. © 2012 American Institute of Physics.

  8. Tensile failure properties of the perinatal, neonatal, and pediatric cadaveric cervical spine.

    Science.gov (United States)

    Luck, Jason F; Nightingale, Roger W; Song, Yin; Kait, Jason R; Loyd, Andre M; Myers, Barry S; Bass, Cameron R Dale

    2013-01-01

    Biomechanical tensile testing of perinatal, neonatal, and pediatric cadaveric cervical spines to failure. To assess the tensile failure properties of the cervical spine from birth to adulthood. Pediatric cervical spine biomechanical studies have been few due to the limited availability of pediatric cadavers. Therefore, scaled data based on human adult and juvenile animal studies have been used to augment the limited pediatric cadaver data. Despite these efforts, substantial uncertainty remains in our understanding of pediatric cervical spine biomechanics. A total of 24 cadaveric osteoligamentous head-neck complexes, 20 weeks gestation to 18 years, were sectioned into segments (occiput-C2 [O-C2], C4-C5, and C6-C7) and tested in tension to determine axial stiffness, displacement at failure, and load-to-failure. Tensile stiffness-to-failure (N/mm) increased by age (O-C2: 23-fold, neonate: 22 ± 7, 18 yr: 504; C4-C5: 7-fold, neonate: 71 ± 14, 18 yr: 509; C6-C7: 7-fold, neonate: 64 ± 17, 18 yr: 456). Load-to-failure (N) increased by age (O-C2: 13-fold, neonate: 228 ± 40, 18 yr: 2888; C4-C5: 9-fold, neonate: 207 ± 63, 18 yr: 1831; C6-C7: 10-fold, neonate: 174 ± 41, 18 yr: 1720). Normalized displacement at failure (mm/mm) decreased by age (O-C2: 6-fold, neonate: 0.34 ± 0.076, 18 yr: 0.059; C4-C5: 3-fold, neonate: 0.092 ± 0.015, 18 yr: 0.035; C6-C7: 2-fold, neonate: 0.088 ± 0.019, 18 yr: 0.037). Cervical spine tensile stiffness-to-failure and load-to-failure increased nonlinearly, whereas normalized displacement at failure decreased nonlinearly, from birth to adulthood. Pronounced ligamentous laxity observed at younger ages in the O-C2 segment quantitatively supports the prevalence of spinal cord injury without radiographic abnormality in the pediatric population. This study provides important and previously unavailable data for validating pediatric cervical spine models, for evaluating current scaling techniques and animal surrogate models, and for the development

  9. Internal oxidation of ag-Y1Ba2Cu3,-Bi2Sr2Ca1Cu2 and -Bi(1. 8)Pb(0. 3)Sr2Ca2Cu3 alloys, and their resulting superconducting properties. Ag-Y1Ba2Cu3, -Bi2Sr2Ca1Cu2, -Bi(1. 8)Pb(0. 3)Sr2Ca2Cu3 gokin no naibu sanka to sono chodendo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Numazawa, T.; Kimura, H.; Kimura, T.; Fukamachi, M. (National Research Inst. for Metals, Tsukuba, Ibaraki (Japan))

    1994-02-20

    Concerning wire rods for magnets and materials for magnetic shielding, etc. using oxide superconducting substances, studies and development are being made for making the above materials to be composite materials using Ag. In this study, concerning the solute composition of Ag-based alloys, Y1Ba2Cu3, Bi2Sr2Ca1Cu2, and Bi(1.8)Pb(0.3)Sr2Ca2Cu3 have been selected imaging the 123 phase at the Y system, and the 2212 low Tc phase as well as the 2223 high Tc phase at the Bi system. And oxide superconducting substances have been made precipitated in Ag by internal oxidation and thermal treatment of the dissolved alloys compound of Ag-Y1Ba2Cu3, Ag-Bi2Sr2Ca1Cu2, and Ag-Bi(1.8)Pb(0.3)Sr2Ca2Cu3, and its superconducting properties have been studied. Thereby electroconducting paths have been formed by the precipitated oxide superconducting substances and the critical current, though at a low value, has been attained. Also the composition of the above oxide superconducting substances has been image-analyzed from the observation result with an electron beam probe X-ray microanalyzer. With regard to the Ag-Bi(1.8)Pb(0.3)Sr2Ca2Cu3 alloy, precipitation of the single phase of the 2223 phase has not been able to obtain by thermal treatment. 11 refs., 8 figs.

  10. Measurement Properties of the Brazilian-Portuguese Version of the Lumbar Spine Instability Questionnaire.

    Science.gov (United States)

    Araujo, Amanda Costa; da Cunha Menezes Costa, Lucíola; de Oliveira, Crystian Bittencourt Soares; Morelhão, Priscila Kalil; de Faria Negrão Filho, Rúben; Pinto, Rafael Zambelli; Costa, Leonardo Oliveira Pena

    2017-07-01

    Cross-cultural adaptation and analysis of measurement properties. To translate and cross-culturally adapt the Lumbar Spine Instability Questionnaire (LSIQ) into Brazilian-Portuguese and to test its measurement properties in Brazilian patients with low back pain. The selection of subgroup of patients that respond better to specific interventions is the top research priority in the field of back pain. The LSIQ is a tool able to stratify patients with low back pain who responds better to motor control exercises. There is no Brazilian-Portuguese version of the LSIQ available. The original version of the LSIQ was translated and cross-culturally adapted. We collected data from 100 patients with low back pain. In addition to LSIQ, we also collected information about physical activity levels (measured by the International Physical Activity Questionnaire short version), disability (measured by the Roland Morris Disability Questionnaire), pain intensity (measured by the Pain numerical Rating Scale), kinesiophobia (measured by the Tampa Scale of Kinesiophobia), and depression (measured by the Beck Depression Inventory). The measurement properties tested were internal consistency, reproducibility (reliability and agreement), construct validity, and ceiling and floor effects. The Brazilian-Portuguese version of the LSIQ showed good measurement properties with a Cronbach alpha of 0.79, an intraclass correlation coefficient of 0.75, a standard error of measurement of 1.65 points, and a minimal detectable change of 3.54 points. We did not detect ceiling and floor effects. The construct validity analysis was observed a moderate correlation between the LSIQ and Pain Numerical Rating Scale r = 0.46, Roland Morris Disability Questionnaire r = 0.66, Tampa Scale of Kinesiophobia r = 0.49, and Beck Depression Inventory r = 0.44. The Brazilian-Portuguese version of LIQ has adequate measurement properties and can be used in clinical practice and research. NA.

  11. Quantification of intervertebral disc volume properties below spine fusion, using magnetic resonance imaging, in adolescent idiopathic scoliosis surgery.

    Science.gov (United States)

    Violas, Philippe; Estivalezes, Erik; Briot, Jérome; Sales de Gauzy, Jérome; Swider, Pascal

    2007-07-01

    Prospective clinical study. A quantification of volume and hydration variation of the intervertebral discs, using magnetic resonance imaging (MRI), in the lumbar spine before and after surgery performed in adolescent idiopathic scoliosis (AIS). To evaluate an objective quantification of volume and hydration of intervertebral discs below spine fusion in scoliosis surgery. Repercussion of long spine fusion on the free lower lumbar spine is one of the major concerns of scoliosis surgery. However, the evolution of lumbar intervertebral disc below thoracolumbar fusions remains unknown. MRI performed in the clinical protocol, concerned 28 patients having an idiopathic scoliosis. They underwent posterior instrumentations. MRI was obtained before surgery, after surgery at 3 months and for 15 patients at 1 year. MRI data were posttreated using a custom-made image processing software to semiautomatically derive volume properties of disc, anulus fibrosus, and nucleus pulposus. The nucleus-disc volume ratio was also an indicator of the hydration level. The reliability of the three-dimensional reconstruction process was initially verified using an intraoperator reproducibility test. Original preoperative data on disc volume properties were then derived. Postoperative volume variations were quantified in discs below spine fusion taking into account the level of the arthrodesis and the disc location. It showed that the postoperative volume criteria increased significantly for nucleus, disc, and nucleus-disc volume ratio and some magnitude modulation could be conditioned by the location of surgical instrumentation. Some stabilization or reduction depending on disc level and arthrodesis size between 3 months and 1 year is observed in the follow-up. It tended to prove that the recovery of balance physiologic positioning and inherent biomechanical loads could induce a restored hydration of disc, which should favor the remodeling of free segments. This work was the first report

  12. Hippocampal CA1 Ripples as Inhibitory Transients.

    Directory of Open Access Journals (Sweden)

    Paola Malerba

    2016-04-01

    Full Text Available Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  13. Klotho regulates CA1 hippocampal synaptic plasticity.

    Science.gov (United States)

    Li, Qin; Vo, Hai T; Wang, Jing; Fox-Quick, Stephanie; Dobrunz, Lynn E; King, Gwendalyn D

    2017-04-07

    Global klotho overexpression extends lifespan while global klotho-deficiency shortens it. As well, klotho protein manipulations inversely regulate cognitive function. Mice without klotho develop rapid onset cognitive impairment before they are 2months old. Meanwhile, adult mice overexpressing klotho show enhanced cognitive function, particularly in hippocampal-dependent tasks. The cognitive enhancing effects of klotho extend to humans with a klotho polymorphism that increases circulating klotho and executive function. To affect cognitive function, klotho could act in or on the synapse to modulate synaptic transmission or plasticity. However, it is not yet known if klotho is located at synapses, and little is known about its effects on synaptic function. To test this, we fractionated hippocampi and detected klotho expression in both pre and post-synaptic compartments. We find that loss of klotho enhances both pre and post-synaptic measures of CA1 hippocampal synaptic plasticity at 5weeks of age. However, a rapid loss of synaptic enhancement occurs such that by 7weeks, when mice are cognitively impaired, there is no difference from wild-type controls. Klotho overexpressing mice show no early life effects on synaptic plasticity, but decreased CA1 hippocampal long-term potentiation was measured at 6months of age. Together these data suggest that klotho affects cognition, at least in part, by regulating hippocampal synaptic plasticity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair.

    Science.gov (United States)

    Cao, Lei; Li, Xiaokang; Zhou, Xiaoshu; Li, Yong; Vecchio, Kenneth S; Yang, Lina; Cui, Wei; Yang, Rui; Zhu, Yue; Guo, Zheng; Zhang, Xing

    2017-03-22

    Sea urchin spines (Heterocentrotus mammillatus), with a hierarchical open-cell structure similar to that of human trabecular bone and superior mechanical property (compressive strength ∼43.4 MPa) suitable for machining to shape, were explored for potential applications of bone defect repair. Finite element analyses reveal that the compressive stress concentrates along the dense growth rings and dissipates through strut structures of the stereoms, indicating that the exquisite mesostructures play an important role in high strength-to-weight ratios. The fracture strength of magnesium-substituted tricalcium phosphate (β-TCMP) scaffolds produced by hydrothermal conversion of urchin spines is about 9.3 MPa, comparable to that of human trabecular bone. New bone forms along outer surfaces of β-TCMP scaffolds after implantation in rabbit femoral defects for one month and grows into the majority of the inner open-cell spaces postoperation in three months, showing tight interface between the scaffold and regenerative bone tissue. Fusion of beagle lumbar facet joints using a Ti-6Al-4V cage and β-TCMP scaffold can be completed within seven months with obvious biodegradation of the β-TCMP scaffold, which is nearly completely degraded and replaced by newly formed bone ten months after implantation. Thus, sea urchin spines suitable for machining to shape have advantages for production of biodegradable artificial grafts for bone defect repair.

  15. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing

    Directory of Open Access Journals (Sweden)

    Ayla eAksoy Aksel

    2013-08-01

    Full Text Available In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic path (pp-CA1 synapse and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse. Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We established that field excitatory postsynaptic potentials at the pp-CA1 have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (> 24h was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.

  16. Research on the Influence of the Properties of Intervertebral Disc Stiffness of the Lumbar Spine on the Displacement of Veretbrae

    Directory of Open Access Journals (Sweden)

    Artūras Linkel

    2015-03-01

    Full Text Available The article proposes the method for evaluating angular and linear changes in intervertebral discs of the spine depending on linear and nonlinear intervertebral disc stiffness. A dynamic made of 5 solid bodies connected by damping and stiffness components and applied for 2-D 10 degrees of freedom of the lumbar spine has been used for calculations. The system of the equation has been written in a matrix form. Lumbar intervertebral discs stiffness and damping properties have been selected from scientific articles and make from 200 N/mm to 1200 N/mm and from 229 Ns / mm to 5100 Ns/mm respectively for non-linear calculation and 800 N / mm – 2637 Ns/mm for linear displacement calculation. External loads applied to the model are 1648 N, 2957 N, 3863 N and 4542 N. The basic task of the paper is to calculate the biggest difference in linear and angular displacement considering 2 cases: linear and non-linear stiffness value. The greatest estimated difference, under the highest load, makes 0.6 mm for linear and 0.95 degrees for angular displacement. Because of the fast response of the model to the load, the damping value could not affect displacement.

  17. CA1 contributes to microcalcification and tumourigenesis in breast cancer.

    Science.gov (United States)

    Zheng, Yabing; Xu, Bing; Zhao, Yan; Gu, He; Li, Chang; Wang, Yao; Chang, Xiaotian

    2015-10-12

    Although mammary microcalcification is frequently observed and has been associated with poor survival in patients with breast cancer, the genesis of calcification remains unclear. Carbonic anhydrase I (CA1) has been shown to promote calcification by catalysing the hydration of CO2. This study aimed to determine whether CA1 was correlated with microcalcification and with other processes that are involved in breast cancer tumourigenesis. CA1 expression in breast cancer tissues and blood samples was detected using western blotting, real-time PCR, immunohistochemistry and ELISA. Calcification was induced in the cultured 4T1 cell line originating from mouse breast tumours, using ascorbic acid and β-glycerophosphate. Acetazolamide, a chemical inhibitor of CA1, was also added to the culture to determine the role of CA1 in calcification. The MCF-7 human breast cancer cell line was treated with anti-CA1 siRNA and was assessed using a CCK-8 cell proliferation assay, an annexin V cell apoptosis assay, transwell migration assay and a human breast cancer PCR array. The tag SNP rs725605, which is located in the CA1 locus, was genotyped using TaqMan® genotyping. Increased CA1 expression was detected in samples of breast carcinoma tissues and blood obtained from patients with breast cancer. A total of 15.3 % of these blood samples exhibited a 2.1-fold or higher level of CA1 expression, compared to the average level of CA1 expression in samples from healthy controls. Following the induction of calcification of 4T1 cells, both the number of calcium-rich deposits and the expression of CA1 increased, whereas the calcification and CA1 expression were significantly supressed in the presence of acetazolamide. Increased migration and apoptosis were observed in MCF-7 cells that were treated with anti-CA1 siRNA. The PCR array detected up-regulation of the androgen receptor (AR) and down-regulation of X-box binding protein 1 (XBP1) in the treated MCF-7 cells. Significant differences in

  18. Osteoporosis and Your Spine

    Science.gov (United States)

    ... Movement › Osteoporosis and Your Spine Osteoporosis and Your Spine Your spine is made up of small bones ... called kyphosis. Kyphosis and Bone Breaks in the Spine The bones in the spine are called vertebrae. ...

  19. Topological organization of CA3-to-CA1 excitation.

    Science.gov (United States)

    Hongo, Yoshie; Ogawa, Koichi; Takahara, Yuji; Takasu, Keiko; Royer, Sebastien; Hasegawa, Minoru; Sakaguchi, Gaku; Ikegaya, Yuji

    2015-09-01

    The CA1-projecting axons of CA3 pyramidal cells, called Schaffer collaterals, constitute one of the major information flow routes in the hippocampal formation. Recent anatomical studies have revealed the non-random structural connectivity between CA3 and CA1, but little is known regarding the functional connectivity (i.e. how CA3 network activity is functionally transmitted downstream to the CA1 network). Using functional multi-neuron calcium imaging of rat hippocampal slices, we monitored the spatiotemporal patterns of spontaneous CA3 and CA1 burst activity under pharmacological GABAergic blockade. We found that spatially clustered CA3 activity patterns were transformed into layered CA1 activity sequences. Specifically, synchronized bursts initiated from multiple hot spots in CA3 ensembles, and CA1 neurons located deeper in the pyramidal cell layer were recruited during earlier phases of the burst events. The order of these sequential activations was maintained across the bursts, but the sequence velocity varied depending on the inter-burst intervals. Thus, CA3 axons innervate CA1 neurons in a highly topographical fashion. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  1. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-08-23

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.

  2. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Directory of Open Access Journals (Sweden)

    Francisco J Rubio

    2013-05-01

    Full Text Available Antidepressant drugs are usually administered for long time for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor fluoxetine to naϊve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of treatment with 0.7 mg/kg of fluoxetine on long-term potentiation (LTP and long-term depression (LTD in the Schaffer collateral-CA1 synapses and the perforant path-CA1 synapses. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining experiments revealed decreased AMPA-R Ca2+ permeability in the stratum radiatum together with increased GluA2-containing, Ca2+-impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  3. The combination therapy with alfacalcidol and risedronate improves the mechanical property in lumbar spine by affecting the material properties in an ovariectomized rat model of osteoporosis

    Directory of Open Access Journals (Sweden)

    Ito Masako

    2009-06-01

    Full Text Available Abstract Background We conducted the present study to investigate the therapeutic effects of a combination treatment of alfacalcidol (ALF and risedronate (RIS on the bone mechanical properties of bone and calcium (Ca metabolism using an ovariectomized (OVX rat model of osteoporosis. Methods Female Wistar rats were OVX- or sham-operated at 40 weeks of age. Twelve weeks post-surgery, rats were randomized into seven groups: 1 sham + vehicle, 2 OVX + vehicle, 3 OVX + ALF 0.025 μg/kg/day, 4 OVX + ALF 0.05 μg, 5 OVX + RIS 0.3 mg, 6 OVX + RIS 3.0 mg, 7 OVX + ALF 0.025 μg + RIS 0.3 mg. Each drug was administered orally five times a week for 12 weeks. After treatment, we evaluated the mechanical properties of the lumbar vertebra and femoral midshaft. In the lumbar vertebra, structural and material analyses were performed using micro-computed tomography (micro-CT and microbeam X-ray diffraction (micro-XRD, respectively. Biochemical markers in serum and urine were also determined. Results (1 With respect to improvement in the mechanical strength of the lumbar spine and the femoral midshaft, the combination treatment of ALF and RIS at their sub-therapeutic doses was more effective than each administered as a monotherapy; (2 In the suppression of bone resorption and the amelioration of microstructural parameters, the effects of ALF and RIS were considered to be independent and additive; (3 The improvement of material properties, such as microstructural parameters and the biological apatite (Bap c-axis orientation, contributed to the reinforcement of spinal strength; and (4 The combination treatment of ALF and RIS normalized urinary Ca excretion, suggesting that this treatment ameliorated the changes in Ca metabolism. Conclusion These results demonstrate that the combination treatment of ALF and RIS at their sub-therapeutic doses can improve the mechanical properties of the spine as well as the femur and ameliorate changes in Ca metabolism in an animal

  4. Functional Differences in the Backward Shifts of CA1 and CA3 Place Fields in Novel and Familiar Environments

    OpenAIRE

    Roth, Eric D.; Yu, Xintian; Rao, Geeta; Knierim, James J.

    2012-01-01

    Insight into the processing dynamics and other neurophysiological properties of different hippocampal subfields is critically important for understanding hippocampal function. In this study, we compared shifts in the center of mass (COM) of CA3 and CA1 place fields in a familiar and completely novel environment. Place fields in CA1 and CA3 were simultaneously recorded as rats ran along a closed loop track in a familiar room followed by a session in a completely novel room. This process was re...

  5. Computed Tomography (CT) - Spine

    Science.gov (United States)

    ... Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is a ... the Spine? What is CT Scanning of the Spine? Computed tomography, more commonly known as a CT ...

  6. Cytomorphometric changes in hippocampal CA1 neurons exposed to simulated microgravity using rats as model

    Directory of Open Access Journals (Sweden)

    Amit eRanjan

    2014-05-01

    Full Text Available Microgravity and sleep loss lead to cognitive and learning deficits. These behavioral alterations are likely to be associated with cytomorphological changes and loss of neurons. To understand the phenomenon, we exposed rats (225-275g to 14 days simulated microgravity (SMg and compared its effects on CA1 hippocampal neuronal plasticity, with that of normal cage control rats. We observed that the mean area, perimeter, synaptic cleft and length of active zone of CA1 hippocampal neurons significantly decreased while dendritic arborization and number of spines significantly increased in SMg group as compared with controls. The mean thickness of the post synaptic density and total dendritic length remained unaltered. The changes may be a compensatory effect induced by exposure to microgravity; however, the effects may be transient or permanent, which need further study. These findings may be useful for designing effective prevention for those, including the astronauts, exposed to microgravity. Further, subject to confirmation we propose that SMg exposure might be useful for recovery of stroke patients.

  7. Micromechanics of Sea Urchin spines.

    Directory of Open Access Journals (Sweden)

    Naomi Tsafnat

    Full Text Available The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine's architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material.

  8. Micromechanics of Sea Urchin spines.

    Science.gov (United States)

    Tsafnat, Naomi; Fitz Gerald, John D; Le, Hai N; Stachurski, Zbigniew H

    2012-01-01

    The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT) and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine's architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material.

  9. Structural, magnetic and electronic properties of pulsed-laser-deposition grown SrFeO3‑δ thin films and SrFeO3‑δ /La2/3Ca1/3MnO3 multilayers

    Science.gov (United States)

    Perret, E.; Sen, K.; Khmaladze, J.; Mallett, B. P. P.; Yazdi-Rizi, M.; Marsik, P.; Das, S.; Marozau, I.; Uribe-Laverde, M. A.; de Andrés Prada, R.; Strempfer, J.; Döbeli, M.; Biškup, N.; Varela, M.; Mathis, Y.-L.; Bernhard, C.

    2017-12-01

    We studied the structural, magnetic and electronic properties of SrFeO3-δ (SFO) thin films and SrFeO3-δ /La2/3 Ca1/3 MnO3 (LCMO) superlattices that have been grown with pulsed laser deposition (PLD) on La0.3 Sr0.7 Al0.65 Ta0.35 O3 (LSAT) substrates. X-ray reflectometry and scanning transmission electron microscopy (STEM) confirm the high structural quality of the films and flat and atomically sharp interfaces of the superlattices. The STEM data also reveal a difference in the interfacial layer stacking with a SrO layer at the LCMO/SFO and a LaO layer at the SFO/LCMO interfaces along the PLD growth direction. The x-ray diffraction (XRD) data suggest that the as grown SFO films and SFO/LCMO superlattices have an oxygen-deficient SrFeO3-δ structure with I4/ mmm space group symmetry (δ≤slant 0.2 ). Subsequent ozone annealed SFO films are consistent with an almost oxygen stoichiometric structure (δ ≈ 0 ). The electronic and magnetic properties of these SFO films are similar to the ones of corresponding single crystals. In particular, the as grown SrFeO3-δ films are insulating whereas the ozone annealed films are metallic. The magneto-resistance effects of the as grown SFO films have a similar magnitude as in the single crystals, but extend over a much wider temperature range. Last but not least, for the SFO/LCMO superlattices we observe a rather large exchange bias effect that varies as a function of the cooling field.

  10. Dietary cholesterol modulates the excitability of rabbit hippocampal CA1 pyramidal neurons

    OpenAIRE

    Wang, Desheng; Schreurs, Bernard G.

    2010-01-01

    Previous work has shown high dietary cholesterol can affect learning and memory including rabbit eyeblink conditioning and this effect may be due to increased membrane cholesterol and enhanced hippocampal amyloid beta production. This study investigated whether dietary cholesterol modulates rabbit hippocampal CA1 neuron membrane properties known to be involved in rabbit eyeblink conditioning. Whole-cell current clamp recordings in hippocampal neurons from rabbits fed 2% cholesterol or normal ...

  11. Inhibitory Gating of Input Comparison in the CA1 Microcircuit.

    Science.gov (United States)

    Milstein, Aaron D; Bloss, Erik B; Apostolides, Pierre F; Vaidya, Sachin P; Dilly, Geoffrey A; Zemelman, Boris V; Magee, Jeffrey C

    2015-09-23

    Spatial and temporal features of synaptic inputs engage integration mechanisms on multiple scales, including presynaptic release sites, postsynaptic dendrites, and networks of inhibitory interneurons. Here we investigate how these mechanisms cooperate to filter synaptic input in hippocampal area CA1. Dendritic recordings from CA1 pyramidal neurons reveal that proximal inputs from CA3 as well as distal inputs from entorhinal cortex layer III (ECIII) sum sublinearly or linearly at low firing rates due to feedforward inhibition, but sum supralinearly at high firing rates due to synaptic facilitation, producing a high-pass filter. However, during ECIII and CA3 input comparison, supralinear dendritic integration is dynamically balanced by feedforward and feedback inhibition, resulting in suppression of dendritic complex spiking. We find that a particular subpopulation of CA1 interneurons expressing neuropeptide Y (NPY) contributes prominently to this dynamic filter by integrating both ECIII and CA3 input pathways and potently inhibiting CA1 pyramidal neuron dendrites. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Functional differences in the backward shifts of CA1 and CA3 place fields in novel and familiar environments.

    Directory of Open Access Journals (Sweden)

    Eric D Roth

    Full Text Available Insight into the processing dynamics and other neurophysiological properties of different hippocampal subfields is critically important for understanding hippocampal function. In this study, we compared shifts in the center of mass (COM of CA3 and CA1 place fields in a familiar and completely novel environment. Place fields in CA1 and CA3 were simultaneously recorded as rats ran along a closed loop track in a familiar room followed by a session in a completely novel room. This process was repeated each day over a 4-day period. CA3 place fields shifted backward (opposite to the direction of motion of the rat only in novel environments. This backward shift gradually diminished across days, as the novel environment became more familiar with repeated exposures. Conversely, CA1 place fields shifted backward across all days in both familiar and novel environments. Prior studies demonstrated that CA1 place fields on average do not exhibit a backward shift during the first exposure to an environment in which the familiar cues are rearranged into a novel configuration, although CA3 place fields showed a strong backward shift. Under the completely novel conditions of the present study, no dissociation was observed between CA3 and CA1 during the first novel session (although a strong dissociation was observed in the familiar sessions and the later novel sessions. In summary, this is the first study to use simultaneous recordings in CA1 and CA3 to compare place field COM shift and other associated properties in truly novel and familiar environments. This study further demonstrates functional differentiation between CA1 and CA3 as the plasticity of CA1 place fields is affected differently by exposure to a completely novel environment in comparison to an altered, familiar environment, whereas the plasticity of CA3 place fields is affected similarly during both types of environmental novelty.

  13. CA1 subfield contributions to memory integration and inference

    Science.gov (United States)

    Schlichting, Margaret L.; Zeithamova, Dagmar; Preston, Alison R.

    2014-01-01

    The ability to combine information acquired at different times to make novel inferences is a powerful function of episodic memory. One perspective suggests that by retrieving related knowledge during new experiences, existing memories can be linked to the new, overlapping information as it is encoded. The resulting memory traces would thus incorporate content across event boundaries, representing important relationships among items encountered during separate experiences. While prior work suggests that the hippocampus is involved in linking memories experienced at different times, the involvement of specific subfields in this process remains unknown. Using both univariate and multivariate analyses of high-resolution functional magnetic resonance imaging (fMRI) data, we localized this specialized encoding mechanism to human CA1. Specifically, right CA1 responses during encoding of events that overlapped with prior experience predicted subsequent success on a test requiring inferences about the relationships among events. Furthermore, we employed neural pattern similarity analysis to show that patterns of activation evoked during overlapping event encoding were later reinstated in CA1 during successful inference. The reinstatement of CA1 patterns during inference was specific to those trials that were performed quickly and accurately, consistent with the notion that linking memories during learning facilitates novel judgments. These analyses provide converging evidence that CA1 plays a unique role in encoding overlapping events and highlight the dynamic interactions between hippocampal-mediated encoding and retrieval processes. More broadly, our data reflect the adaptive nature of episodic memories, in which representations are derived across events in anticipation of future judgments. PMID:24888442

  14. Dietary cholesterol modulates the excitability of rabbit hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Wang, Desheng; Schreurs, Bernard G

    2010-08-02

    Previous work has shown high dietary cholesterol can affect learning and memory including rabbit eyeblink conditioning and this effect may be due to increased membrane cholesterol and enhanced hippocampal amyloid beta production. This study investigated whether dietary cholesterol modulates rabbit hippocampal CA1 neuron membrane properties known to be involved in rabbit eyeblink conditioning. Whole-cell current clamp recordings in hippocampal neurons from rabbits fed 2 percent cholesterol or normal chow for 8 weeks revealed changes including decreased after-hyperpolarization amplitudes (AHPs) - an index of membrane excitability shown to be important for rabbit eyeblink conditioning. This index was reversed by adding copper to drinking water - a dietary manipulation that can retard rabbit eyeblink conditioning. Evidence of cholesterol effects on membrane excitability was provided by application of methyl-beta-cyclodextrin, a compound that reduces membrane cholesterol, which increased the excitability of hippocampal CA1 neurons.

  15. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1.

    Science.gov (United States)

    Alkadhi, Karim A; Alhaider, Ibrahim A

    2016-03-01

    We have investigated the neuroprotective effect of chronic caffeine treatment on basal levels of memory-related signaling molecules in area CA1 of sleep-deprived rats. Animals in the caffeine groups were treated with caffeine in drinking water (0.3g/l) for four weeks before they were REM sleep-deprived for 24h in the Modified Multiple Platforms paradigm. Western blot analysis of basal protein levels of plasticity- and memory-related signaling molecules in hippocampal area CA1 showed significant down regulation of the basal levels of phosphorylated- and total-CaMKII, phosphorylated- and total-CREB as well as those of BDNF and CaMKIV in sleep deprived rats. All these changes were completely prevented in rats that chronically consumed caffeine. The present findings suggest an important neuroprotective property of caffeine in sleep deprivation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Investigation of the passive mechanical properties of spine muscles following disruption of the thoracolumbar fascia and erector spinae aponeurosis, as well as facet injury in a rat.

    Science.gov (United States)

    Zwambag, Derek P; Hurtig, Mark B; Vernon, Howard; Brown, Stephen H M

    2017-12-15

    Muscle tissue is known to remodel in response to changes to its mechanical environment. Alterations in passive mechanical properties of muscles can influence spine stiffness and stability. This study aimed to determine whether passive muscle elastic moduli and passive muscle stresses increased 28 days following mechanical disruption of the thoracolumbar fascia and erector spinae aponeurosis, and injury induced by facet joint compression. Male Sprague Dawley rats were randomly assigned to three groups (Incision n=8; Injury n=8; and Control n=6). The thoracolumbar fascia and erector spinae aponeurosis were incised in the Incision and Injury groups to expose the left L5-L6 facet joint. In the Injury group, this facet was additionally compressed for three minutes to induce facet injury and cartilage degeneration. Twenty-eight days after surgery, rats were sacrificed and muscle samples were harvested from lumbar and thoracic erector spinae and multifidus for mechanical testing. Histologic staining revealed mild cartilage degeneration and boney remodeling in the Injury group. However, the hypotheses that either (1) disruption of the thoracolumbar fascia and erector spinae aponeurosis (Incision group) or (2) the addition of facet compression (Injury group) would increase the passive elastic modulus and stress of surrounding muscles were rejected. There was no effect of surgery (Incision or Injury) on the passive elastic modulus (p=.6597). Passive muscle stresses were also not different at any sarcomere length between surgical groups (p>.7043). Disruption of the thoracolumbar fascia and erector spinae aponeurosis and mild facet damage do not lead to measurable changes in passive muscle mechanical properties within 28 days. These findings contribute to our understanding of how spine muscles are affected by injury and fundamental aspects of the initial stages of spine surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors.

    Science.gov (United States)

    Talani, Giuseppe; Licheri, Valentina; Biggio, Francesca; Locci, Valentina; Mostallino, Maria Cristina; Secci, Pietro Paolo; Melis, Valentina; Dazzi, Laura; Carta, Gianfranca; Banni, Sebastiano; Biggio, Giovanni; Sanna, Enrico

    2016-04-01

    The endogenous endocannabinoid system has a crucial role in regulating appetite and feeding behavior in mammals, as well as working memory and reward mechanisms. In order to elucidate the possible role of cannabinoid type-1 receptors (CB1Rs) in the regulation of hippocampal plasticity in animals exposed to food restriction (FR), we limited the availability of food to a 2-h daily period for 3 weeks in Sprague-Dawley rats. FR rats showed a higher long-term potentiation at hippocampal CA1 excitatory synapses with a parallel increase in glutamate release when compared with animals fed ad libitum. FR rats showed a significant increase in the long-term spatial memory determined by Barnes maze. FR was also associated with a decreased inhibitory effect of the CB1R agonist win55,212-2 on glutamatergic field excitatory postsynaptic potentials, together with a decrease in hippocampal CB1R protein expression. In addition, hippocampal brain-derived neurotrophic factor protein levels and mushroom dendritic spine density were significantly enhanced in FR rats. Altogether, our data suggest that alterations of hippocampal CB1R expression and function in FR rats are associated with dendritic spine remodeling and functional potentiation of CA1 excitatory synapses, and these findings are consistent with increasing evidence supporting the idea that FR may improve cognitive functions.

  18. Cranial irradiation alters dendritic spine density and morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Ayanabha Chakraborti

    Full Text Available Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9% and 1 month (26.9% after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7% in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.

  19. Lumbar spine CT scan

    Science.gov (United States)

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower ... The lumbar CT scan is good for evaluating large herniated disks, ... smaller ones. This test can be combined with a myelogram to get ...

  20. Anatomy of the Spine

    Science.gov (United States)

    ... BLOG FIND A SPECIALIST Resources Anatomy of the Spine Bones Vertebrae Each individual vertebra has unique features ... or "extensor". The muscles and ligaments in the spine work to hold the spine upright, and to ...

  1. Laparoscopic Spine Surgery

    Science.gov (United States)

    ... Global Affairs and Humanitarian Efforts Log In Laparoscopic Spine Surgery Patient Information from SAGES Download PDF Find a SAGES Surgeon Laparoscopic Spine Surgery Your spine surgeon has determined that you ...

  2. Thoracic spine CT scan

    Science.gov (United States)

    CAT scan - thoracic spine; Computed axial tomography scan - thoracic spine; Computed tomography scan - thoracic spine; CT scan - ... Philadelphia, PA: Elsevier Mosby; 2013:chap 44. US Food and Drug Administration. Computed tomography (CT). Updated August ...

  3. The Spine of the Cosmic Web

    OpenAIRE

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weygaert, Rien; Szalay, Alexander S.

    2008-01-01

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between the watershed basins to trace the critical points in the density field and the separatrices defined by them. The separatrices are classified into walls and the spine, the network of filaments and node...

  4. Spine biomechanics.

    Science.gov (United States)

    Adams, Michael A; Dolan, Patricia

    2005-10-01

    Current trends in spine research are reviewed in order to suggest future opportunities for biomechanics. Recent studies show that psychosocial factors influence back pain behaviour but are not important causes of pain itself. Severe back pain most often arises from intervertebral discs, apophyseal joints and sacroiliac joints, and physical disruption of these structures is strongly but variably linked to pain. Typical forms of structural disruption can be reproduced by severe mechanical loading in-vitro, with genetic and age-related weakening sometimes leading to injury under moderate loading. Biomechanics can be used to quantify spinal loading and movements, to analyse load distributions and injury mechanisms, and to develop therapeutic interventions. The authors suggest that techniques for quantifying spinal loading should be capable of measurement "in the field" so that they can be used in epidemiological surveys and ergonomic interventions. Great accuracy is not required for this task, because injury risk depends on tissue weakness as much as peak loading. Biomechanical tissue testing and finite-element modelling should complement each other, with experiments establishing proof of concept, and models supplying detail and optimising designs. Suggested priority areas for future research include: understanding interactions between intervertebral discs and adjacent vertebrae; developing prosthetic and tissue-engineered discs; and quantifying spinal function during rehabilitation. "Mechanobiology" has perhaps the greatest future potential, because spinal degeneration and healing are both mediated by the activity of cells which are acutely sensitive to their local mechanical environment. Precise characterisation and manipulation of this environment will be a major challenge for spine biomechanics.

  5. Rendering the Topological Spines

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  6. The Spine of the Cosmic Web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weygaert, Rien; Szalay, Alexander S.

    2010-01-01

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  7. Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice

    Directory of Open Access Journals (Sweden)

    Francesco eTamagnini

    2015-10-01

    Full Text Available Amyloidopathy involves the accumulation of insoluble amyloid β (Aβ species in the brain’s parenchyma and is a key histopathological hallmark of Alzheimer’s disease (AD. Work on transgenic mice that overexpress A suggests that elevated A levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene compared to their age-matched WT littermate controls. Whole-cell current clamp recordings revealed that sub-threshold intrinsic properties, such as input resistance, resting membrane potential and hyperpolarization activated sag were unaffected, but capacitance was significantly decreased in the transgenic animals. No differences between genotypes were observed in the overall number of action potentials (AP elicited by 500 ms supra-threshold current stimuli. PDAPP neurons, however, exhibited higher instantaneous firing frequencies after accommodation in response to high intensity current injections. The AP waveform was narrower and shorter in amplitude in PDAPP mice: these changes, according to our in silico model of a CA1/3 pyramidal neuron, depended on the respective reduction and increase of Na+ and K+ voltage-gated channels maximal conductances. Finally, the after-hyperpolarization (AHP, seen after the first AP evoked by a +300 pA current injection and after 50 Hz AP bursts, was more pronounced in PDAPP mice.These data show that Aβ-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP, they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time

  8. Reverse stochastic resonance in a hippocampal CA1 neuron model.

    Science.gov (United States)

    Durand, Dominique M; Kawaguchi, Minato; Mino, Hiroyuki

    2013-01-01

    Stochastic resonance (SR) is a ubiquitous and counter- intuitive phenomenon whereby the addition of noise to a non-linear system can improve the detection of sub-threshold signals. The "signal" is normally periodic or deterministic whereas the "noise" is normally stochastic. However, in neural systems, signals are often stochastic. Moreover, periodic signals are applied near neurons to control neural excitability (i.e. deep brain stimulation). We therefore tested the hypothesis that a quasi-periodic signal applied to a neural network could enhance the detection of a stochastic neural signal (reverse stochastic resonance). Using computational methods, a CA1 hippocampal neuron was simulated and a Poisson distributed subthreshold synaptic input ("signal") was applied to the synaptic terminals. A periodic or quasi periodic pulse train at various frequencies ("noise") was applied to an extracellular electrode located near the neuron. The mutual information and information transfer rate between the output and input of the neuron were calculated. The results display the signature of stochastic resonance with information transfer reaching a maximum value for increasing power (or frequency) of the "noise". This result shows that periodic signals applied extracellularly can improve the detection of subthreshold stochastic neural signals. The optimum frequency (110 Hz) is similar to that used in patients with Parkinson's suggesting that this phenomenon could play a role in the therapeutic effect of high frequency stimulation.

  9. Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury.

    Science.gov (United States)

    Norris, Christopher M; Sompol, Pradoldej; Roberts, Kelly N; Ansari, Mubeen; Scheff, Stephen W

    2016-02-01

    Pycnogenol (PYC) is a patented mix of bioflavonoids with potent anti-oxidant and anti-inflammatory properties. Previously, we showed that PYC administration to rats within hours after a controlled cortical impact (CCI) injury significantly protects against the loss of several synaptic proteins in the hippocampus. Here, we investigated the effects of PYC on CA3-CA1 synaptic function following CCI. Adult Sprague-Dawley rats received an ipsilateral CCI injury followed 15 min later by intravenous injection of saline vehicle or PYC (10 mg/kg). Hippocampal slices from the injured (ipsilateral) and uninjured (contralateral) hemispheres were prepared at seven and fourteen days post-CCI for electrophysiological analyses of CA3-CA1 synaptic function and induction of long-term depression (LTD). Basal synaptic strength was impaired in slices from the ipsilateral, relative to the contralateral, hemisphere at seven days post-CCI and susceptibility to LTD was enhanced in the ipsilateral hemisphere at both post-injury timepoints. No interhemispheric differences in basal synaptic strength or LTD induction were observed in rats treated with PYC. The results show that PYC preserves synaptic function after CCI and provides further rationale for investigating the use of PYC as a therapeutic in humans suffering from neurotrauma. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Dietary cholesterol concentration affects synaptic plasticity and dendrite spine morphology of rabbit hippocampal neurons.

    Science.gov (United States)

    Wang, Desheng; Zheng, Wen

    2015-10-05

    Previous studies have shown dietary cholesterol can enhance learning but retard memory which may be partly due to increased cholesterol levels in hippocampus and reduced afterhyperpolarization (AHP) amplitude of hippocampal CA1 neurons. This study explored the dose-dependent effect of dietary cholesterol on synaptic plasticity of rabbit hippocampal CA1 neurons and spine morphology, the postsynaptic structures responsible for synaptic plasticity. Field potential recordings revealed a low concentration of dietary cholesterol increased long-term potentiation (LTP) expression while high concentrations produced a pronounced reduction in LTP expression. Dietary cholesterol facilitated basal synaptic transmission but did not influence presynaptic function. DiI staining showed dietary cholesterol induced alterations in dendrite spine morphology characterized by increased mushroom spine density and decreased thin spine density, two kinds of dendritic spines that may be linked to memory consolidation and learning acquisition. Dietary cholesterol also modulated the geometric measures of mushroom spines. Therefore, dietary cholesterol dose-dependently modulated both synaptic plasticity and dendrite spine morphologies of hippocampal CA1 neurons that could mediate learning and memory changes previously seen to result from feeding a cholesterol diet. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Magnetic Resonance Imaging (MRI) - Spine

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Spine Magnetic resonance imaging (MRI) of the spine ... limitations of MRI of the Spine? What is MRI of the Spine? Magnetic resonance imaging (MRI) is ...

  12. Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties

    Directory of Open Access Journals (Sweden)

    Kevin eTakasaki

    2014-05-01

    Full Text Available The structure of dendritic spines suggests a specialized function in compartmentalizing synaptic signals near active synapses. Indeed, theoretical and experimental analyses indicate that the diffusive resistance of the spine neck is sufficient to effectively compartmentalize some signaling molecules in a spine for the duration of their activated lifetime. Here we describe the application of 2-photon microscopy combined with stimulated emission depletion (STED-2P to the biophysical study of the relationship between synaptic signals and spine morphology, demonstrating the utility of combining STED-2P with modern optical and electrophysiological techniques. Morphological determinants of fluorescence recovery time were identified and evaluated within the context of a simple compartmental model describing diffusive transfer between spine and dendrite. Correlations between the neck geometry and the amplitude of synapse potentials and calcium transients evoked by 2-photon glutamate uncaging were also investigated.

  13. Spine Injuries and Disorders

    Science.gov (United States)

    Your backbone, or spine, is made up of 26 bone discs called vertebrae. The vertebrae protect your spinal cord and allow you to ... of problems can change the structure of the spine or damage the vertebrae and surrounding tissue. They ...

  14. Ketogenic diets cause opposing changes in synaptic morphology in CA1 hippocampus and dentate gyrus of late-adult rats.

    Science.gov (United States)

    Balietti, Marta; Giorgetti, Belinda; Fattoretti, Patrizia; Grossi, Yessica; Di Stefano, Giuseppina; Casoli, Tiziana; Platano, Daniela; Solazzi, Moreno; Orlando, Fiorenza; Aicardi, Giorgio; Bertoni-Freddari, Carlo

    2008-06-01

    Ketogenic diets (KDs) have beneficial effects on several diseases, such as epilepsy, mitochondriopathies, cancer, and neurodegeneration. However, little is known about their effects on aging individuals. In the present study, late-adult (19-month-old) rats were fed for 8 weeks with two medium chain triglycerides (MCT)-KDs, and the following morphologic parameters reflecting synaptic plasticity were evaluated in stratum moleculare of hippocampal CA1 region (SM CA1) and outer molecular layer of hippocampal dentate gyrus (OML DG): average area (S), numeric density (Nv(s)), and surface density (Sv) of synapses, and average volume (V), numeric density (Nv(m)), and volume density (Vv) of synaptic mitochondria. In SM CA1, MCT-KDs induced the early appearance of the morphologic patterns typical of old animals (higher S and V, and lower Nv(s) and Nv(m)). On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nv(s) and Nv(m)) versus controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility to aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. Present findings provide the first evidence that MCT-KDs may cause opposite morphologic modifications, being potentially harmful for SM CA1 and potentially advantageous for OML DG. This implies risks but also promising potentialities for their therapeutic use during aging.

  15. Selective Estrogen Receptor Modulators Regulate Dendritic Spine Plasticity in the Hippocampus of Male Rats

    Directory of Open Access Journals (Sweden)

    Ignacio González-Burgos

    2012-01-01

    Full Text Available Some selective estrogen receptor modulators, such as raloxifene and tamoxifen, are neuroprotective and reduce brain inflammation in several experimental models of neurodegeneration. In addition, raloxifene and tamoxifen counteract cognitive deficits caused by gonadal hormone deprivation in male rats. In this study, we have explored whether raloxifene and tamoxifen may regulate the number and geometry of dendritic spines in CA1 pyramidal neurons of the rat hippocampus. Young adult male rats were injected with raloxifene (1 mg/kg, tamoxifen (1 mg/kg, or vehicle and killed 24 h after the injection. Animals treated with raloxifene or tamoxifen showed an increased numerical density of dendritic spines in CA1 pyramidal neurons compared to animals treated with vehicle. Raloxifene and tamoxifen had also specific effects in the morphology of spines. These findings suggest that raloxifene and tamoxifen may influence the processing of information by hippocampal pyramidal neurons by affecting the number and shape of dendritic spines.

  16. Scanning Ultrasound (SUS Causes No Changes to Neuronal Excitability and Prevents Age-Related Reductions in Hippocampal CA1 Dendritic Structure in Wild-Type Mice.

    Directory of Open Access Journals (Sweden)

    Robert John Hatch

    Full Text Available Scanning ultrasound (SUS is a noninvasive approach that has recently been shown to ameliorate histopathological changes and restore memory functions in an Alzheimer's disease mouse model. Although no overt neuronal damage was reported, the short- and long-term effects of SUS on neuronal excitability and dendritic tree morphology had not been investigated. To address this, we performed patch-clamp recordings from hippocampal CA1 pyramidal neurons in wild-type mice 2 and 24 hours after a single SUS treatment, and one week and 3 months after six weekly SUS treatments, including sham treatments as controls. In both treatment regimes, no changes in CA1 neuronal excitability were observed in SUS-treated neurons when compared to sham-treated neurons at any time-point. For the multiple treatment groups, we also determined the dendritic morphology and spine densities of the neurons from which we had recorded. The apical trees of sham-treated neurons were reduced at the 3 month time-point when compared to one week; however, surprisingly, no longitudinal change was detected in the apical dendritic trees of SUS-treated neurons. In contrast, the length and complexity of the basal dendritic trees were not affected by SUS treatment at either time-point. The apical dendritic spine densities were reduced, independent of the treatment group, at 3 months compared to one week. Collectively, these data suggest that ultrasound can be employed to prevent an age-associated loss of dendritic structure without impairing neuronal excitability.

  17. Effects of increasing CREB-dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit.

    Science.gov (United States)

    Bianchi, Daniela; De Michele, Pasquale; Marchetti, Cristina; Tirozzi, Brunello; Cuomo, Salvatore; Marie, Hélène; Migliore, Michele

    2014-02-01

    The involvement of the hippocampus in learning processes and major brain diseases makes it an ideal candidate to investigate possible ways to devise effective therapies for memory-related pathologies like Alzheimer's Disease (AD). It has been previously reported that augmenting CREB activity increases the synaptic Long-Term Potentiation (LTP) magnitude in CA1 pyramidal neurons and their intrinsic excitability in healthy rodents. It has also been suggested that hippocampal CREB signaling is likely to be down-regulated during AD, possibly degrading memory functions. Therefore, the concept of CREB-based memory enhancers, i.e. drugs that would boost memory by activation of CREB, has emerged. Here, using a model of a CA1 microcircuit, we investigate whether hippocampal CA1 pyramidal neuron properties altered by increasing CREB activity may contribute to improve memory storage and recall. With a set of patterns presented to a network, we find that the pattern recall quality under AD-like conditions is significantly better when boosting CREB function with respect to control. The results are robust and consistent upon increasing the synaptic damage expected by AD progression, supporting the idea that the use of CREB-based therapies could provide a new approach to treat AD. © 2013 Wiley Periodicals, Inc.

  18. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling.

    Science.gov (United States)

    Deuchars, J; Thomson, A M

    1996-10-01

    In adult rat hippocampus, simultaneous intracellular recordings from 989 pairs of CA1 pyramidal cells revealed nine monosynaptic, excitatory connections. Six of these pairs were sufficiently stable for electrophysiological analysis. Mean excitatory postsynaptic potential amplitude recorded at a postsynaptic membrane potential between -67 and -70 mV was 0.7 +/- 0.5 mV (0.17-1.5 mV), mean 10-90% rise time was 2.7 +/- 0.9 ms (1.5-3.8 ms) and mean width at half-amplitude was 16.8 +/- 4.1 ms (11.6-25 ms). Cells were labelled with biocytin and identified histologically. For one pair that was fully reconstructed morphologically, excitatory postsynaptic potential average amplitude was 1.5 mV, 10-90% rise time 2.8 ms and width at half-amplitude 11.6 ms (at -67 mV). In this pair, correlated light and electron microscopy revealed that the presynaptic axon formed two synaptic contacts with third-order basal dendrites of the postsynaptic pyramid, one with a dendritic spine, the other with a dendritic shaft. In the four pairs tested, postsynaptic depolarization increased excitatory postsynaptic potential amplitude and duration. In two, D-2-amino-5-phosphonovalerate (50 microM) reduced the amplitude and duration of the excitatory postsynaptic potential. The remainder of the excitatory postsynaptic potential now increased with postsynaptic hyperpolarization and was abolished by 20 microM 6-cyano-7-nitroquinoxaline-2,3-dione (n = 1). Paired-pulse depression was evident in the four excitatory postsynaptic potentials tested. This depression decreased with increasing inter-spike interval. These results provide the first combined electrophysiological and morphological illustration of synaptic contacts between pyramidal neurons in the hippocampus and confirm that connections between CA1 pyramidal neurons are mediated by both N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptors.

  19. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    2010-11-01

    trigger action potentials.1 The majority of hippocampal CA1 pyramidal neurons express functional α7-containing nAChRs. In the absence of PNU-120596, a positive allosteric modulator of α7 nAChRs, a lack of responsiveness of some hippocampal CA1 pyramidal neurons to focal application of 0.5-1 mM choline does not imply a lack of expression of functional α7-containing nAChRs in these neurons. Rather, it may indicate a lack of detection of α7-containing nAChR-mediated currents by patch-clamp electrophysiology. 2 PNU-120596 can serve as a powerful tool for detection and enhancement of responsiveness of low densities of functional α7-containing nAChRs such as those present in hippocampal CA1 pyramidal neurons. 3 In the presence of PNU-120596, physiological concentrations of choline activate functional CA1 pyramidal α7-containing nAChRs and produce step-like currents that cause repetitive step-like depolarizations, occasionally triggering bursts of action potentials in CA1 pyramidal neurons. Therefore, the results of this study suggest that in the presence of PNU-120596 and possibly other positive allosteric modulators, endogenous choline may persistently activate CA1 pyramidal α7-containing nAChRs, enhance the excitability of CA1 pyramidal neurons and thus act as a potent therapeutic agent with potential neuroprotective and cognition-enhancing properties.

  20. Multiplanner spine computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. K.; Jeon, H. J.; Hong, K. C.; Chung, K. B.; Suh, W. H. [Korea University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The computed tomography is useful in evaluation of bony structures and adjacent soft tissues of the spine. Recently, the multiplanar spine CT scan is highly superior than usual axial scan, because of easily demonstrable longitudinal dimension, level of spine and spinal canal. We evaluated 62 cases of spine CT, whom complains of spinal symptoms, from July, 1982 to January, 1983. The results were as follows: 1. The sex distribution of cases were 45 male and 17 female, ages were from 15 years to 76 years, and sites were 15 cervical spine, 7 thoracic spine, 42 lumbar spine and 21 sacral spine. 2. Sixty two cases of the CT diagnosis were reviewed and shows 19 cases of herniated intervertebral disc, 7 cases of spine fracture, 5 cases of degenerative disease, 4 cases of metastatic cancer, 2 cases of posterior longitudinal ligament ossification, 1 case of cord injury and 24 cases of normal. 3. The CT findings of herniated intervertebral disc were protruding disc, obliteration of anterior epidural fat, with or without indentation of dural sac and calcification within posterior disc margin. In cases of trauma, the multiplanar spine CT scan detects more specific extension of the fracture sites, and it is able to demonstrate relationship between fracture fragment and spinal cord, therefore operability can be decided. In case of posterior longitudinal ligament ossification, it is easy to demonstrate linear high density along posterior margin of vertebral bodies on sagittal reconstruction scan. 4. The computed tomography is diagnostic in detection of spinal disease. However, multiplanar spine CT is more diagnostic than axial computed tomography such as detecting the longitudinal dimension and demonstration of spinal canal.

  1. BIOTECHNOLOGIES AND BIOMATERIALS IN SPINE SURGERY.

    Science.gov (United States)

    Vadala', G; Russo, F; Ambrosio, L; Di Martino, A; Papalia, R; Denaro, V

    2015-01-01

    Over the past few decades, spine disorders have become a major health concern and the number of spinal surgical procedures has been rising significantly. Several biotechnologies and biomaterials are often used in spine surgery to increase the effectiveness of the treatment. In the degenerative spine, when conservative treatment is ineffective the most recommended surgical procedure is decompression followed by spinal fusion. Success rates of spine fusion extensively rely on bone grafts peculiar properties. Autograft has been considered the gold standard to achieve a solid fusion but current research is focused on the development of new biomaterials. Osteoporosis is the main cause of vertebral compression fractures that are significantly associated with pain and disability, especially in the aging population. Vertebral augmentation is a minimally invasive approach in which cement is injected into the vertebral body to stabilize the fracture. New cements are being developed in the clinical scenario with reabsorbable properties and biomechanical features more similar to the native bone. The development of disc regeneration strategies such as nucleus pulposus restoration and annulus fibrosus repair may represent a minimally invasive procedure towards regeneration rather than fusion. Therefore, biomaterials and tissue engineering are fields of growing interest among both surgeons and manufacturing companies, with a major involvement in spine surgery. This review discusses current and novel biotechnologies and biomaterial used in spine surgery employing fusion, augmentation and regeneration.

  2. Development of the Korean Spine Database and Automatic Surface Mesh Intersection Algorithm for Constructing e-Spine Simulator

    Directory of Open Access Journals (Sweden)

    Dongmin Seo

    2014-01-01

    Full Text Available By 2026, Korea is expected to surpass the UN’s definition of an aged society and reach the level of a superaged society. With an aging population come increased disorders involving the spine. To prevent unnecessary spinal surgery and support scientific diagnosis of spinal disease and systematic prediction of treatment outcomes, we have been developing e-Spine, which is a computer simulation model of the human spine. In this paper, we present the Korean spine database and automatic surface mesh intersection algorithm to construct e-Spine. To date, the Korean spine database has collected spine data from 77 cadavers and 298 patients. The spine data consists of 2D images from CT, MRI, or X-ray, 3D shapes, geometry data, and property data. The volume and quality of the Korean spine database are now the world’s highest ones. In addition, our triangular surface mesh intersection algorithm automatically remeshes the spine-implant intersection model to make it valid for finite element analysis (FEA. This makes it possible to run the FEA using the spine-implant mesh model without any manual effort. Our database and surface mesh intersection algorithm will offer great value and utility in the diagnosis, treatment, and rehabilitation of patients suffering from spinal diseases.

  3. Thoracic spine pain

    Directory of Open Access Journals (Sweden)

    Aleksey Ivanovich Isaikin

    2013-01-01

    Full Text Available Thoracic spine pain, or thoracalgia, is one of the common reasons for seeking for medical advice. The epidemiology and semiotics of pain in the thoracic spine unlike in those in the cervical and lumbar spine have not been inadequately studied. The causes of thoracic spine pain are varied: diseases of the cardiovascular, gastrointestinal, pulmonary, and renal systems, injuries to the musculoskeletal structures of the cervical and thoracic portions, which require a thorough differential diagnosis. Facet, costotransverse, and costovertebral joint injuries and myofascial syndrome are the most common causes of musculoskeletal (nonspecific pain in the thoracic spine. True radicular pain is rarely encountered. Traditionally, treatment for thoracalgia includes a combination of non-drug and drug therapies. The cyclooxygenase 2 inhibitor meloxicam (movalis may be the drug of choice in the treatment of musculoskeletal pain.

  4. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3

    DEFF Research Database (Denmark)

    Benveniste, H; Jørgensen, M B; Sandberg, M

    1989-01-01

    The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA1...... hippocampal tissue. In intact CA1 hippocampal tissue, glutamate increased sixfold during ischemia; in the CA3-lesioned CA1 region, however, glutamate only increased 1.4-fold during ischemia. To assess the neurotoxic potential of the ischemia-induced release of glutamate, we injected the same concentration...... of glutamate into the CA1 region as is released during ischemia in normal, CA3-lesioned, and ischemic CA1 tissue. We found that this particular concentration of glutamate was sufficient to destroy CA1 pyramids in the vicinity of the injection site in intact and CA3-lesioned CA1 tissue when administered during...

  5. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood

    2009-09-01

    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  6. Activity-dependent Regulation of h Channel Distribution in Hippocampal CA1 Pyramidal Neurons

    National Research Council Canada - National Science Library

    Minyoung Shin; Dane M. Chetkovich

    2007-01-01

    ...) channel subunits, HCN1 and HCN2. Pyramidal neuron h channels within hippocampal area CA1 are remarkably enriched in distal apical dendrites, and this unique distribution pattern is critical for regulating dendritic excitability...

  7. Local-moment formation and metal–nonmetal transition in Ca1 ...

    Indian Academy of Sciences (India)

    temperature dependence of resistivity shows no resistance-minimum in these systems. 3. Discussion. 3.1 Phase diagrams of Ca1−x Yx VO3 and Ca1−x Yx TiO3. In these systems, it is well-known that the electron correlation increases with increasing d electron number and the systems change from a metal to a magnetic ...

  8. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  9. SpineData

    DEFF Research Database (Denmark)

    Kent, Peter; Kongsted, Alice; Jensen, Tue Secher

    2015-01-01

    Background: Large-scale clinical registries are increasingly recognized as important resources for quality assurance and research to inform clinical decision-making and health policy. We established a clinical registry (SpineData) in a conservative care setting where more than 10,000 new cases...... of spinal pain are assessed each year. This paper describes the SpineData registry, summarizes the characteristics of its clinical population and data, and signals the availability of these data as a resource for collaborative research projects. Methods: The SpineData registry is an Internet-based system...... that captures patient data electronically at the point of clinical contact. The setting is the government-funded Medical Department of the Spine Centre of Southern Denmark, Hospital Lillebaelt, where patients receive a multidisciplinary assessment of their chronic spinal pain. Results: Started in 2011...

  10. Cervical spine CT scan

    Science.gov (United States)

    ... stopping.) A computer creates separate images of the body area, called slices. These images can be stored, viewed on a monitor, or printed on film. Three-dimensional models of the cervical spine can ...

  11. Beyond the spine

    DEFF Research Database (Denmark)

    Donovan, James; Cassidy, J David; Cancelliere, Carol

    2015-01-01

    Over the past two decades, clinical research within the chiropractic profession has focused on the spine and spinal conditions, specifically neck and low back pain. However, there is now a small group of chiropractors with clinical research training that are shifting their focus away from...... highlight recent research in these new areas and discuss how clinical research efforts in musculoskeletal areas beyond the spine can benefit patient care and the future of the chiropractic profession....

  12. Remodeling of Hippocampal Spine Synapses in the Rat Learned Helplessness Model of Depression

    Science.gov (United States)

    Hajszan, Tibor; Dow, Antonia; Warner-Schmidt, Jennifer L.; Szigeti-Buck, Klara; Sallam, Nermin L.; Parducz, Arpad; Leranth, Csaba; Duman, Ronald S.

    2009-01-01

    Background Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. Methods We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. Results Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for six days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared to nonstressed controls. Shorter, one-day or three-day desipramine treatments, however, had neither synaptic nor behavioral effects. Conclusions These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression. PMID:19006787

  13. The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Migliore, Rosanna; De Simone, Giada; Leinekugel, Xavier; Migliore, Michele

    2017-04-01

    The possible effects on cognitive processes of external electric fields, such as those generated by power line pillars and household appliances are of increasing public concern. They are difficult to study experimentally, and the relatively scarce and contradictory evidence make it difficult to clearly assess these effects. In this study, we investigate how, why and to what extent external perturbations of the intrinsic neuronal activity, such as those that can be caused by generation, transmission and use of electrical energy can affect neuronal activity during cognitive processes. For this purpose, we used a morphologically and biophysically realistic three-dimensional model of CA1 pyramidal neurons. The simulation findings suggest that an electric field oscillating at power lines frequency, and environmentally measured strength, can significantly alter both the average firing rate and temporal spike distribution properties of a hippocampal CA1 pyramidal neuron. This effect strongly depends on the specific and instantaneous relative spatial location of the neuron with respect to the field, and on the synaptic input properties. The model makes experimentally testable predictions on the possible functional consequences for normal hippocampal functions such as object recognition and spatial navigation. The results suggest that, although EF effects on cognitive processes may be difficult to occur in everyday life, their functional consequences deserve some consideration, especially when they constitute a systematic presence in living environments. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long term potentiation in vivo

    Directory of Open Access Journals (Sweden)

    Oscar eHerreras

    2012-10-01

    Full Text Available Long term potentiation (LTP is commonly used to study synaptic plasticity but the associated changes in the spontaneous activity of individual neurons or the computational properties of neural networks in vivo remain largely unclear. The multisynaptic origin of spontaneous spikes makes difficult estimating the impact of a particular potentiated input. Accordingly, we adopted an approach that isolates pathway-specific postsynaptic activity from raw local field potentials (LFPs in the rat hippocampus in order to study the effects of LTP on ongoing spike transfer between cell pairs in the CA3-CA1 pathway. CA1 Schaffer-specific LFPs elicited by spontaneous clustered firing of CA3 pyramidal cells involved a regular succession of elementary micro-field-EPSPs (gamma-frequency that fired spikes in CA1 units. LTP increased the amplitude but not the frequency of these ongoing excitatory quanta. Also, the proportion of Schaffer-driven spikes in both CA1 pyramidal cells and interneurons increased in a cell-specific manner only in previously connected CA3-CA1 cell pairs, i.e., when the CA3 pyramidal cell had shown pre-LTP significant correlation with firing of a CA1 unit and potentiated spike-triggered average of Schaffer LFPs following LTP. Moreover, LTP produced subtle reorganization of presynaptic CA3 cell assemblies. These findings show effective enhancement of pathway specific ongoing activity which leads to increased spike transfer in potentiated segments of a network. These indicate that plastic phenomena induced by external protocols may intensify spontaneous information flow across specific channels as proposed in transsynaptic propagation of plasticity and synfire chain hypotheses that may be the substrate for different types of memory involving multiple brain structures.

  15. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy

    Science.gov (United States)

    Zhang, Xuebin; Huang, Huiling; Wang, Jin; Wang, Yajing; Tong, Xiaoguang; Wang, Jinhuan; Wu, Jialing

    2015-01-01

    The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy. PMID:26325184

  16. CA1 hippocampal network activity changes during sleep-dependent memory consolidation

    Directory of Open Access Journals (Sweden)

    Nicolette N Ognjanovski

    2014-04-01

    Full Text Available A period of sleep over the first few hours following single-trial contextual fear conditioning (CFC is essential for hippocampally-mediated memory consolidation. Recent studies have uncovered intracellular mechanisms required for memory formation that are affected by post-conditioning sleep and sleep deprivation. However, almost nothing is known about the circuit-level activity changes during sleep that underlie activation of these intracellular pathways. Here we continuously record neuronal activity from the CA1 region of freely-behaving mice to characterize neuronal and network activity changes occurring during active memory consolidation. C57BL/6J mice were implanted with custom stereotrode recording arrays to monitor activity of individual CA1 neurons, local field potentials (LFPs, and electromyographic activity. Sleep architecture and state-specific CA1 activity patterns were assessed during a 24 h baseline recording period, and for 24 h following either single-trial CFC or Sham conditioning. We find that consolidation of CFC is not associated with significant sleep architecture changes, but is accompanied by long-lasting increases in CA1 neuronal firing, as well as increases in delta, theta, and gamma-frequency CA1 LFP activity. These changes occurred in both sleep and wakefulness, and may drive synaptic plasticity within the hippocampus during memory formation. We also find that functional connectivity within the CA1 network, assessed through functional clustering analysis (FCA of spike timing relationships among recorded neurons, becomes more stable during consolidation of CFC. This increase in network stability was not present following Sham conditioning, was most evident during post-CFC slow wave sleep, and was negligible during post-CFC wakefulness. Thus in the interval between encoding and recall, slow wave sleep may stabilize the hippocampal contextual fear memory trace by promoting CA1 network stability.

  17. The Spine of the Cosmic Web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; Platen, Erwin; Weygaert, Rien van de; Szalay, Alexander S.

    2008-01-01

    We present a new concept, the Spine of the Cosmic Web, for the topological analysis of the Cosmic Web and the identification of its filaments and walls. Based on the watershed segmentation of the cosmic density field, the method invokes the local properties of the regions adjacent to the critical

  18. 17 CFR 240.15Ca1-1 - Notice of government securities broker-dealer activities.

    Science.gov (United States)

    2010-04-01

    ... securities broker-dealer activities. 240.15Ca1-1 Section 240.15Ca1-1 Commodity and Securities Exchanges... Brokers and Government Securities Dealers § 240.15Ca1-1 Notice of government securities broker-dealer activities. (a) Every government securities broker or government securities dealer that is a broker or dealer...

  19. Strong magnetorefractive effect in epitaxial La 2/3Ca 1/3MnO 3 thin films

    Science.gov (United States)

    Hrabovský, D.; Herranz, G.; Caicedo, J. M.; Infante, I. C.; Sánchez, F.; Fontcuberta, J.

    2010-05-01

    We report here on the magneto-optical characterization of epitaxial La 2/3Ca 1/3MnO 3 thin films. We observe that the magnetic field dependence of the magneto-optical signal measured in transverse Kerr geometry can be decomposed into even and odd contributions which evolve differently with the temperature. We demonstrate that whereas the odd component is proportional to the magnetization, the even contribution is related to the magnetorefractive effect, which is caused by the changes of the refractive index and optical conductivity with the magnetic field. This phenomenon, previously reported only at infrared wavelengths in some spin valves and granular systems, is shown here to be very relevant at visible frequencies for the colossal magnetoresistance manganites, thus allowing simultaneous optical characterization of the magnetic and magnetotransport properties. We argue that these characteristics result from inherent transport properties of these strongly correlated ferromagnetic oxides.

  20. Dendritic spine dynamics regulate the long-term stability of synaptic plasticity.

    Science.gov (United States)

    O'Donnell, Cian; Nolan, Matthew F; van Rossum, Mark C W

    2011-11-09

    Long-term synaptic plasticity requires postsynaptic influx of Ca²⁺ and is accompanied by changes in dendritic spine size. Unless Ca²⁺ influx mechanisms and spine volume scale proportionally, changes in spine size will modify spine Ca²⁺ concentrations during subsequent synaptic activation. We show that the relationship between Ca²⁺ influx and spine volume is a fundamental determinant of synaptic stability. If Ca²⁺ influx is undercompensated for increases in spine size, then strong synapses are stabilized and synaptic strength distributions have a single peak. In contrast, overcompensation of Ca²⁺ influx leads to binary, persistent synaptic strengths with double-peaked distributions. Biophysical simulations predict that CA1 pyramidal neuron spines are undercompensating. This unifies experimental findings that weak synapses are more plastic than strong synapses, that synaptic strengths are unimodally distributed, and that potentiation saturates for a given stimulus strength. We conclude that structural plasticity provides a simple, local, and general mechanism that allows dendritic spines to foster both rapid memory formation and persistent memory storage.

  1. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    National Research Council Canada - National Science Library

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    .... Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation...

  2. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    Science.gov (United States)

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Magnetic phase diagram and structural separation of La0.7(Ca1?ySry)0.3MnO3 thin films

    NARCIS (Netherlands)

    Lee, Y.P.; Park, S.Y.; Park, J.S.; Prokhorov, V.G.; Komashko, V.A.; Svetschnikov, V.L.; Kang, J.H.

    2007-01-01

    The structural, magnetic, and transport properties of La0.7(Ca1?ySry)0.3MnO3 films, deposited on a LaAlO3?(001) single crystalline substrate by rf-magnetron sputtering using “soft” (or powder) targets, have been investigated. It was found that at 0.3 ? y ? 0.5 both the rhombohedral (R3c) and the

  4. Tuberculosis of the cervical spine

    African Journals Online (AJOL)

    Tuberculosis of the cervical spine is rare, comprising 3 -. 5% of cases of tuberculosis of the spine. Eight patients with tuberculosis of the cervicaJ spine seen during 1989 -. 1992 were reviewed. They all presented with neck pain. The 4 children presented with a kyphotic deformity. In all the children the disease was extensive, ...

  5. Extended studies on the effect of glutamate antagonists on ischemic CA-1 damage

    DEFF Research Database (Denmark)

    Diemer, Nils Henrik; Balchen, T; Bruhn, T

    1996-01-01

    Glutamate receptors are numerous on the ischemia vulnerable CA-1 pyramidal cells. Postischemic use of the AMPA antagonist NBQX has shown up to 80% protection against cell death. Three aspects of this were studied: In the first study, male Wistar rats were given NBQX (30 mg/kg x 3) either 20 hours...

  6. The effects of CA1 5HT4 receptors in MK801-induced amnesia and hyperlocomotion.

    Science.gov (United States)

    Nasehi, Mohammad; Tabatabaie, Maryam; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2015-02-05

    In this study, the effects of 5-HT4 receptors of the CA1 on MK801-induced amnesia and hyperlocomotion were examined. One-trial step-down method was used to assess memory retention and then, the hole-board method to assess exploratory behaviors. The results showed that post-training intra-CA1 administration of RS67333 (62.5 and 625 ng/mouse) and RS23597 (1 and 10 ng/mouse) decreased memory consolidation, but it did not alter head-dip counts, head-dip latency and locomotor activity. Similarly, MK801 (0.5 and 1 μg/mouse) decreased memory consolidation, but had no effect on head-dip counts and head-dip latency. Interestingly, it increased locomotor activity. The results also showed that post-training intra-CA1 injection of a sub-threshold dose of RS67333 (6.25 ng/mouse) or RS23597 (0.1 ng/mouse) could heighten MK801 induced amnesia and decrease locomotor activity, but it did not alter head-dip counts and head-dip latency. In conclusion, our findings suggest that the CA1 5-HT4 receptors are involved in MK801-induced amnesia and hyperlocomotion. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis

    NARCIS (Netherlands)

    Holsheimer, J.

    1987-01-01

    The microstructure of the layers in the hippocampal CA1 area suggests that differences may exist between the electrical conductivities of these layers. In order to quantify these differences a sinusoidal current was applied to hippocampal slices in a bathing medium and potential differences were

  8. Electrically evoked GABA release in rat hippocampus CA1 region and its changes during kindling epileptogenesis.

    NARCIS (Netherlands)

    Ghijsen, W.E.J.M.; Zuiderwijk, M.; Lopes da Silva, F.H.

    2007-01-01

    Previous findings on changes in K(+)-induced GABA release from hippocampal slices during kindling epileptogenesis were reinvestigated using physiological electrical stimulation. For that purpose, a procedure was developed enabling neurochemical monitoring of GABA release locally in the CA1 region of

  9. Altered synaptic plasticity in hippocampal CA1 area of apolipoprotein E deficient mice

    NARCIS (Netherlands)

    Krugers, HJ; Mulder, M; Korf, J; Havekes, L; deKloet, ER; Joëls, M

    1997-01-01

    IN mice with a homozygous or heterozygous deficiency for ApoE as well as in wild-type animals we established synaptic responsiveness in the hippocampal CA1 area following stimulation of the SchafFer/commissural fibers. The maximal population spike amplitude was significantly larger in wild-type

  10. Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms.

    Science.gov (United States)

    Ferguson, Katie A; Huh, Carey Y L; Amilhon, Bénédicte; Williams, Sylvain; Skinner, Frances K

    2013-01-01

    The coupling of high frequency oscillations (HFOs; >100 Hz) and theta oscillations (3-12 Hz) in the CA1 region of rats increases during REM sleep, indicating that it may play a role in memory processing. However, it is unclear whether the CA1 region itself is capable of providing major contributions to the generation of HFOs, or if they are strictly driven through input projections. Parvalbumin-positive (PV+) interneurons may play an essential role in these oscillations due to their extensive connections with neighboring pyramidal cells, and their characteristic fast-spiking. Thus, we created mathematical network models to investigate the conditions under which networks of CA1 fast-spiking PV+ interneurons are capable of producing high frequency population rhythms. We used whole-cell patch clamp recordings of fast-spiking, PV+ cells in the CA1 region of an intact hippocampal preparation in vitro to derive cellular properties, from which we constrained an Izhikevich-type model. Novel, biologically constrained network models were constructed with these individual cell models, and we investigated networks across a range of experimentally determined excitatory inputs and inhibitory synaptic strengths. For each network, we determined network frequency and coherence. Network simulations produce coherent firing at high frequencies (>90 Hz) for parameter ranges in which PV-PV inhibitory synaptic conductances are necessarily small and external excitatory inputs are relatively large. Interestingly, our networks produce sharp transitions between random and coherent firing, and this sharpness is lost when connectivity is increased beyond biological estimates. Our work suggests that CA1 networks may be designed with mechanisms for quickly gating in and out of high frequency coherent population rhythms, which may be essential in the generation of nested theta/high frequency rhythms.

  11. Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2013-10-01

    Full Text Available The coupling of high frequency oscillations (HFOs; >100 Hz and theta oscillations (3-12 Hz in the CA1 region of rats increases during REM sleep, indicating that it may play a role in memory processing. However, it is unclear whether the CA1 region itself is capable of providing major contributions to the generation of HFOs, or if they are strictly driven through input projections. Parvalbumin-positive (PV+ interneurons may play an essential role in these oscillations due to their extensive connections with neighbouring pyramidal cells, and their characteristic fast-spiking. Thus, we created mathematical network models to investigate the conditions under which networks of CA1 fast-spiking PV+ interneurons are capable of producing high frequency population rhythms.We used whole-cell patch clamp recordings of fast-spiking, PV+ cells in the CA1 region of an intact hippocampal preparation in vitro to derive cellular properties, from which we constrained an Izhikevich-type model. Novel, biologically constrained network models were constructed with these individual cell models, and we investigated networks across a range of experimentally determined excitatory inputs and inhibitory synaptic strengths. For each network, we determined network frequency and coherence.Network simulations produce coherent firing at high frequencies (> 90 Hz for parameter ranges in which PV-PV inhibitory synaptic conductances are necessarily small and external excitatory inputs are relatively large. Interestingly, our networks produce sharp transitions between random and coherent firing, and this sharpness is lost when connectivity is increased beyond biological estimates. Our work suggests that CA1 networks may be designed with mechanisms for quickly gating in and out of high frequency coherent population rhythms, which may be essential in the generation of nested theta/high frequency rhythms.

  12. Hippocampal epileptiform activity induced by magnesium-free medium: differences between areas CA1 and CA2-3.

    Science.gov (United States)

    Lewis, D V; Jones, L S; Mott, D D

    1990-07-01

    Hippocampal slices, from which the entorhinal cortex had been removed, were exposed to artificial cerebrospinal fluid containing no magnesium (0-Mg ACSF) to elicit interictal bursts (IIBs) and electrographic seizures (EGSs). In 0-Mg ACSF, IIBs and EGSs occurred in both area CA1 and area CA3. The IIBs in CA3 led the IIBs in CA1 by several milliseconds. The epileptiform bursts occurring during the EGSs seemed to have the opposite relationship, with bursts in CA1 leading those in CA3 by several milliseconds. When the connections between CA1 and CA2-3 were cut, the IIBs ceased in CA1 and continued in CA3. To further characterize the local differences in epileptiform activity, totally separate minislices of area CA1 and area CA2-3 were prepared. In the CA2-3 minislices, a few EGSs occurred and thereafter only persistent IIBs prevailed. Conversely, in the CA1 minislices, many spontaneous EGSs occurred for long periods of time and no IIBs were seen. Periodic stimulation of the CA1 minislices triggered IIBs that suppressed the recurrent EGSs. In the hippocampal slice exposed to low magnesium, IIBs originate in CA2-3 and are propagated to CA1, where they can have a suppressant effect on EGSs. Furthermore, unlike IIBs, the bursts making up the EGSs seem to start in CA1 and invade CA2-3.

  13. Relevant Anatomic and Morphological Measurements of the Rat Spine: Considerations for Rodent Models of Human Spine Trauma.

    Science.gov (United States)

    Jaumard, Nicolas V; Leung, Jennifer; Gokhale, Akhilesh J; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A

    2015-10-15

    Basic science study measuring anatomical features of the cervical and lumbar spine in rat with normalized comparison with the human. The goal of this study is to comprehensively compare the rat and human cervical and lumbar spines to investigate whether the rat is an appropriate model for spine biomechanics investigations. Animal models have been used for a long time to investigate the effects of trauma, degenerative changes, and mechanical loading on the structure and function of the spine. Comparative studies have reported some mechanical properties and/or anatomical dimensions of the spine to be similar between various species. However, those studies are largely limited to the lumbar spine, and a comprehensive comparison of the rat and human spines is lacking. Spines were harvested from male Holtzman rats (n = 5) and were scanned using micro- computed tomography and digitally rendered in 3 dimensions to quantify the spinal bony anatomy, including the lateral width and anteroposterior depth of the vertebra, vertebral body, and spinal canal, as well as the vertebral body and intervertebral disc heights. Normalized measurements of the vertebra, vertebral body, and spinal canal of the rat were computed and compared with corresponding measurements from the literature for the human in the cervical and lumbar spinal regions. The vertebral dimensions of the rat spine vary more between spinal levels than in humans. Rat vertebrae are more slender than human vertebrae, but the width-to-depth axial aspect ratios are very similar in both species in both the cervical and lumbar regions, especially for the spinal canal. The similar spinal morphology in the axial plane between rats and humans supports using the rat spine as an appropriate surrogate for modeling axial and shear loading of the human spine.

  14. The effect of CA1 dopaminergic system in harmaline-induced amnesia.

    Science.gov (United States)

    Nasehi, M; Ketabchi, M; Khakpai, F; Zarrindast, M-R

    2015-01-29

    In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmaline-induced amnesia were examined in male mice. A one-trial step-down passive avoidance task was used for the assessment of memory retention in adult male mice. Pre-training intra-peritoneal (i.p.) administration of harmaline (1 mg/kg) induced impairment of memory retention. Moreover, intra-CA1 administration of dopamine D1 receptor antagonist, SCH23390 (0.02 μg/mouse), dopamine D1 receptor agonist, SKF38393 (0.5 μg/mouse), dopamine D2 receptor antagonist, sulpiride (1 μg/mouse) and dopamine D2 receptor agonist, quinpirole (0.25 and 0.5 μg/mouse) suppressed the learning of a single-trial passive avoidance task. Also, pre-training intra-CA1 injection of subthreshold doses of SCH23390 (0.001 μg/mouse) or sulpiride (0.25 μg/mouse) with the administration of harmaline (1 mg/kg, i.p.) reversed impairment of memory formation. However, pre-training intra-CA1 injection of SKF38393 (0.1 μg/mouse) or quinpirole (0.1 μg/mouse) increased pre-training harmaline (0.25 and 0.5 mg/kg, i.p.)-induced retrieval impairment. Moreover, SKF Ca blocker (SKF) (0.01 μg/mouse) decrease the amnesia induced by harmaline (1 mg/kg), while co-administration of SKF (0.01 μg/mouse)/sulpiride (0.25 μg/mouse) or SCH23390 (0.001 μg/mouse)/sulpiride (0.25 μg/mouse) potentiate amnesia caused by harmaline. These findings implicate the involvement of CA1 dopaminergic mechanism in harmaline-induced impairment of memory acquisition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Biophysical model of the role of actin remodeling on dendritic spine morphology

    Science.gov (United States)

    Miermans, C. A.; Kusters, R. P. T.; Hoogenraad, C. C.; Storm, C.

    2017-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. It is well established that the remodeling of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present a quantitative, model-based scenario for spine plasticity validated using realistic and physiologically relevant parameters. Our model points to a crucial role for the actin cytoskeleton. In the early stages of spine formation, the interplay between the elastic properties of the spine membrane and the protrusive forces generated in the actin cytoskeleton propels the incipient spine. In the maturation stage, actin remodeling in the form of the combined dynamics of branched and bundled actin is required to form mature, mushroom-like spines. Importantly, our model shows that constricting the spine-neck aids in the stabilization of mature spines, thus pointing to a role in stabilization and maintenance for additional factors such as ring-like F-actin structures. Taken together, our model provides unique insights into the fundamental role of actin remodeling and polymerization forces during spine formation and maturation. PMID:28158194

  16. Cactus spine granuloma.

    Science.gov (United States)

    Madkan, Vandana K; Abraham, Tonya; Lesher, Jack L

    2007-03-01

    We describe the case of a 45-year-old woman with a 2-week history of painful erythematous papules on the palmar aspect of the fingertips of her right hand, resulting from contact with a cholla cactus 3 weeks prior in Arizona. The patient initially was given clobetasol propionate ointment, resulting in some improvement; however, the lesions resolved only after punch biopsies were performed to confirm the diagnosis of cactus spine granuloma.

  17. Interventional spine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kelekis, A.D. [Attikon University Hospital, 2nd Radiology Department, University of Athens, Rimini 1, 124 61 Athens (Greece)]. E-mail: akelekis@cc.uoa.gr; Somon, T. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Yilmaz, H. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Bize, P. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Brountzos, E.N. [Attikon University Hospital, 2nd Radiology Department, University of Athens, Rimini 1, 124 61 Athens (Greece); Lovblad, K. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Ruefenacht, D. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Martin, J.B. [Clinique Generale Beaulieu 12 chemin Beau Soleil 1206 Geneva (Switzerland)]. E-mail: jbmartin@beaulieu.ch

    2005-09-01

    Minimally invasive techniques for the treatment of some spinal diseases are percutaneous treatments, proposed before classic surgery. By using imaging guidance, one can significantly increase accuracy and decrease complication rates. This review report physiopathology and discusses indications, methods, complications and results of performing these techniques on the spine, including different level (cervical, thoracic, lumbar and sacroiliac) and different kind of treatments (nerve block, disc treatment and bone treatment). Finally the present article also reviews current literature on the controversial issues involved.

  18. The degenerative cervical spine.

    Science.gov (United States)

    Llopis, E; Belloch, E; León, J P; Higueras, V; Piquer, J

    2016-04-01

    Imaging techniques provide excellent anatomical images of the cervical spine. The choice to use one technique or another will depend on the clinical scenario and on the treatment options. Plain-film X-rays continue to be fundamental, because they make it possible to evaluate the alignment and bone changes; they are also useful for follow-up after treatment. The better contrast resolution provided by magnetic resonance imaging makes it possible to evaluate the soft tissues, including the intervertebral discs, ligaments, bone marrow, and spinal cord. The role of computed tomography in the study of degenerative disease has changed in recent years owing to its great spatial resolution and its capacity to depict osseous components. In this article, we will review the anatomy and biomechanical characteristics of the cervical spine, and then we provide a more detailed discussion of the degenerative diseases that can affect the cervical spine and their clinical management. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  19. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun [Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam-si (Korea); Lee, Jung Seok; Kim, Sang Yun [Seoul National University Bundang Hospital, Department of Neurology, Seoul National University College of Medicine, Seongnam-si (Korea)

    2007-06-15

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  20. Integrative spike dynamics of rat CA1 neurons: a multineuronal imaging study.

    Science.gov (United States)

    Sasaki, Takuya; Kimura, Rie; Tsukamoto, Masako; Matsuki, Norio; Ikegaya, Yuji

    2006-07-01

    The brain operates through a coordinated interplay of numerous neurons, yet little is known about the collective behaviour of individual neurons embedded in a huge network. We used large-scale optical recordings to address synaptic integration in hundreds of neurons. In hippocampal slice cultures bolus-loaded with Ca2+ fluorophores, we stimulated the Schaffer collaterals and monitored the aggregate presynaptic activity from the stratum radiatum and individual postsynaptic spikes from the CA1 stratum pyramidale. Single neurons responded to varying synaptic inputs with unreliable spikes, but at the population level, the networks stably output a linear sum of synaptic inputs. Nonetheless, the network activity, even though given constant stimuli, varied from trial to trial. This variation emerged through time-varying recruitment of different neuron subsets, which were shaped by correlated background noise. We also mapped the input-frequency preference in spiking activity and found that the majority of CA1 neurons fired in response to a limited range of presynaptic firing rates (20-40 Hz), acting like a band-pass filter, although a few neurons had high pass-like or low pass-like characteristics. This frequency selectivity depended on phasic inhibitory transmission. Thus, our imaging approach enables the linking of single-cell behaviours to their communal dynamics, and we discovered that, even in a relatively simple CA1 circuit, neurons could be engaged in concordant information processing.

  1. Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine.

    Directory of Open Access Journals (Sweden)

    Hui Kuang

    2010-12-01

    Full Text Available Ketamine is a widely used dissociative anesthetic which can induce some psychotic-like symptoms and memory deficits in some patients during the post-operative period. To understand its effects on neural population dynamics in the brain, we employed large-scale in vivo ensemble recording techniques to monitor the activity patterns of simultaneously recorded hippocampal CA1 pyramidal cells and various interneurons during several conscious and unconscious states such as awake rest, running, slow wave sleep, and ketamine-induced anesthesia. Our analyses reveal that ketamine induces distinct oscillatory dynamics not only in pyramidal cells but also in at least seven different types of CA1 interneurons including putative basket cells, chandelier cells, bistratified cells, and O-LM cells. These emergent unique oscillatory dynamics may very well reflect the intrinsic temporal relationships within the CA1 circuit. It is conceivable that systematic characterization of network dynamics may eventually lead to better understanding of how ketamine induces unconsciousness and consequently alters the conscious mind.

  2. Organizational connectivity among the CA1, subiculum, presubiculum, and entorhinal cortex in the rabbit.

    Science.gov (United States)

    Honda, Yoshiko; Shibata, Hideshi

    2017-12-01

    The laminar and topographical organization of connections between the hippocampal formation and parahippocampal regions was investigated in the rabbit following in vivo injection of cholera toxin B subunit as a retro- and antero-grade tracer and biotinylated dextran amine as an anterograde tracer. We confirmed several connectional features different from those of the rat, that is, the rabbit presubiculum received abundant afferents from CA1 and had many reciprocal connections with the entorhinal cortex. On the other hand, we identified many similarities with the rat: both the CA1 and subicular afferents that originated from the entorhinal cortex were abundant; moreover, the presubiculum received many inputs from the subiculum and sent massive projections to the entorhinal cortex. By plotting retrograde and anterograde labels in two-dimensional unfolded maps of the entire hippocampal and parahippocampal regions, we found that each group of entorhinal cells that project to CA1, subiculum, and presubiculum, and also the termination of the presubiculo-entorhinal projection, was distributed in band-like zones in layers II-III, extending across the medial and lateral entorhinal cortex. Our results suggest that the rabbit has a basic connectivity that is common with that of the rat, and also has additional hippocampal-presubicular and entorhino-presubicular connections that may reflect functional evolution in learning and memory. © 2017 Wiley Periodicals, Inc.

  3. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Nabi Shamsaei

    2015-01-01

    Full Text Available Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks. Then rats underwent cerebral ischemia induction through occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  4. Cannabinoids disrupt memory encoding by functionally isolating hippocampal CA1 from CA3.

    Directory of Open Access Journals (Sweden)

    Roman A Sandler

    2017-07-01

    Full Text Available Much of the research on cannabinoids (CBs has focused on their effects at the molecular and synaptic level. However, the effects of CBs on the dynamics of neural circuits remains poorly understood. This study aims to disentangle the effects of CBs on the functional dynamics of the hippocampal Schaffer collateral synapse by using data-driven nonparametric modeling. Multi-unit activity was recorded from rats doing an working memory task in control sessions and under the influence of exogenously administered tetrahydrocannabinol (THC, the primary CB found in marijuana. It was found that THC left firing rate unaltered and only slightly reduced theta oscillations. Multivariate autoregressive models, estimated from spontaneous spiking activity, were then used to describe the dynamical transformation from CA3 to CA1. They revealed that THC served to functionally isolate CA1 from CA3 by reducing feedforward excitation and theta information flow. The functional isolation was compensated by increased feedback excitation within CA1, thus leading to unaltered firing rates. Finally, both of these effects were shown to be correlated with memory impairments in the working memory task. By elucidating the circuit mechanisms of CBs, these results help close the gap in knowledge between the cellular and behavioral effects of CBs.

  5. Augmented inhibition from cannabinoid sensitive interneurons diminishes CA1 output after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Brian Neal Johnson

    2014-12-01

    Full Text Available The neurological impairments associated with traumatic brain injury include learning and memory deficits and increased risk of seizures. The hippocampus is critically involved in both of these phenomena and highly susceptible to damage by traumatic brain injury. To examine network activity in the hippocampal CA1 region after lateral fluid percussion injury, we used a combination of voltage sensitive dye, field potential and patch clamp recording in mouse hippocampal brain slices. When the stratum radiatum was stimulated in slices from injured mice we found decreased depolarization in stratum radiatum and increased hyperpolarization in stratum oriens, together with a decrease in the percentage of pyramidal neurons firing stimulus-evoked action potentials. Increased hyperpolarization in stratum oriens persisted when glutamatergic transmission was blocked. However, we found no changes in stratum oriens responses when the alveus was stimulated to directly activate stratum oriens. These results suggest that the increased stratum oriens hyperpolarization evoked by stratum radiatum stimulation was mediated by interneurons that have cell bodies and/or axons in stratum radiatum, and form synapses in stratum pyramidale and stratum oriens. A low concentration (100 nM of the synthetic cannabinoid WIN55,212-2,restored CA1 output in slices from injured animals. These findings support the hypothesis that increased GABAergic signaling by cannabinoid sensitive interneurons contributes to the reduced CA1 output following traumatic brain injury.

  6. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters

    Directory of Open Access Journals (Sweden)

    Jinzhong Jeremy Goh

    2013-01-01

    Full Text Available Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP and long-term depression (LTD, it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction in mice in the CA1 region has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7 or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g. 900 pulses given twice at 5 min intervals, or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g. learning conditions.

  7. Breast cancer 1 (BrCa1 may be behind decreased lipogenesis in adipose tissue from obese subjects.

    Directory of Open Access Journals (Sweden)

    Francisco J Ortega

    Full Text Available CONTEXT: Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1 interacts with acetyl-CoA carboxylase (ACC reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. RESEARCH DESIGN AND METHODS: BrCa1 gene expression, total and phosphorylated (P- BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. RESULTS: BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002 and subcutaneous (SC; 1.49-fold, p = 0.001 adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007 as well as in OM (p = 0.010 fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001 and protein (1.2-fold, p = 0.001 were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005 allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium, whereas lipogenic genes significantly decreased. CONCLUSIONS: The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects.

  8. [Effect of electromagnetic radiation on discharge activity of neurons in the hippocampus CA1 in rats].

    Science.gov (United States)

    Tong, Jun; Chen, Su; Liu, Xiang-Ming; Hao, Dong-Mei

    2013-09-01

    In order to explore effect of electromagnetic radiation on learning and memory ability of hippocampus neuron in rats, the changes in discharge patterns and overall electrical activity of hippocampus neuron after electromagnetic radiation were observed. Rat neurons discharge was recorded with glass electrode extracellular recording technology and a polygraph respectively. Radiation frequency of electromagnetic wave was 900 MHZ and the power was 10 W/m2. In glass electrode extracellular recording, the rats were separately irradiated for 10, 20, 30, 40, 50 and 60 min, every points repeated 10 times and updated interval of 1h, observing the changes in neuron discharge and spontaneous discharge patterns after electromagnetic radiation. In polygraph recording experiments, irradiation group rats for five days a week, 6 hours per day, repeatedly for 10 weeks, memory electrical changes in control group and irradiation group rats when they were feeding were repeatedly monitored by the implanted electrodes, observing the changes in peak electric digits and the largest amplitude in hippocampal CA1 area, and taking some electromagnetic radiation sampling sequence for correlation analysis. (1) Electromagnetic radiation had an inhibitory role on discharge frequency of the hippocampus CA1 region neurons. After electromagnetic radiation, discharge frequency of the hippocampus CA1 region neurons was reduced, but the changes in scale was not obvious. (2) Electromagnetic radiation might change the spontaneous discharge patterns of hippocampus CA1 region neurons, which made the explosive discharge pattern increased obviously. (3) Peak potential total number within 5 min in irradiation group was significantly reduced, the largest amplitude was less than that of control group. (4) Using mathematical method to make the correlation analysis of the electromagnetic radiation sampling sequence, that of irradiation group was less than that of control group, indicating that there was a tending

  9. Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Xiaohua Jin

    2016-01-01

    Full Text Available Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory. However, our knowledge about molecular mechanisms that regulate the development and maintenance of dendritic spines is limited. We recently reported that cyclin-dependent kinase 5 (Cdk5 is required for the development and maintenance of dendritic spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5 phosphorylates collapsin response mediator protein 2 (CRMP2 in the dendritic spines of cultured hippocampal neurons and in vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

  10. Stabilization of the spine in patients with suspected cervical spine ...

    African Journals Online (AJOL)

    Stabilization of the spine in patients with suspected cervical spine injury in Mulago Hospital. BM Ndeleva, T Beyeza. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/eaoj.v5i1.67487 · AJOL African Journals ...

  11. Beyond the spine

    DEFF Research Database (Denmark)

    Donovan, James; Cassidy, J David; Cancelliere, Carol

    2015-01-01

    traditional research pursuits towards new and innovative areas. Specifically, these researchers are now delving into areas such as brain injury, work disability prevention, undifferentiated chest pain, hip osteoarthritis, and prevention of pain in children and adolescents to name a few. In this paper, we......Over the past two decades, clinical research within the chiropractic profession has focused on the spine and spinal conditions, specifically neck and low back pain. However, there is now a small group of chiropractors with clinical research training that are shifting their focus away from...

  12. Sheep cervical spine biomechanics: a finite element study.

    Science.gov (United States)

    DeVries Watson, Nicole A; Gandhi, Anup A; Fredericks, Doug C; Smucker, Joseph D; Grosland, Nicole M

    2014-01-01

    Animal models are often used to make the transition from scientific concepts to clinical applications. The sheep model has emerged as an important model in spine biomechanics. Although there are several experimental biomechanical studies of the sheep cervical spine, only a limited number of computational models have been developed. Therefore, the objective of this study was to develop and validate a C2-C7 sheep cervical spine finite element (FE) model to study the biomechanics of the normal sheep cervical spine. The model was based on anatomy defined using medical images and included nonlinear material properties to capture the high flexibility and large neutral zone of the sheep cervical spine. The model was validated using comprehensive experimental flexibility testing. Ten adult sheep cervical spines, from C2-C7, were used to experimentally ascertain overall and segmental flexibility to ±2 Nm in flexion-extension, lateral bending, and axial rotation. The ranges of motion predicted by the computational model were within one standard deviation of the respective experimental motions throughout the load cycle, with the exception of extension and lateral bending. The model over- and under predicted the peak motions in extension and lateral bending, respectively. Nevertheless, the model closely represents the range of motion and flexibility of the sheep cervical spine. This is the first multilevel model of the sheep cervical spine. The validated model affords additional biomechanical insight into the intact sheep cervical spine that cannot be easily determined experimentally. The model can be used to study various surgical techniques, instrumentation, and device placement, providing researchers and clinicians insight that is difficult, if not impossible, to gain experimentally.

  13. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    Science.gov (United States)

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016

  14. Neuroprotective effect of olive oil in the hippocampus CA1 neurons following ischemia: Reperfusion in mice

    Directory of Open Access Journals (Sweden)

    M Zamani

    2013-01-01

    Full Text Available Introduction: Transient global ischemia induces selective, delayed neuronal death of pyramidal neurons in the hippocampal CA1. Oxidative Stress is considered to be involved in a number of human diseases including ischemia. Preliminary studies confirmed reduction of cell death in brain following treatment with antioxidants. Aim: According to this finding, we study the relationship between consumption of olive oil on cell death and memory disorder in brain ischemia. We studied the protective effect of olive oil against ischemia-reperfusion. Material and Methods: Experimental design includes three groups: Intact (n = 8, ischemic control (n = 8 and treatment groups with olive oil (n = 8. The mice treated with olive oil as pre-treatment for a week. Then, ischemia induced by common carotid artery ligation and following the reduction of inflammation [a week after ischemia], the mice post-treated with olive oil. Nissl staining applied for counting necrotic cells in hippocampus CA1. Tunnel kit was used to quantify apoptotic cell death while to short term memory scale, we apply y-maze and shuttle box tests and for detection the rate of apoptotic and treated cell, we used western blotting test for bax and bcl2 proteins. Results: High rate of apoptosis was seen in ischemic group that significantly associated with short-term memory loss. Cell death was significantly lower when mice treated with olive oil. The memory test results were adjusted with cell death results and bax and bcl2 expression in all groups′ comparison. Ischemia for 15 min induced cell death in hippocampus with more potent effect on CA1. Conclusion: Olive oil intake significantly reduced cell death and decreased memory loss.

  15. Experimental study on the effect of controlled hypotension levels on rabbit CA1 neurons.

    Science.gov (United States)

    Liu, Bingbing; Zhou, Diawei; Huang, Hongyan; Xiao, Xiaoshan

    2013-06-01

    The present study investigated the effect of controlled hypotension (CH) levels regulated by nitroprusside on hippocampal CA1 neurons. All experimental rabbits were randomly divided into five groups to perform CH for recording their vital signs and survived for a certain time. The arterial blood was collected to measure the serum levels of interleukin 6 and tumor necrosis factor α and then the brain tissues were perfused and sectioned to carry out hematoxylin-eosin staining, TdT-mediated dUTP nick end labeling fluorescence, c-fos immunohistochemistry, and ultrastructural observation of hippocampal neuronal mitochondria. All data were analyzed with SPSS13.0 software, and P < 0.05 was indicated as statistically significant. Heart rate, mean arterial pressure, and the dosage of sodium nitroprusside were not statistically significant between groups, but at T2, heart rate levels in groups II-IV were lower than those in groups I and V. Simultaneously, interleukin 6 was remarkably overexpressed in group II than in other groups at T2, whereas tumor necrosis factor α was higher in groups I-III than in groups IV and V. At the light and electronic microscopic levels, the CA1 regional neurons of group IV were more seriously damaged and deranged compared with other groups so was the expression of c-fos. However, fluorescence from TdT-mediated dUTP nick end labeling assay was more intensive in groups II-IV than that in other groups. Results further showed that Flameng scores of mitochondria were the highest in group IV, but they were not statistically significant among the other groups. The different levels of CH remarkably affected the functional activities of hippocampal CA1 neurons; with the decrease of mean arterial pressure, neuronal apoptosis, and c-fos expression was gradually increased and reached the peak in 45% of basic values of blood pressure. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Malpractice litigation following spine surgery.

    Science.gov (United States)

    Daniels, Alan H; Ruttiman, Roy; Eltorai, Adam E M; DePasse, J Mason; Brea, Bielinsky A; Palumbo, Mark A

    2017-10-01

    OBJECTIVE Adverse events related to spine surgery sometimes lead to litigation. Few studies have evaluated the association between spine surgical complications and medical malpractice proceedings, outcomes, and awards. The aim of this study was to identify the most frequent causes of alleged malpractice in spine surgery and to gain insight into patient demographic and clinical characteristics associated with medical negligence litigation. METHODS A search for "spine surgery" spanning February 1988 to May 2015 was conducted utilizing the medicolegal research service VerdictSearch (ALM Media Properties, LLC). Demographic data for the plaintiff and defendant in addition to clinical data for the procedure and legal outcomes were examined. Spinal cord injury, anoxic/hypoxic brain injury, and death were classified as catastrophic complications; all other complications were classified as noncatastrophic. Both chi-square and t-tests were used to evaluate the effect of these variables on case outcomes and awards granted. RESULTS A total of 569 legal cases were examined; 335 cases were excluded due to irrelevance or insufficient information. Of the 234 cases included in this investigation, 54.2% (127 cases) resulted in a defendant ruling, 26.1% (61) in a plaintiff ruling, and 19.6% (46) in a settlement. The awards granted for plaintiff rulings ranged from $134,000 to $38,323,196 (mean $4,045,205 ± $6,804,647). Awards for settlements ranged from $125,000 to $9,000,000 (mean $1,930,278 ± $2,113,593), which was significantly less than plaintiff rulings (p = 0.022). Compared with cases without a delay in diagnosis of the complication, the cases with a diagnostic delay were more likely to result in a plaintiff verdict or settlement (42.9% vs 72.7%, p = 0.007) than a defense verdict, and were more likely to settle out of court (17.5% vs 40.9%, p = 0.008). Similarly, compared with cases without a delay in treatment of the complication, those with a therapeutic delay were more

  17. Disinhibition mediates a form of hippocampal long-term potentiation in area CA1.

    Directory of Open Access Journals (Sweden)

    Jake Ormond

    Full Text Available The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs followed rapidly by feedforward (disynaptic inhibitory postsynaptic potentials (IPSPs. Long-term potentiation (LTP of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs, required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.

  18. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats

    Science.gov (United States)

    Yu, Xiao-Wen; Curlik, Daniel M; Oh, M Matthew; Yin, Jerry CP; Disterhoft, John F

    2017-01-01

    The molecular mechanisms underlying age-related cognitive deficits are not yet fully elucidated. In aged animals, a decrease in the intrinsic excitability of CA1 pyramidal neurons is believed to contribute to age-related cognitive impairments. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents facilitates cognition, and increases intrinsic excitability. However, it has yet to be tested if increasing CREB expression also ameliorates age-related behavioral and biophysical deficits. To test this hypothesis, we virally overexpressed CREB in CA1 of dorsal hippocampus. Rats received CREB or control virus, before undergoing water maze training. CREB overexpression in aged animals ameliorated the long-term memory deficits observed in control animals. Concurrently, cells overexpressing CREB in aged animals had reduced post-burst afterhyperpolarizations, indicative of increased intrinsic excitability. These results identify CREB modulation as a potential therapy to treat age-related cognitive decline. DOI: http://dx.doi.org/10.7554/eLife.19358.001 PMID:28051768

  19. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models.

    Science.gov (United States)

    Mino, Hiroyuki; Durand, Dominique M; Kawaguchi, Minato

    2006-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we test the hypothesis that SR can improve information transmission in the hippocampus. From spike firing times recorded at the soma, the inter spike intervals were generated and then "total" and "noise" entropies were estimated to obtain the mutual information and information rate of the spike trains. The results show that the information rate reached a maximum value at a specific amplitude of the background noise, implying that the stochastic resonance can improve the information transmission in the CA1 neuron model. Furthermore, the results also show that the effect of stochastic resonance tended to decrease as the intensity of the random sub-threshold spike trains (signal) (more than 20 l/s) approached to that of the background noise (100 l/s). In conclusion, the computation results that the stochastic resonance can improve information processing in the hippocampal CA1 neuron model in which the intensity of the random sub-threshold spike trains was set at 5-20 l/s.

  20. Regional hippocampal vulnerability in early multiple sclerosis: Dynamic pathological spreading from dentate gyrus to CA1.

    Science.gov (United States)

    Planche, Vincent; Koubiyr, Ismail; Romero, José E; Manjon, José V; Coupé, Pierrick; Deloire, Mathilde; Dousset, Vincent; Brochet, Bruno; Ruet, Aurélie; Tourdias, Thomas

    2018-01-13

    Whether hippocampal subfields are differentially vulnerable at the earliest stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic of debate. We prospectively included 56 persons with clinically isolated syndrome (CIS) suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at baseline. Participants were tested for memory performance and scanned with 3 T MRI to assess the volume of 5 distinct hippocampal subfields using automatic segmentation techniques. At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume significantly smaller than controls (p lesion-load, and global brain atrophy as covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis during follow-up, independently of T2-lesion load and demographic variables (p < .05). Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 atrophy was an independent correlate of episodic verbal memory performance one year after CIS (ß = 0.87, p < .05). The hippocampal degenerative process spread from dentate gyrus to CA1 at the earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS and will ultimately impact hippocampal-dependent memory performance. © 2018 Wiley Periodicals, Inc.

  1. Withdrawal from the endogenous steroid progesterone results in GABAA currents insensitive to benzodiazepine modulation in rat CA1 hippocampus.

    Science.gov (United States)

    Costa, A M; Spence, K T; Smith, S S; ffrench-Mullen, J M

    1995-07-01

    1. The withdrawal properties of the endogenous steroid progesterone (P) were tested in female rats as a function of benzodiazepine modulation of gamma-aminobutyric acid-A (GABAA)-gated current with the use of the whole cell patch-clamp technique on acutely dissociated CA1 hippocampal neurons. In a previous study, this steroid was shown to exhibit withdrawal properties, behaviorally. 2. One day withdrawal from in vivo administration of physiological doses of P (5 mg ip, 5 days/wk for 3 withdrawal cycles) or its metabolite, the GABAA modulator 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha,5 alpha-THP or allopregnanolone, 20 mg/kg ip) prevented the normally potentiating effect of lorazepam (LZM; 10(-7)-10(-4) M) on GABAA-gated current. Withdrawal from 500 micrograms P administered concomitantly with 2 micrograms 17 beta-estradiol also markedly diminished LZM potentiation of GABAA current. This effect was seen only after three withdrawal cycles. 3. P withdrawal produced no inhibitory effect on either basal levels of GABAA-evoked current, the GABAA EC50, or barbiturate (+/-Pentobarbital, 10(-7)-10(-4) M) modulation of this parameter. 4. The effect of steroid withdrawal on LZM modulation of GABAA-evoked current was blocked by picrotoxin as well as by indomethacin, a drug that prevents conversion of P to its metabolite, the GABAA modulator 3 alpha,5 alpha-THP. These results suggest that the withdrawal properties of P may be due to changes in GABAA receptor function produced by 3 alpha,5 alpha-THP.

  2. Spine injuries in dancers.

    Science.gov (United States)

    Gottschlich, Laura M; Young, Craig C

    2011-01-01

    Care of a dancer calls for a unique balance between athlete and artist. The physician must familiarize himself or herself with dance terminology, common moves, correct technique, and dancer's mentality. The goal is to work intimately with the dancer to care for the injury and, if possible, continue to participate in portions of dance class to limit anxiety and increase compliance to treatment. The spine is the second most injured area of the body in dancers, and many issues stem from poor technique and muscle imbalance. This often leads to hyperlordosis, spondylolysis, spondylolisthesis, lumbar facet sprain, discogenic back pain, and muscle spasm and piriformis syndrome. This article reviews these causes of low back pain with a focus on dance-related presentation and treatment issues.

  3. Physiopathology of Spine Metastasis

    Directory of Open Access Journals (Sweden)

    Giulio Maccauro

    2011-01-01

    Full Text Available The metastasis is the spread of cancer from one part of the body to another. Two-thirds of patients with cancer will develop bone metastasis. Breast, prostate and lung cancer are responsible for more than 80% of cases of metastatic bone disease. The spine is the most common site of bone metastasis. A spinal metastasis may cause pain, instability and neurological injuries. The diffusion through Batson venous system is the principal process of spinal metastasis, but the dissemination is possible also through arterial and lymphatic system or by contiguity. Once cancer cells have invaded the bone, they produce growth factors that stimulate osteoblastic or osteolytic activity resulting in bone remodeling with release of other growth factors that lead to a vicious cycle of bone destruction and growth of local tumour.

  4. Cell Type-Specific mRNA Dysregulation in Hippocampal CA1 Pyramidal Neurons of the Fragile X Syndrome Mouse Model

    Directory of Open Access Journals (Sweden)

    Laura Ceolin

    2017-10-01

    Full Text Available Fragile X syndrome (FXS is a genetic disorder due to the silencing of the Fmr1 gene, causing intellectual disability, seizures, hyperactivity, and social anxiety. All these symptoms result from the loss of expression of the RNA binding protein fragile X mental retardation protein (FMRP, which alters the neurodevelopmental program to abnormal wiring of specific circuits. Aberrant mRNAs translation associated with the loss of Fmr1 product is widely suspected to be in part the cause of FXS. However, precise gene expression changes involved in this disorder have yet to be defined. The objective of this study was to identify the set of mistranslated mRNAs that could contribute to neurological deficits in FXS. We used the RiboTag approach and RNA sequencing to provide an exhaustive listing of genes whose mRNAs are differentially translated in hippocampal CA1 pyramidal neurons as the integrative result of FMRP loss and subsequent neurodevelopmental adaptations. Among genes differentially regulated between adult WT and Fmr1−/y mice, we found enrichment in FMRP-binders but also a majority of non-FMRP-binders. Interestingly, both up- and down-regulation of specific gene expression is relevant to fully understand the molecular deficiencies triggering FXS. More importantly, functional genomic analysis highlighted the importance of genes involved in neuronal connectivity. Among them, we show that Klk8 altered expression participates in the abnormal hippocampal dendritic spine maturation observed in a mouse model of FXS.

  5. Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite.

    Science.gov (United States)

    Huang, Yan; Liu, Debao; Anguilano, Lorna; You, Chen; Chen, Minfang

    2015-09-01

    A biodegradable magnesium matrix and beta-tricalcium phosphate (β-TCP) particles reinforced composite Mg-2Zn-0.5Ca/1beta-TCP (wt.%) was fabricated for biomedical applications by the novel route of combined high shear solidification (HSS) and equal channel angular extrusion (ECAE). The as-cast composite obtained by HSS showed a fine and equiaxed grain structure with globally uniformly distributed β-TCP particles in aggregates of 2-25 μm in size. The ECAE processing at 300 °C resulted in further microstructural refinement and the improvement of β-TCP particle distribution. During ECAE, the β-TCP aggregates were broken into smaller ones or individual particles, forming a dispersion in the matrix. Such fabricated composite exhibited enhanced hardness and in vitro corrosion resistance. The enhanced hardness was attributed to both the addition of β-TCP particles and grain refinement while the development of a Ca-P rich surface layer from β-TCP during corrosion was responsible for the improvement in corrosion resistance. The composite was characterized in terms of microstructural evolution during fabrication, mechanical properties and electrochemical performance during polarization and immersion tests in a simulated body fluid. Discussions are made on the benefits of both HSS and ECAE and the mechanisms responsible for the enhanced corrosion resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Zbtb20-Induced CA1 Pyramidal Neuron Development and Area Enlargement in the Cerebral Midline Cortex of Mice

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Blom, Jonas B; Noraberg, Jens

    2010-01-01

    Expression of the transcriptional repressor Zbtb20 is confined to the hippocampal primordium of the developing dorsal midline cortex in mice. Here, we show that misexpression of Zbtb20 converts projection neurons of the subiculum and postsubiculum (dorsal presubiculum) to CA1 pyramidal neurons...... that are innervated by Schaffer collateral projections in ectopic strata oriens and radiatum. The Zbtb20-transformed neurons express Bcl11B, Satb2, and Calbindin-D28k, which are markers of adult CA1 pyramidal neurons. Downregulation of Zbtb20 expression by RNA interference impairs the normal maturation of CA1...... pyramidal neurons resulting in deficiencies in Calbindin-D28k expression and in reduced apical dendritic arborizations in stratum lacunosum moleculare. Overall, the results show that Zbtb20 is required for various aspects of CA1 pyramidal neuron development such as the postnatal extension of apical...

  7. Lumbar spine injuries in athletes.

    Science.gov (United States)

    Dunn, Ian F; Proctor, Mark R; Day, Arthur L

    2006-10-15

    Lumbar spine injuries in athletes are not uncommon and usually take the form of a mild muscle strain or sprain. More severe injuries sustained by athletes include disc herniations, spondylolistheses, and various types of fracture. The recognition and management of these injuries in athletes involve the additional consideration that to return to play, the lumbar spine must be able to withstand forces similar to those that were injurious. The authors consider common lumbar spine injuries in athletes and discuss management principles for neurosurgeons that are relevant to this population.

  8. Superconductivity in Heavily Nd-doped La2Ca1Ba2Cu5Oz System

    Science.gov (United States)

    Mankadia, S. R.; Dalsaniya, S. M.; Okram, G. S.; Igalwar, Pallavi; Gonal, M. R.; Bhalodia, J. A.

    2011-07-01

    We have investigated the influence of Nd doping at La-site in La2-xNdxCa1Ba2Cu5Oz (La-2125) (x = 0.0, 0.5, 1.0, 1.5, 2.0) system using X-ray diffraction (XRD), d. c. resistivity and iodometric titration studies. Rietveld analysis of XRD confirms the single-phase tetragonal structure with the space group P4/mmm for all the samples. Samples with x = 0.0-1.5 are superconducting with superconducting transition temperature, Tc ranging from 60 K to 38 K. Sample with x = 2.0 shows semiconducting behavior up to 39 K. It is interesting to note that Tc exhibit a strong correlation with increasing dopant concentration. The possible reasons for Tc suppression are discussed in this communication.

  9. Investigations on bulk Eu_xCa_1-xMnO_3.

    Science.gov (United States)

    Kebede, A.; Oliver, F. W.; Seifu, D.; Hoffman, E.; Williams, C.; Kannan, E.; Tessema, G.

    1998-03-01

    We report on the preparation and experimental studies of the bulk manganite Eu_xCa_1-xMnO_3. It has been demonstrated by Fontcuberta et al(J. Fontcuberta et al., J. Appl. Phys. 79(8), 5182(1996).) that one can use Mössbauer spectroscopy as a local probe of the magnetic ordering by doping at the manganese site with ^57Fe in the colossal magnetoresistance material La-Ca-Mn-O. We have successfully synthesized a polycrystalline Eu substituted manganite to investigate the environment at the lanthanum site. Mössbauer measurements were performed between liquid nitrogen and room temperature using a ^151Eu source. The spectrum at room temperature is a single line which is indicative of paramagnetism. Isomer shift measurements show that the Eu is trivalent. A discussion will be reported on the preparation of the compound and the interpretation of the various Mössbauer parameters.

  10. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Directory of Open Access Journals (Sweden)

    Nada M Porter

    Full Text Available Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses.F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES, and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging.We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter

  11. Hippocampal CA1 local field potential oscillations induced by olfactory cue of liked food.

    Science.gov (United States)

    Samerphob, Nifareeda; Cheaha, Dania; Chatpun, Surapong; Kumarnsit, Ekkasit

    2017-07-01

    Eating motivation is induced not only by negative energy balance but also food related cues. However, neural processing for acquisition of learned food preference remains to be established. This study aimed to identify hippocampal neural signaling in response to olfactory cue (chocolate scent) after completion of repetitive chocolate sessions. Male Swiss albino mice implanted with intracranial electrode into the hippocampus were used for local field potential (LFP) recording. Animals were given chocolate sessions (a piece of 2g chocolate per each mouse to eat on day 1, 3, 5 and 7). Hippocampal CA1 LFP signals and exploratory behavior of animals receiving chocolate scent were analyzed before and after chocolate sessions. The experiment was performed in a place preference-like apparatus with the zones of normal food pellet and chocolate (both kept in a small perforated cup for smell dispersion) at the opposite ends. Following chocolate sessions, time spent in a chocolate zone and CA1 LFP patterns were analyzed in comparison to control levels. Two-way ANOVA revealed significant increase in time spent seeking for chocolate. Frequency analysis of LFP power spectra revealed significant increases in delta and theta powers. Phase-amplitude analysis showed significant increase in maximal modulation index and decrease in frequency for phase of theta-high gamma coupling. Taken together, neural signaling in the hippocampus was sensitive to chocolate olfactory cue that might underlie learning process in response to repeated chocolate consumptions that primed intense food approaching behavior. Ultimately, these LFP patterns might reflect motivation to eat and predict feeding probability. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons.

    Science.gov (United States)

    Edelmann, Elke; Cepeda-Prado, Efrain; Leßmann, Volkmar

    2017-01-01

    Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo . Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the

  13. 49 CFR 572.187 - Lumbar spine.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine. 572.187 Section 572.187... Dummy, 50th Percentile Adult Male § 572.187 Lumbar spine. (a) The lumbar spine assembly consists of parts shown in drawing 175-5500. For purposes of this test, the lumbar spine is mounted within the...

  14. Vertebroplasty for Spine Fracture Pain

    Science.gov (United States)

    ... and break.How are spinal fractures treated?Most fractures of the spine are treated with bed rest until the pain goes away. Pain medicines, back braces and physical therapy may also be used. For some patients, doctors ...

  15. Typhoid spine - A case report

    Directory of Open Access Journals (Sweden)

    Rajesh P

    2004-01-01

    Full Text Available A case of Salmonella typhi isolated from L4-L5 spine is reported here. The causative organism was not suspected preoperatively. The patient responded favourably to surgical drainage and appropriate antibiotic therapy.

  16. Spine Tango annual report 2012.

    Science.gov (United States)

    Neukamp, M; Perler, G; Pigott, T; Munting, E; Aebi, M; Röder, C

    2013-09-01

    Since the Spine Tango registry was founded over a decade ago it has become established internationally. An annual report has been produced using the same format as the SWEspine group to allow for first data comparisons between the two registries. Data was captured with the latest generation of surgery and follow-up forms. Also, the Core Outcome Measures Index (COMI) from interventions performed in the year 2012 with follow-up to June 2013 was analyzed. Groups of patients with the most common degenerative lumbar spine diseases and a single group of patients with degenerative cervical spine diseases were created. The demographics, risk factors, previous treatments, current treatment, short-term outcomes, patient satisfaction and complications were analyzed. Pre- and postoperative pain and function scores were derived from the COMI. About 6,500 procedures were captured with Spine Tango in 2012. The definitions and composition of all the degenerative groups could not completely be matched between the two registries with the consequence that the age and sex distributions were partially different. Preoperative pain levels were similar. The short-term outcomes available did not allow for evaluation of the final result of surgical intervention. This will be possible with the longer term data in the next annual report. There was a distinct disparity in reported complication rates between surgeons and patients. This is a valuable first step in creating comparable reports for SWEspine and Spine Tango. The German spine registry may be able to collaborate in the future because of similar items and data structure as Spine Tango. There needs to be more work on understanding the harmonization of the different degenerative subgroups. The Spine Tango report is weakened by the short and incomplete follow-up. The visual presentation of data may be a useful model for aiding decision making for surgeons and patients in the future.

  17. THE IMPACT OF CLASSICAL MASSAGE ON SPINE MOBILITY

    Directory of Open Access Journals (Sweden)

    Radzimińska Agnieszka

    2017-04-01

    Full Text Available Introduction. Irregularities in movable property of the spine affect a large part of society and the problem affects the people at an increasingly younger age. Classical massage is a form of mechanotherapy that affects the regulation of the work of muscles, joints, tendons and ligaments. Aim of work: The purpose of this study was to evaluate the efficacy of classical massage section of thoracolumbar spine to increase the mobility in these segments. Material: The study was carried out on 36 healthy volunteers (20 women and 16 men aged 21 to 27 years old (average age - 23.8 who were subjected to a series of five classical massages (according to strictly established protocol. In order to objectify the effects in all subjects before and after a series of treatments the following measurements were made: the fingers-floor test; the Otto -Wurna test; the straightening of the spine; lateral flexion of the spine; twist of the spine. Results A statistically important difference has been shown in the results of all tested variables before the first and after the last treatment of classical massage. Conclusions The results of personal research apply to young, healthy volunteers. It is worth to continue research into the effects of this form of therapy in the case of restrictions of movable tangible property, resulting from spinal pain syndromes.

  18. The ‘addicted’ spine.

    Directory of Open Access Journals (Sweden)

    Saturnino eSpiga

    2014-10-01

    Full Text Available Units of dendritic branches called dendritic spines represent more than simply decorative appendages of the neuron and actively participate in integrative functions of ‘spinous’ nerve cells thereby contributing to the general phenomenon of synaptic plasticity. In animal models of drug addiction, spines are profoundly affected by treatments with drugs of abuse and represent important sub cellular markers which interfere deeply into the physiology of the neuron thereby providing an example of the burgeoning and rapidly increasing interest in ‘structural plasticity.’Medium Spiny Neurons of the Nucleus Accumbens show a reduced number of dendritic spines and a decrease in TH-positive terminals upon withdrawal from opiates, cannabinoids and alcohol. The reduction is localized ‘strictly’ to second order dendritic branches where, dopamine-containing terminals impinging upon spines, make synaptic contacts. In addition, long-thin spines seems preferentially affected raising the possibility that cellular learning of these neurons may be selectively hampered. These findings suggest that dendritic spines are affected by drugs widely abused by humans and provide yet another example of drug-induced aberrant neural plasticity with marked reflections on the physiology of synapses, system structural organization, and neuronal circuitry remodeling.

  19. Expression of Bacillus thuringiensis cytolytic toxin (Cyt2Ca1) in citrus roots to control Diaprepes abbreviatus larvae.

    Science.gov (United States)

    Mahmoud, Sulley Ben; Ramos, John E; Shatters, Robert G; Hall, David G; Lapointe, Stephen L; Niedz, Randall P; Rougé, Pierre; Cave, Ronald D; Borovsky, Dov

    2017-03-01

    Diaprepes abbreviatus (L.) is an important pest of citrus in the USA. Currently, no effective management strategies of D. abbreviatus exist in citriculture, and new methods of control are desperately sought. To protect citrus against D. abbreviatus a transgenic citrus rootstock expressing Bacillus thuringiensis Cyt2Ca1, an insect toxin protein, was developed using Agrobacterium-mediated transformation of 'Carrizo' citrange [Citrus sinensis (L) Osbeck Poncirus trifoliate (L) Raf]. The transgenic citrus root stock expressed the cytolytic toxin Cyt2Ca1 constitutively under the control of a 35S promoter in the transgenic Carrizo citrange trifoliate hybrid including the roots that are the food source of larval D. abbreviatus. The engineered citrus was screened by Western blot and RT-qPCR analyses for cyt2Ca1 and positive citrus identified. Citrus trees expressing different levels of cyt2Ca1 transcripts were identified (Groups A-C). High expression of the toxin in the leaves (109 transcripts/ng RNA), however, retarded plant growth. The transgenic plants were grown in pots and the roots exposed to 3week old D. abbreviatus larvae using no-choice plant bioassays. Three cyt2Ca1 transgenic plants were identified that sustained less root damage belonging to Group B and C. One plant caused death to 43% of the larvae that fed on its roots expressed 8×106cyt2Ca1 transcripts/ng RNA. These results show, for the first time, that Cyt2Ca1 expressed in moderate amounts by the roots of citrus does not retard citrus growth and can protect it from larval D. abbreviatus. Published by Elsevier Inc.

  20. Effect of Boswellia serrata gum resin on the morphology of hippocampal CA1 pyramidal cells in aged rat.

    Science.gov (United States)

    Hosseini-sharifabad, Mohammad; Esfandiari, Ebrahim

    2015-01-01

    Experimental evidence indicates that administration of Boswellia resin, known as olibanum or Frankincense, increases memory power. It is reported that beta boswellic acid, the major component of Boswellia serrata gum resin, could enhance neurite outgrowth and branching in hippocampal neurons. We therefore studied whether Boswellia treatment produces morphological changes in the superior region of cornu ammonis (CA1) in aged rats. Sixteen male Wistar rats, 24 months of age, were randomly divided in experimental and control groups. The experimental group was orally administered Boswellia serrata gum resin (100 mg/kg per day for 8 weeks) and the control group received a similar volume of water. The Cavalieri principle was employed to estimate the volumes of CA1 hippocampal field, and a quantitative Golgi study was used to analysis of dendritic arborizations of CA1 pyramidal cells. Comparisons revealed that Boswellia-treated aged rats had greater volumes than control animals in stratum pyramidale and stratum radiatum lacunosum-moleculare. The neurons of CA1 in experimental rats had more dendritic segments (40.25 ± 4.20) than controls (30.9 ± 4.55), P = 0.001. The total dendritic length of CA1 neurons was approximately 20 % larger in the experimental group compared to control. Results also indicated that the aged rats treated with Boswellia resin had more numerical branching density in the apical dendrites of CA1 pyramidal neurons. The results of the present study show that long-term administration of Boswellia resin can attenuate age-related dendritic regression in CA1 pyramidal cells in rat hippocampus.

  1. The postsurgical spine.

    Science.gov (United States)

    Santos Armentia, E; Prada González, R; Silva Priegue, N

    2016-04-01

    Failed back surgery syndrome is the persistence or reappearance of pain after surgery on the spine. This term encompasses both mechanical and nonmechanical causes. Imaging techniques are essential in postoperative follow-up and in the evaluation of potential complications responsible for failed back surgery syndrome. This review aims to familiarize radiologists with normal postoperative changes and to help them identify the pathological imaging findings that reflect failed back surgery syndrome. To interpret the imaging findings, it is necessary to know the type of surgery performed in each case and the time elapsed since the intervention. In techniques used to fuse the vertebrae, it is essential to evaluate the degree of bone fusion, the material used (both its position and its integrity), the bone over which it lies, the interface between the implant and bone, and the vertebral segments that are adjacent to metal implants. In decompressive techniques it is important to know what changes can be expected after the intervention and to be able to distinguish them from peridural fibrosis and the recurrence of a hernia. It is also crucial to know the imaging findings for postoperative infections. Other complications are also reviewed, including arachnoiditis, postoperative fluid collections, and changes in the soft tissues adjacent to the surgical site. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  2. Postoperative spine; Postoperative Wirbelsaeule

    Energy Technology Data Exchange (ETDEWEB)

    Schlaeger, R. [Universitaetsspital Basel, Neurologische Klinik und Poliklinik, Basel (Switzerland); Lieb, J.M. [Universitaetsspital Basel, Klinik fuer Radiologie und Nuklearmedizin, Basel (Switzerland); Shariat, K. [Neurochirurgie Koeln-Merheim, Koeln (Germany); Ahlhelm, F.J. [Kantonsspital Baden AG, Abteilung Neuroradiologie, Institut fuer Radiologie, Baden (Switzerland)

    2014-11-15

    Approximately 15-30 % of surgical procedures involving the lumbar spine are associated with complications that require further diagnostic work-up. The choice of imaging modality for postoperative complications depends on the extent, pattern and temporal evolution of the postoperative neurological signs and symptoms as well as on the preoperative clinical status, the surgical procedure itself and the underlying pathology. The interpretation of imaging findings, in particular the distinction between postoperative complications and normally expected nonspecific postoperative imaging alterations can be challenging and requires the integration of clinical neurological information and the results of laboratory tests. The combination of different imaging techniques might help in cases of equivocal imaging results. (orig.) [German] Etwa 15-30 % der operativen Eingriffe im Bereich der lumbalen Wirbelsaeule verlaufen nicht komplikationsfrei und erfordern weiterfuehrende Abklaerungen. Die Auswahl des bildgebenden Verfahrens im Rahmen postoperativer Komplikationen haengt dabei wesentlich von der zeitlichen Entwicklung, dem Ausmass und Verteilungsmuster der neuaufgetretenen klinisch-neurologischen bzw. orthopaedischen Symptome sowie von den Ausfaellen vor dem Eingriff, der zugrundeliegenden Pathologie und der Lokalisation und Art des Eingriffs ab. Die Interpretation der bildgebenden Befunde, insbesondere die Abgrenzung postoperativer Komplikationen von natuerlicherweise zu erwartenden postoperativen Veraenderungen kann dabei eine Herausforderung darstellen. Bei unklaren Befunden kann ergaenzend zur eingehend klinisch-neurologischen und laborchemischen Bestandsaufnahme auch der kombinierte Einsatz mehrerer bildgebender Modalitaeten diagnostisch weiterhelfen. (orig.)

  3. Radiology illustrated. Spine

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heung Sik; Lee, Joon Woo [Seoul National Univ. Bundang Hospital, Seongnam, Kyonggi-do (Korea, Republic of). Dept. of Radiology; Kwon, Jong Won [Samsung Medical Center, Seoul (Korea, Republic of). Dept. of Radiology

    2014-04-01

    Offers a practical approach to image interpretation for spinal disorders. Includes numerous high-quality radiographic images and schematic illustrations. Will serve as a self-learning book covering daily routine cases from the basic to the advanced. Radiology Illustrated: Spine is an up-to-date, superbly illustrated reference in the style of a teaching file that has been designed specifically to be of value in clinical practice. Common, critical, and rare but distinctive spinal disorders are described succinctly with the aid of images highlighting important features and informative schematic illustrations. The first part of the book, on common spinal disorders, is for radiology residents and other clinicians who are embarking on the interpretation of spinal images. A range of key disorders are then presented, including infectious spondylitis, cervical trauma, spinal cord disorders, spinal tumors, congenital disorders, uncommon degenerative disorders, inflammatory arthritides, and vascular malformations. The third part is devoted to rare but clinically significant spinal disorders with characteristic imaging features, and the book closes by presenting practical tips that will assist in the interpretation of confusing cases.

  4. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development.

    Science.gov (United States)

    Ohta, Ken-Ichi; Suzuki, Shingo; Warita, Katsuhiko; Kaji, Tomohiro; Kusaka, Takashi; Miki, Takanori

    2017-04-01

    Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood. © 2017 International Society for Neurochemistry.

  5. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Edelmann, Elke; Cepeda-Prado, Efrain; Leßmann, Volkmar

    2017-01-01

    Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the

  6. Stability of the human spine: a biomechanical study

    NARCIS (Netherlands)

    Scholten, P.J.M.; Veldhuizen, A.G.; Grootenboer, H.J.

    1988-01-01

    The influences of curvatures and of physical properties on the mechanical stability of the spine were analysed by means of a three-dimensional, geometrical, nonlinear biomechanical model. According to the model, the initial buckling load decreases with increasing lordotic and kyphotic curvatures.

  7. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  8. Transgenic rice plants expressing a modified cry1Ca1 gene are resistant to Spodoptera litura and Chilo suppressalis.

    Science.gov (United States)

    Zaidi, Mohsin Abbas; Ye, Gongyin; Yao, Hongwei; You, Taek H; Loit, Evelin; Dean, Donald H; Riazuddin, Sheikh; Altosaar, Illimar

    2009-11-01

    Nucleotide sequence encoding the truncated insecticidal Cry1Ca1 protein from Bacillus thuringiensis was extensively modified based on the codon usage of rice genes. The overall G + C contents of the synthetic cry1Ca1 coding sequence were raised to 65% with an additional bias of enriching for G and C ending codons as preferred by monocots. The synthetic gene was introduced into the Chinese japonica variety, Xiushui 11, by Agrobacterium-mediated transformation. Transgenic rice plants harboring this gene were highly resistant to Chilo suppressalis and Spodoptera litura larvae as revealed by insect bioassays. High levels of Cry1Ca1 protein were obtained in the leaves of transgenic rice, which were effective in achieving 100% mortality of S. litura and C. suppressalis larvae. The levels of Cry1Ca1 expression in the leaves of these transgenic plants were up to 0.34% of the total soluble proteins. The larvae of C. suppressalis and S. litura could consume a maximum of 1.89 and 4.89 mm2 of transgenic leaf area whereas the consumption of nontransgenic leaves by these larvae was significantly higher; 58.33 and 61.22 mm2, respectively. Analysis of R1 transgenic plants indicated that the cry1Ca1 was inherited by the progeny plants and provided complete protection against C. suppressalis and S. litura larvae.

  9. Sex Differences in Long-Term Potentiation at Temporoammonic-CA1 Synapses: Potential Implications for Memory Consolidation.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Qi

    Full Text Available Sex differences in spatial memory have long been observed in humans, non-human primates and rodents, but the underlying cellular and molecular mechanisms responsible for these differences remain obscure. In the present study we found that adolescent male rats outperformed female rats in 7 d and 28 d retention probes, but not in learning trials and immediate probes, in the Morris water maze task. Male rats also had larger long-term potentiation (LTP at hippocampal temproammonic-CA1 (TA-CA1 synapses, which have been implicated to play a key role in place field and memory consolidation, when protocols designed to elicit late-stage LTP (LLTP were used. Interestingly, the ratio of evoked AMPA/NMDA currents was found to be smaller at TA-CA1 synapses in male rats compared to female rats. Protein biotinylation experiments showed that male rats expressed more surface GluN1 receptors in hippocampal CA1 stratum lacunosum-moleculare (SLM than female rats, although GluA1 expression was also slightly higher in male rats. Taken together, our results suggest that differences in the expression of AMPA and NMDA receptors may affect LTP expression at TA-CA1 synapses in adolescent male and female rats, and thus possibly contribute to the observed sex difference in spatial memory.

  10. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.

    Directory of Open Access Journals (Sweden)

    Darrell C Bessette

    Full Text Available Basal-like and triple negative breast cancer (TNBC share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non

  11. Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.

    Science.gov (United States)

    Singh, P K; Hernandez-Herrera, P; Labate, D; Papadakis, M

    2017-10-01

    Despite the significant advances in the development of automated image analysis algorithms for the detection and extraction of neuronal structures, current software tools still have numerous limitations when it comes to the detection and analysis of dendritic spines. The problem is especially challenging in in vivo imaging, where the difficulty of extracting morphometric properties of spines is compounded by lower image resolution and contrast levels native to two-photon laser microscopy. To address this challenge, we introduce a new computational framework for the automated detection and quantitative analysis of dendritic spines in vivo multi-photon imaging. This framework includes: (i) a novel preprocessing algorithm enhancing spines in a way that they are included in the binarized volume produced during the segmentation of foreground from background; (ii) the mathematical foundation of this algorithm, and (iii) an algorithm for the detection of spine locations in reference to centerline trace and separating them from the branches to whom spines are attached to. This framework enables the computation of a wide range of geometric features such as spine length, spatial distribution and spine volume in a high-throughput fashion. We illustrate our approach for the automated extraction of dendritic spine features in time-series multi-photon images of layer 5 cortical excitatory neurons from the mouse visual cortex.

  12. Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats.

    Science.gov (United States)

    Chowdhury, Tara G; Ríos, Mariel B; Chan, Thomas E; Cassataro, Daniela S; Barbarich-Marsteller, Nicole C; Aoki, Chiye

    2014-12-01

    Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and irrational fears of gaining weight. There is no accepted pharmacological treatment for AN, and AN has the highest mortality rate among psychiatric illnesses. Anorexia nervosa most commonly affects females during adolescence, suggesting an effect of sex and hormones on vulnerability to the disease. Activity-based anorexia (ABA) is a rodent model of AN that shares symptoms with AN, including over-exercise, elevation of stress hormones, and genetic links to anxiety traits. We previously reported that ABA in adolescent female rats results in increased apical dendritic branching in CA1 pyramidal cells of the ventral hippocampus at postnatal day 44 (P44). To examine the long-term effects of adolescent ABA (P44) in female rats, we compared the apical branching in the ventral hippocampal CA1 after recovery from ABA (P51) and after a relapse of ABA (P55) with age-matched controls. To examine the age-dependence of the hippocampal plasticity, we examined the effect of ABA during adulthood (P67). We found that while ABA at P44 resulted in increased branching of ventral hippocampal pyramidal cells, relapse of ABA at P55 resulted in decreased branching. ABA induced during adulthood did not have an effect on dendritic branching, suggesting an age-dependence of the vulnerability to structural plasticity. Cells from control animals were found to exhibit a dramatic increase in branching, more than doubling from P44 to P51, followed by pruning from P51 to P55. The proportion of mature spines on dendrites from the P44-ABA animals is similar to that on dendrites from P55-CON animals. These results suggest that the experience of ABA may cause precocious anatomical development of the ventral hippocampus. Importantly, we found that adolescence is a period of continued development of the hippocampus, and increased vulnerability to mental disorders during adolescence may be due to insults during this

  13. Dampening of hyperexcitability in CA1 pyramidal neurons by polyunsaturated fatty acids acting on voltage-gated ion channels.

    Directory of Open Access Journals (Sweden)

    Jenny Tigerholm

    Full Text Available A ketogenic diet is an alternative treatment of epilepsy in infants. The diet, rich in fat and low in carbohydrates, elevates the level of polyunsaturated fatty acids (PUFAs in plasma. These substances have therefore been suggested to contribute to the anticonvulsive effect of the diet. PUFAs modulate the properties of a range of ion channels, including K and Na channels, and it has been hypothesized that these changes may be part of a mechanistic explanation of the ketogenic diet. Using computational modelling, we here study how experimentally observed PUFA-induced changes of ion channel activity affect neuronal excitability in CA1, in particular responses to synaptic input of high synchronicity. The PUFA effects were studied in two pathological models of cellular hyperexcitability associated with epileptogenesis. We found that experimentally derived PUFA modulation of the A-type K (K(A channel, but not the delayed-rectifier K channel, restored healthy excitability by selectively reducing the response to inputs of high synchronicity. We also found that PUFA modulation of the transient Na channel was effective in this respect if the channel's steady-state inactivation was selectively affected. Furthermore, PUFA-induced hyperpolarization of the resting membrane potential was an effective approach to prevent hyperexcitability. When the combined effect of PUFA on the K(A channel, the Na channel, and the resting membrane potential, was simulated, a lower concentration of PUFA was needed to restore healthy excitability. We therefore propose that one explanation of the beneficial effect of PUFAs lies in its simultaneous action on a range of ion-channel targets. Furthermore, this work suggests that a pharmacological cocktail acting on the voltage dependence of the Na-channel inactivation, the voltage dependences of K(A channels, and the resting potential can be an effective treatment of epilepsy.

  14. Vibration modes of injured spine at resonant frequencies under vertical vibration.

    Science.gov (United States)

    Guo, Li-Xin; Zhang, Ming; Zhang, Yi-Min; Teo, Ee-Chon

    2009-09-01

    A detailed three-dimensional finite element model of the spine segment T12-Pelvis was developed to investigate dynamic characteristics of whole lumbar spine with injured cases. This study investigates the motion mechanism of the human lumbar spine and the effect of component injuries on adjacent spinal components under whole body vibration. Several investigations have analyzed the influence of injured spines on adjacent spinal components under static loadings. However, it is not clear how the spine injury affects dynamic characteristics of whole lumbar spine and adjacent components of the injured segment under vibration. The T12-Pelvis model was used to obtain the modal vibration modes of the spine at resonant frequencies. Injury conditions of the spine were simulated and tested, including denucleation and/or facetectomy with removal of capsular ligaments. The results indicate the first-order vertical resonant frequency of the intact model is 7.21 Hz. After the denucleation at L4-L5, it decreases by more than 4% compared with the intact condition. All the injured conditions including disc injury and ligament injury decrease the resonant frequency of the spine. Due to the denucleation at L4-L5 the anteroposterior displacements of the vertebrae from L2 to L5 decrease and the vertical displacements of the vertebrae from L1 to L4 increase under vibration. The denucleation also decreases the rotational deformations of the vertebrae from L1 to L5. The material property sensitivity analysis shows intervertebral discs have a dominating effect on variation of vertical resonant frequency of the spine. The denucleation may decrease cushioning effects of adjacent motion segments at the injured level under vibration. The injured condition may increase the vertical displacement amplitudes of the spine above the injured level. All the injured conditions may decrease the resonant frequency of the spine system.

  15. Metaplasticity at CA1 Synapses by Homeostatic Control of Presynaptic Release Dynamics

    Directory of Open Access Journals (Sweden)

    Cary Soares

    2017-10-01

    Full Text Available Summary: Hebbian and homeostatic forms of plasticity operate on different timescales to regulate synaptic strength. The degree of mechanistic overlap between these processes and their mutual influence are still incompletely understood. Here, we report that homeostatic synaptic strengthening induced by prolonged network inactivity compromised the ability of CA1 synapses to exhibit LTP. This effect could not be accounted for by an obvious deficit in the postsynaptic capacity for LTP expression, since neither the fraction of silent synapses nor the ability to induce LTP by two-photon glutamate uncaging were reduced by the homeostatic process. Rather, optical quantal analysis reveals that homeostatically strengthened synapses display a reduced capacity to maintain glutamate release fidelity during repetitive stimulation, ultimately impeding the induction, and thus expression, of LTP. By regulating the short-term dynamics of glutamate release, the homeostatic process thus influences key aspects of dynamic network function and exhibits features of metaplasticity. : Several forms of synaptic plasticity operating over distinct spatiotemporal scales have been described at hippocampal synapses. Whether these distinct plasticity mechanisms interact and influence one another remains incompletely understood. Here, Soares et al. show that homeostatic plasticity induced by network silencing influences short-term release dynamics and Hebbian plasticity rules at hippocampal synapses. Keywords: synapse, LTP, homeostatic plasticity, metaplasticity, iGluSNFR

  16. Interplay between global and pathway-specific synaptic plasticity in CA1 pyramidal cells.

    Science.gov (United States)

    Berberich, Sven; Pohle, Jörg; Pollard, Marie; Barroso-Flores, Janet; Köhr, Georg

    2017-12-06

    Mechanisms underlying information storage have been depicted for global cell-wide and pathway-specific synaptic plasticity. Yet, little is known how these forms of plasticity interact to enhance synaptic competition and network stability. We examined synaptic interactions between apical and basal dendrites of CA1 pyramidal neurons in mouse hippocampal slices. Bursts (50 Hz) of three action potentials (AP-bursts) paired with preceding presynaptic stimulation in stratum radiatum specifically led to LTP of the paired pathway in adult mice (P75). At adolescence (P28), an increase in burst frequency (>50 Hz) was required to gain timing-dependent LTP. Surprisingly, paired radiatum and unpaired oriens pathway potentiated, unless the pre-post delay was shortened from 10 to 5 ms, which selectively potentiated paired radiatum pathway, since unpaired oriens pathway decreased back to baseline. Conversely, the exact same 5 ms pairing in stratum oriens potentiated both pathways, as did AP-bursts alone, which potentiated synaptic efficacy as well as current-evoked postsynaptic spiking. L-type voltage-gated Ca 2+ channels were involved in mediating synaptic potentiation in oriens, whereas NMDA and adenosine receptors counteracted unpaired stratum oriens potentiation following pairing in stratum radiatum. This asymmetric plasticity uncovers important insights into alterations of synaptic efficacy and intrinsic neuronal excitability for pathways that convey hippocampal and extra-hippocampal information.

  17. ToF-SIMS cluster ion imaging of hippocampal CA1 pyramidal rat neurons

    Science.gov (United States)

    Francis, J. T.; Nie, H.-Y.; Taylor, A. R.; Walzak, M. J.; Chang, W. H.; MacFabe, D. F.; Lau, W. M.

    2008-12-01

    Recent studies have demonstrated the power of time-of-flight secondary ion mass spectrometry (ToF-SIMS) cluster ion imaging to characterize biological structures, such as that of the rat central nervous system. A large number of the studies to date have been carried out on the "structural scale" imaging several mm 2 using mounted thin sections. In this work, we present our ToF-SIMS cluster ion imaging results on hippocampal rat brain neurons, at the cellular and sub-cellular levels. As a part of an ongoing investigation to examine gut linked metabolic factors in autism spectrum disorders using a novel rat model, we have observed a possible variation in hippocampal Cornu ammonis 1 (CA1) pyramidal neuron geometry in thin, paraformaldehyde fixed brain sections. However, the fixation process alters the tissue matrix such that much biochemical information appears to be lost. In an effort to preserve as much as possible this original information, we have established a protocol using unfixed thin brain sections, along with low dose, 500 eV Cs + pre-sputtering that allows imaging down to the sub-cellular scale with minimal sample preparation.

  18. Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.

    Science.gov (United States)

    Cowen, Stephen L; Nitz, Douglas A

    2014-01-01

    Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.

  19. Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells.

    Science.gov (United States)

    Bloss, Erik B; Cembrowski, Mark S; Karsh, Bill; Colonell, Jennifer; Fetter, Richard D; Spruston, Nelson

    2016-03-02

    Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Jarod Swant

    2010-06-01

    Full Text Available Methamphetamine (METH is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.

  1. Comparison of Cervical Spine Anatomy in Calves, Pigs and Humans.

    Science.gov (United States)

    Sheng, Sun-Ren; Xu, Hua-Zi; Wang, Yong-Li; Zhu, Qing-An; Mao, Fang-Min; Lin, Yan; Wang, Xiang-Yang

    2016-01-01

    Animals are commonly used to model the human spine for in vitro and in vivo experiments. Many studies have investigated similarities and differences between animals and humans in the lumbar and thoracic vertebrae. However, a quantitative anatomic comparison of calf, pig, and human cervical spines has not been reported. To compare fundamental structural similarities and differences in vertebral bodies from the cervical spines of commonly used experimental animal models and humans. Anatomical morphometric analysis was performed on cervical vertebra specimens harvested from humans and two common large animals (i.e., calves and pigs). Multiple morphometric parameters were directly measured from cervical spine specimens of twelve pigs, twelve calves and twelve human adult cadavers. The following anatomical parameters were measured: vertebral body width (VBW), vertebral body depth (VBD), vertebral body height (VBH), spinal canal width (SCW), spinal canal depth (SCD), pedicle width (PW), pedicle depth (PD), pedicle inclination (PI), dens width (DW), dens depth (DD), total vertebral width (TVW), and total vertebral depth (TVD). The atlantoaxial (C1-2) joint in pigs is similar to that in humans and could serve as a human substitute. The pig cervical spine is highly similar to the human cervical spine, except for two large transverse processes in the anterior regions ofC4-C6. The width and depth of the calf odontoid process were larger than those in humans. VBW and VBD of calf cervical vertebrae were larger than those in humans, but the spinal canal was smaller. Calf C7 was relatively similar to human C7, thus, it may be a good substitute. Pig cervical vertebrae were more suitable human substitutions than calf cervical vertebrae, especially with respect to C1, C2, and C7. The biomechanical properties of nerve vascular anatomy and various segment functions in pig and calf cervical vertebrae must be considered when selecting an animal model for research on the spine.

  2. Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles.

    Science.gov (United States)

    Liu, Zhaowei; Ren, Guogang; Zhang, Tao; Yang, Zhuo

    2009-10-29

    Nano-sized materials are now being used in medicine, biotechnology, energy, and environmental technology. Although a wide and growing number of applications for nanomaterials exist, there are limited studies available on toxicity of nanoparticles for their human risk and environmental assessment. The aim of this study was to investigate the effects of silver nanoparticles (nano-Ag) on voltage-activated sodium currents in hippocampal CA1 neurons. Nano-Ag was tested at increasing concentrations (10(-6), 5 x 10(-6), 10(-5) g/ml). The research results showed that only nano-Ag (10(-5) g/ml) reduced the amplitude of voltage-gated sodium current (I(Na)). The nano-Ag particles produced a hyperpolarizing shift in the activation-voltage curve of I(Na) and also delayed the recovery of I(Na) from inactivation. Action potential properties and the pattern of repetitive firing were examined using whole cell current-clamp recordings. Peak amplitude and overshoot of the evoked single action potential were decreased and half-width was increased in the present of the 10(-5) g/ml nano-Ag solution, and the firing rate of repetitive firing had no change. The results suggest that nano-Ag may alter the action potential of hippocampal CA1 neurons by depressing voltage-gated sodium current.

  3. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  4. Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing.

    Science.gov (United States)

    Yamada-Hanff, Jason; Bean, Bruce P

    2015-10-01

    We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current-which amplifies EPSPs-was most effectively recruited by rapid voltage changes, while Ih-which blunts EPSPs-was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons. Copyright © 2015 the American Physiological Society.

  5. Altering sphingolipid composition with aging induces contractile dysfunction of gastric smooth muscle via K(Ca) 1.1 upregulation.

    Science.gov (United States)

    Choi, Shinkyu; Kim, Ji Aee; Kim, Tae Hun; Li, Hai-Yan; Shin, Kyong-Oh; Lee, Yong-Moon; Oh, Seikwan; Pewzner-Jung, Yael; Futerman, Anthony H; Suh, Suk Hyo

    2015-12-01

    K(Ca) 1.1 regulates smooth muscle contractility by modulating membrane potential, and age-associated changes in K(Ca) 1.1 expression may contribute to the development of motility disorders of the gastrointestinal tract. Sphingolipids (SLs) are important structural components of cellular membranes whose altered composition may affect K(Ca) 1.1 expression. Thus, in this study, we examined whether altered SL composition due to aging may affect the contractility of gastric smooth muscle (GSM). We studied changes in ceramide synthases (CerS) and SL levels in the GSM of mice of varying ages and compared them with those in young CerS2-null mice. The levels of C16- and C18-ceramides, sphinganine, sphingosine, and sphingosine 1-phosphate were increased, and levels of C22, C24:1 and C24 ceramides were decreased in the GSM of both aged wild-type and young CerS2-null mice. The altered SL composition upregulated K(Ca) 1.1 and increased K(Ca) 1.1 currents, while no change was observed in K(Ca) 1.1 channel activity. The upregulation of KC a 1.1 impaired intracellular Ca²⁺mobilization and decreased phosphorylated myosin light chain levels, causing GSM contractile dysfunction. Additionally, phosphoinositide 3-kinase, protein kinase Cζ , c-Jun N-terminal kinases, and nuclear factor kappa-B were found to be involved in K(Ca) 1.1 upregulation. Our findings suggest that age-associated changes in SL composition or CerS2 ablation upregulate K(Ca) 1.1 via the phosphoinositide 3-kinase/protein kinase Cζ /c-Jun N-terminal kinases/nuclear factor kappa-B-mediated pathway and impair Ca²⁺ mobilization, which thereby induces the contractile dysfunction of GSM. CerS2-null mice exhibited similar effects to aged wild-type mice; therefore, CerS2-null mouse models may be utilized for investigating the pathogenesis of aging-associated motility disorders. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Diversity of Spine Synapses in Animals

    Science.gov (United States)

    Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.

    2016-01-01

    Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved. PMID:27230661

  7. Action-potential discharge in hippocampal CA1 pyramidal neurons: current source-density analysis.

    Science.gov (United States)

    Richardson, T L; Turner, R W; Miller, J J

    1987-11-01

    1. The site of origin of evoked action-potential discharge in hippocampal CA1 pyramidal neurons was investigated using the in vitro rat hippocampal slice preparation. 2. Action-potential discharge in pyramidal cells was evoked by stimulation of efferent pyramidal cell fibers in the alveus (antidromic) or afferent synaptic inputs in stratum oriens (SO) or stratum radiatum (SR). Laminar profiles of evoked extracellular field potentials were recorded at 25-micron intervals along the entire dendrosomatic axis of the pyramidal cell and a one-dimensional current source-density analysis was applied. 3. Suprathreshold stimulation of the alveus evoked an antidromic population spike response and current sink with the shortest peak latency in stratum pyramidale or proximal stratum oriens. A biphasic positive/negative potential associated with a current source/sink was recorded in dendritic regions, with both components increasing in peak latency with distance from the border of stratum pyramidale. 4. Suprathreshold stimulation of SO or SR evoked a population spike response superimposed upon the underlying synaptic depolarization at all levels of the dendrosomatic axis. The shortest latency population spike and current sink were recorded in stratum pyramidale or proximal stratum oriens. In dendritic regions, a biphasic positive/negative potential and current source/sink conducted with increasing latency from the border of stratum pyramidale. 5. A direct comparison of alvear- and SR-evoked responses revealed a basic similarity in population spike potentials and associated sink/source relationships at both the somatic and dendritic level and a similar shift in peak latency of spike components along the pyramidal cell axis. 6. It is concluded that the initial site for generation of a spike along the dendrosomatic axis of the pyramidal cell following antidromic or orthodromic stimulation is in the region of the cell body layer (soma or axon hillock). Action-potential discharge in

  8. The AMPA receptor positive allosteric modulator S 47445 rescues in vivo CA3-CA1 long-term potentiation and structural synaptic changes in old mice.

    Science.gov (United States)

    Giralt, Albert; Gómez-Climent, María Ángeles; Alcalá, Rafael; Bretin, Sylvie; Bertrand, Daniel; María Delgado-García, José; Pérez-Navarro, Esther; Alberch, Jordi; Gruart, Agnès

    2017-09-01

    Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are small molecules that decrease deactivation of AMPARs via an allosteric site. These molecules keep the receptor in an active state. Interestingly, this type of modulator has been proposed for treating cognitive decline in ageing, dementias, and Alzheimer's disease (AD). S 47445 (8-cyclopropyl-3-[2-(3-fluorophenyl)ethyl]-7,8-dihydro-3H-[1,3]oxazino[6,5-g][1,2,3]benzotriazine-4,9-dione) is a novel AMPAR positive allosteric modulator (AMPA-PAM). Here, the mechanisms by which S 47445 could improve synaptic strength and connectivity were studied and compared between young and old mice. A single oral administration of S 47445 at 10 mg/kg significantly increased long-term potentiation (LTP) in CA3-CA1 hippocampal synapses in alert young mice in comparison to control mice. Moreover, chronic treatment with S 47445 at 10 mg/kg in old alert animals significantly counteracted the deficit of LTP due to age. Accordingly, chronic treatment with S 47445 at 10 mg/kg seems to preserve synaptic cytoarchitecture in old mice as compared with young control mice. It was shown that the significant decreases in number and size of pre-synaptic buttons stained for VGlut1, and post-synaptic dendritic spines stained for spinophilin, observed in old mice were significantly prevented after chronic treatment with 10 mg/kg of S 47445. Altogether, by its different effects on LTP, VGlut1-positive particles, and spinophilin, S 47445 is able to modulate both the structure and function of hippocampal excitatory synapses known to be involved in learning and memory processes. These results open a new window for the treatment of specific age-dependent cognitive decline and dementias such as AD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Easily missed thoracolumbar spine fractures

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Mark [NYU Langone Medical Center/Bellevue Hospital, 550 1st Avenue, IRM-234, New York, NY 10016 (United States)], E-mail: mark.bernstein@nyumc.org

    2010-04-15

    Thoracolumbar spine fractures are common and can be difficult to diagnose. Many of these fractures are associated with extraspinal injuries and are subtle on imaging further contributing to diagnostic delay or misdiagnosis. Missed fractures are associated with increased neurologic injury and resulting morbidity. Careful and thorough workup of the multitrauma patient with dedicated spinal imaging is necessary to identify these injuries. This article reviews the major thoracolumbar spine fractures and imaging findings with attention drawn to subtle and easily overlooked features of these injuries.

  10. [Minimally invasive spine surgery: past and present].

    Science.gov (United States)

    Corniola, M V; Stienen, M N; Tessitore, E; Schaller, K; Gautschi, O P

    2015-11-18

    In the early twentieth century, the understanding of spine biomechanics and the advent of surgical techniques of the lumbar spine, led to the currently emerging concept of minimal invasive spine surgery, By reducing surgical access, blood loss, infection rate and general morbidity, functional prognosis of patients is improved. This is a real challenge for the spine surgeon, who has to maintain a good operative result by significantly reducing surgical collateral damages due to the relatively traumatic conventional access.

  11. Expression of Bacillus thuringiensis cytolytic toxin (Cyt2Ca1) in citrus roots to control Diaprepes abbreviatus larvae

    Science.gov (United States)

    Diaprepes abbreviatus (L.) is an important pest of citrus in the USA. Currently, no effective management strategies of Diaprepes abbreviatus exist in citriculture. To protect citrus against Diaprepes abbreviatus a transgenic citrus rootstock expressing Bacillus thuringiensis Cyt2Ca1, an insect toxin...

  12. Metal–organic deposition of YBa2 Cu3 Ox and Bi2 Sr2 Ca1 Cu2 Ox ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. YBa2Cu3Ox (Y-123 ) and Bi2Sr2Ca1Cu2Ox (Bi-2212) films on various substrates have been prepared by Metal-Organic Deposition starting from different metallorganic fluorine-free compounds and using a very simple instrumentation. The processing conditions include a rapid pyrolysis step in air and.

  13. Spine update: the biopsychosocial model and spine care.

    Science.gov (United States)

    Weiner, Bradley K

    2008-01-15

    Spine Update on the biopsychosocial model. To review and discuss the strengths and weaknesses of the application of the model to spine care. The biopsychosocial model of illness has had (and will continue to have) a significant impact on spine care. It has changed-in a positive way-the ways in which view spinal disease, treat patients, and assess outcomes. To date, however, little discussion has taken place regarding concerns over its implementation. Using texts covering the general theory of the biopsychosocial model and the literature as the model is applied to spine care, a review was undertaken, evaluating the strengths and weaknesses of the theory's application to our field. Just as the biomedical model allowed, and continues to allow, significant medical advances via the objective study of pathoanatomic disease; the biopsychosocial model has afforded similar advances by placing the disease back into the patient and emphasizing illness experienced within the patient's unique biologic, psychological, social, and economic milieu. Thus, the strength of the model is its service as a clear reminder that clinical decisions about how to manage a patient with persistent low back pain living in difficult social conditions are more complex than those for patients who are not. Concerns regarding the model, however, are real and include its application as the primary mode to assess outcomes with a blind eye toward other potential factors; the medical/historical tendency to overweight psychosocial factors when underlying pathology is not clearly defined; whether or not the theory underlying the model is falsifiable/scientific; whether it affords explanatory or predictive power; whether its implementation improves outcomes; and whether it contributes to the "medicalization" of patients with back pain. The biopsychosocial model has been readily adapted to all aspects of spine care with many positive implications. There are, however, some concerns and negative implications

  14. Finding line of action of the force exerted on erect spine based on lateral bending test in personalization of scoliotic spine models.

    Science.gov (United States)

    Jalalian, Athena; Tay, Francis Eng Hock; Arastehfar, Soheil; Gibson, Ian; Liu, Gabriel

    2017-04-01

    In multi-body models of scoliotic spine, personalization of mechanical properties of joints significantly improves reconstruction of the spine shape. In personalization methods based on lateral bending test, simulation of bending positions is an essential step. To simulate, a force is exerted on the spine model in the erect position. The line of action of the force affects the moment of the force about the joints and thus, if not correctly identified, causes over/underestimation of mechanical properties. Therefore, we aimed to identify the line of action, which has got little attention in previous studies. An in-depth analysis was performed on the scoliotic spine movement from the erect to four spine positions in the frontal plane by using pre-operative X-rays of 18 adolescent idiopathic scoliosis (AIS) patients. To study the movement, the spine curvature was considered as a 2D chain of micro-scale motion segments (MMSs) comprising rigid links and 1-degree-of-freedom (DOF) rotary joints. It was found that two MMSs representing the inflection points of the erect spine had almost no rotation (0.0028° ± 0.0021°) in the movement. The small rotation can be justified by weak moment of the force about these MMSs due to very small moment arm. Therefore, in the frontal plane, the line of action of the force to simulate the left/right bending position was defined as the line that passes through these MMSs in the left/right bending position. Through personalization of a 3D spine model for our patients, we demonstrated that our line of action could result in good estimates of the spine shape in the bending positions and other positions not included in the personalization, supporting our proposed line of action.

  15. Amyloid plaque formation precedes dendritic spine loss.

    Science.gov (United States)

    Bittner, Tobias; Burgold, Steffen; Dorostkar, Mario M; Fuhrmann, Martin; Wegenast-Braun, Bettina M; Schmidt, Boris; Kretzschmar, Hans; Herms, Jochen

    2012-12-01

    Amyloid-beta plaque deposition represents a major neuropathological hallmark of Alzheimer's disease. While numerous studies have described dendritic spine loss in proximity to plaques, much less is known about the kinetics of these processes. In particular, the question as to whether synapse loss precedes or follows plaque formation remains unanswered. To address this question, and to learn more about the underlying kinetics, we simultaneously imaged amyloid plaque deposition and dendritic spine loss by applying two-photon in vivo microscopy through a cranial window in double transgenic APPPS1 mice. As a result, we first observed that the rate of dendritic spine loss in proximity to plaques is the same in both young and aged animals. However, plaque size only increased significantly in the young cohort, indicating that spine loss persists even many months after initial plaque appearance. Tracking the fate of individual spines revealed that net spine loss is caused by increased spine elimination, with the rate of spine formation remaining constant. Imaging of dendritic spines before and during plaque formation demonstrated that spine loss around plaques commences at least 4 weeks after initial plaque formation. In conclusion, spine loss occurs, shortly but with a significant time delay, after the birth of new plaques, and persists in the vicinity of amyloid plaques over many months. These findings hence give further hope to the possibility that there is a therapeutic window between initial amyloid plaque deposition and the onset of structural damage at spines.

  16. Respiratory Disorders in Complicated Cervical Spine Injury

    Directory of Open Access Journals (Sweden)

    S. A. Pervukhin

    2016-01-01

    Full Text Available Objective. Evaluating the results of respiratory therapy in patients with complicated traumatic injury of the cervical spine.Materials and methods. A retrospective comparative analysis of the clinical course was carried out in 52 patients with complicated traumatic injury of the cervical spine: group A: complete spinal cord injury (ASIA A, 37 patients and group B: incomplete injury (ASIA B, 15 patients. The severity of patients' status on integral scales, parameters of the respiratory pattern and thoracopulmonary compliance, gas composition, and acidbase status of the blood were assessed. Data on patients who required prolonged mechanical ventilation, duration of mechanical ventilation, incidence of nosocomial pneumonia, duration of stay in the ICU, time of hospital treatment, and mortality were included in the analysis. Results. The average APACHE II and SOFA scores were higher in group A patients. The development of the acute respiratory failure required longterm mechanical ventilation (more than 48 hours in 91.4% of group A patients and in 53.3% of group B patients. Ventilatorassociated pneumonia complicated the disease in 81.3% of group A patients and 62.5% of group B patients and was accompanied by sepsis in 25% and 12.5% of cases, respectively. Statistically significant deterioration of biomechanical properties and gas exchange function of the lungs was observed in patients complicated with septic pneumonia.Conclusion. Patients with complicated ASIA A and ASIA B cervical spine injuries demonstrate the presence of respiratory failure of neurogenic origin. In addition, the infectious bronchopulmonary complications aggravated respiratory failure in patients with ASIA A injury in 70.3% versus 33.3% in patients with ASIA B. Developmentof pulmonogenic sepsis led to deterioration of the biomechanical and gas exchange functions of the lungs and increased the likelihood of unfavorable outcome of the disease in 77.8% of cases. The high

  17. Electrophysiological effects of SKF83959 on hippocampal CA1 pyramidal neurons: potential mechanisms for the drug's neuroprotective effects.

    Directory of Open Access Journals (Sweden)

    Hong-Yuan Chu

    Full Text Available Although the potent anti-parkinsonian action of the atypical D₁-like receptor agonist SKF83959 has been attributed to the selective activation of phosphoinositol(PI-linked D₁ receptor, whereas the mechanism underlying its potent neuroprotective effect is not fully understood. In the present study, the actions of SKF83959 on neuronal membrane potential and neuronal excitability were investigated in CA1 pyramidal neurons of rat hippocampal slices. SKF83959 (10-100 µM caused a concentration-dependent depolarization, associated with a reduction of input resistance in CA1 pyramidal neurons. The depolarization was blocked neither by antagonists for D₁, D₂, 5-HT(2A/2C receptors and α₁-adrenoceptor, nor by intracellular dialysis of GDP-β-S. However, the specific HCN channel blocker ZD7288 (10 µM antagonized both the depolarization and reduction of input resistance caused by SKF83959. In voltage-clamp experiments, SKF83959 (10-100 µM caused a concentration-dependent increase of Ih current in CA1 pyramidal neurons, which was independent of D₁ receptor activation. Moreover, SKF83959 (50 µM caused a 6 mV positive shift in the activation curve of Ih and significantly accelerated the activation of Ih current. In addition, SKF83959 also reduced the neuronal excitability of CA1 pyramidal neurons, which was manifested by the decrease in the number and amplitude of action potentials evoked by depolarizing currents, and by the increase of firing threshold and rhoebase current. The above results suggest that SKF83959 increased Ih current through a D₁ receptor-independent mechanism, which led to the depolarization of hippocampal CA1 pyramidal neurons. These findings provide a novel mechanism for the drug's neuroprotective effects, which may contributes to its therapeutic benefits in Parkinson's disease.

  18. Different patterns of amygdala priming differentially affect dentate gyrus plasticity and corticosterone, but not CA1 plasticity.

    Directory of Open Access Journals (Sweden)

    Rose-Marie eVouimba

    2013-05-01

    Full Text Available Stress-induced activation of the amygdala is involved in the modulation of memory processes in the hippocampus. However, stress effects on amygdala and memory remain complex. The activation of the basolateral amygdala (BLA was found to modulate plasticity in other brain areas, including the hippocampus. We previously demonstrated a differential effect of BLA priming on LTP in the CA1 and the dentate gyrus (DG. While BLA priming suppressed long term potentiation (LTP in CA1, it was found to enhance it in the DG. However, since the amygdala itself is amenable to experience-induced plasticity it is thus conceivable that when activity within the amygdala is modified this will have impact on the way the amygdala modulates activity and plasticity in other brain areas. In the current study we examined the effects of different patterns of BLA activation on the modulation of LTP in the DG and CA1, as well as on serum corticosterone (CORT. In CA1, BLA priming impaired LTP induction as was reported before. In contrast, in the DG, varying BLA stimulation intensity and frequency resulted in differential effects on LTP, ranging from no effect to strong impairment or enhancement. Varying BLA stimulation patterns resulted in also differential alterations in Serum CORT, leading to higher CORT levels being positively correlated with LTP magnitude in DG but not in CA1.The results support the notion of a differential role for the DG in aspects of memory, and add to this view the possibility that DG-associated aspects of memory will be enhanced under more emotional or stressful conditions. It is interesting to think of BLA patterns of activation and the differential levels of circulating CORT as two arms of the emotional and stress response that attempt to synchronize brain activity to best meet the challenge. It is foreseeable to think of abnormal such synchronization under extreme conditions, which would lead to the development of maladaptive behavior.

  19. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  20. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol.

    Science.gov (United States)

    Babechuk, M G; Kleinhanns, I C; Schoenberg, R

    2017-01-01

    Fractionation of stable Cr isotopes has been measured in Archaean paleosols and marine sedimentary rocks and interpreted to record the terrestrial oxidation of Cr(III) to Cr(VI), providing possible indirect evidence for the emergence of oxygenic photosynthesis. However, these fractionations occur amidst evidence from other geochemical proxies for a pervasively anoxic atmosphere. This study examined the Cr geochemistry of the ca. 1.85 Ga Flin Flon paleosol, which developed under an atmosphere unambiguously oxidising enough to quantitatively convert Fe(II) to Fe(III) during pedogenesis. The paleosol shows an extreme range in Cr isotope composition of 2.76 ‰ δ(53/52) Cr. The protolith greenstone (δ(53/52) Cr: -0.23 ‰), the deepest weathering horizon (δ(53/52) Cr: -0.15 to -0.23 ‰) and a residual corestone in the upper paleosol (δ(53/52) Cr: -0.01 ‰) all exhibit Cr isotopic compositions comparable to unaltered igneous rocks. The most significant isotopic fractionation is preserved in the areas influenced by oxidative subaerial weathering (i.e. increase in Fe(III)/Fe(II)) and the greatest loss of mobile elements. The uppermost paleosol horizon is both Cr and Mn depleted and offset to significantly (53) Cr-enriched compositions (δ(53/52) Cr values between +1.50 and +2.38 ‰), which is not easily modelled with the oxidation of Cr(III) and loss of isotopically heavy Cr(VI). Instead, the currently preferred model for these data invokes the open-system removal of isotopically light aqueous Cr(III) during either pedogenesis or subsequent hydrothermal/metamorphic alteration. The (53) Cr enrichment would then represent the preferential dissolution or complexation of isotopically light aqueous Cr(III) species (enhanced by lower pH conditions and possibly the presence of complexing ligands) and/or the residual signature from preferential adsorption of isotopically heavy Cr(III). Both scenarios would contradict the widely held assumption that only redox reactions of

  1. Dendritic spine changes associated with normal aging.

    Science.gov (United States)

    Dickstein, D L; Weaver, C M; Luebke, J I; Hof, P R

    2013-10-22

    Given the rapid rate of population aging and the increased incidence of cognitive decline and neurodegenerative diseases with advanced age, it is important to ascertain the determinants that result in cognitive impairment. It is also important to note that much of the aged population exhibit 'successful' cognitive aging, in which cognitive impairment is minimal. One main goal of normal aging studies is to distinguish the neural changes that occur in unsuccessful (functionally impaired) subjects from those of successful (functionally unimpaired) subjects. In this review, we present some of the structural adaptations that neurons and spines undergo throughout normal aging and discuss their likely contributions to electrophysiological properties and cognition. Structural changes of neurons and dendritic spines during aging, and the functional consequences of such changes, remain poorly understood. Elucidating the structural and functional synaptic age-related changes that lead to cognitive impairment may lead to the development of drug treatments that can restore or protect neural circuits and mediate cognition and successful aging. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. SPINE INJURY IN MULAGO HOSPITAL

    African Journals Online (AJOL)

    Conciu.-riorr.'This study concluded that the initial clinical and radiological evaluation of patients with suspected CSI in iiilulago Hospital was inadequate with sorne injuries being missed alto-getlrer. INTRO DUCTIDN. Cervical Spine injury ECSI} occur in 2-5% oi' all trauma casesii] and in 5-10% of all major trauma cases 12}.

  3. Magnetic resonance of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Enzmann, D.R.; De La Paz, R.L.; Rubin, J.R.

    1990-01-01

    This book contains 12 chapters. Three chapters discuss principles of cerebrospinal fluid flow, spinal imaging techniques, and the physical basis and anatomic correlates of signal intensity in the spine. There are chapters on normal anatomy, congenital anomalies, trauma, tumors, infection, demyelinating disease, degenerative disease, vascular conditions, and syringomyelia.

  4. Vortioxetine promotes maturation of dendritic spines in vitro: A comparative study in hippocampal cultures.

    Science.gov (United States)

    Waller, Jessica A; Chen, Fenghua; Sánchez, Connie

    2016-04-01

    Cognitive dysfunction is prevalent in patients with major depressive disorder (MDD), and cognitive impairments can persist after relief of depressive symptoms. The multimodal-acting antidepressant vortioxetine is an antagonist at 5-HT3, 5-HT7, and 5-HT1D receptors, a partial agonist at 5-HT1B receptors, an agonist at 5-HT1A receptors, and an inhibitor of the serotonin (5-HT) transporter (SERT) and has pro-cognitive properties. In preclinical studies, vortioxetine enhances long-term potentiation (LTP), a cellular correlate of neuroplasticity, and enhances memory in various cognitive tasks. However, the molecular mechanisms by which vortioxetine augments LTP and memory remain unknown. Dendritic spines are specialized, actin-rich microdomains on dendritic shafts and are major sites of most excitatory synapses. Since dendritic spine remodeling is implicated in synaptic plasticity and spine size dictates the strength of synaptic transmission, we assessed if vortioxetine, relative to other antidepressants including ketamine, duloxetine, and fluoxetine, plays a role in the maintenance of dendritic spine architecture in vitro. We show that vortioxetine, ketamine, and duloxetine induce spine enlargement. However, only vortioxetine treatment increased the number of spines in contact with presynaptic terminals. In contrast, fluoxetine had no effect on spine remodeling. These findings imply that the various 5-HT receptor mechanisms of vortioxetine may play a role in its effect on spine dynamics and in increasing the proportion of potentially functional synaptic contacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Metals in Spine.

    Science.gov (United States)

    Tahal, Dimitri; Madhavan, Karthik; Chieng, Lee Onn; Ghobrial, George M; Wang, Michael Y

    2017-04-01

    The treatment of spinal disorders requires the consideration of a number of factors and understanding the type of material we are implanting is important. Alloys have different mechanical properties and behave differently under different physiologic conditions. Spinal implants need to have good performance in the characteristics of biofunctionality and biocompatibility. In this review, the alloys titanium, cobalt-chrome, nitinol, and tantalum will be examined closely. Several of the important properties that are considered when selecting an alloy for use in spinal instrumentation are explored and detailed for each. This allows for an assessment and comparison of each alloy and a possible determination of which is the best alloy for specific surgery or the best alloy for use in specific situations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Male Spine Motion During Coitus

    Science.gov (United States)

    Sidorkewicz, Natalie

    2014-01-01

    Study Design. Repeated measures design. Objective. To describe male spine movement and posture characteristics during coitus and compare these characteristics across 5 common coital positions. Summary of Background Data. Exacerbation of pain during coitus due to coital movements and positions is a prevalent issue reported by low back pain patients. A biomechanical analysis of spine movements and postures during coitus has never been conducted. Methods. Ten healthy males and females engaged in coitus in the following preselected positions and variations: QUADRUPED, MISSIONARY, and SIDELYING. An optoelectronic motion capture system was used to measure 3-dimensional lumbar spine angles that were normalized to upright standing. To determine whether each coital position had distinct spine kinematic profiles, separate univariate general linear models, followed by Tukey's honestly significant difference post hoc analysis were used. The presentation of coital positions was randomized. Results. Both variations of QUADRUPED, mQUAD1 and mQUAD2, were found to have a significantly higher cycle speed than mSIDE (P = 0.043 and P = 0.034, respectively), mMISS1 (P = 0.003 and P = 0.002, respectively), and mMISS2 (P = 0.001 and P spine movement varied depending on the coital position; however, across all positions, the majority of the range of motion used was in flexion. Based on range of motion, the least-to-most recommended positions for a male flexion-intolerant patient are mSIDE, mMISS2, mQUAD2, mMISS1, and mQUAD1. Conclusion. Initial recommendations—which include specific coital positions to avoid, movement strategies, and role of the partner—were developed for male patients whose low back pain is exacerbated by specific motions and postures. Level of Evidence: N/A PMID:25208042

  7. A review of pediatric lumbar spine trauma.

    Science.gov (United States)

    Sayama, Christina; Chen, Tsulee; Trost, Gregory; Jea, Andrew

    2014-01-01

    Pediatric spine fractures constitute 1%-3% of all pediatric fractures. Anywhere from 20% to 60% of these fractures occur in the thoracic or lumbar spine, with the lumbar region being more affected in older children. Younger children tend to have a higher proportion of cervical injuries. The pediatric spine differs in many ways from the adult spine, which can lead to increased ligamentous injuries without bone fractures. The authors discuss and review pediatric lumbar trauma, specifically focusing on epidemiology, radiographic findings, types and mechanisms of lumbar spine injury, treatment, and outcomes.

  8. Imaging of cervical spine injuries of childhood

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Geetika; El-Khoury, Georges Y. [University of Iowa Hospitals and Clinics, Department of Radiology, 3951 JPP, Iowa, IA (United States)

    2007-06-15

    Cervical spine injuries of children, though rare, have a high morbidity and mortality. The pediatric cervical spine is anatomically and biomechanically different from that of adults. Hence, the type, level and outcome of cervical spine injuries in children are different from those seen in adults. Normal developmental variants seen in children can make evaluation of the pediatric cervical spine challenging. This article reviews the epidemiology of pediatric cervical spine trauma, normal variants seen in children and specific injuries that are more common in the pediatric population. We also propose an evidence-based imaging protocol to avoid unnecessary imaging studies and minimize radiation exposure in children. (orig.)

  9. Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsα expression.

    Science.gov (United States)

    Weyer, Sascha W; Zagrebelsky, Marta; Herrmann, Ulrike; Hick, Meike; Ganss, Lennard; Gobbert, Julia; Gruber, Morna; Altmann, Christine; Korte, Martin; Deller, Thomas; Müller, Ulrike C

    2014-03-31

    Synaptic dysfunction and synapse loss are key features of Alzheimer's pathogenesis. Previously, we showed an essential function of APP and APLP2 for synaptic plasticity, learning and memory. Here, we used organotypic hippocampal cultures to investigate the specific role(s) of APP family members and their fragments for dendritic complexity and spine formation of principal neurons within the hippocampus. Whereas CA1 neurons from APLP1-KO or APLP2-KO mice showed normal neuronal morphology and spine density, APP-KO mice revealed a highly reduced dendritic complexity in mid-apical dendrites. Despite unaltered morphology of APLP2-KO neurons, combined APP/APLP2-DKO mutants showed an additional branching defect in proximal apical dendrites, indicating redundancy and a combined function of APP and APLP2 for dendritic architecture. Remarkably, APP-KO neurons showed a pronounced decrease in spine density and reductions in the number of mushroom spines. No further decrease in spine density, however, was detectable in APP/APLP2-DKO mice. Mechanistically, using APPsα-KI mice lacking transmembrane APP and expressing solely the secreted APPsα fragment we demonstrate that APPsα expression alone is sufficient to prevent the defects in spine density observed in APP-KO mice. Collectively, these studies reveal a combined role of APP and APLP2 for dendritic architecture and a unique function of secreted APPs for spine density.

  10. [Cervical spine instability in the surgical patient].

    Science.gov (United States)

    Barbeito, A; Guerri-Guttenberg, R A

    2014-03-01

    Many congenital and acquired diseases, including trauma, may result in cervical spine instability. Given that airway management is closely related to the movement of the cervical spine, it is important that the anesthesiologist has detailed knowledge of the anatomy, the mechanisms of cervical spine instability, and of the effects that the different airway maneuvers have on the cervical spine. We first review the normal anatomy and biomechanics of the cervical spine in the context of airway management and the concept of cervical spine instability. In the second part, we review the protocols for the management of cervical spine instability in trauma victims and some of the airway management options for these patients. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. All rights reserved.

  11. Aquatic antagonists: cutaneous sea urchin spine injury.

    Science.gov (United States)

    Hsieh, Clifford; Aronson, Erica R; Ruiz de Luzuriaga, Arlene M

    2016-11-01

    Injuries from sea urchin spines are commonly seen in coastal regions with high levels of participation in water activities. Although these injuries may seem minor, the consequences vary based on the location of the injury. Sea urchin spine injuries may cause arthritis and synovitis from spines in the joints. Nonjoint injuries have been reported, and dermatologic aspects of sea urchin spine injuries rarely have been discussed. We present a case of a patient with sea urchin spines embedded in the thigh who subsequently developed painful skin nodules. Tissue from the site of the injury demonstrated foreign-body type granulomas. Following the removal of the spines and granulomatous tissue, the patient experienced resolution of the nodules and associated pain. Extraction of sea urchin spines can attenuate the pain and decrease the likelihood of granuloma formation, infection, and long-term sequelae.

  12. Color, anthocyanin, and antioxidant characteristics of young wines produced from spine grapes (Vitis davidiiFoex) in China.

    Science.gov (United States)

    Han, Fuliang; Ju, Yanlun; Ruan, Xianrui; Zhao, Xianfang; Yue, Xiaofeng; Zhuang, Xifu; Qin, Minyang; Fang, Yulin

    2017-01-01

    Background : Spine grape has gained attention in the field of wine science due to its good growth characteristics. Spine grape wine has been made by local residents for a long time. However, the scientific evaluation of spine wine has not been systemically documented compared to Vitis vinifera grape wines Methods : We compared 11 spine wines from south China (W1-W11) with 7 high-quality international wines (W12-W18). The total phenolic content, the total anothcyanin content and the antioxidant activity of these wines were analyzed and compared. Meanwhile, anthocyanin profiles of these wines were also documented. Results : Compared with other wines most of the spine wines had a strong red intensity with a blue hue. Malvidin-3,5- O -diglucoside and malvidin-3- O -(6- O -coumaroyl)-glucoside-5-glucoside appeared to be the major anthocyanins in these wines. The scavenging capacity analyses of these wines using ABTS, DPPH, and CUPRAC assays indicated that spine wines possessed high antioxidant properties, especially spine wine W3, W4, W6 and W8. Their high antioxidant properties were mainly related to the high levels of the total phenolic content and anthocyanins. Conclusion : These results suggested that spine wine might be considered a good wine source for the Chinese wine industry and provided useful information on the knowledge of spine grape.

  13. Color, anthocyanin, and antioxidant characteristics of young wines produced from spine grapes (Vitis davidii Foex) in China

    Science.gov (United States)

    Han, Fuliang; Ju, Yanlun; Ruan, Xianrui; Zhao, Xianfang; Yue, Xiaofeng; Zhuang, Xifu; Qin, Minyang; Fang, Yulin

    2017-01-01

    ABSTRACT Background: Spine grape has gained attention in the field of wine science due to its good growth characteristics. Spine grape wine has been made by local residents for a long time. However, the scientific evaluation of spine wine has not been systemically documented compared to Vitis vinifera grape wines Methods: We compared 11 spine wines from south China (W1–W11) with 7 high-quality international wines (W12–W18). The total phenolic content, the total anothcyanin content and the antioxidant activity of these wines were analyzed and compared. Meanwhile, anthocyanin profiles of these wines were also documented. Results: Compared with other wines most of the spine wines had a strong red intensity with a blue hue. Malvidin-3,5-O-diglucoside and malvidin-3-O-(6-O-coumaroyl)-glucoside-5-glucoside appeared to be the major anthocyanins in these wines. The scavenging capacity analyses of these wines using ABTS, DPPH, and CUPRAC assays indicated that spine wines possessed high antioxidant properties, especially spine wine W3, W4, W6 and W8. Their high antioxidant properties were mainly related to the high levels of the total phenolic content and anthocyanins. Conclusion: These results suggested that spine wine might be considered a good wine source for the Chinese wine industry and provided useful information on the knowledge of spine grape. PMID:28804435

  14. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    Science.gov (United States)

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes. © 2015 Wiley Periodicals, Inc.

  15. Dopamine regulates intrinsic excitability thereby gating successful induction of spike timing-dependent plasticity in CA1 of the hippocampus

    OpenAIRE

    Elke eEdelmann; Volkmar eLessmann; Volkmar eLessmann

    2013-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are generally assumed to be cellular correlates for learning and memory. Different types of LTP induction protocols differing in severity of stimulation can be distinguished in CA1 of the hippocampus. To better understand signaling mechanisms and involvement of neuromodulators such as dopamine in synaptic plasticity, less severe and more physiological low frequency induction protocols should be used. In the study which is reviewed he...

  16. Dopamine regulates intrinsic excitability thereby gating successful induction of spike timing-dependent plasticity in CA1 of the hippocampus

    OpenAIRE

    Edelmann, Elke; Lessmann, Volkmar

    2013-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are generally assumed to be cellular correlates for learning and memory. Different types of LTP induction protocols differing in severity of stimulation can be distinguished in CA1 of the hippocampus. To better understand signaling mechanisms and involvement of neuromodulators such as dopamine (DA) in synaptic plasticity, less severe and more physiological low frequency induction protocols should be used. In the study which is review...

  17. Plasticité de l'excitabilité des neurones de la région CA1 de rat

    OpenAIRE

    Campanac, Emilie

    2008-01-01

    It has been previously shown in pyramidal neurons of CA1 that in addition to long term synaptic plasticity, tetanus protocols (HFS/LFS) of afferent input induced a synergic plasticity of integration of synaptic potentials. In this context, we have addressed the following questions: 1) are changes on dendritic integration associated to STDP? 2) what are the mechanisms of facilitation of integration expression observed after LTP? and 3) does synaptic activity also induce persistent changes in e...

  18. Multilevel noncontiguous cervical spine injury

    Directory of Open Access Journals (Sweden)

    Adetunji Mapaderun Toluse

    2017-01-01

    Full Text Available This case report highlights the successful combination of operative and nonoperative management of a patient with noncontiguous cervical spine fractures and incomplete spinal cord injury. A case report of a 40-year-old male victim of a motor vehicular accident who presented with noncontiguous cervical spine fractures (Anderson and D'Alonzo Type III odontoid fracture and traumatic spondylolisthesis of C4/C5 and incomplete spinal cord injury. The odontoid fracture was managed nonoperatively, whereas anterior cervical discectomy and fusion were done at the C4/C5 vertebral level. The patient made full neurologic recovery with radiologic evidence of successful fusion and fracture healing at 12 weeks postoperation in both levels of injuries. Operative and nonoperative modalities can be utilized to manage selected patients.

  19. Fetal evaluation of spine dysraphism

    Energy Technology Data Exchange (ETDEWEB)

    Bulas, Dorothy [George Washington University Medical Center, Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-06-15

    Spinal dysraphism or neural tube defects (NTD) encompass a heterogeneous group of congenital spinal anomalies that result from the defective closure of the neural tube early in gestation with anomalous development of the caudal cell mass. Advances in ultrasound and MRI have dramatically improved the diagnosis and therapy of spinal dysraphism and caudal spinal anomalies both prenatally and postnatally. Advances in prenatal US including high frequency linear transducers and three dimensional imaging can provide detailed information concerning spinal anomalies. MR imaging is a complementary tool that can further elucidate spine abnormalities as well as associated central nervous system and non-CNS anomalies. Recent studies have suggested that 3-D CT can help further assess fetal spine anomalies in the third trimester. With the advent of fetal therapy including surgery, accurate prenatal diagnosis of open and closed spinal dysraphism becomes critical in appropriate counselling and perinatal management. (orig.)

  20. Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons.

    Science.gov (United States)

    Donohue, Duncan E; Ascoli, Giorgio A

    2005-10-01

    Computational modeling of dendritic morphology is a powerful tool for quantitatively describing complex geometrical relationships, uncovering principles of dendritic development, and synthesizing virtual neurons to systematically investigate cellular biophysics and network dynamics. A feature common to many morphological models is a dependence of the branching probability on local diameter. Previous models of this type have been able to recreate a wide variety of dendritic morphologies. However, these diameter-dependent models have so far failed to properly constrain branching when applied to hippocampal CA1 pyramidal cells, leading to explosive growth. Here we present a simple modification of this basic approach, in which all parameter sampling, not just bifurcation probability, depends on branch diameter. This added constraint prevents explosive growth in both apical and basal trees of simulated CA1 neurons, yielding arborizations with average numbers and patterns of bifurcations extremely close to those observed in real cells. However, simulated apical trees are much more varied in size than the corresponding real dendrites. We show that, in this model, the excessive variability of simulated trees is a direct consequence of the natural variability of diameter changes at and between bifurcations observed in apical, but not basal, dendrites. Conversely, some aspects of branch distribution were better matched by virtual apical trees than by virtual basal trees. Dendritic morphometrics related to spatial position, such as path distance from the soma or branch order, may be necessary to fully constrain CA1 apical tree size and basal branching pattern.

  1. Spatial memory decline after masticatory deprivation and aging is associated with altered laminar distribution of CA1 astrocytes

    Directory of Open Access Journals (Sweden)

    Frota de Almeida Marina

    2012-02-01

    Full Text Available Abstract Background Chewing imbalances are associated with neurodegeneration and are risk factors for senile dementia in humans and memory deficits in experimental animals. We investigated the impact of long-term reduced mastication on spatial memory in young, mature and aged female albino Swiss mice by stereological analysis of the laminar distribution of CA1 astrocytes. A soft diet (SD was used to reduce mastication in the experimental group, whereas the control group was fed a hard diet (HD. Assays were performed in 3-, 6- and 18-month-old SD and HD mice. Results Eating a SD variably affected the number of astrocytes in the CA1 hippocampal field, and SD mice performed worse on water maze memory tests than HD mice. Three-month-old mice in both groups could remember/find a hidden platform in the water maze. However, 6-month-old SD mice, but not HD mice, exhibited significant spatial memory dysfunction. Both SD and HD 18-month-old mice showed spatial memory decline. Older SD mice had astrocyte hyperplasia in the strata pyramidale and oriens compared to 6-month-old mice. Aging induced astrocyte hypoplasia at 18 months in the lacunosum-moleculare layer of HD mice. Conclusions Taken together, these results suggest that the impaired spatial learning and memory induced by masticatory deprivation and aging may be associated with altered astrocyte laminar distribution and number in the CA1 hippocampal field. The underlying molecular mechanisms are unknown and merit further investigation.

  2. Mannitol induces selective astroglial death in the CA1 region of the rat hippocampus following status epilepticus

    Science.gov (United States)

    Ko, Ah-Reum; Kang, Tae-Cheon

    2015-01-01

    In the present study, we addressed the question of whether treatment with mannitol, an osmotic diuretic, affects astrogliovascular responses to status epilepticus (SE). In saline-treated animals, astrocytes exhibited reactive astrogliosis in the CA1-3 regions 2-4 days after SE. In the mannitol-treated animals, a large astroglial empty zone was observed in the CA1 region 2 days after SE. This astroglial loss was unrelated to vasogenic edema formation. There was no difference in SE-induced neuronal loss between saline- and mannitol-treated animals. Furthermore, mannitol treatment did not affect astroglial loss and vasogenic edema formation in the dentate gyrus and the piriform cortex. These findings suggest that mannitol treatment induces selective astroglial loss in the CA1 region independent of vasogenic edema formation following SE. These findings support the hypothesis that the susceptibility of astrocytes to SE is most likely due to the distinctive heterogeneity of astrocytes independent of hemodynamics. [BMB Reports 2015; 48(9): 507-512] PMID:25703536

  3. Multiple synaptic and membrane sites of anesthetic action in the CA1 region of rat hippocampal slices

    Directory of Open Access Journals (Sweden)

    MacIver M Bruce

    2004-12-01

    Full Text Available Abstract Background Anesthesia is produced by a depression of central nervous system function, however, the sites and mechanisms of action underlying this depression remain poorly defined. The present study compared and contrasted effects produced by five general anesthetics on synaptic circuitry in the CA1 region of hippocampal slices. Results At clinically relevant and equi-effective concentrations, presynaptic and postsynaptic anesthetic actions were evident at glutamate-mediated excitatory synapses and at GABA-mediated inhibitory synapses. In addition, depressant effects on membrane excitability were observed for CA1 neuron discharge in response to direct current depolarization. Combined actions at several of these sites contributed to CA1 circuit depression, but the relative degree of effect at each site was different for each anesthetic studied. For example, most of propofol's depressant effect (> 70 % was reversed with a GABA antagonist, but only a minor portion of isoflurane's depression was reversed ( 50 %, but thiopental by only Conclusions These results, in as much as they may be relevant to anesthesia, indicate that general anesthetics act at several discrete sites, supporting a multi-site, agent specific theory for anesthetic actions. No single effect site (e.g. GABA synapses or mechanism of action (e.g. depressed membrane excitability could account for all of the effects produced for any anesthetic studied.

  4. MRI of the fetal spine

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Erin M. [Departement of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2004-09-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  5. Maxillofacial trauma - Underestimation of cervical spine injury.

    Science.gov (United States)

    Reich, Waldemar; Surov, Alexey; Eckert, Alexander Walter

    2016-09-01

    Undiagnosed cervical spine injury can have devastating results. The aim of this study was to analyse patients with primary maxillofacial trauma and a concomitant cervical spine injury. It is hypothetised that cervical spine injury is predictable in maxillofacial surgery. A monocentric clinical study was conducted over a 10-year period to analyse patients with primary maxillofacial and associated cervical spine injuries. Demographic data, mechanism of injury, specific trauma and treatments provided were reviewed. Additionally a search of relevant international literature was conducted in PubMed by terms "maxillofacial" AND "cervical spine" AND "injury". Of 3956 patients, n = 3732 (94.3%) suffered from craniomaxillofacial injuries only, n = 174 (4.4%) from cervical spine injuries only, and n = 50 (1.3%) from both craniomaxillofacial and cervical spine injuries. In this study cohort the most prevalent craniofacial injuries were: n = 41 (44%) midfacial and n = 21 (22.6%) skull base fractures. Cervical spine injuries primarily affected the upper cervical spine column: n = 39 (58.2%) vs. n = 28 (41.8%). Only in 3 of 50 cases (6%), the cervical spine injury was diagnosed coincidentally, and the cervical spine column was under immobilised. The operative treatment rate for maxillofacial injuries was 36% (n = 18), and for cervical spine injuries 20% (n = 10). The overall mortality rate was 8% (n = 4). The literature search yielded only 12 papers (11 retrospective and monocentric cohort studies) and is discussed before our own results. In cases of apparently isolated maxillofacial trauma, maxillofacial surgeons should be aware of a low but serious risk of underestimating an unstable cervical spine injury. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Microscope sterility during spine surgery.

    Science.gov (United States)

    Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J

    2012-04-01

    Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact

  7. Effect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Hui Young Lee

    2016-06-01

    Conclusion: Our results show that a lethal transient ischemia significantly decreased c-myb immunoreactivity in the SP of the CA1 region and that IPC well preserved c-myb immunoreactivity in the SP of the CA1 region. We suggest that the maintenance of c-myb might be related with IPC-mediated neuroprotection after a lethal ischemic insult.

  8. Thyroid storm following anterior cervical spine surgery for tuberculosis of cervical spine

    Directory of Open Access Journals (Sweden)

    Sanjiv Huzurbazar

    2014-01-01

    Full Text Available Objective: The primary objective was to report this rare case and discuss the probable mechanism of thyroid storm following anterior cervical spine surgery for Kochs cervical spine.

  9. Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    Science.gov (United States)

    Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze

    2016-08-01

    Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Pediatric cervical spine in emergency: radiographic features of normal anatomy, variants and pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Adib, Omar; Berthier, Emeline; Loisel, Didier; Aube, Christophe [University Hospital of Angers, Department of Radiology, Angers (France)

    2016-12-15

    Injuries of the cervical spine are uncommon in children. The distribution of injuries, when they do occur, differs according to age. Young children aged less than 8 years usually have upper cervical injuries because of the anatomic and biomechanical properties of their immature spine, whereas older children, whose biomechanics more closely resemble those of adults, are prone to lower cervical injuries. In all cases, the pediatric cervical spine has distinct radiographic features, making the emergency radiological analysis of it difficult. Such features as hypermobility between C2 and C3, pseudospread of the atlas on the axis, pseudosubluxation, the absence of lordosis, anterior wedging of vertebral bodies, pseudowidening of prevertebral soft tissue and incomplete ossification of synchondrosis can be mistaken for traumatic injuries. The interpretation of a plain radiograph of the pediatric cervical spine following trauma must take into account the age of the child, the location of the injury and the mechanism of trauma. Comprehensive knowledge of the specific anatomy and biomechanics of the childhood spine is essential for the diagnosis of suspected cervical spine injury. With it, the physician can, on one hand, differentiate normal physes or synchondroses from pathological fractures or ligamentous disruptions and, on the other, identify any possible congenital anomalies that may also be mistaken for injury. Thus, in the present work, we discuss normal radiological features of the pediatric cervical spine, variants that may be encountered and pitfalls that must be avoided when interpreting plain radiographs taken in an emergency setting following trauma. (orig.)

  11. Reduction of the pectoral spine and girdle in domesticated Channel catfish is likely caused by changes in selection pressure.

    Science.gov (United States)

    Fine, Michael L; Lahiri, Shweta; Sullivan, Amanda D H; Mayo, Mark; Newton, Scott H; Sismour, Edward N

    2014-07-01

    Locked pectoral spines of the Channel Catfish Ictalurus punctatus more than double the fish's width and complicate ingestion by gape-limited predators. The spine mates with the pectoral girdle, a robust structure that anchors the spine. This study demonstrates that both spine and girdle exhibit negative allometric growth and that pectoral spines and girdles are lighter in domesticated than in wild Channel Catfish. This finding could be explained by changes in selection pressure for spine growth during domestication or by an epigenetic effect in which exposure to predators in wild fish stimulates pectoral growth. We tested the epigenetic hypothesis by exposing domesticated Channel Catfish fingerlings to Largemouth Bass Micropterus salmoides predators for 13 weeks. Spines and girdles grow isometrically in the fingerlings, and regression analysis indicates no difference in proportional pectoral growth between control and predator-exposed fish. Therefore a change in selection pressure likely accounts for smaller pectoral growth in domesticated Channel Catfish. Decreasing spine growth in older fish suggests anti-predator functions are most important in smaller fish. Additionally, growth of the appendicular and axial skeleton is controlled differentially, and mechanical properties of the spine and not just its length are an important component of this defensive adaptation. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  12. Chondrosarcoma of the Mobile Spine and Sacrum

    OpenAIRE

    Ryan M. Stuckey; Rex A. W. Marco

    2011-01-01

    Chondrosarcoma is a rare malignant tumor of bone. This family of tumors can be primary malignant tumors or a secondary malignant transformation of an underlying benign cartilage tumor. Pain is often the initial presenting complaint when chondrosarcoma involves the spine. In the mobile spine, chondrosarcoma commonly presents within the vertebral body and shows a predilection for the thoracic spine. Due to the resistance of chondrosarcoma to both radiation and chemotherapy, treatment is focuse...

  13. Selective Loss of Smaller Spines in Schizophrenia.

    Science.gov (United States)

    MacDonald, Matthew L; Alhassan, Jamil; Newman, Jason T; Richard, Michelle; Gu, Hong; Kelly, Ryan M; Sampson, Alan R; Fish, Kenneth N; Penzes, Peter; Wills, Zachary P; Lewis, David A; Sweet, Robert A

    2017-06-01

    Decreased density of dendritic spines in adult schizophrenia subjects has been hypothesized to result from increased pruning of excess synapses in adolescence. In vivo imaging studies have confirmed that synaptic pruning is largely driven by the loss of large or mature synapses. Thus, increased pruning throughout adolescence would likely result in a deficit of large spines in adulthood. Here, the authors examined the density and volume of dendritic spines in deep layer 3 of the auditory cortex of 20 schizophrenia and 20 matched comparison subjects as well as aberrant voltage-gated calcium channel subunit protein expression linked to spine loss. Primary auditory cortex deep layer 3 spine density and volume was assessed in 20 pairs of schizophrenia and matched comparison subjects in an initial and replication cohort (12 and eight pairs) by immunohistochemistry-confocal microscopy. Targeted mass spectrometry was used to quantify postsynaptic density and voltage-gated calcium channel protein expression. The effect of increased voltage-gated calcium channel subunit protein expression on spine density and volume was assessed in primary rat neuronal culture. Only the smallest spines are lost in deep layer 3 of the primary auditory cortex in subjects with schizophrenia, while larger spines are retained. Levels of the tryptic peptide ALFDFLK, found in the schizophrenia risk gene CACNB4, are inversely correlated with the density of smaller, but not larger, spines in schizophrenia subjects. Consistent with this observation, CACNB4 overexpression resulted in a lower density of smaller spines in primary neuronal cultures. These findings require a rethinking of the overpruning hypothesis, demonstrate a link between small spine loss and a schizophrenia risk gene, and should spur more in-depth investigations of the mechanisms that govern new or small spine generation and stabilization under normal conditions as well as how this process is impaired in schizophrenia.

  14. Diagnostic Approach to Pediatric Spine Disorders.

    Science.gov (United States)

    Rossi, Andrea; Martinetti, Carola; Morana, Giovanni; Severino, Mariasavina; Tortora, Domenico

    2016-08-01

    Understanding the developmental features of the pediatric spine and spinal cord, including embryologic steps and subsequent growth of the osteocartilaginous spine and contents is necessary for interpretation of the pathologic events that may affect the pediatric spine. MR imaging plays a crucial role in the diagnostic evaluation of patients suspected of harboring spinal abnormalities, whereas computed tomography and ultrasonography play a more limited, complementary role. This article discusses the embryologic and developmental anatomy features of the spine and spinal cord, together with some technical points and pitfalls, and the most common indications for pediatric spinal MR imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Pathophysiology and biomechanics of the aging spine.

    Science.gov (United States)

    Papadakis, Michael; Sapkas, Georgios; Papadopoulos, Elias C; Katonis, Pavlos

    2011-01-01

    AGING OF THE SPINE IS CHARACTERIZED BY TWO PARALLEL BUT INDEPENDENT PROCESSES: the reduction of bone mineral density and the development of degenerative changes. The combination of degeneration and bone mass reduction contribute, to a different degree, to the development of a variety of lesions. This results in a number of painful and often debilitating disorders. The present review constitutes a synopsis of the pathophysiological processes that take place in the aging spine as well as of the consequences these changes have on the biomechanics of the spine. The authors hope to present a thorough yet brief overview of the process of aging of the human spine.

  16. Chondrosarcoma of the Mobile Spine and Sacrum

    Directory of Open Access Journals (Sweden)

    Ryan M. Stuckey

    2011-01-01

    Full Text Available Chondrosarcoma is a rare malignant tumor of bone. This family of tumors can be primary malignant tumors or a secondary malignant transformation of an underlying benign cartilage tumor. Pain is often the initial presenting complaint when chondrosarcoma involves the spine. In the mobile spine, chondrosarcoma commonly presents within the vertebral body and shows a predilection for the thoracic spine. Due to the resistance of chondrosarcoma to both radiation and chemotherapy, treatment is focused on surgery. With en bloc excision of chondrosarcoma of the mobile spine and sacrum patients can have local recurrence rates as low as 20%.

  17. Development of the young spine questionnaire

    DEFF Research Database (Denmark)

    Lauridsen, Henrik Hein; Hestbæk, Lise

    2013-01-01

    primarily been on the working age population, and therefore specific questionnaires to measure spinal pain and its consequences, specifically aimed at children and adolescents are absent. The purpose of this study was to develop a questionnaire for schoolchildren filling this gap. Methods The Young Spine...... pain score ranged between 0.67 (cervical spine) and 0.79 (lumbar spine). Conclusions The Young Spine Questionnaire contains questions that assess spinal pain and its consequences. The items have been tested for content understanding and agreement between questionnaire scores and interview findings...

  18. The FAt Spondyloarthritis Spine Score (FASSS)

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Zhao, Zheng; Lambert, Robert Gw

    2013-01-01

    Studies have shown that fat lesions follow resolution of inflammation in the spine of patients with axial spondyloarthritis (SpA). Fat lesions at vertebral corners have also been shown to predict development of new syndesmophytes. Therefore, scoring of fat lesions in the spine may constitute both...... an important measure of treatment efficacy as well as a surrogate marker for new bone formation. The aim of this study was to develop and validate a new scoring method for fat lesions in the spine, the Fat SpA Spine Score (FASSS), which in contrast to the existing scoring method addresses the localization...

  19. Structure and magnetic investigations of Ca1-xYxMnO3 (x=0, 0.1, 0.2, 0.3 and Mn4+/Mn3+ relation analysis

    Directory of Open Access Journals (Sweden)

    Zagorac J.

    2010-01-01

    Full Text Available Structure and magnetic features of nanostructured materials with general formula Ca1-xYxMnO3 (x = 0; 0.1; 0.2; 0.3 were investigated. Goldschmidt tolerance factor, Gt and global instability index, GII were calculated for Ca1-xYxMnO3 (x = 0, 0.25, 0.5, 0.75, 1 using the software SPuDS (Structure Prediction Diagnostic Software. According to these two parameters possibility of forming perovskite structure type for Ca1-xYxMnO3 solid solution was analyzed. Substitution of Y3+ for Ca2+ provokes reduction of equivalent amount Mn4+ into Mn3+, the presence of which is a reason for many interesting magnetic, transport and structural features of doped CaMnO3. Crystal structure refinement was carried out using Rietveld analysis. Ca1-xYxMnO3 (x = 0; 0.1; 0.2; 0.3 has an orthorombic, Pnma space group that, according to Glazer´s classification belongs to a-b+a- tilt system. Influence of Y amount on Mn-O bond angles and distances, tilting of MnO6 octahedra around all three axes and octahedra deformation were analyzed. Bond valence calculations (BVC were performed to determine Mn valence state. Using EPR (electron paramagnetic resonance magnetic measurements were performed and magnetic properties of solid solutions, orthorombicity degree of unit cell, as well as Mn4+/Mn3+ cations ratio in position B were analyzed. Microstructure size-strain analysis was performed and these results are in nanometric range which is confirmed by TEM images.

  20. Heritability of Thoracic Spine Curvature and Genetic Correlations With Other Spine Traits: The Framingham Study

    National Research Council Canada - National Science Library

    Yau, Michelle S; Demissie, Serkalem; Zhou, Yanhua; Anderson, Dennis E; Lorbergs, Amanda L; Kiel, Douglas P; Allaire, Brett T; Yang, Laiji; Cupples, L Adrienne; Travison, Thomas G; Bouxsein, Mary L; Karasik, David; Samelson, Elizabeth J

    2016-01-01

    ... spine curvature in older women. However, aging‐related changes in the anatomic structures of the spine, particularly loss of height in the vertebral bodies and intervertebral discs, have been consistently associated with thoracic spine curvature severity. For example, women with vertebral fracture have a six‐degree higher kyphosis angle and a tw...

  1. Minimally invasive cervical spine surgery.

    Science.gov (United States)

    Skovrlj, Branko; Qureshi, Sheeraz A

    2017-06-01

    Degenerative disorders of the cervical spine requiring surgical intervention have become increasingly more common over the past decade. Traditionally, open surgical approaches have been the mainstay of surgical treatment. More commonly, minimally invasive techniques are being developed with the intent to decrease surgical morbidity and iatrogenic spinal instability. This study will review four minimally invasive cervical techniques that have been increasingly utilized in the treatment of degenerative cervical spine disease. A series of PubMed-National Library of Medicine searches were performed. Only articles in English journals or with published with English language translations were included. Level of evidence of the selected articles was assessed. The significant incidence of postoperative dysphagia following ACDF has led to the development and increased use of zero-profile, stand-alone anterior cervical cages. The currently available literature examining the safety and effectiveness of zero-profile interbody devices supports the use of these devices in patients undergoing single-level ACDF. A multitude of studies demonstrating the significant incidence and impact of axial neck pain following open posterior spine surgery have led to a wave of research and development of techniques aimed at minimizing posterior cervical paraspinal disruption while achieving appropriate neurological decompression and/or spinal fixation. The currently available literature supports the use of minimally invasive posterior cervical laminoforaminotomy for the treatment of single-level radiculopathy. The literature suggests that fluoroscopically-assisted percutaneous cervical lateral mass screw fixation appears to be a technically feasible, safe and minimally invasive technique. Based on the currently available literature it appears that the DTRAX® expandable cage system is an effective minimally invasive posterior cervical technique for the treatment of single-level cervical

  2. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats.

    Directory of Open Access Journals (Sweden)

    Hanna B Laurén

    Full Text Available Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA-induced status epilepticus (SE in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed, and long-term potentiation (LTP; 18 genes changed. Also genes involved in Ca(2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP, apolipoprotein E (apo E, cannabinoid type 1 receptor (CB1, Purkinje cell protein 4 (PEP-19, and interleukin 8 receptor (CXCR1, with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE. However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the

  3. Osteotomies in the Cervical Spine

    Science.gov (United States)

    Nemani, Venu M.; Derman, Peter B.

    2016-01-01

    Rigid cervical deformities are difficult problems to treat. The goals of surgical treatment include deformity correction, achieving a rigid fusion, and performing a thorough neural decompression. In stiff and ankylosed cervical spines, osteotomies are required to restore sagittal and coronal balance. In this chapter, we describe the clinical and radiographic workup for patients with cervical deformities, and delineate the various factors that must be considered when planning surgical treatment. We also describe in detail the various types of cervical osteotomies, along with their surgical technique, advantages, and potential complications. PMID:26949476

  4. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Sergio D. Iñiguez

    2016-12-01

    Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ, protein kinase C zeta (PKCζ, the dopamine-1 (D1 receptor, tyrosine hydroxylase (TH, and the dopamine transporter (DAT. Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95 protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress induces GluA2- and dopamine-associated dysregulation in the hippocampus – a neurobiological mechanism potentially underlying the development of mood-related syndromes as a consequence of adolescent bullying.

  5. Critical role of CA1 muscarinic receptors on memory acquisition deficit induced by total (TSD) and REM sleep deprivation (RSD).

    Science.gov (United States)

    Javad-Moosavi, Bibi-Zahra; Vaezi, Gholamhassan; Nasehi, Mohammad; Haeri-Rouhani, Seyed-Ali; Zarrindast, Mohammad-Reza

    2017-10-03

    Despite different theories regarding sleep physiological function, an overall census indicates that sleep is useful for neural plasticity which eventually strengthens cognition and brain performance. Different studies show that sleep deprivation (SD) leads to impaired learning and hippocampus dependent memory. According to some studies, cholinergic system plays an important role in sleep (particularly REM sleep), learning, memory, and its retrieval. So this study has been designed to investigate the effect of CA1 Cholinergic Muscarinic Receptors on memory acquisition deficit induced by total sleep deprivation (TSD) and REM sleep deprivation (RSD). A modified water box (locomotor activity may be provide a limiting factor in this method of SD) or multiple platforms were used for induction of TSD or RSD, respectively. Inhibitory passive avoidance apparatus has been used to determine the effects of SD and its changes by physostigmine (as cholinesterase inhibitor) or scopolamine (muscarinic receptor antagonist) on memory formation. Because locomotor activity and pain perception induce critical roles in passive avoidance memory formation, we also measured these factors by open field and hot-plate instruments, respectively. The results showed that TSD and RSD for 24 hours impaired memory formation but they did not alter locomotor activity. TSD also induced analgesia effect, but RSD did not alter it. Intra-CA1 injection of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) did not alter memory acquisition in the sham-TSD or sham-RSD, by themselves. Moreover, intra-CA1 injection of sub-threshold dose of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) could restore the memory acquisition deficit induced by RSD, while scopolamine could restore TSD-induced amnesia. Both drugs reversed analgesia induced by TSD. None of previous interventions altered locomotor activity. According to this study, CA1 cholinergic muscarinic receptors play an important role in

  6. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia

    Directory of Open Access Journals (Sweden)

    Rossner Moritz

    2007-10-01

    Full Text Available Abstract Background The different physiological repertoire of CA3 and CA1 neurons in the hippocampus, as well as their differing behaviour after noxious stimuli are ultimately based upon differences in the expressed genome. We have compared CA3 and CA1 gene expression in the uninjured brain, and after cerebral ischemia using laser microdissection (LMD, RNA amplification, and array hybridization. Results Profiling in CA1 vs. CA3 under normoxic conditions detected more than 1000 differentially expressed genes that belong to different, physiologically relevant gene ontology groups in both cell types. The comparison of each region under normoxic and ischemic conditions revealed more than 5000 ischemia-regulated genes for each individual cell type. Surprisingly, there was a high co-regulation in both regions. In the ischemic state, only about 100 genes were found to be differentially expressed in CA3 and CA1. The majority of these genes were also different in the native state. A minority of interesting genes (e.g. inhibinbetaA displayed divergent expression preference under native and ischemic conditions with partially opposing directions of regulation in both cell types. Conclusion The differences found in two morphologically very similar cell types situated next to each other in the CNS are large providing a rational basis for physiological differences. Unexpectedly, the genomic response to ischemia is highly similar in these two neuron types, leading to a substantial attenuation of functional genomic differences in these two cell types. Also, the majority of changes that exist in the ischemic state are not generated de novo by the ischemic stimulus, but are preexistant from the genomic repertoire in the native situation. This unexpected influence of a strong noxious stimulus on cell-specific gene expression differences can be explained by the activation of a cell-type independent conserved gene-expression program. Our data generate both novel

  7. Structure induced Yb valence changes in the solid solution Yb(x)Ca(1-x)C2.

    Science.gov (United States)

    Link, Pascal; Glatzel, Pieter; Kvashnina, Kristina; Trots, Dmytro M; Smith, Ronald I; Ruschewitz, Uwe

    2013-06-17

    The solid solution Yb(x)Ca(1-x)C2 (0 ≤ x ≤ 1) was synthesized by reaction of the elements at 1323 K. The crystal structures within this solid solution, as elucidated from synchrotron powder diffraction data, depend on x and exhibit some interesting features that point to a structure dependent valence state of Yb. Compounds with x ≥ 0.75 crystallize in the tetragonal CaC2 type structure (I4/mmm, Z = 2) and obey Vegard's law; for x ≤ 0.75 the monoclinic ThC2 type structure (C2/c, Z = 4) is found, which coexists with the monoclinic CaC2-III type structure (C2/m, Z = 4) for x ≤ 0.25. The monoclinic modifications show a strong deviation from Vegard's law. Their unit cell volumes are remarkably larger than expected for a typical Vegard system. HERFD-XANES spectroscopic investigations reveal that different Yb valence states are responsible for the observed volume anomalies. While all tetragonal compounds contain mixed-valent Yb with ∼75% Yb(3+) (similar to pure YbC2), all monoclinic modifications contain exclusively Yb(2+). Therefore, Yb(x)Ca(1-x)C2 is a very rare example of a Yb containing compound showing a strong structure dependence of the Yb valence state. Moreover, temperature dependent synchrotron powder diffraction, neutron TOF powder diffraction, and HERFD-XANES spectroscopy experiments reveal significant Yb valence changes in some compounds of the Yb(x)Ca(1-x)C2 series that are induced by temperature dependent phase transitions. Transitions from the tetragonal CaC2 type structure to the monoclinic ThC2 or the cubic CaC2-IV type structure (Fm3m, Z = 4) are accompanied by drastic changes of the mean Yb valence from ∼2.70 to 2.0 in compounds with x = 0.75 and x = 0.91. Finally, the determination of lattice strain arising inside the modifications with ordered dumbbells (ThC2 and CaC2 type structures) by DSC measurements corroborated our results concerning the close relationship between crystal structure and Yb valence in the solid solution Yb(x)Ca(1-x

  8. [Luminescence investigation of Na(z)Ca(1-x-2y-z)Bi(y)MoO4 : Eu(x+y)3+, red phosphors].

    Science.gov (United States)

    Kang, Feng-Wen; Hu, Yi-Hu; Wang, Yin-Hai; Wu, Hao-Yi; Mu, Zhong-Fei; Ju, Gui-Fang; Fu, Chu-Jun

    2011-09-01

    A series of red phosphors with the composition Na(z)Ca(1-x-2y-z), Bi(y) MoO4 : Eu(x+y)3+ (y, z = 0, x = 0.24, 0.26, 0.30, 0.34, 0.38; x = 0.30, y = 0.01, 0.02, 0.03, 0.03, 0.05, 0.06, 0.07; x = 0.30, y = 0.04, z = 0.38) were prepared via traditional solid-state method. The crystal structures of the obtained phosphors were identified by X-ray powder diffraction (XRD) method. The photoluminescence properties of the samples were characterized by fluorescence spectrophotometer. The results indicated that the concentration of Eu3+ single doped Ca(1-x) MoO4 : Eu3+ with the maximum luminescence intensity was found to be 0.30 (namely, Ca0.70 MoO4 : Eu(0.30)3+); the photoluminescence properties with different ratio of Bi3+/Eu3+ codoped Ca0.70-2y Bi(y) MoO4 : Eu(0.30+y)3+, were also investigated, and the results showed that the charge band (CTB) reached the maximum value when the y value was equal to 0.03; for the characteristic excitation peaks of Eu3+, however, the intensity of the excitation spectral line locating at 393 nm was stronger than that at 464 nm when y or = 0.03; the intensity of excitation peaks locating at 393 and 464 nm respectively both reached the maximum intensity when the y value was 0.04. The relative intensity of the excitation and emission of the above phosphor was enhanced greatly when Na2CO3 acting as charge compensation was added. The above results showed that the relative intensity between 393 and 464 nm could be changed by adjusting the ratio of Bi3+ /Eu3+ codoping concentrations.

  9. Primary multiple osseous leiomyosarcomas of the spine ...

    African Journals Online (AJOL)

    Primary osseous leiomyosarcoma of the spine is a very unusual condition, with only few cases being reported in the literature.In fact, this type of tumors arises from the smooth muscle cells and occurs usually in the uterus and the gastrointestinal tracts. If the spine should be involved, it occurs generally as a metastatic ...

  10. Morbidity and mortality of complex spine surgery

    DEFF Research Database (Denmark)

    Karstensen, Sven; Bari, Tanvir; Gehrchen, Martin

    2016-01-01

    BACKGROUND CONTEXT: Most literature on complications in spine surgery has been retrospective or based on national databases with few variables. The Spine AdVerse Events Severity (SAVES) system has been found reliable and valid in two Canadian centers, providing precise information regarding all...

  11. Bilateral locked facets in the thoracic spine

    NARCIS (Netherlands)

    M.H.A. Willems; Braakman, R. (Reinder); B. van Linge (Bert)

    1984-01-01

    textabstractTwo cases of traumatic bilateral locked facets in the thoracic spine are reported. Both patients had only minor neurological signs. They both made a full neurological recovery after surgical reduction of the locked facets. Bilateral locked facets are very uncommon in the thoracic spine.

  12. X-Ray Exam: Cervical Spine

    Science.gov (United States)

    ... open mouth (odontoid view). Occasionally, additional pictures like flexion and extension views of the cervical spine might be needed. continue Why It's Done A cervical spine X-ray can help find the cause of symptoms such as neck, shoulder, upper back, or arm pain, as well ...

  13. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas.

    Science.gov (United States)

    Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin

    2016-04-13

    It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats.

  14. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    2010-10-01

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  15. Orbital ordering and valence states in ( La1+x Ca1-x ) CoRu O6 double perovskites

    Science.gov (United States)

    Bos, Jan-Willem G.; Attfield, J. Paul; Chan, Ting-Shan; Liu, Ru-Shi; Jang, Ling-Yun

    2005-07-01

    (La1+xCa1-x)CoRuO6 double perovskites have been studied by neutron diffraction and x-ray absorption spectroscopy. The thermal evolution of the (LaCa)CoRuO6 structure has been investigated between 4 and 1073K using neutron powder diffraction. The cell b axis shows a crossover from negative to positive thermal expansion at T≈425K , which is accompanied by a discontinuity in the c axis. This is shown to result from a partial orbital ordering of the Co2+ t2g holes. Ru valence states of doped (La1+xCa1-x)CoRuO6 (-0.25⩽x⩽0.25) materials have been investigated using XANES spectroscopy. Electron-doping (x>0) leads to reduction of Ru5+→Ru4+ while hole-doped x⩽0 compositions have a constant Ru5+ state. These observations support a proposed asymmetric doping model.

  16. Epileptiform response of CA1 neurones to convulsant stimulation by cyclothiazide, kainic acid and pentylenetetrazol in anaesthetized rats.

    Science.gov (United States)

    Qian, Binbin; Sun, Yajie; Wu, Zhen; Wan, Li; Chen, Lulan; Kong, Shuzhen; Zhang, Binhong; Zhang, Fayong; Wang, Zhen-Yu; Wang, Yun

    2011-05-01

    We have previously reported that cyclothiazide (CTZ) evokes epileptiform activities in hippocampal neurons and induces seizure behavior. Here we further studied in vivo the sensitivity of the hippocampal CA1 neurons in response to CTZ in epileptogenesis in comparison with two other classic convulsants of kainic acid (KA) and pentylenetetrazol (PTZ). CTZ administered intracerebral ventricle (i.c.v.) induced epileptiform activities from an initial of multiple evoked population spikes, progressed to spontaneous spikes and finally to highly synchronized burst activities in hippocampal CA1 neurons. PTZ, when given by subcutaneously, but not by intracerebral ventricle injection, evoked similar progressive epileptiform activities. In contrast, KA given by i.c.v. induced a quick development of epileptiform burst activities and then shortly switched to continuous high frequency firing as acute status epilepticus (ASE). Pharmacologically, alprazolam, a high-potency benzodiazepine ligand, inhibited CTZ and PTZ, but not KA, induced epileptiform burst activities while GYKI 53784, an AMPA receptor antagonist, suppressed CTZ and KA but not PTZ evoked epileptiform activities. In conclusion, CTZ and PTZ induced epileptiform activities are most likely to share a similar progressive pattern in hippocampus with GABAergic mechanism dominant in epileptogenesis, while CTZ model involves additional glutamate receptor activation. KA induced seizure in hippocampus is different to that of both CTA and PTZ. The results from this study indicate that hippocampal neurons respond to various convulsant stimulation differently which may reflect the complicated causes of the seizure in clinics. Copyright © 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. Activation of extrasynaptic GABA(A) receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons.

    Science.gov (United States)

    Wan, Li; Liu, Xu; Wu, Zheng; Ren, Wanting; Kong, Shuzhen; Dargham, Raya Abou; Cheng, Longzhen; Wang, Yun

    2014-10-01

    Extrasynaptic GABA(A) receptors (GABA(A)Rs)-mediated tonic inhibition is reported to involve in the pathogenesis of epilepsy. In this study, we used cyclothiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABA(A)Rs by 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs) in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the δ-subunit of the GABA(A)R, an extrasynaptic specific GABA(A)R subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABA(A)Rs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABA(A)Rs plays a prominent role in seizure generation.

  18. Immunohistochemical evaluation of hippocampal CA1 region astrocytes in 10-day-old rats after monosodium glutamate treatment.

    Science.gov (United States)

    Krawczyk, A; Jaworska-Adamu, J; Rycerz, K

    2015-01-01

    High concentration of glutamate (Glu) is excitotoxic for nervous system structures. This may lead to glial reactivity ie. increased expression of glial fibrillary acidic protein (GFAP) and S100β protein, and also to hypertrophy and proliferation of cells which are determined by the presence of Ki-67 antigen. The aim of the study was to analyse the immunoreactivity of the GFAP, S100β and Ki-67 proteins in astrocytes of hippocampal CA1 region in young rats after administration of monosodium glutamate (MSG) at two doses: 2 g/kg b.w. (I group) and 4 g/kg b.w. (II group). In rats from I and II group morphologically altered astrocytes with the GFAP expression were observed in the SLM of the hippocampal CA1 region. The cells had eccentrically located nuclei and on the opposite site of the nuclei there were single or double, long and weakly branched processes. Moreover, in the SLM the increase of the number of GFAP and S100β immunopositive astrocytes and nuclei with Ki-67 expression, in contrary to control individuals, was observed. These results suggest the increased expression of the proteins in early reactions or hyperplasia which, together with cell hypertrophy, indicate late reactivity of astroglia in response to glutamate noxious effect.

  19. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons.

    Science.gov (United States)

    Lenz, Maximilian; Platschek, Steffen; Priesemann, Viola; Becker, Denise; Willems, Laurent M; Ziemann, Ulf; Deller, Thomas; Müller-Dahlhaus, Florian; Jedlicka, Peter; Vlachos, Andreas

    2015-11-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human brain can lead to long-lasting changes in cortical excitability. However, the cellular and molecular mechanisms which underlie rTMS-induced plasticity remain incompletely understood. Here, we used repetitive magnetic stimulation (rMS) of mouse entorhino-hippocampal slice cultures to study rMS-induced plasticity of excitatory postsynapses. By employing whole-cell patch-clamp recordings of CA1 pyramidal neurons, local electrical stimulations, immunostainings for the glutamate receptor subunit GluA1 and compartmental modeling, we found evidence for a preferential potentiation of excitatory synapses on proximal dendrites of CA1 neurons (2-4 h after stimulation). This rMS-induced synaptic potentiation required the activation of voltage-gated sodium channels, L-type voltage-gated calcium channels and N-methyl-D-aspartate-receptors. In view of these findings we propose a cellular model for the preferential strengthening of excitatory synapses on proximal dendrites following rMS in vitro, which is based on a cooperative effect of synaptic glutamatergic transmission and postsynaptic depolarization.

  20. Despair-associated memory requires a slow-onset CA1 long-term potentiation with unique underlying mechanisms.

    Science.gov (United States)

    Jing, Liang; Duan, Ting-Ting; Tian, Meng; Yuan, Qiang; Tan, Ji-Wei; Zhu, Yong-Yong; Ding, Ze-Yang; Cao, Jun; Yang, Yue-Xiong; Zhang, Xia; Mao, Rong-Rong; Richter-Levin, Gal; Zhou, Qi-Xin; Xu, Lin

    2015-10-09

    The emotion of despair that occurs with uncontrollable stressful event is probably retained by memory, termed despair-associated memory, although little is known about the underlying mechanisms. Here, we report that forced swimming (FS) with no hope to escape, but not hopefully escapable swimming (ES), enhances hippocampal α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-dependent GluA1 Ser831 phosphorylation (S831-P), induces a slow-onset CA1 long-term potentiation (LTP) in freely moving rats and leads to increased test immobility 24-h later. Before FS application of the antagonists to block S831-P or N-methyl-D-aspartic acid receptor (NMDAR) or glucocorticoid receptor (GR) disrupts LTP and reduces test immobility, to levels similar to those of the ES group. Because these mechanisms are specifically linked with the hopeless of escape from FS, we suggest that despair-associated memory occurs with an endogenous CA1 LTP that is intriguingly mediated by a unique combination of rapid S831-P with NMDAR and GR activation to shape subsequent behavioral despair.

  1. Chronic fluoxetine administration enhances synaptic plasticity and increases functional dynamics in hippocampal CA3-CA1 synapses.

    Science.gov (United States)

    Popova, Dina; Castrén, Eero; Taira, Tomi

    2017-11-01

    Recent studies demonstrate that chronic administration of the widely used antidepressant fluoxetine (FLX) promotes neurogenesis, synaptogenesis and synaptic plasticity in the adult hippocampus, cortex and amygdala. However, the mechanisms underlying these effects and how are they related to the clinical antidepressant efficacy are still poorly understood. We show here that chronic FLX administration decreases hippocampus-associated neophobia in naïve mice. In parallel, electrophysiological recordings in hippocampal CA3-CA1 circuitry revealed that the FLX treatment resulted in increased short- and long-term plasticity likely attributed to changes in presynaptic function. These changes were accompanied by enhancement in the expression of proteins related to vesicular trafficking and release, namely synaptophysin, synaptotagmin 1, MUNC 18 and syntaxin 1. Thus, chronic FLX administration is associated with enhanced synaptic dynamics atypical of mature CA1 synapses, elevated hippocampal plasticity, improved hippocampus-dependent behavior as well as altered expression of synaptic proteins regulating neurotransmitter trafficking and release. The results support the idea that antidepressants can promote neuronal plasticity and show that they can increase the functional dynamic range and information processing in synaptic circuitries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Minimally invasive spine surgery in spinal infections.

    Science.gov (United States)

    Verdú-López, F; Vanaclocha-Vanaclocha, V; Gozalbes-Esterelles, L; Sánchez-Pardo, M

    2014-06-01

    Infections of the spine have been a constant throughout history. At present there are infections in the spine fostered in part by the same advances in medicine: there are a lot of immunocompromised patients, the life expectancy of patients with chronic diseases is augmented and the increasing number of complex spinal surgeries can result in secondary infection. In this review the main types of infection of the spine and its treatment highlighting techniques in minimally invasive surgery are discussed. Spontaneous pyogenic and nonpyogenic spine infections as well as iatrogenic infections can be treated in a different manner depending on its extension, location and microorganism involved. We will review the use and the indication of percutaneous image-guided techniques, endoscopic and microsurgical techniques with or without use of tubular retractors. We conclude that techniques in minimally invasive surgery in spine infections are safe, effective and have benefits in morbidity of the approach and subsequent patient recovery.

  3. Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

    Science.gov (United States)

    Li, Hao; Leow, Wee Kheng; Huang, Chao-Hui; Howe, Tet Sen

    Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum potential energy registration of the rod to the scoliotic spine in the x-ray image. Test results show that it is possible to obtain accurate 3D reconstruction using only the landmarks in a single view, provided that appropriate boundary conditions and elastic properties are included as constraints.

  4. Functional Morphology of the Arm Spine Joint and Adjacent Structures of the Brittlestar Ophiocomina nigra (Echinodermata: Ophiuroidea)

    Science.gov (United States)

    Wilkie, Iain C.

    2016-01-01

    The skeletal morphology of the arm spine joint of the brittlestar Ophiocomina nigra was examined by scanning electron microscopy and the associated epidermis, connective tissue structures, juxtaligamental system and muscle by optical and transmission electron microscopy. The behaviour of spines in living animals was observed and two experiments were conducted to establish if the spine ligament is mutable collagenous tissue: these determined (1) if animals could detach spines to which plastic tags had been attached and (2) if the extension under constant load of isolated joint preparations was affected by high potassium stimulation. The articulation normally operates as a flexible joint in which the articular surfaces are separated by compliant connective tissue. The articular surfaces comprise a reniform apposition and peg-in-socket mechanical stop, and function primarily to stabilise spines in the erect position. Erect spines can be completely immobilised, which depends on the ligament having mutable tensile properties, as was inferred from the ability of animals to detach tagged spines and the responsiveness of isolated joint preparations to high potassium. The epidermis surrounding the joint has circumferential constrictions that facilitate compression folding and unfolding when the spine is inclined. The interarticular connective tissue is an acellular meshwork of collagen fibril bundles and may serve to reduce frictional forces between the articular surfaces. The ligament consists of parallel bundles of collagen fibrils and 7–14 nm microfibrils. Its passive elastic recoil contributes to the re-erection of inclined spines. The ligament is permeated by cell processes containing large dense-core vesicles, which belong to two types of juxtaligamental cells, one of which is probably peptidergic. The spine muscle consists of obliquely striated myocytes that are linked to the skeleton by extensions of their basement membranes. Muscle contraction may serve mainly to

  5. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease

    Science.gov (United States)

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús

    2013-01-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles. PMID:23715095

  6. Effect Y substitution on the microstructure, transport and magnetic proprieties of Bi2Sr2Ca1Cu2O8+δ superconducting ceramics

    Directory of Open Access Journals (Sweden)

    Menassel S.

    2016-09-01

    Full Text Available In high Tc superconductors (HTSC the activation energy gives information about the pinning properties of a sample under applied magnetic field. Pinning of vortices determines the critical current density Jc which is of great importance for practical applications of HTSC. Instead of magnetic measurements, the activation energy may be calculated from resistivity measurements realized under magnetic field. This kind of measurement has been made in this work for yttrium doped samples of Bi2Sr2CaCu2O8+d (Bi-2212 for different values of applied magnetic field. Samples of Bi2Sr2Ca1-xYxCu2O8+d (x = 0, 0.025, 0.1, 0.25 were prepared by a sol-gel method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive analysis of X-ray. The measurements of resistivity were made using a classical four probe method and DC current. The magnetic field was applied with a constant amplitude of 0 T, 1 T, 2 T and 3 T. The obtained results show that the activation energy decreases with introduction of yttrium, but has a relative maximum when x is equal 0.1. The decrease of the activation energy is explained by the granular nature of the samples which promotes 3D transition to 2D of the vortex lattice.

  7. Multiferroic behavior on nanometric La2/3Ca1/3MnO3 / BaTiO3 bilayers

    Science.gov (United States)

    Prieto, Pedro; Ordoñez, John Edward; Gomez, Maria Elena; Lopera, Wilson

    2014-03-01

    We have deposited bilayers of the FM La2/3Ca1/3MnO3 and FE BaTiO3 as a route to design systems with artificial magnetoelectric coupling on LCMO/BTO/Nb:STO system. We maintain a fixed magnetic layer thickness (tLCMO = 48 nm) and varying the thickness of the ferroelectric layer (tBTO = 20, 50, 100 nm). We analyze the influence of the thickness ratio (tBTO/ tLCMO) in electrical and magnetic properties of manganite. From X-ray diffraction analysis we observed that the samples grew textured. Magnetization and transport measurements indicate a possible multiferroic behavior in the bilayer. We found an increase in the Curie and metal-insulator transition temperature in the bilayer in comparison with those for LCMO (48nm)/STO. Hysteresis loops on bilayers show ferromagnetic behavior. This work has been supported by the ``El Patrimonio Autónomo Fondo Nacional de Financiamiento para CT&I FJC'' Colciencias-CENM Research Projects: No. 1106-48-925531 and CI7917-CC 10510 contract 0002-2013 COLCIENCIAS-UNIVALLE.

  8. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior.

    Science.gov (United States)

    Troyer, Kevin L; Puttlitz, Christian M

    2011-02-01

    Spinal ligaments provide stability and contribute to spinal motion patterns. These hydrated tissues exhibit time-dependent behavior during both static and dynamic loading regimes. Therefore, accurate viscoelastic characterization of these ligaments is requisite for development of computational analogues that model and predict time-dependent spine behavior. The development of accurate viscoelastic models must be preceded by rigorous, empirical evidence of linear viscoelastic, quasi-linear viscoelastic (QLV) or fully nonlinear viscoelastic behavior. This study utilized multiple physiological loading rates (frequencies) and strain amplitudes via cyclic loading and stress relaxation experiments in order to determine the viscoelastic behavior of the human lower cervical spine anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The results indicated that the cyclic material properties of these ligaments were dependent on both strain amplitude and frequency. This strain amplitude-dependent behavior cannot be described using a linear viscoelastic formulation. Stress relaxation experiments at multiple strain magnitudes indicated that the shape of the relaxation curve was strongly dependent on strain magnitude, suggesting that a QLV formulation cannot adequately describe the comprehensive viscoelastic response of these ligaments. Therefore, a fully nonlinear viscoelastic formulation is requisite to model these lower cervical spine ligaments during activities of daily living. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Unusual large magnetostriction in the ferrimagnet Gd2/3Ca1/3MnO3

    Science.gov (United States)

    Correa, V. F.; Haberkorn, N.; Nieva, G.; García, D. J.; Alascio, B.

    2012-05-01

    We report an unusual large linear magnetostrictive effect in the ferrimagnet Gd2/3Ca1/3MnO3 (Tc≈80 K). Remarkably, the magnetostriction, negative at high temperature (T≈Tc), becomes positive below 15 K when the magnetization of the Gd sublattice overcomes the magnetization of the Mn sublattice. A rather simple model where the magnetic energy competes against the elastic energy gives a good account of the observed results and confirms that Gd plays a crucial role in this unusual observation. Unlike previous works in manganites where only striction associated with 3d Mn orbitals is considered, our results show that the lanthanide 4f-orbitals-related striction can be very important too and it cannot be disregarded.

  10. Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shinohara

    2009-07-01

    Full Text Available Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left-right asymmetry of hippocampal CA3-CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supra-linear (GluR1 AMPA or inverse (NR2B NMDAR relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.

  11. TRH modulates glutamatergic synaptic inputs on CA1 neurons of the mouse hippocampus in a biphasic manner.

    Science.gov (United States)

    Zarif, Hadi; Petit-Paitel, Agnès; Heurteaux, Catherine; Chabry, Joëlle; Guyon, Alice

    2016-11-01

    Thyrotropin Releasing Hormone (TRH) is a tripeptide that induces the release of Thyroid Stimulating Hormone (TSH) in the blood. Besides its role in the thyroid system, TRH has been shown to regulate several neuronal systems in the brain however its role in hippocampus remains controversial. Using electrophysiological recordings in acute mouse brain slices, we show that TRH depresses glutamate responses at the CA3-CA1 synapse through an action on NMDA receptors, which, as a consequence, decreases the ability of the synapse to establish a long term potentiation (LTP). TRH also induces a late increase in AMPA/kainate responses. Together, these results suggest that TRH plays an important role in the modulation of hippocampal neuronal activities, and they contribute to a better understanding of the mechanisms by which TRH impacts synaptic function underlying emotional states, learning and memory processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Reduction of long-term potentiation at Schaffer collateral-CA1 synapses in the rat hippocampus at the acute stage of vestibular compensation

    Science.gov (United States)

    Lee, Gyoung Wan; Kim, Jae Hyo

    2017-01-01

    Vestibular compensation is a recovery process from vestibular symptoms over time after unilateral loss of peripheral vestibular end organs. The aim of the present study was to observe time-dependent changes in long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in the CA1 area of the hippocampus during vestibular compensation. The input-output (I/O) relationships of fEPSP amplitudes and LTP induced by theta burst stimulation to Schaffer's collateral commissural fibers were evaluated from the CA1 area of hippocampal slices at 1 day, 1 week, and 1 month after unilateral labyrinthectomy (UL). The I/O relationships of fEPSPs in the CA1 area was significantly reduced within 1 week post-op and then showed a non-significant reduction at 1 month after UL. Compared with sham-operated animals, there was a significant reduction of LTP induction in the hippocampus at 1 day and 1 week after UL. However, LTP induction levels in the CA1 area of the hippocampus also returned to those of sham-operated animals 1 month following UL. These data suggest that unilateral injury of the peripheral vestibular end organs results in a transient deficit in synaptic plasticity in the CA1 hippocampal area at acute stages of vestibular compensation. PMID:28706456

  13. Intubation biomechanics: laryngoscope force and cervical spine motion during intubation with Macintosh and Airtraq laryngoscopes.

    Science.gov (United States)

    Hindman, Bradley J; Santoni, Brandon G; Puttlitz, Christian M; From, Robert P; Todd, Michael M

    2014-08-01

    Laryngoscopy and endotracheal intubation in the presence of cervical spine instability may put patients at risk of cervical cord injury. Nevertheless, the biomechanics of intubation (cervical spine motion as a function of applied force) have not been characterized. This study characterized and compared the relationship between laryngoscope force and cervical spine motion using two laryngoscopes hypothesized to differ in force. Fourteen adults undergoing elective surgery were intubated twice (Macintosh, Airtraq). During each intubation, laryngoscope force, cervical spine motion, and glottic view were recorded. Force and motion were referenced to a preintubation baseline (stage 1) and were characterized at three stages: stage 2 (laryngoscope introduction); stage 3 (best glottic view); and stage 4 (endotracheal tube in trachea). Maximal force and motion occurred at stage 3 and differed between the Macintosh and Airtraq: (1) force: 48.8 ± 15.8 versus 10.4 ± 2.8 N, respectively, P = 0.0001; (2) occiput-C5 extension: 29.5 ± 8.5 versus 19.1 ± 8.7 degrees, respectively, P = 0.0023. Between stages 2 and 3, the motion/force ratio differed between Macintosh and Airtraq: 0.5 ± 0.2 versus 2.0 ± 1.4 degrees/N, respectively; P = 0.0006. The relationship between laryngoscope force and cervical spine motion is: (1) nonlinear and (2) differs between laryngoscopes. Differences between laryngoscopes in motion/force relationships are likely due to: (1) laryngoscope-specific cervical extension needed for intubation, (2) laryngoscope-specific airway displacement/deformation needed for intubation, and (3) cervical spine and airway tissue viscoelastic properties. Cervical spine motion during endotracheal intubation is not directly proportional to force. Low-force laryngoscopes cannot be assumed to result in proportionally low cervical spine motion.

  14. Synaptic remodeling in hippocampal CA1 region of aged rats correlates with better memory performance in passive avoidance test.

    Science.gov (United States)

    Platano, Daniela; Fattoretti, Patrizia; Balietti, Marta; Giorgetti, Belinda; Casoli, Tiziana; Di Stefano, Giuseppina; Bertoni-Freddari, Carlo; Aicardi, Giorgio

    2008-04-01

    Aging is associated with deficits in long-term declarative memory formation, and wide differences in performance can be observed among aged individuals. The cellular substrates of these deficits and the reasons for such marked individual differences are not yet fully understood. In the present study, morphologic parameters of synapses and synaptic mitochondria in stratum molecolare of CA1 hippocampal region were investigated in aged (26- to 27-month-old) female rats after a single trial inhibitory avoidance task. In this memory protocol animals learn to avoid a dark compartment in which they received a mild, inescapable foot shock. Rats were tested 3 and 6 or 9 hours after the training, divided into good and bad responders according to their performance (retention times above or below 100 seconds, respectively) and immediately sacrificed. The number of synapses and synaptic mitochondria per cubic micrometer of tissue (numeric density), the average area of synapses and volume of synaptic mitochondria, the total area of synapses per cubic micrometer of tissue, the percentage of perforated synapses and the overall volume of mitochondria per cubic micrometer of tissue were evaluated. In the good responder group, the numeric density of synapses and mitochondria was significantly higher and the average mitochondrial volume was significantly smaller 9 hours versus 6 hours after the training. No significant differences were observed among bad responders. Thus, better performances in passive avoidance memory task are correlated with more efficient plastic remodeling of synaptic contacts and mitochondria in hippocampal CA1. Present findings indicate that maintenance of synaptic plastic reactivity during aging is a critical requirement for preserving long-term memory consolidation.

  15. Cell-Type and State-Dependent Synchronization among Rodent Somatosensory, Visual, Perirhinal Cortex, and Hippocampus CA1

    Science.gov (United States)

    Vinck, Martin; Bos, Jeroen J.; Van Mourik-Donga, Laura A.; Oplaat, Krista T.; Klein, Gerbrand A.; Jackson, Jadin C.; Gentet, Luc J.; Pennartz, Cyriel M. A.

    2016-01-01

    Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1). S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1–LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions. PMID:26834582

  16. Effect of intrahippocampal CA1 injection of insulin on spatial learning and memory deficits in diabetic rats

    Directory of Open Access Journals (Sweden)

    Golbarg Ghiasi

    2011-03-01

    Full Text Available Background: Diabetes mellitus is one of the most important diseases in all over the world. Insulin and its receptor are found in specific area of CNS with a variety of regions-specific functions different from its role in direct glucose regulation in the periphery. The hippocampus and cerebral cortex distributed insulin and insulin receptor has been shown to be involved in brain cognitive functions. Previous studies about the effect of insulin on memory in diabetes are controversial and further investigation is necessary.Methods: Seventy male NMRI rats (250-300 g were randomly divided into control, diabetic, saline-saline, saline-insulin (12, 18 or 24 mU, diabetic-saline, diabetic-insulin (12, 18 or 24 mU groups. Diabetes was induced by streptozotocin (65 mg/kg, ip. Saline or insulin were injected bilaterally (1 µl/rat into CA1 region of hippocampus during 1 min. Thirty minutes later, water maze training was performed.Results: Insulin had a dose dependent effect. The spatial learning and memory were impaired with diabetes, and improved by insulin. Escape latency and swimming distance in a water maze in insulin treated animals were significantly lower (P<0.05 than control and diabetic groups. Percentage of time spent by animals in a target quarter in probe trial session showed a significant difference among groups. This difference was significant between insulin treated and the other groups (P<0.05.Conclusions: Our findings suggest that injection of insulin into hippocampal CA1 area may have a dose-dependent effect on spatial learning and memory in diabetic rats.

  17. Contribution of hippocampal area CA1 to acetone cyanohydrin-induced loss of motor coordination in rats.

    Science.gov (United States)

    Rivadeneyra-Domínguez, E; Vázquez-Luna, A; Díaz-Sobac, R; Briones-Céspedes, E E; Rodríguez-Landa, J F

    2017-05-01

    Some vegetable foodstuffs contain toxic compounds that, when consumed, favour the development of certain diseases. Cassava (Manihot esculenta Crantz) is an important food source, but it contains cyanogenic glucosides (linamarin and lotaustralin) that have been associated with the development of tropical ataxic neuropathy and konzo. In rats, intraperitoneal administration of acetone cyanohydrin (a metabolite of linamarin) produces neurological disorders and neuronal damage in the hippocampus. However, it is unknown whether hippocampal area CA1 plays a role in neurological disorders associated with acetone cyanohydrin. A total of 32 male Wistar rats 3 months old were assigned to 4 groups (n=8 per group) as follows: vehicle (1μl physiological saline), and 3 groups with acetone cyanohydrin (1μl of 10, 15, and 20mM solution, respectively). The substances were microinjected intrahippocampally every 24hours for 7 consecutive days, and their effects on locomotor activity, rota-rod and swim tests were assessed daily. On the fifth day post-treatment, rats underwent further assessment with behavioural tests to identify or rule out permanent damage induced by acetone cyanohydrin. Microinjection of acetone cyanohydrin 20mM resulted in hyperactivity, motor impairment, and reduced exploration from the third day of treatment. All concentrations of acetone cyanohydrin produced rotational behaviour in the swim test from the first day of microinjection. The hippocampal area CA1 is involved in motor alterations induced by microinjection of acetone cyanohydrin, as has been reported for other cassava compounds. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Expression profile analysis of vulnerable CA1 pyramidal neurons in young-middle aged Ts65Dn mice

    Science.gov (United States)

    Alldred, Melissa J.; Lee, Sang Han; Petkova, Eva; Ginsberg, Stephen D.

    2014-01-01

    Down syndrome (DS) is the most prevalent cause of intellectual disability (ID). Individuals with DS show a variety of cognitive deficits, most notably in hippocampal learning and memory, and display pathological hallmarks of Alzheimer's disease (AD), with neurodegeneration of cholinergic basal forebrain (CBF) neurons. Elucidation of the molecular and cellular underpinnings of neuropathology has been assessed via gene expression analysis in a relevant animal model, termed the Ts65Dn mouse. The Ts65Dn mouse is a segmental trisomy model of DS which mimics DS/AD pathology, notably age-related cognitive dysfunction and degeneration of basal forebrain cholinergic neurons (BFCNs). To determine expression level changes, molecular fingerprinting of Cornu Ammonis 1 (CA1) pyramidal neurons was performed in adult (4-9 month old) Ts65Dn mice, at the initiation of BFCN degeneration. To quantitate transcriptomic changes during this early time period, laser capture microdissection (LCM), terminal continuation (TC) RNA amplification, custom-designed microarray analysis, and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting was performed. Results indicate significant alterations within CA1 pyramidal neurons of Ts65Dn mice compared to normal disomic (2N) littermates, notably in the downregulation of neurotrophins and their cognate neurotrophin receptors among other classes of transcripts relevant to neurodegeneration. These results of this single population gene expression analysis at the time of septohippocampal deficits in a trisomic mouse model shed light on a vulnerable circuit that may cause the AD-like pathology invariably seen in DS that could help to identify mechanisms of degeneration, and provide novel gene targets for therapeutic interventions. PMID:25131634

  19. Spatiotemporal characteristics and pharmacological modulation of multiple gamma oscillations in the CA1 region of the hippocampus

    Directory of Open Access Journals (Sweden)

    Shilpa eBalakrishnan

    2015-01-01

    Full Text Available Multiple components of γ-oscillations between 30-170 Hz in the CA1 region of the hippocampus have been described, based on their coherence with oscillations in other brain regions and on their cross-frequency coupling with local θ-oscillations. However, it remains unclear whether the different sub-bands are generated by a single broadband oscillator coupled to multiple external inputs, or by separate oscillators that incorporate distinct circuit elements. To distinguish between these possibilities, we used high-density linear array recording electrodes in awake behaving mice to examine the spatiotemporal characteristics of γ-oscillations and their responses to midazolam and atropine. We characterized oscillations using current source density (CSD analysis, and measured θ-γ phase-amplitude coupling by cross frequency coupling (CFC analysis. Prominent peaks were present in the CSD signal in the mid- and distal apical dendritic layers at all frequencies, and at stratum pyramidale for γslow (30-45 Hz and γmid (50-90 Hz, but not γfast (90-170 Hz oscillations. Differences in the strength and timing of θ-γslow and θ-γmid cross frequency coupling, and a lack of coupling at the soma and mid-apical region for γfast oscillations, indicated that separate circuit components generate the three sub-bands. Midazolam altered CSD amplitudes and cross-frequency coupling in a lamina- and frequency specific manner, providing further evidence for separate generator circuits. Atropine altered CSD amplitudes and θ-γ CFC uniformly at all locations. Simulations using a detailed compartmental model were consistent with γslow and γmid oscillations driven primarily by inputs at the mid-apical dendrites, and γfast at the distal apical dendrite. Our results indicate that multiple distinct local circuits generate γ-oscillations in the CA1 region of the hippocampus, and provide detailed information about their spatiotemporal characteristics.

  20. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region.

    Science.gov (United States)

    Yu, Ying; Feng, Zhouyan; Cao, Jiayue; Guo, Zheshan; Wang, Zhaoxiang; Hu, Na; Wei, Xuefeng

    2016-03-01

    Modulation of the rhythmic activity of local field potentials (LFP) in neuronal networks could be a mechanism of deep brain stimulation (DBS). However, exact changes of LFP during the periods of high-frequency stimulation (HFS) of DBS are unclear because of the interference of dense stimulation artifacts with high amplitudes. In the present study, we investigated LFP changes induced by HFS of afferent axons in the hippocampal CA1 region of urethane-anesthetized rats by using a proper algorithm of artifact removal. Afterward, the LFP changes in the frequency bands of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] rhythms were studied by power spectrum analysis and coherence analysis for the recorded signals collected in the pyramidal layer and in the stratum radiatum of CA1 region before, during and after 1-min long 100 and 200[Formula: see text]Hz HFS. Results showed that the power of LFP rhythms in higher-frequency band ([Formula: see text] rhythm) increased in the pyramidal layer and the power of LFP rhythms in lower-frequency bands ([Formula: see text], [Formula: see text] and [Formula: see text] rhythms) decreased in the stratum radiatum during HFS. The synchronization of [Formula: see text] rhythm decreased and the synchronization of [Formula: see text] rhythm increased during HFS in the stratum radiatum. These results suggest that axonal HFS could modulate LFP rhythms in the downstream brain areas with a plausible underlying mechanism of partial axonal blockage induced by HFS. The study provides new evidence to support the mechanism of DBS modulating rhythmic activity of neuronal populations.

  1. Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons.

    Science.gov (United States)

    Shields, L Y; Kim, H; Zhu, L; Haddad, D; Berthet, A; Pathak, D; Lam, M; Ponnusamy, R; Diaz-Ramirez, L G; Gill, T M; Sesaki, H; Mucke, L; Nakamura, K

    2015-04-16

    Disrupting particular mitochondrial fission and fusion proteins leads to the death of specific neuronal populations; however, the normal functions of mitochondrial fission in neurons are poorly understood, especially in vivo, which limits the understanding of mitochondrial changes in disease. Altered activity of the central mitochondrial fission protein dynamin-related protein 1 (Drp1) may contribute to the pathophysiology of several neurologic diseases. To study Drp1 in a neuronal population affected by Alzheimer's disease (AD), stroke, and seizure disorders, we postnatally deleted Drp1 from CA1 and other forebrain neurons in mice (CamKII-Cre, Drp1lox/lox (Drp1cKO)). Although most CA1 neurons survived for more than 1 year, their synaptic transmission was impaired, and Drp1cKO mice had impaired memory. In Drp1cKO cell bodies, we observed marked mitochondrial swelling but no change in the number of mitochondria in individual synaptic terminals. Using ATP FRET sensors, we found that cultured neurons lacking Drp1 (Drp1KO) could not maintain normal levels of mitochondrial-derived ATP when energy consumption was increased by neural activity. These deficits occurred specifically at the nerve terminal, but not the cell body, and were sufficient to impair synaptic vesicle cycling. Although Drp1KO increased the distance between axonal mitochondria, mitochondrial-derived ATP still decreased similarly in Drp1KO boutons with and without mitochondria. This indicates that mitochondrial-derived ATP is rapidly dispersed in Drp1KO axons, and that the deficits in axonal bioenergetics and function are not caused by regional energy gradients. Instead, loss of Drp1 compromises the intrinsic bioenergetic function of axonal mitochondria, thus revealing a mechanism by which disrupting mitochondrial dynamics can cause dysfunction of axons.

  2. Instrumentation and fusion for congenital spine deformities.

    Science.gov (United States)

    Hedequist, Daniel J

    2009-08-01

    A retrospective clinical review. To review the use of modern instrumentation of the spine for congenital spinal deformities. Spinal instrumentation has evolved since the advent of the Harrington rod. There is a paucity of literature, which discusses the use of modern spinal instrumentation in congenital spine deformity cases. This review focuses on modern instrumentation techniques for congenital scoliosis and kyphosis. A systematic review was performed of the literature to discuss spinal implant use for congenital deformities. Spinal instrumentation may be safely and effectively used in cases of congenital spinal deformity. Spinal surgeons taking care of children with congenital spine deformities need to be trained in all aspects of modern spinal instrumentation.

  3. Computed tomography of the postoperative lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Teplick, J.G.; Haskin, M.E.

    1983-11-01

    In the postoperative patient ordinary radiographs of the spine generally add very little information, revealing the usual postoperative bone changes and often postoperative narrowing of the intervertebral space. Myelography may sometimes be informative, showing evidence of focal arachnoiditis or a focal defect at the surgical site. However, the latter finding is difficult to interpret. As experience with high-resolution CT scanning of the lumbar spine has been increasing, it is becoming apparent that this noninvasive and easily performed study can give considerably more information about the postoperative spine than any of the other current imaging methods. About 750 patients with previous lumbar laminectomies had CT scanning within a 28 month period.

  4. Minimally invasive surgery for the lumbar spine.

    Science.gov (United States)

    Gandhi, S D; Anderson, D G

    2012-03-01

    Minimally invasive spine surgery is a rapidly developing field that has the potential to decrease surgical morbidity and improve recovery compared to traditional spinal approaches. Minimally invasive approaches have been developed for all regions of the spine, but have been best documented for degenerative conditions of the lumbar spine. Lumbar decompression and lumbar interbody fusion are two of the most well-studied minimally invasive surgical approaches. This article will review both the rationale and technique for minimally invasive lumbar decompression and for a minimally invasive transforaminal lumbar interbody fusion (TLIF).

  5. Minimally invasive approaches to the cervical spine.

    Science.gov (United States)

    Celestre, Paul C; Pazmiño, Pablo R; Mikhael, Mark M; Wolf, Christopher F; Feldman, Lacey A; Lauryssen, Carl; Wang, Jeffrey C

    2012-01-01

    Minimally invasive approaches and operative techniques are becoming increasingly popular for the treatment of cervical spine disorders. Minimally invasive spine surgery attempts to decrease iatrogenic muscle injury, decrease pain, and speed postoperative recovery with the use of smaller incisions and specialized instruments. This article explains in detail minimally invasive approaches to the posterior spine, the techniques for posterior cervical foraminotomy and arthrodesis via lateral mass screw placement, and anterior cervical foraminotomy. Complications are also discussed. Additionally, illustrated cases are presented detailing the use of minimally invasive surgical techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. 49 CFR 572.85 - Lumbar spine flexure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine flexure. 572.85 Section 572.85... Lumbar spine flexure. (a) When subjected to continuously applied force in accordance with paragraph (b) of this section, the lumbar spine assembly shall flex by an amount that permits the thoracic spine to...

  7. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  8. Ischemic preconditioning inhibits expression of Na(+)/H(+) exchanger 1 (NHE1) in the gerbil hippocampal CA1 region after transient forebrain ischemia.

    Science.gov (United States)

    Lee, Jae-Chul; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Park, Joon Ha; Cho, Geum-Sil; Chen, Bai Hui; Shin, Bich Na; Tae, Hyun-Jin; Park, Seung Min; Ahn, Ji Yun; Kim, Dong Won; Cho, Jun Hwi; Bae, Eun Joo; Yong, Jun-Hwan; Kim, Young-Myeong; Won, Moo-Ho; Lee, Yun Lyul

    2015-04-15

    The participation of Na(+)/H(+) exchanger (NHE) in neuronal damage/death in the hippocampal CA1 region (CA1) induced by transient forebrain ischemia has not been well established, although acidosis may be involved in neuronal damage/death. In the present study, we examined the effect of ischemic preconditioning (IPC) on NHE1 immunoreactivity following a 5min of transient forebrain ischemia in gerbils. The animals used in the study were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+) sham-operated-group and IPC+ischemia-operated-group). IPC was induced by subjecting animals to 2min of ischemia followed by 1day of recovery. A significant neuronal loss was found in the stratum pyramidale (SP) of the CA1, not the CA2/3, of the ischemia-operated-group at 5days post-ischemia. However, in the IPC+ischemia-operated-group, neurons in the SP of the CA1 were well protected. NHE1 immunoreactivity was not detected in any regions of the CA1-3 of the sham- and IPC+sham-operated-groups. However, the immunoreactivity was apparently expressed in the SP of the CA1-3 after ischemia, and the NHE1immunoreactivity was very weak 5days after ischemia; however, at this point in time, strong NHE1immunoreactivity was found in astrocytes in the CA1. In the CA2/3, NHE1immunoreactivity was slightly changed, although NHE1immunoreactivity was expressed in the SP. In the IPC+ischemia-operated-groups, NHE1 immunoreactivity was also expressed in the SP of the CA1-3; however, the immunoreactivity was more slightly changed than that in the ischemia-operated-groups. In brief, our findings show that IPC dramatically protected CA1 pyramidal neurons and strongly inhibited NHE1 expression in the SP of the CA1 after ischemia-reperfusion. These findings suggest that the inhibition of NHE1 expression may be necessary for neuronal survival from transient ischemic damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Research articles published by Korean spine surgeons: Scientific progress and the increase in spine surgery.

    Science.gov (United States)

    Lee, Soo Eon; Jahng, Tae-Ahn; Kim, Ki-Jeong; Hyun, Seung-Jae; Kim, Hyun Jib; Kawaguchi, Yoshiharu

    2017-02-01

    There has been a marked increase in spine surgery in the 21st century, but there are no reports providing quantitative and qualitative analyses of research by Korean spine surgeons. The study goal was to assess the status of Korean spinal surgery and research. The number of spine surgeries was obtained from the Korean National Health Insurance Service. Research articles published by Korean spine surgeons were reviewed by using the Medline/PubMed online database. The number of spine surgeries in Korea increased markedly from 92,390 in 2004 to 164,291 in 2013. During the 2000-2014 period, 1982 articles were published by Korean spine surgeons. The annual number of articles increased from 20 articles in 2000 to 293 articles in 2014. There was a positive correlation between the annual spine surgery and article numbers (particles with Oxford levels of evidence 1, 2, and 3. The mean five-year impact factor (IF) for article quality was 1.79. There was no positive correlation between the annual IF and article numbers. Most articles (65.9%) were authored by neurosurgical spine surgeons. But spinal deformity-related topics were dominant among articles authored by orthopedics. The results show a clear quantitative increase in Korean spinal surgery and research over the last 15years. The lack of a correlation between annual IF and published article numbers indicate that Korean spine surgeons should endeavor to increase research value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. San Pablo Avenue Green Stormwater Spine

    Science.gov (United States)

    Information about the SFBWQP San Pablo Avenue Green Stormwater Spine Project project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. MAGNETIC RESONANCE TOMOGRAPHY OF SPINE AFTER DISKECTOMY

    Directory of Open Access Journals (Sweden)

    A. V. Kholin

    2010-01-01

    Full Text Available The author lists then possible immediate and remote complications after diskectomy and describes clinical presentations and methods of diagnostics at this pathology. Detailed MR-imaging of spine in 6 months after operation is presented.

  12. Biostratigraphy of Echinoid spines, Cretaceous of Texas

    Energy Technology Data Exchange (ETDEWEB)

    Kirkland, P.L.

    1984-04-01

    Echinoid (sea urchin) spines from Cretaceous strata have widely varying morphology. They are common, and most are small enough to be recovered from well cuttings. Many forms have restricted ranges; consequently, echinoid spine have substantial biostratigraphic utility. There have been established 115 form taxa of echinoid spines and 14 form taxa of ophiuroid-asteroid spines for the Cretaceous of Texas. The specimens used for establishing the form taxa were processed from 533 outcrop samples (78 localities) from 30 Cretaceous formations, each with a well-defined age based on faunal zones of ammonites and Foraminifera. A dichotomous key in 9 parts and a catalog of scanning electron micrographs (87 plates) have been set up to assist identification of the form taxa. Range charts for the echinoid and ophiuroid-asteroid form taxa have utility through the Cretaceous of much of the Gulf Coastal area. The most precise zonation has been possible for the Albian.

  13. A method for articulating and displaying the human spine.

    Science.gov (United States)

    Mann, Robert W

    2009-11-01

    An inexpensive and effective method for articulating a dry human spine is described. By constructing a Styrofoam spine tray, analysts can now accurately position and align each vertebra in correct anatomical order, allow for gaps because of missing vertebrae, and lay out the spine for documentation and photography. The spine tray provides analysts with a quick, easy, and professional quality method for aligning and orienting the human spine in the field and laboratory.

  14. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  15. Posteroanterior versus anteroposterior lumbar spine radiology

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, M.M.; Shu, G.J. (Cleveland Chiropractic College, Los Angeles, CA (USA))

    1990-03-01

    The posteroanterior view of the lumbar spine has important features including radiation protection and image quality; these have been studied by various investigators. Investigators have shown that sensitive tissues receive less radiation dosage in the posteroanterior view of the spine for scoliosis screening and intracranial tomography without altering the image quality. This paper emphasizes the importance of the radiation safety aspect of the posteroanterior view and shows the improvement in shape distortion in the lumbar vertebrae.

  16. Sea urchin spine arthritis of the hand.

    Science.gov (United States)

    Wada, Takuro; Soma, Tamotsu; Gaman, Keiko; Usui, Masamichi; Yamashita, Toshihiko

    2008-03-01

    Although rare, hand injury caused by puncture with the sea urchin spine can result in serious complications. To emphasize its clinical significance, this article describes a group of patients who sustained chronic granulomatous arthritis induced by puncture with sea urchin spine (designated sea urchin spine arthritis). Five patients who developed sea urchin spine arthritis of the hand after puncture with sea urchin spine were treated at our hospitals. All lesions involved the proximal interphalangeal (PIP) joint (4 index fingers and 1 middle finger). Patients experienced pain, swelling, and discomfort around the site of puncture immediately after the injury. These initial symptoms subsided within a few days, and secondary symptoms including fusiform swelling, limited motion, and mild pain of the PIP joint appeared from 1 to 2 months later. Laboratory tests of inflammation and blood cell counts were negative. Plain radiographs showed soft tissue swelling and osteolysis but no visible spine. Thorough synovectomy of the PIP joint was performed, and the granulation tissue around the joint was also removed. No microorganism was identified from tissue culture or polymerase chain reaction in any of the 5 patients. At a mean follow-up of 21 months, 2 patients exhibited essentially normal active motion of the affected PIP joint, whereas the remaining 3 patients had diminished range of motion. Diagnosis of sea urchin spine arthritis can be made by history of sea urchin spine injury, a symptom-free period before the development of synovitis, and the absence of laboratory test abnormalities. Neither antibiotics nor nonsteroidal anti-inflammatory agents are effective. Undertaken early enough, thorough synovectomy might avoid complications and obtain favorable results. Therapeutic IV.

  17. Aneurysmal Bone Cyst Of The Spine

    Directory of Open Access Journals (Sweden)

    G.A. Teyrnoorian

    1972-07-01

    Full Text Available Two new cases of aneurysmal bone cyst of the spine are presented. In one of them only the spinous process was involved, and in the second case mthe neural arch and the body were involved. A brief review of the literature with clinical, radiological and pathilogical features of this benign lesion is made and its differential diagnosis, specially from giant cell tumor of the spine emphasised.

  18. The 100 most cited spine articles.

    Science.gov (United States)

    Murray, Michael R; Wang, Tianyi; Schroeder, Gregory D; Hsu, Wellington K

    2012-10-01

    Spine-related research has evolved dramatically during the last century. Significant contributions have been made by thousands of authors. A citation rank list has historically been used within a particular field to measure the importance of an article. The purpose of this article is to report on the 100 most cited articles in the field of spine. Science Citation Index Expanded was searched for citations in 27 different journals (as of 30 November 2010) chosen based on the relevance for all cited spine publications. The top 100 most cited articles were identified. Important information such as journal, date, country of origin, author, subspecialty, and level of evidence (for clinical research) were compiled. The top 100 publications ranged from 1,695 to 240 citations. Fifty-three articles were of the lumbar, 17 were of the thoracolumbar, and 15 of the cervical spine. Eighty-one of the articles were clinical and 19 were basic science in nature. Level of evidence varied for the clinical papers, however, was most commonly level IV (34 of 81 articles). Notably, the 1990-1999 decade was the most productive period with 43 of the top 100 articles published during this time. Identification of the most cited articles within the field of spine recognizes some of the most important contributions in the peer-reviewed literature. Current investigators may utilize the aspects of their work to guide and direct future spine-related research.

  19. Automatic lumbar spine measurement in CT images

    Science.gov (United States)

    Mao, Yunxiang; Zheng, Dong; Liao, Shu; Peng, Zhigang; Yan, Ruyi; Liu, Junhua; Dong, Zhongxing; Gong, Liyan; Zhou, Xiang Sean; Zhan, Yiqiang; Fei, Jun

    2017-03-01

    Accurate lumbar spine measurement in CT images provides an essential way for quantitative spinal diseases analysis such as spondylolisthesis and scoliosis. In today's clinical workflow, the measurements are manually performed by radiologists and surgeons, which is time consuming and irreproducible. Therefore, automatic and accurate lumbar spine measurement algorithm becomes highly desirable. In this study, we propose a method to automatically calculate five different lumbar spine measurements in CT images. There are three main stages of the proposed method: First, a learning based spine labeling method, which integrates both the image appearance and spine geometry information, is used to detect lumbar and sacrum vertebrae in CT images. Then, a multiatlases based image segmentation method is used to segment each lumbar vertebra and the sacrum based on the detection result. Finally, measurements are derived from the segmentation result of each vertebra. Our method has been evaluated on 138 spinal CT scans to automatically calculate five widely used clinical spine measurements. Experimental results show that our method can achieve more than 90% success rates across all the measurements. Our method also significantly improves the measurement efficiency compared to manual measurements. Besides benefiting the routine clinical diagnosis of spinal diseases, our method also enables the large scale data analytics for scientific and clinical researches.

  20. Bionic Control of Cheetah Bounding with a Segmented Spine

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2016-01-01

    Full Text Available A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.

  1. D1- and D2-like dopamine receptors in the CA1 region of the hippocampus are involved in the acquisition and reinstatement of morphine-induced conditioned place preference.

    Science.gov (United States)

    Assar, Nasim; Mahmoudi, Dorna; Farhoudian, Ali; Farhadi, Mohammad Hasan; Fatahi, Zahra; Haghparast, Abbas

    2016-10-01

    The hippocampus plays a vital role in processing contextual memories and reward related learning tasks, such as conditioned place preference (CPP). Among the neurotransmitters in the hippocampus, dopamine is deeply involved in reward-related processes. This study assessed the role of D1- and D2-like dopamine receptors within the CA1 region of the hippocampus in the acquisition and reinstatement of morphine-CPP. To investigate the role of D1 and D2 receptors in morphine acquisition, the animals received different doses of D1- and/or D2-like dopamine receptor antagonists (SCH23390 and sulpiride, respectively) into the CA1, 5min before the administration of morphine (5mg/kg, subcutaneously) during a 3-days conditioning phase. To evaluate the involvement of these receptors in morphine reinstatement, the animals received different doses of SCH23390 or sulpiride (after extinction period) 5min before the administration of a low dose of morphine (1mg/kg) in order to reinstate the extinguished morphine-CPP. Conditioning scores were recorded by Ethovision software. The results of this study showed that the administration of SCH23390 or sulpiride, significantly decreased the acquisition of morphine-CPP. Besides, the injection of these antagonists before the administration of a priming dose of morphine, following the extinction period, decreased the reinstatement of morphine-CPP in sacrificed rats. However, the effect of sulpiride on the acquisition and reinstatement of morphine-CPP was more significant than that of SCH23390. These findings suggested that D1- and D2-like dopamine receptors in the CA1 are involved in the acquisition and reinstatement of morphine-CPP, and antagonism of these receptors can reduce the rewarding properties of morphine. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. [Sagittal balance of the spine].

    Science.gov (United States)

    Mangione, P; Sénégas, J

    1997-01-01

    The authors examined the modifications of sagittal shape and muscular functions in different vertebral diseases in order to investigate their correlations and to specify the role of hip extension in standing posture. We included 57 patients presenting various diseases, among which lumbar kyphosis, spondylosis and spondylolisthesis, backache and lumbar stenosis. We measured joint mobility (hip extension, lumbar flexion), muscular retractions (ilio-psoas, hamstrings, rectus femoris), and muscular strength (spine flexors and extensors, hamstrings, quadriceps femoris). On standing lateral x-rays, measurements were made of various spinal and pelvic parameters, among which the "pelvi-femoral angle", proposed by the authors for hip extension evaluation. There was a significant correlation between pelvi-femoral angle and pelvic backward tilting (r = 0.8037 p tilt-up arise compensating the anterior displacement of the center of gravity, while in spondylolisthesis, anterior displacement is secondary to sacral obliquity. It is very important to evaluate the pelvis position in sagittal spinal diseases, in order to understand postural deterioration mechanisms. Lumbar kyphosis and spondylolisthesis are two examples of failure of upright posture.

  3. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septo-temporal axis in adulthood and middle age

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-01-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septo-temporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septo-temporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  4. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  5. SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients.

    Science.gov (United States)

    Facchinetti, Patricia; Dorard, Emilie; Contremoulins, Vincent; Gaillard, Marie-Claude; Déglon, Nicole; Sazdovitch, Véronique; Guihenneuc-Jouyaux, Chantal; Brouillet, Emmanuel; Duyckaerts, Charles; Allinquant, Bernadette

    2014-05-01

    Caspase cleaved amyloid precursor protein (APPcc) and SET are increased and mislocalized in the neuronal cytoplasm in Alzheimer Disease (AD) brains. Translocated SET to the cytoplasm can induce tau hyperphosphorylation. To elucidate the putative relationships between mislocalized APPcc and SET, we studied their level and distribution in the hippocampus of 5 controls, 3 Down syndrome and 10 Alzheimer patients. In Down syndrome and Alzheimer patients, APPcc and SET levels were increased in CA1 and the frequency of both localizations in the neuronal cytoplasm was high in CA1, and low in CA4. As the increase of APPcc is already present at early stages of AD, we overexpressed APPcc in CA1 and the dentate gyrus neurons of adult mice with a lentiviral construct. APPcc overexpression in CA1 and not in the dentate gyrus induced endogenous SET translocation and tau hyperphosphorylation. These data suggest that increase in APPcc in CA1 neurons could be an early event leading to the translocation of SET and the progression of AD through tau hyperphosphorylation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. [Comparison between the Range of Movement Canine Real Cervical Spine and Numerical Simulation - Computer Model Validation].

    Science.gov (United States)

    Srnec, R; Horák, Z; Sedláček, R; Sedlinská, M; Krbec, M; Nečas, A

    2017-01-01

    PURPOSE OF THE STUDY In developing new or modifying the existing surgical treatment methods of spine conditions an integral part of ex vivo experiments is the assessment of mechanical, kinematic and dynamic properties of created constructions. The aim of the study is to create an appropriately validated numerical model of canine cervical spine in order to obtain a tool for basic research to be applied in cervical spine surgeries. For this purpose, canine is a suitable model due to the occurrence of similar cervical spine conditions in some breeds of dogs and in humans. The obtained model can also be used in research and in clinical veterinary practice. MATERIAL AND METHODS In order to create a 3D spine model, the LightSpeed 16 (GE, Milwaukee, USA) multidetector computed tomography was used to scan the cervical spine of Doberman Pinscher. The data were transmitted to Mimics 12 software (Materialise HQ, Belgium), in which the individual vertebrae were segmented on CT scans by thresholding. The vertebral geometry was exported to Rhinoceros software (McNeel North America, USA) for modelling, and subsequently the specialised software Abaqus (Dassault Systemes, France) was used to analyse the response of the physiological spine model to external load by the finite element method (FEM). All the FEM based numerical simulations were considered as nonlinear contact statistic tasks. In FEM analyses, angles between individual spinal segments were monitored in dependence on ventroflexion/ /dorziflexion. The data were validated using the latero-lateral radiographs of cervical spine of large breed dogs with no evident clinical signs of cervical spine conditions. The radiographs within the cervical spine range of motion were taken at three different positions: in neutral position, in maximal ventroflexion and in maximal dorziflexion. On X-rays, vertebral inclination angles in monitored spine positions were measured and compared with the results obtain0ed from FEM analyses of the

  7. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant

    DEFF Research Database (Denmark)

    Li, Haisheng; Zou, Xuenong; Woo, Charlotte

    2007-01-01

    with X-ray and CT scan examinations. In vivo test employed eight pigs weighing 50 kg each. Instrumented lumbar spine fusion of L3/4 and L4/5 with these cages was performed on each pig. After 3 months, excellent bone integration property was demonstrated by direct contact of the cage with the host bone...

  8. The protective role of ascorbic acid on hippocampal CA1 pyramidal neurons in a rat model of maternal lead exposure.

    Science.gov (United States)

    Sepehri, Hamid; Ganji, Farzaneh

    2016-07-01

    Oxidative stress is a major pathogenic mechanism of lead neurotoxicity. The antioxidant ascorbic acid protects hippocampal pyramidal neurons against cell death during congenital lead exposure; however, critical functions like synaptic transmission, integration, and plasticity depend on preservation of dendritic and somal morphology. This study was designed to examine if ascorbic acid also protects neuronal morphology during developmental lead exposure. Timed pregnant rats were divided into four treatment groups: (1) control, (2) 100mg/kg ascorbic acid once a day via gavage, (3) 0.05% lead acetate in drinking water, and (4) 0.05% lead+100mg/kg oral ascorbic acid. Brains of eight male pups (P25) per treatment group were processed for Golgi staining. Changes in hippocampal CA1 pyramidal neurons' somal size were estimated by cross-sectional area and changes in dendritic arborization by Sholl's analysis. One-way ANOVA was used to compare results among treatment groups. Lead-exposed pups exhibited a significant decrease in somal size compared to controls (Plead exposure. Oxidative stress thus contributes to lead neurotoxicity but other pathogenic mechanisms are also involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Formalin pain increases the concentration of serotonin and its 5-hydroxyindoleacetic acid metabolite in the CA1 region of hippocampus

    Directory of Open Access Journals (Sweden)

    E Soleimannejad

    2010-03-01

    Full Text Available "nBackground and the purpose of the study: The hippocampal formation is involved in nociception. Prenatal serotonin depletion results in a significant decrease in the concentration of nociceptive sensitivity during the second phase of behavioral response in the formalin test.  "nMethods: A microdialysis probe was inserted via a guide cannula into the right CA1 region of the hippocampus. Extracellular serotonin (5HT and its 5- hydroxyindoleacetic acid (5HIAA metabolite overflow were collected every 10 min during the formalin test and measured by HPLC with electrochemichal detector. "n "nResults: Compared to the sham group, formalin injection in the hind paw of the rat significantly increased 5HT after 10, 30, 40, and 50 min and increased 5HIAA after 10, 30, 40, 50, and 60 min collection time periods in hippocampal dialysate. (n=6 for each group at each sampling time. In the formalin treated rats serotonin and 5HIAA concentrations increased in the biphasic pattern in concert with the first and second phases of formalin pain. "nConclusion: The hippocampal formation might be involved in the processing of nociceptive information and serotonin-related mechanisms in the hippocampus may play a role in the biphasic behavioral responses to formalin noxious stimulation. "n   

  10. The aspirin metabolite salicylate enhances neuronal excitation in rat hippocampal CA1 area through reducing GABAergic inhibition.

    Science.gov (United States)

    Gong, Neng; Zhang, Min; Zhang, Xiao-Bing; Chen, Lin; Sun, Guang-Chun; Xu, Tian-Le

    2008-02-01

    Salicylate is the major metabolite and active component of aspirin (acetylsalicylic acid), which is widely used in clinical medicine for treating inflammation, pain syndromes and cardiovascular disorders. The well-known mechanism underlying salicylate's action mainly involves the inhibition of cyclooxygenase and subsequent decrease in prostaglandin production. Recent evidence suggests that salicylate also affects neuronal function through interaction with specific membrane channels/receptors. However, the effect of salicylate on synaptic and neural network function remains largely unknown. In this study, we investigated the effect of sodium salicylate on the synaptic transmission and neuronal excitation in the hippocampal CA1 area of rats, a key structure for many complex brain functions. With electrophysiological recordings in hippocampal slices, we found that sodium salicylate significantly enhanced neuronal excitation through reducing inhibitory GABAergic transmission without affecting the basal excitatory synaptic transmission. Salicylate significantly inhibited the amplitudes of both evoked and miniature inhibitory postsynaptic currents, and directly reduced gamma-aminobutyric acid type A (GABA(A)) receptor-mediated responses in cultured rat hippocampal neurons. Together, our results suggest that the widely used aspirin might impair hippocampal synaptic and neural network functions through its actions on GABAergic neurotransmission. Given the capability of aspirin to penetrate the blood-brain barrier, the present data imply that aspirin intake may cause network hyperactivity and be potentially harmful in susceptible subpopulations.

  11. Post-ictal depression transiently inhibits induction of LTP in area CA1 of the rat hippocampal slice.

    Science.gov (United States)

    Barr, D S; Hoyt, K L; Moore, S D; Wilson, W A

    1997-05-01

    We tested the effects of electrographic seizures (EGSs) elicited in a remote site (area CA3) on the induction of long-term potentiation (LTP) in area CA1 of the rat hippocampal slice. Induction of LTP was inhibited only when the LTP-inducing stimulus was delivered during the period of post-ictal depression (5-10 min period of field response depression) following an evoked EGS. It was not inhibited during the tonic firing phase of the EGS. The time course for the recovery of the ability to induce LTP after an EGS matched the recovery of field responses from post-ictal depression. Moreover, the magnitude of LTP was inversely proportional to the duration of post-ictal depression. Delaying the onset of depression with the adenosine A1 receptor antagonist 8-cyclopentyltheophylline (CPT) permitted LTP induction at a time point when it would normally be suppressed. Finally, the inhibitory effects of post-ictal depression on LTP induction were not restricted to electrically evoked EGSs, as LTP could not be induced during the depressed phase following a spontaneous EGS elicited in 10 mM K+ medium. These results demonstrate that the inhibition of LTP induction following epileptiform activity in vitro is in part a consequence of post-ictal depression of responses.

  12. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    Science.gov (United States)

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  13. MUSCARINIC LONG-TERM ENHANCEMENT OF TONIC AND PHASIC GABAA INHIBITION IN RAT CA1 PYRAMIDAL NEURONS

    Directory of Open Access Journals (Sweden)

    Soledad Dominguez

    2016-10-01

    Full Text Available ABSTRACTAcetylcholine (ACh regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs, the latter through gamma-aminobutyric acid type-A receptors (GABAARs. Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014; 2015, its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with postsynaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA and puff-evoked GABAA currents (pGABAA. ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals.

  14. Abelson tyrosine kinase links PDGFbeta receptor activation to cytoskeletal regulation of NMDA receptors in CA1 hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Beazely Michael A

    2008-12-01

    Full Text Available Abstract Background We have previously demonstrated that PDGF receptor activation indirectly inhibits N-methyl-D-aspartate (NMDA currents by modifying the cytoskeleton. PDGF receptor ligand is also neuroprotective in hippocampal slices and cultured neurons. PDGF receptors are tyrosine kinases that control a variety of signal transduction pathways including those mediated by PLCγ. In fibroblasts Src and another non-receptor tyrosine kinase, Abelson kinase (Abl, control PDGF receptor regulation of cytoskeletal dynamics. The mechanism whereby PDGF receptor regulates cytoskeletal dynamics in central neurons remains poorly understood. Results Intracellular applications of active Abl, but not heat-inactivated Abl, decreased NMDA-evoked currents in isolated hippocampal neurons. This mimics the effects of PDGF receptor activation in these neurons. The Abl kinase inhibitor, STI571, blocked the inhibition of NMDA currents by Abl. We demonstrate that PDGF receptors can activate Abl kinase in hippocampal neurons via mechanisms similar to those observed previously in fibroblasts. Furthermore, PDGFβ receptor activation alters the subcellular localization of Abl. Abl kinase is linked to actin cytoskeletal dynamics in many systems. We show that the inhibition of NMDA receptor currents by Abl kinase is blocked by the inclusion of the Rho kinase inhibitor, Y-27632, and that activation of Abl correlates with an increase in ROCK tyrosine phosphorylation. Conclusion This study demonstrates that PDGFβ receptors act via an interaction with Abl kinase and Rho kinase to regulated cytoskeletal regulation of NMDA receptor channels in CA1 pyramidal neurons.

  15. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Lingyun Hao

    2016-07-01

    Full Text Available Nitric oxide (NO can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor, and in vivo, endogenous NO synthesized by NO synthases (NOS could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR antagonist could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R. Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.

  16. Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions

    Directory of Open Access Journals (Sweden)

    Francesco eCavarretta

    2014-10-01

    Full Text Available The possible cognitive effects of low frequency external electric fields, such as those generated by power lines, are poorly understood. Their functional consequences for mechanisms at the single neuron level are very difficult to study and identify experimentally, especially in vivo. The major open problem is that experimental investigations on humans have given inconsistent or contradictory results, making it difficult to estimate the possible effects of external low frequency electric fields on cognitive functions. Here we investigate this issue with a realistic model of hippocampal CA1 pyramidal neurons. The model suggests how and why external electric fields, with environmentally observed frequencies and intensities far lower than what is required for direct neural activation, can perturb dendritic signal processing and somatic firing of neurons that are crucially involved in cognitive tasks such as learning and memory. These results show that individual neuronal morphology, ion channel dendritic distribution, and alignment with the electric field are major determinants of overall effects, and provide a physiologically plausible explanation of why experimental findings can appear to be small and difficult to reproduce, yet deserve serious consideration.

  17. Right thoracic curvature in the normal spine

    Directory of Open Access Journals (Sweden)

    Masuda Keigo

    2011-01-01

    Full Text Available Abstract Background Trunk asymmetry and vertebral rotation, at times observed in the normal spine, resemble the characteristics of adolescent idiopathic scoliosis (AIS. Right thoracic curvature has also been reported in the normal spine. If it is determined that the features of right thoracic side curvature in the normal spine are the same as those observed in AIS, these findings might provide a basis for elucidating the etiology of this condition. For this reason, we investigated right thoracic curvature in the normal spine. Methods For normal spinal measurements, 1,200 patients who underwent a posteroanterior chest radiographs were evaluated. These consisted of 400 children (ages 4-9, 400 adolescents (ages 10-19 and 400 adults (ages 20-29, with each group comprised of both genders. The exclusion criteria were obvious chest and spinal diseases. As side curvature is minimal in normal spines and the range at which curvature is measured is difficult to ascertain, first the typical curvature range in scoliosis patients was determined and then the Cobb angle in normal spines was measured using the same range as the scoliosis curve, from T5 to T12. Right thoracic curvature was given a positive value. The curve pattern was organized in each collective three groups: neutral (from -1 degree to 1 degree, right (> +1 degree, and left ( Results In child group, Cobb angle in left was 120, in neutral was 125 and in right was 155. In adolescent group, Cobb angle in left was 70, in neutral was 114 and in right was 216. In adult group, Cobb angle in left was 46, in neutral was 102 and in right was 252. The curvature pattern shifts to the right side in the adolescent group (p Conclusions Based on standing chest radiographic measurements, a right thoracic curvature was observed in normal spines after adolescence.

  18. Neurenteric cysts of the spine

    Directory of Open Access Journals (Sweden)

    J J Savage

    2010-01-01

    Full Text Available Neurenteric cysts account for 0.7-1.3% of spinal axis tumors. These rare lesions result from the inappropriate partitioning of the embryonic notochordal plate and presumptive endoderm during the third week of human development. Heterotopic rests of epithelium reminiscent of gastrointestinal and respiratory tissue lead to eventual formation of compressive cystic lesions of the pediatric and adult spine. Histopathological analysis of neurenteric tissue reveals a highly characteristic structure of columnar or cuboidal epithelium with or without cilia and mucus globules. Patients with symptomatic neurenteric cysts typically present in the second and third decades of life with size-dependent myelopathic and/or radicular signs. Magnetic resonance imaging and computed tomography are essential diagnostic tools for the delineation of cyst form and overlying osseous architecture. A variety of approaches have been employed in the treatment of neurenteric cysts each with a goal of total surgical resection. Although long-term outcome analyses are limited, data available indicate that surgical intervention in the case of neurenteric cysts results in a high frequency of resolution of neurological deficit with minimal morbidity. However, recurrence rates as high as 37% have been reported with incomplete resection secondary to factors such as cyst adhesion to surrounding structure and unclear dissection planes. Here we present a systematic review of English language literature from January 1966 to December 2009 utilizing MEDLINE with the following search terminology: neurenteric cyst, enterogenous cyst, spinal cord tumor, spinal dysraphism, intraspinal cyst, intramedullary cyst, and intradural cyst. In addition, the references of publications returned from the MEDLINE search criteria were surveyed in order to examine other pertinent reports.

  19. Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis.

    Science.gov (United States)

    Fossati, G; Morini, R; Corradini, I; Antonucci, F; Trepte, P; Edry, E; Sharma, V; Papale, A; Pozzi, D; Defilippi, P; Meier, J C; Brambilla, R; Turco, E; Rosenblum, K; Wanker, E E; Ziv, N E; Menna, E; Matteoli, M

    2015-09-01

    Impairment of synaptic function can lead to neuropsychiatric disorders collectively referred to as synaptopathies. The SNARE protein SNAP-25 is implicated in several brain pathologies and, indeed, brain areas of psychiatric patients often display reduced SNAP-25 expression. It has been recently found that acute downregulation of SNAP-25 in brain slices impairs long-term potentiation; however, the processes through which this occurs are still poorly defined. We show that in vivo acute downregulation of SNAP-25 in CA1 hippocampal region affects spine number. Consistently, hippocampal neurons from SNAP-25 heterozygous mice show reduced densities of dendritic spines and defective PSD-95 dynamics. Finally, we show that, in brain, SNAP-25 is part of a molecular complex including PSD-95 and p140Cap, with p140Cap being capable to bind to both SNAP-25 and PSD-95. These data demonstrate an unexpected role of SNAP-25 in controlling PSD-95 clustering and open the possibility that genetic reductions of the protein levels - as occurring in schizophrenia - may contribute to the pathology through an effect on postsynaptic function and plasticity.

  20. National representation in the spine literature: a bibliometric analysis of highly cited spine journals.

    Science.gov (United States)

    Ding, Fan; Jia, Zhiwei; Liu, Ming

    2016-03-01

    Significant progress has been seen in the field of spine in recent years as a consequence of worldwide contributions. However, the national productivity to the field of spine is still unclear. The aim of this study was to investigate the national contributions in the field of spine. Web of Science was searched for articles published in the five highly cited spine journals from 2009 to 2013, including The Spine Journal, European Spine Journal, Spine, Journal of Neurosurgery: Spine, and Journal of Spinal Disorders and Techniques. The number of total articles, the per capita numbers, impact factors, citations and funding source were recorded and analyzed. A total number of 6920 articles were published in the five journals from 2009 to 2013 worldwide. North America, East Asia, and West Europe were the most productive world areas. High-income countries published 83.97% of articles, middle-income 16.01%, and lower-income just 0.01%. The United States published the most number of articles (35.79%), followed by China, Japan, South Korea, and Canada, and had the highest total impact factors and the highest total citations. However, when normalized to population size, Switzerland had the highest number of articles per million populations, followed by The Netherlands and Sweden. The majority of the spine articles are published by authors from high-income countries while few publications from low-income countries. The United States is the most productive country in the field of spine. However, some European countries may be more productive when normalized to population size.

  1. Conspicuous and aposematic spines in the animal kingdom

    Science.gov (United States)

    Inbar, Moshe; Lev-Yadun, Simcha

    2005-04-01

    Spines serve as a common physical defence mechanism in both the plant and animal kingdoms. Here we argue that as in plants, defensive animal spines are often conspicuous (shape and colour) and should be considered aposematic. Conspicuous spines may evolve as signals or serve as a cue for potential predators. Spine conspicuousness in animals has evolved independently across and within phyla occupying aquatic and terrestrial ecosystems, indicating that this convergent phenomenon is highly adaptive. Still, many spines are cryptic, suggesting that conspicuity is not simply constrained by developmental factors such as differences in the chemical composition of the integument. Aposematism does not preclude the signalling role of conspicuous spines in the sexual arena.

  2. Hippocrates. The father of spine surgery.

    Science.gov (United States)

    Marketos, S G; Skiadas, P

    1999-07-01

    Hippocrates (5th-4th century B. C.), the founder of scientific medicine, left a valuable heritage of knowledge and methodology, which extends to almost all branches of modern medicine. Among the many fields of medicine he explored, he devoted much of his scientific interest to the study of orthopedics. In fact, some of the principles found in the Hippocratic treatises On Fractures and On Joints are still valid today. This great physician also was the first to deal with the anatomy and the pathology of human spine. In his books, he provides a precise description of the segments and the normal curves of the spine, the structure of the vertebrae, the tendons attached to them, the blood supply to the spine, and even its anatomic relations to adjacent vessels. The Hippocratic list of spinal diseases includes tuberculous spondylitis, post-traumatic kyphosis, scoliosis, concussion, dislocations of the vertebrae, and fractures of the spinous processes. Hippocrates devised two apparatuses, known as the Hippocratic ladder and the Hippocratic board, to reduce displaced vertebrae. Those pioneer methods are deemed to be the precursors to the sophisticated techniques used in spine surgery today. Because of his thorough study of spinal diseases and their management, which was the first such study in orthopedics in the history of medicine, Hippocrates should be regarded as the father of spine surgery.

  3. Developmental biomechanics of the human cervical spine.

    Science.gov (United States)

    Nuckley, David J; Linders, David R; Ching, Randal P

    2013-04-05

    Head and neck injuries, the leading cause of death for children in the U.S., are difficult to diagnose, treat, and prevent because of a critical void in our understanding of the biomechanical response of the immature cervical spine. The objective of this study was to investigate the functional and failure biomechanics of the cervical spine across multiple axes of loading throughout maturation. A correlational study design was used to examine the relationships governing spinal maturation and biomechanical flexibility curves and tolerance data using a cadaver human in vitro model. Eleven human cadaver cervical spines from across the developmental spectrum (2-28 years) were dissected into segments (C1-C2, C3-C5, and C6-C7) for biomechanical testing. Non-destructive flexibility tests were performed in tension, compression, flexion, extension, lateral bending, and axial rotation. After measuring their intact biomechanical responses, each segment group was failed in different modes to measure the tissue tolerance in tension (C1-C2), compression (C3-C5), and extension (C5-C6). Classical injury patterns were observed in all of the specimens tested. Both the functional (pspine throughout maturation and elucidated age, spinal level, and mode of loading specificity. These data support our understanding of the child cervical spine from a developmental perspective and facilitate the generation of injury prevention or management schema for the mitigation of child spine injuries and their deleterious effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The bent spine syndrome: myopathy + biomechanics = symptoms.

    Science.gov (United States)

    Haig, Andrew J; Tong, Henry C; Kendall, Richard

    2006-01-01

    The bent spine syndrome, which mimics spinal stenosis, is thought to be a focal paraspinal myopathy, but because paraspinal fatigue with ambulation is not a feature of more severe myopathies, the cause of symptoms is not clear. To evaluate electromyographic and biomechanical aspects of the bent spine syndrome. University spine clinic. A patient with severe disability from the bent spine syndrome was compared with a fortuitously discovered asymptomatic research subject with the syndrome, in terms of physical examination, magnetic resonance imaging, and electrodiagnostic testing. Both subjects had fatty paraspinal replacement on magnetic resonance imaging and electromyography. More detailed electromyography of the patient showed abnormalities medially and caudally, but changes including apparent myopathic motor units up to the high thoracic region. The research subject had no hip flexion contracture, whereas the patient had severe contracture. Correction of contracture increased ambulation from 20 to 300 meters. Bent spine syndrome is likely a paraspinal myopathy, but symptoms do not occur unless there is also a hip flexion contracture.

  5. Management of thoracolumbar spine trauma An overview

    Directory of Open Access Journals (Sweden)

    S Rajasekaran

    2015-01-01

    Full Text Available Thoracolumbar spine fractures are common injuries that can result in significant disability, deformity and neurological deficit. Controversies exist regarding the appropriate radiological investigations, the indications for surgical management and the timing, approach and type of surgery. This review provides an overview of the epidemiology, biomechanical principles, radiological and clinical evaluation, classification and management principles. Literature review of all relevant articles published in PubMed covering thoracolumbar spine fractures with or without neurologic deficit was performed. The search terms used were thoracolumbar, thoracic, lumbar, fracture, trauma and management. All relevant articles and abstracts covering thoracolumbar spine fractures with and without neurologic deficit were reviewed. Biomechanically the thoracolumbar spine is predisposed to a higher incidence of spinal injuries. Computed tomography provides adequate bony detail for assessing spinal stability while magnetic resonance imaging shows injuries to soft tissues (posterior ligamentous complex [PLC] and neurological structures. Different classification systems exist and the most recent is the AO spine knowledge forum classification of thoracolumbar trauma. Treatment includes both nonoperative and operative methods and selected based on the degree of bony injury, neurological involvement, presence of associated injuries and the integrity of the PLC. Significant advances in imaging have helped in the better understanding of thoracolumbar fractures, including information on canal morphology and injury to soft tissue structures. The ideal classification that is simple, comprehensive and guides management is still elusive. Involvement of three columns, progressive neurological deficit, significant kyphosis and canal compromise with neurological deficit are accepted indications for surgical stabilization through anterior, posterior or combined approaches.

  6. Magnetic stimulation of the spine: the role of tissues and their modelling

    Energy Technology Data Exchange (ETDEWEB)

    Efthimiadis, K G; Samaras, T [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Polyzoidis, K S, E-mail: theosama@auth.g [1st Neurosurgical Department, AHEPA University Hospital, GR-54124 Thessaloniki (Greece)

    2010-05-07

    Numerical modelling of magnetic stimulation in the spine is a scarce subject in the literature, although it has been gaining clinical acceptance. In the present work we present the results from a simplified computational model of the spine. The results indicate that it is necessary to use a numerical technique for solving the problem, which takes into account tissue dispersion and both dielectric properties (conductivity and permittivity), since a difference of 14% in the induced electric fields was found when displacement currents were included. With respect to the role of tissues in stimulation efficiency, it was confirmed that water-rich tissues lead to a shielding effect of the spinal cord. However, this effect becomes smaller at the height of the intervertebral discs, resulting in an increase of the field inside the spine.

  7. A new in vitro spine test rig to track multiple vertebral motions under physiological conditions.

    Science.gov (United States)

    Beckmann, Agnes; Herren, Christian; Mundt, Marion; Siewe, Jan; Kobbe, Philipp; Sobottke, Rolf; Pape, Hans-Christoph; Stoffel, Marcus; Markert, Bernd

    2017-04-27

    In vitro pure moment spine tests are commonly used to analyse surgical implants in cadaveric models. Most of the tests are performed at room temperature. However, some new dynamic instrumentation devices and soft tissues show temperature-dependent material properties. Therefore, the aim of this study is to develop a new test rig, which allows applying pure moments on lumbar spine specimens in a vapour-filled chamber at body temperature. As no direct sight is given in the vapour-filled closed chamber, a magnetic tracking (MT) system with implantable receivers was used. Four human cadaveric lumbar spines (L2-L5) were tested in a vapour atmosphere at body temperature with a native and rigid instrumented group. In conclusion, the experimental set-up allows vertebral motion tracking of multiple functional spinal units (FSUs) in a moisture environment at body temperature.

  8. LTP promotes a selective long-term stabilization and clustering of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Mathias De Roo

    2008-09-01

    Full Text Available Dendritic spines are the main postsynaptic site of excitatory contacts between neurons in the central nervous system. On cortical neurons, spines undergo a continuous turnover regulated by development and sensory activity. However, the functional implications of this synaptic remodeling for network properties remain currently unknown. Using repetitive confocal imaging on hippocampal organotypic cultures, we find that learning-related patterns of activity that induce long-term potentiation act as a selection mechanism for the stabilization and localization of spines. Through a lasting N-methyl-D-aspartate receptor and protein synthesis-dependent increase in protrusion growth and turnover, induction of plasticity promotes a pruning and replacement of nonactivated spines by new ones together with a selective stabilization of activated synapses. Furthermore, most newly formed spines preferentially grow in close proximity to activated synapses and become functional within 24 h, leading to a clustering of functional synapses. Our results indicate that synaptic remodeling associated with induction of long-term potentiation favors the selection of inputs showing spatiotemporal interactions on a given neuron.

  9. Morphometric measurement of the lumbosacral spine for minimally invasive cortical bone trajectory implant using computed tomography.

    Science.gov (United States)

    Zhang, Hua; Ajiboye, Remi Musibau; Shamie, Arya Nick; Wu, Qionghua; Chen, Qixin; Chen, Weishan

    2016-03-01

    The cortical bone trajectory (CBT) is a novel lumbar pedicle screw trajectory. The aim of this study was to conduct a detailed morphometric measurement of the lumbosacral spine for CBT pedicle screw, using the inferior facet of the cephalad level as a bony landmark. The three-dimensional computed tomography (3D-CT) scans of 86 adults who underwent examination of the lumbosacral spine were studied. The distances from the starting point to the inferior, lateral and medial border of the inferior facet of the cephalad level were measured. The angles formed between the screw trajectory and the sagittal plane, the superior endplate of the vertebral body and the posterior margin of the pars interarticularis were defined as the transverse angle (TA), cephalad angle 1 (CA1) and cephalad angle 2 (CA2), respectively. The distances from the inferior border of inferior facet to the starting point from L1 to S1 were 8.9, 6.3, 4.1, 2.9, 1.4 and 0 mm, respectively. The distances from the medial border of the inferior facet to the starting point from L1 to S1 were between 3 and 4 mm. TA from L1 to S1 was 9.0°, 9.6°, 11.3°, 13.5°, 15.5°, and 8.2°, respectively. CA1/CA2 from L1 to S1 was 26.7°/38.7°, 26.0°/38.7°, 26.9°/38.0°, 24.4°/37.2°, 22.9°/35.1° and 18.4°/47.8°, respectively. The maximum screw diameters from L1 to S1 were 4.8, 5.1, 6.1, 6.8, 7.8, and 6.1 mm, respectively. Twenty-five millimeter can serve as a safe maximum length of CBT pedicle screws. The inferior facet of the cephalad level is an attractive bony landmark for establishing a starting point of CBT for minimally invasive spine surgery.

  10. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  11. CONSERVATIVE TREATMENT FOR THORACOLUMBAR SPINE BURST FRACTURES

    Directory of Open Access Journals (Sweden)

    Barajas Vanegas Raymundo

    Full Text Available ABSTRACT Objective: To identify the category of evidence and the strength of recommendation for the conservative treatment of thoracolumbar spine burst fractures. Method: A systematic review was conducted from April 2014 to June 2015, selecting articles according to their prospective design, related to thoracolumbar spine burst fractures and their treatment. These studies were published in the electronic bibliographic databases from January 2009 to January 2015. Results: A total of 9,504 articles were found in a free search, of which 7 met the selection criteria and were included for analysis in a study of a total of 435 patients, of whom 72 underwent surgical treatment and 363 received some type of conservative treatment, showing predominantly level of evidence "1b", with strength of recommendation type "A". Conclusions: According to the evidence obtained, the conservative treatment is a choice for patients with stable burst fracture in a single level of thoracolumbar spine and with no neurological injury.

  12. Palpation of the upper thoracic spine

    DEFF Research Database (Denmark)

    Christensen, Henrik Wulff; Vach, Werner; Vach, Kirstin

    2002-01-01

    OBJECTIVE: To assess the intraobserver reliability (in terms of hour-to-hour and day-to-day reliability) and the interobserver reliability with 3 palpation procedures for the detection of spinal biomechanic dysfunction in the upper 8 segments of the thoracic spine. DESIGN: A repeated-measures des......OBJECTIVE: To assess the intraobserver reliability (in terms of hour-to-hour and day-to-day reliability) and the interobserver reliability with 3 palpation procedures for the detection of spinal biomechanic dysfunction in the upper 8 segments of the thoracic spine. DESIGN: A repeated...... procedure. RESULTS: Using an "expanded" definition of agreement that accepts small inaccuracies (+/-1 segment) in the numbering of spinal segments, we found--based on the pooled data from the thoracic spine--kappa values of 0.59 to 0.77 for the hour-to-hour and the day-to-day intraobserver reliability...

  13. The Management of Unstable Cervical Spine Injuries

    Directory of Open Access Journals (Sweden)

    Venu M. Nemani

    2014-01-01

    Full Text Available Injuries to the cervical spine can cause potentially devastating morbidity and even mortality. In this review we discuss the anatomy and biomechanics of the cervical spine. The evaluation and treatment of cervical spine injuries begins with the prompt immobilization of suspected injuries in the field. Once an assessment of the patient's neurological status is made, imaging studies are obtained, which can include X-rays, CT, and MRI. Careful scrutiny of the imaging studies for bony and/or ligamentous injury allows the physician to determine the mechanism of injury, which guides treatment. The ultimate treatment plan can consist of non-operative or operative management, and depends on patient specific factors (medical condition and neurological status, the mechanism of injury, and the resultant degree of instability. With prompt diagnosis and appropriate management, the morbidity of these injuries can be minimized.

  14. Imaging of current spinal hardware: lumbar spine.

    Science.gov (United States)

    Ha, Alice S; Petscavage-Thomas, Jonelle M

    2014-09-01

    The purposes of this article are to review the indications for and the materials and designs of hardware more commonly used in the lumbar spine; to discuss alternatives for each of the types of hardware; to review normal postoperative imaging findings; to describe the appropriateness of different imaging modalities for postoperative evaluation; and to show examples of hardware complications. Stabilization and fusion of the lumbar spine with intervertebral disk replacement, artificial ligaments, spinous process distraction devices, plate-and-rod systems, dynamic posterior fusion devices, and newer types of material incorporation are increasingly more common in contemporary surgical practice. These spinal hardware devices will be seen more often in radiology practice. Successful postoperative radiologic evaluation of this spinal hardware necessitates an understanding of fundamental hardware design, physiologic objectives, normal postoperative imaging appearances, and unique complications. Radiologists may have little training and experience with the new and modified types of hardware used in the lumbar spine.

  15. Minimally invasive spine technology and minimally invasive spine surgery: a historical review.

    Science.gov (United States)

    Oppenheimer, Jeffrey H; DeCastro, Igor; McDonnell, Dennis E

    2009-09-01

    The trend of using smaller operative corridors is seen in various surgical specialties. Neurosurgery has also recently embraced minimal access spine technique, and it has rapidly evolved over the past 2 decades. There has been a progression from needle access, small incisions with adaptation of the microscope, and automated percutaneous procedures to endoscopically and laparoscopically assisted procedures. More recently, new muscle-sparing technology has come into use with tubular access. This has now been adapted to the percutaneous placement of spinal instrumentation, including intervertebral spacers, rods, pedicle screws, facet screws, nucleus replacement devices, and artificial discs. New technologies involving hybrid procedures for the treatment of complex spine trauma are now on the horizon. Surgical corridors have been developed utilizing the interspinous space for X-STOP placement to treat lumbar stenosis in a minimally invasive fashion. The direct lateral retroperitoneal corridor has allowed for minimally invasive access to the anterior spine. In this report the authors present a chronological, historical perspective of minimal access spine technique and minimally invasive technologies in the lumbar, thoracic, and cervical spine from 1967 through 2009. Due to a low rate of complications, minimal soft tissue trauma, and reduced blood loss, more spine procedures are being performed in this manner. Spine surgery now entails shorter hospital stays and often is carried out on an outpatient basis. With education, training, and further research, more of our traditional open surgical management will be augmented or replaced by these technologies and approaches in the future.

  16. Design and Control of Modular Spine-Like Tensegrity Structures

    Science.gov (United States)

    Mirletz, Brian T.; Park, In-Won; Flemons, Thomas E.; Agogino, Adrian K.; Quinn, Roger D.; SunSpiral, Vytas

    2014-01-01

    We present a methodology enabled by the NASA Tensegrity Robotics Toolkit (NTRT) for the rapid structural design of tensegrity robots in simulation and an approach for developing control systems using central pattern generators, local impedance controllers, and parameter optimization techniques to determine effective locomotion strategies for the robot. Biomimetic tensegrity structures provide advantageous properties to robotic locomotion and manipulation tasks, such as their adaptability and force distribution properties, flexibility, energy efficiency, and access to extreme terrains. While strides have been made in designing insightful static biotensegrity structures, gaining a clear understanding of how a particular structure can efficiently move has been an open problem. The tools in the NTRT enable the rapid exploration of the dynamics of a given morphology, and the links between structure, controllability, and resulting gait efficiency. To highlight the effectiveness of the NTRT at this exploration of morphology and control, we will provide examples from the designs and locomotion of four different modular spine-like tensegrity robots.

  17. Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines

    Directory of Open Access Journals (Sweden)

    Mori Nozomu

    2009-03-01

    Full Text Available Abstract Background Homer is a postsynaptic scaffold protein that links various synaptic signaling proteins, including the type I metabotropic glutamate receptor subunits 1α and 5, the inositol 1,4,5-trisphosphate receptor, Shank and Cdc42 small GTPase. Overexpression of Homer induces changes in dendritic spine morphology in cultured hippocampal neurons. However, the molecular basis underpinning Homer-mediated spine morphogenesis remains unclear. In this study, we aimed to elucidate the structural and functional properties of the interaction between Cupidin/Homer2 and two actin-cytoskeletal regulators, Cdc42 small GTPase and Drebrin. Results Cupidin/Homer2 interacted with activated Cdc42 small GTPase via the Cdc42-binding domain that resides around amino acid residues 191–283, within the C-terminal coiled-coil domain. We generated a Cupidin deletion mutant lacking amino acids 191–230 (CPDΔ191–230, which showed decrease Cdc42-binding ability but maintained self-multimerization ability. Cupidin suppressed Cdc42-induced filopodia-like protrusion formation in HeLa cells, whereas CPDΔ191–230 failed to do so. In cultured hippocampal neurons, Cupidin was targeted to dendritic spines, whereas CPDΔ191–230 was distributed in dendritic shafts as well as spines. Overexpression of CPDΔ191–230 decreased the number of synapses and reduced the amplitudes of miniature excitatory postsynaptic currents in hippocampal neurons. Cupidin interacted with a dendritic spine F-actin-binding protein, Drebrin, which possesses two Homer ligand motifs, via the N-terminal EVH-1 domain. CPDΔ191–230 overexpression decreased Drebrin clustering in the dendritic spines of hippocampal neurons. Conclusion These results indicate that Cupidin/Homer2 interacts with the dendritic spine actin regulators Cdc42 and Drebrin via its C-terminal and N-terminal domains, respectively, and that it may be involved in spine morphology and synaptic properties.

  18. Trampoline injuries of the cervical spine.

    Science.gov (United States)

    Brown, P G; Lee, M

    2000-04-01

    Trampolines were responsible for over 6,500 pediatric cervical spine injuries in 1998. This represents a five-fold increase in just 10 years. While most have been minor, paraplegia, quadriplegia and death are all reported. We present 2 cases of trampoline-related cervical spine injury and review the relevant literature. Additionally, we examine the efforts made to reduce the incidence of trampoline injuries, and discuss why these have failed. We conclude that safety guidelines and warnings are inadequate. In addition, we support recommendations for a ban on the use of trampolines by children. Copyright 2000 S. Karger AG, Basel

  19. Cervical Spine Axial Rotation Goniometer Design

    Directory of Open Access Journals (Sweden)

    Emin Ulaş Erdem

    2012-06-01

    Full Text Available To evaluate the cervical spine rotation movement is quiet harder than other joints. Configuration and arrangement of current goniometers and devices is not always practic in clinics and some methods are quiet expensive. The cervical axial rotation goniometer designed by the authors is consists of five pieces (head apparatus, chair, goniometric platform, eye pads and camera. With this goniometer design a detailed evaluation of cervical spine range of motion can be obtained. Besides, measurement of "joint position sense" which is recently has rising interest in researches can be made practically with this goniometer.

  20. Minimally Invasive Spine Surgery in Small Animals.

    Science.gov (United States)

    Hettlich, Bianca F

    2018-01-01

    Minimally invasive spine surgery (MISS) seems to have many benefits for human patients and is currently used for various minor and major spine procedures. For MISS, a change in access strategy to the target location is necessary and it requires intraoperative imaging, special instrumentation, and magnification. Few veterinary studies have evaluated MISS for canine patients for spinal decompression procedures. This article discusses the general requirements for MISS and how these can be applied to veterinary spinal surgery. The current veterinary MISS literature is reviewed and suggestions are made on how to apply MISS to different spinal locations. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Nonspecific purulent osteomyelitis of the spine

    Directory of Open Access Journals (Sweden)

    Kosul'nikov S.O.

    2016-09-01

    Full Text Available Recently, in Ukraine a trend to increased incidence of suppurative osteomyelitis of the spine is defined. The main factors contributing to incidence increase is the growth of proportion of population with immunodeficiency and implementation of computer and magnetic resonance tomography in clinical practice. Treatment of suppurative osteomyelitis of the spine should include antibiotic therapy, adequate sanitation of the infectious focus, strict bed rest with exercise therapy. Tactics of surgical treatment combined with antibiotic deescalation therapy with glycopeptide antibiotic – teicoplanin and rehabilitation program which helped to achieve recovery in 23 (37.8% of patients treated conservatively and in 55 (91% of the operated patients was proposed.

  2. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? What ...

  3. Degenerative Changes in the Spine: Is This Arthritis?

    Science.gov (United States)

    ... in my spine. Does this mean I have arthritis? Answers from April Chang-Miller, M.D. Yes. ... spine. Osteoarthritis is the most common form of arthritis. Doctors may also refer to it as degenerative ...

  4. Sheep cervical spine biomechanics: a finite element study

    National Research Council Canada - National Science Library

    DeVries Watson, Nicole A; Gandhi, Anup A; Fredericks, Doug C; Smucker, Joseph D; Grosland, Nicole M

    2014-01-01

    .... The sheep model has emerged as an important model in spine biomechanics. Although there are several experimental biomechanical studies of the sheep cervical spine, only a limited number of computational models have been developed...

  5. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    CERN Document Server

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  6. The Nucleus of the Solitary Tract → Nucleus Paragigantocellularis → Locus Coeruleus → CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory.

    Science.gov (United States)

    Mello-Carpes, Pâmela Billig; Izquierdo, Ivan

    2013-02-01

    The Nucleus of the Solitary Tract (NTS) receives gustatory and visceral information from afferent fibers in the vagus and projects to the Nucleus Paragigantocellularis (PGi), among several other brain region. PGi sends excitatory fibers, mostly glutamatergic, to the Locus Coeruleus (LC). In turn, LC sends noradrenergic projections to many areas of the brain, including hippocampus (HIPP) and amygdala. Here we show that the NTS-PGi-LC-HIPP pathway is required for the memory consolidation of object recognition (OR). The inhibition of NTS, PGi or LC by microinfusion of the GABA(A) receptor agonist, muscimol, into each of these structures up to 3h after object recognition memory training impairs its consolidation as assessed in a retention test 24h later. The posttraining microinfusion of the β-blocker, timolol into CA1 mimics this effect. Intra-CA1 NA microinfusion does not alter retention per se, but reverses the disruptive effect of muscimol given into NTS, PGi or LC. This effect of NA is shared by a microinfusion of NMDA into LC. These results support the idea that the NTS-PGi-LC-CA1 pathway contributes to memory consolidation through a β-noradrenergic mechanism in CA1. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Temperature-dependent and anisotropic optical response of layered Pr0.5Ca1.5MnO4 probed by spectroscopic ellipsometry

    NARCIS (Netherlands)

    Majidi, M. A.; Thoeng, E.; Gogoi, P. K.; Wendt, F.; Wang, S. H.; Santoso, I.; Asmara, T. C.; Handayani, I. P.; van Loosdrecht, P. H. M.; Nugroho, A. A.; Ruebhausen, M.; Rusydi, A.; Rübhausen, M.

    2013-01-01

    We study the temperature dependence as well as anisotropy of optical conductivity (sigma(1)) in the pseudocubic single crystal Pr0.5Ca1.5MnO4 using spectrocopic ellipsometry. Three transition temperatures are observed and can be linked to charge-orbital (T-CO/OO similar to 320 K),

  8. The analysis of hippocampus neuronal density (CA1 and CA3 after Ocimum sanctum ethanolic extract treatment on the young adulthood and middle age rat model

    Directory of Open Access Journals (Sweden)

    Dwi Liliek Kusindarta

    2018-02-01

    Full Text Available Aim: This study aimed to assess the changes in neuronal density in CA1 and CA3 regions in the hippocampus of young adulthood and middle age rat model after feeding by Ocimum sanctum ethanolic extract. Materials and Methods: In this research, 30 male Wistar rats consist of young to middle-aged rats were divided into three groups (3, 6, and 9 months old and treated with a different dosage of O. sanctum ethanolic extract (0, 50, and 100 mg/kg b.w. for 45 days. Furthermore, cresyl violet staining was performed to analyze hippocampus formation mainly in CA1 and CA3 area. The concentrations of acetylcholine (Ach in brain tissues were analyzed by enzyme-linked immunosorbent assay. Results: In our in vivo models using rat model, we found that the administration of O. sanctum ethanolic extract with a dosage of 100 mg/kg b.w. for 45 days induced the density of pyramidal cells significantly in CA1 and CA3 of the hippocampus. These results were supported by an increase of Ach concentrations on the brain tissue. Conclusion: The administration of O. sanctum ethanolic extract may promote the density of the pyramidal cells in the CA1 and CA3 mediated by the up-regulated concentration of Ach.

  9. Increasing age reduces expression of long term depression and dynamic range of transmission plasticity in CA1 field of the rat hippocampus

    NARCIS (Netherlands)

    Gispen, W.H.; Kamal, A.; Biessels, G.J.; Urban, I.J.

    1997-01-01

    Long-term depression, depotentiation and long-term potentiation of field excitatory postsynaptic potentials in the CA1 field of the hippocampus were studied in slices from two-, 12-, 24- and 36-week-old rats. Long-term potentiation was induced by stimulating afferent fibres for 1 s at 100 Hz.

  10. Effect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury.

    Science.gov (United States)

    Lee, Hui Young; Tae, Hyun-Jin; Cho, Geum-Sil; Kim, In Hye; Cho, Jeong Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Won, Moo-Ho; Park, Chan Woo; Cho, Jun Hwi; Seo, Jeong Yeol; Lee, Jae-Chul

    2016-06-01

    In the present study, we investigated the effect of ischemic preconditioning (IPC) on c-myb immunoreactivity as well as neuronal damage/death after a subsequent lethal transient ischemia in gerbils. IPC was subjected to a 2 min sublethal ischemia and a lethal transient ischemia was given 5 min transient ischemia. The animals in all of the groups were given recovery times of 1 day, 2 days and 5 days and we examined change in c-myb immunoreactivity as well as neuronal damage/death in the hippocampus induced by a lethal transient ischemia. A lethal transient ischemia induced a significant loss of cells in the stratum pyramidale (SP) of the hippocampal CA1 region at 5 days post-ischemia, and this insult showed that c-myb immunoreactivity in cells of the SP of the CA1 region was significantly decreased at 2 days post-ischemia and disappeared at 5 days post-ischemia. However, IPC effectively prevented the neuronal loss in the SP and showed that c-myb immunoreactivity was constitutively maintained in the SP after a lethal transient ischemia. Our results show that a lethal transient ischemia significantly decreased c-myb immunoreactivity in the SP of the CA1 region and that IPC well preserved c-myb immunoreactivity in the SP of the CA1 region. We suggest that the maintenance of c-myb might be related with IPC-mediated neuroprotection after a lethal ischemic insult.

  11. Delayed neuronal migration of protein kinase C gamma immunoreactive cells in hippocampal CA1 area after 48 h of moderate hypoxemia in the near term ovine fetus

    NARCIS (Netherlands)

    Douma, BRK; Nyakas, C; Luiten, PGM; Aarnoudse, JG

    1999-01-01

    The brain is uniquely sensitive to disturbances in energy and oxygen supply, particularly during the early stage of life. Since hypoxemia can indirectly activate the intracellular messenger protein kinase C (PKC), we studied the PKC gamma-immunoreaction in the fetal hippocampal CA1 region of naive

  12. Delayed neuronal migration of protein kinase Cγ immunoreactive cells in hippocampal CA1 area after 48 h of moderate hypoxemia in the near term ovine fetus

    NARCIS (Netherlands)

    Braaksma, Margriethe A; Douma, Bas R K; Nyakas, Csaba; Luiten, Paul G.M.; Aarnoudse, Jan G

    1999-01-01

    The brain is uniquely sensitive to disturbances in energy and oxygen supply, particularly during the early stage of life. Since hypoxemia can indirectly activate the intracellular messenger protein kinase C (PKC), we studied the PKCγ-immunoreaction in the fetal hippocampal CA1 region of naive (n=4),

  13. Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia.

    Science.gov (United States)

    Kim, In Hye; Jeon, Yong Hwan; Lee, Tae-Kyeong; Cho, Jeong Hwi; Lee, Jae-Chul; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Bich-Na; Kim, Yang Hee; Hong, Seongkweon; Yan, Bing Chun; Won, Moo-Ho; Lee, Yun Lyul

    2017-06-01

    Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning (2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult (5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity.

  14. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC, postnatal maternal deprivation (MD or the combination of the two (NIC+MD to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14 pups, MD increased pyramidal neurons, however, in dentate gyrus (DG, decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.

  15. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus

    Directory of Open Access Journals (Sweden)

    Marina D Jovanovic

    2014-01-01

    Full Text Available Background & objectives: Aluminum (Al toxicity is closely linked to the pathogenesis of Alzheimer′s disease (AD. This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx, hippocampus and basal forebrain (BF. Methods: Seven days after intra-hippocampal (CA1 sector injection of AlCl 3 into adult male Wistar rats they were subjected to two-way active avoidance (AA tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE and glucose-6-phosphate dehydrogenase (G6PDH were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. Results: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl 3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl 3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl 3 -treated rats but was moderate in G6PDH/AlCl 3 -treated rats. Strong tau staining was noted bilaterally in AlCl 3 -treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl 3 -treated rats. Interpretation & conclusions: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl 3 -treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential

  16. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus

    Science.gov (United States)

    Jovanović, Marina D.; Jelenković, Ankica; Stevanović, Ivana D.; Bokonjić, Dubravko; Čolić, Miodrag; Petronijević, Nataša; Stanimirović, Danica B.

    2014-01-01

    Background & objectives: Aluminum (Al) toxicity is closely linked to the pathogenesis of Alzheimer's disease (AD). This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx), hippocampus and basal forebrain (BF). Methods: Seven days after intra-hippocampal (CA1 sector) injection of AlCl3 into adult male Wistar rats they were subjected to two-way active avoidance (AA) tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE) and glucose-6-phosphate dehydrogenase (G6PDH) were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. Results: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl3 treatment. G6PDH administered prior to AlCl3 resulted in a reversal of the effects of AlCl3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl3-treated rats but was moderate in G6PDH/AlCl3-treated rats. Strong tau staining was noted bilaterally in AlCl3-treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl3-treated rats. Interpretation & conclusions: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl3-treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential therapeutic benefit. The present

  17. Spine surgery practice in Nigeria: present perceptions and future ...

    African Journals Online (AJOL)

    Background: Spine surgery is an emerging orthopaedic surgery subspecialty in Nigeria. There are about 2 designated spine surgeons and about 10 other orthopaedic surgeons and neurosurgeons that operate on the spine for 140 million Nigerians. This study is an evaluation of the perception of the health workers in the ...

  18. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and

  19. Surgical Disorders of the Spine in Adults: Aetiology and Outcome ...

    African Journals Online (AJOL)

    Background: There has been steady and progressive advancement in spine surgery in Nigeria with the increase in spine surgeons, availability of magnetic resonance imaging (MRI), intraoperative fluoroscopy and some spinal titanium implants. We decided to study the frequency of various spine pathologies requiring ...

  20. 49 CFR 572.19 - Lumbar spine, abdomen and pelvis.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine, abdomen and pelvis. 572.19 Section...-Year-Old Child § 572.19 Lumbar spine, abdomen and pelvis. (a) The lumbar spine, abdomen, and pelvis... component surfaces are clean, dry and untreated unless otherwise specified. (2) Attach the pelvis to the...

  1. Surgical treatment for spine diseases in Abuja: Early outcomes study ...

    African Journals Online (AJOL)

    Three patients with severe spinal cord injury died after discharge due to poor rehabilitation and care. Overall patients rated the ... patients to other countries for spine care. Keywords: Abuja, Anterior cervical discectomy, cervical spine traumatic instability, Lumbar, Nigeria, Operation, Outcome, Spine, Surgical fixation, Trauma ...

  2. Patterns of spine surgeries at Mulago Hospital | Kigera | East African ...

    African Journals Online (AJOL)

    Background: Spine surgery is a specialised area of orthopaedics that is still in its formative stages in Africa. It may be done to relieve symptoms, or stabilise the spine to allow rehabilitation of patients. This review analyses spine surgeries done in the period 2005-2009 in a National Referral Hospital. Objectives: Patterns of ...

  3. Congenital spine anomalies: the closed spinal dysraphisms

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Erin Simon [University of Pennsylvania, Department of Radiology, The Children' s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA (United States); Rossi, Andrea [G. Gaslini Children' s Hospital, Department of Radiology, Genoa (Italy)

    2015-09-15

    The term congenital spinal anomalies encompasses a wide variety of dysmorphology that occurs during early development. Familiarity with current terminology and a practical, clinico-radiologic classification system allows the radiologist to have a more complete understanding of malformations of the spine and improves accuracy of diagnosis when these entities are encountered in practice. (orig.)

  4. Cervical spine instability in rheumatoid arthritis

    African Journals Online (AJOL)

    1983-01-22

    Jan 22, 1983 ... the upper cervical spine. The atlanta-axial joint. Normal anatomy. The anterior surface ofthe dens forms a diarthrodial joint with the posterior border of the arch of the atlas. The structures mainly responsible for the ... of the dens should be 3 mm or less. If a line is drawn from the hard palate to the inner ...

  5. Biomechanics of the Flexion of Spine.

    Science.gov (United States)

    Hobbs, Harry K.; Aurora, T. S.

    1991-01-01

    The forces and torques experienced by the spine are examined to understand, and possibly avoid, low back pain. The structure, degrees of freedom, forces and torques when lifting objects, an experimental study, and other factors affecting the back are discussed. (KR)

  6. On the controversies of spine surgery research

    NARCIS (Netherlands)

    Jacobs, W.C.H.

    1974-01-01

    This thesis is about effectiveness of surgical interventions in the spine and the value of different methodologies for providing a valid answer. In the first part five systematic reviews were performed. One reviewed cervical degenerative disc disease comparing the different anterior fusion

  7. Degenerative intraspinal cyst of the cervical spine

    Directory of Open Access Journals (Sweden)

    Hidetoshi Nojiri

    2009-08-01

    Full Text Available We describe two cases of degenerative intraspinal cyst of the cervical spine that caused a gradually progressive myelopathy. One case had a cyst that arose from the facet joint and the other case had a cyst that formed in the ligamentum flavum. The symptoms improved immediately after posterior decompression by cystectomy with laminoplasty.

  8. History of Spine Deformity in Turkey.

    Science.gov (United States)

    Naderi, Sait; Dinc, Gulten

    2017-01-01

    Spine deformities are among the most important spinal disorders, affecting health-related life quality. Although there are some studies in past centuries, most spine deformity-related studies and research has started in the last century. Many surgical techniques, performed between 1960 and 1990, made scoliosis a touchable pathology. These techniques started with Harrington"s system, wiring techniques, pedicle screw techniques, and all other universal techniques. Anterior and 360 degree techniques contributed to this process. The use of spinal osteotomies, and recent technologies such as magnetic rods, intraoperative neuromonitoring added much to the body of knowledge of literature and improved the outcome. Advancement has not been limited to surgery only and diagnostic advancements had also impact to this process. Surgical techniques performed in the west have been performed soon in our countries. Currently almost all surgical techniques for treatment of spine deformities can be performed in our country. This article reviews historical aspects related to the diagnosis and treatment of spine deformities in Turkey.

  9. Retropharyngeal cold abscess without Pott's spine

    African Journals Online (AJOL)

    space is one of the rareforms of extrapulmonary tuberculosis. Early diagnosis and ... We present a case of tuberculous retropharyngeal abscess in an adult woman without tuberculosis of the cervical spine who was managed surgically by aspirating the .... settings of immune suppression, such as diabetes. A plain lateral.

  10. Histopathology of Synovial Cysts of the Spine.

    Science.gov (United States)

    Chebib, Ivan; Chang, Connie Y; Schwab, Joseph H; Kerr, Darcy A; Deshpande, Vikram; Nielsen, G Petur

    2018-01-04

    Cystic lesions derived from the synovial and ligamentous structures of the spine have varied histologic appearances. Not uncommonly, there is discrepancy between the clinico-radiologic diagnosis and histology. Therefore, we sought to characterize the histologic features of tissue submitted as "synovial cysts" of the spine. Resected specimens of the spine labeled "synovial cysts" and "lumbar cysts" were histologically evaluated and classified based on histopathologic features. 75 histologic samples of spinal cysts were identified. 31 were classified as synovial cysts (definite synovial lining), 28 showed pseudocystic degeneration of the ligamentum flavum, 7 showed pseudocyst formation without evidence of synovial lining or degeneration of the ligamentum flavum, 8 showed cyst contents only or no histologic evidence of cyst wall for evaluation. Twenty-five cases (33%), especially those showing pseudocystic degeneration of the ligamentum flavum were associated with very characteristic tumor calcinosis-like calcium deposition with surrounding foreign-body giant cell reaction. Histology of "synovial cysts" of the spine shows varied types of cysts; a large proportion are not synovial lined cysts but rather show pseudocystic degenerative changes of the ligamentum flavum often associated with very characteristic finely granular calcifications and foreign body giant cell reaction. This may have implications, not only in understanding the pathogenesis of these lesions, but also in their varied response to non-surgical interventions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Minimally invasive procedures on the lumbar spine.

    Science.gov (United States)

    Skovrlj, Branko; Gilligan, Jeffrey; Cutler, Holt S; Qureshi, Sheeraz A

    2015-01-16

    Degenerative disease of the lumbar spine is a common and increasingly prevalent condition that is often implicated as the primary reason for chronic low back pain and the leading cause of disability in the western world. Surgical management of lumbar degenerative disease has historically been approached by way of open surgical procedures aimed at decompressing and/or stabilizing the lumbar spine. Advances in technology and surgical instrumentation have led to minimally invasive surgical techniques being developed and increasingly used in the treatment of lumbar degenerative disease. Compared to the traditional open spine surgery, minimally invasive techniques require smaller incisions and decrease approach-related morbidity by avoiding muscle crush injury by self-retaining retractors, preventing the disruption of tendon attachment sites of important muscles at the spinous processes, using known anatomic neurovascular and muscle planes, and minimizing collateral soft-tissue injury by limiting the width of the surgical corridor. The theoretical benefits of minimally invasive surgery over traditional open surgery include reduced blood loss, decreased postoperative pain and narcotics use, shorter hospital length of stay, faster recover and quicker return to work and normal activity. This paper describes the different minimally invasive techniques that are currently available for the treatment of degenerative disease of the lumbar spine.

  12. Pediatric spine imaging post scoliosis surgery.

    Science.gov (United States)

    Alsharief, Alaa N; El-Hawary, Ron; Schmit, Pierre

    2018-01-01

    Many orthopedic articles describe advances in surgical techniques and implants used in pediatric scoliosis surgery. However, even though postoperative spine imaging constitutes a large portion of outpatient musculoskeletal pediatric radiology, few, if any, radiology articles discuss this topic. There has been interval advancement over the last decades of the orthopedic procedures used in the treatment of spinal scoliosis in adolescents with idiopathic scoliosis. The goal of treatment in these patients is to stop the progression of the curve by blocking the spinal growth and correcting the deformity as much as possible. To that end, the authors in this paper discuss postoperative imaging findings of Harrington rods, Luque rods, Luque-Galveston implants and segmental spinal fusion systems. Regarding early onset scoliosis, the guiding principles used for adolescent idiopathic scoliosis do not apply to a growing spine because they would impede lung development. As a result, other devices have been developed to correct the curve and to allow spinal growth. These include spine-based growing rods, vertically expandable prosthetic titanium rods (requiring repetitive surgeries) and magnetically controlled growing rods (with a magnetic locking/unlocking system). Other more recent systems are Shilla and thoracoscopic anterior vertebral body tethering, which allow guided growth of the spine without repetitive interventions. In this paper, we review the radiologic appearances of different orthopedic implants and techniques used to treat adolescent idiopathic scoliosis and early onset scoliosis. Moreover, we present the imaging findings of the most frequent postoperative complications.

  13. Scalp dysesthesia related to cervical spine disease.

    Science.gov (United States)

    Thornsberry, Laura A; English, Joseph C

    2013-02-01

    Scalp dysesthesia is characterized by abnormal sensations of the scalp in the absence of any other unusual physical examination findings. The pathogenesis of this condition is unknown but has been reported in the setting of underlying psychiatric disorders. Other localized pruritic syndromes, including brachioradial pruritus and notalgia paresthetica, have been associated with pathologic conditions of the spine and have been successfully treated with gabapentin. Among 15 women identified in a retrospective review of medical records as having been seen with scalp dysesthesia, 14 patients had cervical spine disease confirmed by imaging. The most common finding on imaging was degenerative disk disease, with 10 of 14 patients having these changes at C5-C6. Other abnormal imaging findings included anterolisthesis, osteophytic spurring, lordosis, kyphosis, and nerve root impingement. A gabapentin regimen (topical or oral) had been recommended to 14 patients; of 7 patients who were followed up, 4 patients noted improvement in symptoms when taking gabapentin. Patients with scalp dysesthesia also had abnormal cervical spine images. Chronic muscle tension placed on the pericranial muscles and scalp aponeurosis secondary to the underlying cervical spine disease may lead to the symptoms of scalp dysesthesia.

  14. AOSpine subaxial cervical spine injury classification system

    NARCIS (Netherlands)

    Vaccaro, Alexander R.; Koerner, John D.; Radcliff, Kris E.; Oner, F. Cumhur|info:eu-repo/dai/nl/188615326; Reinhold, Maximilian; Schnake, Klaus J.; Kandziora, Frank; Fehlings, Michael G.; Dvorak, Marcel F.; Aarabi, Bizhan; Rajasekaran, Shanmuganathan; Schroeder, Gregory D.; Kepler, Christopher K.; Vialle, Luiz R.

    2016-01-01

    Purpose: This project describes a morphology-based subaxial cervical spine traumatic injury classification system. Using the same approach as the thoracolumbar system, the goal was to develop a comprehensive yet simple classification system with high intra- and interobserver reliability to be used

  15. Cervical human spine loads during traumatomechanical investigations

    NARCIS (Netherlands)

    Kallieris, D.; Rizzetti, A.; Mattern. R.; Thunnissen, J.G.M.; Philippens, M.M.G.M.

    1996-01-01

    The last decade's improvements in automotive safety resulted into a significant decrease of fatal injuries. However, due to the use of belts and airbags it can be observed that cervical spine injuries, non-severe and severe, have become more important. It seems that inertial loading of the neck by

  16. Surgical site infection in posterior spine surgery

    African Journals Online (AJOL)

    2016-03-20

    Mar 20, 2016 ... Comorbidities such as diabetes mellitus, obesity, and anemia were significant risk factors. The organisms cultured were Pseudomonas and Staphylococcus species. Conclusions: Wound infection is a significant complication of posterior spine surgery. This causes distress for both patient and surgeons alike ...

  17. Development of the Korean Spine Database and Automatic Surface Mesh Intersection Algorithm for Constructing e-Spine Simulator

    OpenAIRE

    Seo, Dongmin; Jung, Hanmin; Sung, Won-Kyung; Nam, Dukyun

    2014-01-01

    By 2026, Korea is expected to surpass the UN’s definition of an aged society and reach the level of a superaged society. With an aging population come increased disorders involving the spine. To prevent unnecessary spinal surgery and support scientific diagnosis of spinal disease and systematic prediction of treatment outcomes, we have been developing e-Spine, which is a computer simulation model of the human spine. In this paper, we present the Korean spine database and automatic surface mes...

  18. Ti-Ni Rods with Variable Stiffness for Spine Stabilization: Manufacture and Biomechanical Evaluation

    Science.gov (United States)

    Brailovski, Vladimir; Facchinello, Yann; Brummund, Martin; Petit, Yvan; Mac-Thiong, Jean-Marc

    2016-03-01

    A new concept of monolithic spinal rods with variable flexural stiffness is proposed to reduce the risk of adjacent segment degeneration and vertebral fracture, while providing adequate stability to the spine. The variability of mechanical properties is generated by locally annealing Ti-Ni shape memory alloy rods. Ten-minute Joule effect annealing allows the restoration of the superelasticity in the heated portion of the rod. Such processing also generates a mechanical property gradient between the heated and the unheated zones. A numerical model simulating the annealing temperature and the distributions of the mechanical properties was developed to optimize the Joule-heating strategy and to modulate the rod's overall flexural stiffness. Subsequently, the rod model was included in a finite element model of a porcine lumbar spine to study the effect of the rod's stiffness profiles on the spinal biomechanics.

  19. Laser triangulation measurements of scoliotic spine curvatures.

    Science.gov (United States)

    Čelan, Dušan; Jesenšek Papež, Breda; Poredoš, Primož; Možina, Janez

    2015-01-01

    The main purpose of this research was to develop a new method for differentiating between scoliotic and healthy subjects by analysing the curvatures of their spines in the cranio-caudal view. The study included 247 subjects with physiological curvatures of the spine and 28 subjects with clinically confirmed scoliosis. The curvature of the spine was determined by a computer analysis of the surface of the back, measured with a non-invasive, 3D, laser-triangulation system. The determined spinal curve was represented in the transversal plane, which is perpendicular to the line segment that was defined by the initial point and the end point of the spinal curve. This was achieved using a rotation matrix. The distances between the extreme points in the antero-posterior (AP) and left-right (LR) views were calculated in relation to the length of the spine as well as the quotient of these two values LR/AP. All the measured parameters were compared between the scoliotic and control groups using the Student's t-Test in case of normal data and Kruskal-Wallis test in case of non-normal data. Besides, a comprehensive diagram representing the distances between the extreme points in the AP and LR views was introduced, which clearly demonstrated the direction and the size of the thoracic and lumbar spinal curvatures for each individual subject. While the distances between the extreme points of the spine in the AP view were found to differ only slightly between the groups (p = 0.1), the distances between the LR extreme points were found to be significantly greater in the scoliosis group, compared to the control group (p < 0.001). The quotient LR/AP was statistically significantly different in both groups (p < 0.001). The main innovation of the presented method is the ability to differentiate a scoliotic subject from a healthy subject by assessing the curvature of the spine in the cranio-caudal view. Therefore, the proposed method could be useful for human posture

  20. Cervical spine injury in child abuse: report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Rooks, V.J.; Sisler, C.; Burton, B. [Tripler Army Medical Center, Honolulu, HI (United States). Dept. of Radiology

    1998-03-01

    Pediatric cervical spine injuries have rarely been reported in the setting of child abuse. We report two cases of unsuspected lower cervical spine fracture-dislocation in twin infant girls who had no physical examination findings to suggest cervical spine injury. Classic radio-graphic findings of child abuse were noted at multiple other sites in the axial and appendicular skeleton. Magnetic resonance (MR) imaging proved to be valuable in both the initial evaluation of the extent of cervical spine injury and in following postoperative changes. The unexpected yet devastating findings in these two cases further substantiate the importance of routine evaluation of the cervical spine in cases of suspected child abuse. (orig.)

  1. Sodium Dynamics in Pyramidal Neuron Dendritic Spines: Synaptically Evoked Entry Predominantly through AMPA Receptors and Removal by Diffusion.

    Science.gov (United States)

    Miyazaki, Kenichi; Ross, William N

    2017-10-11

    Dendritic spines are key elements underlying synaptic integration and cellular plasticity, but many features of these important structures are not known or are controversial. We examined these properties using newly developed simultaneous sodium and calcium imaging with single-spine resolution in pyramidal neurons in rat hippocampal slices from either sex. Indicators for both ions were loaded through the somatic patch pipette, which also recorded electrical responses. Fluorescence changes were detected with a high-speed, low-noise CCD camera. Following subthreshold electrical stimulation, postsynaptic sodium entry is almost entirely through AMPA receptors with little contribution from entry through NMDA receptors or voltage-gated sodium channels. Sodium removal from the spine head is through rapid diffusion out to the dendrite through the spine neck with a half-removal time of ∼16 ms, which suggests the neck has low resistance. Peak [Na(+)]i changes during single EPSPs are ∼5 mm Stronger electrical stimulation evoked small plateau potentials that had significant longer-lasting localized [Na(+)]i increases mediated through NMDA receptors.SIGNIFICANCE STATEMENT Dendritic spines, small structures that are difficult to investigate, are important elements in the fundamental processes of synaptic integration and plasticity. The main tool for examining these structures has been calcium imaging. However, the kinds of information that calcium imaging reveals is limited. We used newly developed, high-speed, simultaneous sodium and calcium imaging to examine ion dynamics in spines in hippocampal pyramidal neurons. We found that following single subthreshold synaptic activation most sodium entry was through AMPA receptors and not through NMDA receptors or through voltage-gated sodium channels and that the spine neck is not a significant resistance barrier. Most spine mechanisms are linear. However, regenerative NMDA conductances can be activated with stronger stimulation

  2. The polarity protein Angiomotin p130 controls dendritic spine maturation.

    Science.gov (United States)

    Wigerius, Michael; Quinn, Dylan; Diab, Antonios; Clattenburg, Leanne; Kolar, Annette; Qi, Jiansong; Krueger, Stefan R; Fawcett, James P

    2018-01-09

    The actin cytoskeleton is essential for the structural changes in dendritic spines that lead to the formation of new synapses. Although the molecular mechanisms underlying spine formation are well characterized, the events that drive spine maturation during development are largely unknown. In this study, we demonstrate that Angiomotin (AMOT-130) is necessary for spine stabilization. AMOT-130 is enriched in mature dendritic spines and functions to stabilize the actin cytoskeleton by coupling F-actin to postsynaptic protein scaffolds. These functions of AMOT are transiently restricted during postnatal development by phosphorylation imposed by the kinase Lats1. Our study proposes that AMOT-130 is essential for normal spine morphogenesis and identifies Lats1 as an upstream regulator in this process. Moreover, our findings may link AMOT-130 loss and the related spine defects to neurological disorders. © 2018 Wigerius et al.

  3. Does applying the Canadian Cervical Spine rule reduce cervical spine radiography rates in alert patients with blunt trauma to the neck? A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Yesupalan Rajam

    2008-06-01

    Full Text Available Abstract Background A cautious outlook towards neck injuries has been the norm to avoid missing cervical spine injuries. Consequently there has been an increased use of cervical spine radiography. The Canadian Cervical Spine rule was proposed to reduce unnecessary use of cervical spine radiography in alert and stable patients. Our aim was to see whether applying the Canadian Cervical Spine rule reduced the need for cervical spine radiography without missing significant cervical spine injuries. Methods This was a retrospective study conducted in 2 hospitals. 114 alert and stable patients who had cervical spine radiographs for suspected neck injuries were included in the study. Data on patient demographics, high risk & low risk factors as per the Canadian Cervical Spine rule and cervical spine radiography results were collected and analysed. Results 28 patients were included in the high risk category according to the Canadian Cervical Spine rule. 86 patients fell into the low risk category. If the Canadian Cervical Spine rule was applied, there would have been a significant reduction in cervical spine radiographs as 86/114 patients (75.4% would not have needed cervical spine radiograph. 2/114 patients who had significant cervical spine injuries would have been identified when the Canadian Cervical Spine rule was applied. Conclusion Applying the Canadian Cervical Spine rule for neck injuries in alert and stable patients would have reduced the use of cervical spine radiographs without missing out significant cervical spine injuries. This relates to reduction in radiation exposure to patients and health care costs.

  4. Repeat spine imaging in transferred emergency department patients.

    Science.gov (United States)

    Bible, Jesse E; Kadakia, Rishin J; Kay, Harrison F; Zhang, Chi E; Casimir, Geoffrey E; Devin, Clinton J

    2014-02-15

    Retrospective study. Assess frequency of repeat spine imaging in patients transferred with known spine injuries from outside hospital (OSH) to tertiary receiving institution (RI). Unnecessary repeat imaging after transfer has started to become a recognized problem with the obvious issues related to repeat imaging along with potential for iatrogenic injury with movement of patients with spine problems. Consecutive adult patients presenting to a single 1-level trauma center with spine injuries during a 51-month period were reviewed (n = 4500), resulting in 1427 patients transferred from OSH emergency department. All imaging and radiology reports from the OSH were reviewed, as well as studies performed at RI. A repeat was the same imaging modality used on the same spine region as OSH imaging. The overall rate of repeat spine imaging for both OSH imaging sent and not sent was 23%, and 6% if repeat spine imaging via traumagram (partial/full-body computed tomography [CT]) was excluded as a repeat. The overall rate of repeat CT was 29% (7% dedicated spine CT scans and 22% part of nondedicated spine CT scan).An observation of only those patients with OSH imaging that was sent and viewable revealed that 23% underwent repeat spine imaging with 23% undergoing repeat spine CT and 41% repeat magnetic resonance imaging.In those patients with sent and viewable OSH imaging, a lack of reconstructions prompted 14% of repeats, whereas inadequate visualization of injury site prompted 8%. In only 8% of the repeats did it change management or provide necessary surgical information. This study is the first to investigate the frequency of repeat spine imaging in transfers with known spine injuries and found a substantially high rate of repeat spine CT with minimal alteration in care. Potential solutions include only performing scans at the OSH necessary to establish a diagnosis requiring transfer and improving communication between OSH and RI physicians. 4.

  5. Changes in cerebral blood flow and blood brain barrier in the gerbil hippocampal CA1 region following repeated brief cerebral ischemia.

    Science.gov (United States)

    Jingtao, J.; Sato, S.; Yamanaka, N.

    1999-12-01

    Neuronal damage and changes in cerebral blood flow (CBF) and the permeability of the blood-brain barrier (BBB) following repeated brief periods of ischemia were studied in Mongolian gerbils. The cerebral ischemia was produced by three repeated occlusions of bilateral common carotid arteries for 3 min at 1-h intervals. CBF and permeability of the BBB were examined with tracers (China ink and silver nitrate) at 1, 3, and 7 days post ischemia using light and electron microscopy. Three days after the reperfusion, significant extravasation of tracers, consequential reduction of CBF, extensive neuronal destruction, and intravascular platelet aggregation were observed. Such vascular changes in the CA1 region were more severe than those in the frontal cortex. These findings strongly support the view that microcirculatory disturbance may be a mechanism responsible for delayed neuronal death in the CA1 region of the hippocampus.

  6. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats

    Directory of Open Access Journals (Sweden)

    Malihe Sadeghi

    2017-12-01

    Full Text Available Objective(s: Cholecystokinin (CCK has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S was injected (1.6 µg/kg, IP before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long term potentiation (LTP in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization in order to investigate synaptic plasticity. Results: Stress impaired spatial memory significantly (P

  7. Endoscopic Spine Surgery: Distance Patients Will Travel for Minimally Invasive Spine Surgery.

    Science.gov (United States)

    Telfeian, Albert E; Iprenburg, Menno; Wagner, Ralf

    2017-01-01

    Transforaminal lumbar endoscopic discectomy is a minimally invasive spine surgery procedure performed principally for the treatment of lumbar herniated discs. Endoscopic spine surgeons around the world have noted how far patients will travel to undergo this minimally invasive spine surgery, but the actual distance patients travel has never been investigated. We present here our analysis of how far patients will travel for endoscopic spine surgery by studying the referral patterns of patients to 3 centers in 3 different countries. Retrospective chart review of de-identified patient data was performed to analyze the distance patients travel for spine surgery. Patient demographic data was analyzed for patients undergoing transforaminal lumbar endoscopic discectomy procedures over the same 8 month period in 2015 at centers in the United States (U.S.), Netherlands, and Germany. Travel distances for patients were determined for 327 patients. The average distance traveled for the U.S. center was 91 miles, the Dutch center was 287 miles, and the German center was 103 miles. For the U.S. center 16% of patients traveled out of state for surgery and for the European centers combined, 4% of patients traveled out of the country for surgery. The period of data analyzed was less than one year and the data collected was analyzed retrospectively. Quality metrics in health care tend to be focused on how health care is delivered. Another health care metric that focuses more on what patients desire is presented here: how far patients will travel for innovative spine care.Key words: Endoscopic spine surgery, transforaminal, minimally invasive, travel, lumbar disc herniation.

  8. The Effect of Rosa Damascena Extract on Expression of Neurotrophic Factors in the CA1 Neurons of Adult Rat Hippocampus Following Ischemia

    Directory of Open Access Journals (Sweden)

    Seyedeh Farzaneh Moniri

    2018-01-01

    Full Text Available Ischemic stroke is an important cause of death and disability in the world. Brain ischemia causes damage to brain cell, and among brain neurons, pyramidal neurons of the hippocampal CA1 region are more susceptive to ischemic injury. Recent findings suggest that neurotrophic factors protect against ischemic cell death. A dietary component of Rosa damascene extract possibly is associated with expression of neurotrophic factors mRNA following ischemia, so it can have therapeutic effect on cerebral ischemia. The present study attempts to evaluate the neuroprotective effect of Rosa damascene extract on adult rat hippocampal neurons following ischemic brain injury. Forty-eight adult male Wistar rats (weighing 250±20 gr and ages 10-12 weeks used in this study, animals randomly were divided into 6 groups including Control, ischemia/ reperfusion (IR, vehicle and three treated groups (IR+0.5, 1, 2 mg/ml extract. Global ischemia was induced by bilateral common carotid arteries occlusion for 20 minutes. The treatment was done by different doses of Rosa damascena extract for 30 days. After 30 days cell death and gene expression in neurons of the CA1 region of the hippocampus were evaluated by Nissl staining and real time PCR assay. We found a significant decrease in NGF, BDNF and NT3 mRNA expression in neurons of CA1 region of the hippocampus in ischemia group compared to control group (P<0.0001. Our results also revealed that the number of dark neurons significantly increases in ischemia group compared to control group (P<0.0001. Following treatment with Rosa damascene extract reduced the number of dark neurons that was associated with NGF, NT3, and BDNF mRNA expression. All doses level had positive effects, but the most effective dose of Rosa damascena extract was 1 mg/ml. Our results suggest that neuroprotective activity of Rosa damascena can enhance hippocampal CA1 neuronal survival after global ischemia.

  9. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  10. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4 beta2* nicotinic receptor activation

    Directory of Open Access Journals (Sweden)

    L. Andrew Bell

    2015-04-01

    Full Text Available Acetylcholine (ACh release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP-expressing interneurons that selectively innervate other interneurons (VIP/IS were excited by ACh through the activation of nicotinic receptors containing alpah4 and beta2 subunits (alpha4 beta2*. ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC barrages blocked by dihydro-beta-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by 42* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of 42* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation.

  11. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats.

    Science.gov (United States)

    Oomura, Y; Hori, N; Shiraishi, T; Fukunaga, K; Takeda, H; Tsuji, M; Matsumiya, T; Ishibashi, M; Aou, S; Li, X L; Kohno, D; Uramura, K; Sougawa, H; Yada, T; Wayner, M J; Sasaki, K

    2006-11-01

    Leptin, an adipocytokine encoded by an obesity gene and expressed in adipose tissue, affects feeding behavior, thermogenesis, and neuroendocrine status via leptin receptors distributed in the brain, especially in the hypothalamus. Leptin may also modulate the synaptic plasticity and behavioral performance related to learning and memory since: leptin receptors are found in the hippocampus, and both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines that modulate long-term potentiation (LTP) in the hippocampus. We therefore examined the effect of leptin on (1) behavioral performance in emotional and spatial learning tasks, (2) LTP at Schaffer collateral-CA1 synapses, (3) presynaptic and postsynaptic activities in hippocampal CA1 neurons, (4) the intracellular Ca(2+) concentration ([Ca(2+)](i)) in CA1 neurons, and (5) the activity of Ca(2+)/calmodulin protein kinase II (CaMK II) in the hippocampal CA1 tissue that exhibits LTP. Intravenous injection of 5 and/or 50mug/kg, but not of 500mug/kg leptin, facilitated behavioral performance in passive avoidance and Morris water-maze tasks. Bath application of 10(-12)M leptin in slice experiments enhanced LTP and increased the presynaptic transmitter release, whereas 10(-10)M leptin suppressed LTP and reduced the postsynaptic receptor sensitivity to N-methyl-d-aspartic acid. The increase in the [Ca(2+)](i) induced by 10(-10)M leptin was two times greater than that induced by 10(-12)M leptin. In addition, the facilitation (10(-12)M) and suppression (10(-10)M) of LTP by leptin was closely associated with an increase and decrease in Ca(2+)-independent activity of CaMK II. Our results show that leptin not only affects hypothalamic functions (such as feeding, thermogenesis, and neuroendocrine status), but also modulates higher nervous functions, such as the behavioral performance related to learning and memory and hippocampal synaptic plasticity.

  12. Regular exercise prevents sleep deprivation associated impairment of long-term memory and synaptic plasticity in the CA1 area of the hippocampus.

    Science.gov (United States)

    Zagaar, Munder; Dao, An; Levine, Amber; Alhaider, Ibrahim; Alkadhi, Karim

    2013-05-01

    The present study aimed to investigate the effects of treadmill exercise on sleep deprivation (S-D)-induced impairment of hippocampal dependent long-term memory, late phase long-term potentiation (L-LTP) and its signaling cascade in the cornu ammonis 1 (CA1) area. Animals were conditioned to run on treadmills for 4 weeks then deprived of sleep for 24 h using the columns-in-water method. We tested the effect of exercise and/or S-D on behavioral performance using a post-learning paradigm in the radial arm water maze (RAWM) and in vivo extracellular recording in the CA1 area. The levels of L-LTP-related molecules in the CA1 area were then assessed both before and after L-LTP induction. After 24 h of S-D, spatial long-term memory impairment in the RAWM and L-LTP suppression was prevented by 4 weeks of regular exercise. Regular exercise also restored the S-D-associated decreases in the basal levels of key signaling molecules such as: calcium/calmodulin kinase IV (CaMKIV), mitogen-activated protein kinase (MAPK/ERK), phosphorylated cAMP response element-binding protein (P-CREB) and brain derived neurotrophic factor (BDNF), in the CA1 area. After L-LTP induction, regular exercise also prevented the S-D-induced down regulation of BDNF and P-CREB protein levels. The results suggest that our exercise protocol may prevent 24-h S-D-induced impairments in long-term memory and LTP by preventing deleterious changes in the basal and post-stimulation levels of P-CREB and BDNF associated with S-D.

  13. The Effect of Rosa Damascena Extract on Expression of Neurotrophic Factors in the CA1 Neurons of Adult Rat Hippocampus Following Ischemia.

    Science.gov (United States)

    Moniri, Seyedeh Farzaneh; Hedayatpour, Azim; Hassanzadeh, Gholamreza; Vazirian, Mahdi; Karimian, Morteza; Belaran, Maryam; Ejtemaie Mehr, Shahram; Akbari, Mohamad

    2017-12-01

    Ischemic stroke is an important cause of death and disability in the world. Brain ischemia causes damage to brain cell, and among brain neurons, pyramidal neurons of the hippocampal CA1 region are more susceptive to ischemic injury. Recent findings suggest that neurotrophic factors protect against ischemic cell death. A dietary component of Rosa damascene extract possibly is associated with expression of neurotrophic factors mRNA following ischemia, so it can have therapeutic effect on cerebral ischemia. The present study attempts to evaluate the neuroprotective effect of Rosa damascene extract on adult rat hippocampal neurons following ischemic brain injury. Forty-eight adult male Wistar rats (weighing 250±20 gr and ages 10-12 weeks) used in this study, animals randomly were divided into 6 groups including Control, ischemia/ reperfusion (IR), vehicle and three treated groups (IR+0.5, 1, 2 mg/ml extract). Global ischemia was induced by bilateral common carotid arteries occlusion for 20 minutes. The treatment was done by different doses of Rosa damascena extract for 30 days. After 30 days cell death and gene expression in neurons of the CA1 region of the hippocampus were evaluated by Nissl staining and real time PCR assay. We found a significant decrease in NGF, BDNF and NT3 mRNA expression in neurons of CA1 region of the hippocampus in ischemia group compared to control group (Pextract reduced the number of dark neurons that was associated with NGF, NT3, and BDNF mRNA expression. All doses level had positive effects, but the most effective dose of Rosa damascena extract was 1 mg/ml. Our results suggest that neuroprotective activity of Rosa damascena can enhance hippocampal CA1 neuronal survival after global ischemia.

  14. Different Role of CA1 5HT3 Serotonin Receptors on Memory Acquisition Deficit Induced by Total (TSD) and REM Sleep Deprivation (RSD).

    Science.gov (United States)

    Eydipour, Zainab; Vaezi, Gholamhassan; Nasehi, Mohammad; Haeri-Rouhani, Seyed-Ali; Zarrindast, Mohammad-Reza

    2017-09-01

    Serotonin receptors such as 5-HT3 plays critical role in regulation of sleep, wake cycle and cognitive process. Thus, we investigated the role of CA1 5HT3 serotonin receptors in memory acquisition deficit induced by total sleep deprivation (TSD; for 24 hour) and REM sleep deprivation (RSD; for 24 hour). Pain perception and locomotor activity were also assessed as factors that may affect the memory process. Modified water box and multi-platform apparatus were used to induce TSD or RSD, respectively. Passive avoidance, hot plate and open field devices were used for assessment of memory acquisition, pain and locomotor activity, respectively. Totally, 152 male Wistar rats were used in the study. Pre-training, intra-CA1 injection of 5-HT3 receptor agonist Chlorophenylbiguanide (Mchl; 0.01 and 0.001 µg/rat; P RSD reduced memory acquisition (P RSD induced analgesia effect. The amnesia induced by TSD was restored by subthreshold dose of Y25130 (0.001 µg/rat; P RSD rats, subthreshold dose of both drugs did not alter memory acquisition deficit and increased locomotor activity (P RSD rats. Based on the above data, CA1 5HT3 receptors seem to play a critical role in cognitive and non-cognitive behaviors induced by TSD and RSD.

  15. Control of IsAHP in mouse hippocampus CA1 pyramidal neurons by RyR3-mediated calcium-induced calcium release.

    Science.gov (United States)

    van de Vrede, Y; Fossier, P; Baux, G; Joels, M; Chameau, P

    2007-11-01

    In several neuronal preparations, the ryanodine-sensitive calcium store was reported to participate in the generation of slow afterhyperpolarization currents (IsAHP) involved in spike frequency adaptation. We show that calcium release from the ryanodine-sensitive calcium store is a major determinant of the triggering of IsAHP in mouse CA1 pyramidal neurons. Whole-cell patch clamp recordings in hippocampus slices show that the intracellular calcium stores depletion using an inhibitor of the endoplasmic reticulum Ca2+-ATPase (5 microM cyclopiazonic acid), as well as the specific blockade of ryanodine receptors (100 microM ryanodine) both reduced the IsAHP by about 70%. Immunohistology, using an anti-RyR3 specific antibody, indicates that RyR3 expression is particularly enriched in the CA1 apical dendrites (considered as the most important site for sAHP generation). We show that our anti-RyR3 antibody acts as a functional RyR3 antagonist and induced a reduction in IsAHP by about 70%. The additional ryanodine application (100 micro M) did not further affect IsAHP, thus excluding RyR2 in IsAHP activation. Our results argue in favor of a specialized function of RyR3 in CA1 pyramidal cells in triggering IsAHP due to their localization in the apical dendrite.

  16. Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus.

    Science.gov (United States)

    Kovács, Krisztián A; O'Neill, Joseph; Schoenenberger, Philipp; Penttonen, Markku; Ranguel Guerrero, Damaris K; Csicsvari, Jozsef

    2016-01-01

    During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory input-driven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity-related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles.

  17. Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus.

    Directory of Open Access Journals (Sweden)

    Krisztián A Kovács

    Full Text Available During hippocampal sharp wave/ripple (SWR events, previously occurring, sensory input-driven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity-related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles.

  18. [Effect of Yangxue Qingnao Granule on the Expression of CD11b in CA1 Region of Hippocampus of Vascular Dementia Rats].

    Science.gov (United States)

    Li, Jing; Ma, Yuan-yuan; Liu, Bin; Mao, Wen-jing; Zhang, Jin-xia; Li, Shi-ying

    2016-05-01

    To observe the effect of Yangxue Qingnao Granule (YQG) on the expression of CD11b in CA1 region of hippocampus of vascular dementia rats, and to explore its regulation on microglias. Totally 144 SD rats were randomly divided into the sham-operation group, the vascular dementia model group (model), and the YQG treated group (treated). The vascular dementia rat model was prepared by modified Pulsinelli's four-vessel occlusion. Rats in the sham-operation group and the model group were administered with normal saline -(at the daily dose of 10 mL/kg) by gastrogavage, while those in the treated group were administered with YQG (0.32 g/mL, at the daily dose of 10 mL/kg) by gastrogavage. All administration was performed once per day for 8 successive weeks. The expression of CD11b in CA1 region of hippocampus of vascular dementia rats was detected at week 1, 2, 4, and 8, respectively. Compared with the sham-operation group, the expression of CD11b in CA1 region of hippocampus of vascular dementia rats were significantly enhanced in the model group at each time point (P vascular dementia rats significantly decreased in the treated group at each time point (P vascular dementia rats, and YQG could inhibit activation and proliferation of microglias.

  19. The Effect of N-acetyl-cysteine on Memory Retrieval and the Number of Intact Neurons of Hippocampal CA1 Area in Streptozotocin-induced Alzheimeric Male Rats

    Directory of Open Access Journals (Sweden)

    Niloufar Darbandi

    2018-01-01

    Full Text Available Abstract Background: Alzheimer is a neurodegenerative disease wich caused memory impairment, reduced cognitive functions, intellectual ability and behavior changes. In this study, the effect of N-acetyl-cysteine (NAC as a strong antioxidant on memory deficiency and number of CA1 pyramidal neurons in Streptozotocine (STZ - induced Alzheimeric rats were studied. Materials and Methods: 32 Male Wistar rats were divided into four groups: sham group, streptozotocin group, treated group with streptozotocin plus N-acetyl-cysteine, and treated group with N-acetyl-cysteine alone. Intracerebroventricular (ICV administration of STZ was done in the first and the third day of surgery and i.p injection of N-acetyl-cysteine was done in the fourth of surgery. After the memory test, the animals were killed and their brains were fixed and density of intact neurons in the CA1 area of the hippocampus was investigated. Statistical analysis was performed with software SPSS, ANOVA and Prisme software. The level of statistical significance was set at p 0.05. Conclusion: N-acetyl-cysteine improved memory retrieval and hippocampal CA1 area intact neurons in streptozotocin-induced Alzheimeric male rats.

  20. Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3-CA4 afferents with kainic acid.

    Science.gov (United States)

    Nadler, J V; Perry, B W; Cotman, C W

    1980-01-20

    Intraventricular injections of kainic acid were used to destroy the hippocampal CA3-CA4 cells, thus denervating the inner third of the molecular layer of the fascia dentata and stratum radiatum and stratum oriens of area CA1. The responses of intact afferents to such lesions were then examined histologically. The hippocampal mossy fibers densely reinnervated the inner portion of the dentate molecular layer after bilateral destruction of CA4 neurons and to a lesser extent after unilateral destruction. Septohippocampal fibers replaced CA4-derived fibers in the dentate molecular layer only after particularly extensive bilateral CA4 lesions. Medial perforant path fibers showed no anatomical response to any of these lesions. Neither septohippocampal, temporoammonic nor mossy fibers proliferated in or grew into the denervated laminae of area CA1. These results show a preferential ordering in the reinnervation of dentate granule cells which is not readily explained by proximity to the degenerating fibers and also that removal of CA3-CA4-derived innervation more readily elicits translaminar growth in the fascia dentata than in area CA1. These results may be relevant to clinical situations in which neurons of the hippocampal end-blade are lost.

  1. The Modulatory Role of Orexin 1 Receptor in CA1 on Orofacial Pain-induced Learning and Memory Deficits in Rats.

    Science.gov (United States)

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2017-01-01

    Cognitive impairment is commonly associated with pain. The modulatory role of orexin 1 receptor (OX1R) in pain pathways as well as learning and memory processes is reported in several studies. The current study was designed to investigate the possible role of CA1-hippocampal OX1R on spatial learning and memory of rats following capsaicin-induced orofacial pain. Orofacial pain was induced by subcutaneous intra lip injection of capsaicin (100 μg). CA1 administration of orexin A and its selective antagonist (SB-334867-A) were performed 20 minutes prior to capsaicin injection. Learning and spatial memory performances were assessed by Morris Water Maze (MWM) task. Capsaicin treated rats showed impairment in spatial learning and memory. In addition, pretreatment with orexin A (20 and 40 nM/rat) significantly attenuated learning and memory impairment in capsaicin-treated rats. Conversely, blockage of OX1R via SB-334867-A (40 and 80 nM/rat) significantly exaggerated learning and memory loss in capsaicin-treated rats. The obtained results indicated that CA1 OX1R may be involved in modulation of capsaicin -induced spatial learning and memory impairment.

  2. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons.

    Science.gov (United States)

    Woodward, Nicholas C; Pakbin, Payam; Saffari, Arian; Shirmohammadi, Farimah; Haghani, Amin; Sioutas, Constantinos; Cacciottolo, Mafalda; Morgan, Todd E; Finch, Caleb E

    2017-05-01

    Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young- and middle-aged mice (3 and 18 months female C57BL/6J) were exposed to nanoscale-PM (nPM, changes in the hippocampal CA1 region, with neurite atrophy (-25%), decreased MBP (-50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (-40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age-ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer's disease. We propose that TRAP-associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Upright positional MRI of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Alyas, F.; Connell, D. [London Upright MRI Centre, London (United Kingdom); Department of Radiology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex (United Kingdom); Saifuddin, A. [London Upright MRI Centre, London (United Kingdom); Department of Radiology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex (United Kingdom)], E-mail: asif.saifuddin@rnoh.nhs.uk

    2008-09-15

    Supine magnetic resonance imaging (MRI) is routinely used in the assessment of low back pain and radiculopathy. However, imaging findings often correlate poorly with clinical findings. This is partly related to the positional dependence of spinal stenosis, which reflects dynamic changes in soft-tissue structures (ligaments, disc, dural sac, epidural fat, and nerve roots). Upright MRI in the flexed, extended, rotated, standing, and bending positions, allows patients to reproduce the positions that bring about their symptoms and may uncover MRI findings that were not visible with routine supine imaging. Assessment of the degree of spinal stability in the degenerate and postoperative lumbar spine is also possible. The aim of this review was to present the current literature concerning both the normal and symptomatic spine as imaged using upright MRI and to illustrate the above findings using clinical examples.

  4. Sagittal parameters of the spine: biomechanical approach.

    Science.gov (United States)

    Roussouly, Pierre; Pinheiro-Franco, João Luiz

    2011-09-01

    According to the anatomical segmentation, spine curves are the sacral kyphosis (sacrum), lumbar lordosis (L1 to L5), thoracic kyphosis (T1 to T12) and cervical lordosis (C1 to C7). From the morphological point of view the vertebrae of a curve are not identical: from cranial to caudal and vice versa there is a progressive anatomical modification. Both curves of the thoraco-lumbar spine may be divided at the Inflexion Point where lordosis turns into kyphosis. A geometrical construct of each curve by two tangent arcs of circle allows understanding the reciprocal changes between both curves. Lumbar Lordosis is mainly dependent on SS orientation, and the top of thoracic curve on C7 is very stable over the sacrum. Thoracic curve is dependent on lumbar lordosis orientation and C7 positioning. On a reverse effect, structural changing of thoracic kyphosis may affect the shape of the lumbar lordosis and the orientation of the pelvis.

  5. Endoplasmic reticulum calcium stores in dendritic spines.

    Science.gov (United States)

    Segal, Menahem; Korkotian, Eduard

    2014-01-01

    Despite decades of research, the role of calcium stores in dendritic spines structure, function and plasticity is still debated. The reasons for this may have to do with the multitude of overlapping calcium handling machineries in the neuron, including stores, voltage and ligand gated channels, pumps and transporters. Also, different cells in the brain are endowed with calcium stores that are activated by different receptor types, and their differential compartmentalization in dendrites, spines and presynaptic terminals complicates their analysis. In the present review we address several key issues, including the role of calcium stores in synaptic plasticity, their role during development, in stress and in neurodegenerative diseases. Apparently, there is increasing evidence for a crucial role of calcium stores, especially of the ryanodine species, in synaptic plasticity and neuronal survival.

  6. Minimally invasive spine surgery: systematic review.

    Science.gov (United States)

    Banczerowski, Péter; Czigléczki, Gábor; Papp, Zoltán; Veres, Róbert; Rappaport, Harry Zvi; Vajda, János

    2015-01-01

    Minimally invasive procedures in spine surgery have undergone significant development in recent times. These procedures have the common aim of avoiding biomechanical complications associated with some traditional destructive methods and improving efficacy. These new techniques prevent damage to crucial posterior stabilizers and preserve the structural integrity and stability of the spine. The wide variety of reported minimally invasive methods for different pathologies necessitates a systematic classification. In the present review, authors first provide a classification system of minimally invasive techniques based on the location of the pathologic lesion to be treated, to help the surgeon in selecting the appropriate procedure. Minimally invasive techniques are then described in detail, including technical features, advantages, complications, and clinical outcomes, based on available literature.

  7. Primary bone tumors of the spine.

    Science.gov (United States)

    Cañete, A Navas; Bloem, H L; Kroon, H M

    2016-04-01

    Primary bone tumors of the spine are less common than metastases or multiple myeloma. Based on the patient's age and the radiologic pattern and topography of the tumor, a very approximate differential diagnosis can be established for an osseous vertebral lesion. This article shows the radiologic manifestations of the principal primary bone tumors of the spine from a practical point of view, based on our personal experience and a review of the literature. If bone metastases, multiple myeloma, lymphomas, hemangiomas, and enostoses are excluded, only eight types of tumors account for 80% of all vertebral tumors. These are chordomas, osteoblastomas, chondrosarcomas, giant-cell tumors, osteoid osteomas, Ewing's sarcomas, osteosarcomas, and aneurysmal bone cysts. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  8. Return to play after cervical spine injury.

    Science.gov (United States)

    Morganti, C; Sweeney, C A; Albanese, S A; Burak, C; Hosea, T; Connolly, P J

    2001-05-15

    A questionnaire survey was mailed to members of the Cervical Spine Research Society, the Herodiuus Sports Medicine Society, and to members of the authors' Department of Orthopaedics. The purpose of our study was to evaluate what influence, if any, factors such as published guidelines, type of sport of the patient, number of years in practice, subspecialty interest, and sports participation of the respondent held in the "return to play" decision-making process after a cervical spine injury. The consequences of cervical spine injury are potentially catastrophic, and return to play decisions in athletes with a history of neck injury can be agonizing. Although recent publications have addressed some of the concerns regarding cervical spine injuries in the athletic population, many questions remain unanswered. Factors such as published guidelines, type of sport of the patient, number of years in practice, subspecialty interest, and sports participation of the respondent have all been suggested as having a possible role in return to play decisions. Representative radiographs and case histories of 10 athletes who had sustained neck injury were mailed to 346 physicians. For each case physicians selected every type of play (of six categories) that they felt comfortable recommending. Type of play was divided into six categories: Type 1, collision sports; Type 2, contact sports; Type 3, noncontact, high velocity sports; Type 4, noncontact, repetitive load sports (e.g., running); Type 5, noncontact, low impact sports; Type 6, no sports. In addition, demographic data regarding board certification, subspecialty interest, number of years in practice, use of guidelines in return to play decisions, and personal participation in sports were queried from all respondents. Statistical analysis was completed with Statview (Berkeley, CA). Basic descriptive statistics, chi2, and ANOVA were used where appropriate. Three hundred forty-six questionnaires were mailed and 113 were returned

  9. Branched standard spines of 3-manifolds

    CERN Document Server

    Benedetti, Riccardo

    1997-01-01

    This book provides a unified combinatorial realization of the categroies of (closed, oriented) 3-manifolds, combed 3-manifolds, framed 3-manifolds and spin 3-manifolds. In all four cases the objects of the realization are finite enhanced graphs, and only finitely many local moves have to be taken into account. These realizations are based on the notion of branched standard spine, introduced in the book as a combination of the notion of branched surface with that of standard spine. The book is intended for readers interested in low-dimensional topology, and some familiarity with the basics is assumed. A list of questions, some of which concerning relations with the theory of quantum invariants, is enclosed.

  10. The international spine registry SPINE TANGO: status quo and first results.

    Science.gov (United States)

    Melloh, Markus; Staub, Lukas; Aghayev, Emin; Zweig, Thomas; Barz, Thomas; Theis, Jean-Claude; Chavanne, Albert; Grob, Dieter; Aebi, Max; Roeder, Christoph

    2008-09-01

    With an official life time of over 5 years, Spine Tango can meanwhile be considered the first international spine registry. In this paper we present an overview of frequency statistics of Spine Tango for demonstrating the genesis of questionnaire development and the constantly increasing activity in the registry. Results from two exemplar studies serve for showing concepts of data analysis applied to a spine registry. Between 2002 and 2006, about 6,000 datasets were submitted by 25 centres. Descriptive analyses were performed for demographic, surgical and follow-up data of three generations of the Spine Tango surgery and follow-up forms. The two exemplar studies used multiple linear regression models to identify potential predictor variables for the occurrence of dura lesions in posterior spinal fusion, and to evaluate which covariates influenced the length of hospital stay. Over the study period there was a rise in median patient age from 52.3 to 58.6 years in the Spine Tango data pool and an increasing percentage of degenerative diseases as main pathology from 59.9 to 71.4%. Posterior decompression was the most frequent surgical measure. About one-third of all patients had documented follow-ups. The complication rate remained below 10%. The exemplar studies identified "centre of intervention" and "number of segments of fusion" as predictors of the occurrence of dura lesions in posterior spinal fusion surgery. Length of hospital stay among patients with posterior fusion was significantly influenced by "centre of intervention", "surgeon credentials", "number of segments of fusion", "age group" and "sex". Data analysis from Spine Tango is possible but complicated by the incompatibility of questionnaire generations 1 and 2 with the more recent generation 3. Although descriptive and also analytic studies at evidence level 2++ can be performed, findings cannot yet be generalised to any specific country or patient population. Current limitations of Spine Tango include

  11. Heritability of Thoracic Spine Curvature and Genetic Correlations With Other Spine Traits: The Framingham Study.

    Science.gov (United States)

    Yau, Michelle S; Demissie, Serkalem; Zhou, Yanhua; Anderson, Dennis E; Lorbergs, Amanda L; Kiel, Douglas P; Allaire, Brett T; Yang, Laiji; Cupples, L Adrienne; Travison, Thomas G; Bouxsein, Mary L; Karasik, David; Samelson, Elizabeth J

    2016-12-01

    Hyperkyphosis is a common spinal disorder in older adults, characterized by excessive forward curvature of the thoracic spine and adverse health outcomes. The etiology of hyperkyphosis has not been firmly established, but may be related to changes that occur with aging in the vertebrae, discs, joints, and muscles, which function as a unit to support the spine. Determining the contribution of genetics to thoracic spine curvature and the degree of genetic sharing among co-occurring measures of spine health may provide insight into the etiology of hyperkyphosis. The purpose of our study was to estimate heritability of thoracic spine curvature using T4 -T12 kyphosis (Cobb) angle and genetic correlations between thoracic spine curvature and vertebral fracture, intervertebral disc height narrowing, facet joint osteoarthritis (OA), lumbar spine volumetric bone mineral density (vBMD), and paraspinal muscle area and density, which were all assessed from computed tomography (CT) images. Participants included 2063 women and men in the second and third generation offspring of the original cohort of the Framingham Study. Heritability of kyphosis angle, adjusted for age, sex, and weight, was 54% (95% confidence interval [CI], 43% to 64%). We found moderate genetic correlations between kyphosis angle and paraspinal muscle area (ρˆG , -0.46; 95% CI, -0.67 to -0.26), vertebral fracture (ρˆG , 0.39; 95% CI, 0.18 to 0.61), vBMD (ρˆG , -0.23; 95% CI, -0.41 to -0.04), and paraspinal muscle density (ρˆG , -0.22; 95% CI, -0.48 to 0.03). Genetic correlations between kyphosis angle and disc height narrowing (ρˆG , 0.17; 95% CI, -0.05 to 0.38) and facet joint OA (ρˆG , 0.05; 95% CI, -0.15 to 0.24) were low. Thoracic spine curvature may be heritable and share genetic factors with other age-related spine traits including trunk muscle size, vertebral fracture, and bone mineral density. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and

  12. Pedicular stress fracture in the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Chong, V.F.H.; Htoo, M.M. [Singapore General Hospital, Singapore, (Singapore). Department of Diagnostic Radiology

    1997-08-01

    Spondylolisthesis with or without spondylolysis is common in the lumbar spine. Associated fracture in the pedicle (`pediculolysis`) is unusual. The margins of pedicular stress fractures, like spondylolysis, usually appear sclerotic. A patient with a pedicular stress fracture with minimal marginal sclerosis suggesting an injury of recent onset is presented here. There was associated bilateral spondylolysis. The findings in this patient suggest that established pediculolysis probably represents a stress fracture that has failed to heal. (authors). 10 refs., 2 figs.

  13. Neuronavigation in minimally invasive spine surgery.

    Science.gov (United States)

    Moses, Ziev B; Mayer, Rory R; Strickland, Benjamin A; Kretzer, Ryan M; Wolinsky, Jean-Paul; Gokaslan, Ziya L; Baaj, Ali A

    2013-08-01

    Parallel advancements in image guidance technology and minimal access techniques continue to push the frontiers of minimally invasive spine surgery (MISS). While traditional intraoperative imaging remains widely used, newer platforms, such as 3D-fluoroscopy, cone-beam CT, and intraoperative CT/MRI, have enabled safer, more accurate instrumentation placement with less radiation exposure to the surgeon. The goal of this work is to provide a review of the current uses of advanced image guidance in MISS. The authors searched PubMed for relevant articles concerning MISS, with particular attention to the use of image-guidance platforms. Pertinent studies published in English were further compiled and characterized into relevant analyses of MISS of the cervical, thoracic, and lumbosacral regions. Fifty-two studies were included for review. These describe the use of the iso-C system for 3D navigation during C1-2 transarticular screw placement, the use of endoscopic techniques in the cervical spine, and the role of navigation guidance at the occipital-cervical junction. The authors discuss the evolving literature concerning neuronavigation during pedicle screw placement in the thoracic and lumbar spine in the setting of infection, trauma, and deformity surgery and review the use of image guidance in transsacral approaches. Refinements in image-guidance technologies and minimal access techniques have converged on spinal pathology, affording patients the ability to undergo safe, accurate operations without the associated morbidities of conventional approaches. While percutaneous transpedicular screw placement is among the most common procedures to benefit from navigation, other areas of spine surgery can benefit from advances in neuronavigation and further growth in the field of image-guided MISS is anticipated.

  14. Adult idiopathic scoliosis: the tethered spine.

    Science.gov (United States)

    Whyte Ferguson, Lucy

    2014-01-01

    This article reports on an observational and treatment study using three case histories to describe common patterns of muscle and fascial asymmetry in adults with idiopathic scoliosis (IS) who have significant scoliotic curvatures that were not surgically corrected and who have chronic pain. Rather than being located in the paraspinal muscles, the myofascial trigger points (TrPs) apparently responsible for the pain were located at some distance from the spine, yet referred pain to locations throughout the thoracolumbar spine. Asymmetries in these muscles appear to tether the spine in such a way that they contribute to scoliotic curvatures. Evaluation also showed that each of these individuals had major ligamentous laxity and this may also have contributed to development of scoliotic curvatures. Treatment focused on release of TrPs found to refer pain into the spine, release of related fascia, and correction of related joint dysfunction. Treatment resulted in substantial relief of longstanding chronic pain. Treatment thus validated the diagnostic hypothesis that myofascial and fascial asymmetries were to some extent responsible for pain in adults with significant scoliotic curvatures. Treatment of these patterns of TrPs and muscle and fascial asymmetries and related joint dysfunction was also effective in relieving pain in each of these individuals after they were injured in auto accidents. Treatment of myofascial TrPs and asymmetrical fascial tension along with treatment of accompanying joint dysfunction is proposed as an effective approach to treating both chronic and acute pain in adults with scoliosis that has not been surgically corrected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Rigid Spine Syndrome among Children in Oman

    Directory of Open Access Journals (Sweden)

    Roshan Koul

    2015-08-01

    Full Text Available Objectives: Rigidity of the spine is common in adults but is rarely observed in children. The aim of this study was to report on rigid spine syndrome (RSS among children in Oman. Methods: Data on children diagnosed with RSS were collected consecutively at presentation between 1996 and 2014 at the Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A diagnosis of RSS was based on the patient’s history, clinical examination, biochemical investigations, electrophysiological findings, neuro-imaging and muscle biopsy. Atrophy of the paraspinal muscles, particularly the erector spinae, was the diagnostic feature; this was noted using magnetic resonance imaging of the spine. Children with disease onset in the paraspinal muscles were labelled as having primary RSS or rigid spinal muscular dystrophy. Secondary RSS was classified as RSS due to the late involvement of other muscle diseases. Results: Over the 18-year period, 12 children were included in the study, with a maleto- female ratio of 9:3. A total of 10 children were found to have primary RSS or rigid spinal muscular dystrophy syndrome while two had secondary RSS. Onset of the disease ranged from birth to 18 months of age. A family history was noted, with two siblings from one family and three siblings from another (n = 5. On examination, children with primary RSS had typical features of severe spine rigidity at onset, with the rest of the neurological examination being normal. Conclusion: RSS is a rare disease with only 12 reported cases found at SQUH during the study period. Cases of primary RSS should be differentiated from the secondary type.

  16. Instrumentation related complications in spine surgery.

    Science.gov (United States)

    Ballas, Efstathios; Mavrogenis, Andreas F; Karamanis, Eirineos; Mimidis, George; Tolis, Konstantinos; Soultanis, Konstantinos; Papagelopoulos, Panayiotis J

    2012-01-01

    Spinal instrumentation constructs are frequently necessary for the surgical management of patients with variable spinal pathology. However, surgical complications may appear. These should be detected early and managed to achieve recovery and good functional outcome for the patient. This article provides an in-depth analysis of the most common instrumentation-related complications of spine surgery as well as a diagnostic plan and treatment options for the management of these challenging entities once they occur.

  17. Polyetheretherketone (PEEK) rods: short-term results in lumbar spine degenerative disease.

    Science.gov (United States)

    Colangeli, S; Barbanti Brodàno, G; Gasbarrini, A; Bandiera, S; Mesfin, A; Griffoni, C; Boriani, S

    2015-06-01

    Pedicle screw and rod instrumentation has become the preferred technique for performing stabilization and fusion in the surgical treatment of lumbar spine degenerative disease. Rigid fixation leads to high fusion rates but may also contribute to stress shielding and adjacent segment degeneration. Thus, the use of semirigid rods made of polyetheretherketone (PEEK) has been proposed. Although the PEEK rods biomechanical properties, such as anterior load sharing properties, have been shown, there are few clinical studies evaluating their application in the lumbar spine surgical treatment. This study examined a retrospective cohort of patients who underwent posterior lumbar fusion for degenerative disease using PEEK rods, in order to evaluate the clinical and radiological outcomes and the incidence of complications.

  18. Intervertebral biomechanics of locking compression plate monocortical fixation of the canine cervical spine.

    Science.gov (United States)

    Agnello, Kimberly A; Kapatkin, Amy S; Garcia, Tanya C; Hayashi, Kei; Welihozkiy, Anja T; Stover, Susan M

    2010-12-01

    To evaluate the use of a locking compression plate (LCP) with monocortical screw purchase for stabilization of the canine cervical spine. Experimental study. Cadaveric canine cervical spine specimens (n = 7). Flexion and extension bending moments were applied to canine cadaveric specimens (C3-C6) in 4-point bending, before and after creation of a ventral slot at C4-C5, and after fixation with a 5 hole, 3.5 mm LCP with monocortical screw placement. Screw placement and penetration into the vertebral canal were determined by radiography. Range of motion, stiffness, and energy for passive physiologic loads were determined for the C3-C4, C4-C5, and C5-C6 vertebral motion units (VMU). Monotonic failure properties were determined for cervical extension. Effects of treatments on biomechanical variables were assessed using repeated measures analysis of variance and least square means (P ≤ .05). The ventral slot procedure increased range of motion at the treated VMU. Plate fixation decreased range of motion, increased stiffness, and decreased energy at the treated VMU. No changes were observed at adjacent VMUs. None of the screws penetrated the vertebral canal. Mean (± SD) yield bending moment of plate stabilized, slotted spines was 15.6 ± 4.6 N m. LCP fixation with monocortical screws stabilized the canine cervical spine. © Copyright 2010 by The American College of Veterinary Surgeons.

  19. Concomitant lower thoracic spine disc disease in lumbar spine MR imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Arana, Estanislao; Marti-Bonmati, Luis; Dosda, Rosa; Molla, Enrique [Department of Radiology, Quiron Clinic, Avd. Blasco Ibanez, 14, 46010 Valencia (Spain)

    2002-11-01

    Our objective was to study the coexistence of lower thoracic-spine disc changes in patients with low back pain using a large field of view (FOV) in lumbar spine MR imaging. One hundred fifty patients with low back pain were referred to an MR examination. All patients were studied with a large FOV (27 cm), covering from the coccyx to at least the body of T11. Discs were coded as normal, protrusion, and extrusion (either epiphyseal or intervertebral). The relationship between disc disease and level was established with the Pearson {chi}{sup 2} test. The T11-12 was the most commonly affected level of the lower thoracic spine with 58 disc cases rated as abnormal. Abnormalities of T11-12 and T12-L1 discs were significantly related only to L1-L2 disease (p=0.001 and p=0.004, respectively) but unrelated to other disc disease, patient's gender, and age. No correlation was found between other discs. Magnetic resonance imaging of the lumbar spine can detect a great amount of lower thoracic disease, although its clinical significance remains unknown. A statistically significant relation was found within the thoracolumbar junctional region (T11-L2), reflecting common pathoanatomical changes. The absence of relation with lower lumbar spine discs is probably due to differences in their pathomechanisms. (orig.)

  20. Biomechanical Comparison Of Intact Lumbar Lamp Spine And Endoscopic Discectomized Lamp Spine

    Directory of Open Access Journals (Sweden)

    Ahmet Karakasli

    2012-06-01

    Full Text Available Objectives: Purpose of current study was biomechanical comparison of changes wrought on motion segments after minimally invasive percutan endoscopic discectomized and intact spine. Materials and Methods: We prepared ten fresh-frozen lamb spines were used for this study. The spine of each specimen was dissected between L4-L5. The biomechanical tests for both intact spine and discectomized spine were performed by using axial compression testing machine (AG-I 10 kN, Shimadzu, Japanese. The axial compression was applied to all specimens with the loading speed of 5 mm/min. 8400 N/mm moment was applied to each specimen to achieve flexion and extension motions, right and left bending by a specially designed fixture. Results: In axial compression and flexion tests, the specimens were more stable according to displacement values. The displacement values of sectioned specimens were closer to intact specimens. Only displacement values of left-bending anteroposterior test for both situations were significant (0.05 ;#8805; P. Conclusion: PTED hasn't biomechanical and cilinical disadvantages. Endoscopic discectomy hadn't any disadvantages in stability. Only anterior-posterior displacement values of left bending test were statistically significant. We consider that cause of these results were due to the fact that all specimens had percutan transforaminal endoscopic discectomy (PTED from left side.

  1. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    Science.gov (United States)

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  2. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Nuria Domínguez-Iturza

    2016-01-01

    Full Text Available Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  3. Scoliosis and spine involvement in fibrous dysplasia of bone.

    Science.gov (United States)

    Mancini, Federico; Corsi, Alessandro; De Maio, Fernando; Riminucci, Mara; Ippolito, Ernesto

    2009-02-01

    Few studies focused on the prevalence of scoliosis and involvement of the spine in patients with fibrous dysplasia (FD) of bone. We examined for FD involvement of the spine and scoliosis in 56 patients affected by FD of bone. Fifty patients were part of a cohort reported in a multicentric study on FD promoted by European Pediatric Orthopedic Society (EPOS) in 1999, and six were new patients. There were 30 females and 26 males (mean age 12.5 years; range 1-42 years). Twenty-three had monostotic FD, 9 polyostotic FD, and 24 McCune-Albright Syndrome (MAS). Scoliosis was observed in 11 cases of polyostotic FD and MAS (33.3%). In seven of the patients with scoliosis (63.3%) spine was involved by FD lesional tissue. FD lesions involved the thoracic or lumbar spine in all patients but one, where cervical spine was also affected. A correlation between scoliosis and either spinal (pscoliosis but in 2 of them spine was involved by FD. Scoliosis and spine involvement were never detected in monostotic FD. This study indicates that in FD patients with polyostotic disease (1) the prevalences of FD involvement of the spine and scoliosis are high enough to include spine in the clinico-radiographic survey of these patients, and (2) the involvement of the spine and pelvis by FD lesions and pelvic obliquity are important determinants in the occurrence of scoliosis.

  4. ATLS® and damage control in spine trauma

    Science.gov (United States)

    Schmidt, Oliver I; Gahr, Ralf H; Gosse, Andreas; Heyde, Christoph E

    2009-01-01

    Substantial inflammatory disturbances following major trauma have been found throughout the posttraumatic course of polytraumatized patients, which was confirmed in experimental models of trauma and in vitro settings. As a consequence, the principle of damage control surgery (DCS) has developed over the last two decades and has been successfully introduced in the treatment of severely injured patients. The aim of damage control surgery and orthopaedics (DCO) is to limit additional iatrogenic trauma in the vulnerable phase following major injury. Considering traumatic brain and acute lung injury, implants for quick stabilization like external fixators as well as decided surgical approaches with minimized potential for additional surgery-related impairment of the patient's immunologic state have been developed and used widely. It is obvious, that a similar approach should be undertaken in the case of spinal trauma in the polytraumatized patient. Yet, few data on damage control spine surgery are published to so far, controlled trials are missing and spinal injury is addressed only secondarily in the broadly used ATLS® polytrauma algorithm. This article reviews the literature on spine trauma assessment and treatment in the polytrauma setting, gives hints on how to assess the spine trauma patient regarding to the ATLS® protocol and recommendations on therapeutic strategies in spinal injury in the polytraumatized patient. PMID:19257904

  5. ATLS® and damage control in spine trauma

    Directory of Open Access Journals (Sweden)

    Gosse Andreas

    2009-03-01

    Full Text Available Abstract Substantial inflammatory disturbances following major trauma have been found throughout the posttraumatic course of polytraumatized patients, which was confirmed in experimental models of trauma and in vitro settings. As a consequence, the principle of damage control surgery (DCS has developed over the last two decades and has been successfully introduced in the treatment of severely injured patients. The aim of damage control surgery and orthopaedics (DCO is to limit additional iatrogenic trauma in the vulnerable phase following major injury. Considering traumatic brain and acute lung injury, implants for quick stabilization like external fixators as well as decided surgical approaches with minimized potential for additional surgery-related impairment of the patient's immunologic state have been developed and used widely. It is obvious, that a similar approach should be undertaken in the case of spinal trauma in the polytraumatized patient. Yet, few data on damage control spine surgery are published to so far, controlled trials are missing and spinal injury is addressed only secondarily in the broadly used ATLS® polytrauma algorithm. This article reviews the literature on spine trauma assessment and treatment in the polytrauma setting, gives hints on how to assess the spine trauma patient regarding to the ATLS® protocol and recommendations on therapeutic strategies in spinal injury in the polytraumatized patient.

  6. Intrapartum Ultrasound Assessment of Fetal Spine Position

    Directory of Open Access Journals (Sweden)

    Salvatore Gizzo

    2014-01-01

    Full Text Available We investigated the role of foetal spine position in the first and second labour stages to determine the probability of OPP detection at birth and the related obstetrical implications. We conducted an observational-longitudinal cohort study on uncomplicated cephalic single foetus pregnant women at term. We evaluated the accuracy of ultrasound in predicting occiput position at birth, influence of fetal spine in occiput position during labour, labour trend, analgesia request, type of delivery, and indication to CS. The accuracy of the foetal spinal position to predict the occiput position at birth was high at the first labour stage. At the second labour stage, CS (40.3% and operative vaginal deliveries (23.9% occurred more frequently in OPP than in occiput anterior position (7% and 15.2%, resp., especially in cases of the posterior spine. In concordant posterior positions labour length was greater than other ones, and analgesia request rate was 64.1% versus 14.7% for all the others. The assessment of spinal position could be useful in obstetrical management and counselling, both before and during labour. The detection of spinal position, more than OPP, is predictive of successful delivery. In concordant posterior positions, the labour length, analgesia request, operative delivery, and caesarean section rate are higher than in the other combination.

  7. Intrapartum ultrasound assessment of fetal spine position.

    Science.gov (United States)

    Gizzo, Salvatore; Andrisani, Alessandra; Noventa, Marco; Burul, Giorgia; Di Gangi, Stefania; Anis, Omar; Ancona, Emanuele; D'Antona, Donato; Nardelli, Giovanni Battista; Ambrosini, Guido

    2014-01-01

    We investigated the role of foetal spine position in the first and second labour stages to determine the probability of OPP detection at birth and the related obstetrical implications. We conducted an observational-longitudinal cohort study on uncomplicated cephalic single foetus pregnant women at term. We evaluated the accuracy of ultrasound in predicting occiput position at birth, influence of fetal spine in occiput position during labour, labour trend, analgesia request, type of delivery, and indication to CS. The accuracy of the foetal spinal position to predict the occiput position at birth was high at the first labour stage. At the second labour stage, CS (40.3%) and operative vaginal deliveries (23.9%) occurred more frequently in OPP than in occiput anterior position (7% and 15.2%, resp.), especially in cases of the posterior spine. In concordant posterior positions labour length was greater than other ones, and analgesia request rate was 64.1% versus 14.7% for all the others. The assessment of spinal position could be useful in obstetrical management and counselling, both before and during labour. The detection of spinal position, more than OPP, is predictive of successful delivery. In concordant posterior positions, the labour length, analgesia request, operative delivery, and caesarean section rate are higher than in the other combination.

  8. Regular Exercise Prevents Sleep Deprivation Associated Impairment of Long-Term Memory and Synaptic Plasticity in The CA1 Area of the Hippocampus

    Science.gov (United States)

    Zagaar, Munder; Dao, An; Levine, Amber; Alhaider, Ibrahim; Alkadhi, Karim

    2013-01-01

    Study Objectives: The present study aimed to investigate the effects of treadmill exercise on sleep deprivation (S-D)-induced impairment of hippocampal dependent long-term memory, late phase long-term potentiation (L-LTP) and its signaling cascade in the cornu ammonis 1 (CA1) area. Experimental Design: Animals were conditioned to run on treadmills for 4 weeks then deprived of sleep for 24 h using the columns-in-water method. We tested the effect of exercise and/or S-D on behavioral performance using a post-learning paradigm in the radial arm water maze (RAWM) and in vivo extracellular recording in the CA1 area. The levels of L-LTP-related molecules in the CA1 area were then assessed both before and after L-LTP induction. Measurements and Results: After 24 h of S-D, spatial long-term memory impairment in the RAWM and L-LTP suppression was prevented by 4 weeks of regular exercise. Regular exercise also restored the S-D-associated decreases in the basal levels of key signaling molecules such as: calcium/calmodulin kinase IV (CaMKIV), mitogen-activated protein kinase (MAPK/ERK), phosphorylated cAMP response element-binding protein (P-CREB) and brain derived neurotrophic factor (BDNF), in the CA1 area. After L-LTP induction, regular exercise also prevented the S-D-induced down regulation of BDNF and P-CREB protein levels. Conclusions: The results suggest that our exercise protocol may prevent 24-h S-D-induced impairments in long-term memory and LTP by preventing deleterious changes in the basal and post-stimulation levels of P-CREB and BDNF associated with S-D. Citation: Zagaar M; Dao A; Levine A; Alhaider I; Alkadhi K. Regular exercise prevents sleep deprivation associated impairment of long-term memory and synaptic plasticity in the CA1 area of the hippocampus. SLEEP 2013;36(5):751-761. PMID:23633758

  9. Cervical spine injuries in American football.

    Science.gov (United States)

    Rihn, Jeffrey A; Anderson, David T; Lamb, Kathleen; Deluca, Peter F; Bata, Ahmed; Marchetto, Paul A; Neves, Nuno; Vaccaro, Alexander R

    2009-01-01

    American football is a high-energy contact sport that places players at risk for cervical spine injuries with potential neurological deficits. Advances in tackling and blocking techniques, rules of the game and medical care of the athlete have been made throughout the past few decades to minimize the risk of cervical injury and improve the management of injuries that do occur. Nonetheless, cervical spine injuries remain a serious concern in the game of American football. Injuries have a wide spectrum of severity. The relatively common 'stinger' is a neuropraxia of a cervical nerve root(s) or brachial plexus and represents a reversible peripheral nerve injury. Less common and more serious an injury, cervical cord neuropraxia is the clinical manifestation of neuropraxia of the cervical spinal cord due to hyperextension, hyperflexion or axial loading. Recent data on American football suggest that approximately 0.2 per 100,000 participants at the high school level and 2 per 100,000 participants at the collegiate level are diagnosed with cervical cord neuropraxia. Characterized by temporary pain, paraesthesias and/or motor weakness in more than one extremity, there is a rapid and complete resolution of symptoms and a normal physical examination within 10 minutes to 48 hours after the initial injury. Stenosis of the spinal canal, whether congenital or acquired, is thought to predispose the athlete to cervical cord neuropraxia. Although quite rare, catastrophic neurological injury is a devastating entity referring to permanent neurological injury or death. The mechanism is most often a forced hyperflexion injury, as occurs when 'spear tackling'. The mean incidence of catastrophic neurological injury over the past 30 years has been approximately 0.5 per 100,000 participants at high school level and 1.5 per 100,000 at the collegiate level. This incidence has decreased significantly when compared with the incidence in the early 1970s. This decrease in the incidence of

  10. Clinical significance of gas myelography and CT gas myelography of the thoracic spine and the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Haruhiko (Tokyo Medical Coll. (Japan))

    1984-05-01

    Basic and clinical applications relating to air myelography of the cervical spine have already been studied and extensively been used as an adjuvant diagnostic method for diseases of the spine and the spinal cord. However, hardly any application and clinical evaluation have been made concerning gas myelography of the thoracic spine and the lumbar spine. The author examined X-ray findings of 183 cases with diseases of the thoracic spine and the lumbar spine, including contral cases. Gas X-ray photography included simple profile, forehead tomography, sagittal plane, and CT section. Morphological characteristics of normal X-ray pictures of the throacic spine and the lumbar spine were explained from 54 control cases, and all the diameters of the subarachnoidal space from the anterior to the posterior part were measured. X-ray findings were examined on pathological cases, namely 22 cases with diseases of the throacic spine and 107 cases with diseases of the lumbar spine, and as a result these were useful for pathological elucidation of spinal cord tumors, spinal carries, yellow ligament ossification, lumbar spinal canal stenosis, hernia of intervertebral disc, etc. Also, CT gas myelography was excellent in stereo observation of the spine and the spinal cord in spinal cord tumors, yellow ligament ossification, and spinal canal stenosis. On the other hand, it is not suitable for the diagnoses of intraspinal vascular abnormality, adhesive arachinitis, and running abnormality of the cauda equina nerve and radicle. Gas myelography of the thoracic spine and the lambar spine, is very useful in clinics when experienced techniques are used in photographic conditions, and diagnoses are made, well understanding the characteristics of gas pictures. Thus, its application has been opened to selection of an operative technique, determination of operative ranges, etc.

  11. Comparison of the immature sheep spine and the growing human spine: a spondylometric database for growth modulating research.

    Science.gov (United States)

    Hasler, Carol; Sprecher, Christoph Martin; Milz, Stefan

    2010-11-01

    A comparative study on growth of the sheep and human spine. To validate the immature sheep spine as model for the growing human spine and to yield a database for planning and interpretation of future animal experiments. With the current change of paradigm to nonfusion strategies for pediatric spine deformities, experimental surgery on spines of growing goats, sheep, and pigs has gained importance as preclinical proof-of-concept test. However, despite the proceeding use of animals, there is a lack of knowledge regarding the growth of the sheep spine and the relation to the human spine. Thoracic and lumbar cadaver spines were harvested from 50 Swiss alpine sheep. Specimens were obtained from newborn, 1, 3, 6, 9 and 12, 15 and 18 months old female sheep. Direct spondylometry yielded vertebral body heights, widths, and depths and spinal canal size, which were compared to pooled data on human spine growth retrieved from the literature. Sheep spine growth ceases at age 15 to 18 months, which corresponds to a time-lapse model of human growth. Main growth occurs within the first 3 to 6 months of life, as opposed to human spines with maximal growth during the first 4 years and puberty. The relation between sheep and human vertebral shape is continuously changing with growth: at birth, sheep vertebrae are twice as tall, but equally wide and deep. At skeletal maturity, height is 15% to 25% bigger in sheep, but width 15% to 30% and depth 30% to 50% are smaller. The immature sheep spine offers fast effects if growth-modulating interventions are performed within the first 3 to 6 months of age. The differences in vertebral shapes and further distinctions between human and sheep spines such as biomechanics, facet anatomy, and rib cage morphology have to be considered when interpreting results after experimental surgery.

  12. Subsequent, unplanned spine surgery and life survival of patients operated for neuropathic spine deformity.

    Science.gov (United States)

    Asher, Marc A; Lai, Sue-Min; Burton, Douglas C

    2012-01-01

    Retrospective study of a prospectively assembled cohort. To characterize the survival from subsequent spine surgery and the life survival of patients treated surgically for severe spinal deformity due to neuropathic diseases. Survivorship analysis is widely used to study the natural history of disease processes and of treatments provided, but has very seldom been used to study patients' course after surgery for spinal deformity associated with neuropathic diseases. Patients with neuropathic spinal deformity treated with primary posterior instrumentation and arthrodesis from 1989 through 2002 were identified and studied by review of charts and radiographs, and by mail survey. Subsequent spine surgery and death events, and the time interval from surgery were identified. Fifteen variables possibly influencing survivorship were studied. There were no perioperative deaths, spinal cord injuries, or acute wound infections in the 117 eligible patients. Reoperation and life survival statuses were available for 110 patients (94%) at an average follow-up of 11.89 years (±5.3; range: 2-20.9 yr). Twelve patients (11%) had subsequent spine surgery. Survival from subsequent spine surgery was 91% at 5 years, 90% at 10 and 15 years, and 72% at 20 years. Proximal fixation problems occurred in 4 patients. Twenty-two patients (20%) had died from 4 to 20 years postoperative. Life survival was 98% at 5 years, 89% at 10 years, 81% at 15 years, and 56% at 20 years. The only variable associated with life survival was the occurrence of one or more perioperative complications, P = 0.0032. The younger half of the series at operation (spine operation was similar to adolescent idiopathic scoliosis series studied in the same manner. Life survival decline began at 4 years postoperative and was significantly associated with the occurrence of one or more perioperative complications. Even after successful spine deformity surgery, this population's health status is often precarious.

  13. Hippocampal neuro-networks and dendritic spine perturbations in epileptogenesis are attenuated by neuroprotectin d1.

    Directory of Open Access Journals (Sweden)

    Alberto E Musto

    Full Text Available Limbic epileptogenesis triggers molecular and cellular events that foster the establishment of aberrant neuronal networks that, in turn, contribute to temporal lobe epilepsy (TLE. Here we have examined hippocampal neuronal network activities in the pilocarpine post-status epilepticus model of limbic epileptogenesis and asked whether or not the docosahexaenoic acid (DHA-derived lipid mediator, neuroprotectin D1 (NPD1, modulates epileptogenesis.Status epilepticus (SE was induced by intraperitoneal administration of pilocarpine in adult male C57BL/6 mice. To evaluate simultaneous hippocampal neuronal networks, local field potentials were recorded from multi-microelectrode arrays (silicon probe chronically implanted in the dorsal hippocampus. NPD1 (570 μg/kg or vehicle was administered intraperitoneally daily for five consecutive days 24 hours after termination of SE. Seizures and epileptiform activity were analyzed in freely-moving control and treated mice during epileptogenesis and epileptic periods. Then hippocampal dendritic spines were evaluated using Golgi-staining.We found brief spontaneous microepileptiform activity with high amplitudes in the CA1 pyramidal and stratum radiatum in epileptogenesis. These aberrant activities were attenuated following systemic NPD1 administration, with concomitant hippocampal dendritic spine protection. Moreover, NPD1 treatment led to a reduction in spontaneous recurrent seizures.Our results indicate that NPD1 displays neuroprotective bioactivity on the hippocampal neuronal network ensemble that mediates aberrant circuit activity during epileptogenesis. Insight into the molecular signaling mediated by neuroprotective bioactivity of NPD1 on neuronal network dysfunction may contribute to the development of anti-epileptogenic therapeutic strategies.

  14. Occupational spine biomechanics: a journey to the spinal frontier.

    Science.gov (United States)

    Potvin, Jim R

    2008-12-01

    This paper provides a brief introduction to the variety of research areas focusing on spine biomechanics as it pertains to understanding and preventing low back injuries in the workplace. While certainly not a comprehensive review of the literature, some of the earliest, pioneering studies are presented from the following areas: (1) spine tissue testing, (2) estimating spine tissue loading, (3) manual materials handling studies, (4) prolonged or repetitive spine loading, (5) ergonomic assessment tools, (6) sudden/unexpected loading and (7) spine stability. Where possible, some of our own research contributions are integrated into the relevant sections. This paper concludes with a suggestion of some future research directions to continue and enhance the important impact of occupational spine biomechanics.

  15. Dry needling for the management of thoracic spine pain

    Science.gov (United States)

    Fernández-de-las-Peñas, César; Layton, Michelle; Dommerholt, Jan

    2015-01-01

    Thoracic spine pain is as disabling as neck and low back pain without receiving the same level of attention in the scientific literature. Among the different structures that can refer pain to the thoracic spine, muscles often play a relevant role. Trigger points (TrPs) from neck, shoulder and spinal muscles can induce pain in the region of the thoracic spine. There is a lack of evidence reporting the presence of TrPs in the region of the thoracic spine, but clinical evidence suggests that TrPs can be a potential source of thoracic spine pain. The current paper discusses the role of TrPs in the thoracic spine and dry needling (DN) for the management of TrPs in the thoracic multifidi and longissimus thoracis. This paper also includes a brief discussion of the application of DN in other tissues such as tendons, ligaments and scars. PMID:26309385

  16. EphB/syndecan-2 signaling in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Ethell, I M; Irie, F; Kalo, M S

    2001-01-01

    We previously reported that the cell surface proteoglycan syndecan-2 can induce dendritic spine formation in hippocampal neurons. We demonstrate here that the EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine...... formation. Syndecan-2 is tyrosine phosphorylated and forms a complex with EphB2 in mouse brain. Dominant-negative inhibition of endogenous EphB receptor activities blocks clustering of endogenous syndecan-2 and normal spine formation in cultured hippocampal neurons. This is the first evidence that Eph...... receptors play a physiological role in dendritic spine morphogenesis. Our observations suggest that spine morphogenesis is triggered by the activation of Eph receptors, which causes tyrosine phosphorylation of target molecules, such as syndecan-2, in presumptive spines....

  17. High Grade Infective Spondylolisthesis of Cervical Spine Secondary to Tuberculosis.

    Science.gov (United States)

    Hadgaonkar, Shailesh; Shah, Kunal; Shyam, Ashok; Sancheti, Parag

    2015-12-01

    Spondylolisthesis coexisting with tuberculosis is rarely reported. There is a controversy whether spondylolisthesis coexists or precedes tuberculosis. Few cases of pathological spondylolisthesis secondary to tuberculous spondylodiscitis have been reported in the lumbar and lumbosacral spine. All cases in the literature presented as anterolisthesis, except one which presented as posterolisthesis of lumbar spine. Spondylolisthesis in the cervical spine is mainly degenerative and traumatic. Spondylolisthesis due to tuberculosis is not reported in the lower cervical spine. The exact mechanism of such an occurrence of spondylolisthesis with tuberculosis is sparsely reported in the literature and inadequately understood. We report a rare case of high grade pathological posterolisthesis of the lower cervical spine due to tubercular spondylodiscitis in a 67-year-old woman managed surgically with a three-year follow-up period. This case highlights the varied and complex presentation of tuberculosis of the lower cervical spine and gives insight into its pathogenesis, diagnosis, and management.

  18. [Accident analytics for structural traumas of the cervical spine].

    Science.gov (United States)

    Hartwig, E; Elbel, M; Schultheiss, M; Kettler, A; Kinzl, L; Kramer, M

    2004-12-01

    The differentiation between degenerative syndromes of the cervical spine and post-traumatic symptoms requires accident analysis. Experiments with human subjects yield data only in the low-energy range, and there are still no accident analyses of structural traumas of the cervical spine. From 1 January 2000 to 30 April 2002, 15 patients with structural injuries to the cervical spine due to car accidents were treated in the Department of Trauma Surgery of the University of Ulm. In 11 of these cases, the DEKRA Ulm completed an appraisal of the accident process.With lateral impacts, structural injuries to the cervical spine can occur even at speeds of only ca 10 km/h. Injuries to the alar ligaments are produced by frontal collisions with substantial differences in speed. Data from accident analysis of structural injuries to the cervical spine must be taken into consideration in causality examinations of distortions of the cervical spine.

  19. Dry needling for the management of thoracic spine pain.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Layton, Michelle; Dommerholt, Jan

    2015-07-01

    Thoracic spine pain is as disabling as neck and low back pain without receiving the same level of attention in the scientific literature. Among the different structures that can refer pain to the thoracic spine, muscles often play a relevant role. Trigger points (TrPs) from neck, shoulder and spinal muscles can induce pain in the region of the thoracic spine. There is a lack of evidence reporting the presence of TrPs in the region of the thoracic spine, but clinical evidence suggests that TrPs can be a potential source of thoracic spine pain. The current paper discusses the role of TrPs in the thoracic spine and dry needling (DN) for the management of TrPs in the thoracic multifidi and longissimus thoracis. This paper also includes a brief discussion of the application of DN in other tissues such as tendons, ligaments and scars.

  20. Anatomy of large animal spines and its comparison to the human spine: a systematic review.

    Science.gov (United States)

    Sheng, Sun-Ren; Wang, Xiang-Yang; Xu, Hua-Zi; Zhu, Guo-Qing; Zhou, Yi-Fei

    2010-01-01

    Animal models have been commonly used for in vivo and in vitro spinal research. However, the extent to which animal models resemble the human spine has not been well known. We conducted a systematic review to compare the morphometric features of vertebrae between human and animal species, so as to give some suggestions on how to choose an appropriate animal model in spine research. A literature search of all English language peer-reviewed publications was conducted using PubMed, OVID, Springer and Elsevier (Science Direct) for the years 1980-2008. Two reviewers extracted data on the anatomy of large animal spines from the identified articles. Each anatomical study of animals had to include at least three vertebral levels. The anatomical data from all animal studies were compared with the existing data of the human spine in the literature. Of the papers retrieved, seven were included in the review. The animals in the studies involved baboon, sheep, porcine, calf and deer. Distinct anatomical differences of vertebrae were found between the human and each large animal spine. In cervical region, spines of the baboon and human are more similar as compared to other animals. In thoracic and lumbar regions, the mean pedicle height of all animals was greater than the human pedicles. There was similar mean pedicle width between animal and the human specimens, except in thoracic segments of sheep. The human spinal canal was wider and deeper in the anteroposterior plane than any of the animals. The mean human vertebral body width and depth were greater than that of the animals except in upper thoracic segments of the deer. However, the mean vertebral body height was lower than that of all animals. This paper provides a comprehensive review to compare vertebrae geometries of experimental animal models to the human vertebrae, and will help for choosing animal model in vivo and in vitro spine research. When the animal selected for spine research, the structural similarities and

  1. Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations

    Science.gov (United States)

    2016-06-01

    ABSTRACT This study evaluated the relationship between 3D geometry of the lumbar spine, under different loading conditions and positions, and the...results of this study will allow researchers to better relate the complex 3D geometry of the lumbar spine in subjects with different levels of lumbar...posture in active-duty Marines. Accepted. Spine. § Books or other non-periodical, one-time publications. § Nothing to report § Other publications

  2. Paravertebral muscles in disease of the cervical spine.

    OpenAIRE

    Wharton, S. B.; Chan, K. K.; Pickard, J D; Anderson, J. R.

    1996-01-01

    OBJECTIVES: Cervical spine disorders are common in the older population. The paravertebral muscles are essential to the support and stabilisation of the cervical spine but have been little studied. The aim was to determine whether pathological changes develop in these muscles in patients with severe cervical spine disease, which, if present, might contribute to the pathogenesis and symptomatology of their disorder. METHODS: Open biopsies of superficial and deep paravertebral muscles were obta...

  3. Japanese 2011 nationwide survey on complications from spine surgery

    OpenAIRE

    IMAJO, YASUAKI; Taguchi, Toshihiko; Yone , Kazunori; Okawa, Atsushi; Otani, Koji; Ogata, Tadanori; Ozawa, Hiroshi; SHIMADA, Yoichi; Neo, Masashi; Iguchi, Tetsuhiro

    2014-01-01

    Background The Japanese Society for Spine Surgery and Related Research (JSSR) previously carried out two nationwide surveys in 1994 and 2001 on complications from spine and spinal cord surgery. More than 10?years have now elapsed since 2001. Rapidly ageing populations have major impacts on society, particularly in the medical field. The purpose of this study was therefore to examine the present situation for spine surgery in Japan. Methods The JSSR research team prepared a computerized questi...

  4. 49 CFR 572.115 - Lumbar spine and pelvis.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...

  5. Baastrup?s disease (kissing spines syndrome): a pictorial review

    OpenAIRE

    Filippiadis, Dimitrios K.; Mazioti, Argyro; Argentos, S.; Anselmetti, G.; Papakonstantinou, O.; Kelekis, N.; Kelekis, Alexis

    2015-01-01

    Abstract Excessive lordosis is a common finding and may produce mechanical pressure that causes repetitive strains of the interspinous ligament with subsequent degeneration and collapse. Baastrup?s disease (kissing spine syndrome) is a term referring to close approximation of adjacent spinous processes due to degenerative changes of the spine. Baastrup?s disease usually affects the lumbar spine, with L4-L5 being the most commonly affected level. There is higher occurrence at ages over 70 and ...

  6. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep.

    Science.gov (United States)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming; Wendt, David; Jespersen, Stig; Juhl, Maria Vinther; Theilgaard, Naseem; Martin, Ivan; Overgaard, Søren

    2012-09-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model. A 50 mm long porous biphasic-calcium-phosphate bone substitute reinforced with poly(D,L-lactide) and, activated with bone marrow derived mononuclear-cells (BMNC) was used. Eighteen sheep were divided into two groups and one group (n = 9) had BMNC-activated bone substitutes and cell-free substitutes implanted. The second group (n = 9) had autograft supplemented with BMNC and regular autograft implanted. The implant material was alternated between spine level L2-L3 and L4-L5 in both groups. MicroCT was used to compare the spine fusion efficacy and bone structure of the two groups as well as the implanted bone substitutes and non-implanted substitutes. After 4½ months six sheep survived in both groups and we found five spine levels were fused when using activated bone substitute compared to three levels with cell-free bone substitute (p = 0.25). Five sheep fused at both levels in the autograft group. A significant increased bone density (p substitutes compared to cell-free bone substitute and no difference existed on the other parameters. The implanted bone substitutes had a significant higher bone density and trabecular thickness than non-implanted bone substitutes, thus indicating that the PLA reinforced BCP had osteoconductive properties (p substitutes (p substitute might have a similar fusion efficacy to autograft, the fusion bridge is not of equal substance. We found that bioreactor-generated cell-based bone substitutes seemed superior in fusion ability when compared to cell-free bone substitute and comparable to autograft in fusion ability, but not in bone structure. This combined with the favorable biocompatible abilities and strength comparable to human cancellous bone indicates that it might be a suitable bone substitute in spine fusion procedures.

  7. Fatigue reversibly reduced cortical and hippocampal dendritic spines concurrent with compromise of motor endurance and spatial memory.

    Science.gov (United States)

    Chen, J-R; Wang, T-J; Huang, H-Y; Chen, L-J; Huang, Y-S; Wang, Y-J; Tseng, G-F

    2009-07-21

    Fatigue could be induced following forced exercise, sickness, heat stroke or sleep disturbance and impaired brain-related functions such as concentration, attention and memory. Here we investigated whether fatigue altered the dendrites of central neurons. Central fatigue was induced by housing rats in cage with 1.5-cm deep water for 1-5 days. Three days of sleep deprivation seriously compromised rats' performance in weight-loaded forced swimming and spatial learning tests, and 5 days of treatment worsened it further. Combinations of intracellular dye injection and three-dimensional analysis revealed that dendritic spines on retrograde tracer-identified corticospinal neurons and Cornu Ammonis (CA)1 and CA3 pyramidal neurons were significantly reduced while the shape or length of the dendritic arbors was not altered. Three days of rest restored the spine loss and the degraded spatial learning and weight-loaded forced swimming performances to control levels. In conclusion, although we could not rule out additional non-hypothalamic-pituitary-adrenal stress, the apparent fatigue induced following a few days of sleep deprivation could change brain structurally and functionally and the effects were reversible with a few days of rest.

  8. Publication patterns of comparative effectiveness research in spine neurosurgery.

    Science.gov (United States)

    Hueng, Dueng-Yuan; Tsai, Chia-Lin; Hsu, Shih-Wei; Ma, Hsin-I

    2012-07-01

    The purpose of this study was to investigate publication patterns for comparative effectiveness research (CER) on spine neurosurgery. The authors searched the PubMed database for the period 1980-2012 using the key words "cost analysis," "utility analysis," "cost-utility," "outcomes research," "practical clinical research," "comparator trial," and "comparative effectiveness research," linked with "effectiveness" and "spine neurosurgery." From 1980 through April 9, 2012, neurosurgery CER publications accounted for 1.38% of worldwide CER publications (8657 of 626,330 articles). Spine neurosurgery CER accounted for only 0.02%, with 132 articles. The journal with the greatest number of publications on spine neurosurgery CER was Spine, followed by the Journal of Neurosurgery: Spine. The average annual publication rate for spine neurosurgery CER during this period was 4 articles (132 articles in 33 years), with 68 (51.52%) of the 132 articles being published within the past 5 years and a rising trend beginning in 2008. The top 3 contributing countries were the US, Turkey, and Japan, with 68, 8, and 7 articles, respectively. Only 8 regular articles (6.06%) focused on cost analysis. There is a paucity of publications using CER methodology in spine neurosurgery. Few articles address the issue of cost analysis. The promotion of continuing medical education in CER methodology is warranted. Further investigations to address cost analysis in comparative effectiveness studies of spine neurosurgery are crucial to expand the application of CER in public health.

  9. Variation in armour of three-spine stickleback

    OpenAIRE

    Wiig, Elisabeth

    2014-01-01

    The three-spine stickleback is an adaptable fish with variation in morphology and behaviour, inhabiting saltwater, brackish water and fresh water. It is armoured with 30-35 bone plates along its lateral line. In addition, it is equipped with three spines on its back and two pelvic spine. These features constitute an excellent anti-predator defence system. Yet, there is a strong selection for reduction in armour of three-spine stickleback in freshwater stickleback. In this project, the bone st...

  10. Sequential biomechanics of the human upper thoracic spine and pectoral girdle.

    Science.gov (United States)

    Stammen, Jason A; Herriott, Rodney; Kang, Yun-Seok; Bolte, John; Dupaix, Rebecca

    2012-01-01

    Thoracic spine flexibility affects head motion, which is critical to control in motor vehicle crashes given the frequency and severity of head injuries. The objective of this study is to investigate the dynamic response of the human upper thoracic region. An original experimental/analytical approach, Isolated Segment Manipulation (ISM), is introduced to quantify the intact upper thoracic spine-pectoral girdle (UTS-PG) dynamic response of six adult post-mortem human subjects (PMHS). A continuous series of small displacement, frontal perturbations were applied to the human UTS-PG using fifteen combinations of speed and constraint per PMHS. The non-parametric response of the T1-T6 lumped mass segment was obtained using a system identification technique. A parametric mass-damper-spring model was used to fit the non-parametric system response. Mechanical parameters of the upper thoracic spine were determined from the experimental model and analyzed in each speed/constraint configuration. The natural frequencies of the UTS-PG were 22.9 ± 7.1 rad/sec (shear, n=58), 32.1 ± 7.4 rad/sec (axial, n=58), and 27.8 ± 7.7 rad/sec (rotation, n=65). The damping ratios were 0.25 ± 0.20 (shear), 0.42 ± 0.24 (axial), and 0.58± 0.32 (rotation). N-way analysis of variance (Type III constrained sum of squares, no interaction effects) revealed that the relative effects of test speed, pectoral girdle constraint, and PMHS anthropometry on the UTS-PG dynamic properties varied per property and direction. While more work is needed to verify accuracy in realistic crash scenarios, the UTS-PG model system dynamic properties could eventually aid in developing integrated anthropomorphic test device (ATD) thoracic spine and shoulder components to provide improved head kinematics and belt interaction.

  11. Absence of OsβCA1 causes a CO2 deficit and affects leaf photosynthesis and the stomatal response to CO2 in rice.

    Science.gov (United States)

    Chen, Taiyu; Wu, Huan; Wu, Jiemin; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2017-04-01

    Plants always adjust the opening of stomatal pores to adapt to the environment, for example CO2 concentration ([CO2 ]), humidity and temperature. Low [CO2 ] will trigger the opening of stomatal pores to absorb extra CO2 . However, little is known about how CO2 supply affects the carbon fixation and opening of stomatal pores in rice. Here, a chloroplast-located gene coding for β-carbonic anhydrase (βCA) was found to be involved in carbon assimilation and the CO2 -mediated stomatal pore response in rice. OsβCA1 was constitutively expressed in all tissues and its transcripts were induced by high [CO2 ] in leaves. Both T-DNA mutant and RNA interference lines showed phenotypes of lower biomass and CA activities. Knockout of OsβCA1 obviously decreased photosynthetic capacity, as demonstrated by the increased CO2 compensation point and decreased light saturation point in the mutant, while knockout increased the opening ratio of stomatal pores and the rate of water loss. Moreover, the mutant showed a delayed response to low [CO2 ], and stomatal pores could not be closed to the same degree as those of wild type even though the stomatal pores could rapidly respond to high [CO2 ]. Genome-wide gene expression analysis via RNA sequencing demonstrated that the transcript abundance of genes related to Rubisco, photosystem compounds and the opening of stomatal pores was globally upregulated in the mutant. Taken together, the inadequate CO2 supply caused by the absence of OsβCA1 reduces photosynthetic efficiency, triggers the opening of stomatal pores and finally decreases their sensitivity to CO2 fluctuation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Effects of high-altitude environment on cognitive function and ultrastructure in CA1 region of hippocampus of rats after sleep deprivation

    Directory of Open Access Journals (Sweden)

    Jiang-hua SI

    2014-04-01

    Full Text Available Objective To investigate the effects of high-altitude environment on cognitive function and ultrastructure in CA1 region of the hippocampus of Wistar rats in sleep deprivation (SD.  Methods SD was induced in Wistar rats by employing "flower pot" technique. Sixty-four rats were randomly divided into 2 groups: Lanzhou group (at an altitude of 1520 m and Kekexili group (at an altitude of 4767 m, and each group was further divided into 4 subgroups according to the time of SD (0, 1, 3 and 5 d. The behaviors of rats were studied by Morris water maze test at given time points. The ultrastructure of hippocampal neurons was observed by transmission electron microscope (TEM.  Results 1 Compared with Lanzhou group, rat behavior of Kekexili group presented excitement-irritation-suppression changes with the extension of SD time, but the extent was weakened gradually, and time of sleepiness increased obviously. 2 Compared with Lanzhou group, neurons in CA1 region of hippocampus showed enlarged cell body, disappeared nuclear membrane, shrunken nuclei and decreased organelle. End-feet of glia cells sticking to capillaries swelled and ruptured, and the typical synaptic structure disappeared. 3 Morris water maze test: as compared with Lanzhou group, the escape latency of Kekexili group prolonged (P < 0.05, for all, the ability of distance exploration increased (P < 0.05, for all, and the times across plot decreased (P < 0.05, for all in 1, 3 and 5 d of SD.  Conclusions High-altitude environment may significantly influence the cognitive function of rats in SD, and there was close correlation between the cognitive disorders and the changes in the ultrastructure of hippocampal CA1 region. doi: 10.3969/j.issn.1672-6731.2014.04.012

  13. Role of reuniens nucleus projections to the medial prefrontal cortex and to the hippocampal pyramidal CA1 area in associative learning.

    Directory of Open Access Journals (Sweden)

    Lyndell Eleore

    Full Text Available We studied the interactions between short- and long-term plastic changes taking place during the acquisition of a classical eyeblink conditioning and following high-frequency stimulation (HFS of the reuniens nucleus in behaving mice. Synaptic changes in strength were studied at the reuniens-medial prefrontal cortex (mPFC and the reuniens-CA1 synapses. Input/output curves and a paired-pulse study enabled determining the functional capabilities of the two synapses and the optimal intensities to be applied at the reuniens nucleus during classical eyeblink conditioning and for HFS applied to the reuniens nucleus. Animals were conditioned using a trace paradigm, with a tone as conditioned stimulus (CS and an electric shock to the trigeminal nerve as unconditioned stimulus (US. A single pulse was presented to the reuniens nucleus to evoke field EPSPs (fEPSPs in mPFC and CA1 areas during the CS-US interval. No significant changes in synaptic strength were observed at the reuniens-mPFC and reuniens-CA1 synapses during the acquisition of eyelid conditioned responses (CRs. Two successive HFS sessions carried out during the first two conditioning days decreased the percentage of CRs, without evoking any long-term potentiation (LTP at the recording sites. HFS of the reuniens nucleus also prevented the proper acquisition of an object discrimination task. A subsequent study revealed that HFS of the reuniens nucleus evoked a significant decrease of paired-pulse facilitation. In conclusion, reuniens nucleus projections to prefrontal and hippocampal circuits seem to participate in the acquisition of associative learning through a mechanism that does not required the development of LTP.

  14. Phasic and tonic type A γ-Aminobutryic acid receptor mediated effect of Withania somnifera on mice hippocampal CA1 pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Janardhan Prasad Bhattarai

    2014-01-01

    Full Text Available Background: In Nepali and Indian system of traditional medicine, Withania somnifera (WS is considered as a rejuvenative medicine to maintain physical and mental health and has also been shown to improve memory consolidation. Objective: In this study, a methanolic extract of WS (mWS was applied on mice hippocampal CA1 neurons to identify the receptors activated by the WS. Materials and Methods: The whole cell patch clamp recordings were performed on CA1 pyramidal neurons from immature mice (7-20 postnatal days. The cells were voltage clamped at -60 mV. Extract of WS root were applied to identify the effect of mWS. Results: The application of mWS (400 ng/μl induced remarkable inward currents (-158.1 ± 28.08 pA, n = 26 on the CA1 pyramidal neurons. These inward currents were not only reproducible but also concentration dependent. mWS-induced inward currents remained persistent in the presence of amino acid receptor blocking cocktail (AARBC containing blockers for the ionotropic glutamate receptors, glycine receptors and voltage-gated Na + channel (Control: -200.3 ± 55.42 pA, AARBC: -151.5 ± 40.58 pA, P > 0.05 suggesting that most of the responses by mWS are postsynaptic events. Interestingly, these inward currents were almost completely blocked by broad GABA A receptor antagonist, bicuculline- 20 μM (BIC (BIC: -1.46 ± 1.4 pA, P < 0.001, but only partially by synaptic GABA A receptor blocker gabazine (1 μM (GBZ: -18.26 ± 4.70 pA, P < 0.01. Conclusion: These results suggest that WS acts on synaptic/extrasynaptic GABA A receptors and may play an important role in the process of memory and neuroprotection via activation of synaptic and extrasynaptic GABA A receptors.

  15. High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity.

    Directory of Open Access Journals (Sweden)

    L Niels Cornelisse

    Full Text Available Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR, we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity.

  16. High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity.

    Science.gov (United States)

    Cornelisse, L Niels; van Elburg, Ronald A J; Meredith, Rhiannon M; Yuste, Rafael; Mansvelder, Huibert D

    2007-10-24

    Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity.

  17. Lumbar spine degenerative disease : effect on bone mineral density measurements in the lumbar spine and femoral neck

    Energy Technology Data Exchange (ETDEWEB)

    Juhng, Seon Kwan [Wonkwang Univ. School of Medicine, Iksan (Korea, Republic of); Koplyay, Peter; Jeffrey Carr, J.; Lenchik, Leon [Wake Forest Univ. School of Medicine, Winston-salem (United States)

    2001-04-01

    To determine the effect of degenerative disease of the lumbar spine on bone mineral density in the lumbar spine and femoral neck. We reviewed radiographs and dual energy x-ray absorptiometry scans of the lumbar spine and hip in 305 Caucasian women with suspected osteoporosis. One hundred and eight-six patient remained after excluding women less than 40 years of age (n=18) and those with hip osteoarthritis, scoliosis, lumbar spine fractures, lumbar spinal instrumentation, hip arthroplasty, metabolic bone disease other than osteoporosis, or medications known to influence bone metabolism (n=101). On the basis of lumbar spine radiographs, those with absent/mild degenerative disease were assigned to the control group and those with moderate/severe degenerative disease to the degenerative group. Spine radiographs were evaluated for degenerative disease by two radiologists working independently; discrepant evaluations were resolved by consensus. Lumbar spine and femoral neck bone mineral density was compared between the two groups. Forty-five (24%) of 186 women were assigned to the degenerative group and 141 (76%) to the control group. IN the degenerative group, mean bone mineral density measured 1.075g/cm? in the spine and 0.788g/cm{sup 2} in the femoral neck, while for controls the corresponding figures were 0.989g/cm{sup 2} and 0.765g/cm{sup 2}. Adjusted for age, weight and height by means of analysis of variance, degenerative disease of the lumbar spine was a significant predictor of increased bone mineral density in the spine (p=0.0001) and femoral neck (p=0.0287). Our results indicate a positive relationship between degenerative disease of the lumbar spine and bone mineral density in the lumbar spine and femoral neck, and suggest that degenerative disease in that region, which leads to an intrinsic increase in bone mineral density in the femoral neck, may be a good negative predictor of osteoporotic hip fractures.

  18. Comparison of the Effects of Adenosine A1 Receptors Activity in CA1 Region of the Hippocampus on Entorhinal Cortex and Amygdala Kindled Seizures in Rats

    Directory of Open Access Journals (Sweden)

    A. Heidarianpour

    2008-10-01

    Full Text Available Introduction & Objective: In the CNS, adenosine is known to suppress repetitive neuronal Firing, suggesting a role as an endogenous modifier of seizures. Indeed, intracerebral adenosine concentrations rise acutely during seizure activity and are thought to be responsible for terminating seizures and establishing a period of post-ictal refractoriness. However, it is unclear whether this suppression results from a general depression of brain excitability or through action on particular sites critical for the control of after discharge generation and/or seizure development and propagation. In this regard, comparison of the effects of adenosine A1 receptors of CA1 (region of the ‎hippocampus on entorhinal cortex and amygdala kindled seizures was ‎investigated in this study. Materials & Methods: In this experimental study, Animals were kindled by daily electrical stimulation of amygdale (group A or entorhinal cortex (group B. In the fully kindled animals, N6-‎cyclohexyladenosine (CHA;1 and 10 M; a selective adenosine A1 receptor ‎agonist and 1,3-dimethyl-8-cyclohexylxanthine(CPT;1 ‎µ‎M; a selective ‎adenosine A1 receptors antagonist were microinfused bilaterally into the CA1 ‎region of hippocampus (1l/2min and animals were stimulated at 5 and 15 minutes after drug ‎injection. All animals were received artificial cerebrospinal fluid, 24 h before ‎each drug injection and this result were used as control. Results: The seizure parameters were measured at 5 and 15min post injection. Obtained data showed that CHA at concentrations of 10 ‎µ‎M reduced ‎entorhinal cortex and amygdala after discharge and stage5 seizure durations and ‎increased stage4 latency. CHA at concentration 1‎µ‎M significantly alters ‎seizure parameters of group A but not effect on group B. Intrahippocampal (CA1 region pretreatment of CPT (1 ‎µ‎M before CHA abolished the effects of CHA on seizure parameters.Conclusion: It ‎may be

  19. Preparation of Infinite Layer of Ca1-xSrxCuO2 Filaments by Solution Spinning Method under Ambient Pressure

    Science.gov (United States)

    Goto, Tomoko; Iwatsuki, Takane

    1993-05-01

    Preparation of an infinite layer of Ca1-xSrxCuO2 filaments by solution spinning under ambient pressure was studied. The filament was prepared by dry spinning with a starting homogeneous aqueous solution containing acetates of Ca, Sr and Cu, polyvinyl alcohol and organic acids. Although a single phase of the infinite layer appeared only for the filament with x{=}0.14, the compositional range for the mixed phase of the infinite layer was expanded to 0.05{≤q}x{≤q}0.3. Solution spinning lowered the synthetic temperature of the infinite layer by 100°C.

  20. Structural reorganization of neurocytes of CA1 field of hippocampus in dynamic after experimental thermal trauma and application of lyophilized xenograft

    Directory of Open Access Journals (Sweden)

    S. O. Lytvynyuk

    2017-04-01

    Full Text Available reorganization of animals in dynamics after experimental thermal injury and use of lyophilized xenograft. Materials and Methods. In the experiment on 35 mature white male rats microscopic, electronmicroscopic and morphometric study of animals’ hippocampus were made after severe thermal injury in terms of early necrectomy of affected area and closure by lyophilized xenograft. Experimental animals of the third experimental group were decapitated on the 7th, 14th and 21st days of experiment. Sections of the brain tissue have been taken from the hippocampus area for histological studies, fixed in 96o alcohol and 10 % neutral formalin and embedded in the paraffin blocks. Obtained on microtome sections were stained with hematoxylin and eosin and toluidine blue with Nissl method. Ultrathin sections were contrasted by uranyl acetate and lead citrate according to Reynolds method and were studied in the electron microscope PEM-125K. Morphometric study was performed using system of visual analysis of histological specimens. Results. It has been established that on the 7th day of the experiment with the usage of corrective factor the number of destroyed neurons in CA1 field of hippocampus was less, but still not significant compared to burned untreated animals. Neurocytes were in state of peripheral or segmental tigrolysis, and there was an increase in the square of hypochromic cells nuclei, some of them contained large nucleoli. Microscopically and electronmicroscopically on the 14th and especially on the 21st days of the experiment, there was found a significant improvement of histological condition of neurocytes, numerical density of the nerve cells in the CA1 field of hippocampus was significantly 1.25 times higher, and the number of normochromic cells 5.52 times more than in the animals with burns. Conclusions. Thus, the application of lyophilized xenograft after early necrectomy of burned skin earlier (the 7th day of experiment after burn injury

  1. The effect of CA1 α2 adrenergic receptors on memory retention deficit induced by total sleep deprivation and the reversal of circadian rhythm in a rat model.

    Science.gov (United States)

    Norozpour, Yaser; Nasehi, Mohammad; Sabouri-Khanghah, Vahid; Torabi-Nami, Mohammad; Zarrindast, Mohammad-Reza

    2016-09-01

    The α2 adrenergic receptors which abundantly express in the CA1 region of the hippocampus play an important role in the regulation of sleep and memory retention processes. Based on the available evidence, the aim of our study was to investigate consequences of the activation and deactivation of CA1 α2 adrenergic receptors (by clonidine and yohimbine, respectively) on the impairment of memory retention induced by total sleep deprivation (TSD) and the reversal of circadian rhythm (RCR) in a rat model. To this end, the water box apparatus and passive avoidance task were in turn used to induce sleep deprivation and assess memory retention. Our findings suggested that TSD (for 24 and 36, but not 12h) and RCR (12h/day for 3 consecutive days) impair memory function. The post-training intra-CA1 administration of yohimbine (α2 adrenergic receptor antagonist) on its own, at the dose of 0.1μg/rat, decreased the step-through latency and locomotor activity in the TSD- sham treated but not undisturbed sleep rats. Unlike yohimbine, clonidine (α2 adrenergic receptor agonist), in all applied doses (0.001, 0.01 and 0.1μg/rat), failed to induce such an effect. While the subthreshold dose of yohimbine (0.001μg/rat) abrogated the impairment of memory retention induced by the 24-h TSD, it could potentiate the impairment of memory retention induced by 36-h TSD, suggesting the modulatory effect of yohimbine. Moreover, the subthreshold dose of clonidine (0.1μg/rat) restored the memory retention deficit in TSD rats (24 and 36h). On the other hand, the subthreshold dose of clonidine (0.1μg/rat), but not yohimbine (0.001μg/rat) restored the memory retention deficit in RCR rats. Such interventions however did not alter the locomotor activity. The above observations proposed that CA1 α2 adrenergic receptors play a potential role in memory retention deficits induced by TSD and RCR. Copyright © 2016. Published by Elsevier Inc.

  2. Percutaneous spine injection: considerations for improving treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Woo; Kim, Sung Hyun; Lee, In Sook; Choi, Jung Ah; Yoon, Chang Jin; Hwang, Sung Il; Kang, Heung Sik [Seoul National University Bundang Hospital, Bundang (Korea, Republic of); Choi, Ja Young; Koh, Young Hwan; Hong, Sung Hwan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-15

    To discuss the causes of treatment failure in percutaneous spine injections for low back pain or radiculopathy by analyzing patients who have experienced negative treatment effect on their first visit and a positive treatment effect on their second visit. The authors reviewed the cases of 24 patients who visited the pain intervention outpatient department in our hospital due to back pain or radiculopathy. All patients reviewed experienced a negative treatment effect following their first spine injection, but a positive treatment effect following the second injection. The dates of the cases range from June 2003 to May 2004. Two radiologists analyzed the possible causes of the negative treatment effect following the first injection therapies by considering clinical aspects as well as reviewing radiological images. The most common condition was the presence of the change in the level of the second selective nerve root block (n=13). In seven cases, the methods for administering the injections were changed to facet block (n=2), midline epidural block (n=1), selective nerve root block (n=3) and caudal epidural block (n=1). In four cases, there were no changes in the methods for administering the injections nor were there any changes in the level of the selective nerve root block between first and second visit. In those cases, after reviewing spot radiographs performed during injection, we attributed the causes of failure of injection therapy to an inappropriate distribution of drugs. We can improve the effect of percutaneous spine injections for low back pain or radioculopathy by determining the exact level of perineural root block, trying alternative methods, and insuring a good distribution of the injected drugs.

  3. Toward laboratory torsional spine magnetic reconnection

    Science.gov (United States)

    Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.

    2017-12-01

    Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

  4. Augmented reality visualization for thoracoscopic spine surgery

    Science.gov (United States)

    Sauer, Frank; Vogt, Sebastian; Khamene, Ali; Heining, Sandro; Euler, Ekkehard; Schneberger, Marc; Zuerl, Konrad; Mutschler, Wolf

    2006-03-01

    We are developing an augmented reality (AR) image guidance system in which information derived from medical images is overlaid onto a video view of the patient. The centerpiece of the system is a head-mounted display custom fitted with two miniature color video cameras that capture the stereo view of the scene. Medical graphics is overlaid onto the video view and appears firmly anchored in the scene, without perceivable time lag or jitter. We have been testing the system for different clinical applications. In this paper we discuss minimally invasive thoracoscopic spine surgery as a promising new orthopedic application. In the standard approach, the thoracoscope - a rigid endoscope - provides visual feedback for the minimally invasive procedure of removing a damaged disc and fusing the two neighboring vertebrae. The navigation challenges are twofold. From a global perspective, the correct vertebrae on the spine have to be located with the inserted instruments. From a local perspective, the actual spine procedure has to be performed precisely. Visual feedback from the thoracoscope provides only limited support for both of these tasks. In the augmented reality approach, we give the surgeon additional anatomical context for the navigation. Before the surgery, we derive a model of the patient's anatomy from a CT scan, and during surgery we track the location of the surgical instruments in relation to patient and model. With this information, we can help the surgeon in both the global and local navigation, providing a global map and 3D information beyond the local 2D view of the thoracoscope. Augmented reality visualization is a particularly intuitive method of displaying this information to the surgeon. To adapt our augmented reality system to this application, we had to add an external optical tracking system, which works now in combination with our head-mounted tracking camera. The surgeon's feedback to the initial phantom experiments is very positive.

  5. Rare Complications of Cervical Spine Surgery: Pseudomeningocoele.

    Science.gov (United States)

    Ailon, Tamir; Smith, Justin S; Nassr, Ahmad; Smith, Zachary A; Hsu, Wellington K; Fehlings, Michael G; Fish, David E; Wang, Jeffrey C; Hilibrand, Alan S; Mummaneni, Praveen V; Chou, Dean; Sasso, Rick C; Traynelis, Vincent C; Arnold, Paul M; Mroz, Thomas E; Buser, Zorica; Lord, Elizabeth L; Massicotte, Eric M; Sebastian, Arjun S; Than, Khoi D; Steinmetz, Michael P; Smith, Gabriel A; Pace, Jonathan; Corriveau, Mark; Lee, Sungho; Riew, K Daniel; Shaffrey, Christopher

    2017-04-01

    This study was a retrospective, multicenter cohort study. Rare complications of cervical spine surgery are inherently difficult to investigate. Pseudomeningocoele (PMC), an abnormal collection of cerebrospinal fluid that communicates with the subarachnoid space, is one such complication. In order to evaluate and better understand the incidence, presentation, treatment, and outcome of PMC following cervical spine surgery, we conducted a multicenter study to pool our collective experience. This study was a retrospective, multicenter cohort study of patients who underwent cervical spine surgery at any level(s) from C2 to C7, inclusive; were over 18 years of age; and experienced a postoperative PMC. Thirteen patients (0.08%) developed a postoperative PMC, 6 (46.2%) of whom were female. They had an average age of 48.2 years and stayed in hospital a mean of 11.2 days. Three patients were current smokers, 3 previous smokers, 5 had never smoked, and 2 had unknown smoking status. The majority, 10 (76.9%), were associated with posterior surgery, whereas 3 (23.1%) occurred after an anterior procedure. Myelopathy was the most common indication for operations that were complicated by PMC (46%). Seven patients (53%) required a surgical procedure to address the PMC, whereas the remaining 6 were treated conservatively. All PMCs ultimately resolved or were successfully treated with no residual effects. PMC is a rare complication of cervical surgery with an incidence of less than 0.1%. They prolong hospital stay. PMCs occurred more frequently in association with posterior approaches. Approximately half of PMCs required surgery and all ultimately resolved without residual neurologic or other long-term effects.

  6. Improvement in Scoliosis Top View: Evaluation of Vertebrae Localization in Scoliotic Spine-Spine Axial Presentation

    Directory of Open Access Journals (Sweden)

    Paweł Główka

    2016-11-01

    Full Text Available Morphological analysis of the scoliotic spine is based on two-dimensional X-rays: coronal and sagittal. The three-dimensional character of scoliosis has raised the necessity for analyzing scoliosis in three planes. We proposed a new user-friendly method of graphical presentation of the spine in the third plane–the Spine Axial Presentation (SAP. Eighty-five vertebrae of patients with scoliosis were analyzed. Due to different positions during X-rays (standing and computer tomography (CT (supine, the corresponding measurements cannot be directly compared. As a solution, a software creating Digital Reconstructed Radiographs (DRRs from CT scans was developed to replace regular X-rays with DRRs. Based on the measurements performed on DRRs, the coordinates of vertebral bodies central points were defined. Next, the geometrical centers of vertebral bodies were determined on CT scans. The reproducibility of measurements was tested with Intraclass Correlation Coefficient (ICC, using p = 0.05. The intra-observer reproducibility and inter-observer reliability for vertebral body central point’s coordinates (x, y, z were high for results obtained based on DRRs and CT scans, as well as for comparison results obtained based on DRR and CT scans. Based on two standard radiographs, it is possible to localize vertebral bodies in 3D space. The position of vertebral bodies can be present in the Spine Axial Presentation.

  7. Development of a Detailed Volumetric Finite Element Model of the Spine to Simulate Surgical Correction of Spinal Deformities

    Directory of Open Access Journals (Sweden)

    Mark Driscoll

    2013-01-01

    Full Text Available A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices.

  8. Aneurysmal bone cyst of the lumbar spine

    Science.gov (United States)

    Cugati, Goutham; Pande, Anil; Jain, Pradeep K.; Symss, Nigel Peter; Ramamurthi, Ravi; Vasudevan, Chakravarthy M.

    2015-01-01

    An aneurysmal bone cyst (ABC) is a benign, locally proliferative vascular disorder of non-neoplastic osseous lesions in children and young adults. Seventy-five percent of ABCs occur before the age of 20 years. They comprise 1.4% of all primary bone tumors, and commonly occur in the long bones. Spinal ABCs are much rarer. We present to you one such rare case of ABC involving the lumbar spine which was successfully treated with surgery. The clinical pathological and radiological features are described. The treatment options available are discussed. PMID:26396610

  9. Standardizing care for high-risk patients in spine surgery: the Northwestern high-risk spine protocol.

    Science.gov (United States)

    Halpin, Ryan J; Sugrue, Patrick A; Gould, Robert W; Kallas, Peter G; Schafer, Michael F; Ondra, Stephen L; Koski, Tyler R

    2010-12-01

    Review article of current literature on the preoperative evaluation and postoperative management of patients undergoing high-risk spine operations and a presentation of a multidisciplinary protocol for patients undergoing high-risk spine operation. To provide evidence-based outline of modifiable risk factors and give an example of a multidisciplinary protocol with the goal of improving outcomes. Protocol-based care has been shown to improve outcomes in many areas of medicine. A protocol to evaluate patients undergoing high-risk procedures may ultimately improve patient outcomes. The English language literature to date was reviewed on modifiable risk factors for spine surgery. A multidisciplinary team including hospitalists, critical care physicians, anesthesiologists, and spine surgeons from neurosurgery and orthopedics established an institutional protocol to provide comprehensive care in the pre-, peri-, and postoperative periods for patients undergoing high-risk spine operations. An example of a comprehensive pre-, peri-, and postoperative high-risk spine protocol is provided, with focus on the preoperative assessment of patients undergoing high-risk spine operations and modifiable risk factors. Standardizing preoperative risk assessment may lead to better outcomes after major spine operations. A high-risk spine protocol may help patients by having dedicated physicians in multiple specialties focusing on all aspects of a patients care in the pre-, intra-, and postoperative phases.

  10. Influence of Cu-site substitution on La2Ca1Ba2Cu5Oz superconducting system

    Science.gov (United States)

    Bhalodia, J. A.; Mankadia, S. R.; Dalsaniya, S. M.; Gonal, M. R.

    2012-07-01

    We have prepared a series of La2CaBa2Cu5-xCoxOz; x = 0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 (La-2125) compounds by the standard solid state reaction method and characterized for their structural, superconducting, magnetic properties and oxygen content through X-ray diffraction, scanning electron microscopy, d. c. resistivity, magnetic susceptibility and iodometric titration respectively. All the compounds crystallize with the tetragonal LaBa2Cu3Oz type structure, space group P4/mmm. Here the effect of higher Co substitution for Cu in the La2CaBa2Cu5-xCoxOz system has been studied. It is observed that only 2 at. % Co substitution for Cu destroys the superconductivity of the sample. For heavily doped samples (with x >= 0.1) are found non-superconducting presumably because of magnetic pair- breaking effect. These samples do not show superconductivity but are of interest for understanding the interplay between superconductivity and magnetism. Possible reasons for destruction of superconductivity are discussed in this communication.

  11. Is a pelvic fracture a predictor for thoracolumbar spine fractures after blunt trauma?

    NARCIS (Netherlands)

    Pouw, M.H.; Deunk, J.; Brink, M.; Dekker, H.M.; Kool, D.R.; Vugt, A.B. van; Edwards, M.J.R.

    2009-01-01

    BACKGROUND: Discussion still remains which polytraumatized patients require radiologic thoracolumbar spine (TL spine) screening. The purpose of this study is to determine whether pelvic fractures are associated with TL spine fractures after a blunt trauma. Additionally, the sensitivity of

  12. Multilevel 3D Printing Implant for Reconstructing Cervical Spine With Metastatic Papillary Thyroid Carcinoma.

    Science.gov (United States)

    Li, Xiucan; Wang, Yiguo; Zhao, Yongfei; Liu, Jianheng; Xiao, Songhua; Mao, Keya

    2017-11-15

    MINI: A 3D printing technology is proposed for reconstructing multilevel cervical spine (C2-C4) after resection of metastatic papillary thyroid carcinoma. The personalized porous implant printed in Ti6AL4V provided excellent physicochemical properties and biological performance, including biocompatibility, osteogenic activity, and bone ingrowth effect. A unique case report. A three-dimensional (3D) printing technology is proposed for reconstructing multilevel cervical spine (C2-C4) after resection of metastatic papillary thyroid carcinoma in a middle-age female patient. Papillary thyroid carcinoma is a malignant neoplasm with a relatively favorable prognosis. A metastatic lesion in multilevel cervical spine (C2-C4) destroys neurological functions and causes local instability. Radical excision of the metastasis and reconstruction of the cervical vertebrae sequence conforms with therapeutic principles, whereas the special-shaped multilevel upper-cervical spine requires personalized implants. 3D printing is an additive manufacturing technology that produces personalized products by accurately layering material under digital model control via a computer. Reporting of this recent technology for reconstructing multilevel cervical spine (C2-C4) is rare in the literature. Anterior-posterior surgery was performed in one stage. Radical resection of the metastatic lesion (C2-C4) and thyroid gland, along with insertion of a personalized implant manufactured by 3D printing technology, were performed to rebuild the cervical spine sequences. The porous implant was printed in Ti6AL4V with perfect physicochemical properties and biological performance, such as biocompatibility and osteogenic activity. Finally, lateral mass screw fixation was performed via a posterior approach. Patient neurological function gradually improved after the surgery. The patient received 11/17 on the Japanese Orthopedic Association scale and ambulated with a personalized skull-neck-thorax orthosis on

  13. Sacroiliac joint motion in patients with degenerative lumbar spine disorders.

    Science.gov (United States)

    Nagamoto, Yukitaka; Iwasaki, Motoki; Sakaura, Hironobu; Sugiura, Tsuyoshi; Fujimori, Takahito; Matsuo, Yohei; Kashii, Masafumi; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2015-08-01

    OBJECT Usually additional anchors into the ilium are necessary in long fusion to the sacrum for degenerative lumbar spine disorders (DLSDs), especially for adult spine deformity. Although the use of anchors is becoming quite common, surgeons must always keep in mind that the sacroiliac (SI) joint is mobile and they should be aware of the kinematic properties of the SI joint in patients with DLSDs, including adult spinal deformity. No previous study has clarified in vivo kinematic changes in the SI joint with respect to patient age, sex, or parturition status or the presence of DLSDs. The authors conducted a study to clarify the mobility and kinematic characteristics of the SI joint in patients with DLSDs in comparison with healthy volunteers by using in vivo 3D motion analysis with voxel-based registration, a highly accurate, noninvasive method. METHODS Thirteen healthy volunteers (the control group) and 20 patients with DLSDs (the DLSD group) underwent low-dose 3D CT of the lumbar spine and pelvis in 3 positions (neutral, maximal trunk flexion, and maximal trunk extension). SI joint motion was calculated by computer processing of the CT images (voxel-based registration). 3D motion of the SI joint was expressed as both 6 df by Euler angles and translations on the coordinate system and a helical axis of rotation. The correlation between joint motion and the cross-sectional area of the trunk muscles was also investigated. RESULTS SI joint motion during trunk flexion-extension was minute in healthy volunteers. The mean rotation angles during trunk flexion were 0.07° around the x axis, -0.02° around the y axis, and 0.16° around the z axis. The mean rotation angles during trunk extension were 0.38° around the x axis, -0.08° around the y axis, and 0.08° around the z axis. During trunk flexion-extension, the largest amount of motion occurred around the x axis. In patients with DLSDs, the mean rotation angles during trunk flexion were 0.57° around the x axis, 0.01

  14. Long term delivery of pulsed magnetic fields does not improve learning or alter dendritic spine density in the mouse hippocampus [v1; ref status: indexed, http://f1000r.es/1o7

    Directory of Open Access Journals (Sweden)

    Matthew Sykes

    2013-09-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to ephrin-A2-/- and wildtype mice (n=10 per genotype undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.

  15. In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy

    Science.gov (United States)

    Zeng, Rong-Chang; Qi, Wei-Chen; Song, Ying-Wei; He, Qin-Kun; Cui, Hong-Zhi; Han, En-Hou

    2014-12-01

    Magnesium and its alloys are promising biomaterials due to their biocompatibility and osteoinduction. The plasticity and corrosion resistance of commercial magnesium alloys cannot meet the requirements for degradable biomaterials completely at present. Particularly, the alkalinity in the microenvironment surrounding the implants, resulting from the degradation, arouses a major concern. Micro-arc oxidation (MAO) and poly(lactic acid) (PLA) composite (MAO/PLA) coating on biomedical Mg-1.21Li-1.12Ca-1.0Y alloy was prepared to manipulate the pH variation in an appropriate range. Surface morphologies were discerned using SEM and EMPA. And corrosion resistance was evaluated via electrochemical polarization and impedance and hydrogen volumetric method. The results demonstrated that the MAO coating predominantly consisted of MgO, Mg2SiO4 and Y2O3. The composite coating markedly improved the corrosion resistance of the alloy. The rise in solution pH for the MAO/PLA coating was tailored to a favorable range of 7.5-7.8. The neutralization caused by the alkalinity of MAO and Mg substrate and acidification of PLA was probed. The result designates that MAO/PLA composite coating on Mg-1.21Li-1.12Ca-1.0Y alloys may be a promising biomedical coating.

  16. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats.

    Science.gov (United States)

    Sadeghi, Malihe; Reisi, Parham; Radahmadi, Maryam

    2017-12-01

    Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long-term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. Stress impaired spatial memory significantly (Pstress group. With respect to the control group, both fEPSP amplitude and slope were significantly (Pstress group. However, there were no differences between responses of the control-CCK and Stress-CCK groups compared to the control group. The present results suggest that high levels of CCK-8S during induction of stress can modulate the destructive effects of stress on hippocampal synaptic plasticity and memory. Therefore, the mediatory effects of CCK in stress are likely as compensatory responses.

  17. Mechanism-Based and Input-Output Modeling of the Key Neuronal Connections and Signal Transformations in the CA3-CA1 Regions of the Hippocampus.

    Science.gov (United States)

    Geng, Kunling; Shin, Dae C; Song, Dong; Hampson, Robert E; Deadwyler, Samuel A; Berger, Theodore W; Marmarelis, Vasilis Z

    2018-01-01

    This letter examines the results of input-output (nonparametric) modeling based on the analysis of data generated by a mechanism-based (parametric) model of CA3-CA1 neuronal connections in the hippocampus. The motivation is to obtain biological insight into the interpretation of such input-output (Volterra-equivalent) models estimated from synthetic data. The insights obtained may be subsequently used to interpretat input-output models extracted from actual experimental data. Specifically, we found that a simplified parametric model may serve as a useful tool to study the signal transformations in the hippocampal CA3-CA1 regions. Input-output modeling of model-based synthetic data show that GABAergic interneurons are responsible for regulating neuronal excitation, controlling the precision of spike timing, and maintaining network oscillations, in a manner consistent with previous studies. The input-output model obtained from real data exhibits intriguing similarities with its synthetic-data counterpart, demonstrating the importance of a dynamic resonance in the system/model response around 2 Hz to 3 Hz. Using the input-output model from real data as a guide, we may be able to amend the parametric model by incorporating more mechanisms in order to yield better-matching input-output model. The approach we present can also be applied to the study of other neural systems and pathways.

  18. Enhancement of information transmission of sub-threshold signals applied to distal positions of dendritic trees in hippocampal CA1 neuron models with stochastic resonance.

    Science.gov (United States)

    Mino, Hiroyuki; Durand, Dominique M

    2010-09-01

    Stochastic resonance (SR) has been shown to enhance the signal-to-noise ratio and detection of low level signals in neurons. It is not yet clear how this effect of SR plays an important role in the information processing of neural networks. The objective of this article is to test the hypothesis that information transmission can be enhanced with SR when sub-threshold signals are applied to distal positions of the dendrites of hippocampal CA1 neuron models. In the computer simulation, random sub-threshold signals were presented repeatedly to a distal position of the main apical branch, while the homogeneous Poisson shot noise was applied as a background noise to the mid-point of a basal dendrite in the CA1 neuron model consisting of the soma with one sodium, one calcium, and five potassium channels. From spike firing times recorded at the soma, the mutual information and information rate of the spike trains were estimated. The simulation results obtained showed a typical resonance curve of SR, and that as the activity (intensity) of sub-threshold signals increased, the maximum value of the information rate tended to increased and eventually SR disappeared. It is concluded that SR can play a key role in enhancing the information transmission of sub-threshold stimuli applied to distal positions on the dendritic trees.

  19. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Sang Gun Lee

    2015-01-01

    Full Text Available In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  20. Tailoring Ba3Ca1.18Nb1.82O9-δ with NiO as electrolyte for proton-conducting solid oxide fuel cells

    Science.gov (United States)

    Zhu, Zhiwen; Guo, Enyan; Wei, Zhaoling; Wang, Huiqiang

    2018-01-01

    A strategy of tailoring Ba3Ca1.18Nb1.82O9-δ (BCN) is proposed, aiming to improve the sinterability and conductivity of BCN material for fuel cell applications. The new Ba3Ca1.18Nb1.77Ni0.05O9-δ (BCNNi) material shows a significant improvement in sinterability compared with BCN, leading to a high densification for BCNNi after sintering at as low as 1400 °C. In addition, the BCNNi exhibits a conductivity of 4.59 × 10-3 S cm-1 at 700 °C that is not only higher than that for BCN which only reaches 3.45 × 10-3 S cm-1 at the same temperature but also shows a significant improvement compared with that for BCN-based materials in literature reports. As a result, the cell with the BCNNi electrolyte shows a peak power density of 84 mW cm-2 at 700 °C which is also one of the largest ever reported for this type of cells. Further electrochemical studies indicate that the high conductivity of BCNNi electrolyte membrane benefits the fuel cell performance.

  1. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Directory of Open Access Journals (Sweden)

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  2. Tophaceous gout of spine causing neural compression

    Directory of Open Access Journals (Sweden)

    Zhuo LI

    2016-11-01

    Full Text Available Objective To investigate the imaging and clinicopathological features of spinal tophaceous gout in thoracic vertebra and the key points of its diagnosis and treatment, in order to improve the recognition of this disease.  Methods and Results A 36-year-old male was admitted because of weakness and numbness of both lower extremities for 2 months with progressive aggravation for 2 weeks. MRI revealed an extradural mass compressing the spinal cord at T9-10. The tumor was totally removed by piecemeal resection. Histopathological examination of the fresh specimen by light microscope demonstrated brown linear crystals, which showed strong birefringence in polarized light microscope, located in fibrous connective tissue, with local bone invasion and foreign body granuloma. However, histopathological examination of the removed specimen demonstrated white amorphous materials, with scatteredly distributed remaining brown linear crystals, which showed single refraction in polarized light microscope. The final pathological diagnosis was tophaceous gout. The patient was followed-up for 6 months. He stopped taking anti-uric acid drugs by himself and could walk with crutch.  Conclusions Tophaceous gout of spine is caused by uratic deposition in spinal joints, which needs to be differentiated from other intraspinal extradural space-occupying lesions like tuberculosis, central nervous system lymphoma, metastatic tumors and lipomyoma. A definite diagnosis of tophaceous gout of spine requires histopathological examination detecting uratic crystals. DOI: 10.3969/j.issn.1672-6731.2016.11.013

  3. [Tumours of the upper cervical spine].

    Science.gov (United States)

    Hernández García, Borja Jesús; Isla Guerrero, Alberto; Castaño, Ana; Alvarez Ruiz, Fernando; Gómez de la Riva, Alvaro

    2013-01-01

    Vertebral tumours arising in the upper cervical spine are rare. We present our experience in managing these neoplasms. We retrospectively reviewed the case histories of patients treated at our institution between January 2000 and June 2011. There were 9 patients with tumours in C1-C2-C3: 2metastases, 3chordomas, 2plasmocytomas, 1chondrosarcoma and 1osteochondroma. All patients complained of neck pain at the time of diagnosis. Three patients underwent an anterior and posterior approach, 3 an exclusively posterior approach and 3 an exclusively anterior surgical approach. Tumour resection was intralesional in 7 cases. Chemo-radiotherapy was used as adjuvant therapy in patients with malignant tumours. Vertebral tumours in the upper cervical spine are usually malignant. Achieving en bloc resection is particularly challenging and is technically unfeasible in many cases. This worsens the prognosis and makes adjuvant treatment very important. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  4. MR imaging of acute cervical spine injuries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Hwa; Lee, Jung Hyung; Joo, Yang Goo [School of Medicine, Keimyung University, Daegu (Korea, Republic of)

    1995-01-15

    To describe magnetic resonance (MR) findings of the patients with acute cervical spinal injury and to assess the usefulness of the MR imagings. We retrospectively reviewed the MR images of 32 patients with acute cervical spinal injury. MR images were obtained with a 2.0 T superconductive MR imaging units (Spectro-20000, Gold-Star, Seoul), using spin-echo and gradient-echo technique. Most of patients were in their 3rd-4th decades and motor vehicle accident was the most frequent cause of acute cervical trauma. We assessed the MR findings with respect to the spinal cord, ligaments, paravertebral soft tissues, intervertebral disk, and bony spine. Spinal cord injury was the most common (65%), where cord swelling, edema, and/or hematoma were demonstrated most frequently at C5-6 level. Traumatic intervertebral disk herniations were the second most common (62.5%) and frequently occurred at the lower cervical levels, mostly at C5-6. Paravertebral soft tissue injury, vertebral body fracture, bone marrow edema and displacement were also well shown on MR images. MR imaging appears to be essential for the evaluation of traumatic disk herniations, spinal cord abnormalities, and injury of paravertebral soft tissue in the acute injury of the cervical spine.

  5. Research of Spined Heat-Exchanging Pipes

    Directory of Open Access Journals (Sweden)

    Akulov Kirill

    2016-01-01

    Full Text Available Work is devoted to a research of spined heat-exchanging pipes that are assumed to use in air-cooler exchangers (ACE. The proposed new geometry of finning allows intensifying heat exchange and improving the efficiency of air coolers. It is caused by the increased area of finned surface with a value of finning ratio (the ratio of the area of the smooth pipe to a finned one to 42.7, while in the commercially available ACE, the figure is 22. Besides, the geometrical arrangement of the pin fins turbulizes the airflow. It should be mentioned that an easier method of manufacturing of heat exchanging pipes is proposed to use, which will reduce their costs. The proposed heat exchange pipes are made by winding cut aluminum strip to the supporting pipe or stretching stamped blanks on it. To increase the efficiency of the heat exchange surface pin fins should be as thin and long as possible; however, their strength should be sufficient for deformation-free operation. Fins should be staggered to maximize the distance between them. Spined heat-exchange pipes are designed to operate in a commercially produced ACE and their service is carried out similarly to commercially produced transversely finned pipes.

  6. Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model

    Directory of Open Access Journals (Sweden)

    Swanger Sharon A

    2011-10-01

    Full Text Available Abstract Uncovering the mechanisms that regulate dendritic spine morphology has been limited, in part, by the lack of efficient and unbiased methods for analyzing spines. Here, we describe an automated 3D spine morphometry method and its application to spine remodeling in live neurons and spine abnormalities in a disease model. We anticipate that this approach will advance studies of synapse structure and function in brain development, plasticity, and disease.

  7. Pigmented villonodular synovitis of the spine: a case report